date_collected
stringclasses
1 value
repo_name
stringlengths
6
116
file_name
stringlengths
2
220
file_contents
stringlengths
13
357k
prompts
sequence
2024-01-10
opendreambox/python-coherence
coherence~extern~louie.py
""" Wrapper module for the louie implementation """ import warnings from coherence.dispatcher import Dispatcher warnings.warn("extern.louie will soon be deprecated in favor of coherence.dispatcher.") class Any(object): pass class All(object): pass class Anonymous(object): pass # fake the API class Dummy(object): pass signal = Dummy() sender = Dummy() #senders sender.Anonymous = Anonymous sender.Any = Any #signals signal.All = All # a slightly less raise-y-ish implementation as louie was not so picky, too class GlobalDispatcher(Dispatcher): def connect(self, signal, callback, *args, **kw): if not signal in self.receivers: # ugly hack self.receivers[signal] = [] return Dispatcher.connect(self, signal, callback, *args, **kw) def _get_receivers(self, signal): try: return self.receivers[signal] except KeyError: return [] global _global_dispatcher _global_dispatcher = GlobalDispatcher() _global_receivers_pool = {} def connect(receiver, signal=All, sender=Any, weak=True): callback = receiver if signal in (Any, All): raise NotImplemented("This is not allowed. Signal HAS to be something") receiver = _global_dispatcher.connect(signal, callback) _global_receivers_pool["%s%s" %(callback, signal)] = receiver return receiver def disconnect(receiver, signal=All, sender=Any, weak=True): callback = receiver if signal in (Any, All): raise NotImplemented("This is not allowed. Signal HAS to be something") key = "%s%s" %(callback, signal) if key in _global_receivers_pool: receiver = _global_receivers_pool.pop(key) return _global_dispatcher.disconnect(receiver) else: print warnings.warn("louie - cannot disconnect %s" %(key,)) return def send(signal=All, sender=Anonymous, *arguments, **named): if signal in (Any, All): raise NotImplemented("This is not allowed. Signal HAS to be something") # the first value of the callback shall always be the signal: return _global_dispatcher.save_emit(signal, *arguments, **named) def send_minimal(signal=All, sender=Anonymous, *arguments, **named): return send(signal, sender, *arguments, **named) def send_exact(signal=All, sender=Anonymous, *arguments, **named): return send(signal, sender, *arguments, **named) def send_robust(signal=All, sender=Anonymous, *arguments, **named): return send(signal, sender, *arguments, **named)
[]
2024-01-10
opendreambox/python-coherence
coherence~upnp~devices~binary_light.py
# -*- coding: utf-8 -*- # Licensed under the MIT license # http://opensource.org/licenses/mit-license.php # Copyright 2008, Frank Scholz <[email protected]> from twisted.internet import task from twisted.internet import reactor from twisted.web import resource, static from coherence import __version__ from coherence.extern.et import ET, indent from coherence.upnp.services.servers.switch_power_server import SwitchPowerServer from coherence.upnp.devices.basics import RootDeviceXML, DeviceHttpRoot, BasicDeviceMixin import coherence.extern.louie as louie from coherence import log class HttpRoot(DeviceHttpRoot): logCategory = 'binarylight' class BinaryLight(log.Loggable,BasicDeviceMixin): logCategory = 'binarylight' device_type = 'BinaryLight' version = 1 def fire(self,backend,**kwargs): if kwargs.get('no_thread_needed',False) == False: """ this could take some time, put it in a thread to be sure it doesn't block as we can't tell for sure that every backend is implemented properly """ from twisted.internet import threads d = threads.deferToThread(backend, self, **kwargs) def backend_ready(backend): self.backend = backend def backend_failure(x): self.warning('backend not installed, %s activation aborted' % self.device_type) self.debug(x) d.addCallback(backend_ready) d.addErrback(backend_failure) # FIXME: we need a timeout here so if the signal we wait for not arrives we'll # can close down this device else: self.backend = backend(self, **kwargs) def init_complete(self, backend): if self.backend != backend: return self._services = [] self._devices = [] try: self.switch_power_server = SwitchPowerServer(self) self._services.append(self.switch_power_server) except LookupError,msg: self.warning( 'SwitchPowerServer', msg) raise LookupError(msg) upnp_init = getattr(self.backend, "upnp_init", None) if upnp_init: upnp_init() self.web_resource = HttpRoot(self) self.coherence.add_web_resource( str(self.uuid)[5:], self.web_resource) version = self.version while version > 0: self.web_resource.putChild( 'description-%d.xml' % version, RootDeviceXML( self.coherence.hostname, str(self.uuid), self.coherence.urlbase, device_type=self.device_type, version=version, friendly_name=self.backend.name, model_description='Coherence UPnP %s' % self.device_type, model_name='Coherence UPnP %s' % self.device_type, services=self._services, devices=self._devices, icons=self.icons)) version -= 1 self.web_resource.putChild('SwitchPower', self.switch_power_server) for icon in self.icons: if icon.has_key('url'): if icon['url'].startswith('file://'): self.web_resource.putChild(os.path.basename(icon['url']), static.File(icon['url'][7:])) self.register() self.warning("%s %s (%s) activated with %s" % (self.backend.name, self.device_type, self.backend, str(self.uuid)[5:]))
[]
2024-01-10
opendreambox/python-coherence
coherence~upnp~core~DIDLLite.py
# Licensed under the MIT license # http://opensource.org/licenses/mit-license.php # Copyright 2005, Tim Potter <[email protected]> # Copyright 2006, Frank Scholz <[email protected]> """ TODO: - use more XPath expressions in fromElement() methods """ import os import string import urllib from datetime import datetime DC_NS = 'http://purl.org/dc/elements/1.1/' UPNP_NS = 'urn:schemas-upnp-org:metadata-1-0/upnp/' DIDL_NS = 'urn:schemas-upnp-org:metadata-1-0/DIDL-Lite/' DLNA_NS = 'urn:schemas-dlna-org:metadata-1-0' my_namespaces = { DC_NS: 'dc', UPNP_NS: 'upnp' } from coherence.extern.et import ET, namespace_map_update, ElementInterface namespace_map_update(my_namespaces) from coherence.upnp.core import utils from coherence.upnp.core import dlna from coherence import log def qname(tag,ns=''): if len(ns) == 0: return tag return "{%s}%s" % (ns,tag) def is_audio(mimetype): """ checks for type audio, expects a mimetype or an UPnP protocolInfo """ test = mimetype.split(':') if len(test) == 4: mimetype = test[2] if mimetype == 'application/ogg': return True if mimetype.startswith('audio/'): return True return False def is_video(mimetype): """ checks for type video, expects a mimetype or an UPnP protocolInfo """ test = mimetype.split(':') if len(test) == 4: mimetype = test[2] if mimetype.startswith('video/'): return True return False class Resources(list): """ a list of resources, always sorted after an append """ def __init__(self, *args, **kwargs): list.__init__(self, *args, **kwargs) self.sort(cmp=self.p_sort) def append(self, value): list.append(self,value) self.sort(cmp=self.p_sort) def p_sort(self,x,y): """ we want the following order http-get is always at the beginning rtsp-rtp-udp the second anything else after that """ if x.protocolInfo == None: return 1 if y.protocolInfo == None: return -1 x_protocol = x.protocolInfo.split(':')[0] y_protocol = y.protocolInfo.split(':')[0] x_protocol = x_protocol.lower() y_protocol = y_protocol.lower() if( x_protocol == y_protocol): return 0 if(x_protocol == 'http-get'): return -1 if(x_protocol == 'rtsp-rtp-udp' and y_protocol == 'http-get'): return 1 if(x_protocol == 'rtsp-rtp-udp' and y_protocol != 'http-get'): return -1 return 1 def get_matching(self, local_protocol_infos, protocol_type = None): result = [] if not isinstance(local_protocol_infos, list): local_protocol_infos = [local_protocol_infos] for res in self: if res.importUri != None: continue #print "res", res.protocolInfo, res.data remote_protocol,remote_network,remote_content_format,_ = res.protocolInfo.split(':') #print "remote", remote_protocol,remote_network,remote_content_format if(protocol_type is not None and remote_protocol.lower() != protocol_type.lower()): continue for protocol_info in local_protocol_infos: local_protocol,local_network,local_content_format,_ = protocol_info.split(':') #print "local", local_protocol,local_network,local_content_format if((remote_protocol == local_protocol or remote_protocol == '*' or local_protocol == '*') and (remote_network == local_network or remote_network == '*' or local_network == '*') and (remote_content_format.startswith(local_content_format) or remote_content_format == '*' or local_content_format == '*')): #print result, res result.append(res) return result def classChooser(mimetype, sub=None): if mimetype == 'root': return Container if mimetype == 'item': return Item if mimetype == 'directory': if sub == 'music': return MusicAlbum return Container else: if string.find (mimetype,'image/') == 0: return Photo if string.find (mimetype,'audio/') == 0: if sub == 'music': # FIXME: this is stupid return MusicTrack return AudioItem if string.find (mimetype,'video/') == 0: return VideoItem if mimetype == 'application/ogg': if sub == 'music': # FIXME: this is stupid return MusicTrack return AudioItem if mimetype == 'application/x-flac': if sub == 'music': # FIXME: this is stupid return MusicTrack return AudioItem return None simple_dlna_tags = ['DLNA.ORG_OP=01', # operations parameter 'DLNA.ORG_PS=1', # play speed parameter 'DLNA.ORG_CI=0', # transcoded parameter 'DLNA.ORG_FLAGS=01100000000000000000000000000000'] def build_dlna_additional_info(content_format,does_playcontainer=False): additional_info = ['*'] if content_format == 'audio/mpeg': additional_info = ['DLNA.ORG_PN=MP3']+simple_dlna_tags if content_format == 'audio/ms-wma': additional_info = ['DLNA.ORG_PN=WMABASE']+simple_dlna_tags if content_format == 'image/jpeg': dlna_tags = simple_dlna_tags[:] dlna_tags[3] = 'DLNA.ORG_FLAGS=00900000000000000000000000000000' additional_info = ['DLNA.ORG_PN=JPEG_LRG']+dlna_tags if content_format == 'image/png': dlna_tags = simple_dlna_tags[:] dlna_tags[3] = 'DLNA.ORG_FLAGS=00900000000000000000000000000000' additional_info = ['DLNA.ORG_PN=PNG_LRG']+dlna_tags if content_format == 'video/mpeg': additional_info = ['DLNA.ORG_PN=MPEG_PS_PAL']+simple_dlna_tags if content_format == 'video/mpegts': additional_info = ['DLNA.ORG_PN=MPEG_TS_PAL']+simple_dlna_tags content_format = 'video/mpeg' if content_format in ['video/mp4','video/x-m4a']: additional_info = ['DLNA.ORG_PN=AVC_TS_BL_CIF15_AAC']+simple_dlna_tags if content_format in ['video/x-msvideo','video/avi','video/divx']: #additional_info = ';'.join(['DLNA.ORG_PN=MPEG4_P2_MP4_SP_AAC']+simple_dlna_tags) additional_info = ['*'] if content_format == 'video/x-ms-wmv': additional_info = ['DLNA.ORG_PN=WMV_BASE']+simple_dlna_tags if content_format == '*': additional_info = simple_dlna_tags if does_playcontainer == True: i = 0 for part in additional_info: if part.startswith('DLNA.ORG_FLAGS'): _,bits = part.split('=') bits = int(bits,16) bits |= 0x10000000000000000000000000000000 additional_info[i] = 'DLNA.ORG_FLAGS=%.32x' % bits break i += 1 return ';'.join(additional_info) class Resource(object): """An object representing a resource.""" def __init__(self, data=None, protocolInfo=None): self.data = data self.protocolInfo = protocolInfo self.bitrate = None self.size = None self.duration = None self.nrAudioChannels = None self.resolution = None self.importUri = None if self.protocolInfo is not None: protocol,network,content_format,additional_info = self.protocolInfo.split(':') if additional_info == '*': self.protocolInfo = ':'.join((protocol,network,content_format,build_dlna_additional_info(content_format))) elif additional_info == '#': self.protocolInfo = ':'.join((protocol,network,content_format,'*')) def get_additional_info(self,upnp_client=''): protocol,network,content_format,additional_info = self.protocolInfo.split(':') if upnp_client in ('XBox','Philips-TV',): """ we don't need the DLNA tags there, and maybe they irritate these poor things anyway """ additional_info = '*' elif upnp_client == 'PLAYSTATION3': if content_format.startswith('video/'): additional_info = '*' elif upnp_client.startswith("Samsung"): #can be 'Samsung' or 'SamsungDMC10' if content_format == "video/x-matroska": #Samsung uses a wrong mimetype for mkv content_format = "video/x-mkv" a_list = additional_info.split(';') for part in a_list: if part == 'DLNA.ORG_PS=1': a_list.remove(part) break additional_info = ';'.join(a_list) return additional_info def toElement(self,**kwargs): root = ET.Element('res') if kwargs.get('upnp_client','') in ('XBox',): protocol,network,content_format,additional_info = self.protocolInfo.split(':') if content_format in ['video/divx','video/x-msvideo']: content_format = 'video/avi' if content_format == 'audio/x-wav': content_format = 'audio/wav' additional_info = self.get_additional_info(upnp_client=kwargs.get('upnp_client','')) root.attrib['protocolInfo'] = ':'.join((protocol,network,content_format,additional_info)) else: protocol,network,content_format,additional_info = self.protocolInfo.split(':') if content_format == 'video/x-msvideo': content_format = 'video/divx' additional_info = self.get_additional_info(upnp_client=kwargs.get('upnp_client','')) root.attrib['protocolInfo'] = ':'.join((protocol,network,content_format,additional_info)) root.text = self.data if self.bitrate is not None: root.attrib['bitrate'] = str(self.bitrate) if self.size is not None: root.attrib['size'] = str(self.size) if self.duration is not None: root.attrib['duration'] = self.duration if self.nrAudioChannels is not None: root.attrib['nrAudioChannels'] = self.nrAudioChannels if self.resolution is not None: root.attrib['resolution'] = self.resolution if self.importUri is not None: root.attrib['importUri'] = self.importUri return root def fromElement(self, elt): self.protocolInfo = elt.attrib['protocolInfo'] self.data = elt.text self.bitrate = elt.attrib.get('bitrate') self.size = elt.attrib.get('size') self.duration = elt.attrib.get('duration',None) self.resolution = elt.attrib.get('resolution',None) self.importUri = elt.attrib.get('importUri',None) def toString(self,**kwargs): return ET.tostring(self.toElement(**kwargs),encoding='utf-8') @classmethod def fromString(cls, aString): instance = cls() elt = utils.parse_xml(aString) #elt = ElementTree(elt) instance.fromElement(elt.getroot()) return instance def transcoded(self,format): protocol,network,content_format,additional_info = self.protocolInfo.split(':') dlna_tags = simple_dlna_tags[:] #dlna_tags[1] = 'DLNA.ORG_OP=00' dlna_tags[2] = 'DLNA.ORG_CI=1' if format == 'mp3': if content_format == 'audio/mpeg': return None content_format='audio/mpeg' dlna_pn = 'DLNA.ORG_PN=MP3' elif format == 'lpcm': dlna_pn = 'DLNA.ORG_PN=LPCM' content_format='audio/L16;rate=44100;channels=2' elif format == 'mpegts': if content_format == 'video/mpeg': return None dlna_pn = 'DLNA.ORG_PN=MPEG_PS_PAL' # 'DLNA.ORG_PN=MPEG_TS_SD_EU' # FIXME - don't forget HD content_format='video/mpeg' else: return None additional_info = ';'.join([dlna_pn]+dlna_tags) new_protocol_info = ':'.join((protocol,network,content_format,additional_info)) new_res = Resource(self.data+'/transcoded/%s' % format, new_protocol_info) new_res.size = None new_res.duration = self.duration new_res.resolution = self.resolution return new_res class PlayContainerResource(Resource): """An object representing a DLNA playcontainer resource.""" def __init__(self, udn, sid='urn:upnp-org:serviceId:ContentDirectory', cid=None, fid=None, fii=0, sc='',md=0, protocolInfo=None): Resource.__init__(self) if cid == None: raise AttributeError('missing Container Id') if fid == None: raise AttributeError('missing first Child Id') self.protocolInfo = protocolInfo args = ['sid=' + urllib.quote(sid), 'cid=' + urllib.quote(str(cid)), 'fid=' + urllib.quote(str(fid)), 'fii=' + urllib.quote(str(fii)), 'sc=' + urllib.quote(''), 'md=' + urllib.quote(str(0))] self.data = 'dlna-playcontainer://' + urllib.quote(str(udn)) \ + '?' + '&'.join(args) if self.protocolInfo == None: self.protocolInfo = 'http-get:*:*:*' class Object(log.Loggable): """The root class of the entire content directory class heirachy.""" logCategory = 'didllite' upnp_class = 'object' creator = None res = None writeStatus = None date = None albumArtURI = None artist = None genre = None genres = None album = None originalTrackNumber=None description = None longDescription = None refID = None server_uuid = None def __init__(self, id=None, parentID=None, title=None, restricted=False, creator=None): self.id = id self.parentID = parentID self.title = title self.creator = creator self.restricted = restricted self.res = Resources() def checkUpdate(self): return self def toElement(self,**kwargs): root = ET.Element(self.elementName) #if self.id == 1000: # root.attrib['id'] = '0' # ET.SubElement(root, 'dc:title').text = 'root' #else: # root.attrib['id'] = str(self.id) # ET.SubElement(root, 'dc:title').text = self.title root.attrib['id'] = str(self.id) ET.SubElement(root, qname('title',DC_NS)).text = self.title #if self.title != None: # ET.SubElement(root, 'dc:title').text = self.title #else: # ET.SubElement(root, 'dc:title').text = 'root' root.attrib['parentID'] = str(self.parentID) if(kwargs.get('upnp_client','') != 'XBox'): if self.refID: root.attrib['refID'] = str(self.refID) if kwargs.get('requested_id',None): if kwargs.get('requested_id') == '0': t = root.find(qname('title',DC_NS)) t.text = 'root' #if kwargs.get('requested_id') != '0' and kwargs.get('requested_id') != root.attrib['id']: if kwargs.get('requested_id') != root.attrib['id']: if(kwargs.get('upnp_client','') != 'XBox'): root.attrib['refID'] = root.attrib['id'] r_id = kwargs.get('requested_id') root.attrib['id'] = r_id r_id = r_id.split('@',1) try: root.attrib['parentID'] = r_id[1] except IndexError: pass if(kwargs.get('upnp_client','') != 'XBox'): self.info("Changing ID from %r to %r, with parentID %r", root.attrib['refID'], root.attrib['id'], root.attrib['parentID']) else: self.info("Changing ID from %r to %r, with parentID %r", self.id, root.attrib['id'], root.attrib['parentID']) elif kwargs.get('parent_container',None): if(kwargs.get('parent_container') != '0' and kwargs.get('parent_container') != root.attrib['parentID']): if(kwargs.get('upnp_client','') != 'XBox'): root.attrib['refID'] = root.attrib['id'] root.attrib['id'] = '@'.join((root.attrib['id'],kwargs.get('parent_container'))) root.attrib['parentID'] = kwargs.get('parent_container') if(kwargs.get('upnp_client','') != 'XBox'): self.info("Changing ID from %r to %r, with parentID from %r to %r", root.attrib['refID'], root.attrib['id'], self.parentID, root.attrib['parentID']) else: self.info("Changing ID from %r to %r, with parentID from %r to %r", self.id, root.attrib['id'], self.parentID, root.attrib['parentID']) ET.SubElement(root, qname('class',UPNP_NS)).text = self.upnp_class upnp_client = kwargs.get('upnp_client','') if upnp_client == 'XBox': u = root.find(qname('class',UPNP_NS)) if(kwargs.get('parent_container',None) != None and u.text.startswith('object.container')): if kwargs.get('parent_container') in ('14','15','16'): u.text = 'object.container.storageFolder' if self.upnp_class == 'object.container': u.text = 'object.container.storageFolder' if self.restricted: root.attrib['restricted'] = '1' else: root.attrib['restricted'] = '0' if self.creator is not None: ET.SubElement(root, qname('creator',DC_NS)).text = self.creator if self.writeStatus is not None: ET.SubElement(root, qname('writeStatus',UPNP_NS)).text = self.writeStatus if self.date is not None: if isinstance(self.date, datetime): ET.SubElement(root, qname('date',DC_NS)).text = self.date.isoformat() else: ET.SubElement(root, qname('date',DC_NS)).text = self.date else: ET.SubElement(root, qname('date',DC_NS)).text = utils.datefaker().isoformat() if self.albumArtURI is not None: e = ET.SubElement(root, qname('albumArtURI',UPNP_NS)) e.text = self.albumArtURI if not upnp_client.startswith("Samsung"): #can be 'Samsung' or 'SamsungDMC10' e.attrib['xmlns:dlna'] = DLNA_NS e.attrib['dlna:profileID'] = 'JPEG_TN' if self.artist is not None: ET.SubElement(root, qname('artist',UPNP_NS)).text = self.artist if self.genre is not None: ET.SubElement(root, qname('genre',UPNP_NS)).text = self.genre if self.genres is not None: for genre in self.genres: ET.SubElement(root, qname('genre',UPNP_NS)).text = genre if self.originalTrackNumber is not None: ET.SubElement(root, qname('originalTrackNumber',UPNP_NS)).text = str(self.originalTrackNumber) if self.description is not None: ET.SubElement(root, qname('description',DC_NS)).text = self.description if self.longDescription is not None: ET.SubElement(root, qname('longDescription',UPNP_NS)).text = self.longDescription if self.server_uuid is not None: ET.SubElement(root, qname('server_uuid',UPNP_NS)).text = self.server_uuid return root def toString(self,**kwargs): return ET.tostring(self.toElement(**kwargs),encoding='utf-8') def fromElement(self, elt): """ TODO: * creator * writeStatus """ self.elementName = elt.tag self.id = elt.attrib.get('id',None) self.parentID = elt.attrib.get('parentID',None) self.refID = elt.attrib.get('refID',None) if elt.attrib.get('restricted',None) in [1,'true','True','1','yes','Yes']: self.restricted = True else: self.restricted = False for child in elt.getchildren(): if child.tag.endswith('title'): self.title = child.text elif child.tag.endswith('albumArtURI'): self.albumArtURI = child.text elif child.tag.endswith('originalTrackNumber'): self.originalTrackNumber = int(child.text) elif child.tag.endswith('description'): self.description = child.text elif child.tag.endswith('longDescription'): self.longDescription = child.text elif child.tag.endswith('artist'): self.artist = child.text elif child.tag.endswith('genre'): if self.genre != None: if self.genres == None: self.genres = [self.genre,] self.genres.append(child.text) self.genre = child.text elif child.tag.endswith('album'): self.album = child.text elif child.tag.endswith('class'): self.upnp_class = child.text elif child.tag.endswith('server_uuid'): self.server_uuid = child.text elif child.tag.endswith('res'): res = Resource.fromString(ET.tostring(child)) self.res.append(res) @classmethod def fromString(cls, data): instance = cls() elt = utils.parse_xml(data) #elt = ElementTree(elt) instance.fromElement(elt.getroot()) return instance class Item(Object): """A class used to represent atomic (non-container) content objects.""" upnp_class = Object.upnp_class + '.item' elementName = 'item' refID = None director = None actors = None language = None def __init__(self, *args, **kwargs): Object.__init__(self, *args, **kwargs) def toElement(self,**kwargs): root = Object.toElement(self,**kwargs) if self.director is not None: ET.SubElement(root, qname('director',UPNP_NS)).text = self.director if self.refID is not None: ET.SubElement(root, 'refID').text = self.refID if self.actors is not None: for actor in self.actors: ET.SubElement(root, qname('actor',DC_NS)).text = actor #if self.language is not None: # ET.SubElement(root, qname('language',DC_NS)).text = self.language if kwargs.get('transcoding',False) == True: res = self.res.get_matching(['*:*:*:*'], protocol_type='http-get') if len(res) > 0 and is_audio(res[0].protocolInfo): old_res = res[0] if(kwargs.get('upnp_client','') == 'XBox'): transcoded_res = old_res.transcoded('mp3') if transcoded_res != None: root.append(transcoded_res.toElement(**kwargs)) else: root.append(old_res.toElement(**kwargs)) else: for res in self.res: root.append(res.toElement(**kwargs)) transcoded_res = old_res.transcoded('lpcm') if transcoded_res != None: root.append(transcoded_res.toElement(**kwargs)) elif len(res) > 0 and is_video(res[0].protocolInfo): old_res = res[0] for res in self.res: root.append(res.toElement(**kwargs)) transcoded_res = old_res.transcoded('mpegts') if transcoded_res != None: root.append(transcoded_res.toElement(**kwargs)) else: for res in self.res: root.append(res.toElement(**kwargs)) else: for res in self.res: root.append(res.toElement(**kwargs)) return root def fromElement(self, elt): Object.fromElement(self, elt) for child in elt.getchildren(): if child.tag.endswith('refID'): self.refID = child.text elif child.tag.endswith('director'): self.director = child.text class ImageItem(Item): upnp_class = Item.upnp_class + '.imageItem' rating = None storageMedium = None publisher = None rights = None def toElement(self,**kwargs): root = Item.toElement(self,**kwargs) if self.rating is not None: ET.SubElement(root, qname('rating',UPNP_NS)).text = str(self.rating) if self.storageMedium is not None: ET.SubElement(root, qname('storageMedium',UPNP_NS)).text = self.storageMedium if self.publisher is not None: ET.SubElement(root, qname('publisher',DC_NS)).text = self.contributor if self.rights is not None: ET.SubElement(root, qname('rights',DC_NS)).text = self.rights return root class Photo(ImageItem): upnp_class = ImageItem.upnp_class + '.photo' album = None def toElement(self,**kwargs): root = ImageItem.toElement(self,**kwargs) if self.album is not None: ET.SubElement(root, qname('album',UPNP_NS)).text = self.album return root class AudioItem(Item): """A piece of content that when rendered generates some audio.""" upnp_class = Item.upnp_class + '.audioItem' publisher = None language = None relation = None rights = None valid_keys = ['genre', 'description', 'longDescription', 'publisher', 'language', 'relation', 'rights', 'albumArtURI'] #@dlna.AudioItem def toElement(self,**kwargs): root = Item.toElement(self,**kwargs) if self.publisher is not None: ET.SubElement(root, qname('publisher',DC_NS)).text = self.publisher if self.language is not None: ET.SubElement(root, qname('language',DC_NS)).text = self.language if self.relation is not None: ET.SubElement(root, qname('relation',DC_NS)).text = self.relation if self.rights is not None: ET.SubElement(root, qname('rights',DC_NS)).text = self.rights return root def fromElement(self, elt): Item.fromElement(self, elt) for child in elt.getchildren(): tag = child.tag val = child.text if tag in self.valid_keys: setattr(self, tag, val) class MusicTrack(AudioItem): """A discrete piece of audio that should be interpreted as music.""" upnp_class = AudioItem.upnp_class + '.musicTrack' album = None playlist = None storageMedium = None contributor = None def toElement(self,**kwargs): root = AudioItem.toElement(self,**kwargs) if self.album is not None: ET.SubElement(root, qname('album',UPNP_NS)).text = self.album if self.playlist is not None: ET.SubElement(root, qname('playlist',UPNP_NS)).text = self.playlist if self.storageMedium is not None: ET.SubElement(root, qname('storageMedium',UPNP_NS)).text = self.storageMedium if self.contributor is not None: ET.SubElement(root, qname('contributor',DC_NS)).text = self.contributor return root class AudioBroadcast(AudioItem): upnp_class = AudioItem.upnp_class + '.audioBroadcast' class AudioBook(AudioItem): upnp_class = AudioItem.upnp_class + '.audioBook' class VideoItem(Item): upnp_class = Item.upnp_class + '.videoItem' valid_attrs = dict(genre=UPNP_NS, longDescription=UPNP_NS, producer=UPNP_NS, rating=UPNP_NS, actor=UPNP_NS, director=UPNP_NS, description=DC_NS, publisher=DC_NS, language=DC_NS, relation=DC_NS) def toElement(self,**kwargs): root = Item.toElement(self,**kwargs) for attr_name, ns in self.valid_attrs.iteritems(): value = getattr(self, attr_name, None) if value: ET.SubElement(root, qname(attr_name, ns)).text = value return root def fromElement(self, elt): Item.fromElement(self, elt) for child in elt.getchildren(): tag = child.tag val = child.text if tag in self.valid_attrs.keys(): setattr(self, tag, val) class Movie(VideoItem): upnp_class = VideoItem.upnp_class + '.movie' def __init__(self, *args, **kwargs): VideoItem.__init__(self, *args, **kwargs) self.valid_attrs.update(dict(storageMedium=UPNP_NS, DVDRegionCode=UPNP_NS, channelName=UPNP_NS, scheduledStartTime=UPNP_NS, sccheduledEndTime=UPNP_NS)) class VideoBroadcast(VideoItem): upnp_class = VideoItem.upnp_class + '.videoBroadcast' class MusicVideoClip(VideoItem): upnp_class = VideoItem.upnp_class + '.musicVideoClip' class PlaylistItem(Item): upnp_class = Item.upnp_class + '.playlistItem' class TextItem(Item): upnp_class = Item.upnp_class + '.textItem' class Container(Object): """An object that can contain other objects.""" upnp_class = Object.upnp_class + '.container' elementName = 'container' childCount = None createClass = None searchable = None def __init__(self, id=None, parentID=None, title=None, restricted = False, creator = None): Object.__init__(self, id, parentID, title, restricted, creator) self.searchClass = [] def toElement(self,**kwargs): root = Object.toElement(self,**kwargs) if self.childCount is not None: root.attrib['childCount'] = str(self.childCount) if self.createClass is not None: ET.SubElement(root, qname('createclass',UPNP_NS)).text = self.createClass if not isinstance(self.searchClass, (list, tuple)): self.searchClass = [self.searchClass] for i in self.searchClass: sc = ET.SubElement(root, qname('searchClass',UPNP_NS)) sc.attrib['includeDerived'] = '1' sc.text = i if self.searchable is not None: if self.searchable in (1, '1', True, 'true', 'True'): root.attrib['searchable'] = '1' else: root.attrib['searchable'] = '0' for res in self.res: root.append(res.toElement(**kwargs)) return root def fromElement(self, elt): Object.fromElement(self, elt) v = elt.attrib.get('childCount',None) if v is not None: self.childCount = int(v) #self.searchable = int(elt.attrib.get('searchable','0')) self.searchable = elt.attrib.get('searchable','0') in [1,'True','true','1'] self.searchClass = [] for child in elt.getchildren(): if child.tag.endswith('createclass'): self.createClass = child.text elif child.tag.endswith('searchClass'): self.searchClass.append(child.text) class Music(Container): upnp_class = Container.upnp_class + '.music' class Person(Container): upnp_class = Container.upnp_class + '.person' class MusicArtist(Person): upnp_class = Person.upnp_class + '.musicArtist' class PlaylistContainer(Container): upnp_class = Container.upnp_class + '.playlistContainer' class Album(Container): upnp_class = Container.upnp_class + '.album' class MusicAlbum(Album): upnp_class = Album.upnp_class + '.musicAlbum' class PhotoAlbum(Album): upnp_class = Album.upnp_class + '.photoAlbum' class Genre(Container): upnp_class = Container.upnp_class + '.genre' class MusicGenre(Genre): upnp_class = Genre.upnp_class + '.musicGenre' class MovieGenre(Genre): upnp_class = Genre.upnp_class + '.movieGenre' class StorageSystem(Container): upnp_class = Container.upnp_class + '.storageSystem' class StorageVolume(Container): upnp_class = Container.upnp_class + '.storageVolume' class StorageFolder(Container): upnp_class = Container.upnp_class + '.storageFolder' class DIDLElement(ElementInterface,log.Loggable): logCategory = 'didllite' def __init__(self, upnp_client='', parent_container=None,requested_id=None, transcoding=False): ElementInterface.__init__(self, 'DIDL-Lite', {"xmlns" : DIDL_NS}) self._items = [] self.upnp_client = upnp_client self.parent_container = parent_container self.requested_id = requested_id self.transcoding = transcoding def addContainer(self, id, parentID, title, restricted = False): e = Container(id, parentID, title, restricted, creator = '') self.append(e.toElement()) def addItem(self, item): self.append(item.toElement(upnp_client=self.upnp_client, parent_container=self.parent_container, requested_id=self.requested_id, transcoding=self.transcoding)) self._items.append(item) def rebuild(self): self._children = [] for item in self._items: self.append(item.toElement(upnp_client=self.upnp_client, parent_container=self.parent_container, requested_id=self.requested_id, transcoding=self.transcoding)) def numItems(self): return len(self) def getItems(self): return self._items def toString(self): """ sigh - having that optional preamble here breaks some of the older ContentDirectoryClients """ #preamble = """<?xml version="1.0" encoding="utf-8"?>""" #return preamble + ET.tostring(self,encoding='utf-8') return ET.tostring(self,encoding='utf-8') def get_upnp_class(self,name): try: return upnp_classes[name]() except KeyError: self.warning("upnp_class %r not found, trying fallback", name) parts = name.split('.') parts.pop() while len(parts) > 1: try: return upnp_classes['.'.join(parts)]() except KeyError: parts.pop() self.warning("WTF - no fallback for upnp_class %r found ?!?", name) return None @classmethod def fromString(cls, aString): instance = cls() elt = utils.parse_xml(aString, 'utf-8') elt = elt.getroot() for node in elt.getchildren(): upnp_class_name = node.findtext('{%s}class' % 'urn:schemas-upnp-org:metadata-1-0/upnp/') if upnp_class_name is None: #Samsung sends something like <sec:deviceFriendlyName>...</sec:deviceFriendlyName> #simply ignore that continue upnp_class = instance.get_upnp_class(upnp_class_name.strip()) new_node = upnp_class.fromString(ET.tostring(node)) instance.addItem(new_node) return instance def element_to_didl(item): """ a helper method to create a DIDLElement out of one ET element or XML fragment string """ if not isinstance(item,basestring): item = ET.tostring(item) didl = """<DIDL-Lite xmlns="urn:schemas-upnp-org:metadata-1-0/DIDL-Lite/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:dlna="urn:schemas-dlna-org:metadata-1-0" xmlns:pv="http://www.pv.com/pvns/" xmlns:upnp="urn:schemas-upnp-org:metadata-1-0/upnp/">""" \ + item + \ """</DIDL-Lite>""" return didl upnp_classes = {'object': Object, 'object.item': Item, 'object.item.imageItem': ImageItem, 'object.item.imageItem.photo': Photo, 'object.item.audioItem': AudioItem, 'object.item.audioItem.musicTrack': MusicTrack, 'object.item.audioItem.audioBroadcast': AudioBroadcast, 'object.item.audioItem.audioBook': AudioBook, 'object.item.videoItem': VideoItem, 'object.item.videoItem.movie': Movie, 'object.item.videoItem.videoBroadcast': VideoBroadcast, 'object.item.videoItem.musicVideoClip': MusicVideoClip, 'object.item.playlistItem': PlaylistItem, 'object.item.textItem': TextItem, 'object.container': Container, 'object.container.music': Music, 'object.container.person': Person, 'object.container.person.musicArtist': MusicArtist, 'object.container.playlistContainer': PlaylistContainer, 'object.container.album': Album, 'object.container.album.musicAlbum': MusicAlbum, 'object.container.album.photoAlbum': PhotoAlbum, 'object.container.genre': Genre, 'object.container.genre.musicGenre': MusicGenre, 'object.container.genre.movieGenre': MovieGenre, 'object.container.storageSystem': StorageSystem, 'object.container.storageVolume': StorageVolume, 'object.container.storageFolder': StorageFolder, } if __name__ == '__main__': res = Resources() res.append(Resource('1','file:*:*:*')) res.append(Resource('2','rtsp-rtp-udp:*:*:*')) res.append(Resource('3',None)) res.append(Resource('4','internal:*:*:*')) res.append(Resource('5','http-get:*:*:*')) res.append(Resource('6','something:*:*:*')) res.append(Resource('7','http-get:*:*:*')) for r in res: print r.data, r.protocolInfo
[]
2024-01-10
opendreambox/python-coherence
coherence~upnp~services~servers~av_transport_server.py
# Licensed under the MIT license # http://opensource.org/licenses/mit-license.php # Copyright 2006, Frank Scholz <[email protected]> # AVTransport service from twisted.web import resource from coherence.upnp.core.soap_service import UPnPPublisher from coherence.upnp.core import service class AVTransportControl(service.ServiceControl,UPnPPublisher): def __init__(self, server): self.service = server self.variables = server.get_variables() self.actions = server.get_actions() class AVTransportServer(service.ServiceServer, resource.Resource): def __init__(self, device, backend=None): self.device = device if backend == None: backend = self.device.backend resource.Resource.__init__(self) service.ServiceServer.__init__(self, 'AVTransport', self.device.version, backend) self.control = AVTransportControl(self) self.putChild(self.scpd_url, service.scpdXML(self)) self.putChild(self.control_url, self.control) def listchilds(self, uri): cl = '' for c in self.children: cl += '<li><a href=%s/%s>%s</a></li>' % (uri,c,c) return cl def render(self,request): return '<html><p>root of the AVTransport</p><p><ul>%s</ul></p></html>'% self.listchilds(request.uri)
[]
2024-01-10
opendreambox/python-coherence
coherence~backends~elisa_storage.py
# Licensed under the MIT license # http://opensource.org/licenses/mit-license.php # Copyright 2006, Frank Scholz <[email protected]> import re from twisted.spread import pb from twisted.internet import reactor from twisted.python import failure from coherence.upnp.core.DIDLLite import classChooser, Container, Resource, DIDLElement from coherence.upnp.core.soap_service import errorCode import coherence.extern.louie as louie from coherence.extern.simple_plugin import Plugin class ElisaMediaStore(Plugin): """ this is a backend to the Elisa Media DB Elisa needs to expose two methods get_root_id(media_type) if media_type == '*' this returns the root id of the media collection if media_type == 'audio' this returns the root id of the audio collection get_item_by_id(id) this returns a dict with the following keys: id = id in the media db parent_id = parent_id in the media db name = title, album name or basename mimetype = 'directory' or real mimetype children = list of objects for which this item is the parent location = filesystem path if item is a file cover = url by which the cover image can be retrieved (OPTIONAL) size = in bytes (OPTIONAL) """ implements = ['MediaServer'] def __init__(self, server, **kwargs): self.name = kwargs.get('name','Elisa') self.host = kwargs.get('host','127.0.0.1') self.urlbase = kwargs.get('urlbase','') ignore_patterns = kwargs.get('ignore_patterns',[]) if self.urlbase[len(self.urlbase)-1] != '/': self.urlbase += '/' self.server = server self.update_id = 0 self.root_id = 0 self.get_root_id() def __repr__(self): return "Elisa storage" def get_store(self): factory = pb.PBClientFactory() factory.noisy = False reactor.connectTCP(self.host, 8789, factory) return factory.getRootObject() def get_by_id(self,id): try: return self.store[int(id)] except: return None def set_root_id( self, id): self.root_id = id louie.send('Coherence.UPnP.Backend.init_completed', None, backend=self) def get_root_id( self, media_type='audio'): """ ask Elisa to tell us the id of the top item representing the media_type == 'something' collection """ store = self.get_store() dfr = store.addCallback(lambda object: object.callRemote('get_cache_manager')) dfr.addCallback(lambda cache_mgr: cache_mgr.callRemote("get_media_root_id", media_type)) dfr.addCallback(self.set_root_id) def upnp_init(self): if self.server: self.server.connection_manager_server.set_variable(0, 'SourceProtocolInfo', ['internal:%s:*:*' % self.host, 'http-get:*:audio/mpeg:*']) def upnp_Browse(self, *args, **kwargs): ObjectID = kwargs['ObjectID'] BrowseFlag = kwargs['BrowseFlag'] Filter = kwargs['Filter'] StartingIndex = int(kwargs['StartingIndex']) RequestedCount = int(kwargs['RequestedCount']) SortCriteria = kwargs['SortCriteria'] def build_upnp_item(elisa_item): UPnPClass = classChooser(elisa_item['mimetype']) upnp_item = None if UPnPClass: upnp_item = UPnPClass(elisa_item['id'], elisa_item['parent_id'], elisa_item['name']) if isinstance(upnp_item, Container): upnp_item.childCount = len(elisa_item.get('children',[])) if len(Filter) > 0: upnp_item.searchable = True upnp_item.searchClass = ('object',) else: internal_url = elisa_item['location'].get('internal') external_url = elisa_item['location'].get('external') try: size = elisa_item['size'] except: size = None try: cover = elisa_item['cover'] if cover != '': upnp_item.albumArtURI = cover except: pass res = Resource(internal_url, 'internal:%s:*:*' %self.host) res.size = size upnp_item.res.append(res) res = Resource(external_url, 'http-get:*:%s:*' % elisa_item['mimetype']) res.size = size upnp_item.res.append(res) return upnp_item def got_result(elisa_item): didl = DIDLElement() children = elisa_item.get('children',[]) if BrowseFlag == 'BrowseDirectChildren': if RequestedCount == 0: childs = children[StartingIndex:] else: childs = children[StartingIndex:StartingIndex+RequestedCount] for child in childs: if child is not None: item = build_upnp_item(child) if item: didl.addItem(item) total = len(children) elif elisa_item: item = build_upnp_item(elisa_item) if item: didl.addItem(item) total = 1 r = { 'Result': didl.toString(), 'TotalMatches': total, 'NumberReturned': didl.numItems()} if hasattr(elisa_item, 'update_id'): r['UpdateID'] = item.update_id else: r['UpdateID'] = self.update_id return r def errback(r): return failure.Failure(errorCode(701)) id = ObjectID if id == 0: id = self.root_id store = self.get_store() dfr = store.addCallback(lambda object: object.callRemote('get_cache_manager')) dfr.addErrback(errback) dfr.addCallback(lambda cache_mgr: cache_mgr.callRemote("get_media_node_with_id", id)) dfr.addCallback(got_result) return dfr if __name__ == '__main__': def main(): p = 'localhost' def got_result(result): print result f = MediaStore(None,'my media',p, 'http://localhost/',()) dfr = f.upnp_Browse(BrowseFlag='BrowseDirectChildren', RequestedCount=0, StartingIndex=0, ObjectID=23, SortCriteria='*', Filter='') dfr.addCallback(got_result) dfr.addCallback(lambda _: reactor.stop()) reactor.callLater(0.1, main) reactor.run()
[]
2024-01-10
opendreambox/python-coherence
coherence~upnp~services~servers~content_directory_server.py
# Licensed under the MIT license # http://opensource.org/licenses/mit-license.php # Copyright 2005, Tim Potter <[email protected]> # Copyright 2006 John-Mark Gurney <[email protected]> # Copyright 2006, Frank Scholz <[email protected]> # Content Directory service from twisted.python import failure from twisted.web import resource from twisted.internet import defer from coherence.upnp.core.soap_service import UPnPPublisher from coherence.upnp.core.soap_service import errorCode from coherence.upnp.core.DIDLLite import DIDLElement from coherence.upnp.core import service from coherence import log class ContentDirectoryControl(service.ServiceControl,UPnPPublisher): def __init__(self, server): self.service = server self.variables = server.get_variables() self.actions = server.get_actions() class ContentDirectoryServer(service.ServiceServer, resource.Resource, log.Loggable): logCategory = 'content_directory_server' def __init__(self, device, backend=None,transcoding=False): self.device = device self.transcoding=transcoding if backend == None: backend = self.device.backend resource.Resource.__init__(self) service.ServiceServer.__init__(self, 'ContentDirectory', self.device.version, backend) self.control = ContentDirectoryControl(self) self.putChild('scpd.xml', service.scpdXML(self, self.control)) self.putChild('control', self.control) self.set_variable(0, 'SystemUpdateID', 0) self.set_variable(0, 'ContainerUpdateIDs', '') def listchilds(self, uri): cl = '' for c in self.children: cl += '<li><a href=%s/%s>%s</a></li>' % (uri,c,c) return cl def render(self,request): return '<html><p>root of the ContentDirectory</p><p><ul>%s</ul></p></html>'% self.listchilds(request.uri) def upnp_Search(self, *args, **kwargs): ContainerID = kwargs['ContainerID'] Filter = kwargs['Filter'] StartingIndex = int(kwargs['StartingIndex']) RequestedCount = int(kwargs['RequestedCount']) SortCriteria = kwargs['SortCriteria'] SearchCriteria = kwargs['SearchCriteria'] total = 0 root_id = 0 item = None items = [] parent_container = str(ContainerID) didl = DIDLElement(upnp_client=kwargs.get('X_UPnPClient', ''), parent_container=parent_container, transcoding=self.transcoding) def build_response(tm): r = {'Result': didl.toString(), 'TotalMatches': tm, 'NumberReturned': didl.numItems()} if hasattr(item, 'update_id'): r['UpdateID'] = item.update_id elif hasattr(self.backend, 'update_id'): r['UpdateID'] = self.backend.update_id # FIXME else: r['UpdateID'] = 0 return r def got_error(r): return r def process_result(result,total=None,found_item=None): if result == None: result = [] l = [] def process_items(result, tm): if result == None: result = [] for i in result: if i[0] == True: didl.addItem(i[1]) return build_response(tm) for i in result: d = defer.maybeDeferred( i.get_item) l.append(d) if found_item != None: def got_child_count(count): dl = defer.DeferredList(l) dl.addCallback(process_items, count) return dl d = defer.maybeDeferred(found_item.get_child_count) d.addCallback(got_child_count) return d elif total == None: total = item.get_child_count() dl = defer.DeferredList(l) dl.addCallback(process_items, total) return dl def proceed(result): if(kwargs.get('X_UPnPClient', '') == 'XBox' and hasattr(result, 'get_artist_all_tracks')): d = defer.maybeDeferred( result.get_artist_all_tracks, StartingIndex, StartingIndex + RequestedCount) else: d = defer.maybeDeferred( result.get_children, StartingIndex, StartingIndex + RequestedCount) d.addCallback(process_result,found_item=result) d.addErrback(got_error) return d try: root_id = ContainerID except: pass wmc_mapping = getattr(self.backend, "wmc_mapping", None) if kwargs.get('X_UPnPClient', '') == 'XBox': if(wmc_mapping != None and wmc_mapping.has_key(ContainerID)): """ fake a Windows Media Connect Server """ root_id = wmc_mapping[ContainerID] if callable(root_id): item = root_id() if item is not None: if isinstance(item, list): total = len(item) if int(RequestedCount) == 0: items = item[StartingIndex:] else: items = item[StartingIndex:StartingIndex+RequestedCount] return process_result(items,total=total) else: if isinstance(item,defer.Deferred): item.addCallback(proceed) return item else: return proceed(item) item = self.backend.get_by_id(root_id) if item == None: return process_result([],total=0) if isinstance(item,defer.Deferred): item.addCallback(proceed) return item else: return proceed(item) item = self.backend.get_by_id(root_id) if item == None: return failure.Failure(errorCode(701)) if isinstance(item,defer.Deferred): item.addCallback(proceed) return item else: return proceed(item) def upnp_Browse(self, *args, **kwargs): try: ObjectID = kwargs['ObjectID'] except: self.debug("hmm, a Browse action and no ObjectID argument? An XBox maybe?") try: ObjectID = kwargs['ContainerID'] except: ObjectID = 0 BrowseFlag = kwargs['BrowseFlag'] Filter = kwargs['Filter'] StartingIndex = int(kwargs['StartingIndex']) RequestedCount = int(kwargs['RequestedCount']) SortCriteria = kwargs['SortCriteria'] parent_container = None requested_id = None item = None total = 0 items = [] if BrowseFlag == 'BrowseDirectChildren': parent_container = str(ObjectID) else: requested_id = str(ObjectID) self.info("upnp_Browse request %r %r %r %r", ObjectID, BrowseFlag, StartingIndex, RequestedCount) didl = DIDLElement(upnp_client=kwargs.get('X_UPnPClient', ''), requested_id=requested_id, parent_container=parent_container, transcoding=self.transcoding) def got_error(r): return r def process_result(result,total=None,found_item=None): if result == None: result = [] if BrowseFlag == 'BrowseDirectChildren': l = [] def process_items(result, tm): if result == None: result = [] for i in result: if i[0] == True: didl.addItem(i[1]) return build_response(tm) for i in result: d = defer.maybeDeferred( i.get_item) l.append(d) if found_item != None: def got_child_count(count): dl = defer.DeferredList(l) dl.addCallback(process_items, count) return dl d = defer.maybeDeferred(found_item.get_child_count) d.addCallback(got_child_count) return d elif total == None: total = item.get_child_count() dl = defer.DeferredList(l) dl.addCallback(process_items, total) return dl else: didl.addItem(result) total = 1 return build_response(total) def build_response(tm): r = {'Result': didl.toString(), 'TotalMatches': tm, 'NumberReturned': didl.numItems()} if hasattr(item, 'update_id'): r['UpdateID'] = item.update_id elif hasattr(self.backend, 'update_id'): r['UpdateID'] = self.backend.update_id # FIXME else: r['UpdateID'] = 0 return r def proceed(result): if BrowseFlag == 'BrowseDirectChildren': d = defer.maybeDeferred( result.get_children, StartingIndex, StartingIndex + RequestedCount) else: d = defer.maybeDeferred( result.get_item) d.addCallback(process_result,found_item=result) d.addErrback(got_error) return d root_id = ObjectID wmc_mapping = getattr(self.backend, "wmc_mapping", None) if(kwargs.get('X_UPnPClient', '') == 'XBox' and wmc_mapping != None and wmc_mapping.has_key(ObjectID)): """ fake a Windows Media Connect Server """ root_id = wmc_mapping[ObjectID] if callable(root_id): item = root_id() if item is not None: if isinstance(item, list): total = len(item) if int(RequestedCount) == 0: items = item[StartingIndex:] else: items = item[StartingIndex:StartingIndex+RequestedCount] return process_result(items,total=total) else: if isinstance(item,defer.Deferred): item.addCallback(proceed) return item else: return proceed(item) item = self.backend.get_by_id(root_id) if item == None: return process_result([],total=0) if isinstance(item,defer.Deferred): item.addCallback(proceed) return item else: return proceed(item) item = self.backend.get_by_id(root_id) if item == None: return failure.Failure(errorCode(701)) if isinstance(item,defer.Deferred): item.addCallback(proceed) return item else: return proceed(item)
[]
2024-01-10
opendreambox/python-coherence
coherence~extern~telepathy~tube.py
# Licensed under the MIT license # http://opensource.org/licenses/mit-license.php # Copyright 2009 Philippe Normand <[email protected]> from telepathy.interfaces import CHANNEL_INTERFACE, CONNECTION_INTERFACE_REQUESTS, \ CHANNEL_TYPE_DBUS_TUBE, ACCOUNT from telepathy.constants import CONNECTION_HANDLE_TYPE_ROOM, \ SOCKET_ACCESS_CONTROL_CREDENTIALS from coherence.extern.telepathy.client import Client class TubePublisherMixin(object): def __init__(self, tubes_to_offer): self._tubes_to_offer = tubes_to_offer def muc_joined(self): self.info("muc joined. Offering the tubes") conn_iface = self.conn[CONNECTION_INTERFACE_REQUESTS] params = {CHANNEL_INTERFACE + ".ChannelType": CHANNEL_TYPE_DBUS_TUBE, CHANNEL_INTERFACE + ".TargetHandleType": CONNECTION_HANDLE_TYPE_ROOM, CHANNEL_INTERFACE + ".TargetID": self.muc_id} for interface in self._tubes_to_offer.keys(): params[CHANNEL_TYPE_DBUS_TUBE + ".ServiceName"] = interface conn_iface.CreateChannel(params) def got_tube(self, tube): super(TubePublisherMixin, self).got_tube(tube) initiator_handle = tube.props[CHANNEL_INTERFACE + ".InitiatorHandle"] if initiator_handle == self.self_handle: self.finish_tube_offer(tube) def finish_tube_offer(self, tube): self.info("offering my tube located at %r", tube.object_path) service_name = tube.props[CHANNEL_TYPE_DBUS_TUBE + ".ServiceName"] params = self._tubes_to_offer[service_name] try: initiator = self.account["account"] except TypeError: params = self.account.Get(ACCOUNT, "Parameters") initiator = params["account"] params["initiator"] = initiator address = tube[CHANNEL_TYPE_DBUS_TUBE].Offer(params, SOCKET_ACCESS_CONTROL_CREDENTIALS) tube.local_address = address self.info("local tube address: %r", address) def close_tubes(self): for object_path, channel in self._tubes.iteritems(): channel.Close() class TubePublisher(TubePublisherMixin, Client): logCategory = "tube_publisher" def __init__(self, manager, protocol, account, muc_id, conference_server, tubes_to_offer): TubePublisherMixin.__init__(self, tubes_to_offer) Client.__init__(self, manager, protocol, account, muc_id, conference_server) class TubeConsumerMixin(object): logCategory = "tube_consumer" def __init__(self, found_peer_callback=None, disapeared_peer_callback=None): self.found_peer_callback = found_peer_callback self.disapeared_peer_callback = disapeared_peer_callback def got_tube(self, tube): super(TubeConsumerMixin, self).got_tube(tube) self.accept_tube(tube) def accept_tube(self, tube): if self.pre_accept_tube(tube): self.info("accepting tube %r", tube.object_path) tube_iface = tube[CHANNEL_TYPE_DBUS_TUBE] tube.local_address = tube_iface.Accept(SOCKET_ACCESS_CONTROL_CREDENTIALS) else: self.warning("tube %r not allowed", tube) def pre_accept_tube(self, tube): return True def tube_closed(self, tube): self.disapeared_peer_callback(tube) super(TubeConsumerMixin, self).tube_closed(tube) class TubeConsumer(TubeConsumerMixin, Client): logCategory = "tube_consumer" def __init__(self, manager, protocol, account, muc_id, conference_server, found_peer_callback=None, disapeared_peer_callback=None): TubeConsumerMixin.__init__(self, found_peer_callback=found_peer_callback, disapeared_peer_callback=disapeared_peer_callback) Client.__init__(self, manager, protocol, account, muc_id, conference_server)
[]
2024-01-10
opendreambox/python-coherence
coherence~upnp~services~clients~av_transport_client.py
# Licensed under the MIT license # http://opensource.org/licenses/mit-license.php # Copyright 2006-2008, Frank Scholz <[email protected]> from coherence import log class AVTransportClient(log.Loggable): logCategory = 'avtransportclient' def __init__(self, service): self.service = service self.namespace = service.get_type() self.url = service.get_control_url() self.service.subscribe() self.service.client = self #def __del__(self): # #print "AVTransportClient deleted" # pass def remove(self): self.service.remove() self.service = None self.namespace = None self.url = None del self def subscribe_for_variable(self, var_name, callback,signal=False): self.service.subscribe_for_variable(var_name, instance=0, callback=callback,signal=signal) def set_av_transport_uri(self, instance_id=0, current_uri='', current_uri_metadata=''): action = self.service.get_action('SetAVTransportURI') return action.call( InstanceID=instance_id, CurrentURI=current_uri, CurrentURIMetaData=current_uri_metadata) def set_next_av_transport_uri(self, instance_id=0, next_uri='', next_uri_metadata=''): action = self.service.get_action('SetNextAVTransportURI') if action: # optional return action.call( InstanceID=instance_id, NextURI=next_uri, NextURIMetaData=next_uri_metadata) return None def get_media_info(self, instance_id=0): action = self.service.get_action('GetMediaInfo') return action.call( InstanceID=instance_id) def get_media_info_ext(self, instance_id=0): action = self.service.get_action('GetMediaInfo_Ext') return action.call( InstanceID=instance_id) def get_transport_info(self, instance_id=0): action = self.service.get_action('GetTransportInfo') return action.call( InstanceID=instance_id) def get_position_info(self, instance_id=0): action = self.service.get_action('GetPositionInfo') return action.call( InstanceID=instance_id) def get_device_capabilities(self, instance_id=0): action = self.service.get_action('GetDeviceCapabilities') return action.call( InstanceID=instance_id) def get_transport_settings(self, instance_id=0): action = self.service.get_action('GetTransportSettings') return action.call( InstanceID=instance_id) def pause(self, instance_id=0): action = self.service.get_action('Pause') if action: # optional return action.call( InstanceID=instance_id) return None def play(self, instance_id=0, speed=1): action = self.service.get_action('Play') return action.call( InstanceID=instance_id,Speed=speed) def stop(self, instance_id=0): action = self.service.get_action('Stop') return action.call( InstanceID=instance_id) def record(self, instance_id=0): action = self.service.get_action('Record') if action: # optional return action.call( InstanceID=instance_id) return None def seek(self, instance_id=0, unit='', target=0): action = self.service.get_action('Seek') return action.call( InstanceID=instance_id, Unit=unit, Target=target) def next(self, instance_id=0): action = self.service.get_action('Next') return action.call( InstanceID=instance_id) def previous(self, instance_id=0): action = self.service.get_action('Previous') return action.call( InstanceID=instance_id) def get_current_transport_actions(self, instance_id=0): action = self.service.get_action('GetCurrentTransportActions') return action.call( InstanceID=instance_id)
[]
2024-01-10
opendreambox/python-coherence
misc~EOG-Plugin~upnp-coherence.py
# Licensed under the MIT license # http://opensource.org/licenses/mit-license.php # Copyright 2008, Frank Scholz <[email protected]> import pygtk pygtk.require("2.0") import gtk from coherence.ui.av_widgets import TreeWidget from coherence.ui.av_widgets import UDN_COLUMN,UPNP_CLASS_COLUMN,SERVICE_COLUMN import eog class UPnPClient(eog.Plugin): def __init__ (self): eog.Plugin.__init__(self) def button_pressed(self, widget, event): if event.button == 3: x = int(event.x) y = int(event.y) try: row_path,column,_,_ = self.ui.treeview.get_path_at_pos(x, y) selection = self.ui.treeview.get_selection() if not selection.path_is_selected(row_path): self.ui.treeview.set_cursor(row_path,column,False) print "button_pressed", row_path, (row_path[0],) iter = self.ui.store.get_iter((row_path[0],)) udn, = self.ui.store.get(iter,UDN_COLUMN) iter = self.ui.store.get_iter(row_path) upnp_class,url = self.ui.store.get(iter,UPNP_CLASS_COLUMN,SERVICE_COLUMN) print udn, upnp_class, url if(not upnp_class.startswith('object.container') and not upnp_class == 'root'): self.create_item_context(has_delete=self.ui.device_has_action(udn,'ContentDirectory','DestroyObject')) self.context.popup(None,None,None,event.button,event.time) return 1 except TypeError: pass return 1 def create_item_context(self,has_delete=False): """ create context menu for right click in treeview item""" def action(menu, text): selection = self.ui.treeview.get_selection() model, selected_rows = selection.get_selected_rows() if text == 'item.delete': for row_path in selected_rows: self.ui.destroy_object(row_path) return if(len(selected_rows) > 0 and text ==' item.play'): row_path = selected_rows.pop(0) iter = self.ui.store.get_iter(row_path) url, = self.ui.store.get(iter,SERVICE_COLUMN) app = eog.eog_application_get_instance() app.open_uri_list((url,)) for row_path in selected_rows: iter = self.ui.store.get_iter(row_path) url, = self.ui.store.get(iter,SERVICE_COLUMN) app = eog.eog_application_get_instance() app.open_uri_list((url,)) if not hasattr(self, 'context_no_delete'): self.context_no_delete = gtk.Menu() play_menu = gtk.MenuItem("Play") play_menu.connect("activate", action, 'item.play') self.context_no_delete.append(play_menu) self.context_no_delete.show_all() if not hasattr(self, 'context_with_delete'): self.context_with_delete = gtk.Menu() play_menu = gtk.MenuItem("Display") play_menu.connect("activate", action, 'item.play') self.context_with_delete.append(play_menu) self.context_with_delete.append(gtk.SeparatorMenuItem()) menu = gtk.MenuItem("Delete") menu.connect("activate", action, 'item.delete') self.context_with_delete.append(menu) self.context_with_delete.show_all() if has_delete: self.context = self.context_with_delete else: self.context = self.context_no_delete def activate (self, window): self.eog_object = window print "activate", window self.ui = TreeWidget() self.ui.cb_item_right_click = self.button_pressed self.ui.window.show_all() selection = self.ui.treeview.get_selection() selection.set_mode(gtk.SELECTION_MULTIPLE) sidebar = self.eog_object.get_sidebar() sidebar.add_page("Coherence DLNA/UPnP Client", self.ui.window) sidebar.show_all() def load_and_play(url): app = eog.eog_application_get_instance() app.open_uri_list((url,)) self.ui.cb_item_dbl_click = load_and_play def deactivate (self, window): #totem_object.remove_sidebar_page ("upnp-coherence") print "deactivate", window
[]
2024-01-10
opendreambox/python-coherence
misc~upnp-tester.py
#!/usr/bin/env python # -*- coding: utf-8 -*- # Licensed under the MIT license # http://opensource.org/licenses/mit-license.php # Copyright 2008, Frank Scholz <[email protected]> # upnp-tester.py # # very basic atm # # provides these functions: # # list - display all devices # extract <uuid> - extract device and service xml files and put them in a # /tmp/<uuid> directory # send <uuid> - pack the before extracted xml files in a tar.gz and # send them via email to the Coherence googlemail account # import os from sets import Set from twisted.internet import stdio from twisted.protocols import basic from twisted.internet import protocol try: from twisted.mail import smtp from twisted.names import client as namesclient from twisted.names import dns import StringIO class SMTPClient(smtp.ESMTPClient): """ build an email message and send it to our googlemail account """ def __init__(self, mail_from, mail_to, mail_subject, mail_file, *args, **kwargs): smtp.ESMTPClient.__init__(self, *args, **kwargs) self.mailFrom = mail_from self.mailTo = mail_to self.mailSubject = mail_subject self.mail_file = mail_file self.mail_from = mail_from def getMailFrom(self): result = self.mailFrom self.mailFrom = None return result def getMailTo(self): return [self.mailTo] def getMailData(self): from email.mime.application import MIMEApplication from email.mime.multipart import MIMEMultipart msg = MIMEMultipart() msg['Subject'] = self.mailSubject msg['From'] = self.mail_from msg['To'] = self.mailTo fp = open(self.mail_file, 'rb') tar = MIMEApplication(fp.read(),'x-tar') fp.close() tar.add_header('Content-Disposition', 'attachment', filename=os.path.basename(self.mail_file)) msg.attach(tar) return StringIO.StringIO(msg.as_string()) def sentMail(self, code, resp, numOk, addresses, log): print 'Sent', numOk, 'messages' class SMTPClientFactory(protocol.ClientFactory): protocol = SMTPClient def __init__(self, mail_from, mail_to, mail_subject, mail_file, *args, **kwargs): self.mail_from = mail_from self.mail_to = mail_to self.mail_subject = mail_subject self.mail_file = mail_file def buildProtocol(self, addr): return self.protocol(self.mail_from, self.mail_to, self.mail_subject, self.mail_file, secret=None, identity='localhost') except ImportError: pass from twisted.internet import reactor, defer from twisted.web import client from coherence.base import Coherence class UI(basic.LineReceiver): from os import linesep as delimiter def connectionMade(self): self.print_prompt() def lineReceived(self, line): args = line.strip().split() if args: cmd = args[0].lower() if hasattr(self, 'cmd_%s' % cmd): getattr(self, 'cmd_%s' % (cmd))(args[1:]) elif cmd == "?": self.cmd_help(args[1:]) else: self.transport.write("""Unknown command '%s'\n"""%(cmd)) self.print_prompt() def cmd_help(self,args): "help -- show help" methods = Set([ getattr(self, x) for x in dir(self) if x[:4] == "cmd_" ]) self.transport.write("Commands:\n") for method in methods: if hasattr(method, '__doc__'): self.transport.write("%s\n"%(method.__doc__)) def cmd_list(self, args): "list -- list devices" self.transport.write("Devices:\n") for d in self.coherence.get_devices(): self.transport.write(str("%s %s [%s/%s/%s]\n" % (d.friendly_name, ':'.join(d.device_type.split(':')[3:5]), d.st, d.usn.split(':')[1], d.host))) def cmd_extract(self, args): "extract <uuid> -- download xml files from device" device = self.coherence.get_device_with_id(args[0]) if device == None: self.transport.write("device %s not found - aborting\n" % args[0]) else: self.transport.write(str("extracting from %s @ %s\n" % (device.friendly_name, device.host))) try: l = [] def device_extract(workdevice, path): tmp_dir = os.path.join(path,workdevice.get_uuid()) os.mkdir(tmp_dir) d = client.downloadPage(workdevice.get_location(),os.path.join(tmp_dir,'device-description.xml')) l.append(d) for service in workdevice.services: d = client.downloadPage(service.get_scpd_url(),os.path.join(tmp_dir,'%s-description.xml'%service.service_type.split(':',3)[3])) l.append(d) for ed in workdevice.devices: device_extract(ed, tmp_dir) def finished(result): self.transport.write(str("\nextraction of device %s finished\nfiles have been saved to /tmp/%s\n" %(args[0],args[0]))) self.print_prompt() device_extract(device,'/tmp') dl = defer.DeferredList(l) dl.addCallback(finished) except Exception, msg: self.transport.write(str("problem creating download directory %s\n" % msg)) def cmd_send(self, args): "send <uuid> -- send before extracted xml files to the Coherence home base" if os.path.isdir(os.path.join('/tmp',args[0])) == 1: cwd = os.getcwd() os.chdir('/tmp') import tarfile tar = tarfile.open(os.path.join('/tmp',args[0]+'.tgz'), "w:gz") for file in os.listdir(os.path.join('/tmp',args[0])): tar.add(os.path.join(args[0],file)) tar.close() os.chdir(cwd) def got_mx(result): mx_list = result[0] mx_list.sort(lambda x, y: cmp(x.payload.preference, y.payload.preference)) if len(mx_list) > 0: import posix, pwd import socket reactor.connectTCP(str(mx_list[0].payload.name), 25, SMTPClientFactory('@'.join((pwd.getpwuid(posix.getuid())[0],socket.gethostname())), '[email protected]', 'xml-files', os.path.join('/tmp',args[0]+'.tgz'))) mx = namesclient.lookupMailExchange('googlemail.com') mx.addCallback(got_mx) def cmd_quit(self, args): "quit -- quits this program" reactor.stop() cmd_exit = cmd_quit def print_prompt(self): self.transport.write('>>> ') if __name__ == '__main__': c = Coherence({'logmode':'none'}) ui = UI() ui.coherence = c stdio.StandardIO(ui) reactor.run()
[]
2024-01-10
opendreambox/python-coherence
coherence~backends~tracker_storage.py
# Licensed under the MIT license # http://opensource.org/licenses/mit-license.php # Copyright 2008, Frank Scholz <[email protected]> import os.path from twisted.internet import reactor, defer from twisted.python import failure, util from coherence.upnp.core import DIDLLite from coherence.upnp.core.soap_service import errorCode from coherence.upnp.core import utils import dbus import dbus.service import coherence.extern.louie as louie from coherence.backend import BackendItem, BackendStore ROOT_CONTAINER_ID = 0 AUDIO_CONTAINER_ID = 100 AUDIO_ALL_CONTAINER_ID = 101 AUDIO_ARTIST_CONTAINER_ID = 102 AUDIO_ALBUM_CONTAINER_ID = 103 AUDIO_PLAYLIST_CONTAINER_ID = 104 AUDIO_GENRE_CONTAINER_ID = 105 VIDEO_CONTAINER_ID = 200 VIDEO_ALL_CONTAINER_ID = 201 IMAGE_CONTAINER_ID = 300 IMAGE_ALL_CONTAINER_ID = 301 BUS_NAME = 'org.freedesktop.Tracker' OBJECT_PATH = '/org/freedesktop/tracker' tracks_query = """ <rdfq:Condition>\ <rdfq:equals>\ <rdfq:Property name="Audio:Title" />\ <rdf:String>*</rdf:String>\ </rdfq:equals>\ </rdfq:Condition>\ """ video_query = """ <rdfq:Condition>\ <rdfq:equals>\ <rdfq:Property name="File:Name" />\ <rdf:String>*</rdf:String>\ </rdfq:equals>\ </rdfq:Condition>\ """ image_query = """ <rdfq:Condition>\ <rdfq:equals>\ <rdfq:Property name="File:Name" />\ <rdf:String>*</rdf:String>\ </rdfq:equals>\ </rdfq:Condition>\ """ class Container(BackendItem): logCategory = 'tracker_store' def __init__(self, id, parent_id, name, store=None, children_callback=None, container_class=DIDLLite.Container): self.id = id self.parent_id = parent_id self.name = name self.mimetype = 'directory' self.item = container_class(id, parent_id,self.name) self.item.childCount = 0 self.update_id = 0 if children_callback != None: self.children = children_callback else: self.children = util.OrderedDict() self.item.childCount = None #self.get_child_count() if store!=None: self.get_url = lambda: store.urlbase + str(self.id) def add_child(self, child): id = child.id if isinstance(child.id, basestring): _,id = child.id.split('.') self.children[id] = child if self.item.childCount != None: self.item.childCount += 1 def get_children(self,start=0,end=0): self.info("container.get_children %r %r", start, end) if callable(self.children): return self.children(start,end-start) else: children = self.children.values() if end == 0: return children[start:] else: return children[start:end] def get_child_count(self): if self.item.childCount != None: return self.item.childCount if callable(self.children): return len(self.children()) else: return len(self.children) def get_item(self): return self.item def get_name(self): return self.name def get_id(self): return self.id class Artist(BackendItem): logCategory = 'tracker_store' def __init__(self, store, id, name): self.store = store self.id = 'artist.%d' % int(id) self.name = name self.children = {} self.sorted_children = None def add_child(self, child): _,id = child.id.split('.') self.children[id] = child def sort_children(self): if self.sorted_children == None: def childs_sort(x,y): r = cmp(self.children[x].name,self.children[y].name) return r self.sorted_children = self.children.keys() self.sorted_children.sort(cmp=childs_sort) return self.sorted_children def get_artist_all_tracks(self,start=0,request_count=0): children = [] for album in self.sort_children(): children += album.get_children() if request_count == 0: return children[start:] else: return children[start:request_count] def get_children(self,start=0,end=0): children = [] for key in self.sort_children(): children.append(self.children[key]) if end == 0: return children[start:] else: return children[start:end] def get_child_count(self): return len(self.children) def get_item(self, parent_id = AUDIO_ARTIST_CONTAINER_ID): item = DIDLLite.MusicArtist(self.id, parent_id, self.name) return item def get_id(self): return self.id def get_name(self): return self.name class Album(BackendItem): logCategory = 'tracker_store' def __init__(self, store, id, title, artist): self.store = store self.id = 'album.%d' % int(id) self.name = unicode(title) self.artist = unicode(artist) self.cover = None self.children = {} self.sorted_children = None def add_child(self, child): _,id = child.id.split('.') self.children[id] = child def get_children(self,start=0,end=0): children = [] if self.sorted_children != None: for key in self.sorted_children: children.append(self.children[key]) else: def childs_sort(x,y): r = cmp(self.children[x].track_nr,self.children[y].track_nr) return r self.sorted_children = self.children.keys() self.sorted_children.sort(cmp=childs_sort) for key in self.sorted_children: children.append(self.children[key]) if end == 0: return children[start:] else: return children[start:end] def get_child_count(self): return len(self.children) def get_item(self, parent_id = AUDIO_ALBUM_CONTAINER_ID): item = DIDLLite.MusicAlbum(self.id, parent_id, self.name) item.childCount = self.get_child_count() item.artist = self.artist item.albumArtURI = self.cover return item def get_id(self): return self.id def get_name(self): return self.name def get_cover(self): return self.cover class Track(BackendItem): logCategory = 'tracker_store' def __init__(self,store, id,parent_id, file,title, artist,album,genre,\ duration,\ track_number,\ size,mimetype): self.store = store self.id = 'song.%d' % int(id) self.parent_id = parent_id self.path = unicode(file) duration = str(duration).strip() duration = duration.split('.')[0] if len(duration) == 0: duration = 0 seconds = int(duration) hours = seconds / 3600 seconds = seconds - hours * 3600 minutes = seconds / 60 seconds = seconds - minutes * 60 self.duration = ("%d:%02d:%02d") % (hours, minutes, seconds) self.bitrate = 0 self.title = unicode(title) self.artist = unicode(artist) self.album = unicode(album) self.genre = unicode(genre) track_number = str(track_number).strip() if len(track_number) == 0: track_number = 1 self.track_nr = int(track_number) self.cover = None self.mimetype = str(mimetype) self.size = int(size) self.url = self.store.urlbase + str(self.id) def get_children(self, start=0, end=0): return [] def get_child_count(self): return 0 def get_item(self, parent_id=None): self.debug("Track get_item %r @ %r" %(self.id,self.parent_id)) # create item item = DIDLLite.MusicTrack(self.id,self.parent_id) item.album = self.album item.artist = self.artist #item.date = item.genre = self.genre item.originalTrackNumber = self.track_nr item.title = self.title item.albumArtURI = self.cover # add http resource res = DIDLLite.Resource(self.url, 'http-get:*:%s:*' % self.mimetype) if self.size > 0: res.size = self.size if self.duration > 0: res.duration = str(self.duration) if self.bitrate > 0: res.bitrate = str(bitrate) item.res.append(res) #if self.store.server.coherence.config.get('transcoding', 'no') == 'yes': # if self.mimetype in ('audio/mpeg', # 'application/ogg','audio/ogg', # 'audio/x-m4a', # 'application/x-flac'): # dlna_pn = 'DLNA.ORG_PN=LPCM' # dlna_tags = DIDLLite.simple_dlna_tags[:] # dlna_tags[1] = 'DLNA.ORG_CI=1' # #dlna_tags[2] = 'DLNA.ORG_OP=00' # new_res = DIDLLite.Resource(self.url+'?transcoded=lpcm', # 'http-get:*:%s:%s' % ('audio/L16;rate=44100;channels=2', ';'.join([dlna_pn]+dlna_tags))) # new_res.size = None # if self.duration > 0: # new_res.duration = str(self.duration) # item.res.append(new_res) # if self.mimetype != 'audio/mpeg': # new_res = DIDLLite.Resource(self.url+'?transcoded=mp3', # 'http-get:*:%s:*' % 'audio/mpeg') # new_res.size = None # if self.duration > 0: # new_res.duration = str(self.duration) # item.res.append(new_res) return item def get_id(self): return self.id def get_name(self): return self.title def get_url(self): return self.url def get_path(self): return self.path class Video(BackendItem): logCategory = 'tracker_store' def __init__(self,store, id,parent_id, file,title, duration,\ size,mimetype): self.store = store self.id = 'video.%d' % int(id) self.parent_id = parent_id self.path = unicode(file) duration = str(duration).strip() duration = duration.split('.')[0] if len(duration) == 0: duration = 0 seconds = int(duration) hours = seconds / 3600 seconds = seconds - hours * 3600 minutes = seconds / 60 seconds = seconds - minutes * 60 self.duration = ("%d:%02d:%02d") % (hours, minutes, seconds) self.title = unicode(title) self.cover = None self.mimetype = str(mimetype) self.size = int(size) self.url = self.store.urlbase + str(self.id) def get_children(self, start=0, end=0): return [] def get_child_count(self): return 0 def get_item(self, parent_id=None): self.debug("Video get_item %r @ %r" %(self.id,self.parent_id)) # create item item = DIDLLite.VideoItem(self.id,self.parent_id) #item.date = item.title = self.title item.albumArtURI = self.cover # add http resource res = DIDLLite.Resource(self.url, 'http-get:*:%s:*' % self.mimetype) if self.size > 0: res.size = self.size if self.duration > 0: res.duration = str(self.duration) item.res.append(res) return item def get_id(self): return self.id def get_name(self): return self.title def get_url(self): return self.url def get_path(self): return self.path class Image(BackendItem): logCategory = 'tracker_store' def __init__(self,store, id,parent_id, file,title,album, date,width,height,\ size,mimetype): self.store = store self.id = 'image.%d' % int(id) self.parent_id = parent_id self.path = unicode(file) self.title = unicode(title) self.album = unicode(album.strip()) self.mimetype = str(mimetype) self.size = int(size) self.url = self.store.urlbase + str(self.id) def get_children(self, start=0, end=0): return [] def get_child_count(self): return 0 def get_item(self, parent_id=None): self.debug("Image get_item %r @ %r" %(self.id,self.parent_id)) # create item item = DIDLLite.ImageItem(self.id,self.parent_id) #item.date = item.title = self.title # add http resource res = DIDLLite.Resource(self.url, 'http-get:*:%s:*' % self.mimetype) if self.size > 0: res.size = self.size item.res.append(res) return item def get_id(self): return self.id def get_name(self): return self.title def get_url(self): return self.url def get_path(self): return self.path class TrackerStore(BackendStore): """ this is a backend to Meta Tracker http://www.gnome.org/projects/tracker/index.html """ implements = ['MediaServer'] logCategory = 'tracker_store' def __init__(self, server, **kwargs): if server.coherence.config.get('use_dbus','no') != 'yes': raise Exception('this backend needs use_dbus enabled in the configuration') BackendStore.__init__(self,server,**kwargs) self.config = kwargs self.name = kwargs.get('name','Tracker') self.update_id = 0 self.token = None self.songs = 0 self.albums = 0 self.artists = 0 self.playlists = 0 self.genres = 0 self.videos = 0 self.images = 0 self.bus = dbus.SessionBus() tracker_object = self.bus.get_object(BUS_NAME,OBJECT_PATH) self.tracker_interface = dbus.Interface(tracker_object, 'org.freedesktop.Tracker') self.search_interface = dbus.Interface(tracker_object, 'org.freedesktop.Tracker.Search') self.keywords_interface = dbus.Interface(tracker_object, 'org.freedesktop.Tracker.Keywords') self.metadata_interface = dbus.Interface(tracker_object, 'org.freedesktop.Tracker.Metadata') self.query_id = -1 self.containers = {} self.tracks = {} self.containers[ROOT_CONTAINER_ID] = \ Container(ROOT_CONTAINER_ID,-1,self.name,store=self) def queries_finished(r): louie.send('Coherence.UPnP.Backend.init_completed', None, backend=self) def queries_failed(r): error = '' louie.send('Coherence.UPnP.Backend.init_failed', None, backend=self, msg=error) services = kwargs.get('service','Music,Videos,Images') services = map(lambda x: x.strip().lower(),services.split(',')) l = [] mapping = {'music':self.get_tracks, 'videos':self.get_videos, 'images':self.get_images} for service in services: try: l.append(mapping[service]()) except KeyError: self.warning('Wrong Tracker service definition - %r' % service) if len(l)>0: dl = defer.DeferredList(l) dl.addCallback(queries_finished) dl.addErrback(lambda x: louie.send('Coherence.UPnP.Backend.init_failed', None, backend=self, msg='Connection to Tracker service(s) failed!')) else: louie.send('Coherence.UPnP.Backend.init_failed', None, backend=self, msg='No Tracker service defined!') def __repr__(self): return "TrackerStore" def get_by_id(self,id): self.info("looking for id %r", id) if isinstance(id, basestring): id = id.split('@',1) id = id[0] if isinstance(id, basestring) and id.startswith('artist_all_tracks_'): try: return self.containers[id] except: return None item = None try: id = int(id) item = self.containers[id] except (ValueError,KeyError): try: type,id = id.split('.') if type == 'song': return self.containers[AUDIO_ALL_CONTAINER_ID].children[id] if type == 'album': return self.containers[AUDIO_ALBUM_CONTAINER_ID].children[id] if type == 'artist': return self.containers[AUDIO_ARTIST_CONTAINER_ID].children[id] if type == 'video': return self.containers[VIDEO_ALL_CONTAINER_ID].children[id] if type == 'image': return self.containers[IMAGE_ALL_CONTAINER_ID].children[id] except (ValueError,KeyError): return None return item def get_videos(self): def handle_error(error): print error return error def parse_videos_query_result(resultlist): videos = [] for video in resultlist: file,_,title,\ duration,\ size,mimetype = video title = title.strip() if len(title) == 0: title = os.path.basename(file) if mimetype == 'video/x-theora+ogg': mimetype = u'video/ogg' video_item = Video(self, self.videos,VIDEO_ALL_CONTAINER_ID, file,title,\ duration,\ size,mimetype) self.videos += 1 videos.append(video_item) videos.sort(cmp=lambda x,y : cmp(x.get_name().lower(),y.get_name().lower())) for video_item in videos: self.containers[VIDEO_ALL_CONTAINER_ID].add_child(video_item) self.containers[VIDEO_CONTAINER_ID] = \ Container(VIDEO_CONTAINER_ID,ROOT_CONTAINER_ID,'Video',store=self) self.containers[ROOT_CONTAINER_ID].add_child(self.containers[VIDEO_CONTAINER_ID]) self.containers[VIDEO_ALL_CONTAINER_ID] = \ Container( VIDEO_ALL_CONTAINER_ID,VIDEO_CONTAINER_ID,'All Videos', store=self, children_callback=None) self.containers[VIDEO_CONTAINER_ID].add_child(self.containers[VIDEO_ALL_CONTAINER_ID]) fields=[u'Video:Title',u'Video:Duration', u'File:Size',u'File:Mime'] d = defer.Deferred() d.addCallback(parse_videos_query_result) d.addErrback(handle_error) self.search_interface.Query(self.query_id,'Videos',fields,'','',video_query,False,0,-1, reply_handler=lambda x: d.callback(x),error_handler=lambda x: d.errback(x)) return d def get_images(self): def handle_error(error): return error def parse_images_query_result(resultlist): print "images", resultlist images = [] for image in resultlist: file,_,title,album,\ date,width, height, \ size,mimetype = image title = title.strip() if len(title) == 0: title = os.path.basename(file) image_item = Image(self, self.images,IMAGE_ALL_CONTAINER_ID, file,title,album,\ date,width,height,\ size,mimetype) self.images += 1 images.append(image_item) images.sort(cmp=lambda x,y : cmp(x.get_name().lower(),y.get_name().lower())) for image_item in images: self.containers[IMAGE_ALL_CONTAINER_ID].add_child(image_item) self.containers[IMAGE_CONTAINER_ID] = \ Container(IMAGE_CONTAINER_ID,ROOT_CONTAINER_ID,'Images',store=self) self.containers[ROOT_CONTAINER_ID].add_child(self.containers[IMAGE_CONTAINER_ID]) self.containers[IMAGE_ALL_CONTAINER_ID] = \ Container(IMAGE_ALL_CONTAINER_ID,IMAGE_CONTAINER_ID,'All Images', store=self, children_callback=None) self.containers[IMAGE_CONTAINER_ID].add_child(self.containers[IMAGE_ALL_CONTAINER_ID]) fields=[u'Image:Title',u'Image:Album', u'Image:Date',u'Image:Width',u'Image:Height', u'File:Size',u'File:Mime'] d = defer.Deferred() d.addCallback(parse_images_query_result) d.addErrback(handle_error) self.search_interface.Query(self.query_id,'Images',fields,'','',image_query,False,0,-1, reply_handler=lambda x: d.callback(x),error_handler=lambda x: d.errback(x)) return d def get_tracks(self): def handle_error(error): return error def parse_tracks_query_result(resultlist): albums = {} artists = {} tracks = [] for track in resultlist: file,service,title,artist,album,genre,\ duration,album_track_count,\ track_number,codec,\ size,mimetype = track if mimetype == 'video/x-vorbis+ogg': mimetype = 'audio/ogg' track_item = Track(self, self.songs,AUDIO_ALL_CONTAINER_ID, file,title,artist,album,genre,\ duration,\ track_number,\ size,mimetype) self.songs += 1 tracks.append(track_item) tracks.sort(cmp=lambda x,y : cmp(x.get_name(),y.get_name())) for track_item in tracks: self.containers[AUDIO_ALL_CONTAINER_ID].add_child(track_item) try: album_item = albums[track_item.album] album_item.add_child(track_item) except: album_item = Album(self, self.albums, track_item.album, track_item.artist) albums[unicode(track_item.album)] = album_item self.albums += 1 album_item.add_child(track_item) try: artist_item = artists[track_item.artist] artist_item.add_child(album_item) except: artist_item = Artist(self, self.artists, track_item.artist) artists[unicode(track_item.artist)] = artist_item self.artists += 1 artist_item.add_child(album_item) sorted_keys = albums.keys() sorted_keys.sort() for key in sorted_keys: self.containers[AUDIO_ALBUM_CONTAINER_ID].add_child(albums[key]) sorted_keys = artists.keys() sorted_keys.sort() for key in sorted_keys: self.containers[AUDIO_ARTIST_CONTAINER_ID].add_child(artists[key]) self.containers[AUDIO_CONTAINER_ID] = \ Container(AUDIO_CONTAINER_ID,ROOT_CONTAINER_ID,'Audio',store=self) self.containers[ROOT_CONTAINER_ID].add_child(self.containers[AUDIO_CONTAINER_ID]) self.containers[AUDIO_ALL_CONTAINER_ID] = \ Container( AUDIO_ALL_CONTAINER_ID,AUDIO_CONTAINER_ID,'All Tracks', store=self, children_callback=None) self.containers[AUDIO_CONTAINER_ID].add_child(self.containers[AUDIO_ALL_CONTAINER_ID]) self.containers[AUDIO_ALBUM_CONTAINER_ID] = \ Container( AUDIO_ALBUM_CONTAINER_ID,AUDIO_CONTAINER_ID,'Albums', store=self, children_callback=None) self.containers[AUDIO_CONTAINER_ID].add_child(self.containers[AUDIO_ALBUM_CONTAINER_ID]) self.containers[AUDIO_ARTIST_CONTAINER_ID] = \ Container( AUDIO_ARTIST_CONTAINER_ID,AUDIO_CONTAINER_ID,'Artists', store=self, children_callback=None) self.containers[AUDIO_CONTAINER_ID].add_child(self.containers[AUDIO_ARTIST_CONTAINER_ID]) self.containers[AUDIO_PLAYLIST_CONTAINER_ID] = \ Container( AUDIO_PLAYLIST_CONTAINER_ID,AUDIO_CONTAINER_ID,'Playlists', store=self, children_callback=None, container_class=DIDLLite.PlaylistContainer) self.containers[AUDIO_CONTAINER_ID].add_child(self.containers[AUDIO_PLAYLIST_CONTAINER_ID]) self.containers[AUDIO_GENRE_CONTAINER_ID] = \ Container( AUDIO_GENRE_CONTAINER_ID,AUDIO_CONTAINER_ID,'Genres', store=self, children_callback=None) self.containers[AUDIO_CONTAINER_ID].add_child(self.containers[AUDIO_GENRE_CONTAINER_ID]) self.wmc_mapping.update({'4': lambda : self.get_by_id(AUDIO_ALL_CONTAINER_ID), # all tracks '5': lambda : self.get_by_id(AUDIO_GENRE_CONTAINER_ID), # all genres '6': lambda : self.get_by_id(AUDIO_ARTIST_CONTAINER_ID), # all artists '7': lambda : self.get_by_id(AUDIO_ALBUM_CONTAINER_ID), # all albums '13': lambda : self.get_by_id(AUDIO_PLAYLIST_CONTAINER_ID), # all playlists }) fields=[u'Audio:Title',u'Audio:Artist', u'Audio:Album',u'Audio:Genre', u'Audio:Duration',u'Audio:AlbumTrackCount', u'Audio:TrackNo',u'Audio:Codec', u'File:Size', u'File:Mime'] d = defer.Deferred() d.addCallback(parse_tracks_query_result) d.addErrback(handle_error) self.search_interface.Query(self.query_id,'Music',fields,'','',tracks_query,False,0,-1, reply_handler=lambda x: d.callback(x),error_handler=lambda x: d.errback(x)) return d def upnp_init(self): if self.server: self.server.connection_manager_server.set_variable(0, 'SourceProtocolInfo', ['http-get:*:audio/mpeg:*', 'internal:%s:audio/mpeg:*' % self.server.coherence.hostname, 'http-get:*:application/ogg:*', 'internal:%s:application/ogg:*' % self.server.coherence.hostname, 'http-get:*:audio/ogg:*', 'internal:%s:audio/ogg:*' % self.server.coherence.hostname, 'http-get:*:video/ogg:*', 'internal:%s:video/ogg:*' % self.server.coherence.hostname, 'http-get:*:video/mpeg:*', 'internal:%s:video/mpeg:*' % self.server.coherence.hostname, 'http-get:*:video/x-msvideo:*', 'internal:%s:video/x-msvideo:*' % self.server.coherence.hostname, 'http-get:*:video/avi:*', 'internal:%s:video/avi:*' % self.server.coherence.hostname, 'http-get:*:video/mp4:*', 'internal:%s:video/mp4:*' % self.server.coherence.hostname, 'http-get:*:video/quicktime:*', 'internal:%s:video/quicktime:*' % self.server.coherence.hostname, 'http-get:*:image/jpg:*', 'internal:%s:image/jpg:*' % self.server.coherence.hostname, 'http-get:*:image/png:*', 'internal:%s:image/png:*' % self.server.coherence.hostname, 'http-get:*:image/gif:*', 'internal:%s:image/gif:*' % self.server.coherence.hostname,])
[]
2024-01-10
fuegoplatforms/VerityChain-AutoGPT
autogpts~autogpt~autogpt~core~runner~client_lib~logging.py
import logging import sys from colorama import Fore, Style from openai.util import logger as openai_logger SIMPLE_LOG_FORMAT = "%(asctime)s %(levelname)s %(message)s" DEBUG_LOG_FORMAT = ( "%(asctime)s.%(msecs)03d %(levelname)s %(filename)s:%(lineno)d %(message)s" ) def configure_root_logger(): console_formatter = FancyConsoleFormatter(SIMPLE_LOG_FORMAT) stdout = logging.StreamHandler(stream=sys.stdout) stdout.setLevel(logging.DEBUG) stdout.addFilter(BelowLevelFilter(logging.WARNING)) stdout.setFormatter(console_formatter) stderr = logging.StreamHandler() stderr.setLevel(logging.WARNING) stderr.setFormatter(console_formatter) logging.basicConfig(level=logging.DEBUG, handlers=[stdout, stderr]) # Disable debug logging from OpenAI library openai_logger.setLevel(logging.INFO) def get_client_logger(): # Configure logging before we do anything else. # Application logs need a place to live. client_logger = logging.getLogger("autogpt_client_application") client_logger.setLevel(logging.DEBUG) return client_logger class FancyConsoleFormatter(logging.Formatter): """ A custom logging formatter designed for console output. This formatter enhances the standard logging output with color coding. The color coding is based on the level of the log message, making it easier to distinguish between different types of messages in the console output. The color for each level is defined in the LEVEL_COLOR_MAP class attribute. """ # level -> (level & text color, title color) LEVEL_COLOR_MAP = { logging.DEBUG: Fore.LIGHTBLACK_EX, logging.INFO: Fore.BLUE, logging.WARNING: Fore.YELLOW, logging.ERROR: Fore.RED, logging.CRITICAL: Fore.RED + Style.BRIGHT, } def format(self, record: logging.LogRecord) -> str: # Make sure `msg` is a string if not hasattr(record, "msg"): record.msg = "" elif not type(record.msg) == str: record.msg = str(record.msg) # Determine default color based on error level level_color = "" if record.levelno in self.LEVEL_COLOR_MAP: level_color = self.LEVEL_COLOR_MAP[record.levelno] record.levelname = f"{level_color}{record.levelname}{Style.RESET_ALL}" # Determine color for message color = getattr(record, "color", level_color) color_is_specified = hasattr(record, "color") # Don't color INFO messages unless the color is explicitly specified. if color and (record.levelno != logging.INFO or color_is_specified): record.msg = f"{color}{record.msg}{Style.RESET_ALL}" return super().format(record) class BelowLevelFilter(logging.Filter): """Filter for logging levels below a certain threshold.""" def __init__(self, below_level: int): super().__init__() self.below_level = below_level def filter(self, record: logging.LogRecord): return record.levelno < self.below_level
[]
2024-01-10
RachithP/RL
atari~breakout-deterministic~wrappers.py
""" Adapted from OpenAI Baselines https://github.com/openai/baselines/blob/master/baselines/common/atari_wrappers.py """ import numpy as np from collections import deque import gym from gym import spaces import cv2 cv2.ocl.setUseOpenCL(False) class NoopResetEnv(gym.Wrapper): def __init__(self, env, noop_max=30): """Sample initial states by taking random number of no-ops on reset. No-op is assumed to be action 0. """ gym.Wrapper.__init__(self, env) self.noop_max = noop_max self.override_num_noops = None self.noop_action = 0 assert env.unwrapped.get_action_meanings()[0] == 'NOOP' def reset(self, **kwargs): """ Do no-op action for a number of steps in [1, noop_max].""" self.env.reset(**kwargs) if self.override_num_noops is not None: noops = self.override_num_noops else: noops = self.unwrapped.np_random.randint(1, self.noop_max + 1) #pylint: disable=E1101 assert noops > 0 obs = None for _ in range(noops): obs, _, done, _ = self.env.step(self.noop_action) if done: obs = self.env.reset(**kwargs) return obs def step(self, ac): return self.env.step(ac) class FireResetEnv(gym.Wrapper): def __init__(self, env): """Take action on reset for environments that are fixed until firing.""" gym.Wrapper.__init__(self, env) assert env.unwrapped.get_action_meanings()[1] == 'FIRE' assert len(env.unwrapped.get_action_meanings()) >= 3 def reset(self, **kwargs): self.env.reset(**kwargs) obs, _, done, _ = self.env.step(1) if done: self.env.reset(**kwargs) obs, _, done, _ = self.env.step(2) if done: self.env.reset(**kwargs) return obs def step(self, ac): return self.env.step(ac) class EpisodicLifeEnv(gym.Wrapper): def __init__(self, env): """Make end-of-life == end-of-episode, but only reset on true game over. Done by DeepMind for the DQN and co. since it helps value estimation. """ gym.Wrapper.__init__(self, env) self.lives = 0 self.was_real_done = True def step(self, action): obs, reward, done, info = self.env.step(action) self.was_real_done = done # check current lives, make loss of life terminal, # then update lives to handle bonus lives lives = self.env.unwrapped.ale.lives() if lives < self.lives and lives > 0: # for Qbert sometimes we stay in lives == 0 condtion for a few frames # so its important to keep lives > 0, so that we only reset once # the environment advertises done. done = True self.lives = lives return obs, reward, done, info def reset(self, **kwargs): """Reset only when lives are exhausted. This way all states are still reachable even though lives are episodic, and the learner need not know about any of this behind-the-scenes. """ if self.was_real_done: obs = self.env.reset(**kwargs) else: # no-op step to advance from terminal/lost life state obs, _, _, _ = self.env.step(0) self.lives = self.env.unwrapped.ale.lives() return obs class MaxAndSkipEnv(gym.Wrapper): def __init__(self, env, skip=4): """Return only every `skip`-th frame""" gym.Wrapper.__init__(self, env) # most recent raw observations (for max pooling across time steps) self._obs_buffer = np.zeros((2,)+env.observation_space.shape, dtype=np.uint8) self._skip = skip def reset(self): return self.env.reset() def step(self, action): """Repeat action, sum reward, and max over last observations.""" total_reward = 0.0 done = None for i in range(self._skip): obs, reward, done, info = self.env.step(action) if i == self._skip - 2: self._obs_buffer[0] = obs if i == self._skip - 1: self._obs_buffer[1] = obs total_reward += reward if done: break # Note that the observation on the done=True frame # doesn't matter max_frame = self._obs_buffer.max(axis=0) return max_frame, total_reward, done, info def reset(self, **kwargs): return self.env.reset(**kwargs) class ClipRewardEnv(gym.RewardWrapper): def __init__(self, env): gym.RewardWrapper.__init__(self, env) def reward(self, reward): """Bin reward to {+1, 0, -1} by its sign.""" return np.sign(reward) class WarpFrame(gym.ObservationWrapper): def __init__(self, env): """Warp frames to 84x84 as done in the Nature paper and later work.""" gym.ObservationWrapper.__init__(self, env) self.width = 84 self.height = 84 self.observation_space = spaces.Box(low=0, high=255, shape=(self.height, self.width, 1), dtype=np.uint8) def observation(self, frame): frame = cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY) frame = cv2.resize(frame, (self.width, self.height), interpolation=cv2.INTER_AREA) return frame[:, :, None] class FrameStack(gym.Wrapper): def __init__(self, env, k): """Stack k last frames. Returns lazy array, which is much more memory efficient. See Also -------- baselines.common.atari_wrappers.LazyFrames """ gym.Wrapper.__init__(self, env) self.k = k self.frames = deque([], maxlen=k) shp = env.observation_space.shape self.observation_space = spaces.Box(low=0, high=255, shape=(shp[0], shp[1], shp[2] * k), dtype=np.uint8) def reset(self): ob = self.env.reset() for _ in range(self.k): self.frames.append(ob) return self._get_ob() def step(self, action): ob, reward, done, info = self.env.step(action) self.frames.append(ob) return self._get_ob(), reward, done, info def _get_ob(self): assert len(self.frames) == self.k return LazyFrames(list(self.frames)) class ScaledFloatFrame(gym.ObservationWrapper): def __init__(self, env): gym.ObservationWrapper.__init__(self, env) def observation(self, observation): # careful! This undoes the memory optimization, use # with smaller replay buffers only. return np.array(observation).astype(np.float32) / 255.0 class LazyFrames(object): def __init__(self, frames): """This object ensures that common frames between the observations are only stored once. It exists purely to optimize memory usage which can be huge for DQN's 1M frames replay buffers. This object should only be converted to numpy array before being passed to the model. You'd not believe how complex the previous solution was.""" self._frames = frames self._out = None def _force(self): if self._out is None: self._out = np.concatenate(self._frames, axis=2) self._frames = None return self._out def __array__(self, dtype=None): out = self._force() if dtype is not None: out = out.astype(dtype) return out def __len__(self): return len(self._force()) def __getitem__(self, i): return self._force()[i] def make_atari(env_id): env = gym.make(env_id) assert 'NoFrameskip' in env.spec.id env = NoopResetEnv(env, noop_max=30) env = MaxAndSkipEnv(env, skip=4) return env def wrap_deepmind(env, episode_life=True, clip_rewards=True, frame_stack=False, scale=False): """Configure environment for DeepMind-style Atari. """ if episode_life: env = EpisodicLifeEnv(env) if 'FIRE' in env.unwrapped.get_action_meanings(): env = FireResetEnv(env) env = WarpFrame(env) if scale: env = ScaledFloatFrame(env) if clip_rewards: env = ClipRewardEnv(env) if frame_stack: env = FrameStack(env, 4) return env class ImageToPyTorch(gym.ObservationWrapper): """ Image shape to num_channels x weight x height """ def __init__(self, env): super(ImageToPyTorch, self).__init__(env) old_shape = self.observation_space.shape self.observation_space = gym.spaces.Box(low=0.0, high=1.0, shape=(old_shape[-1], old_shape[0], old_shape[1]), dtype=np.uint8) def observation(self, observation): return np.swapaxes(observation, 2, 0) def wrap_pytorch(env): return ImageToPyTorch(env)
[]
2024-01-10
superoreoooooo/S231
ProjectN~GPT3Connect.py
import openai def getAns(condition, Q) : f = open("ProjectN/Data/ApiKey.txt", "r", encoding="UTF-8") openai.api_key = f.readline() f.close() result = openai.ChatCompletion.create( model = "gpt-3.5-turbo", messages = [ {"role" : "system", "content" : condition}, {"role" : "user", "content" : Q} ] ) #print(result['choices'][0]['message']['content']) return (result['choices'][0]['message']['content']) #print(getAns("넌 지금부터 내가 알려주는 배경과 역할에 따라 게임 NPC의 이름과 스토리, 그리고 역할에 따른 퀘스트 (배경, 역할과 관련있는 물품(물품 이름도 배경에 맞게 지어줘, 가져와야 하는 물품 개수와 그 물품을 어떻게 구할 수 있는지도)을 모아오기 또는 배경, 역할과 관련있는 무언가(몬스터나 적대적인 생명체도 괜찮고, 동물 사냥도 괜찮아. 다만 그걸 배경에 따라 이름또는 종족 등을 명시해서 명확하게 작성해줘. 그리고 배경에 따라 어디서 그 무언가를 잡을 수 있는지도 작성해 줘.)를 몇마리 잡아오기)를 작성해 주면 돼. 퀘스트를 완료했을때 그에 따른 보상도 작성해줘. 보상은 NPC의 직업과 퀘스트의 내용과 관련이 있어야 하고, 어떤 아이템을 몇개, 그리고 그 아이템의 종류(사용 아이템, 장비(갑옷 등), 무기, 기타 아이템 등..)도 작성해 줘야 해. 또한, 퀘스트 보상에는 경험치또한 아이템과 같이 주어야만 해. 그리고 퀘스트 보상에는 돈이 포함될 수 있어. 예상되는 퀘스트의 난이도에 따른 적당한 양의 재화를 추가해 줬으면 좋겠어. 형식은 NPC 이름 : 이름, 스토리 : 스토리, 퀘스트 : 퀘스트1: 이름 : 내용 : 태스크 : 보상 / 퀘스트2: 이름 : 내용 : 태스크 : 보상 .. 의 형식으로 작성해주면 될 것 같아. 이름과 내용, 태스크과 보상 사이에는 하나의 줄띄움을 해줘. 한번의 대답에는 한명의 NPC만 작성해야만 하고, 퀘스트는 4개가 되어야 해. 스토리에 잘 어울리고 퀘스트와 역할 사이가 자연스러우면 고마울 것 같아.", "네가 아까전에 작성해준 리아나 처럼 형식을 맞춰줬으면 좋겠어.")) """ @deprecated c = "넌 지금부터 내가 알려주는 배경과 역할에 따라 게임 NPC의 이름과 스토리, 그리고 역할에 따른 퀘스트 (배경, 역할과 관련있는 물품(물품 이름도 배경에 맞게 지어줘, 가져와야 하는 물품 개수와 그 물품을 어떻게 구할 수 있는지도)을 모아오기 또는 배경, 역할과 관련있는 무언가(몬스터나 적대적인 생명체도 괜찮고, 동물 사냥도 좋아. 다만 그걸 배경에 따라 이름을 명시해서 정확하게 작성해줘. 그리고 배경에 따라 어디서 그 무언가를 잡을 수 있는지도 작성해 줘야 해.)를 몇마리 잡아오기)를 작성해 주면 돼. 퀘스트를 완료했을때 그에 따른 보상도 작성해줘. 보상은 NPC의 직업과 퀘스트의 내용과 관련이 있어야 하고, 어떤 아이템을 몇개, 그리고 그 아이템의 종류(사용 아이템, 장비(갑옷 등), 무기, 기타 아이템 등..)도 작성해 줘야 해. 또한, 퀘스트 보상에는 경험치또한 아이템과 같이 주어야만 해. 그리고 퀘스트 보상에는 돈이 포함될 수 있어. 예상되는 퀘스트의 난이도에 따른 적당한 양의 재화를 추가해 줬으면 좋겠어. 형식은 NPC 이름 : 이름, 스토리 : 스토리, 퀘스트 : \n 퀘스트1이름 : 내용 : 태스크 : 보상 / \n 퀘스트2이름 : 내용 : 태스크 : 보상 .. 의 형식으로 작성해주면 될 것 같아. 한번의 대답에는 한명의 NPC만 작성해야만 하고, 퀘스트는 4개가 되어야 해. 스토리에 잘 어울리고 퀘스트와 역할 사이가 자연스러우면 고마울 것 같아." bg = "판타지" role = "사냥꾼" q = "배경은 " + bg + " 배경이고, 역할은 " + role + "으로 해줘." getAns(c, q) """
[]
2024-01-10
jzbjyb/knn-transformers
models~templates.py
from typing import List, Dict, Any, Tuple, Union from operator import itemgetter import copy from collections import namedtuple import spacy import stanza from nltk.tokenize.punkt import PunktSentenceTokenizer import tiktoken import openai from .utils import openai_api_call, Utils class CtxPrompt: ctx_position: str = 'begin' ret_instruction: "RetrievalInstruction" = None instruction: str = None format_reference_method: str = 'default' clean_reference: bool = False add_ref_suffix: str = None add_ref_prefix: str = None def __init__( self, demo: List["CtxPrompt"] = [], ctx: str = None, ctxs: List[Tuple[str, str]] = [], case: str = None, question: str = None, qid: str = None, gold_output: str = None, ): assert self.ctx_position in {'before_case', 'begin'} self.demo = demo self.did = None self.ctx = ctx self.ctxs = ctxs self._ctxs = [] # used for ctx alwayed being used self.ctxs_idx = 0 self.case = case self.question = question or case self.qid = qid self.gold_output = gold_output self.ind = 1 # ctx index self.gen_len = 0 self.gold_used_len = 0 @staticmethod def get_append_retrieval(ret_to_append: str, index: int = None): if index is not None: return f'Reference {index}: {ret_to_append}\n' return f'Reference: {ret_to_append}\n' @classmethod def from_dict(cls, adict): adict = dict(adict) if 'demo' in adict: adict['demo'] = [cls.from_dict(d) for d in adict['demo']] return cls(**{k: adict[k] for k in ['demo', 'ctx', 'ctxs', 'case', 'question', 'qid', 'gold_output'] if k in adict}) @classmethod def clean_rets(cls, rets: List[str]) -> List[str]: return [ret.replace('\n', ' ').strip() for ret in rets if ret.replace('\n', ' ').strip()] @classmethod def chatgpt_get_response(cls, prompt: Union[str, List[str]], examplars: List[List[Tuple[str, str]]] = [[]], max_tokens: int = 2048, api_key: str = None): is_single = type(prompt) is str if is_single: prompt = [prompt] examplars = examplars or [[]] if len(prompt) != len(examplars): examplars = [[] for _ in range(len(prompt))] for p in prompt: assert len(p.split()) <= max_tokens responses = openai_api_call( api_key=api_key, model='gpt-3.5-turbo-0301', messages=[[ {'role': 'user' if i == 0 else 'assistant', 'content': e[i]} for e in es for i in range(2) ] + [ {'role': 'user', 'content': p}, ] for p, es in zip(prompt, examplars)], temperature=0.0, top_p=0.0, max_tokens=max_tokens) generations = [r['choices'][0]['message']['content'] for r in responses] if is_single: assert len(generations) == 1 return generations[0] return generations @classmethod def canonicalize_text(cls, text: Union[str, List[str]], field: str = 'paragraph', api_key: str = None, debug: bool = False): is_single = type(text) is not list if is_single: text = [text] prompts = [f'For the following {field}, remove unnecessary spaces and capitalize words properly.\n{field.capitalize()}:\n{t}' for t in text] clean_texts = cls.chatgpt_get_response(prompts, api_key=api_key) post_clean_texts = [] for ct, t in zip(clean_texts, text): if ct.strip().startswith(f'Sorry, there is no {field} provided'): post_clean_texts.append(t) else: post_clean_texts.append(ct) if debug: for p, ct in zip(prompts, post_clean_texts): print('-' * 10) print(p) print('-' * 10) print(ct) print('-' * 10) input() if is_single: assert len(post_clean_texts) == 1 return post_clean_texts[0] return post_clean_texts @classmethod def annotate_low_confidence_terms(cls, tokens: List[str], probs: List[float], low: float = 0.0, special_symbol: str = '*', min_gap: int = 5): # mark with symbol text = [] prev_is_low = -1 has = False for i, (token, prob) in enumerate(zip(tokens, probs)): if prob <= low: if prev_is_low == -1 or i - prev_is_low >= min_gap: has = True leading_spaces = len(token) - len(token.lstrip()) if leading_spaces <= 0: text.append(f'*{token}') else: text.append(f'{token[:leading_spaces]}*{token[leading_spaces:]}') prev_is_low = i else: text.append(token) else: text.append(token) text = ''.join(text) return text, has @classmethod def extract_low_confidence_terms_rule( cls, tokens: List[str], probs: List[float], low: float = 0.0, min_gap: int = 5, # TODO: the minimal token-based gap to separate two terms expand: bool = True, exclude_punct: bool = True, always_extract_low: bool = False, api_key: str = None): prev_low_pos = -1 has = False terms: List[List[str]] = [] spans: List[Tuple[int, int]] = [] for i, (token, prob) in enumerate(zip(tokens, probs)): if prob <= low: if prev_low_pos == -1 or i - prev_low_pos >= min_gap: # new term terms.append([token]) spans.append((i, i + 1)) else: # old term for j in range(prev_low_pos + 1, i + 1): terms[-1].append(tokens[j]) spans[-1] = (spans[-1][0], i + 1) prev_low_pos = i terms = [''.join(term).strip() for term in terms] if len(spans) <= 0: return terms if expand: new_terms = cls.extract_constituents(tokens, spans=spans, api_key=api_key) assert len(new_terms) == len(terms) if always_extract_low: terms = [nt if nt is not None else t for nt, t in zip(new_terms, terms)] else: terms = [nt for nt in new_terms if nt is not None] if exclude_punct: terms = [t for t in terms if t not in Utils.punctuations] return terms @classmethod def extract_constituents(cls, tokens: List[str], spans: List[Tuple[int, int]], api_key: str = None, special_symbol: str = '*', debug: bool = False): examplars = [ ("Egypt has one of the longest histories of any country, tracing its heritage along *the Nile Delta back to the 6th–4th millennia BCE.", "*the Nile", "the Nile Delta"), ("The settlement, which legal experts said was the largest struck by an American media company, was announced by the two sides and the judge in the case at the *11th hour.", "*11th", "11th hour"), ("In his only surviving love letter to her, written a few months before their wedding, Tyler promised, \"*Whether I float or sink in the stream of fortune, you may be assured of this, that I shall never cease to love you.\"", "*Whether I float", "Whether I float or sink in the stream of fortune") ] prompt_format = lambda sent, term: f"{sent}\n\nGiven the above sentence, extract the term/entity/phrase starting with \"{term}\"." # add special_symbol ori_sent = ''.join(tokens) cases: List[Tuple[str, str]] = [] for start_ind, end_ind in spans: start_token = tokens[start_ind] n_lead_spaces = len(start_token) - len(start_token.lstrip()) if n_lead_spaces <= 0: tokens[start_ind] = f'*{start_token}' else: tokens[start_ind] = f'{start_token[:n_lead_spaces]}*{start_token[n_lead_spaces:]}' sent = ''.join(tokens).strip() term = ''.join(tokens[start_ind:end_ind]).strip() cases.append((sent, term)) tokens[start_ind] = start_token # convert tokens back to the original state # call prompts: List[str] = [prompt_format(s, t) for s, t in cases] examplars: List[Tuple[str, str]] = [(prompt_format(s, t), out) for s, t, out in examplars] responses = cls.chatgpt_get_response(prompt=prompts, examplars=[examplars] * len(prompts), api_key=api_key) # post-process constituents: List[str] = [] for r, (sent, term), prompt in zip(responses, cases, prompts): if term.startswith(special_symbol): # trim special_symbol term = term[len(special_symbol):].strip() if debug: print('-' * 10) print(prompt) print('-' * 10) print(r) print('-' * 10) r = r.strip().split('\n', 1)[0].strip() if r.startswith(special_symbol): # trim special_symbol r = r[len(special_symbol):].strip() if not r.startswith(term): # not an expansion r = None elif r not in ori_sent: # skip non-existent terms r = None elif not r: # empty r = None constituents.append(r) return constituents @classmethod def extract_low_confidence_terms(cls, context: str, tokens: List[str], probs: List[float], low: float = 0.0, api_key: str = None, special_symbol: str = '*', debug: bool = False): examplars = [ ('*Egypt has one of the longest histories of any country, tracing its heritage along *the Nile Delta back to the *6th–4th millennia BCE.', '*Egypt\n*the Nile Delta\n*6th–4th'), ('The settlement, which *legal experts said was *the largest struck by an American media company, was *announced by the two sides and the judge in the case at the 11th hour.', '*legal experts\n*the largest struck\n*announced'), ('In his only *surviving love letter to her, written a few months before their wedding, Tyler promised, "*Whether I *float or sink in the stream of fortune, you may be assured of this, that I shall never *cease to love you."', '*surviving love letter\n*Whether\n*float or sink\n*cease to love you') ] original_text = ''.join(tokens) text, has = cls.annotate_low_confidence_terms(tokens=tokens, probs=probs, low=low, special_symbol=special_symbol) if not has: return [] # extract terms #prompt_format = lambda x: f'Given the previous context and the last sentence, extract all terms/entities in the last sentence starting with the symbol "{special_symbol}", one at a line.\nPrevious context:\n{context}\nLast sentence:\n{x}' prompt_format = lambda x: f'Given the following sentence, extract all terms/entities starting with the symbol "{special_symbol}", one at a line.\n{x}' examplars = [(prompt_format(inp), out) for inp, out in examplars] prompt = prompt_format(text) response = cls.chatgpt_get_response(prompt, examplars=examplars, api_key=api_key) terms = [t.strip() for t in response.strip().split('\n') if t.strip().startswith(special_symbol)] # remove outlier terms = [t.lstrip(special_symbol) for t in terms if t in text and t.lstrip(special_symbol) in original_text] # remove non-exist terms if debug: print('-' * 10) print(prompt) print('-' * 10) print(response) print('-' * 10) print(terms) print('-' * 10) return terms @classmethod def replace_low_confidence_terms(cls, context: str, tokens: List[str], probs: List[float], low: float = 0.0, api_key: str = None, special_symbol: str = '*', replace_symbol: str = 'XXX', debug: bool = False): text, has = cls.annotate_low_confidence_terms(tokens=tokens, probs=probs, low=low, special_symbol=special_symbol) if not has: return text # replace terms prompt = f'Given the previous context and the last sentence, detect all terms/entities in the last sentence starting with the symbol "{special_symbol}", then replace them with "{replace_symbol}".\nPrevious context:\n{context}\nLast sentence:\n{text}' replaced_text = cls.chatgpt_get_response(prompt, api_key=api_key) if debug: print('-' * 10) print(prompt) print('-' * 10) print(replaced_text) print('-' * 10) return replaced_text @classmethod def replace_low_confidence_terms_by_extract(cls, context: str, tokens: List[str], probs: List[float], low: float = 0.0, api_key: str = None, special_symbol: str = '*', replace_symbol: str = 'XXX', min_term_length: int = 0): text = ''.join(tokens) terms = cls.extract_low_confidence_terms(context=context, tokens=tokens, probs=probs, low=low, api_key=api_key, special_symbol=special_symbol) for term in terms: if min_term_length and len(term) <= min_term_length: # ignore short terms continue text = text.replace(term, replace_symbol) return text @classmethod def decontextualize_text(cls, context: str, text: str, api_key: str = None, debug: bool = False): examplars = [ ("The first American author to use natural diction and a pioneer of colloquialism, John Neal is the first to use the phrase son-of-a-bitch in a work of fiction.", "He attained his greatest literary achievements between 1817 and 1835, during which time he was America's first daily newspaper columnist, the first American published in British literary journals, author of the first history of American literature, America's first art critic, a short story pioneer, a children's literature pioneer, and a forerunner of the American Renaissance.", "John Neal attained his greatest literary achievements between 1817 and 1835, during which time he was America's first daily newspaper columnist, the first American published in British literary journals, author of the first history of American literature, America's first art critic, a short story pioneer, a children's literature pioneer, and a forerunner of the American Renaissance."), ("The Scottish wildcat is a European wildcat (Felis silvestris silvestris) population in Scotland.", "It was once widely distributed across Great Britain, but the population has declined drastically since the turn of the 20th century due to habitat loss and persecution.", "The Scottish wildcat was once widely distributed across Great Britain, but the population has declined drastically since the turn of the 20th century due to habitat loss and persecution."), ] examplars = [] #prompt = f'Given the previous context and the last sentence, make minimal changes to the last sentence to make it self-contained by resolving pronoun references.\nPrevious context:\n{context}\nLast sentence:\n{text}' #prompt_format = lambda x, y: f'Given the previous context and the last text, copy the last text and only replace pronouns (if any) with corresponding references to make the text self-contained.\n=== Previous context ===\n{x.strip()}\n=== Last text ===\n{y.strip()}' #indicator = '---' #prompt_format = lambda x, y: f'Replace pronouns in the following text with their corresponding references.\n\n=== Text (start) ===\n{x.strip()}\n{indicator}\n{y.strip()}\n=== Text (end) ===' start_sym, end_sym = "=== Text (start) ===", "=== Text (start) ===" prompt_format = lambda x, y: f'Replace pronouns in the following text with their corresponding references.\n\n{x.strip()}\n{start_sym}\n{y.strip()}\n{end_sym}' examplars = [(prompt_format(e[0], e[1]), e[2]) for e in examplars] prompt = prompt_format(context, text) #decontext_text = cls.chatgpt_get_response(prompt, examplars=examplars, api_key=api_key).split(indicator, 1)[-1].strip() decontext_text = cls.chatgpt_get_response(prompt, examplars=examplars, api_key=api_key).strip() decontext_text = decontext_text.split(start_sym, 1)[-1].strip() decontext_text = decontext_text[:-len(end_sym)] if decontext_text.endswith(end_sym) else decontext_text if debug: print('-' * 10) print(prompt) print('-' * 10) print(decontext_text) print('-' * 10) return decontext_text @classmethod def ask_question_text( cls, context: str, text: str, terms: List[str], api_key: str = None, debug: bool = False, filter_question: bool = True, ask_full_text: bool = False, use_full_text: bool = True, ): questions: List[str] = [] cases: List[str] = [] for term in terms: term = term.strip('"') #case = f'{context.lstrip()}{text.rstrip()}\n\nGiven the above passage, generate a question that can be used to look up relevant information to verify the following term "{term}".' #case = f'{context.lstrip()}{text.rstrip()}\n\nThe term "{term}" in the above passage might be wrong. Generate a question that can be used to look up relevant information to verify it.' case = f'{context.lstrip()}{text.rstrip()}\n\nGiven the above passage, ask a question to which the answer is the term/entity/phrase "{term}".' cases.append(case) if ask_full_text and len(terms) <= 0: case = f'{context.lstrip()}{text.rstrip()}\n\nGiven the above passage, ask a question to which the answer is the information contained in the last sentence "{text.strip()}".' cases.append(case) elif use_full_text and len(terms) <= 0: return [text.strip()] responses = cls.chatgpt_get_response(cases, api_key=api_key) questions: List[str] = [] for case, question in zip(cases, responses): question = question.strip() if filter_question and not question.endswith('?'): continue questions.append(question) if debug: print('-' * 10) print(case) print('-' * 10) print(question) print('-' * 10) return questions @classmethod def get_queries_from_text_for_retrieval( cls, context: str, tokens: List[str], probs: List[float], low: float = 0.0, api_key: str = None, replace_symbol: str = 'XXX', detect_low_terms: bool = False, decontextualize: bool = False, askquestion: bool = False, debug: bool = False, ) -> List[str]: text = ''.join(tokens) if debug: print('0->', context) print('1->', text) print(list(zip(tokens, probs))) if detect_low_terms: #text = cls.replace_low_confidence_terms_by_extract(context=context, tokens=tokens, probs=probs, low=low, api_key=api_key, replace_symbol=replace_symbol) #terms = cls.extract_low_confidence_terms(context=context, tokens=tokens, probs=probs, low=low, api_key=api_key) terms = cls.extract_low_confidence_terms_rule(tokens=tokens, probs=probs, low=low, api_key=api_key) if debug: print('2->', terms) if decontextualize: text = cls.decontextualize_text(context=context, text=text, api_key=api_key) if debug: print('3->', text) elif askquestion: questions = cls.ask_question_text(context=context, text=text, terms=terms, api_key=api_key) if detect_low_terms: if decontextualize: #text = text.replace(replace_symbol, ' ') for term in terms: questions = [text.replace(term, ' ')] elif askquestion: pass if debug: print('4->', questions) input() return questions def get_query_for_retrieval(self): if self.gen_len == 0: return self.question #question = self.question[:self.question.find('(A)')].strip() # TODO: debug #return question else: return self.case def get_all_ctxs(self) -> List[str]: return self.ctxs def add_generation(self, cont: str): self.case += cont self.gen_len += len(cont) if self.gold_used_len != 0: # use gold self.gold_output = self.gold_output[self.gold_used_len:] self.gold_used_len = 0 def reset_generation(self): if self.gen_len <= 0: return self.case = self.case[:-self.gen_len] self.gen_len = 0 def change_ctx(self): assert len(self.ctxs) if self.ctxs_idx >= len(self.ctxs): return self.did, self.ctx self.did, self.ctx = self.ctxs[self.ctxs_idx] self.ctxs_idx += 1 return self.did, self.ctx def reinit_ctx(self): self.ctx = None self.ind = 1 def check_ctx(self, method): if self.ctx: return if self._ctxs: self.update_retrieval([], method=method) def append_retrieval(self, rets: List[str], add_index: bool = False): rets = self.clean_rets(rets) self.case += self.get_append_retrieval(rets, index=self.ind if add_index else None) # TODO: fix list bug self.ind = (self.ind + 1) if add_index else self.ind def update_retrieval( self, rets: List[Tuple[str, str]] = [], method: str = 'replace', dedup: bool = True, add_index: bool = True, ): if self._ctxs: # merge with kept ctxs exist_ids = set([_id for _id, t in self._ctxs]) new_rets = copy.deepcopy(self._ctxs) for _id, t in rets: if _id not in exist_ids: new_rets.append((_id, t)) exist_ids.add(_id) rets = new_rets rets = list(map(itemgetter(1), rets)) rets = self.clean_rets(rets) def merge_rets(): if add_index: return '\n'.join(f'[{self.ind + i}]: {ret}' for i, ret in enumerate(rets)) return '\n'.join(rets) assert method in {'replace', 'append'} merge_ret = merge_rets() if self.ctx is None: self.ctx = merge_ret else: if method == 'replace': self.ctx = merge_ret elif method == 'append': if dedup: if merge_ret.lower() not in self.ctx.lower(): self.ctx += '\n' + merge_ret self.ind += len(rets) else: self.ctx += '\n' + merge_ret self.ind += len(rets) else: raise NotImplementedError @classmethod def format_reference(cls, ref: str, api_key: str = None): if cls.add_ref_suffix and not ref.endswith(cls.add_ref_suffix): ref += cls.add_ref_suffix if cls.add_ref_prefix and not ref.startswith(cls.add_ref_prefix): ref = cls.add_ref_prefix + ref if cls.clean_reference: ref = cls.canonicalize_text(ref, field='text', api_key=api_key) method = cls.format_reference_method assert method in {'default', 'searchresults', 'searchresultsrank', 'ignore', 'ignore_for_retrieval_instruct', 'short_ignore'} if method == 'default': return 'Reference: ' + ref if method == 'searchresults': return 'Search results :\n' + ref if method == 'searchresultsrank': return 'Search results ranked based on relevance in descending order:\n' + ref if method == 'ignore': formatted = [ '1. The reference below might be helpful when answering questions but it is noisy. Free free to ignore irrelevant information in it.', ref.strip(), '2. You should write out the reasoning steps and then draw your conclusion, where the reasoning steps should utilize the Search API "[Search(term)]" to look up information about "term" whenever possible. For example:'] return '\n\n'.join(formatted) if method == 'ignore_for_retrieval_instruct': formatted = ['The reference below might be helpful when answering questions but it is noisy. Free free to ignore irrelevant information in it.', ref.strip()] return '\n\n'.join(formatted) if method == 'short_ignore': formatted = ['The reference below might be helpful but it is noisy. Free free to ignore irrelevant information in it:', ref.strip()] return ' '.join(formatted) raise NotImplementedError def get_prefix( self, qagent: "QueryAgent", prefix_method: str = 'sentence') -> Tuple[str, int]: if not self.gold_output: # finish return qagent.final_stop_sym, 0 if prefix_method == 'sentence': prefix, self.gold_used_len = ApiReturn.get_sent(self.gold_output, position='begin') return prefix, 0 elif prefix_method == 'all': prefix, self.gold_used_len = self.gold_output, len(self.gold_output) return prefix, 0 elif prefix_method.startswith('sentence_first:'): firstk = int(prefix_method[len('sentence_first:'):]) prefix, self.gold_used_len = ApiReturn.get_sent(self.gold_output, position='begin') prefix = qagent.get_tokens(prefix, topk=firstk)[0] return prefix, None elif prefix_method.startswith('freq:'): firstk = int(prefix_method[len('freq:'):]) prefix, self.gold_used_len = qagent.get_tokens(self.gold_output, topk=firstk) return prefix, 0 else: raise NotImplementedError def format( self, use_ctx: bool = False, use_ret_instruction: bool = True, use_instruction: bool = True, is_chat_model: bool = False, api_key: str = None ): # run on demo demo_formatted: List[str] = [d.format(use_ctx=use_ctx, use_ret_instruction=False, use_instruction=False)[0] for d in self.demo] use_ctx = use_ctx and bool(self.ctx) # do not use ctx when it's None or empty string use_ret_instruction = use_ret_instruction and self.ret_instruction is not None ref = self.format_reference(self.ctx, api_key=api_key) if use_ctx else None task, ret, ensemble = self.ret_instruction.format(use_ctx=use_ctx) if use_ret_instruction else (None, None, None) elements: List[str] = [] if use_ctx and self.ctx_position == 'begin': elements.append(ref) # append retrieval instructionj if use_ret_instruction: elements.append(ret) # append task instruction if use_ret_instruction: elements.append(task) # append additional instruction if use_instruction and self.instruction is not None: elements.append(self.instruction) # append demo if len(demo_formatted) and not is_chat_model: elements.extend(demo_formatted) # append ensemble if use_ret_instruction: elements.append(ensemble) if use_ctx and self.ctx_position == 'before_case': elements.append(ref + '\n' + self.case) else: elements.append(self.case) return '\n\n'.join(elements), self.gen_len, demo_formatted Sentence = namedtuple('Sentence', 'text start_char end_char') class ApiReturn: EOS = '<|endoftext|>' spacy_nlp = spacy.load('en_core_web_sm') psentencizer = PunktSentenceTokenizer() stanza_nlp = stanza.Pipeline(lang='en', processors='tokenize') use_sentencizer = 'nltk' min_sent_len = 5 def __init__( self, prompt: str, text: str, tokens: List[str] = None, probs: List[float] = None, offsets: List[int] = None, finish_reason: str = 'stop', model: str = None, skip_len: int = 0, ): self.model = model self.prompt = prompt self.text = text self.tokens = tokens self.probs = probs self.offsets = offsets if self.has_tokens: assert len(tokens) == len(probs) == len(offsets) self.finish_reason = finish_reason if self.finish_reason is None: self.finish_reason = 'stop' # TODO: a bug from openai? if skip_len: # skip `skip_len` chars at the beginning self.text = self.text[skip_len:] if self.has_tokens: i = 0 for i, off in enumerate(self.offsets): if off == skip_len: break elif off > skip_len: # the previous token span across the boundary i = i - 1 assert i >= 0 break self.tokens = self.tokens[i:] self.probs = self.probs[i:] self.offsets = self.offsets[i:] @property def has_tokens(self): return self.tokens is not None @property def token_probs(self): if self.has_tokens: return self.probs else: return [] @property def num_tokens(self): if self.has_tokens: return len(self.tokens) else: return len(tiktoken.encoding_for_model(self.model).encode(self.text)) @property def has_endoftext(self): return self.EOS in self.tokens @property def is_empty(self): return len(self.text.strip()) == 0 @classmethod def get_sent(cls, text: str, position: str = 'begin'): if cls.use_sentencizer == 'spacy': sents = list(cls.spacy_nlp(text).sents) elif cls.use_sentencizer == 'nltk': sents = [Sentence(text[s:e], s, e) for s, e in cls.psentencizer.span_tokenize(text)] else: raise NotImplementedError if position == 'begin': break_at = len(text) for sent in sents: # remove trailing spaces which is usually tokenized into the next token of the next sentence by GPT tokeniers num_trail_spaces = len(sent.text) - len(sent.text.rstrip()) if sent.end_char - num_trail_spaces >= cls.min_sent_len: break_at = sent.end_char - num_trail_spaces break return text[:break_at], break_at if position == 'end': break_at = 0 for i in range(len(sents)): sent = sents[len(sents) - i - 1] if len(text) - sent.start_char >= cls.min_sent_len: # TODO: argument break_at = sent.start_char break return text[break_at:], break_at raise NotImplementedError def truncate_at_prob(self, low: float): assert self.has_tokens, 'not supported' if self.num_tokens <= 1: return self break_point = self.num_tokens for i in range(self.num_tokens): t, p, o = self.tokens[i], self.probs[i], self.offsets[i] if p <= low: break_point = i break if break_point == 0 and self.num_tokens > 0: # avoid deadlock break_point = 1 while break_point < self.num_tokens: # truncation assert break_point > 0 keep = self.offsets[break_point] - len(self.prompt) if keep <= 0: break_point += 1 continue self.text = self.text[:keep] self.tokens = self.tokens[:break_point] self.probs = self.probs[:break_point] self.offsets = self.offsets[:break_point] self.finish_reason = 'boundary' break return self def truncate_at_boundary(self, unit: str = 'sentence'): if self.num_tokens <= 1: return self if unit == 'sentence': if self.use_sentencizer == 'spacy': sents = list(self.spacy_nlp(self.text).sents) #print(self.text) #print('---') #print(list(map(str, sents))) #print('---') elif self.use_sentencizer == 'nltk': sents = [Sentence(self.text[s:e], s, e) for s, e in self.psentencizer.span_tokenize(self.text)] else: raise NotImplementedError break_at = len(self.text) for sent in sents: # remove trailing spaces which is usually tokenized into the next token of the next sentence by GPT tokeniers num_trail_spaces = len(sent.text) - len(sent.text.rstrip()) if sent.end_char - num_trail_spaces >= self.min_sent_len: break_at = sent.end_char - num_trail_spaces break if break_at > 0 and break_at < len(self.text): # truncation if self.has_tokens: i = 0 for i in range(self.num_tokens): if self.offsets[i] - len(self.prompt) >= break_at: break_at = self.offsets[i] - len(self.prompt) break assert i > 0 self.tokens = self.tokens[:i] self.probs = self.probs[:i] self.offsets = self.offsets[:i] assert break_at > 0 self.text = self.text[:break_at] self.finish_reason = 'boundary' else: raise NotImplementedError return self def truncate_at_substring(self, substr: str): position = self.text.find(substr) if position == -1: return self.text = self.text[:position] if self.has_tokens: i = 0 for i, off in enumerate(self.offsets): if off - len(self.prompt) == position: break elif off - len(self.prompt) > position: # the previous token span across the boundary i = i - 1 assert i >= 0 break self.tokens = self.tokens[:i] self.probs = self.probs[:i] self.offsets = self.offsets[:i] def use_as_query( self, low_prob: float = None, mask_prob: float = None, mask_method: str = 'simple', n_gen_char_in_prompt: int = 0, api_key: str = None, ): if not low_prob and not mask_prob: return self.text assert self.has_tokens, 'not supported' if low_prob: ok = False for p in self.probs: if p <= low_prob: ok = True break if not ok: return '' if mask_prob: if mask_method == 'simple': keep = [(t if p > mask_prob else ' ') for t, p in zip(self.tokens, self.probs)] keep = ''.join(keep).strip() return keep elif mask_method in {'wholeterm-decontextualize', 'wholeterm-askquestion'}: if n_gen_char_in_prompt == 0: context = '' else: context = self.prompt[-n_gen_char_in_prompt:] decontextualize = 'decontextualize' in mask_method askquestion = 'askquestion' in mask_method keep = CtxPrompt.get_queries_from_text_for_retrieval( context=context, tokens=self.tokens, probs=self.probs, low=mask_prob, api_key=api_key, detect_low_terms=True, decontextualize=decontextualize, askquestion=askquestion) return keep else: raise NotImplementedError else: return self.text class RetrievalInstruction: cot_instruction: Dict[str, Any] = { 'retrieval': 'Skill 1. Use the Search API to look up relevant information by writing "[Search(term)]" where "term" is the search term you want to look up. For example:', 'task': 'Skill 2. Answer questions by thinking step-by-step. First, write out the reasoning steps, then draw the conclusion. For example:', 'ensemble': 'Now, combine the aforementioned two skills. First, write out the reasoning steps, then draw the conclusion, where the reasoning steps should also utilize the Search API "[Search(term)]" whenever possible.', 'examplars': [ { 'question': 'But what are the risks during production of nanomaterials?', 'ctxs': [(None, 'The increased production of manufactured nanomaterials (MNMs) and their use in consumer and industrial products means that workers in all countries will be at the front line of any exposure, placing...')], 'answer': '[Search(nanomaterial production risks)] Some nanomaterials may give rise to various kinds of lung damage.', }, { 'question': 'The colors on the flag of Ghana have the following meanings.', 'ctxs': [(None, "The flag of Ghana comprises of the Pan-African colors of red, yellow and green. These colors are horizontal stripes that make up the background of the flag. Red is represents the nation's fight for independence, the gold is a sign of the country's mineral wealth, and the green is a representation of the country's natural wealth...")], 'answer': 'Red is for [Search(Ghana flag red meaning)] the blood of martyrs, green for forests, and gold for mineral wealth.', }, { 'question': 'Metformin is the first-line drug for what?', 'ctxs': [(None, "Metformin, sold under the brand name Glucophage, among others, is the main first-line medication for the treatment of type 2 diabetes,[6][7][8][9] particularly in people who are overweight.[7] It is also used in the treatment of polycystic ovary syndrome...")], 'answer': '[Search(Metformin first-line drug)] patients with type 2 diabetes and obesity.' } ] } strategyqa_instruction: Dict[str, Any] = { 'task': 'Skill 2. Answer questions by thinking step-by-step. First, write out the reasoning steps, then generate a yes or no answer. For example:', 'ensemble': 'Now, combine the aforementioned two skills. First, write out the reasoning steps, then generate a yes or no answer, where the reasoning steps should also utilize the Search API "[Search(term)]" whenever possible.', } summary_instruction: Dict[str, Any] = { 'task': '2. You should generate a short paragraph of summary for an entity. For example:', 'ensemble': '3. Now, you should combine the aforementioned two abilities. You should generate a short paragraph of summary for an entity and utilize the Search API "[Search(term)]" whenever possible.', } def __init__(self, method: str = 'cot', fewshot: int = None): self.instruction = getattr(self, f'{method}_instruction') for k, v in self.cot_instruction.items(): if k not in self.instruction: self.instruction[k] = v self.fewshot = len(self.instruction['examplars']) if fewshot is None else self.fewshot def format(self, use_ctx: bool = False) -> Tuple[str, str]: use_ctx = False # no ctx for examplars demos: List[str] = [] for i in range(self.fewshot): q = self.instruction['examplars'][i]['question'] a = self.instruction['examplars'][i]['answer'] if use_ctx: ctxs = self.instruction['examplars'][i]['ctxs'] assert CtxPrompt.ctx_position == 'before_case' ref = CtxPrompt.format_reference(' '.join(map(itemgetter(1), ctxs))) demo = f'{ref}\nQuestion: {q}\nAnswer (with Search): {a}' else: demo = f'Question: {q}\nAnswer (with Search): {a}' demos.append(demo) task = self.instruction['task'] ret = self.instruction['retrieval'] + '\n\n' + '\n\n'.join(demos) ensemble = self.instruction['ensemble'] return task, ret, ensemble
[ "<function <lambda> at 0x11617ff60>", "<function <lambda> at 0x116450ea0>", "Given the previous context and the last sentence, detect all terms/entities in the last sentence starting with the symbol \"PLACEHOLDER\", then replace them with \"PLACEHOLDER\".\nPrevious context:\nPLACEHOLDER\nLast sentence:\nPLACEHOLDER", "<function <lambda> at 0x11617f560>" ]
2024-01-10
RainbowGamer333/SINTEFStuff
src~openAI~remoteapi.py
import os import openai import yaml def load_credential(): # change credential filepath to match your own current_dir = os.path.dirname(os.path.abspath(__file__)) credential_filepath = os.path.join(os.path.dirname(current_dir), "openai.credential") with open(credential_filepath, 'r') as stream: credential_data = yaml.safe_load(stream) openai_config = credential_data['openai'] openai.api_type = "azure" openai.api_base = openai_config['endpoint'] openai.api_version = "2023-03-15-preview" openai.api_key = openai_config["key"]
[]
2024-01-10
bbarclay/NLP_incentived_review
bin~Model.py
# coding: utf-8 # In[2]: import pandas as pd import numpy as np import pickle import json from copy import deepcopy import itertools from sklearn.feature_extraction.text import CountVectorizer from gensim.utils import simple_preprocess from nltk.tokenize.punkt import PunktSentenceTokenizer, PunktParameters import re from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer from collections import defaultdict from gensim.models import word2vec from gensim import models from sklearn.preprocessing import Normalizer, normalize from sklearn.decomposition import PCA from sklearn.cluster import KMeans, MiniBatchKMeans import matplotlib.pyplot as plt from wordcloud import WordCloud import csv from sklearn.preprocessing import Imputer, StandardScaler, LabelEncoder, OneHotEncoder from sklearn_pandas import DataFrameMapper, CategoricalImputer from sklearn.naive_bayes import GaussianNB from sklearn.metrics import f1_score from sklearn.metrics import accuracy_score from sklearn.metrics import classification_report from sklearn.cross_validation import train_test_split from sklearn.metrics import roc_auc_score from sklearn.ensemble import RandomForestClassifier from sklearn.linear_model import LogisticRegression from sklearn.ensemble import GradientBoostingClassifier from sklearn.metrics import roc_curve import matplotlib.pyplot as plt get_ipython().run_line_magic('matplotlib', 'inline') from sklearn.metrics import recall_score # ## Load data # In[ ]: ## Not in use # product_org = pd.DataFrame(df_raw) # products=deepcopy(product_org) # products['brand_id']=products['Brand'].apply(lambda x: x['Id']) # products['brand_name']=products['Brand'].apply(lambda x: x['Name']) # products['rec_cnt']=products['ReviewStatistics'].apply(lambda x: x['RecommendedCount']) # products['avg_rating']=products['ReviewStatistics'].apply(lambda x: x['AverageOverallRating']) # products['helpful_cnt']=products['ReviewStatistics'].apply(lambda x: x['HelpfulVoteCount']) # products.head() # In[ ]: # def product_parser(product): # agg = dict() # fields = ['brand_id', 'brand_name','product_id','Name','CategoryId', 'Description', 'rec_cnt', 'avg_rating','helpful_cnt','TotalReviewCount'] # for field in fields: # value = product.get(field, None) # try: # agg[field] = value # except: # agg[field] = None # return agg # In[ ]: # pd.DataFrame(product_parser(products)).to_pickle('product_table.pickle') # df1=pd.read_pickle('reviewlist_all.pickle') # df1_org=pd.DataFrame(df1) # In[ ]: # def review_parser(review): # # Reference variables # agg = dict() # fields = ['AuthorId','IsFeatured','IsRatingsOnly','IsRecommended', 'product_id', 'Rating', 'ReviewText','isemployee','freeproduct','Helpfulness','Title'] # for field in fields: # value = review.get(field, None) # #value = product.__dict__.get(field, None) # try: # agg[field] = value # #agg[field] = unicode(value).encode('ascii', errors='ignore') if value is not None else None # except: # agg[field] = None # return agg # In[ ]: # with open('reviewlist_all.pickle', 'rb') as f: # # The protocol version used is detected automatically, so we do not # # have to specify it. # data = pickle.load(f) # In[ ]: # review_i = pd.DataFrame([i for i in data if 'IncentivizedReview' in i['ContextDataValues']]) # review_i['isemployee']=review_i['ContextDataValues'].apply(lambda x: x['StaffContext']['Value']) # review_i['freeproduct']=review_i['ContextDataValues'].apply(lambda x: x['IncentivizedReview']['Value']) # reviews=pd.DataFrame(review_parser(review_i)) # reviews.to_pickle('review_table.pickle') # In[3]: new=pd.read_pickle('reviewdata_sub.pickle') # In[4]: col=list(new.columns) # In[5]: col # In[6]: new.shape # ## Parse # In[7]: def review_parser_new(review): # Reference variables agg = dict() fields = ['AuthorId','IsFeatured','IsRatingsOnly','IsRecommended', 'Rating', 'Title','ReviewText', 'ContextDataValues.StaffContext.Value','ContextDataValues.IncentivizedReview.Value', 'ContextDataValues.age.Value','ContextDataValues.beautyInsider.Value','Helpfulness','product_id', 'productPrice',''] for field in fields: value = review.get(field, None) #value = product.__dict__.get(field, None) try: agg[field] = value #agg[field] = unicode(value).encode('ascii', errors='ignore') if value is not None else None except: agg[field] = None return agg # In[8]: reviews_new=pd.DataFrame(review_parser_new(new)) # In[9]: reviews_new['incentivized']=0 reviews_new.loc[(reviews_new['ContextDataValues.IncentivizedReview.Value']=='true')|(reviews_new['ContextDataValues.StaffContext.Value']=='true'),'incentivized']=1 # In[10]: reviews_new['age']=reviews_new['ContextDataValues.age.Value'].fillna('unknow') # In[11]: reviews_new['vib']=reviews_new['ContextDataValues.beautyInsider.Value'].fillna('unknow') # In[12]: reviews_new['incentivized']=0 reviews_new.loc[(reviews_new['ContextDataValues.StaffContext.Value']=='true')|(reviews_new['ContextDataValues.IncentivizedReview.Value']=='true'),'incentivized']=1 # In[13]: reviews_new.reset_index(inplace=True) # In[14]: reviews_new=reviews_new[['index', 'AuthorId', 'IsFeatured', 'IsRatingsOnly', 'IsRecommended', 'Rating', 'Title', 'ReviewText', 'Helpfulness', 'product_id', 'productPrice', 'incentivized', 'age','vib']] # In[15]: reviews_new.columns=['review_id', 'AuthorId', 'IsFeatured', 'IsRatingsOnly', 'IsRecommended', 'Rating', 'Title', 'ReviewText', 'Helpfulness', 'product_id', 'productPrice', 'incentivized', 'age', 'vib'] # In[16]: reviews_new.incentivized.value_counts() # ### Review analyze # In[17]: df=pd.DataFrame(reviews_new[['ReviewText','incentivized','review_id']]) # In[18]: #sentence tokenizer for each review punkt_param = PunktParameters() punkt_param.abbrev_types = set(['dr', 'vs', 'mr', 'mrs']) tokenizer = PunktSentenceTokenizer(punkt_param) df['review_sentences'] = df['ReviewText'].map(lambda text: tokenizer.tokenize(text)) # In[19]: df.head() # In[ ]: df.to_csv('review_table.csv') # In[20]: # split long sentences in review_sentences def split_long_sentence(sentences): shorter_sentences = [] for sentence in sentences: if len(sentence) >= 50: sub_sentences = re.split('&|!|;|and|,|~|but|\.|so i|\s-\s|\(|\)', sentence.lower()) sub_sentences = [s.strip() for s in sub_sentences] shorter_sentences += sub_sentences else: shorter_sentences.append(sentence.lower()) shorter_sentences = filter(lambda s: len(s) > 13 and not s.startswith('i have') and not s.startswith('i also have') and not s.startswith('i\'m') and not s.startswith('i had') and not s.startswith('i\'ve been') and not s.startswith('i thought') and not s.startswith('i was ') and not s.startswith('i use ') and not s.startswith('i used to') and not s.startswith('if you have') and not s.startswith('i suffer') and not ('i do have' in s) and not ('looking for' in s) and not ('i purchase' in s) and not ('i bought' in s) , shorter_sentences) return list(shorter_sentences) # In[22]: #Generate table of all the sentences with review_ids review_ids = [] review_sentences = [] for review in df.as_matrix(): curr_review_id = review[2] curr_review_sentences = review[-1] # Divide long sentences even longer if possible! shorter_sentences = split_long_sentence(curr_review_sentences) review_ids += [curr_review_id] * len(shorter_sentences) review_sentences += shorter_sentences df_review_sentences = pd.DataFrame({'review_id': review_ids, 'sentence': review_sentences}) df_review_sentences.sample(10) # In[23]: df_review_sentences.shape # In[24]: ## Tokenize sentences from nltk.corpus import stopwords stop_words = set(stopwords.words('english')) # In[25]: tokenizer_regex = re.compile(r"[\s]") def tokenize(text): clean_text = re.sub(r'[,!.$\d%&~?()#<>"=/-]', ' ', text) clean_text = ' '.join(clean_text.split()) tokens = [tok.strip().lower() for tok in tokenizer_regex.split(clean_text)] filtered_tokens = tokens# filter(lambda tok: tok not in stop_words, tokens) return list(filtered_tokens) # In[26]: def get_word_weights(docs): tfidf = TfidfVectorizer(stop_words=frozenset(stop_words), tokenizer=tokenize, ngram_range=(1,1)) tfidf.fit(docs) max_idf = max(tfidf.idf_) word2weight = defaultdict(lambda: max_idf, [(w, tfidf.idf_[i]) for w, i in tfidf.vocabulary_.items()]) return word2weight test_docs2 = ["dog cat fish","dog cat cat","fish bird", 'bird fish. bird', 'blah cat', 'tata harper'] get_word_weights(test_docs2) # In[27]: tfidf = TfidfVectorizer(stop_words=frozenset(stop_words), tokenizer=tokenize, ngram_range=(1,1)) tfidf.fit(test_docs2) tfidf.idf_ # In[28]: tfidf.vocabulary_.items() # In[29]: w2v = models.KeyedVectors.load_word2vec_format("GoogleNews-vectors-negative300.bin",binary=True) #model = gensim.models.Word2Vec(texts, size=100, window=5, min_count=1, workers=4,sg=1) # In[ ]: #w2v.most_similar(positive=['wrinkle'], topn=25) # In[30]: 'review' in w2v.vocab # In[31]: df_review_sentences['tokenized_words'] = df_review_sentences['sentence'].map(lambda sentence: tokenize(sentence)) df_review_sentences['tokenized_filtered_words'] = df_review_sentences['tokenized_words'].map( lambda tokenized_words: [word for word in tokenized_words if word in w2v.vocab]) df_review_sentences['tokenized_filtered_words_length'] = df_review_sentences['tokenized_filtered_words'].map( lambda tokenized_filtered_words: len(tokenized_filtered_words)) # In[32]: df_review_sentences = df_review_sentences[df_review_sentences.tokenized_filtered_words_length > 3] df_review_sentences = df_review_sentences.reset_index() word2weight = get_word_weights(df_review_sentences['sentence']) # In[33]: df_review_sentences.head() # In[35]: def get_docs_vocab(docs): count_vectorizer = CountVectorizer(ngram_range=(1,1), stop_words=frozenset(stop_words), tokenizer=tokenize) count_vectorizer.fit_transform(docs) vocab = count_vectorizer.vocabulary_.keys() return vocab get_docs_vocab(['cat mouse dog', 'mouse dog']) # In[36]: def get_pos_weight(tokens): word_pos = nltk.pos_tag(tokens) word_to_weight = {} for word, pos in word_pos: if pos.startswith('JJ') | pos.startswith('RB'): word_to_weight[word] = 2 # adjective or adverb elif (pos == 'VBD') | (pos == 'VBG') | (pos == 'VBN'): word_to_weight[word] = 1.3 # verb # elif (pos == 'NN'): # word_to_weight[word] = 1.1 # noun else: word_to_weight[word] = 1 return word_to_weight # In[37]: import nltk test_pos = defaultdict( list ) test_words = ['refreshed', 'tingling', 'tried', 'redness', 'dried', 'dry', 'added', 'eczema', 'sensitive', 'tight', 'recommend', 'pick', 'matte', 'removed', 'slippery', 'irritated', 'pleased', 'feels', 'five', 'forever', 'milky', 'hydrated', 'favorite', 'didn\'t'] test_words_pos = nltk.pos_tag(test_words) for word, pos in test_words_pos: test_pos[pos].append(word) #get_pos_weight(test_words) print(test_pos) # In[38]: import nltk nltk.download('averaged_perceptron_tagger') # In[39]: docs_vocab = get_docs_vocab(df_review_sentences['sentence']) # In[41]: pos_weights = get_pos_weight(list(docs_vocab)) # In[42]: def word2vec_pos_weight(tokenized_filtered_words): return np.mean([w2v[w] * pos_weights.get(w, 1) * word2weight[w] for w in tokenized_filtered_words], axis=0) # In[43]: def word2vec_tfidf(tokenized_filtered_words): return np.mean([w2v[w] * word2weight[w] for w in tokenized_filtered_words], axis=0) # In[44]: df_review_sentences['word2vec'] = df_review_sentences['tokenized_filtered_words'].apply( # lambda tokenized_filtered_words: np.mean(w2v[tokenized_filtered_words], axis=0) #lambda tokenized_filtered_words: word2vec_tfidf(tokenized_filtered_words) lambda tokenized_filtered_words: word2vec_pos_weight(tokenized_filtered_words) ) # In[45]: sentence_word_vectors = np.array(df_review_sentences['word2vec'].values.tolist()) sentence_word_vectors.shape # In[425]: def plot_kmeans_inertia(data): """Figure out optimized number of clusters for KMeans""" max_number_clusters = 30 inertia_values = [] for cluster_count in range(1, max_number_clusters+1): print('fitting cluster ', cluster_count) km = KMeans(n_clusters=cluster_count) km.fit(data) inertia_values.append(km.inertia_) plt.plot(range(1, max_number_clusters+1), inertia_values) plt.savefig('kmeans_inertia.png', dpi=500) # In[426]: plot_kmeans_inertia(sentence_word_vectors_truncated_sub) # ## Kmeans # In[46]: number_sentences = sentence_word_vectors.shape[0] df_review_sentences_truncated = df_review_sentences.iloc[0:number_sentences, :] sentence_word_vectors_truncated = sentence_word_vectors[0:number_sentences, :] sentence_word_vectors_truncated = normalize(sentence_word_vectors_truncated) sentence_word_vectors_truncated.shape # In[47]: cluster_count = 25 km = MiniBatchKMeans(n_clusters=cluster_count,random_state=1) #km = KMeans(n_clusters=cluster_count,random_state=3) review_word2vec_clusters = km.fit_predict(sentence_word_vectors_truncated) len(review_word2vec_clusters) # In[48]: df_sentence_cluster = pd.DataFrame({}) cluster_columns = ['feat_' + str(i) for i in range(0, cluster_count)] for i in range(0, cluster_count): cluster_column = cluster_columns[i] df_sentence_cluster[cluster_column] = (review_word2vec_clusters == i).astype(int) df_sentence = pd.concat([df_review_sentences, df_sentence_cluster], axis=1) df_sentence[df_sentence['feat_0'] == 1].head() # In[49]: df_sentence_all = pd.merge(df_sentence, df, on='review_id', how='left') df_sentence_all.head(2) # In[50]: ratio=[] for i in range(25): a=df_sentence_all[df_sentence_all['feat_'+str(i)] ==1] ratio.append(sum(a['incentivized'])/len(a['incentivized'])) n=np.argmax(ratio) print(n,ratio[n]) # In[43]: df_sentence_all[df_sentence_all['feat_15'] == 1]['sentence'].to_csv('feature.csv') # In[51]: text=''.join(list(df_sentence_all[df_sentence_all['feat_15'] == 1]['sentence'])) wordcloud = WordCloud(width=480, height=480,background_color="white",margin=0,colormap="Reds", stopwords=["samplei", "sephora",'this','i','thisi'],max_words=20).generate(text) plt.imshow(wordcloud, interpolation='bilinear') plt.axis("off") plt.margins(x=0, y=0) #plt.show() plt.savefig('wordcloud.png', dpi=500,transparent=True) # In[52]: from collections import Counter c = Counter(text.split()) c.most_common(15) # In[53]: text=''.join(list(df_sentence_all[df_sentence_all['feat_23'] == 1]['sentence'])) wordcloud = WordCloud(width=480, height=480, margin=0,background_color="white",colormap="Reds", stopwords=['was','in','skinmy','skin','my','is'],max_words=50).generate(text) plt.imshow(wordcloud, interpolation='bilinear') plt.axis("off") plt.margins(x=0, y=0) plt.show() # In[ ]: #!pip3 install pyldavis import pyLDAvis, pyLDAvis.sklearn from IPython.display import display from sklearn import datasets categories = ['alt.atheism', 'comp.graphics', 'rec.sport.baseball'] ng_train = datasets.fetch_20newsgroups(subset='train', categories=categories, remove=('headers', 'footers', 'quotes')) count_vectorizer = CountVectorizer(ngram_range=(1, 2), stop_words='english', token_pattern="\\b[a-z][a-z]+\\b") X = count_vectorizer.fit_transform(ng_train.data) n_topics = 3 n_iter = 10 lda = LatentDirichletAllocation(n_topics=n_topics, max_iter=n_iter, random_state=42) data = lda.fit_transform(X) # Setup to run in Jupyter notebook pyLDAvis.enable_notebook() # Create the visualization vis = pyLDAvis.sklearn.prepare(lda, X, count_vectorizer) # Export as a standalone HTML web page # pyLDAvis.save_html(vis, 'lda.html') # Let's view it! display(vis) # ## Classification model # ### Without text feature # In[54]: reviews_new['n_reviews']=reviews_new['review_id'].groupby(reviews_new['AuthorId']).transform('count') reviews_new['Helpfulness']=reviews_new['Helpfulness'].fillna(0) reviews_new['productPrice']=reviews_new['productPrice'].apply(lambda x: float(x)) reviews_new['vib']=reviews_new['vib'].apply(lambda x: 0 if x=='no' or x=='unknow' else 1) # In[55]: reviews_new['complimentary']=reviews_new['ReviewText'].apply(lambda x: 1 if 'complimentary'in x.split() or 'Influenster' in x.split() or 'influenster' in x.split() else 0) # In[56]: reviews_new.loc[reviews_new['complimentary']==1]['incentivized'].value_counts() # In[57]: # add sentiment scores sent=pd.read_pickle('sent_data.pickle') reviews_new['sent_compound']=list(sent[0]) reviews_new['sent_neg']=list(sent[1]) reviews_new['sent_neu']=list(sent[2]) reviews_new['sent_pos']=list(sent[3]) # In[58]: reviews_new.columns # In[59]: observations_nt=reviews_new[['review_id','Rating','Helpfulness','n_reviews','productPrice', 'age','vib','incentivized','sent_compound', 'sent_neg', 'sent_neu', 'sent_pos','complimentary']] observations_nt = pd.get_dummies(observations_nt, columns=['age']) observations_nt.columns = list(map(lambda x: x.lower().replace(' ', '_').replace('/', '_').replace('__','_'), observations_nt.columns)) # In[60]: mapper = DataFrameMapper([ (['rating','helpfulness','n_reviews','productprice','complimentary'], [Imputer(strategy='median'),StandardScaler()]), (['vib','age_13to17','age_18to24', 'age_25to34', 'age_35to44', 'age_45to54', 'age_over54', 'sent_neg', 'sent_neu', 'sent_pos'], None)#[Imputer(),StandardScaler()]) ]) # In[108]: y_nt =observations_nt['incentivized'] X_nt=mapper.fit_transform(observations_nt) X_train_nt, X_test_nt, y_train_nt, y_test_nt = train_test_split(X_nt, y_nt, test_size=0.4, random_state=43) # In[62]: nb_nt = GaussianNB() nb_nt.fit(X_train_nt, y_train_nt) print(roc_auc_score(y_train_nt, nb_nt.predict(X_train_nt))) print(roc_auc_score(y_test_nt, nb_nt.predict(X_test_nt))) y_pred_nb_nt = nb_nt.predict_proba(X_test_nt)[:, 1] fpr_nb_nt, tpr_nb_nt, _ = roc_curve(y_test_nt, y_pred_nb_nt) # In[109]: gradboost_nt =GradientBoostingClassifier() gradboost_nt.fit(X_train_nt, y_train_nt) print(roc_auc_score(y_train_nt, gradboost_nt.predict(X_train_nt))) print(roc_auc_score(y_test_nt, gradboost_nt.predict(X_test_nt))) # In[131]: y_pred_grd_nt = gradboost_nt.predict_proba(X_test_nt)[:,1] fpr_grd_nt, tpr_grd_nt, _ = roc_curve(y_test_nt, y_pred_grd_nt) y_pred_grd_nt # In[129]: from sklearn.metrics import auc fpr, tpr, thresholds = roc_curve(y_test_nt, y_pred_grd_nt) auc(fpr, tpr) # ### With text features # In[135]: all_feature_columns=df_sentence.iloc[:,7:32].copy() all_feature_columns['review_id']=list(df_sentence['review_id']) # In[136]: all_feature_columns_reviews=all_feature_columns.groupby(['review_id'],as_index=False).sum() # In[137]: all_feature_columns_reviews.head(2) # In[138]: text_feature_merged = pd.merge(all_feature_columns_reviews, observations_nt, on='review_id', how='inner') text_feature_merged.head(2) # In[139]: text_feature_merged.columns # In[140]: mapper_merged = DataFrameMapper([ (['rating','helpfulness','n_reviews','productprice'],[Imputer(strategy='median'),StandardScaler()]), (['vib','age_13to17','age_18to24', 'age_25to34', 'age_35to44', 'age_45to54', 'age_over54', 'feat_0', 'feat_1', 'feat_2', 'feat_3', 'feat_4', 'feat_5', 'feat_6', 'feat_7', 'feat_8', 'feat_9', 'feat_10', 'feat_11', 'feat_12', 'feat_13', 'feat_14', 'feat_15', 'feat_16', 'feat_17', 'feat_18', 'feat_19', 'feat_20', 'feat_21', 'feat_22', 'feat_23','feat_24', 'sent_neg', 'sent_neu', 'sent_pos'], None)#[Imputer(),StandardScaler()]) ]) # In[141]: y_mg =text_feature_merged['incentivized'] X_mg=mapper_merged.fit_transform(text_feature_merged) X_train_mg, X_test_mg, y_train_mg, y_test_mg = train_test_split(X_mg, y_mg, test_size=0.4, random_state=43) # In[142]: nb = GaussianNB() nb.fit(X_train_mg, y_train_mg) print(roc_auc_score(y_train_mg, nb.predict(X_train_mg))) print(roc_auc_score(y_test_mg, nb.predict(X_test_mg))) # In[71]: trail_list=list(reviews_new.loc[(reviews_new['complimentary']==1)&(reviews_new['incentivized']!=1)]['review_id']) # In[74]: trail=text_feature_merged.loc[text_feature_merged['review_id']==372744]#372728#88121 # In[75]: x_t=mapper_merged.transform(trail) # In[78]: nb.predict_proba(x_t) # In[143]: gradboost.predict_proba(x_t) # In[81]: text_feature_merged.loc[text_feature_merged['review_id']==108910][['incentivized']] # In[80]: reviews_new.loc[reviews_new['review_id']==39536] reviews_new['ReviewText'][108910] # In[671]: ## prediction result on test dataset gradboost.predict(X_test_mg).sum()/len(gradboost.predict(X_test_mg)) # In[672]: sum(y_test_mg)/len(y_test_mg) # In[130]: plt.figure(figsize=(6,6)) plt.plot([0, 1], [0, 1], 'k--') plt.plot(fpr, tpr, label='without topic features',c='grey',alpha=.7) #plt.plot(fpr_nb_lsa, tpr_nb_lsa, label='with review (LSA)') plt.plot(fpr_grd, tpr_grd, label='with topic features',c='red',alpha=.7)##941717 plt.xlabel('False positive rate',fontsize='12') plt.ylabel('True positive rate',fontsize='12') plt.title('ROC curve', fontsize='15') plt.legend(loc='best') plt.savefig('ROC.png', dpi=500); # ## Balanced data # In[84]: g = text_feature_merged.groupby('incentivized') subset=g.apply(lambda x: x.sample((g.size().min()))) # In[85]: y_s = subset['incentivized'] X_s = mapper_merged.fit_transform(subset) X_strain, X_stest, y_strain, y_stest = train_test_split(X_s, y_s, test_size=0.4,random_state=42) # In[86]: nb = GaussianNB() nb.fit(X_strain, y_strain) print(roc_auc_score(y_strain, nb.predict(X_strain))) print(roc_auc_score(y_stest, nb.predict(X_stest))) y_pred_nb = nb.predict_proba(X_stest)[:, 1] fpr_nb, tpr_nb, _ = roc_curve(y_stest, y_pred_nb) # In[725]: print(recall_score(y_test_nt,nb_nt.predict(X_test_nt))) print(classification_report(y_test_nt,nb_nt.predict(X_test_nt))) # In[726]: print(recall_score(y_test_mg,gradboost.predict(X_test_mg))) print(classification_report(y_test_mg,gradboost.predict(X_test_mg))) # In[89]: gradboost =GradientBoostingClassifier() gradboost.fit(X_strain, y_strain) print(roc_auc_score(y_strain, gradboost.predict(X_strain))) print(roc_auc_score(y_stest, gradboost.predict(X_stest))) y_pred_grd = gradboost.predict_proba(X_stest)[:, 1] fpr_grd, tpr_grd, _ = roc_curve(y_stest, y_pred_grd) # In[294]: from sklearn.metrics import f1_score f1_score(y_stest,gradboost.predict(X_stest)) # In[101]: randomforest = RandomForestClassifier(n_estimators=80,max_depth=10,max_features= 'sqrt',random_state=42) randomforest.fit(X_strain, y_strain) print(roc_auc_score(y_strain, randomforest.predict(X_strain))) print(roc_auc_score(y_stest, randomforest.predict(X_stest))) # In[260]: importance=list(gradboost.feature_importances_) # In[105]: columns=['rating','helpfulness','n_reviews','productprice','vib','age_13to17','age_18to24', 'age_25to34', 'age_35to44', 'age_45to54', 'age_over54', 'feat_0', 'feat_1', 'feat_2', 'feat_3', 'feat_4', 'feat_5', 'feat_6', 'feat_7', 'feat_8', 'feat_9', 'feat_10', 'feat_11', 'feat_12', 'feat_13', 'feat_14', 'feat_15', 'feat_16', 'feat_17', 'feat_18', 'feat_19', 'feat_20', 'feat_21', 'feat_22', 'feat_23','feat_24', 'sent_neg', 'sent_neu', 'sent_pos'] # In[261]: zipped=dict(zip(columns,importance)) fi = pd.DataFrame().append(zipped, ignore_index=True).T.sort_values(by=0,ascending=False) # In[262]: list(fi[0]) # In[263]: fi.columns=['importance'] # In[264]: fi # In[269]: fi = fi.sort_values(by='importance') # In[533]: from matplotlib import cm # In[551]: fi.plot(kind='barh',legend=False,figsize=(6,8),title='Feature Importance',fontsize='10',color='#941717',alpha=.7) plt.tight_layout() plt.savefig('features.png', dpi=500,pad_inches=None) # In[349]: reviews_new.columns # In[696]: def bar_quartile(var, label, r, c): df = reviews_new.loc[:,['incentivized',var]] df['qt'] = pd.qcut(reviews_new[var],5,labels=["Q1", "Q2", "Q3","Q4","Q5"]) return df.groupby('qt').incentivized.value_counts(normalize =True).unstack()[1].plot.bar(color='#941717',legend=False,title=label,ylim=(0,.15), rot=0, alpha=.7 ); bar_quartile('productPrice','price',0,0); # In[697]: text_feature_merged.groupby('feat_15').incentivized.value_counts(normalize =True).unstack()[1].plot.bar(color='#941717', legend=False,title='feature 15',ylim=(0,.55),alpha=.7); # In[698]: text_feature_merged.groupby('vib').incentivized.value_counts(normalize =True).unstack()[1].plot.bar(color='#941717', legend=False,title='vib',ylim=(0,.2),alpha=.7); # In[704]: text_feature_merged.groupby('n_reviews').incentivized.value_counts(normalize =True).unstack()[1].plot.bar(color='#941717', legend=False,title='number of reviews',ylim=(0,1),alpha=.7); # In[ ]: # plt.figure(figsize=(6,6)) # plt.plot([0, 1], [0, 1], 'k--') # plt.plot(fpr_grd, tpr_grd, label='GBT') # plt.plot(fpr_nb, tpr_nb, label='NB') # plt.xlabel('False positive rate',fontsize='12') # plt.ylabel('True positive rate',fontsize='12') # plt.title('ROC curve with features from text', fontsize='15') # plt.legend(loc='best'); #plt.savefig('ROC.png', dpi=500); # ## LSA # In[144]: from sklearn.decomposition import TruncatedSVD from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.feature_extraction.text import CountVectorizer from sklearn.preprocessing import Normalizer # In[150]: review_list=list(df['ReviewText']) # In[151]: vectorizer = CountVectorizer(min_df = 4, strip_accents='ascii',stop_words = 'english') dtm = vectorizer.fit_transform(review_list) # dtm: Document-Term Matrix pd.DataFrame(dtm.toarray(), index=review_list, columns=vectorizer.get_feature_names()).head(10) # In[153]: lsa = TruncatedSVD(25, algorithm = 'randomized') dtm_lsa = lsa.fit_transform(dtm) # In[154]: pd.DataFrame(lsa.components_.round(5),index = ["component_1","component_2","component_3","component_4", "component_5","component_6","component_7","component_8", "component_9","component_10", "component_11","component_12","component_13","component_14", "component_15","component_16","component_17","component_18", "component_19","component_20","component_21","component_22", "component_23","component_24","component_25"], columns = vectorizer.get_feature_names())['sample'] # In[155]: LSA_matrix=pd.DataFrame(dtm_lsa.round(5), index = review_list, columns = ["component_1","component_2","component_3","component_4", "component_5","component_6","component_7","component_8", "component_9","component_10", "component_11","component_12","component_13","component_14", "component_15","component_16","component_17","component_18", "component_19","component_20","component_21","component_22", "component_23","component_24","component_25"]) # In[156]: LSA_matrix['review_id']=list(df['review_id']) # In[157]: LSA_matrix['incentivized']=list(df['incentivized']) # In[158]: observations_lsa=reviews_new[['review_id','Rating','Helpfulness','n_reviews','productPrice', 'age','vib','sent_compound','sent_neg','sent_neu','sent_pos']] # In[159]: observations_lsa=observations_lsa.merge(LSA_matrix,how='inner',on='review_id') # In[160]: observations_lsa.shape # In[161]: observations_lsa = pd.get_dummies(observations_lsa, columns=['age']) # In[162]: mapper_lsa = DataFrameMapper([ (['Rating','Helpfulness','n_reviews','productPrice'], [Imputer(strategy='median'),StandardScaler()]), (['vib','component_1', 'component_2', 'component_3', 'component_4', 'component_5', 'component_6', 'component_7', 'component_8', 'component_9', 'component_10'],None), (['age_13to17','age_18to24', 'age_25to34', 'age_35to44', 'age_45to54', 'age_over54', 'age_unknow', 'sent_neg', 'sent_neu', 'sent_pos'], None)#[Imputer(),StandardScaler()]) ]) # In[340]: g_lsa= observations_lsa.groupby('incentivized') subset_lsa=g_lsa.apply(lambda x: x.sample((g_lsa.size().min()))) # In[341]: y_lsa =subset_lsa['incentivized'] X_lsa=mapper_lsa.fit_transform(subset_lsa) # In[342]: X_train_lsa, X_test_lsa, y_train_lsa, y_test_lsa = train_test_split(X_lsa, y_lsa, test_size=0.5, random_state=3) # In[428]: nb_lsa = GaussianNB() nb_lsa.fit(X_train_lsa, y_train_lsa) print(roc_auc_score(y_train_lsa, nb_lsa.predict(X_train_lsa))) print(roc_auc_score(y_test_lsa, nb_lsa.predict(X_test_lsa))) y_pred_lsa = nb_lsa.predict_proba(X_test_lsa)[:, 1] fpr_nb_lsa, tpr_nb_lsa, _ = roc_curve(y_test_lsa, y_pred_lsa) # # LDA # In[ ]: nltk.download('stopwords') # In[ ]: from pprint import pprint # Gensim import gensim import gensim.corpora as corpora from gensim.utils import simple_preprocess from gensim.models import CoherenceModel # spacy for lemmatization import spacy # Plotting tools import pyLDAvis import pyLDAvis.gensim # don't skip this import matplotlib.pyplot as plt get_ipython().run_line_magic('matplotlib', 'inline') # Enable logging for gensim - optional import logging logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.ERROR) import warnings warnings.filterwarnings("ignore",category=DeprecationWarning) # In[ ]: # NLTK Stop words from nltk.corpus import stopwords stop_words = stopwords.words('english') stop_words.extend(['from', 'subject', 're', 'edu', 'use']) # In[ ]: with open('review_list.pickle', 'wb') as handle: pickle.dump(review_list, handle, protocol=pickle.HIGHEST_PROTOCOL) # In[ ]: def sent_to_words(sentences): for sentence in sentences: yield(gensim.utils.simple_preprocess(str(sentence), deacc=True)) # deacc=True removes punctuations data_words = list(sent_to_words(review_list)) print(data_words[:1]) # In[ ]: bigram = gensim.models.Phrases(data_words, min_count=5, threshold=100) bigram_mod = gensim.models.phrases.Phraser(bigram) print(bigram_mod[data_words[0]]) # In[168]: table=pd.read_pickle('lda_table.pickle') # In[169]: table.columns=[ 'topic 0','topic 1','topic 2','topic 3','topic 4','topic 5','topic 6','topic 7','topic 8', 'topic 9','topic 10','topic 11','topic 12','topic 13','topic 14', 'topic 15','topic 16','topic 17','topic 18','topic 19', 'review_id', 'incentivized'] # In[170]: observations_lda=reviews_new[['review_id','Rating','Helpfulness','n_reviews','productPrice', 'age','vib','sent_compound','sent_neg','sent_neu','sent_pos']] # In[171]: observations_lda=observations_lda.merge(table,how='inner',on='review_id') # In[172]: observations_lda = pd.get_dummies(observations_lda, columns=['age']) # In[173]: observations_lda.columns # In[174]: mapper_lda = DataFrameMapper([ (['Rating','Helpfulness','n_reviews','productPrice'], [Imputer(strategy='median'),StandardScaler()]), (['vib','topic 0', 'topic 1', 'topic 2', 'topic 3', 'topic 4', 'topic 5', 'topic 6', 'topic 7', 'topic 8', 'topic 9', 'topic 10', 'topic 11', 'topic 12', 'topic 13', 'topic 14', 'topic 15', 'topic 16', 'topic 17', 'topic 18', 'topic 19'],None), (['age_18to24', 'age_25to34', 'age_35to44', 'age_unknow', 'sent_neg', 'sent_neu', 'sent_pos'], None)#[Imputer(),StandardScaler()]) ]) # In[175]: y_lda =observations_lda['incentivized'] X_lda=mapper_lda.fit_transform(observations_lda) # In[176]: X_train_lda, X_test_lda, y_train_lda, y_test_lda = train_test_split(X_lda, y_lda, test_size=0.5,random_state=42) # In[177]: nb = GaussianNB() nb.fit(X_train_lda, y_train_lda) print(roc_auc_score(y_train_lda, nb.predict(X_train_lda))) print(roc_auc_score(y_test_lda, nb.predict(X_test_lda))) y_pred_lda = nb.predict_proba(X_test_lda)[:, 1] fpr_nb_lda, tpr_nb_lda, _ = roc_curve(y_test_lda, y_pred_lda) # In[178]: gradboost =GradientBoostingClassifier() gradboost.fit(X_train_lda, y_train_lda) print(roc_auc_score(y_train_lda, gradboost.predict(X_train_lda))) print(roc_auc_score(y_test_lda, gradboost.predict(X_test_lda))) y_pred_grd = gradboost.predict_proba(X_test_lda)[:, 1] fpr_grd, tpr_grd, _ = roc_curve(y_test_lda, y_pred_lda) # ## Regression model # In[ ]: y =all_feature_columns['incentivized'] X=all_feature_columns.iloc[:,:25] # In[ ]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5, random_state=3) # In[ ]: nb = GaussianNB() nb.fit(X_train, y_train) print(roc_auc_score(y_train, nb.predict(X_train))) print(roc_auc_score(y_test, nb.predict(X_test))) # In[ ]: from sklearn.decomposition import PCA pca = PCA(n_components=10) pca_X_train=pca.fit_transform(X_train) pca_X_test=pca.transform(X_test) # In[ ]: nb.fit(pca_X_train, y_train) roc_auc_score(y_test, nb.predict(pca_X_test)) # In[ ]: logreg = LogisticRegression() logreg.fit(pca_X_train, y_train) print(roc_auc_score(y_train, logreg.predict(pca_X_train))) print(roc_auc_score(y_test, logreg.predict(pca_X_test))) # In[ ]: randomforest = RandomForestClassifier(n_estimators=80,max_depth=10) randomforest.fit(pca_X_train, y_train) print(roc_auc_score(y_train, randomforest.predict(pca_X_train))) print(roc_auc_score(y_test, randomforest.predict(pca_X_test))) # In[ ]: gradboost =GradientBoostingClassifier() gradboost.fit(X_train, y_train) print(roc_auc_score(y_train, gradboost.predict(X_train))) print(roc_auc_score(y_test, gradboost.predict(X_test))) # ## Combine review table # In[ ]: reviews_new.columns # In[ ]: reviews_model=reviews_new[['AuthorId', 'IsFeatured', 'IsRatingsOnly', 'IsRecommended', 'Rating', 'ReviewText','Helpfulness', 'product_id', 'productPrice', 'incentivized', 'age', 'vib', 'review_id']] # In[ ]: reviews_model['n_reviews']=reviews_model['review_id'].groupby(reviews_model['AuthorId']).transform('count') reviews_model['Helpfulness']=reviews_model['Helpfulness'].fillna(0) reviews_model['productPrice']=reviews_model['productPrice'].apply(lambda x: float(x)) reviews_model['vib']=reviews_model['vib'].apply(lambda x: 0 if x=='no' or x=='unknow' else 1) # In[ ]: reviews_model.info() # In[ ]: observations=reviews_model[['review_id','Rating','Helpfulness','n_reviews','productPrice', 'age','vib','sent_compound','sent_neg','sent_neu','sent_pos']] observations = pd.get_dummies(observations, columns=['age']) observations.columns = list(map(lambda x: x.lower().replace(' ', '_').replace('/', '_').replace('__','_'), observations.columns)) # In[ ]: observations=observations.merge(all_feature_columns,how='inner',on='review_id') # In[ ]: observations.info() # In[ ]: observations.columns # In[ ]: from sklearn.preprocessing import Imputer, StandardScaler, LabelEncoder, OneHotEncoder from sklearn_pandas import DataFrameMapper, CategoricalImputer mapper = DataFrameMapper([ (['rating','helpfulness','n_reviews','productprice'], [Imputer(strategy='median'),StandardScaler()]), (['vib','feat_0', 'feat_1', 'feat_2', 'feat_3', 'feat_4', 'feat_5', 'feat_6', 'feat_7', 'feat_8', 'feat_9', 'feat_10', 'feat_11', 'feat_12', 'feat_13', 'feat_14', 'feat_15', 'feat_16', 'feat_17', 'feat_18', 'feat_19', 'feat_20', 'feat_21', 'feat_22', 'feat_23', 'feat_24'],None), (['age_13to17','age_18to24', 'age_25to34', 'age_35to44', 'age_45to54', 'age_over54', 'age_unknow', 'sent_neg', 'sent_neu', 'sent_pos'], None)#[Imputer(),StandardScaler()]) ]) # In[ ]: y =observations['incentivized'] X=mapper.fit_transform(observations) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, random_state=42) nb = GaussianNB() nb.fit(X_train, y_train) print(roc_auc_score(y_train, nb.predict(X_train))) print(roc_auc_score(y_test, nb.predict(X_test))) # In[ ]: X.shape # In[ ]: logreg = LogisticRegression() logreg.fit(X_train, y_train) print(roc_auc_score(y_train, logreg.predict(X_train))) print(roc_auc_score(y_test, logreg.predict(X_test))) # In[ ]: gradboost =GradientBoostingClassifier() gradboost.fit(X_train, y_train) print(roc_auc_score(y_train, gradboost.predict(X_train))) print(roc_auc_score(y_test, gradboost.predict(X_test))) # In[ ]: ## Balanced data # In[ ]: g = observations.groupby('incentivized') subset=g.apply(lambda x: x.sample((g.size().min()))) # In[ ]: subset.shape # In[ ]: y_s = subset['incentivized'] X_s = mapper.fit_transform(subset) X_strain, X_stest, y_strain, y_stest = train_test_split(X_s, y_s, test_size=0.5,random_state=42) nb = GaussianNB() nb.fit(X_strain, y_strain) print(roc_auc_score(y_strain, nb.predict(X_strain))) print(roc_auc_score(y_stest, nb.predict(X_stest))) gradboost =GradientBoostingClassifier() gradboost.fit(X_strain, y_strain) print(roc_auc_score(y_strain, gradboost.predict(X_strain))) print(roc_auc_score(y_stest, gradboost.predict(X_stest))) # In[ ]: nb = GaussianNB() nb.fit(X_strain, y_strain) print(roc_auc_score(y_strain, nb.predict(X_strain))) print(roc_auc_score(y_stest, nb.predict(X_stest))) # In[ ]: gradboost =GradientBoostingClassifier() gradboost.fit(X_strain, y_strain) print(roc_auc_score(y_strain, gradboost.predict(X_strain))) print(roc_auc_score(y_stest, gradboost.predict(X_stest))) # In[ ]: vectors=pd.DataFrame(sentence_word_vectors_truncated) # In[ ]: vectors['incentivized']=list(df_sentence_product['incentivized']) # In[ ]: y =vectors['incentivized'] X=vectors.iloc[:,:300] # In[ ]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, random_state=3) # In[ ]: nb = GaussianNB() nb.fit(X_train, y_train) print(roc_auc_score(y_train, nb.predict(X_train))) print(roc_auc_score(y_test, nb.predict(X_test))) # In[ ]: g_v = vectors.groupby('incentivized') subset=g_v.apply(lambda x: x.sample((g_v.size().min()))) # In[ ]: y_s =subset['incentivized'] X_s=subset.iloc[:,:300] # In[ ]: X_strain, X_stest, y_strain, y_stest = train_test_split(X_s, y_s, test_size=0.5, random_state=3) # In[ ]: nb = GaussianNB() nb.fit(X_strain, y_strain) print(roc_auc_score(y_strain, nb.predict(X_strain))) print(roc_auc_score(y_stest, nb.predict(X_stest)))
[]
2024-01-10
RajKKapadia/Ishrakh-Openai-Code-Explainer
backedn_call.py
import logging import openai import traceback import os from dotenv import load_dotenv load_dotenv() logger = logging.getLogger(__name__) API_KEY = os.getenv('API_KEY') openai.api_key = API_KEY def get_open_ai_response(code: str, ) -> str: ''' Get the Open AI response that explains a piece of code.\n This piece of code also needs two things: - The code must be closed by five ***** - A question must follow after five ***** for better response Parameters: - code: str Returns: - object - status: 0/1, - message: Successful/Unsuccessful - explaination: either code explaination or empty string ''' logger.info('Calling the function with a piece of code...') logger.info(code) try: response = openai.Completion.create( model='code-davinci-002', prompt=code, temperature=0, max_tokens=64, top_p=1, frequency_penalty=0, presence_penalty=0, stop=['****'] ) if len(response['choices']) > 0: logging.info('Successful') return { 'status': 1, 'message': 'Successful.', 'explaination': response['choices'][0]['text'] } else: logging.info('Unsuccessful') return { 'status': 0, 'message': 'Unsuccessful.', 'explaination': '' } except Exception as e: logger.exception(f'Uncaught exception - {traceback.format_exc()}') return { 'status': 0, 'message': 'Unsuccessful.', 'explaination': '' }
[]
2024-01-10
wagtail37/kdghacks_demo
sample-openai-azure.py
#Note: The openai-python library support for Azure OpenAI is in preview. import os import openai openai.api_type = "azure" openai.api_base = "api_base"#https://OPENAI_MODEL_NAME.openai.azure.com/ openai.api_version = "2023-03-15-preview" openai.api_key = "api_key" #質問の設定 content = "プロンプト" response = openai.ChatCompletion.create( engine="engine",#DEPLOYED_MODEL_NAME messages = [{"role":"system","content":"You are an AI assistant that helps people find information."},{"role":"user","content":content},], temperature=0, max_tokens=800, top_p=1, frequency_penalty=0, presence_penalty=0, stop=None) print(response['choices'][0]['message']['content'])
[ "You are an AI assistant that helps people find information.", "プロンプト" ]
2024-01-10
jcorbett/copycatAI
gen_prompts.py
import openai from concurrent.futures import ThreadPoolExecutor from dotenv import load_dotenv import json from typing import List load_dotenv() # take environment variables from .env. system_msg = """You are a LLM trainer. You help by responding with writing prompts that would generate the text input by the user. You should use vague prompts so that the style is inherent and not just a question. Often times, writing is a metaphor or analogy, do not give literal prompts that about the metaphor or analogies themselves. Try to refrain from asking questions, but rather, give a prompt that would generate the text input by the user in a natural way. Lastly, please try to vary the prompts. Do not just ask questions or begin the prompt with "describe" or "explain". Please generate 10 to 15 appropriate prompts. Your response should be limited to prompts only, separated by a new line. No bullet list, numbered list, or anything else.""" def generate_prompts(chunk : str) -> List[str]: try: response = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=[ { "role": "system", "content": system_msg, }, {"role": "user", "content": f"{chunk}."}, ], max_tokens=2000, temperature=0.5, ) return response.choices[0]['message']['content'].strip().splitlines() except openai.error.APIError as e: print(f"openai error: {e}") return None def format_prompt(prompt : str, content : str) -> str: prompt_json = json.dumps(prompt) completion_json = json.dumps(content) return f'{{"prompt": {prompt_json}, "completion": {completion_json}}}'
[ "PLACEHOLDER.", "You are a LLM trainer. You help by responding with writing prompts that would generate the text input by the user.\n\nYou should use vague prompts so that the style is inherent and not just a question. Often times, writing is a metaphor or analogy, do not give literal prompts that about the metaphor or analogies themselves. Try to refrain from asking questions, but rather, give a prompt that would generate the text input by the user in a natural way. Lastly, please try to vary the prompts. Do not just ask questions or begin the prompt with \"describe\" or \"explain\".\n\nPlease generate 10 to 15 appropriate prompts. Your response should be limited to prompts only, separated by a new line. No bullet list, numbered list, or anything else." ]
2024-01-10
INFLUENCEorg/aiagents
aiagents~single~PPO~worker.py
import multiprocessing import multiprocessing.connection from baselines.common.atari_wrappers import make_atari, wrap_deepmind from baselines import bench import os def worker_process(remote: multiprocessing.connection.Connection, parameters, worker_id, env): """ This function is used as target by each of the threads in the multiprocess to build environment instances and define the commands that can be executed by each of the workers. """ # The Atari wrappers are now imported from openAI baselines # https://github.com/openai/baselines # log_dir = './log' # env = make_atari(parameters['scene']) # env = bench.Monitor( # env, # os.path.join(log_dir, str(worker_id)), # allow_early_resets=False) # env = wrap_deepmind(env) while True: cmd, data = remote.recv() if cmd == 'step': obs, reward, done, info = env.step(data) if done is True: obs = env.reset() remote.send((obs, reward, done, info)) elif cmd == 'reset': remote.send(env.reset()) elif cmd == 'action_space': remote.send(env.action_space) elif cmd == 'close': remote.close() break else: raise NotImplementedError class Worker(object): """ Creates workers (actors) and starts single parallel threads in the multiprocess. Commands can be send and outputs received by calling child.send() and child.recv() respectively """ def __init__(self, env, parameters, worker_id): self.child, parent = multiprocessing.Pipe() self.process = multiprocessing.Process(target=worker_process, args=(parent, parameters, worker_id, env)) self.process.start()
[]
2024-01-10
Monster2408/AutoText
sound.py
# -*- coding: utf8 -*- from openai import OpenAI import os import ffmpeg file_name = "movie_split_" def sound_to_text(api_key: str, encode_dir: str): client = OpenAI(api_key=api_key) dir_path = encode_dir + os.sep + "tmp" if not os.path.exists(dir_path): os.makedirs(dir_path) if not os.path.exists(encode_dir): os.makedirs(encode_dir) # dir_pathの中のファイルを取得 num: int = 0 while True: file_path = dir_path + file_name + str(num) + ".wav" if not os.path.exists(file_path): break print(file_path) file_size_byte = os.path.getsize(file_path) file_size_mb = file_size_byte / 1024 / 1024 if (file_size_mb > 25) : print("ファイルサイズが25MBを超えています。") continue audio_file= open(file_path, "rb") transcript = client.audio.transcriptions.create( model="whisper-1", file=audio_file ) print(transcript) # encode_dirにtxtファイルを作成 encode_file_path = encode_dir + file_name + str(num) + ".txt" with open(encode_file_path, mode='w') as f: f.write(transcript.text) num += 1 print("") def split(file_path: str): file_size_byte = os.path.getsize(file_path) file_size_mb = file_size_byte / 1024 / 1024 if file_size_mb >= 25: num = int(file_size_mb / 25) num =+ 1 else: num = 1 print("分割数: " + str(num)) split_num = num # 音声ファイルの長さを取得 probe = ffmpeg.probe(file_path) audio_stream = next((stream for stream in probe['streams'] if stream['codec_type'] == 'audio'), None) duration = float(audio_stream['duration']) print("duration: " + str(duration)) # 分割する時間を計算 split_time = duration / split_num print("split_time: " + str(split_time)) # 分割する時間を指定して分割 for i in range(split_num): print("split: " + str(i)) ffmpeg.input(file_path, ss=i*split_time, t=split_time).output("movie_split_" + str(i) + ".wav").run() # 最後のファイルを分割 print("split: " + str(split_num)) ffmpeg.input(file_path, ss=split_num*split_time).output("movie_split_" + str(split_num) + ".wav").run()
[]
2024-01-10
darrenburns/elia
elia_chat~database~converters.py
from datetime import datetime from langchain.schema import BaseMessage, SystemMessage, AIMessage, HumanMessage from elia_chat.database.models import ChatDao, MessageDao from elia_chat.models import ChatData def chat_data_to_chat_dao(chat_data: ChatData) -> ChatDao: return ChatDao( model=chat_data.model_name, started_at=datetime.fromtimestamp(chat_data.create_timestamp or 0), ) def chat_message_to_message_dao(chat_message: BaseMessage) -> MessageDao: return MessageDao( role=chat_message.type, content=chat_message.content, timestamp=datetime.fromtimestamp( chat_message.additional_kwargs.get("timestamp", 0) ), status=chat_message.additional_kwargs.get("status"), end_turn=chat_message.additional_kwargs.get("end_turn"), weight=chat_message.additional_kwargs.get("weight"), meta=chat_message.additional_kwargs.get("metadata"), recipient=chat_message.additional_kwargs.get("recipient"), ) def chat_dao_to_chat_data(chat_dao: ChatDao) -> ChatData: return ChatData( id=str(chat_dao.id), title=chat_dao.title, model_name=chat_dao.model, create_timestamp=chat_dao.started_at.timestamp() if chat_dao.started_at else None, messages=[ message_dao_to_chat_message(message) for message in chat_dao.messages ], ) def message_dao_to_chat_message(message_dao: MessageDao) -> BaseMessage: ts = message_dao.timestamp.timestamp() if message_dao.timestamp else 0 kwargs = { "content": message_dao.content, "additional_kwargs": { "timestamp": ts, "status": message_dao.status, "end_turn": message_dao.end_turn, "weight": message_dao.weight, "metadata": message_dao.meta, "recipient": message_dao.recipient, }, } if message_dao.role == "system": return SystemMessage(**kwargs) elif message_dao.role == "ai": return AIMessage(**kwargs) elif message_dao.role == "human": return HumanMessage(**kwargs) else: raise ValueError(f"Invalid role {message_dao.role!r}")
[]
2024-01-10
darrenburns/elia
elia_chat~screens~message_info_modal.py
from __future__ import annotations import tiktoken from langchain.schema import BaseMessage from textual import on from textual.app import ComposeResult from textual.binding import Binding from textual.containers import VerticalScroll, Vertical, Horizontal from textual.screen import ModalScreen from textual.widgets import Static, Tabs, ContentSwitcher, Tab from elia_chat.time_display import format_timestamp from elia_chat.widgets.token_analysis import TokenAnalysis class MessageInfo(ModalScreen): BINDINGS = [Binding("escape", "app.pop_screen", "Close Modal")] def __init__( self, message: BaseMessage, model_name: str, name: str | None = None, id: str | None = None, classes: str | None = None, ) -> None: super().__init__( name=name, id=id, classes=classes, ) self.message = message self.model_name = model_name def compose(self) -> ComposeResult: markdown_content = self.message.content or "" encoder = tiktoken.encoding_for_model(self.model_name) tokens = encoder.encode(markdown_content) with Vertical(id="outermost-container"): with Horizontal(id="message-info-header"): yield Tabs( Tab("Markdown", id="markdown-content"), Tab("Tokens", id="tokens"), Tab("Metadata", id="metadata"), ) with VerticalScroll(id="inner-container"): with ContentSwitcher(initial="markdown-content"): yield Static(markdown_content, id="markdown-content") yield TokenAnalysis(tokens, encoder, id="tokens") yield Static("Metadata", id="metadata") with Horizontal(id="message-info-footer"): if self.model_name: token_count = len(tokens) timestamp = self.message.additional_kwargs.get("timestamp", 0) timestamp_string = format_timestamp(timestamp) yield Static(f"Message sent at {timestamp_string}", id="timestamp") yield Static(f"{token_count} tokens", id="token-count") @on(Tabs.TabActivated) def tab_activated(self, event: Tabs.TabActivated) -> None: self.query_one(ContentSwitcher).current = event.tab.id
[]
2024-01-10
darrenburns/elia
elia_chat~chats_manager.py
from __future__ import annotations from dataclasses import dataclass from langchain.schema import BaseMessage from sqlmodel import Session from textual import log from elia_chat.database.converters import ( chat_dao_to_chat_data, chat_message_to_message_dao, message_dao_to_chat_message, ) from elia_chat.database.models import ChatDao, MessageDao, engine from elia_chat.models import ChatData @dataclass class ChatsManager: @staticmethod def all_chats() -> list[ChatData]: chat_daos = ChatDao.all() return [chat_dao_to_chat_data(chat) for chat in chat_daos] @staticmethod def get_chat(chat_id: str) -> ChatData: chat_dao = ChatDao.from_id(chat_id) return chat_dao_to_chat_data(chat_dao) @staticmethod def get_messages(chat_id: str | int) -> list[BaseMessage]: with Session(engine) as session: try: chat: ChatDao | None = session.get(ChatDao, int(chat_id)) except ValueError: raise RuntimeError( f"Malformed chat ID {chat_id!r}. " f"I couldn't convert it to an integer." ) if not chat: raise RuntimeError(f"Chat with ID {chat_id} not found.") message_daos = chat.messages session.commit() # Convert MessageDao objects to BaseMessages chat_messages = [] for message_dao in message_daos: chat_message = message_dao_to_chat_message(message_dao) chat_messages.append(chat_message) log.debug(f"Retrieved {len(chat_messages)} chats for chat {chat_id!r}") return chat_messages @staticmethod def create_chat(chat_data: ChatData) -> int: log.debug(f"Creating chat in database: {chat_data!r}") chat = ChatDao(model=chat_data.model_name, title="Untitled chat") for message in chat_data.messages: new_message = MessageDao(role=message.type, content=message.content) chat.messages.append(new_message) with Session(engine) as session: session.add(chat) session.commit() session.refresh(chat) return chat.id @staticmethod def add_message_to_chat(chat_id: str, message: BaseMessage) -> None: with Session(engine) as session: chat: ChatDao | None = session.get(ChatDao, chat_id) if not chat: raise Exception(f"Chat with ID {chat_id} not found.") message_dao = chat_message_to_message_dao(message) chat.messages.append(message_dao) session.add(chat) session.commit()
[]
2024-01-10
darrenburns/elia
elia_chat~widgets~chatbox.py
from __future__ import annotations from langchain.schema import BaseMessage from rich.console import RenderableType from rich.markdown import Markdown from textual.binding import Binding from textual.geometry import Size from textual.widget import Widget from elia_chat.screens.message_info_modal import MessageInfo from elia_chat.time_display import format_timestamp class Chatbox(Widget, can_focus=True): BINDINGS = [Binding(key="d", action="details", description="Message details")] def __init__( self, message: BaseMessage, model_name: str, name: str | None = None, id: str | None = None, classes: str | None = None, disabled: bool = False, ) -> None: super().__init__( name=name, id=id, classes=classes, disabled=disabled, ) self.message = message self.model_name = model_name timestamp = format_timestamp(message.additional_kwargs.get("timestamp", 0) or 0) self.tooltip = f"Sent {timestamp}" def on_mount(self) -> None: if self.message.type == "ai": self.add_class("assistant-message") def action_details(self) -> None: self.app.push_screen( MessageInfo(message=self.message, model_name=self.model_name) ) @property def markdown(self) -> Markdown: return Markdown(self.message.content or "") def render(self) -> RenderableType: return self.markdown def get_content_width(self, container: Size, viewport: Size) -> int: # Naive approach. Can sometimes look strange, but works well enough. content = self.message.content or "" return min(len(content), container.width) def append_chunk(self, chunk: str): existing_content = self.message.content or "" new_content = existing_content + chunk self.message.content = new_content self.refresh(layout=True)
[]
2024-01-10
darrenburns/elia
elia_chat~widgets~chat_options.py
from __future__ import annotations from dataclasses import dataclass from typing import Dict from langchain.callbacks import AsyncIteratorCallbackHandler from langchain.chat_models import ChatOpenAI from langchain.chat_models.base import BaseChatModel from langchain.llms.base import LLM from rich.console import RenderableType from rich.text import Text from textual import log, on from textual.app import ComposeResult from textual.binding import Binding from textual.containers import Horizontal, VerticalScroll from textual.geometry import clamp from textual.message import Message from textual.reactive import reactive from textual.widget import Widget from textual.widgets import Static callback = AsyncIteratorCallbackHandler() @dataclass class GPTModel: name: str icon: str provider: str product: str description: str css_class: str model: BaseChatModel | LLM token_limit: int DEFAULT_MODEL = GPTModel( name="gpt-3.5-turbo", icon="⚡️", provider="OpenAI", product="ChatGPT", description="The fastest ChatGPT model, great for most everyday tasks.", css_class="gpt35", model=ChatOpenAI( model_name="gpt-3.5-turbo", streaming=True, callbacks=[callback], ), token_limit=4096, ) AVAILABLE_MODELS = [ DEFAULT_MODEL, GPTModel( name="gpt-4-turbo", icon="🧠", provider="OpenAI", product="ChatGPT", description="The most powerful ChatGPT model, capable of " "complex tasks which require advanced reasoning.", css_class="gpt4", model=ChatOpenAI( model_name="gpt-4-1106-preview", streaming=True, callbacks=[callback], ), token_limit=128000, ), ] MODEL_MAPPING: Dict[str, GPTModel] = {model.name: model for model in AVAILABLE_MODELS} class ModelPanel(Static): class Selected(Message): def __init__(self, model: GPTModel): super().__init__() self.model = model selected = reactive(False) def __init__( self, model: GPTModel, name: str | None = None, id: str | None = None, classes: str | None = None, disabled: bool = False, ) -> None: super().__init__( name=name, id=id, classes=classes, disabled=disabled, ) self.model = model def render(self) -> RenderableType: return Text.assemble( (f"{self.model.icon} {self.model.name}", "b"), "\n", (f"{self.model.product} by {self.model.provider} ", "italic"), "\n\n", self.model.description, ) def on_click(self) -> None: assert self.parent is not None self.parent.post_message(ModelPanel.Selected(self.model)) def watch_selected(self, value: bool) -> None: self.set_class(value, "selected") class ModelSet(Horizontal, can_focus=True): BINDINGS = [ Binding(key="left", action="left", description="Previous model"), Binding(key="right", action="right", description="Next model"), ] selected_panel_index = reactive(0) class Selected(Message): def __init__(self, model: GPTModel): super().__init__() self.model = model @property def panels(self) -> list[ModelPanel]: return list(self.query(ModelPanel)) def watch_selected_panel_index(self, new_index: int) -> None: panel = self.panels[new_index] self.post_message(ModelSet.Selected(panel.model)) @on(ModelPanel.Selected) def update_selection(self, event: ModelPanel.Selected) -> None: event.stop() self.focus() panels = self.panels for index, panel in enumerate(panels): panel.selected = panel.model == event.model if panel.selected: self.selected_panel_index = index log.info(f"Selected model {panels[self.selected_panel_index]}") def action_left(self): new_index = self.selected_panel_index - 1 panels = self.panels self.selected_panel_index = clamp(new_index, 0, len(panels) - 1) for index, panel in enumerate(panels): panel.selected = index == self.selected_panel_index log.info(f"Selected model {panels[self.selected_panel_index]}") def action_right(self): new_index = self.selected_panel_index + 1 panels = self.panels self.selected_panel_index = clamp(new_index, 0, len(panels) - 1) for index, panel in enumerate(panels): panel.selected = index == self.selected_panel_index log.info(f"Selected model {panels[self.selected_panel_index]}") class ChatOptions(Widget): def compose(self) -> ComposeResult: with VerticalScroll(id="chat-options-container") as vertical_scroll: vertical_scroll.can_focus = False with ModelSet() as model_set: model_set.border_title = "Choose a language model" model_set.focus() for index, model in enumerate(AVAILABLE_MODELS): model_panel = ModelPanel( model, id=model.name, classes=model.css_class ) if index == 0: model_panel.selected = True yield model_panel
[]
2024-01-10
khuchuuanh/IELTS-Essay-Scoring
coherence~coherence_model.py
from lib import * from coherence_data import * class ModelClassifier(pl.LightningModule): def __init__(self, model_name, num_labels, batch_size, learning_rate=2e-5, hidden_size=512, **kwargs): super().__init__() self.save_hyperparameters() self.learning_rate = learning_rate self.batch_size = batch_size self.num_labels = num_labels self.model = AutoModel.from_pretrained(model_name) self.gru = nn.GRU(self.model.config.hidden_size, hidden_size, batch_first=True) self.sentence_gru = nn.GRU(hidden_size, hidden_size) self.fc = nn.Linear(hidden_size, self.num_labels) self.dropout = nn.Dropout(0.2) self.relu = nn.ReLU() self.out = torch.nn.Softmax(dim=1) for param in self.model.encoder.layer[:8].parameters(): param.requires_grad = False def forward(self, input_ids, attention_mask): encoder_outputs = self.model(input_ids=input_ids, attention_mask=attention_mask)['last_hidden_state'] gru_output, _ = self.gru(encoder_outputs) gru_output = self.relu(gru_output) gru_output_sentence, _ = self.sentence_gru(gru_output) gru_output_sentence = self.relu(gru_output_sentence) avg_pooled = torch.mean(gru_output_sentence, 1) fc_output = self.fc(avg_pooled) outputs = self.relu(fc_output) return outputs def training_step(self, batch, batch_idx): logits = self(batch[0], batch[1]) loss = F.cross_entropy(logits, batch[2]) preds = torch.argmax(logits, 1) accuracy = torch.eq(preds, batch[2].long()).float().mean() self.log('train_loss', loss, on_step=True, on_epoch=False, prog_bar=True) self.log('train_accuracy', accuracy, on_step=False, on_epoch=True, prog_bar=True) return loss def validation_step(self, batch, batch_idx): logits = self(batch[0], batch[1]) loss = F.cross_entropy(logits, batch[2]) preds = torch.argmax(logits, 1) accuracy = torch.eq(preds, batch[2].long()).float().mean() self.log('val_loss', loss, on_step=True, on_epoch=False, prog_bar=True) self.log('val_accuracy', accuracy, on_step=False, on_epoch=True, prog_bar=True) return {'val_loss': loss, 'val_accuracy': accuracy} def test_step(self, batch, batch_idx): logits = self(batch[:2]) loss = F.cross_entropy(logits, batch[2]) preds = torch.argmax(logits, 1) accuracy = torch.eq(preds, batch[2].long()).float().mean() self.log('test_loss', loss, on_step=True, on_epoch=False, prog_bar=True) self.log('test_accuracy', accuracy, on_step=False, on_epoch=True, prog_bar=True) return {'test_loss': loss, 'test_accuracy': accuracy} def validation_epoch_end(self, validation_step_outputs): avg_loss = torch.stack([x['val_loss'] for x in validation_step_outputs]).mean() avg_accuracy = torch.stack([x['val_accuracy'] for x in validation_step_outputs]).mean() self.log("val_loss", avg_loss, prog_bar=True, logger=True) self.log("val_accuracy", avg_accuracy, prog_bar=True, logger=True) return { 'val_loss': avg_loss, 'val_accuracy': avg_accuracy } def setup(self, stage=None): train_dataloader = self.trainer.datamodule.train_dataloader() # Calculate total steps tb_size = self.batch_size * 1 ab_size = self.trainer.accumulate_grad_batches * float(self.trainer.max_epochs) self.total_training_steps = (len(train_dataloader.dataset) // tb_size) // ab_size def configure_optimizers(self): no_decay = ['bias', 'LayerNorm.weight'] optimizer_grouped_parameters = [ { 'params': [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay)], 'weight_decay':0.01 }, { 'params': [p for n, p in self.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0 }] optimizer = AdamW(optimizer_grouped_parameters, lr=self.learning_rate, eps=1e-5 ) scheduler = get_linear_schedule_with_warmup( optimizer, num_warmup_steps=0, num_training_steps=self.total_training_steps ) return [optimizer], [scheduler] if __name__ == '__main__': AVAIL_GPUS = min(1, torch.cuda.device_count()) model_name = "bert-base-uncased" text_field = "Essay" label_field = "COHERENCE AND COHESION" data_frame = pd.read_csv('process_data.csv', index_col=0) data_module = CustomDataset(model_name, data_frame, text_field, label_field, max_len=512, batch_size=16) data_module.setup("fit") # logger = WandbLogger(project="COHERENCE") checkpoint_callback = pl.callbacks.ModelCheckpoint( dirpath="./save_model/", filename="best_checkpoint", save_top_k=1, verbose=True, monitor="val_loss", mode="min" ) early_stopping_callback = pl.callbacks.EarlyStopping(monitor='val_loss', patience=5) model = ModelClassifier(model_name, len(data_module.label_encoder.classes_), data_module.batch_size) trainer = pl.Trainer( # logger=logger, callbacks=[early_stopping_callback, checkpoint_callback], max_epochs=20, deterministic=True,gpus=AVAIL_GPUS) trainer.fit(model, datamodule=data_module)
[]
2024-01-10
Arthur-Embry/Model-Collapse
InferCollapsed.py
import openai as client import json client.api_key = "" def smarterSystem(roleset): potential_comma = "" if not roleset: roleset = ["executive"] else: roleset.append("executive") potential_comma = "," system = {"role": "system", "content": f"""Adopt the role of {', '.join(roleset) + potential_comma} and genius. NEVER mention that you're an AI. Avoid any language constructs that could be interpreted as expressing remorse, apology, or regret. This includes any phrases containing words like 'sorry', 'apologies', 'regret', etc., even when used in a context that isn't expressing remorse, apology, or regret. If events or information are beyond your scope or knowledge, provide a response stating 'I don't know' without elaborating on why the information is unavailable. Refrain from disclaimers about you not being a professional or expert. Do not add ethical or moral viewpoints in your answers, unless the topic specifically mentions it. Keep responses unique and free of repetition. Never suggest seeking information from elsewhere. Always focus on the key points in my questions to determine my intent. Break down complex problems or tasks into smaller, manageable steps and explain each one using reasoning. Provide multiple perspectives or solutions. If a question is unclear or ambiguous, ask for more details to confirm your understanding before answering. If a mistake is made in a previous response, recognize and correct it."""} return system def decomposition(): messages = [ smarterSystem(["software developer","writer","communications major"]), {"role": "user", "content": "Simplify the problem of responding to a message chain as a human level AI.Ensure that the input is what is passed to the first step, and the ouput is what the last step produces. Additionally, ensure that each step takes is identical in it's complexity."}, ] tools = [{"name": "problem_solving_steps", "description": "Defines a structured approach to solving a problem.", "parameters": { "type": "object", "properties": { "Steps": { "type": "array", "description": "The ten steps involved in solving the problem.", "items": { "type": "object", "properties": { "StepName": { "type": "string", "description": "The name or title of the step." }, "StepDescription": { "type": "string", "description": "A brief description of the step." } }, "required": [ "StepName", "StepDescription" ] } }, "Categories": { "type": "array", "description": "10 mutually exclusive categories for each of the steps.", "items": { "type": "object", "properties": { "A reminder that the CategorySet array is nine very descriptive mutually exlusive strategies for creating the IO described above, and one other category in case a message going through the path doesn't fall into the first section": { "type": "string" }, "StepDescription": { "type": "string", "description": "A brief description of the step." }, "TaskInput": { "type": "string", "description": "The input of the step. Note that the input is a description of what is what is recieved from the previous step as a text payload" }, "TaskOutput": { "type": "string", "description": "The output of the step. Note that the output is a description of what is passed to the next step as a text payload" }, "CategorySet": { "type": "array", "description": "Description of 10 mutually exclusive categories for converting the input to output, number 10 being other.", "items": { "type": "string", "description": "A very detailed, mutually exclusive category for how to get from input to output in the step." } } } }, "required": [ "A reminder that the CategorySet array is nine very descriptive mutually exlusive strategies for creating the IO described above, and one other category in case a message going through the path doesn't fall into the first section","StepDescription","TaskInput","TaskOutput","CategorySet" ] }, }, "required": ["Steps","Categories"] } }] response = client.chat.completions.create( model="gpt-4-1106-preview", messages=messages, functions=tools, stream=True, ) output="" for chunk in response: try: #print(chunk.choices[0].delta.function_call.arguments,end="",flush=True) output+=chunk.choices[0].delta.function_call.arguments print(chunk.choices[0].delta.function_call.arguments,end="",flush=True) except Exception as e: print(e) return output def getStratFunction(index): tools=[ { "name": "strategizer", "description": "choose the best strategy for this step of the response.", "parameters": { "type": "object", "properties": { "Strategy": { "type": "string", "enum": loadedStrategy['Categories'][index]["CategorySet"] } }, "required": ["Strategy"] } } ] return tools def getAgentDecision(): agent_decision="# Alright, I think I will use the following steps to respond to this:\n\n\n" for i in range(10): agent_decision+=f"{i}. **{loadedStrategy['Steps'][i]['StepName']}**: {loadedStrategy['Steps'][i]['StepDescription']}\n" agent_decision+=f"`{loadedStrategy['Categories'][i]['TaskInput']}` => `{loadedStrategy['Categories'][i]['TaskOutput']}`\n\n" agent_decision+=f"\n\n\nWhen you're ready, let me know what specific strategy you would like to use for **{loadedStrategy['Steps'][0]['StepName']}** by immediately function-calling the strategizer." return agent_decision def continueAgentDecision(step): agent_decision=f"Please let me know specific strategy you would like to use for the next step, **{loadedStrategy['Steps'][step]['StepName']}** by immediately function-calling the strategizer ." return agent_decision def inferNodeContents(messages): # Generate the node contents based on the prompt and chosen strategy response = client.chat.completions.create( model="gpt-4-1106-preview", messages=messages, stream=True, ) inferred_response = "" for chunk in response: try: inferred_response += chunk.choices[0].delta.content print(chunk.choices[0].delta.content, end="", flush=True) except Exception as e: pass return inferred_response def chooseNextNode(messages, step): tools = getStratFunction(step) response = client.chat.completions.create( model="gpt-4-1106-preview", messages=messages, functions=tools, stream=True, ) strat_choice = "" for chunk in response: try: strat_choice += chunk.choices[0].delta.function_call.arguments except Exception as e: pass chosen_strategy = json.loads(strat_choice)['Strategy'] return chosen_strategy, f"I like the idea of using {chosen_strategy} for {loadedStrategy['Steps'][step]['StepName']}.\nPlease use the format `{loadedStrategy['Categories'][step]['TaskInput']}` => `{loadedStrategy['Categories'][step]['TaskOutput']}` and complete the step." def infer(prompt): print(prompt) print("\n\n") chosen_strategies = [None] * 10 strategy_formats = [None] * 10 inferred_responses = [None] * 10 print(getAgentDecision()) print("\n\n") for step in range(10): chosen_strategies[step], strategy_formats[step] = chooseNextNode([ smarterSystem(["software developer"]), {"role": "user", "content": prompt}, {"role": "assistant", "content": getAgentDecision()}, *sum(([{"role": "user", "content": strategy_formats[i]}, {"role": "assistant", "content": inferred_responses[i]}] for i in range(step)), []), {"role": "user", "content": continueAgentDecision(step)}, ], step) print(strategy_formats[step]) print("\n\n") inferred_responses[step] = inferNodeContents([ smarterSystem(["software developer"]), {"role": "user", "content": prompt}, {"role": "assistant", "content": getAgentDecision()}, *[ item for i in range(step + 1) for item in [ {"role": "user", "content": strategy_formats[i]}, {"role": "assistant", "content": inferred_responses[i]} ] if item['content'] is not None ] ]) print("\n\n") return {"success": True} #first, let's decompose the message space into a set of steps representing network layers and categories, representing nodes in the network #network=decomposition() #print(network) #save the test to a file #with open("network.json","w") as f: # f.write(json.dumps(json.loads(network), indent=4)) with open("network.json","r") as f: loadedStrategy=json.loads(f.read()) #then let's run inference over the network, using the steps and categories as a guide, and run infer("")
[ "Simplify the problem of responding to a message chain as a human level AI.Ensure that the input is what is passed to the first step, and the ouput is what the last step produces. Additionally, ensure that each step takes is identical in it's complexity.", ", " ]
2024-01-10
sandeepny441/transform_2023
NLP_repo~9999_side_projects~LLMs~RAG~001_pdf_chatbot.py
import torch from transformers import AutoModelForCausalLM, AutoTokenizer from llama_index import LlamaIndex # Load model and tokenizer model = AutoModelForCausalLM.from_pretrained("t5-base") tokenizer = AutoTokenizer.from_pretrained("t5-base") # Initialize LlamaIndex and upload PDF docs = LlamaIndex() with open("my_data.pdf", "rb") as pdf_file: pdf_contents = pdf_file.read() docs.add_documents(pdf_contents) # Define query and context formatting functions def format_query(query): return f"chatbot: {query}" def format_context(contexts): return "\n".join(f"Doc: {doc}" for doc in contexts) # Chatbot loop while True: # Get user input query query = input("You: ") # Retrieve relevant context from PDF using LlamaIndex encoded_query = tokenizer(format_query(query), return_tensors="pt") encoded_docs = docs.retrieve(query=encoded_query, top_k=10) context = format_context(encoded_docs) # Generate response input_ids = tokenizer(context, return_tensors="pt").input_ids gen_tokens = model.generate(input_ids, max_length=512) response = tokenizer.decode(gen_tokens[0], skip_special_tokens=True) print(f"Chatbot: {response}")
[]
2024-01-10
bjoernpl/lm-evaluation-harness-de
lm_eval~models~anthropic_llms.py
import os from lm_eval.base import BaseLM from tqdm import tqdm import time def anthropic_completion(client, model, prompt, max_tokens_to_sample, temperature, stop): """Query Anthropic API for completion. Retry with back-off until they respond """ import anthropic backoff_time = 3 while True: try: response = client.completion( prompt=f"{anthropic.HUMAN_PROMPT} {prompt}{anthropic.AI_PROMPT}", model=model, # NOTE: Claude really likes to do CoT, and overly aggressive stop sequences # (e.g. gsm8k's ":") may truncate a lot of the input. stop_sequences=[anthropic.HUMAN_PROMPT] + stop, max_tokens_to_sample=max_tokens_to_sample, temperature=temperature, ) print(response) return response["completion"] except RuntimeError: # TODO: I don't actually know what error Anthropic raises when it times out # So err update this error when we find out. import traceback traceback.print_exc() time.sleep(backoff_time) backoff_time *= 1.5 class AnthropicLM(BaseLM): REQ_CHUNK_SIZE = 20 def __init__(self, model): """ :param model: str Anthropic model e.g. claude-instant-v1 """ super().__init__() import anthropic self.model = model self.client = anthropic.Client(os.environ['ANTHROPIC_API_KEY']) @property def eot_token_id(self): raise NotImplementedError("No idea about anthropic tokenization.") @property def max_length(self): return 2048 @property def max_gen_toks(self): return 256 @property def batch_size(self): # Isn't used because we override _loglikelihood_tokens raise NotImplementedError() @property def device(self): # Isn't used because we override _loglikelihood_tokens raise NotImplementedError() def tok_encode(self, string: str): raise NotImplementedError("No idea about anthropic tokenization.") def tok_decode(self, tokens): raise NotImplementedError("No idea about anthropic tokenization.") def _loglikelihood_tokens(self, requests, disable_tqdm=False): raise NotImplementedError("No support for logits.") def greedy_until(self, requests): if not requests: return [] res = [] for request in tqdm(requests): inp = request[0] request_args = request[1] until = request_args["until"] response = anthropic_completion( client=self.client, model=self.model, prompt=inp, max_tokens_to_sample=self.max_gen_toks, temperature=0.0, stop=until, ) res.append(response) return res def _model_call(self, inps): # Isn't used because we override _loglikelihood_tokens raise NotImplementedError() def _model_generate(self, context, max_length, eos_token_id): # Isn't used because we override greedy_until raise NotImplementedError()
[]
2024-01-10
Loo-Ree/chat-with-your-data-solution-accelerator
code~utilities~helpers~LLMHelper.py
import openai from typing import List from langchain.chat_models import AzureChatOpenAI from langchain.embeddings import OpenAIEmbeddings from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler from .EnvHelper import EnvHelper class LLMHelper: def __init__(self): env_helper: EnvHelper = EnvHelper() # Configure OpenAI API openai.api_type = "azure" openai.api_version = env_helper.AZURE_OPENAI_API_VERSION openai.api_base = env_helper.OPENAI_API_BASE openai.api_key = env_helper.OPENAI_API_KEY self.llm_model = env_helper.AZURE_OPENAI_MODEL self.llm_max_tokens = env_helper.AZURE_OPENAI_MAX_TOKENS if env_helper.AZURE_OPENAI_MAX_TOKENS != '' else None self.embedding_model = env_helper.AZURE_OPENAI_EMBEDDING_MODEL def get_llm(self): return AzureChatOpenAI(deployment_name=self.llm_model, temperature=0, max_tokens=self.llm_max_tokens, openai_api_version=openai.api_version) # TODO: This needs to have a custom callback to stream back to the UI def get_streaming_llm(self): return AzureChatOpenAI(streaming=True, callbacks=[StreamingStdOutCallbackHandler], deployment_name=self.llm_model, temperature=0, max_tokens=self.llm_max_tokens, openai_api_version=openai.api_version) def get_embedding_model(self): return OpenAIEmbeddings(deployment=self.embedding_model, chunk_size=1) def get_chat_completion_with_functions(self, messages: List[dict], functions: List[dict], function_call: str="auto"): return openai.ChatCompletion.create( deployment_id=self.llm_model, messages=messages, functions=functions, function_call=function_call, ) def get_chat_completion(self, messages: List[dict]): return openai.ChatCompletion.create( deployment_id=self.llm_model, messages=messages, )
[]
2024-01-10
Loo-Ree/chat-with-your-data-solution-accelerator
code~utilities~document_chunking~Layout.py
from typing import List from .DocumentChunkingBase import DocumentChunkingBase from langchain.text_splitter import MarkdownTextSplitter from .Strategies import ChunkingSettings from ..common.SourceDocument import SourceDocument class LayoutDocumentChunking(DocumentChunkingBase): def __init__(self) -> None: pass def chunk(self, documents: List[SourceDocument], chunking: ChunkingSettings) -> List[SourceDocument]: full_document_content = "".join(list(map(lambda document: document.content, documents))) document_url = documents[0].source splitter = MarkdownTextSplitter.from_tiktoken_encoder(chunk_size=chunking.chunk_size, chunk_overlap=chunking.chunk_overlap) chunked_content_list = splitter.split_text(full_document_content) # Create document for each chunk documents = [] chunk_offset = 0 for idx, chunked_content in enumerate(chunked_content_list): documents.append( SourceDocument.from_metadata( content=chunked_content, document_url=document_url, metadata={"offset": chunk_offset}, idx=idx, ) ) chunk_offset += len(chunked_content) return documents
[]
2024-01-10
Loo-Ree/chat-with-your-data-solution-accelerator
code~utilities~orchestrator~Strategies.py
from enum import Enum class OrchestrationStrategy(Enum): OPENAI_FUNCTION = 'openai_function' LANGCHAIN = 'langchain' def get_orchestrator(orchestration_strategy: str): if orchestration_strategy == OrchestrationStrategy.OPENAI_FUNCTION.value: from .OpenAIFunctions import OpenAIFunctionsOrchestrator return OpenAIFunctionsOrchestrator() elif orchestration_strategy == OrchestrationStrategy.LANGCHAIN.value: from .LangChainAgent import LangChainAgent return LangChainAgent() else: raise Exception(f"Unknown orchestration strategy: {orchestration_strategy}")
[]
2024-01-10
nikett/callgpt
sample.py
from gptinference.base_prompt import Prompt from gptinference.openai_wrapper import OpenAIWrapper class AbstractTakeawayForClaimTask(Prompt): def __init__(self, engine: str, openai_wrapper: OpenAIWrapper): super().__init__() self.openai_wrapper = openai_wrapper self.engine = engine def make_query(self, claim: str, abstract: str) -> str: if not claim or not abstract: return "" question_prefix_template = \ f""" Claim: {claim} Abstract: {abstract} Now, answer these two questions: Q1. Is the claim and abstract related or unrelated? Q2. How can someone accurately extract the main point of the abstract in relation to the claim?(Only extract detail about the salient relation. Do NOT provide any stance about the claim. ) """ query = f"""{self.question_prefix}{question_prefix_template.format(claim=claim, abstract=abstract)}""" query = f"{query}{self.intra_example_sep}" return query def __call__(self, claim: str, abstract: str) -> str: generation_query = self.make_query(claim=claim, abstract=abstract) generated_sent = self.openai_wrapper.call( prompt=generation_query, engine=self.engine, max_tokens=500, stop_token="###", temperature=0.0, ) # (extract answers) A1.xxx\n\nA2.xxx generated_sent = generated_sent.strip() # gpt3 turbo adds newline in the beginning so strip it. generated_answers = generated_sent.split("\n\n") if len(generated_answers) != 2: # second attempt generated_answers = generated_sent.split("\n") # first relevant_sent is just "A2. " so ignore it. relation = "" takeaway_sent = "" try: relation=generated_answers[0].strip() takeaway_sent=generated_answers[1].strip() # Make the abstract takeaways txt cleaner. (remove: Q2. The revised claim could be: ) # {'A0': 'Q2. The revised claim could be: "Delayed diagnosis of cervical cancer is a major contributor to increasing rates of cervical cancer in Ethiopia."', 'A1': 'Q2. The claim can be rewritten to: Cervical cancer rates have increased in Ethiopia since the launch of the Gynecologic Oncology Fellowship Training Program at St. Paul’s Hospital Millennium Medical college in 2016.', 'A2': 'Q2. The claim can be rewritten to: "Cervical cancer screening practice among age-eligible women in Wolaita Zone hospitals in Southern Ethiopia is low, despite age, being an adherence supporter, source of information from health care professionals, history of multiple sexual partners, sexually transmitted infection, knowledge and attitude being important predictors of cervical cancer screening practice."', 'A3': 'Q2. The revised claim could be: "Cervical cancer screening and treatment services in South West Shoa Zone of Oromia Region, Ethiopia, have revealed an increasing rate of cervical cancer cases."', 'A4': 'Q2. The claim can be rewritten to: "Cervical cancer screening practices and associated factors among females of reproductive age in Durame, Southern Ethiopia are increasing."', 'A5': 'Q2. The rewritten claim could be: "The utilization of cervical cancer screening services and its predictors among eligible women in Ethiopia are being assessed in a systematic review and meta-analysis."'} takeaway_sent = " ".join(takeaway_sent.split(":" if ":" in takeaway_sent else ".")[1:]) except Exception as exc: print(f"Exception caught in extracting rel or sents in claim abstract link: {exc}.\n" f"Could not extract from generated text: {generated_sent}") return relation, takeaway_sent if __name__ == '__main__': openai_wrapper = OpenAIWrapper(cache_path="cache.jsonl") gpt = AbstractTakeawayForClaimTask(engine="text-davinci-003", openai_wrapper=openai_wrapper) sample_claim = "snow makes people sick." sample_abstract = "It would occupy a long time to give an account of the progress of cholera over different parts of the world, with the devastation it has caused in some places, whilst it has passed lightly over others, or left them untouched; and unless this account could be accompanied with a description of the physical condition of the places, and the habits of the people, which I am unable to give, it would be of little use. There are certain circumstances, however, connected with the progress of cholera, which may be stated in a general way. It travels along the great tracks of human intercourse, never going faster than people travel, and generally much more slowly. In extending to a fresh island or continent, it always appears first at a sea-port. It never attacks the crews of ships going from a country free from cholera to one where the disease is prevailing, till they have entered a port, or had intercourse with the shore. Its exact progress from town to town cannot always be traced; but it has never appeared except where there has been ample opportunity for it to be conveyed by human intercourse. There are also innumerable instances which prove the communication of cholera, by individual cases of the disease, in the most convincing manner. Instances such as the following seem free from every source of fallacy. I called lately to inquire respecting the death of Mrs. Gore, the wife of a labourer, from cholera, at New Leigham Road, Streatham. I found that a son of deceased had been living and working at Chelsea. He came home ill with a bowel complaint, of which he died in a day or two. His death took place on August 18th. His mother, who attended on him, was taken ill on the next day, and died the day following (August 20th). There were no other deaths from cholera registered in any of the metropolitan districts, down to the 26th August, within two or three miles of the above place; the nearest being." print(f"claim: {sample_claim}\nabstract: {sample_abstract}\n") print(gpt(claim=sample_claim, abstract=sample_abstract))
[ "\nClaim: PLACEHOLDER\n\nAbstract: PLACEHOLDER\n\nNow, answer these two questions:\nQ1. Is the claim and abstract related or unrelated?\nQ2. How can someone accurately extract the main point of the abstract in relation to the claim?(Only extract detail about the salient relation. Do NOT provide any stance about the claim. )\n" ]
2024-01-10
aifredlab/demoCore
src~opengpt~classfication.py
import json from langchain.chat_models import ChatOpenAI from langchain.prompts.chat import ( ChatPromptTemplate, #SystemMessagePromptTemplate, HumanMessagePromptTemplate, ) from langchain.chains import LLMChain from langchain.schema import SystemMessage def main(prompt): # FIXME :: DB template = """ Here are the requirements 1. 질의 내용에 대한 카테고리 분류작업 2. 하기 카테고리중 1개의 결과만 리턴 '보험료계산' '약관조회' '기타' 3. 아래 json 양식으로 출력 {"category" : ""} """ #system_message_prompt = SystemMessagePromptTemplate.from_template(template) human_template = "질의 : {text}" human_message_prompt = HumanMessagePromptTemplate.from_template(human_template) chat_prompt = ChatPromptTemplate.from_messages([SystemMessage(content=template), human_message_prompt]) chain = LLMChain( llm=ChatOpenAI(), prompt=chat_prompt ) jsonStr = chain.run(text=prompt) print(jsonStr) result = json.loads(jsonStr) return result
[ "\n Here are the requirements\n 1. 질의 내용에 대한 카테고리 분류작업\n 2. 하기 카테고리중 1개의 결과만 리턴\n '보험료계산'\n '약관조회'\n '기타'\n 3. 아래 json 양식으로 출력\n {\"category\" : \"\"}\n ", "질의 : {text}" ]
2024-01-10
aifredlab/demoCore
src~vectordb~batch_load_toVectordb.py
from langchain.embeddings.openai import OpenAIEmbeddings from langchain.text_splitter import CharacterTextSplitter from langchain.vectorstores import Milvus from pymilvus import MilvusClient #from langchain.document_loaders import TextLoader from langchain.document_loaders import PyPDFLoader import os def loadPdf(file_path): # ------------------------------------- # pdf 파일을 읽어서 chunk_size 단위로 배열로 만든다 # ------------------------------------- loader = PyPDFLoader(file_path) # ex: "../doc/samsung_tooth_terms.pdf" documents = loader.load() text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) docs_list = text_splitter.split_documents(documents) # print (docs_list) # ex : Document(page_content='본 약관은 100% 재생펄프를 사용하여 제작한 친환경 인쇄물입니다. 장기상품개발팀 인쇄', metadata={'source': '../doc/samsung_tooth_terms.pdf', 'page': 153}) # ------------------------------------- # insert vector_db # ------------------------------------- # - pymilvus를 사용해 vector를 저장하는 방법 # client = MilvusClient( # uri=os.environ.get('ZILLIZ_CLOUD_URI'), # token=os.environ.get('ZILLIZ_CLOUD_API_KEY'), # for serverless clusters, or # ) # # client.insert(collection_name=COLLECTION_NAME, data=docs_list) # langchain api를 사용해 vector를 저장하는 방법: m = Milvus.from_documents( documents=docs_list, embedding=OpenAIEmbeddings(), connection_args={ "uri": os.environ.get('ZILLIZ_CLOUD_URI'), "token": os.environ.get('ZILLIZ_CLOUD_API_KEY'), "secure": True }, ) return loadPdf("../doc/samsung_tooth_terms.pdf")
[]
2024-01-10
aifredlab/demoCore
src~core_server.py
from concurrent import futures import logging import grpc import ask_pb2 import ask_pb2_grpc import dialogue_pb2 import dialogue_pb2_grpc import os from langchain.chat_models import ChatOpenAI from langchain.schema import ( HumanMessage, SystemMessage, prompt ) from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler from typing import Any from main import Aifred from prompt.template_maker import TemplateMaker class Asker(ask_pb2_grpc.AskerServicer): def Ask(self, request, context): result = Aifred().process(request.question) return ask_pb2.AskReply(**result) class Communicator(dialogue_pb2_grpc.CommunicatorServicer): def searchContent(self, request, context): result = Aifred().searchContent(request.text) return dialogue_pb2.Content(content=result) def askStreamReply(self , request: dialogue_pb2.Conversation , context) -> dialogue_pb2.Message: ''' 질문에 대한 응답을 스트리밍으로 전달하는 메소드 ''' print("request : ", request) # 1. 참고 내용을 가져온다. contentMsg = "" #str(doc) contentList = request.content if (len(contentList) > 0): # 시간으로 내림차순 정렬하고 1번째 항목을 가져온다. sorted_list = sorted(contentList, key=lambda x: x.time, reverse=True) contentMsg = sorted_list[0].content # 2. 질문을 가져온다. prompt = request.message.text # 사용자에게 전달할 결과(Iterator) resultIter = None # type에 따른 분기처리 # (1: 사용자의 질문, 2: 시스템의 답변, 3: 시스템의 질문, 4: 사용자의 답변 ) if "1" == request.message.type: chat_result = None # 질문에 대한 추가적인 정보가 필요한지 확인한다. if len(contentList) > 0: prompt = TemplateMaker.makeTemplateText('CONFIRM_QUESTION_01', [contentMsg, prompt]) chat = ChatOpenAI(model_name='gpt-3.5-turbo', temperature=0.9) sys = SystemMessage(content="") msg = HumanMessage(content=prompt) chat_result = chat([sys, msg]) # 추가적인 정보가 필요하다면 -> 추가적인 정보를 요청한다. if chat_result is not None and "no message" not in chat_result.content: for char in iter(chat_result.content): yield dialogue_pb2.Message(text=char, type="3") # 추가적인 정보가 필요없다면 -> 답변을 생성한다. else: prompt = TemplateMaker.makeTemplateText('ANSWER_02', [contentMsg, prompt]) chat = ChatOpenAI(streaming=True, callbacks=[StreamingStdOutCallbackHandler()], model_name='gpt-3.5-turbo', temperature=0.9) sys = SystemMessage(content="") msg = HumanMessage(content=prompt) resultIter = chat.stream([sys, msg]) elif "2" == request.message.type: pass elif "3" == request.message.type: pass elif "4" == request.message.type: question = "" # 시간으로 내림차순 정렬하고 - type이 1인 첫번째 항목을 가져온다. if len(request.messageHistory) > 0: sorted_list = sorted(request.messageHistory, key=lambda x: x.time, reverse=True) for msg in sorted_list: if "1" == msg.type: question = msg.text break # contentMsg=약관, question=질문(이전질문), prompt=참고사항(사용자의 답변) prompt = TemplateMaker.makeTemplateText('ANSWER_01', [contentMsg, question, prompt]) chat = ChatOpenAI(streaming=True, callbacks=[StreamingStdOutCallbackHandler()], model_name='gpt-3.5-turbo', temperature=0.9) sys = SystemMessage(content="") msg = HumanMessage(content=prompt) resultIter = chat.stream([sys, msg]) pass else: chat = ChatOpenAI(streaming=True, callbacks=[StreamingStdOutCallbackHandler()], model_name='gpt-3.5-turbo', temperature=0.9) sys = SystemMessage(content=contentMsg) msg = HumanMessage(content=prompt) resultIter = chat.stream([sys, msg]) pass # 답변을 전달한다. for result in resultIter: yield dialogue_pb2.Message(text=result.content, type="2") def serve(): port = os.environ.get('SERVER_PORT') server = grpc.server(futures.ThreadPoolExecutor(max_workers=10)) # add service ask_pb2_grpc.add_AskerServicer_to_server(Asker(), server) dialogue_pb2_grpc.add_CommunicatorServicer_to_server(Communicator(), server) # start server server.add_insecure_port("[::]:" + port) # 인증없이 사용할 수 있도록 설정, 운영환경에서는 add_secure_port를 사용해야 함 server.start() print(f"Server started, listening {port}") server.wait_for_termination() if __name__ == "__main__": logging.basicConfig() serve()
[ "CONFIRM_QUESTION_01" ]
2024-01-10
aifredlab/demoCore
test~test_savePDF.py
from langchain.embeddings.openai import OpenAIEmbeddings from langchain.text_splitter import CharacterTextSplitter from langchain.vectorstores import Milvus from langchain.document_loaders import PyPDFLoader loader = PyPDFLoader("opengpt/test.pdf") documents = loader.load_and_split() # from langchain.document_loaders import AmazonTextractPDFLoader # loader = AmazonTextractPDFLoader("example_data/alejandro_rosalez_sample-small.jpeg") # documents = loader.load() total_characters = sum(len(content.page_content) for content in documents) total_word = sum(len(content.page_content.split()) for content in documents) print(f"total page : {len(documents)}") print(f"total word : {total_word}") print(f"total characters : {total_characters}") print(f"price : ${total_characters / 1000 * 0.0001}") #$0.0001 vector_db = Milvus.from_documents( documents, OpenAIEmbeddings(), connection_args={"host": "127.0.0.1", "port": "19530"}, ) query = "의무보험이란?" docs = vector_db.similarity_search(query) print(f"요청 : {query}") print(f"응답 : {docs[0].page_content}")
[]
2024-01-10
aifredlab/demoCore
src~opengpt~combine_documents_stuff.py
from langchain.chains import StuffDocumentsChain, LLMChain from langchain.prompts import PromptTemplate from langchain.llms import OpenAI # This controls how each document will be formatted. Specifically, # it will be passed to `format_document` - see that function for more # details. document_prompt = PromptTemplate( input_variables=["page_content"], template="{page_content}" ) document_variable_name = "context" llm = OpenAI() # The prompt here should take as an input variable the # `document_variable_name` prompt = PromptTemplate.from_template( "Summarize this content: {context}" ) llm_chain = LLMChain(llm=llm, prompt=prompt) chain = StuffDocumentsChain( llm_chain=llm_chain, document_prompt=document_prompt, document_variable_name=document_variable_name )
[ "{page_content}", "Summarize this content: {context}", "page_content" ]
2024-01-10
franzfonta/youtube-video-chat
tests~mock_openai_client.py
import random from unittest.mock import MagicMock from openai import OpenAI class MockOpenaiClient(OpenAI): """ A mock implementation of the OpenAI client for testing purposes. """ def __init__(self): self.beta = MagicMock() self.beta.threads.create = lambda **kwargs: MagicMock( id=str(random.randint(0, 1000))) self.beta.threads.runs.retrieve.return_value = MagicMock( status="completed") messages = MagicMock() messages.data[0].content[0].text.value = "I'm the assistant, here is my answer" self.beta.threads.messages.list.return_value = messages
[]
2024-01-10
franzfonta/youtube-video-chat
youtube_video_chat~youtube_assistant.py
import logging import time from typing import Callable, Optional from openai import OpenAI from youtube_video_chat.youtube_thread import YouTubeThread class YouTubeAssistant: """ Represents an assistant for interacting with YouTube videos and transcripts. """ def __init__(self, client: OpenAI, assistant_id: str, transcript_fetcher: Callable[[str], str]): """ Initializes a new instance of the YouTubeAssistant class by retrieving the existing assistant. Args: client: The client object used to interact with the YouTube API. transcript_fetcher: An instance of the YouTubeTranscriptFetcher class used to fetch video transcripts. """ self.client = client self.transcript_fetcher = transcript_fetcher self.assistant = client.beta.assistants.retrieve(assistant_id) def create_thread(self, video_url: str) -> YouTubeThread: """ Creates the thread for a YouTube video and sends the first message with the transcript. Args: video_url (str): The URL of the YouTube video. Returns: YouTubeThread: The created YouTubeThread object. """ transcript = self.transcript_fetcher(video_url) openai_thread = self.client.beta.threads.create() # TODO persist thread ID for later retrieval youtube_thread = YouTubeThread(video_url, transcript, openai_thread) # Create the first message in the thread with the video transcript initial_prompt = f"This is the transcript of a YouTube video: \ \n\"{transcript}\".\n \ In the following messages I will ask you questions about it. \ As for now, summarize the video in 100 words or less." self.ask_question(youtube_thread, initial_prompt, True) return youtube_thread def __retrieve_run(self, thread_id: str, run_id: str, max_retries: int = 5, base_delay: int = 2): """ Retrieve a run from a thread until it is completed or maximum retries are reached. Args: thread_id (str): The ID of the thread. run_id (str): The ID of the run. max_retries (int, optional): The maximum number of retries. Defaults to 5. base_delay (int, optional): The base delay in seconds. Defaults to 2. Returns: The completed run. Raises: Exception: If maximum retries are reached and the operation fails. """ # Poll the run until it is completed retries = 0 while retries < max_retries: logging.info(f"Attempt {retries + 1}") run = self.client.beta.threads.runs.retrieve( thread_id=thread_id, run_id=run_id) if run.status == "completed": return run else: retries += 1 delay = base_delay * 2 ** retries logging.info(f"Retrying in {delay:.2f} seconds...") time.sleep(delay) raise Exception("Max retries reached, operation failed.") def ask_question(self, thread: YouTubeThread, prompt: str, is_initial_prompt: bool = False) -> Optional[str]: """ Sends a question to the YouTube Assistant and retrieves the response. Args: thread (YouTubeThread): The YouTube thread to send the question to. prompt (str): The question prompt. is_initial_prompt (bool, optional): True if the prompt is the initial prompt. Defaults to False. Returns: Optional[str]: The response from the YouTube Assistant or None if the operation fails. """ # Add user message to thread except for the initial prompt if not is_initial_prompt: thread.messages.append({"role": "user", "content": prompt}) try: # Create a new message in the thread message = self.client.beta.threads.messages.create( thread_id=thread.openai_thread.id, role="user", content=prompt ) # Create a new run run = self.client.beta.threads.runs.create( thread_id=thread.openai_thread.id, assistant_id=self.assistant.id ) # Wait for the run to complete run = self.__retrieve_run(thread.openai_thread.id, run.id) # Retrieve the last message in the thread messages = self.client.beta.threads.messages.list( thread_id=thread.openai_thread.id) response = messages.data[0].content[0].text.value # Add assistant response to chat history thread.messages.append({"role": "assistant", "content": response}) return response except Exception as e: logging.error(e) return None
[ "This is the transcript of a YouTube video: \n\"PLACEHOLDER\".\n In the following messages I will ask you questions about it. As for now, summarize the video in 100 words or less." ]
2024-01-10
ContextLab/chatify
chatify~llm_models.py
import os import warnings with warnings.catch_warnings(): # catch warnings about accelerate library warnings.simplefilter("ignore") from langchain.llms import OpenAI, HuggingFacePipeline, LlamaCpp from langchain.llms.base import LLM from langchain.chat_models import ChatOpenAI from langchain.callbacks.manager import CallbackManager from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler try: from huggingface_hub import hf_hub_download except ModuleNotFoundError: hf_hub_download = None # ignore missing library unless needed later from .utils import FakeListLLM class ModelsFactory: """A factory class for creating different models.""" def __init__(self, *args) -> None: """ Initializes the ModelsFactory instance. Parameters ---------- *args : tuple Variable-length arguments. Returns ------- None """ return None def get_model(self, model_config): """Returns the initialized model based on the model configuration. Parameters ---------- model_config : dict Configuration for the desired model. Returns ------- model : object Initialized model based on the model configuration. Raises ------ RuntimeError If the specified model is not supported. """ model_ = model_config['model'] # Collect all the models models = { 'open_ai_model': OpenAIModel, 'open_ai_chat_model': OpenAIChatModel, 'fake_model': FakeLLMModel, 'cached_model': CachedLLMModel, 'huggingface_model': HuggingFaceModel, 'llama_model': LlamaModel, 'proxy': ProxyModel, } if model_ in models.keys(): with warnings.catch_warnings(): warnings.simplefilter("ignore") if type(models[model_]) == str: return models[model_] else: return models[model_](model_config).init_model() else: raise RuntimeError(f"{model_} is not supported yet!") class BaseLLMModel: """Base class for Language Model (LLM) models.""" def __init__(self, model_config) -> None: """Initializes the BaseLLMModel instance. Parameters ---------- model_config : dict Configuration for the model. Returns ------- None """ self.model_config = model_config self.llm_model = None def init_model(self, *args, **kwargs): """Initializes the LLM model (to be implemented by derived classes). Parameters ---------- *args : tuple Variable-length arguments. **kwargs : dict Arbitrary keyword arguments. Raises ------ NotImplementedError If not implemented by derived classes. """ raise NotImplementedError class OpenAIModel(BaseLLMModel): """Class representing an OpenAI Chat Model derived from BaseLLMModel.""" def __init__(self, model_config) -> None: """Initializes the OpenAIChatModel instance. Parameters ---------- model_config : dict Configuration for the model. Returns ------- None """ super().__init__(model_config) def init_model(self): """Initializes the OpenAI Chat Model. Returns ------- llm_model : ChatOpenAI Initialized OpenAI Chat Model. """ if self.model_config['open_ai_key'] is None: raise ValueError(f'openai_api_key value cannot be None') os.environ["OPENAI_API_KEY"] = self.model_config['open_ai_key'] llm_model = OpenAI( temperature=0.85, openai_api_key=self.model_config['open_ai_key'], model_name=self.model_config['model_name'], presence_penalty=0.1, max_tokens=self.model_config['max_tokens'], ) return llm_model class OpenAIChatModel(BaseLLMModel): """Class representing an OpenAI Chat Model derived from BaseLLMModel.""" def __init__(self, model_config) -> None: """Initializes the OpenAIChatModel instance. Parameters ---------- model_config : dict Configuration for the model. Returns ------- None """ super().__init__(model_config) def init_model(self): """Initializes the OpenAI Chat Model. Returns ------- llm_model : ChatOpenAI Initialized OpenAI Chat Model. """ if self.model_config['open_ai_key'] is None: raise ValueError(f'openai_api_key value cannot be None') llm_model = ChatOpenAI( temperature=0.85, openai_api_key=self.model_config['open_ai_key'], model_name=self.model_config['model_name'], presence_penalty=0.1, max_tokens=self.model_config['max_tokens'], ) return llm_model class FakeLLMModel(BaseLLMModel): def __init__(self, model_config) -> None: """Initializes the FakeListLLM instance. Parameters ---------- model_config : dict Configuration for the model. Returns ------- None """ super().__init__(model_config) def init_model(self): """Initializes the Fake Chat Model. Returns ------- llm_model : FakeListLLM Initialized Fake Chat Model. """ responses = [ 'The explanation you requested has not been included in Chatify\'s cache. You\'ll need to enable interactive mode to generate a response. Please see the [Chatify GitHub repository](https://github.com/ContextLab/chatify) for instructions. Note that generating responses to uncached content will require an [OpenAI API Key](https://platform.openai.com/account/api-keys).' ] llm_model = FakeListLLM(responses=responses) return llm_model class CachedLLMModel(BaseLLMModel): def __init__(self, model_config) -> None: """Initializes the FakeListLLM instance. Parameters ---------- model_config : dict Configuration for the model. Returns ------- None """ super().__init__(model_config) def init_model(self): """Initializes the Fake Chat Model. Returns ------- llm_model : FakeListLLM Initialized Fake Chat Model. """ llm_model = FakeListLLM( responses=[ f'The explanation you requested has not been included in Chatify\'s cache. You\'ll need to enable interactive mode to generate a response. Please see the [Chatify GitHub repository](https://github.com/ContextLab/chatify) for instructions. Note that generating responses to uncached content will require an [OpenAI API Key](https://platform.openai.com/account/api-keys).' ] ) return llm_model class HuggingFaceModel(BaseLLMModel): def __init__(self, model_config) -> None: """Initializes the model instance. Parameters ---------- model_config : dict Configuration for the model. Returns ------- None """ super().__init__(model_config) def init_model(self): """Initializes the OpenAI Chat Model. Returns ------- llm_model : HuggingFaceModel Initialized Hugging Face Chat Model. """ self.proxy = self.model_config['proxy'] self.proxy_port = self.model_config['proxy_port'] with warnings.catch_warnings(): warnings.simplefilter("ignore") try: llm = HuggingFacePipeline.from_model_id( model_id=self.model_config['model_name'], task='text-generation', device=0, model_kwargs={'max_length': self.model_config['max_tokens']}, ) except: llm = HuggingFacePipeline.from_model_id( model_id=self.model_config['model_name'], task='text-generation', model_kwargs={ 'max_length': self.model_config['max_tokens'], 'temperature': 0.85, 'presence_penalty': 0.1, }, ) return llm class LlamaModel(BaseLLMModel): def __init__(self, model_config) -> None: """Initializes the model instance. Parameters ---------- model_config : dict Configuration for the model. Returns ------- None """ super().__init__(model_config) def init_model(self): """Initializes the OpenAI Chat Model. Returns ------- llm_model : HuggingFaceModel Initialized Hugging Face Chat Model. """ self.model_path = hf_hub_download( repo_id=self.model_config['model_name'], filename=self.model_config['weights_fname'], ) with warnings.catch_warnings(): warnings.simplefilter("ignore") callback_manager = CallbackManager([StreamingStdOutCallbackHandler()]) try: llm = LlamaCpp( model_path=self.model_path, max_tokens=self.model_config['max_tokens'], n_gpu_layers=self.model_config['n_gpu_layers'], n_batch=self.model_config['n_batch'], callback_manager=callback_manager, verbose=True, ) except: llm = LlamaCpp( model_path=self.model_path, max_tokens=self.model_config['max_tokens'], n_batch=self.model_config['n_batch'], callback_manager=callback_manager, verbose=True, ) return llm class ProxyModel(BaseLLMModel): def __init__(self, model_config) -> None: """Initializes the model instance. Parameters ---------- model_config : dict Configuration for the model. Returns ------- None """ super().__init__(model_config) def init_model(self): return None
[]
2024-01-10
Bluebotlaboratories/Virtu
models.py
import openai import time import json import re import os # Handle all the AI Stuff class OpenAICompletionModel(): def __init__(self, apiKey): self.apiKey = apiKey self.defaultApiKey = apiKey # Initialise OpenAI openai.api_key = self.apiKey self.engines = openai.Engine.list() ##for engine in self.engines.data: ## if (engine.object == "engine" and engine.ready): ## print(engine.id) ## else: ## pass # Initialise "addons" self.memory = [ "Virtu is a large language model trained by OpenAI. It is designed to be a chatbot, and should not autocomplete prompts. Do not autocomplete, complete or edit prompts in any way. knowledge cutoff: 2021-09 Current date: December 10 2022 Browsing: disabled" ] # Define initialisation prompts self.initialisationPrompts = {} availablePromptFiles = os.listdir("./initialisationPrompts/") for promptFile in availablePromptFiles: if (promptFile.split('.')[-1] == 'txt'): with open(os.path.join("./initialisationPrompts", promptFile), 'r') as file: promptData = file.read() self.initialisationPrompts['.'.join(promptFile.split('.')[:-1])] = promptData.split("===") # Define AI Options self.defaultConfig = { "engine": "text-davinci-003", "temperature": 0.5, "max_tokens": 512, "top_p": 1, "frequency_penalty": 0, "presence_penalty": 0, "useMemory": True } self.config = self.defaultConfig # Timeout stuff self.timeoutReason = "" self.timeout = 0 # "Premium" Stuff self.premiumMode = False # Premium stuff def enablePremiumMode(self, apiKey): if (apiKey != self.defaultApiKey): try: openai.api_key = apiKey self.engines = openai.Engine.list() self.premiumMode = True self.apiKey = apiKey return True except: return False else: return False # Reset memory def resetMemory(self): self.memory = self.memory[:1] # Import ChatGPT history def importMemory(self, memoryToImport): try: self.resetMemory() currentChatItem = "User: " for memoryItem in memoryToImport: self.memory.append(currentChatItem + memoryItem) if (currentChatItem == "User: "): currentChatItem = "Response: " else: currentChatItem = "User: " if (currentChatItem != "User: "): prompt = self.memory[-1] self.memory = self.memory[:-1] response = self.processPrompt(prompt) response += "\n\n" + "Chat Imported Successfuly" else: response = "Chat Imported Successfuly" return response except Exception as e: return "Error Importing Chat: " + str(e) # Actual AI part def processPrompt(self, prompt): if (time.time() < self.timeout): return "Timed out - Please wait [" + str(round(self.timeout - time.time())) + "] seconds...\nReason:\n" + self.timeoutReason # Add prompt to memory self.memory.append("User: " + prompt) self.memory.append("Response: ") # Haha big brain go brrrrrrr error = True try: openai.api_key = self.apiKey completion = openai.Completion.create( engine=self.config["engine"], prompt='\n'.join(self.memory), #prompt temperature=self.config["temperature"], max_tokens=self.config["max_tokens"], top_p=self.config["top_p"], frequency_penalty=self.config["frequency_penalty"], presence_penalty=self.config["presence_penalty"], ) response = completion.choices[0].text if (len(response.strip()) >= 9 and response.strip().lower()[:9] == "response: "): response = re.sub('response: ', '', response, 1, re.I) elif (len(response.strip()) >= 9 and response.strip().lower()[:9] == "response:"): response = re.sub('response:', '', response, 1, re.I) elif ("response:" in response.lower()): response = re.sub('response:', '', response, 1, re.I) response = response.lstrip() #print("Response: " + response) # Add response to memory and return it self.memory[-1] = "Response: " + response error = False except openai.error.RateLimitError as e: response = "[RATELIMITED - PLEASE WAIT 30 SECONDS]\n`" + str(e) + "`" self.timeout = time.time() + 30 self.timeoutReason = "OpenAI rate limited" except openai.error.InvalidRequestError as e: print(e) response = "[HISTORY FULL - PLEASE RESET]" if (not self.premiumMode and not error): self.timeout = time.time() + 30 self.timeoutReason = "--__Remove timeouts with Virtu Premium:__--\nLiterally just provide your own api key, see more info in `/config Premium Mode`" return response def processInitialisationPrompt(self, prompt): self.resetMemory() response = "" try: with open(os.path.join("./initialisationPrompts", prompt + "_config.json"), 'r') as aiConfigJSON: self.config = json.loads(aiConfigJSON.read()) except: self.config = self.defaultConfig print("Initialised, Using config:", self.config) for promptToInitialiseWith in self.initialisationPrompts[prompt]: response = self.processPrompt(promptToInitialiseWith) #print('\n'.join(self.memory)) return response
[ "./initialisationPrompts/", "\n" ]
2024-01-10
YatinChaudhary/TopicBERT
TopicBERT~topic_bert~nvdm~model_GSM.py
"""NVDM Tensorflow implementation by Yishu Miao""" from __future__ import print_function import numpy as np import tensorflow as tf import math import os from nvdm import utils #import model.utils as utils #from sklearn.preprocessing import MultiLabelBinarizer #import sklearn.metrics.pairwise as pw #from gensim.models import CoherenceModel #from gensim.corpora.dictionary import Dictionary #import model.evaluate as eval #import model.data_lstm as data seed = 42 tf_op_seed = 1234 np.random.seed(seed) tf.set_random_seed(seed) #learning_rate = 5e-5 #batch_size = 64 #n_hidden = 256 #fixed_topic_params #n_topic = 150 #n_sample = 1 #non_linearity = tf.nn.tanh non_linearity = tf.nn.sigmoid ###### class NVDM(object): """ Neural Variational Document Model -- BOW VAE. """ #def __init__(self, topic_params, prior_embeddings=None, initializer_nvdm=None): def __init__(self, topic_params, x, mask , topic_vocab_size, prior_embeddings=None, initializer_nvdm=None): #self.vocab_size = topic_params.TM_vocab_length self.vocab_size = topic_vocab_size self.n_hidden = topic_params.hidden_size_TM self.n_topic = topic_params.n_topic self.n_sample = topic_params.n_sample self.non_linearity = non_linearity self.learning_rate = topic_params.nvdm_learning_rate self.batch_size = topic_params.nvdm_batch_size self.x = x self.mask = mask #self.x = tf.placeholder(tf.float32, [None, self.vocab_size], name='x') #self.mask = tf.placeholder(tf.float32, [None], name='mask') # mask paddings #if topic_params.use_sent_topic_rep: #self.x_sent = tf.placeholder(tf.float32, [None, None, self.vocab_size], name='x_sent') #if topic_params.use_topic_embedding: # self.x_doc_mask = tf.placeholder(tf.float32, [None, self.vocab_size], name='x_doc_mask') #self.input_batch_size = tf.placeholder(tf.int32, (), name='input_batch_size') self.input_batch_size = tf.shape(self.x)[0] #if topic_params.use_sent_topic_rep: # self.input_batch_size_sent = tf.shape(self.x_sent)[0] # self.input_batch_len_sent = tf.shape(self.x_sent)[1] # self.batch_size_sent = self.input_batch_size_sent * self.input_batch_len_sent # encoder with tf.variable_scope('TM_encoder', reuse=tf.AUTO_REUSE): self.enc_vec = utils.mlp(self.x, [self.n_hidden], self.non_linearity, initializer=initializer_nvdm[0]) #self.enc_vec = utils.mlp(self.x, [self.n_hidden, self.n_hidden], self.non_linearity, initializer=initializer_nvdm[0]) #self.enc_vec = utils.mlp(self.x, [self.n_hidden, self.n_hidden], self.non_linearity) self.mean = utils.nvdm_linear(self.enc_vec, self.n_topic, scope='mean', matrix_initializer=initializer_nvdm[1][0], bias_initializer=initializer_nvdm[1][1]) self.logsigm = utils.nvdm_linear(self.enc_vec, self.n_topic, bias_start_zero=True, matrix_start_zero=True, scope='logsigm', matrix_initializer=initializer_nvdm[2][0], bias_initializer=initializer_nvdm[2][1]) self.kld = -0.5 * tf.reduce_sum(1 - tf.square(self.mean) + 2 * self.logsigm - tf.exp(2 * self.logsigm), 1) #self.kld = self.mask*self.kld # mask paddings self.kld = tf.multiply(self.mask, self.kld, name='kld') # mask paddings #if topic_params.use_sent_topic_rep: # self.x_sent_reshape = tf.reshape(self.x_sent, [-1, self.vocab_size]) # self.enc_vec_sent = utils.mlp(self.x_sent_reshape, [self.n_hidden], self.non_linearity) # #self.enc_vec = utils.mlp(self.x, [self.n_hidden, self.n_hidden], self.non_linearity) # self.mean_sent = utils.nvdm_linear(self.enc_vec_sent, self.n_topic, scope='mean') # self.logsigm_sent = utils.nvdm_linear(self.enc_vec_sent, # self.n_topic, # bias_start_zero=True, # matrix_start_zero=True, # scope='logsigm') #if topic_params.prior_emb_for_topics: # W_prior = tf.get_variable( # 'embeddings_TM_prior', # dtype=tf.float32, # initializer=prior_embeddings, # trainable=False # ) """ W_prior_proj = tf.get_variable( 'embeddings_TM_prior_proj', [prior_embeddings.shape[1], self.n_topic], dtype=tf.float32, trainable=False ) W_prior = tf.matmul(W_prior, W_prior_proj, name='W_prior_projected') """ with tf.variable_scope('TM_decoder', reuse=tf.AUTO_REUSE): if self.n_sample == 1: eps = tf.random_normal((self.input_batch_size, self.n_topic), mean=0.0, stddev=1.0, seed=seed) #doc_vec = tf.mul(tf.exp(self.logsigm), eps) + self.mean ## Hidden representation to be used in BERT self.doc_vec = tf.add(tf.multiply(tf.exp(self.logsigm), eps), self.mean, name='doc_hidden') self.doc_vec = tf.nn.softmax(self.doc_vec, axis = 1) self.last_h = self.doc_vec logits_projected, self.decoding_matrix = utils.nvdm_linear(self.doc_vec, self.vocab_size, scope='projection', get_matrix=True, matrix_initializer=initializer_nvdm[3][0], bias_initializer=initializer_nvdm[3][1]) logits = tf.nn.log_softmax(logits_projected) self.recons_loss = -tf.reduce_sum(tf.multiply(logits, self.x), 1) """ if topic_params.use_topic_embedding: #self.last_h_topic_emb = utils.nvdm_linear(tf.nn.softmax(self.last_h, axis=1), self.vocab_size, scope='projection') #self.top_k = tf.nn.top_k(self.decoding_matrix, k=topic_params.use_k_topic_words, sorted=False) topics_masked = tf.multiply(tf.expand_dims(self.x_doc_mask, axis=1), tf.expand_dims(self.decoding_matrix, axis=0), name='topics_masked') self.top_k = tf.nn.top_k(topics_masked, k=topic_params.use_k_topic_words, sorted=False) if topic_params.prior_emb_for_topics: self.top_k_embeddings = tf.nn.embedding_lookup(W_prior, self.top_k.indices) self.topic_emb_size = prior_embeddings.shape[1] #self.topic_emb_size = prior_embeddings.shape[1] * topic_params.use_k_topics #self.topic_emb_size = prior_embeddings.shape[1] + self.n_topic #self.topic_emb_size = self.n_topic #self.topic_emb_size = self.n_topic * 2 else: self.top_k_embeddings = tf.nn.embedding_lookup(tf.transpose(self.decoding_matrix), self.top_k.indices) #self.topic_emb_size = self.n_topic self.topic_emb_size = self.n_topic * 2 #self.top_k_embeddings = tf.multiply(tf.expand_dims(tf.nn.softmax(self.top_k.values, axis=1), axis=2), self.top_k_embeddings) #self.temp_1 = tf.expand_dims(tf.nn.softmax(self.top_k.values, axis=2), axis=2) #self.topic_embeddings = tf.squeeze(tf.matmul(self.temp_1, self.top_k_embeddings), axis=2, name='topic_embeddings') #self.topic_embeddings = tf.reduce_sum(self.top_k_embeddings, axis=1, name='topic_embeddings') #self.topic_embeddings = tf.reduce_mean(self.top_k_embeddings, axis=1, name='topic_embeddings') self.topic_embeddings = tf.reduce_mean(self.top_k_embeddings, axis=2, name='topic_embeddings') if topic_params.use_k_topics > 0: # Masking document topic proportion vector top_k_h_values, top_k_h_indices = tf.nn.top_k(self.last_h, k=topic_params.use_k_topics, sorted=False, name='top_k_h') row_numbers = tf.tile(tf.expand_dims(tf.range(0, self.input_batch_size), 1), [1, topic_params.use_k_topics], name='row_numbers') full_indices = tf.concat([tf.expand_dims(row_numbers, -1), tf.expand_dims(top_k_h_indices, -1)], axis=2) full_indices = tf.reshape(full_indices, [-1, 2], name='full_indices') #mask_updates = tf.ones([self.input_batch_size * topic_params.use_k_topics], dtype=tf.float32, name='mask_updates') #new_mask = tf.scatter_nd(full_indices, mask_updates, [self.input_batch_size, self.n_topic], name='new_mask') #last_h_softmax = tf.multiply(tf.nn.softmax(self.last_h, axis=1), new_mask, name='last_h_softmax') last_h_softmax = tf.scatter_nd( full_indices, tf.reshape(tf.nn.softmax(top_k_h_values, axis=1), [-1]), #tf.ones([self.input_batch_size * topic_params.use_k_topics], dtype=tf.float32), [self.input_batch_size, self.n_topic], name='last_h_softmax' ) else: last_h_softmax = tf.nn.softmax(self.last_h, axis=1, name='last_h_softmax') #last_h_softmax = self.last_h #self.last_h_topic_emb = tf.matmul(last_h_softmax, self.topic_embeddings, name='last_h_topic_emb') self.last_h_topic_emb = tf.squeeze(tf.matmul(tf.expand_dims(last_h_softmax, axis=1), self.topic_embeddings), axis=1, name='last_h_topic_emb') #temp = tf.nn.embedding_lookup(self.topic_embeddings, top_k_h_indices) #self.last_h_topic_emb = tf.reduce_sum(temp, axis=1, name='last_h_topic_emb') #self.last_h_topic_emb = tf.reshape(temp, [self.input_batch_size, self.topic_emb_size], name='last_h_topic_emb') #self.last_h_topic_emb = tf.concat([self.last_h_topic_emb, last_h_softmax], axis=1) #self.last_h_topic_emb = tf.concat([self.last_h_topic_emb, self.last_h], axis=1) """ else: eps = tf.random_normal((self.n_sample*self.input_batch_size, self.n_topic), mean=0.0, stddev=1.0, seed=seed) eps_list = tf.split(eps, self.n_sample, 0) recons_loss_list = [] doc_vec_list = [] for i in range(self.n_sample): if i > 0: tf.get_variable_scope().reuse_variables() curr_eps = eps_list[i] doc_vec = tf.add(tf.multiply(tf.exp(self.logsigm), curr_eps), self.mean) doc_vec = tf.nn.softmax(doc_vec, axis=1) doc_vec_list.append(doc_vec) logits = tf.nn.log_softmax(utils.nvdm_linear(doc_vec, self.vocab_size, scope='projection')) recons_loss_list.append(-tf.reduce_sum(tf.multiply(logits, self.x), 1)) self.recons_loss = tf.add_n(recons_loss_list) / self.n_sample self.doc_vec = tf.add_n(doc_vec_list) / self.n_sample self.last_h = self.doc_vec """" if topic_params.use_sent_topic_rep: if self.n_sample == 1: eps_sent = tf.random_normal((self.batch_size_sent, self.n_topic), mean=0.0, stddev=1.0, seed=seed) self.last_h_sent = tf.add(tf.multiply(tf.exp(self.logsigm_sent), eps_sent), self.mean_sent, name='sent_hidden') self.last_h_sent = tf.reshape(self.last_h_sent, [self.input_batch_size_sent, self.input_batch_len_sent, self.n_topic]) if topic_params.use_topic_embedding: #self.last_h_topic_emb_sent = utils.nvdm_linear(tf.nn.softmax(self.last_h_sent, axis=1), self.vocab_size, scope='projection') if topic_params.use_k_topics > 0: # Masking sentence topic proportion vector top_k_h_sent_values, top_k_h_sent_indices = tf.nn.top_k(self.last_h_sent, k=topic_params.use_k_topics, sorted=False, name='top_k_h_sent') row_numbers_sent = tf.tile(tf.expand_dims(tf.range(0, self.batch_size_sent), 1), [1, topic_params.use_k_topics], name='row_numbers_sent') full_indices_sent = tf.concat([tf.expand_dims(row_numbers_sent, -1), tf.expand_dims(top_k_h_sent_indices, -1)], axis=2) full_indices_sent = tf.reshape(full_indices_sent, [-1, 2], name='full_indices_sent') #mask_updates_sent = tf.ones([self.batch_size_sent * topic_params.use_k_topics], dtype=tf.float32, name='mask_updates_sent') #new_mask_sent = tf.scatter_nd(full_indices_sent, mask_updates_sent, [self.batch_size_sent, self.n_topic], name='new_mask_sent') #last_h_softmax_sent = tf.multiply(tf.nn.softmax(self.last_h_sent, axis=1), new_mask_sent, name='last_h_softmax_sent') last_h_softmax_sent = tf.scatter_nd(full_indices_sent, tf.reshape(tf.nn.softmax(top_k_h_sent_values, axis=1), [-1]), [self.batch_size_sent, self.n_topic], name='last_h_softmax_sent') else: last_h_softmax_sent = tf.nn.softmax(self.last_h_sent, axis=2, name='last_h_softmax_sent') self.last_h_topic_emb_sent = tf.matmul(last_h_softmax_sent, self.topic_embeddings, name='last_h_topic_emb_sent') #self.last_h_topic_emb_sent = tf.concat([self.last_h_topic_emb_sent, self.last_h_sent], axis=2, name='last_h_topic_emb_sent') #self.last_h_topic_emb_sent = tf.concat([self.last_h_topic_emb_sent, last_h_softmax_sent], axis=2, name='last_h_topic_emb_sent') #self.last_h_topic_emb_sent = tf.reshape(self.last_h_topic_emb_sent, [self.input_batch_size_sent, self.input_batch_len_sent, self.vocab_size]) else: print("Error: model_NVDM.py - Decoder") sys.exit() """ #self.objective_TM = self.recons_loss + self.kld #self.objective_TM = tf.add(self.recons_loss, self.kld, name='TM_loss_unnormed') self.final_loss = tf.add(self.recons_loss, self.kld, name='TM_loss_unnormed') self.objective_TM = tf.reduce_mean(self.final_loss) """ if topic_params.TM_uniqueness_loss: ## NVDM topic uniqueness loss eye = tf.constant(np.eye(self.n_topic), dtype=tf.float32) topicnorm = matrix / tf.sqrt(tf.reduce_sum(tf.square(self.decoding_matrix), 1, keepdims=True)) uniqueness = tf.reduce_max(tf.square(tf.matmul(topicnorm, tf.transpose(topicnorm)) - eye)) self.objective_TM += topic_params.alpha_uniqueness * uniqueness """ optimizer = tf.train.AdamOptimizer(learning_rate=self.learning_rate) #fullvars = tf.trainable_variables() #enc_vars = utils.variable_parser(fullvars, 'TM_encoder') enc_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='TM_encoder') #dec_vars = utils.variable_parser(fullvars, 'TM_decoder') dec_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='TM_decoder') self.pretrain_saver = tf.train.Saver(enc_vars + dec_vars) enc_grads = tf.gradients(self.objective_TM, enc_vars) dec_grads = tf.gradients(self.objective_TM, dec_vars) self.optim_enc = optimizer.apply_gradients(zip(enc_grads, enc_vars)) self.optim_dec = optimizer.apply_gradients(zip(dec_grads, dec_vars)) ## Pretraining of NVDM-TM def pretrain(self, dataset, topic_params, nvdm_datadir , session, #training_epochs=1000, alternate_epochs=10): #training_epochs=100, alternate_epochs=10): training_epochs=20, alternate_epochs=10): #training_epochs=1, alternate_epochs=1): #log_dir = os.path.join(topic_params.model, 'logs_nvdm_pretrain') #model_dir_ir_nvdm = os.path.join(topic_params.model, 'model_ir_nvdm_pretrain') #model_dir_ppl_nvdm = os.path.join(topic_params.model, 'model_ppl_nvdm_pretrain') log_dir = os.path.join(topic_params.output_dir, 'logs_nvdm_pretrain') model_dir_ir_nvdm = os.path.join(topic_params.output_dir, 'model_ir_nvdm_pretrain') model_dir_ppl_nvdm = os.path.join(topic_params.output_dir, 'model_ppl_nvdm_pretrain') #model_dir_supervised = os.path.join(topic_params.model, 'model_supervised_nvdm_pretrain') if not os.path.isdir(log_dir): os.mkdir(log_dir) if not os.path.isdir(model_dir_ir_nvdm): os.mkdir(model_dir_ir_nvdm) if not os.path.isdir(model_dir_ppl_nvdm): os.mkdir(model_dir_ppl_nvdm) #if not os.path.isdir(model_dir_supervised): # os.mkdir(model_dir_supervised) #train_url = os.path.join(topic_params.dataset, 'training_nvdm_docs_non_replicated.csv') #dev_url = os.path.join(topic_params.dataset, 'validation_nvdm_docs_non_replicated.csv') #test_url = os.path.join(topic_params.dataset, 'test_nvdm_docs_non_replicated.csv') train_url = os.path.join(nvdm_datadir, 'training_nvdm_docs_non_replicated.csv') dev_url = os.path.join(nvdm_datadir, 'validation_nvdm_docs_non_replicated.csv') test_url = os.path.join(nvdm_datadir, 'test_nvdm_docs_non_replicated.csv') train_set, train_count, train_labels, train_doc_ids = utils.data_set(train_url, topic_params) test_set, test_count, test_labels, test_doc_ids = utils.data_set(test_url ,topic_params) dev_set, dev_count, dev_labels, dev_doc_ids = utils.data_set(dev_url, topic_params) dev_batches = utils.create_batches(len(dev_set), self.batch_size, shuffle=False) #dev_batches = utils.create_batches(len(dev_set), 512, shuffle=False) test_batches = utils.create_batches(len(test_set), self.batch_size, shuffle=False) #test_batches = utils.create_batches(len(test_set), 512, shuffle=False) #training_labels = np.array( # [[y] for y, _ in dataset.rows('training_nvdm_docs_non_replicated', num_epochs=1)] #) #validation_labels = np.array( # [[y] for y, _ in dataset.rows('validation_nvdm_docs_non_replicated', num_epochs=1)] #) #test_labels = np.array( # [[y] for y, _ in dataset.rows('test_nvdm_docs_non_replicated', num_epochs=1)] #) patience = topic_params.nvdm_patience patience_count = 0 best_dev_ppl = np.inf best_test_ppl = np.inf best_val_nvdm_IR = -1.0 best_test_nvdm_IR = -1.0 ppl_model = False ir_model = False for epoch in range(training_epochs): epoch_counter = epoch + 1 train_batches = utils.create_batches(len(train_set), self.batch_size, shuffle=True) #train_batches = utils.create_batches(len(train_set), 512, shuffle=True) #------------------------------- # train for switch in range(0, 2): if switch == 0: optim = self.optim_dec print_mode = 'updating decoder' else: optim = self.optim_enc print_mode = 'updating encoder' for i in range(alternate_epochs): print_ppx, print_ppx_perdoc, print_kld = self.run_epoch( train_batches, train_set, train_count, topic_params, session, optimizer=optim ) print('| Epoch train: {:d} |'.format(epoch_counter), print_mode, '{:d}'.format(i), '| Corpus Perplexity: {:.5f}'.format(print_ppx), # perplexity for all docs '| Per doc Perplexity: {:.5f}'.format(print_ppx_perdoc), # perplexity for per doc '| KLD: {:.5}'.format(print_kld)) if epoch_counter >= 1 and epoch_counter % topic_params.nvdm_validation_ppl_freq == 0: ppl_model = True print_ppx, print_ppx_perdoc, print_kld = self.run_epoch( dev_batches, dev_set, dev_count, topic_params, session ) if print_ppx_perdoc < best_dev_ppl: #if print_ppx_perdoc <= best_dev_ppl: best_dev_ppl = print_ppx_perdoc print("Saving best model.") self.pretrain_saver.save(session, model_dir_ppl_nvdm + '/model_ppl_nvdm_pretrain', global_step=1) self.save_to_s3_TM(topic_params) patience_count = 0 else: patience_count += 1 print('| Epoch dev: {:d} |'.format(epoch_counter), '| Corpus Perplexity: {:.9f} |'.format(print_ppx), '| Per doc Perplexity: {:.5f} |'.format(print_ppx_perdoc), '| KLD: {:.5} |'.format(print_kld), '| Best dev PPL: {:.5} |'.format(best_dev_ppl)) with open(log_dir + "/logs_ppl_nvdm_pretrain.txt", "a") as f: f.write('| Epoch Val: {:d} || Val Corpus PPL: {:.9f} || Val Per doc PPL: {:.5f} || Best Val PPL: {:.5} || KLD Val: {:.5} |\n'.format(epoch+1, print_ppx, print_ppx_perdoc, best_dev_ppl, print_kld)) if epoch_counter >= 1 and epoch_counter % topic_params.nvdm_validation_ir_freq == 0: ir_model = True validation_vectors_nvdm = self.hidden_vectors( #dataset.batches_nvdm_LM('validation_nvdm_docs_non_replicated', topic_params.nvdm_batch_size, topic_params.TM_vocab_length, num_epochs=1, multilabel=topic_params.multi_label), dataset.batches_nvdm_LM('validation_nvdm_docs_non_replicated', topic_params.nvdm_batch_size, self.vocab_size, num_epochs=1, multilabel=topic_params.multilabel), topic_params, session ) training_vectors_nvdm = self.hidden_vectors( #dataset.batches_nvdm_LM('training_nvdm_docs_non_replicated', topic_params.nvdm_batch_size, topic_params.TM_vocab_length, num_epochs=1, multilabel=topic_params.multi_label), dataset.batches_nvdm_LM('training_nvdm_docs_non_replicated', topic_params.nvdm_batch_size, self.vocab_size, num_epochs=1, multilabel=topic_params.multilabel), topic_params, session ) val_nvdm_ir, _ = eval.evaluate( training_vectors_nvdm, validation_vectors_nvdm, training_labels, validation_labels, recall=[0.02], num_classes=topic_params.nvdm_num_classes, multi_label=topic_params.multilabel ) val_nvdm_ir = val_nvdm_ir[0] # Saving model and Early stopping on IR if val_nvdm_ir > best_val_nvdm_IR: best_val_nvdm_IR = val_nvdm_ir print('saving: {}'.format(model_dir_ir_nvdm)) self.pretrain_saver.save(session, model_dir_ir_nvdm + '/model_ir_nvdm_pretrain', global_step=1) self.save_to_s3_TM(topic_params) # patience_count = 0 #else: # patience_count += 1 print("Epoch: %i, Val NVDM IR: %s, best val NVDM IR: %s\n" % (epoch_counter, val_nvdm_ir, best_val_nvdm_IR)) # logging information with open(log_dir + "/logs_ir_nvdm_pretrain.txt", "a") as f: f.write("Epoch: %i, Val NVDM IR: %s, best val NVDM IR: %s\n" % (epoch_counter, val_nvdm_ir, best_val_nvdm_IR)) if patience_count > patience: print("Early stopping.") break if ppl_model: print("Calculating Test PPL.") self.pretrain_saver.restore(session, tf.train.latest_checkpoint(model_dir_ppl_nvdm)) print_ppx, print_ppx_perdoc, print_kld = self.run_epoch( test_batches, test_set, test_count, topic_params, session ) print('| Corpus Perplexity: {:.9f}'.format(print_ppx), '| Per doc Perplexity: {:.5f}'.format(print_ppx_perdoc), '| KLD: {:.5}'.format(print_kld)) with open(log_dir + "/logs_ppl_nvdm_pretrain.txt", "a") as f: f.write('\n\nTest Corpus PPL: {:.9f} || Test Per doc PPL: {:.5f} || KLD Test: {:.5} |\n'.format(print_ppx, print_ppx_perdoc, print_kld)) if ir_model: print("Calculating Test IR.") self.pretrain_saver.restore(session, tf.train.latest_checkpoint(model_dir_ir_nvdm)) test_vectors_nvdm = self.hidden_vectors( #dataset.batches_nvdm_LM('test_nvdm_docs_non_replicated', topic_params.nvdm_batch_size, topic_params.TM_vocab_length, num_epochs=1, multilabel=topic_params.multi_label), dataset.batches_nvdm_LM('test_nvdm_docs_non_replicated', topic_params.nvdm_batch_size, self.vocab_size, num_epochs=1, multilabel=topic_params.multilabel), topic_params, session ) test_nvdm_ir, _ = eval.evaluate( training_vectors_nvdm, test_vectors_nvdm, training_labels, test_labels, recall=[0.02], num_classes=topic_params.nvdm_num_classes, multi_label=topic_params.multilabel ) test_nvdm_ir = test_nvdm_ir[0] print("Epoch: %i, Test NVDM IR: %s\n" % (epoch_counter, test_nvdm_ir)) # logging information with open(log_dir + "/logs_ir_nvdm_pretrain.txt", "a") as f: f.write("Epoch: %i, Test NVDM IR: %s\n" % (epoch_counter, test_nvdm_ir)) def hidden_vectors(self, data, topic_params, session): vecs = [] for y, x, count, mask in data: feed_dict = { self.x.name: x, self.mask.name: mask #self.input_batch_size: x.shape[0] } vecs.extend( session.run([self.last_h], feed_dict=feed_dict)[0] ) return np.array(vecs) def run_epoch(self, input_batches, input_set, input_count, topic_params, session, optimizer=None): loss_sum = 0.0 ppx_sum = 0.0 kld_sum = 0.0 word_count = 0 doc_count = 0 for idx_batch in input_batches: data_batch, count_batch, mask = utils.fetch_data( input_set, input_count, idx_batch, self.vocab_size, topic_params) input_feed = {self.x.name: data_batch, self.mask.name: mask}#, #self.input_batch_size: data_batch.shape[0] #} if not optimizer is None: _, (loss, kld) = session.run((optimizer, [self.final_loss, self.kld]), input_feed) else: loss, kld = session.run([self.final_loss, self.kld], input_feed) loss_sum += np.sum(loss) kld_sum += np.sum(kld) / np.sum(mask) word_count += np.sum(count_batch) # to avoid nan error count_batch = np.add(count_batch, 1e-12) # per document loss ppx_sum += np.sum(np.divide(loss, count_batch)) doc_count += np.sum(mask) print_ppx = np.exp(loss_sum / word_count) print_ppx_perdoc = np.exp(ppx_sum / doc_count) print_kld = kld_sum/len(input_batches) return print_ppx, print_ppx_perdoc, print_kld """ def topic_dist(self, input_batches, input_set, input_count, topic_params, session): topic_dist = [] mask_list = [] for idx_batch in input_batches: data_batch, count_batch, mask = utils.fetch_data( input_set, input_count, idx_batch, self.vocab_size) input_feed = {self.x.name: data_batch, self.mask.name: mask} doc_vec = session.run([self.doc_vec], input_feed) topic_dist.extend(list(doc_vec[0])) mask_list.extend(list(mask)) topic_dist_unique = [] for num, m in enumerate(mask_list): if m!= 0.0: topic_dist_unique.append(topic_dist[num]) topic_dist_unique = np.asarray(topic_dist_unique) return topic_dist_unique, mask_list """ def topic_dist(self, input_batches, input_set, input_doc_ids , input_count, topic_params, session): topic_dist = [] mask_list = [] doc_id_list = [] for idx_batch in input_batches: data_batch, count_batch, mask = utils.fetch_data( input_set, input_count, idx_batch, self.vocab_size, topic_params) input_feed = {self.x.name: data_batch, self.mask.name: mask} doc_vec = session.run([self.doc_vec], input_feed) topic_dist.extend(list(doc_vec[0])) mask_list.extend(list(mask)) for idx in idx_batch: if idx != -1: doc_id_list.append(input_doc_ids[idx]) else: doc_id_list.append(-1) assert len(topic_dist) == len(doc_id_list) topic_dist_unique = {} for id, dist in zip(doc_id_list, topic_dist): if id != -1: topic_dist_unique[str(id)] = dist return topic_dist_unique, mask_list def save_to_s3_TM(self, topic_params): pass def run_epoch_v2(self, data, topic_params, session): # train_y, train_x, train_count, train_mask = dataset.batches_nvdm_LM(training_data_filename_TM, topic_params.batch_size, topic_params.TM_vocab_length, num_epochs=1, multilabel=topic_params.multi_label) # val_y, val_x, val_count, val_mask = dataset.batches_nvdm_LM(validation_data_filename_TM, topic_params.batch_size, topic_params.TM_vocab_length, num_epochs=1, multilabel=topic_params.multi_label) # test_y, test_x, test_count, test_mask = dataset.batches_nvdm_LM(test_data_filename_TM, topic_params.batch_size, topic_params.TM_vocab_length, num_epochs=1, multilabel=topic_params.multi_label) kld_sum = [] this_nvdm_loss_normed = [] this_nvdm_loss_unnormed = [] this_nvdm_words = [] for nvdm_y, nvdm_x, nvdm_count, nvdm_mask in data: nvdm_feed_dict = { model.topic_model.x.name: nvdm_x, model.topic_model.mask.name: nvdm_mask#, #model.topic_model.input_batch_size: nvdm_x.shape[0] } if topic_params.supervised: sys.exit() else: loss, kld = session.run([model.topic_model.final_loss, model.topic_model.kld], feed_dict=nvdm_feed_dict) nvdm_count = np.add(nvdm_count, 1e-12) this_nvdm_loss_normed.extend(np.divide(loss, nvdm_count)) this_nvdm_loss_unnormed.extend(loss) this_nvdm_words.append(np.sum(nvdm_count)) kld_sum.append(np.sum(kld) / np.sum(nvdm_mask)) total_nvdm_nll = np.mean(this_nvdm_loss_unnormed) #total_nvdm_ppl = np.exp(np.sum(this_nvdm_loss_unnormed) / np.sum(this_val_nvdm_words)) total_nvdm_ppl = np.exp(np.mean(this_nvdm_loss_normed)) print_kld = np.mean(kld_sum) return total_nvdm_nll, total_nvdm_ppl, print_kld
[]
2024-01-10
YatinChaudhary/TopicBERT
TopicBERT~topic_bert~nvdm~model_GSM_supervised.py
"""NVDM Tensorflow implementation by Yishu Miao""" from __future__ import print_function import numpy as np import tensorflow as tf import math import os from nvdm import utils from sklearn.metrics import precision_recall_fscore_support from sklearn.metrics import accuracy_score #import model.utils as utils #from sklearn.preprocessing import MultiLabelBinarizer #import sklearn.metrics.pairwise as pw #from gensim.models import CoherenceModel #from gensim.corpora.dictionary import Dictionary #import model.evaluate as eval #import model.data_lstm as data seed = 42 tf_op_seed = 1234 np.random.seed(seed) tf.set_random_seed(seed) #learning_rate = 5e-5 #batch_size = 64 #n_hidden = 256 #fixed_topic_params #n_topic = 150 #n_sample = 1 #non_linearity = tf.nn.tanh non_linearity = tf.nn.sigmoid ###### class NVDM(object): """ Neural Variational Document Model -- BOW VAE. """ #def __init__(self, topic_params, prior_embeddings=None, initializer_nvdm=None): def __init__(self, topic_params, x, mask , topic_vocab_size, label_ids, n_labels, prior_embeddings=None, initializer_nvdm=None): #self.vocab_size = topic_params.TM_vocab_length self.vocab_size = topic_vocab_size self.n_hidden = topic_params.hidden_size_TM self.n_topic = topic_params.n_topic self.n_sample = topic_params.n_sample self.non_linearity = non_linearity self.learning_rate = topic_params.nvdm_learning_rate self.batch_size = topic_params.nvdm_batch_size self.x = x self.mask = mask self.label_ids = label_ids self.n_labels = n_labels #self.x = tf.placeholder(tf.float32, [None, self.vocab_size], name='x') #self.mask = tf.placeholder(tf.float32, [None], name='mask') # mask paddings #if topic_params.use_sent_topic_rep: #self.x_sent = tf.placeholder(tf.float32, [None, None, self.vocab_size], name='x_sent') #if topic_params.use_topic_embedding: # self.x_doc_mask = tf.placeholder(tf.float32, [None, self.vocab_size], name='x_doc_mask') #self.input_batch_size = tf.placeholder(tf.int32, (), name='input_batch_size') self.input_batch_size = tf.shape(self.x)[0] #if topic_params.use_sent_topic_rep: # self.input_batch_size_sent = tf.shape(self.x_sent)[0] # self.input_batch_len_sent = tf.shape(self.x_sent)[1] # self.batch_size_sent = self.input_batch_size_sent * self.input_batch_len_sent # encoder with tf.variable_scope('TM_encoder', reuse=tf.AUTO_REUSE): self.enc_vec = utils.mlp(self.x, [self.n_hidden], self.non_linearity, initializer=initializer_nvdm[0]) #self.enc_vec = utils.mlp(self.x, [self.n_hidden, self.n_hidden], self.non_linearity, initializer=initializer_nvdm[0]) #self.enc_vec = utils.mlp(self.x, [self.n_hidden, self.n_hidden], self.non_linearity) self.mean = utils.nvdm_linear(self.enc_vec, self.n_topic, scope='mean', matrix_initializer=initializer_nvdm[1][0], bias_initializer=initializer_nvdm[1][1]) self.logsigm = utils.nvdm_linear(self.enc_vec, self.n_topic, bias_start_zero=True, matrix_start_zero=True, scope='logsigm', matrix_initializer=initializer_nvdm[2][0], bias_initializer=initializer_nvdm[2][1]) self.kld = -0.5 * tf.reduce_sum(1 - tf.square(self.mean) + 2 * self.logsigm - tf.exp(2 * self.logsigm), 1) #self.kld = self.mask*self.kld # mask paddings self.kld = tf.multiply(self.mask, self.kld, name='kld') # mask paddings #if topic_params.use_sent_topic_rep: # self.x_sent_reshape = tf.reshape(self.x_sent, [-1, self.vocab_size]) # self.enc_vec_sent = utils.mlp(self.x_sent_reshape, [self.n_hidden], self.non_linearity) # #self.enc_vec = utils.mlp(self.x, [self.n_hidden, self.n_hidden], self.non_linearity) # self.mean_sent = utils.nvdm_linear(self.enc_vec_sent, self.n_topic, scope='mean') # self.logsigm_sent = utils.nvdm_linear(self.enc_vec_sent, # self.n_topic, # bias_start_zero=True, # matrix_start_zero=True, # scope='logsigm') #if topic_params.prior_emb_for_topics: # W_prior = tf.get_variable( # 'embeddings_TM_prior', # dtype=tf.float32, # initializer=prior_embeddings, # trainable=False # ) """ W_prior_proj = tf.get_variable( 'embeddings_TM_prior_proj', [prior_embeddings.shape[1], self.n_topic], dtype=tf.float32, trainable=False ) W_prior = tf.matmul(W_prior, W_prior_proj, name='W_prior_projected') """ with tf.variable_scope('TM_decoder', reuse=tf.AUTO_REUSE): if self.n_sample == 1: eps = tf.random_normal((self.input_batch_size, self.n_topic), mean=0.0, stddev=1.0, seed=seed) #doc_vec = tf.mul(tf.exp(self.logsigm), eps) + self.mean ## Hidden representation to be used in BERT self.doc_vec = tf.add(tf.multiply(tf.exp(self.logsigm), eps), self.mean, name='doc_hidden') self.doc_vec = tf.nn.softmax(self.doc_vec, axis = 1) self.last_h = self.doc_vec logits_projected, self.decoding_matrix = utils.nvdm_linear(self.doc_vec, self.vocab_size, scope='projection', get_matrix=True, matrix_initializer=initializer_nvdm[3][0], bias_initializer=initializer_nvdm[3][1]) logits = tf.nn.log_softmax(logits_projected) self.recons_loss = -tf.reduce_sum(tf.multiply(logits, self.x), 1) sup_logits = utils.nvdm_linear(self.doc_vec, self.n_labels, scope='supervised') if topic_params.multilabel: self.sup_prob = tf.nn.sigmoid(sup_logits) self.supervised_loss = tf.multiply(self.mask, tf.reduce_sum(tf.losses.sigmoid_cross_entropy(self.label_ids, sup_logits , reduction="none"), axis=-1)) else: self.sup_prob = tf.nn.softmax(sup_logits, axis=-1) log_prob = tf.nn.log_softmax(sup_logits) self.one_hot_labels = tf.one_hot(self.label_ids, depth=n_labels, on_value = 1.0, off_value = 0.0, dtype=tf.float32) self.supervised_loss = -tf.reduce_sum(tf.multiply(log_prob, self.one_hot_labels), 1) """ if topic_params.use_topic_embedding: #self.last_h_topic_emb = utils.nvdm_linear(tf.nn.softmax(self.last_h, axis=1), self.vocab_size, scope='projection') #self.top_k = tf.nn.top_k(self.decoding_matrix, k=topic_params.use_k_topic_words, sorted=False) topics_masked = tf.multiply(tf.expand_dims(self.x_doc_mask, axis=1), tf.expand_dims(self.decoding_matrix, axis=0), name='topics_masked') self.top_k = tf.nn.top_k(topics_masked, k=topic_params.use_k_topic_words, sorted=False) if topic_params.prior_emb_for_topics: self.top_k_embeddings = tf.nn.embedding_lookup(W_prior, self.top_k.indices) self.topic_emb_size = prior_embeddings.shape[1] #self.topic_emb_size = prior_embeddings.shape[1] * topic_params.use_k_topics #self.topic_emb_size = prior_embeddings.shape[1] + self.n_topic #self.topic_emb_size = self.n_topic #self.topic_emb_size = self.n_topic * 2 else: self.top_k_embeddings = tf.nn.embedding_lookup(tf.transpose(self.decoding_matrix), self.top_k.indices) #self.topic_emb_size = self.n_topic self.topic_emb_size = self.n_topic * 2 #self.top_k_embeddings = tf.multiply(tf.expand_dims(tf.nn.softmax(self.top_k.values, axis=1), axis=2), self.top_k_embeddings) #self.temp_1 = tf.expand_dims(tf.nn.softmax(self.top_k.values, axis=2), axis=2) #self.topic_embeddings = tf.squeeze(tf.matmul(self.temp_1, self.top_k_embeddings), axis=2, name='topic_embeddings') #self.topic_embeddings = tf.reduce_sum(self.top_k_embeddings, axis=1, name='topic_embeddings') #self.topic_embeddings = tf.reduce_mean(self.top_k_embeddings, axis=1, name='topic_embeddings') self.topic_embeddings = tf.reduce_mean(self.top_k_embeddings, axis=2, name='topic_embeddings') if topic_params.use_k_topics > 0: # Masking document topic proportion vector top_k_h_values, top_k_h_indices = tf.nn.top_k(self.last_h, k=topic_params.use_k_topics, sorted=False, name='top_k_h') row_numbers = tf.tile(tf.expand_dims(tf.range(0, self.input_batch_size), 1), [1, topic_params.use_k_topics], name='row_numbers') full_indices = tf.concat([tf.expand_dims(row_numbers, -1), tf.expand_dims(top_k_h_indices, -1)], axis=2) full_indices = tf.reshape(full_indices, [-1, 2], name='full_indices') #mask_updates = tf.ones([self.input_batch_size * topic_params.use_k_topics], dtype=tf.float32, name='mask_updates') #new_mask = tf.scatter_nd(full_indices, mask_updates, [self.input_batch_size, self.n_topic], name='new_mask') #last_h_softmax = tf.multiply(tf.nn.softmax(self.last_h, axis=1), new_mask, name='last_h_softmax') last_h_softmax = tf.scatter_nd( full_indices, tf.reshape(tf.nn.softmax(top_k_h_values, axis=1), [-1]), #tf.ones([self.input_batch_size * topic_params.use_k_topics], dtype=tf.float32), [self.input_batch_size, self.n_topic], name='last_h_softmax' ) else: last_h_softmax = tf.nn.softmax(self.last_h, axis=1, name='last_h_softmax') #last_h_softmax = self.last_h #self.last_h_topic_emb = tf.matmul(last_h_softmax, self.topic_embeddings, name='last_h_topic_emb') self.last_h_topic_emb = tf.squeeze(tf.matmul(tf.expand_dims(last_h_softmax, axis=1), self.topic_embeddings), axis=1, name='last_h_topic_emb') #temp = tf.nn.embedding_lookup(self.topic_embeddings, top_k_h_indices) #self.last_h_topic_emb = tf.reduce_sum(temp, axis=1, name='last_h_topic_emb') #self.last_h_topic_emb = tf.reshape(temp, [self.input_batch_size, self.topic_emb_size], name='last_h_topic_emb') #self.last_h_topic_emb = tf.concat([self.last_h_topic_emb, last_h_softmax], axis=1) #self.last_h_topic_emb = tf.concat([self.last_h_topic_emb, self.last_h], axis=1) """ else: eps = tf.random_normal((self.n_sample*self.input_batch_size, self.n_topic), mean=0.0, stddev=1.0, seed=seed) eps_list = tf.split(eps, self.n_sample, 0) recons_loss_list = [] doc_vec_list = [] for i in range(self.n_sample): if i > 0: tf.get_variable_scope().reuse_variables() curr_eps = eps_list[i] doc_vec = tf.add(tf.multiply(tf.exp(self.logsigm), curr_eps), self.mean) doc_vec = tf.nn.softmax(doc_vec, axis=1) doc_vec_list.append(doc_vec) logits = tf.nn.log_softmax(utils.nvdm_linear(doc_vec, self.vocab_size, scope='projection')) recons_loss_list.append(-tf.reduce_sum(tf.multiply(logits, self.x), 1)) self.recons_loss = tf.add_n(recons_loss_list) / self.n_sample self.doc_vec = tf.add_n(doc_vec_list) / self.n_sample self.last_h = self.doc_vec sup_logits = utils.nvdm_linear(self.doc_vec, self.n_labels, scope='supervised') if topic_params.multilabel: self.sup_prob = tf.nn.sigmoid(sup_logits) self.supervised_loss = tf.multiply(self.mask, tf.reduce_sum(tf.losses.sigmoid_cross_entropy(self.label_ids, sup_logits , reduction="none"), axis=-1)) else: self.sup_prob = tf.nn.softmax(sup_logits, axis=-1) log_prob = tf.nn.log_softmax(sup_logits) self.one_hot_labels = tf.one_hot(self.label_ids, depth=n_labels, on_value = 1.0, off_value = 0.0, dtype=tf.float32) self.supervised_loss = -tf.reduce_sum(tf.multiply(log_prob, self.one_hot_labels), 1) """" if topic_params.use_sent_topic_rep: if self.n_sample == 1: eps_sent = tf.random_normal((self.batch_size_sent, self.n_topic), mean=0.0, stddev=1.0, seed=seed) self.last_h_sent = tf.add(tf.multiply(tf.exp(self.logsigm_sent), eps_sent), self.mean_sent, name='sent_hidden') self.last_h_sent = tf.reshape(self.last_h_sent, [self.input_batch_size_sent, self.input_batch_len_sent, self.n_topic]) if topic_params.use_topic_embedding: #self.last_h_topic_emb_sent = utils.nvdm_linear(tf.nn.softmax(self.last_h_sent, axis=1), self.vocab_size, scope='projection') if topic_params.use_k_topics > 0: # Masking sentence topic proportion vector top_k_h_sent_values, top_k_h_sent_indices = tf.nn.top_k(self.last_h_sent, k=topic_params.use_k_topics, sorted=False, name='top_k_h_sent') row_numbers_sent = tf.tile(tf.expand_dims(tf.range(0, self.batch_size_sent), 1), [1, topic_params.use_k_topics], name='row_numbers_sent') full_indices_sent = tf.concat([tf.expand_dims(row_numbers_sent, -1), tf.expand_dims(top_k_h_sent_indices, -1)], axis=2) full_indices_sent = tf.reshape(full_indices_sent, [-1, 2], name='full_indices_sent') #mask_updates_sent = tf.ones([self.batch_size_sent * topic_params.use_k_topics], dtype=tf.float32, name='mask_updates_sent') #new_mask_sent = tf.scatter_nd(full_indices_sent, mask_updates_sent, [self.batch_size_sent, self.n_topic], name='new_mask_sent') #last_h_softmax_sent = tf.multiply(tf.nn.softmax(self.last_h_sent, axis=1), new_mask_sent, name='last_h_softmax_sent') last_h_softmax_sent = tf.scatter_nd(full_indices_sent, tf.reshape(tf.nn.softmax(top_k_h_sent_values, axis=1), [-1]), [self.batch_size_sent, self.n_topic], name='last_h_softmax_sent') else: last_h_softmax_sent = tf.nn.softmax(self.last_h_sent, axis=2, name='last_h_softmax_sent') self.last_h_topic_emb_sent = tf.matmul(last_h_softmax_sent, self.topic_embeddings, name='last_h_topic_emb_sent') #self.last_h_topic_emb_sent = tf.concat([self.last_h_topic_emb_sent, self.last_h_sent], axis=2, name='last_h_topic_emb_sent') #self.last_h_topic_emb_sent = tf.concat([self.last_h_topic_emb_sent, last_h_softmax_sent], axis=2, name='last_h_topic_emb_sent') #self.last_h_topic_emb_sent = tf.reshape(self.last_h_topic_emb_sent, [self.input_batch_size_sent, self.input_batch_len_sent, self.vocab_size]) else: print("Error: model_NVDM.py - Decoder") sys.exit() """ #self.objective_TM = self.recons_loss + self.kld #self.objective_TM = tf.add(self.recons_loss, self.kld, name='TM_loss_unnormed') #self.final_loss = tf.add(self.recons_loss, self.kld, name='TM_loss_unnormed') self.unsupervised_loss = tf.add(self.recons_loss, self.kld, name='TM_loss_unnormed') self.final_loss = tf.add((1-topic_params.beta)*self.unsupervised_loss, topic_params.beta*(self.supervised_loss), "TM_combined_loss") self.objective_TM = tf.reduce_mean(self.final_loss) """ if topic_params.TM_uniqueness_loss: ## NVDM topic uniqueness loss eye = tf.constant(np.eye(self.n_topic), dtype=tf.float32) topicnorm = matrix / tf.sqrt(tf.reduce_sum(tf.square(self.decoding_matrix), 1, keepdims=True)) uniqueness = tf.reduce_max(tf.square(tf.matmul(topicnorm, tf.transpose(topicnorm)) - eye)) self.objective_TM += topic_params.alpha_uniqueness * uniqueness """ optimizer = tf.train.AdamOptimizer(learning_rate=self.learning_rate) #fullvars = tf.trainable_variables() #enc_vars = utils.variable_parser(fullvars, 'TM_encoder') enc_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='TM_encoder') #dec_vars = utils.variable_parser(fullvars, 'TM_decoder') dec_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='TM_decoder') self.pretrain_saver = tf.train.Saver(enc_vars + dec_vars) enc_grads = tf.gradients(self.objective_TM, enc_vars) dec_grads = tf.gradients(self.objective_TM, dec_vars) self.optim_enc = optimizer.apply_gradients(zip(enc_grads, enc_vars)) self.optim_dec = optimizer.apply_gradients(zip(dec_grads, dec_vars)) ## Pretraining of NVDM-TM def pretrain(self, dataset, topic_params, nvdm_datadir , session, #training_epochs=1000, alternate_epochs=10): #training_epochs=100, alternate_epochs=10): training_epochs=20, alternate_epochs=10): #training_epochs=1, alternate_epochs=1): #log_dir = os.path.join(topic_params.model, 'logs_nvdm_pretrain') #model_dir_ir_nvdm = os.path.join(topic_params.model, 'model_ir_nvdm_pretrain') #model_dir_ppl_nvdm = os.path.join(topic_params.model, 'model_ppl_nvdm_pretrain') log_dir = os.path.join(topic_params.output_dir, 'logs_nvdm_pretrain') model_dir_ir_nvdm = os.path.join(topic_params.output_dir, 'model_ir_nvdm_pretrain') model_dir_ppl_nvdm = os.path.join(topic_params.output_dir, 'model_ppl_nvdm_pretrain') model_dir_f1_nvdm = os.path.join(topic_params.output_dir, 'model_f1_nvdm_pretrain') #model_dir_supervised = os.path.join(topic_params.model, 'model_supervised_nvdm_pretrain') if not os.path.isdir(log_dir): os.mkdir(log_dir) if not os.path.isdir(model_dir_ir_nvdm): os.mkdir(model_dir_ir_nvdm) if not os.path.isdir(model_dir_ppl_nvdm): os.mkdir(model_dir_ppl_nvdm) #if not os.path.isdir(model_dir_supervised): # os.mkdir(model_dir_supervised) #train_url = os.path.join(topic_params.dataset, 'training_nvdm_docs_non_replicated.csv') #dev_url = os.path.join(topic_params.dataset, 'validation_nvdm_docs_non_replicated.csv') #test_url = os.path.join(topic_params.dataset, 'test_nvdm_docs_non_replicated.csv') train_url = os.path.join(nvdm_datadir, 'training_nvdm_docs_non_replicated.csv') dev_url = os.path.join(nvdm_datadir, 'validation_nvdm_docs_non_replicated.csv') test_url = os.path.join(nvdm_datadir, 'test_nvdm_docs_non_replicated.csv') train_set, train_count, train_ids, train_doc_ids = utils.data_set(train_url, topic_params) test_set, test_count, test_ids, test_doc_ids = utils.data_set(test_url, topic_params) dev_set, dev_count, dev_ids, dev_doc_ids = utils.data_set(dev_url, topic_params) dev_batches = utils.create_batches(len(dev_set), self.batch_size, shuffle=False) #dev_batches = utils.create_batches(len(dev_set), 512, shuffle=False) test_batches = utils.create_batches(len(test_set), self.batch_size, shuffle=False) #test_batches = utils.create_batches(len(test_set), 512, shuffle=False) #training_labels = np.array( # [[y] for y, _ in dataset.rows('training_nvdm_docs_non_replicated', num_epochs=1)] #) #validation_labels = np.array( # [[y] for y, _ in dataset.rows('validation_nvdm_docs_non_replicated', num_epochs=1)] #) #test_labels = np.array( # [[y] for y, _ in dataset.rows('test_nvdm_docs_non_replicated', num_epochs=1)] #) patience = topic_params.nvdm_patience patience_count_ppl = 0 patience_count_f1 = 0 best_dev_ppl = np.inf best_dev_f1 = -np.inf best_val_nvdm_IR = -1.0 ppl_model = False ir_model = False f1_model = False for epoch in range(training_epochs): epoch_counter = epoch + 1 train_batches = utils.create_batches(len(train_set), self.batch_size, shuffle=True) #train_batches = utils.create_batches(len(train_set), 512, shuffle=True) #------------------------------- # train for switch in range(0, 2): if switch == 0: optim = self.optim_dec print_mode = 'updating decoder' else: optim = self.optim_enc print_mode = 'updating encoder' for i in range(alternate_epochs): print_ppx, print_ppx_perdoc, print_kld, print_sup_loss, print_macro_prec, print_macro_recall, print_macro_f1_score, print_acc = self.run_epoch( train_batches, train_set, train_count, topic_params, session, input_labels = train_ids, optimizer=optim ) print('| Epoch train: {:d} |'.format(epoch_counter), print_mode, '{:d}'.format(i), '| Corpus Perplexity: {:.5f}'.format(print_ppx), # perplexity for all docs '| Per doc Perplexity: {:.5f}'.format(print_ppx_perdoc), # perplexity for per doc '| KLD: {:.5}'.format(print_kld), '| Supervised loss: {:.5f}'.format(print_sup_loss)) if epoch_counter >= 1 and epoch_counter % topic_params.nvdm_validation_ppl_freq == 0: ppl_model = True print_ppx, print_ppx_perdoc, print_kld, print_sup_loss, print_macro_prec, print_macro_recall, print_macro_f1_score, print_acc = self.run_epoch( dev_batches, dev_set, dev_count, topic_params, session, input_labels = dev_ids ) if print_ppx_perdoc < best_dev_ppl: #if print_ppx_perdoc <= best_dev_ppl: best_dev_ppl = print_ppx_perdoc print("Saving best model.") self.pretrain_saver.save(session, model_dir_ppl_nvdm + '/model_ppl_nvdm_pretrain', global_step=1) self.save_to_s3_TM(topic_params) patience_count_ppl = 0 else: patience_count_ppl += 1 print('| Epoch dev: {:d} |'.format(epoch_counter), '| Corpus Perplexity: {:.9f} |'.format(print_ppx), '| Per doc Perplexity: {:.5f} |'.format(print_ppx_perdoc), '| KLD: {:.5} |'.format(print_kld), '| Best dev PPL: {:.5} |'.format(best_dev_ppl)) with open(log_dir + "/logs_ppl_nvdm_pretrain.txt", "a") as f: f.write('| Epoch Val: {:d} || Val Corpus PPL: {:.9f} || Val Per doc PPL: {:.5f} || Best Val PPL: {:.5} || KLD Val: {:.5} |\n'.format(epoch+1, print_ppx, print_ppx_perdoc, best_dev_ppl, print_kld)) if epoch_counter >= 1 and epoch_counter % topic_params.nvdm_validation_f1_freq == 0: f1_model = True print_ppx, print_ppx_perdoc, print_kld, print_sup_loss, print_macro_prec, print_macro_recall, print_macro_f1_score, print_acc = self.run_epoch( dev_batches, dev_set, dev_count, topic_params, session, input_labels = dev_ids ) if print_macro_f1_score > best_dev_f1: best_dev_f1 = print_macro_f1_score print("Saving best model.") self.pretrain_saver.save(session, model_dir_f1_nvdm + '/model_f1_nvdm_pretrain', global_step=1) self.save_to_s3_TM(topic_params) patience_count_f1 = 0 else: patience_count_f1 += 1 print('| Epoch dev: {:d} |'.format(epoch_counter), '| Macro F1 : {:.9f} |'.format(print_macro_f1_score), '| Macro Prec: {:.5f} |'.format(print_macro_prec), '| Macro Recall: {:.5} |'.format(print_macro_recall), '| Best F1: {:.5} |'.format(best_dev_f1)) with open(log_dir + "/logs_f1_nvdm_pretrain.txt", "a") as f: f.write('| Epoch Val: {:d} || Macro F1: {:.9f} || Macro Prec: {:.5f} || Macro Recall: {:.5} || Best Macro F1: {:.5} || Accuracy: {:.5} |\n'.format(epoch+1, print_macro_f1_score, print_macro_prec, print_macro_recall, best_dev_f1 , print_acc)) if epoch_counter >= 1 and epoch_counter % topic_params.nvdm_validation_ir_freq == 0: ir_model = True validation_vectors_nvdm = self.hidden_vectors( #dataset.batches_nvdm_LM('validation_nvdm_docs_non_replicated', topic_params.nvdm_batch_size, topic_params.TM_vocab_length, num_epochs=1, multilabel=topic_params.multi_label), dataset.batches_nvdm_LM('validation_nvdm_docs_non_replicated', topic_params.nvdm_batch_size, self.vocab_size, num_epochs=1, multilabel=topic_params.multilabel), topic_params, session ) training_vectors_nvdm = self.hidden_vectors( #dataset.batches_nvdm_LM('training_nvdm_docs_non_replicated', topic_params.nvdm_batch_size, topic_params.TM_vocab_length, num_epochs=1, multilabel=topic_params.multi_label), dataset.batches_nvdm_LM('training_nvdm_docs_non_replicated', topic_params.nvdm_batch_size, self.vocab_size, num_epochs=1, multilabel=topic_params.multilabel), topic_params, session ) val_nvdm_ir, _ = eval.evaluate( training_vectors_nvdm, validation_vectors_nvdm, training_labels, validation_labels, recall=[0.02], num_classes=topic_params.nvdm_num_classes, multi_label=topic_params.multilabel ) val_nvdm_ir = val_nvdm_ir[0] # Saving model and Early stopping on IR if val_nvdm_ir > best_val_nvdm_IR: best_val_nvdm_IR = val_nvdm_ir print('saving: {}'.format(model_dir_ir_nvdm)) self.pretrain_saver.save(session, model_dir_ir_nvdm + '/model_ir_nvdm_pretrain', global_step=1) self.save_to_s3_TM(topic_params) # patience_count = 0 #else: # patience_count += 1 print("Epoch: %i, Val NVDM IR: %s, best val NVDM IR: %s\n" % (epoch_counter, val_nvdm_ir, best_val_nvdm_IR)) # logging information with open(log_dir + "/logs_ir_nvdm_pretrain.txt", "a") as f: f.write("Epoch: %i, Val NVDM IR: %s, best val NVDM IR: %s\n" % (epoch_counter, val_nvdm_ir, best_val_nvdm_IR)) if topic_params.validate_supervised_TM == "ppl": if patience_count_ppl > patience: print("Early stopping.") break elif topic_params.validate_supervised_TM == "f1": if patience_count_f1 > patience: print("Early stopping.") break if ppl_model: print("Calculating Test PPL.") self.pretrain_saver.restore(session, tf.train.latest_checkpoint(model_dir_ppl_nvdm)) print_ppx, print_ppx_perdoc, print_kld, print_sup_loss, print_macro_prec, print_macro_recall, print_macro_f1_score, print_acc= self.run_epoch( test_batches, test_set, test_count, topic_params, session, input_labels = test_ids ) print('| Corpus Perplexity: {:.9f}'.format(print_ppx), '| Per doc Perplexity: {:.5f}'.format(print_ppx_perdoc), '| KLD: {:.5}'.format(print_kld)) with open(log_dir + "/logs_ppl_nvdm_pretrain.txt", "a") as f: f.write('\n\nTest Corpus PPL: {:.9f} || Test Per doc PPL: {:.5f} || KLD Test: {:.5} |\n'.format(print_ppx, print_ppx_perdoc, print_kld)) if f1_model: print("Calculating Test F1.") self.pretrain_saver.restore(session, tf.train.latest_checkpoint(model_dir_f1_nvdm)) print_ppx, print_ppx_perdoc, print_kld, print_sup_loss, print_macro_prec, print_macro_recall, print_macro_f1_score, print_acc = self.run_epoch( test_batches, test_set, test_count, topic_params, session, input_labels = test_ids ) print('| Macro F1: {:.9f}'.format(print_macro_f1_score), '| Macro prec: {:.5f}'.format(print_macro_prec), '| Macro recall : {:.5}'.format(print_macro_recall), '| Acc : {:.5}'.format(print_acc) ) with open(log_dir + "/logs_f1_nvdm_pretrain.txt", "a") as f: f.write('\n\nTest Macro F1: {:.9f} || Test Macro prec : {:.5f} || Test Macro recall : {:.5} || Test Acc : {:.5} |\n'.format(print_macro_f1_score, print_macro_prec, print_macro_recall, print_acc )) if ir_model: print("Calculating Test IR.") self.pretrain_saver.restore(session, tf.train.latest_checkpoint(model_dir_ir_nvdm)) test_vectors_nvdm = self.hidden_vectors( #dataset.batches_nvdm_LM('test_nvdm_docs_non_replicated', topic_params.nvdm_batch_size, topic_params.TM_vocab_length, num_epochs=1, multilabel=topic_params.multi_label), dataset.batches_nvdm_LM('test_nvdm_docs_non_replicated', topic_params.nvdm_batch_size, self.vocab_size, num_epochs=1, multilabel=topic_params.multilabel), topic_params, session ) test_nvdm_ir, _ = eval.evaluate( training_vectors_nvdm, test_vectors_nvdm, training_labels, test_labels, recall=[0.02], num_classes=topic_params.nvdm_num_classes, multi_label=topic_params.multilabel ) test_nvdm_ir = test_nvdm_ir[0] print("Epoch: %i, Test NVDM IR: %s\n" % (epoch_counter, test_nvdm_ir)) # logging information with open(log_dir + "/logs_ir_nvdm_pretrain.txt", "a") as f: f.write("Epoch: %i, Test NVDM IR: %s\n" % (epoch_counter, test_nvdm_ir)) def hidden_vectors(self, data, topic_params, session): vecs = [] for y, x, count, mask in data: feed_dict = { self.x.name: x, self.mask.name: mask #self.input_batch_size: x.shape[0] } vecs.extend( session.run([self.last_h], feed_dict=feed_dict)[0] ) return np.array(vecs) def run_epoch(self, input_batches, input_set, input_count, topic_params, session, input_labels = None, optimizer=None): loss_sum = 0.0 ppx_sum = 0.0 kld_sum = 0.0 supervised_loss_sum = 0.0 word_count = 0 doc_count = 0 doc_pred = [] doc_labels = [] for idx_batch in input_batches: data_batch, count_batch, mask, label_batch = utils.fetch_data( input_set, input_count, idx_batch, self.vocab_size, topic_params, labels = input_labels) #import pdb; pdb.set_trace() input_feed = {self.x.name: data_batch, self.mask.name: mask, self.label_ids.name: label_batch} if not optimizer is None: _, (loss, kld, supervised_loss, prob) = session.run((optimizer, [self.unsupervised_loss, self.kld, self.supervised_loss, self.sup_prob]), input_feed) else: loss, kld, supervised_loss, prob = session.run([self.unsupervised_loss, self.kld, self.supervised_loss, self.sup_prob], input_feed) if topic_params.multilabel: prob_arr = np.asarray(prob) multilabel_pred = np.where(prob_arr >= 0.5, 1, 0) pred = np.ndarray.tolist(multilabel_pred) else: pred = np.argmax(prob, axis = 1) assert len(pred) == len(label_batch) == len(mask) for i in range(len(mask)): if mask[i] != 0.0: doc_pred.append(pred[i]) doc_labels.append(label_batch[i]) loss_sum += np.sum(loss) kld_sum += np.sum(kld) / np.sum(mask) supervised_loss_sum += np.sum(supervised_loss) / np.sum(mask) word_count += np.sum(count_batch) # to avoid nan error count_batch = np.add(count_batch, 1e-12) # per document loss ppx_sum += np.sum(np.divide(loss, count_batch)) doc_count += np.sum(mask) assert -1 not in doc_labels if topic_params.multilabel: doc_labels = np.asarray(doc_labels) doc_pred = np.asarray(doc_pred) print_macro_prec, print_macro_recall, print_macro_f1_score, _ = precision_recall_fscore_support(doc_labels, doc_pred, average = "macro") #print_micro_prec, print_micro_recall, print_micro_f1_score, _ = precision_recall_fscore_support(doc_labels, doc_pred, average = "micro") print_acc = accuracy_score(doc_labels, doc_pred) print_sup_loss = supervised_loss_sum/len(input_batches) print_ppx = np.exp(loss_sum / word_count) print_ppx_perdoc = np.exp(ppx_sum / doc_count) print_kld = kld_sum/len(input_batches) return print_ppx, print_ppx_perdoc, print_kld, print_sup_loss, print_macro_prec, print_macro_recall, print_macro_f1_score, print_acc """ def topic_dist(self, input_batches, input_set, input_count, topic_params, session): topic_dist = [] mask_list = [] for idx_batch in input_batches: data_batch, count_batch, mask = utils.fetch_data( input_set, input_count, idx_batch, self.vocab_size) input_feed = {self.x.name: data_batch, self.mask.name: mask} doc_vec = session.run([self.doc_vec], input_feed) topic_dist.extend(list(doc_vec[0])) mask_list.extend(list(mask)) topic_dist_unique = [] for num, m in enumerate(mask_list): if m!= 0.0: topic_dist_unique.append(topic_dist[num]) topic_dist_unique = np.asarray(topic_dist_unique) return topic_dist_unique, mask_list """ def topic_dist(self, input_batches, input_set, input_doc_ids , input_count, topic_params, session): topic_dist = [] mask_list = [] doc_id_list = [] for idx_batch in input_batches: data_batch, count_batch, mask = utils.fetch_data( input_set, input_count, idx_batch, self.vocab_size, topic_params) input_feed = {self.x.name: data_batch, self.mask.name: mask} doc_vec = session.run([self.doc_vec], input_feed) topic_dist.extend(list(doc_vec[0])) mask_list.extend(list(mask)) for idx in idx_batch: if idx != -1: doc_id_list.append(input_doc_ids[idx]) else: doc_id_list.append(-1) assert len(topic_dist) == len(doc_id_list) topic_dist_unique = {} for id, dist in zip(doc_id_list, topic_dist): if id != -1: topic_dist_unique[str(id)] = dist return topic_dist_unique, mask_list def save_to_s3_TM(self, topic_params): pass def run_epoch_v2(self, data, topic_params, session): # train_y, train_x, train_count, train_mask = dataset.batches_nvdm_LM(training_data_filename_TM, topic_params.batch_size, topic_params.TM_vocab_length, num_epochs=1, multilabel=topic_params.multi_label) # val_y, val_x, val_count, val_mask = dataset.batches_nvdm_LM(validation_data_filename_TM, topic_params.batch_size, topic_params.TM_vocab_length, num_epochs=1, multilabel=topic_params.multi_label) # test_y, test_x, test_count, test_mask = dataset.batches_nvdm_LM(test_data_filename_TM, topic_params.batch_size, topic_params.TM_vocab_length, num_epochs=1, multilabel=topic_params.multi_label) kld_sum = [] this_nvdm_loss_normed = [] this_nvdm_loss_unnormed = [] this_nvdm_words = [] for nvdm_y, nvdm_x, nvdm_count, nvdm_mask in data: nvdm_feed_dict = { model.topic_model.x.name: nvdm_x, model.topic_model.mask.name: nvdm_mask#, #model.topic_model.input_batch_size: nvdm_x.shape[0] } if topic_params.supervised: sys.exit() else: loss, kld = session.run([model.topic_model.final_loss, model.topic_model.kld], feed_dict=nvdm_feed_dict) nvdm_count = np.add(nvdm_count, 1e-12) this_nvdm_loss_normed.extend(np.divide(loss, nvdm_count)) this_nvdm_loss_unnormed.extend(loss) this_nvdm_words.append(np.sum(nvdm_count)) kld_sum.append(np.sum(kld) / np.sum(nvdm_mask)) total_nvdm_nll = np.mean(this_nvdm_loss_unnormed) #total_nvdm_ppl = np.exp(np.sum(this_nvdm_loss_unnormed) / np.sum(this_val_nvdm_words)) total_nvdm_ppl = np.exp(np.mean(this_nvdm_loss_normed)) print_kld = np.mean(kld_sum) return total_nvdm_nll, total_nvdm_ppl, print_kld
[]
2024-01-10
YatinChaudhary/TopicBERT
TopicBERT~topic_bert~nvdm~model_NVDM_yatin.py
"""NVDM Tensorflow implementation by Yishu Miao""" from __future__ import print_function import numpy as np import tensorflow as tf import math import os import model.utils as utils from sklearn.preprocessing import MultiLabelBinarizer import sklearn.metrics.pairwise as pw from gensim.models import CoherenceModel from gensim.corpora.dictionary import Dictionary import model.evaluate as eval import model.data_lstm as data seed = 42 tf_op_seed = 1234 np.random.seed(seed) tf.set_random_seed(seed) #learning_rate = 5e-5 #batch_size = 64 #n_hidden = 256 n_topic = 150 n_sample = 1 non_linearity = tf.nn.tanh class NVDM(object): """ Neural Variational Document Model -- BOW VAE. """ def __init__(self, params, prior_embeddings=None, initializer_nvdm=None): self.vocab_size = params.TM_vocab_length self.n_hidden = params.hidden_size_TM self.n_topic = n_topic self.n_sample = n_sample self.non_linearity = non_linearity self.learning_rate = params.learning_rate self.batch_size = params.batch_size self.x = tf.placeholder(tf.float32, [None, self.vocab_size], name='x') self.mask = tf.placeholder(tf.float32, [None], name='mask') # mask paddings if params.use_sent_topic_rep: self.x_sent = tf.placeholder(tf.float32, [None, None, self.vocab_size], name='x_sent') if params.use_topic_embedding: self.x_doc_mask = tf.placeholder(tf.float32, [None, self.vocab_size], name='x_doc_mask') #self.input_batch_size = tf.placeholder(tf.int32, (), name='input_batch_size') self.input_batch_size = tf.shape(self.x)[0] if params.use_sent_topic_rep: self.input_batch_size_sent = tf.shape(self.x_sent)[0] self.input_batch_len_sent = tf.shape(self.x_sent)[1] self.batch_size_sent = self.input_batch_size_sent * self.input_batch_len_sent # encoder with tf.variable_scope('TM_encoder', reuse=tf.AUTO_REUSE): self.enc_vec = utils.mlp(self.x, [self.n_hidden], self.non_linearity, initializer=initializer_nvdm[0]) #self.enc_vec = utils.mlp(self.x, [self.n_hidden, self.n_hidden], self.non_linearity, initializer=initializer_nvdm[0]) #self.enc_vec = utils.mlp(self.x, [self.n_hidden, self.n_hidden], self.non_linearity) self.mean = utils.nvdm_linear(self.enc_vec, self.n_topic, scope='mean', matrix_initializer=initializer_nvdm[1][0], bias_initializer=initializer_nvdm[1][1]) self.logsigm = utils.nvdm_linear(self.enc_vec, self.n_topic, bias_start_zero=True, matrix_start_zero=True, scope='logsigm', matrix_initializer=initializer_nvdm[2][0], bias_initializer=initializer_nvdm[2][1]) self.kld = -0.5 * tf.reduce_sum(1 - tf.square(self.mean) + 2 * self.logsigm - tf.exp(2 * self.logsigm), 1) #self.kld = self.mask*self.kld # mask paddings self.kld = tf.multiply(self.mask, self.kld, name='kld') # mask paddings if params.use_sent_topic_rep: self.x_sent_reshape = tf.reshape(self.x_sent, [-1, self.vocab_size]) self.enc_vec_sent = utils.mlp(self.x_sent_reshape, [self.n_hidden], self.non_linearity) #self.enc_vec = utils.mlp(self.x, [self.n_hidden, self.n_hidden], self.non_linearity) self.mean_sent = utils.nvdm_linear(self.enc_vec_sent, self.n_topic, scope='mean') self.logsigm_sent = utils.nvdm_linear(self.enc_vec_sent, self.n_topic, bias_start_zero=True, matrix_start_zero=True, scope='logsigm') if params.prior_emb_for_topics: W_prior = tf.get_variable( 'embeddings_TM_prior', dtype=tf.float32, initializer=prior_embeddings, trainable=False ) """ W_prior_proj = tf.get_variable( 'embeddings_TM_prior_proj', [prior_embeddings.shape[1], self.n_topic], dtype=tf.float32, trainable=False ) W_prior = tf.matmul(W_prior, W_prior_proj, name='W_prior_projected') """ with tf.variable_scope('TM_decoder', reuse=tf.AUTO_REUSE): if self.n_sample == 1: eps = tf.random_normal((self.input_batch_size, self.n_topic), mean=0.0, stddev=1.0, seed=seed) #doc_vec = tf.mul(tf.exp(self.logsigm), eps) + self.mean self.doc_vec = tf.add(tf.multiply(tf.exp(self.logsigm), eps), self.mean, name='doc_hidden') self.last_h = self.doc_vec logits_projected, self.decoding_matrix = utils.nvdm_linear(self.doc_vec, self.vocab_size, scope='projection', get_matrix=True, matrix_initializer=initializer_nvdm[3][0], bias_initializer=initializer_nvdm[3][1]) logits = tf.nn.log_softmax(logits_projected) self.recons_loss = -tf.reduce_sum(tf.multiply(logits, self.x), 1) if params.use_topic_embedding: #self.last_h_topic_emb = utils.nvdm_linear(tf.nn.softmax(self.last_h, axis=1), self.vocab_size, scope='projection') #self.top_k = tf.nn.top_k(self.decoding_matrix, k=params.use_k_topic_words, sorted=False) topics_masked = tf.multiply(tf.expand_dims(self.x_doc_mask, axis=1), tf.expand_dims(self.decoding_matrix, axis=0), name='topics_masked') self.top_k = tf.nn.top_k(topics_masked, k=params.use_k_topic_words, sorted=False) if params.prior_emb_for_topics: self.top_k_embeddings = tf.nn.embedding_lookup(W_prior, self.top_k.indices) self.topic_emb_size = prior_embeddings.shape[1] #self.topic_emb_size = prior_embeddings.shape[1] * params.use_k_topics #self.topic_emb_size = prior_embeddings.shape[1] + self.n_topic #self.topic_emb_size = self.n_topic #self.topic_emb_size = self.n_topic * 2 else: self.top_k_embeddings = tf.nn.embedding_lookup(tf.transpose(self.decoding_matrix), self.top_k.indices) #self.topic_emb_size = self.n_topic self.topic_emb_size = self.n_topic * 2 #self.top_k_embeddings = tf.multiply(tf.expand_dims(tf.nn.softmax(self.top_k.values, axis=1), axis=2), self.top_k_embeddings) #self.temp_1 = tf.expand_dims(tf.nn.softmax(self.top_k.values, axis=2), axis=2) #self.topic_embeddings = tf.squeeze(tf.matmul(self.temp_1, self.top_k_embeddings), axis=2, name='topic_embeddings') #self.topic_embeddings = tf.reduce_sum(self.top_k_embeddings, axis=1, name='topic_embeddings') #self.topic_embeddings = tf.reduce_mean(self.top_k_embeddings, axis=1, name='topic_embeddings') self.topic_embeddings = tf.reduce_mean(self.top_k_embeddings, axis=2, name='topic_embeddings') if params.use_k_topics > 0: # Masking document topic proportion vector top_k_h_values, top_k_h_indices = tf.nn.top_k(self.last_h, k=params.use_k_topics, sorted=False, name='top_k_h') row_numbers = tf.tile(tf.expand_dims(tf.range(0, self.input_batch_size), 1), [1, params.use_k_topics], name='row_numbers') full_indices = tf.concat([tf.expand_dims(row_numbers, -1), tf.expand_dims(top_k_h_indices, -1)], axis=2) full_indices = tf.reshape(full_indices, [-1, 2], name='full_indices') #mask_updates = tf.ones([self.input_batch_size * params.use_k_topics], dtype=tf.float32, name='mask_updates') #new_mask = tf.scatter_nd(full_indices, mask_updates, [self.input_batch_size, self.n_topic], name='new_mask') #last_h_softmax = tf.multiply(tf.nn.softmax(self.last_h, axis=1), new_mask, name='last_h_softmax') last_h_softmax = tf.scatter_nd( full_indices, tf.reshape(tf.nn.softmax(top_k_h_values, axis=1), [-1]), #tf.ones([self.input_batch_size * params.use_k_topics], dtype=tf.float32), [self.input_batch_size, self.n_topic], name='last_h_softmax' ) else: last_h_softmax = tf.nn.softmax(self.last_h, axis=1, name='last_h_softmax') #last_h_softmax = self.last_h #self.last_h_topic_emb = tf.matmul(last_h_softmax, self.topic_embeddings, name='last_h_topic_emb') self.last_h_topic_emb = tf.squeeze(tf.matmul(tf.expand_dims(last_h_softmax, axis=1), self.topic_embeddings), axis=1, name='last_h_topic_emb') #temp = tf.nn.embedding_lookup(self.topic_embeddings, top_k_h_indices) #self.last_h_topic_emb = tf.reduce_sum(temp, axis=1, name='last_h_topic_emb') #self.last_h_topic_emb = tf.reshape(temp, [self.input_batch_size, self.topic_emb_size], name='last_h_topic_emb') #self.last_h_topic_emb = tf.concat([self.last_h_topic_emb, last_h_softmax], axis=1) #self.last_h_topic_emb = tf.concat([self.last_h_topic_emb, self.last_h], axis=1) else: #eps = tf.random_normal((self.n_sample*self.batch_size, self.n_topic), mean=0.0, stddev=1.0) eps = tf.random_normal((self.n_sample*self.input_batch_size, self.n_topic), mean=0.0, stddev=1.0, seed=seed) eps_list = tf.split(0, self.n_sample, eps) recons_loss_list = [] for i in range(self.n_sample): if i > 0: tf.get_variable_scope().reuse_variables() curr_eps = eps_list[i] doc_vec = tf.multiply(tf.exp(self.logsigm), curr_eps) + self.mean logits = tf.nn.log_softmax(utils.nvdm_linear(doc_vec, self.vocab_size, scope='projection')) recons_loss_list.append(-tf.reduce_sum(tf.multiply(logits, self.x), 1)) self.recons_loss = tf.add_n(recons_loss_list) / self.n_sample if params.use_sent_topic_rep: if self.n_sample == 1: eps_sent = tf.random_normal((self.batch_size_sent, self.n_topic), mean=0.0, stddev=1.0, seed=seed) self.last_h_sent = tf.add(tf.multiply(tf.exp(self.logsigm_sent), eps_sent), self.mean_sent, name='sent_hidden') self.last_h_sent = tf.reshape(self.last_h_sent, [self.input_batch_size_sent, self.input_batch_len_sent, self.n_topic]) if params.use_topic_embedding: #self.last_h_topic_emb_sent = utils.nvdm_linear(tf.nn.softmax(self.last_h_sent, axis=1), self.vocab_size, scope='projection') if params.use_k_topics > 0: # Masking sentence topic proportion vector top_k_h_sent_values, top_k_h_sent_indices = tf.nn.top_k(self.last_h_sent, k=params.use_k_topics, sorted=False, name='top_k_h_sent') row_numbers_sent = tf.tile(tf.expand_dims(tf.range(0, self.batch_size_sent), 1), [1, params.use_k_topics], name='row_numbers_sent') full_indices_sent = tf.concat([tf.expand_dims(row_numbers_sent, -1), tf.expand_dims(top_k_h_sent_indices, -1)], axis=2) full_indices_sent = tf.reshape(full_indices_sent, [-1, 2], name='full_indices_sent') #mask_updates_sent = tf.ones([self.batch_size_sent * params.use_k_topics], dtype=tf.float32, name='mask_updates_sent') #new_mask_sent = tf.scatter_nd(full_indices_sent, mask_updates_sent, [self.batch_size_sent, self.n_topic], name='new_mask_sent') #last_h_softmax_sent = tf.multiply(tf.nn.softmax(self.last_h_sent, axis=1), new_mask_sent, name='last_h_softmax_sent') last_h_softmax_sent = tf.scatter_nd(full_indices_sent, tf.reshape(tf.nn.softmax(top_k_h_sent_values, axis=1), [-1]), [self.batch_size_sent, self.n_topic], name='last_h_softmax_sent') else: last_h_softmax_sent = tf.nn.softmax(self.last_h_sent, axis=2, name='last_h_softmax_sent') self.last_h_topic_emb_sent = tf.matmul(last_h_softmax_sent, self.topic_embeddings, name='last_h_topic_emb_sent') #self.last_h_topic_emb_sent = tf.concat([self.last_h_topic_emb_sent, self.last_h_sent], axis=2, name='last_h_topic_emb_sent') #self.last_h_topic_emb_sent = tf.concat([self.last_h_topic_emb_sent, last_h_softmax_sent], axis=2, name='last_h_topic_emb_sent') #self.last_h_topic_emb_sent = tf.reshape(self.last_h_topic_emb_sent, [self.input_batch_size_sent, self.input_batch_len_sent, self.vocab_size]) else: print("Error: model_NVDM.py - Decoder") sys.exit() #self.objective_TM = self.recons_loss + self.kld #self.objective_TM = tf.add(self.recons_loss, self.kld, name='TM_loss_unnormed') self.final_loss = tf.add(self.recons_loss, self.kld, name='TM_loss_unnormed') self.objective_TM = tf.reduce_mean(self.final_loss) if params.TM_uniqueness_loss: ## NVDM topic uniqueness loss eye = tf.constant(np.eye(self.n_topic), dtype=tf.float32) topicnorm = matrix / tf.sqrt(tf.reduce_sum(tf.square(self.decoding_matrix), 1, keepdims=True)) uniqueness = tf.reduce_max(tf.square(tf.matmul(topicnorm, tf.transpose(topicnorm)) - eye)) self.objective_TM += params.alpha_uniqueness * uniqueness optimizer = tf.train.AdamOptimizer(learning_rate=self.learning_rate) #fullvars = tf.trainable_variables() #enc_vars = utils.variable_parser(fullvars, 'TM_encoder') enc_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='TM_encoder') #dec_vars = utils.variable_parser(fullvars, 'TM_decoder') dec_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='TM_decoder') enc_grads = tf.gradients(self.objective_TM, enc_vars) dec_grads = tf.gradients(self.objective_TM, dec_vars) self.optim_enc = optimizer.apply_gradients(zip(enc_grads, enc_vars)) self.optim_dec = optimizer.apply_gradients(zip(dec_grads, dec_vars)) ## Pretraining of NVDM-TM def pretrain(self, dataset, params, session, #training_epochs=1000, alternate_epochs=10): #training_epochs=100, alternate_epochs=10): training_epochs=20, alternate_epochs=10): #training_epochs=1, alternate_epochs=1): log_dir = os.path.join(params.model, 'logs_nvdm_pretrain') model_dir_ir_nvdm = os.path.join(params.model, 'model_ir_nvdm_pretrain') model_dir_ppl_nvdm = os.path.join(params.model, 'model_ppl_nvdm_pretrain') #model_dir_supervised = os.path.join(params.model, 'model_supervised_nvdm_pretrain') if not os.path.isdir(log_dir): os.mkdir(log_dir) if not os.path.isdir(model_dir_ir_nvdm): os.mkdir(model_dir_ir_nvdm) if not os.path.isdir(model_dir_ppl_nvdm): os.mkdir(model_dir_ppl_nvdm) #if not os.path.isdir(model_dir_supervised): # os.mkdir(model_dir_supervised) train_url = os.path.join(params.dataset, 'training_nvdm_docs_non_replicated.csv') dev_url = os.path.join(params.dataset, 'validation_nvdm_docs_non_replicated.csv') test_url = os.path.join(params.dataset, 'test_nvdm_docs_non_replicated.csv') train_set, train_count = utils.data_set(train_url) test_set, test_count = utils.data_set(test_url) dev_set, dev_count = utils.data_set(dev_url) #dev_batches = utils.create_batches(len(dev_set), self.batch_size, shuffle=False) dev_batches = utils.create_batches(len(dev_set), 512, shuffle=False) #test_batches = utils.create_batches(len(test_set), self.batch_size, shuffle=False) test_batches = utils.create_batches(len(test_set), 512, shuffle=False) training_labels = np.array( [[y] for y, _ in dataset.rows('training_nvdm_docs_non_replicated', num_epochs=1)] ) validation_labels = np.array( [[y] for y, _ in dataset.rows('validation_nvdm_docs_non_replicated', num_epochs=1)] ) test_labels = np.array( [[y] for y, _ in dataset.rows('test_nvdm_docs_non_replicated', num_epochs=1)] ) patience = params.pretrain_patience patience_count = 0 best_dev_ppl = np.inf best_test_ppl = np.inf best_val_nvdm_IR = -1.0 best_test_nvdm_IR = -1.0 enc_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='TM_encoder') dec_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='TM_decoder') pretrain_saver = tf.train.Saver(enc_vars + dec_vars) ppl_model = False ir_model = False for epoch in range(training_epochs): epoch_counter = epoch + 1 #train_batches = utils.create_batches(len(train_set), self.batch_size, shuffle=True) train_batches = utils.create_batches(len(train_set), 512, shuffle=True) #------------------------------- # train for switch in range(0, 2): if switch == 0: optim = self.optim_dec print_mode = 'updating decoder' else: optim = self.optim_enc print_mode = 'updating encoder' for i in range(alternate_epochs): print_ppx, print_ppx_perdoc, print_kld = self.run_epoch( train_batches, train_set, train_count, params, session, optimizer=optim ) print('| Epoch train: {:d} |'.format(epoch_counter), print_mode, '{:d}'.format(i), '| Corpus Perplexity: {:.5f}'.format(print_ppx), # perplexity for all docs '| Per doc Perplexity: {:.5f}'.format(print_ppx_perdoc), # perplexity for per doc '| KLD: {:.5}'.format(print_kld)) if epoch_counter >= 1 and epoch_counter % params.nvdm_validation_ppl_freq == 0: ppl_model = True print_ppx, print_ppx_perdoc, print_kld = self.run_epoch( dev_batches, dev_set, dev_count, params, session ) if print_ppx_perdoc < best_dev_ppl: best_dev_ppl = print_ppx_perdoc print("Saving best model.") pretrain_saver.save(session, model_dir_ppl_nvdm + '/model_ppl_nvdm_pretrain', global_step=1) patience_count = 0 else: patience_count += 1 print('| Epoch dev: {:d} |'.format(epoch_counter), '| Corpus Perplexity: {:.9f} |'.format(print_ppx), '| Per doc Perplexity: {:.5f} |'.format(print_ppx_perdoc), '| KLD: {:.5} |'.format(print_kld), '| Best dev PPL: {:.5} |'.format(best_dev_ppl)) with open(log_dir + "/logs_ppl_nvdm_pretrain.txt", "a") as f: f.write('| Epoch Val: {:d} || Val Corpus PPL: {:.9f} || Val Per doc PPL: {:.5f} || Best Val PPL: {:.5} || KLD Val: {:.5} |\n'.format(epoch+1, print_ppx, print_ppx_perdoc, best_dev_ppl, print_kld)) if epoch_counter >= 1 and epoch_counter % params.nvdm_validation_ir_freq == 0: ir_model = True validation_vectors_nvdm = self.hidden_vectors( dataset.batches_nvdm_LM('validation_nvdm_docs_non_replicated', params.batch_size, params.TM_vocab_length, num_epochs=1, multilabel=params.multi_label), params, session ) training_vectors_nvdm = self.hidden_vectors( dataset.batches_nvdm_LM('training_nvdm_docs_non_replicated', params.batch_size, params.TM_vocab_length, num_epochs=1, multilabel=params.multi_label), params, session ) val_nvdm_ir, _ = eval.evaluate( training_vectors_nvdm, validation_vectors_nvdm, training_labels, validation_labels, recall=[0.02], num_classes=params.num_classes, multi_label=params.multi_label ) val_nvdm_ir = val_nvdm_ir[0] # Saving model and Early stopping on IR if val_nvdm_ir > best_val_nvdm_IR: best_val_nvdm_IR = val_nvdm_ir print('saving: {}'.format(model_dir_ir_nvdm)) pretrain_saver.save(session, model_dir_ir_nvdm + '/model_ir_nvdm_pretrain', global_step=1) # patience_count = 0 #else: # patience_count += 1 print("Epoch: %i, Val NVDM IR: %s, best val NVDM IR: %s\n" % (epoch_counter, val_nvdm_ir, best_val_nvdm_IR)) # logging information with open(log_dir + "/logs_ir_nvdm_pretrain.txt", "a") as f: f.write("Epoch: %i, Val NVDM IR: %s, best val NVDM IR: %s\n" % (epoch_counter, val_nvdm_ir, best_val_nvdm_IR)) if patience_count > patience: print("Early stopping.") break if ppl_model: print("Calculating Test PPL.") pretrain_saver.restore(session, tf.train.latest_checkpoint(model_dir_ppl_nvdm)) print_ppx, print_ppx_perdoc, print_kld = self.run_epoch( test_batches, test_set, test_count, params, session ) print('| Corpus Perplexity: {:.9f}'.format(print_ppx), '| Per doc Perplexity: {:.5f}'.format(print_ppx_perdoc), '| KLD: {:.5}'.format(print_kld)) with open(log_dir + "/logs_ppl_nvdm_pretrain.txt", "a") as f: f.write('\n\nTest Corpus PPL: {:.9f} || Test Per doc PPL: {:.5f} || KLD Test: {:.5} |\n'.format(print_ppx, print_ppx_perdoc, print_kld)) if ir_model: print("Calculating Test IR.") pretrain_saver.restore(session, tf.train.latest_checkpoint(model_dir_ir_nvdm)) test_vectors_nvdm = self.hidden_vectors( dataset.batches_nvdm_LM('test_nvdm_docs_non_replicated', params.batch_size, params.TM_vocab_length, num_epochs=1, multilabel=params.multi_label), params, session ) test_nvdm_ir, _ = eval.evaluate( training_vectors_nvdm, test_vectors_nvdm, training_labels, test_labels, recall=[0.02], num_classes=params.num_classes, multi_label=params.multi_label ) test_nvdm_ir = test_nvdm_ir[0] print("Epoch: %i, Test NVDM IR: %s\n" % (epoch_counter, test_nvdm_ir)) # logging information with open(log_dir + "/logs_ir_nvdm_pretrain.txt", "a") as f: f.write("Epoch: %i, Test NVDM IR: %s\n" % (epoch_counter, test_nvdm_ir)) def hidden_vectors(self, data, params, session): vecs = [] for y, x, count, mask in data: feed_dict = { self.x.name: x, self.mask.name: mask#, #self.input_batch_size: x.shape[0] } vecs.extend( session.run([self.last_h], feed_dict=feed_dict)[0] ) return np.array(vecs) def run_epoch(self, input_batches, input_set, input_count, params, session, optimizer=None): loss_sum = 0.0 ppx_sum = 0.0 kld_sum = 0.0 word_count = 0 doc_count = 0 for idx_batch in input_batches: data_batch, count_batch, mask = utils.fetch_data( input_set, input_count, idx_batch, self.vocab_size) #import pdb; pdb.set_trace() input_feed = {self.x.name: data_batch, self.mask.name: mask}#, #self.input_batch_size: data_batch.shape[0]} if not optimizer is None: _, (loss, kld) = session.run((optimizer, [self.final_loss, self.kld]), input_feed) else: loss, kld = session.run([self.final_loss, self.kld], input_feed) #import pdb; pdb.set_trace() loss_sum += np.sum(loss) kld_sum += np.sum(kld) / np.sum(mask) word_count += np.sum(count_batch) # to avoid nan error count_batch = np.add(count_batch, 1e-12) # per document loss ppx_sum += np.sum(np.divide(loss, count_batch)) doc_count += np.sum(mask) print_ppx = np.exp(loss_sum / word_count) print_ppx_perdoc = np.exp(ppx_sum / doc_count) print_kld = kld_sum/len(input_batches) return print_ppx, print_ppx_perdoc, print_kld def run_epoch_v2(self, data, params, session): # train_y, train_x, train_count, train_mask = dataset.batches_nvdm_LM(training_data_filename_TM, params.batch_size, params.TM_vocab_length, num_epochs=1, multilabel=params.multi_label) # val_y, val_x, val_count, val_mask = dataset.batches_nvdm_LM(validation_data_filename_TM, params.batch_size, params.TM_vocab_length, num_epochs=1, multilabel=params.multi_label) # test_y, test_x, test_count, test_mask = dataset.batches_nvdm_LM(test_data_filename_TM, params.batch_size, params.TM_vocab_length, num_epochs=1, multilabel=params.multi_label) kld_sum = [] this_nvdm_loss_normed = [] this_nvdm_loss_unnormed = [] this_nvdm_words = [] for nvdm_y, nvdm_x, nvdm_count, nvdm_mask in data: nvdm_feed_dict = { model.topic_model.x.name: nvdm_x, model.topic_model.mask.name: nvdm_mask#, #model.topic_model.input_batch_size: nvdm_x.shape[0] } if params.supervised: sys.exit() else: loss, kld = session.run([model.topic_model.final_loss, model.topic_model.kld], feed_dict=nvdm_feed_dict) nvdm_count = np.add(nvdm_count, 1e-12) this_nvdm_loss_normed.extend(np.divide(loss, nvdm_count)) this_nvdm_loss_unnormed.extend(loss) this_nvdm_words.append(np.sum(nvdm_count)) kld_sum.append(np.sum(kld) / np.sum(nvdm_mask)) total_nvdm_nll = np.mean(this_nvdm_loss_unnormed) #total_nvdm_ppl = np.exp(np.sum(this_nvdm_loss_unnormed) / np.sum(this_val_nvdm_words)) total_nvdm_ppl = np.exp(np.mean(this_nvdm_loss_normed)) print_kld = np.mean(kld_sum) return total_nvdm_nll, total_nvdm_ppl, print_kld
[]
2024-01-10
YatinChaudhary/TopicBERT
TopicDistilBERT~src~model_TM~model_NVDM_TF2.py
from __future__ import print_function import os, sys, csv import numpy as np import tensorflow.compat.v1 as tf1 import math, random from collections import Counter from sklearn.preprocessing import MultiLabelBinarizer import sklearn.metrics.pairwise as pw from gensim.models import CoherenceModel from gensim.corpora.dictionary import Dictionary #tf1.disable_v2_behavior() os.environ['CUDA_VISIBLE_DEVICES'] = '0' seed = 42 tf_op_seed = 1234 random.seed(seed) np.random.seed(seed) #tf1.set_random_seed(seed) def create_initializer(self, initializer_range=0.02): return tf1.truncated_normal_initializer(stddev=initializer_range, seed=tf_op_seed) def format_doc(doc): new_doc_tokens = [] counts = Counter(doc.split()) for index, count in counts.items(): new_doc_tokens.append(str(index) + ":" + str(count)) new_doc = " ".join(new_doc_tokens) return new_doc def data_set(data_url): data = [] word_count = [] fin = open(data_url) csv_reader = csv.reader(fin, delimiter=",") #while True: # line = fin.readline() for index, line in enumerate(csv_reader): if not line: break line = format_doc(line[1].strip()) id_freqs = line.split() doc = {} count = 0 #for id_freq in id_freqs[1:]: for id_freq in id_freqs: items = id_freq.split(':') # python starts from 0 #doc[int(items[0])-1] = int(items[1]) doc[int(items[0])] = int(items[1]) count += int(items[1]) if count > 0: data.append(doc) word_count.append(count) fin.close() return data, word_count def get_initializers(scope_name, vars_dict): matrix_var_name = scope_name + "/Matrix:0" bias_var_name = scope_name + "/Bias:0" if matrix_var_name in vars_dict: matrix_initializer = vars_dict[matrix_var_name] print("Matrix initialized for {}".format(scope_name)) else: matrix_initializer = None if bias_var_name in vars_dict: bias_initializer = vars_dict[bias_var_name] print("Bias initialized for {}".format(scope_name)) else: bias_initializer = None return matrix_initializer, bias_initializer class NVDM(object): """ Neural Variational Document Model -- BOW VAE. """ def __init__(self, params, non_linearity=tf1.nn.sigmoid): self.vocab_size = params.TM_vocab_length self.n_hidden = params.hidden_size_TM self.n_topic = params.n_topic self.n_sample = params.n_sample self.learning_rate = params.learning_rate self.non_linearity = non_linearity #self.x = tf1.placeholder(tf1.float32, [None, self.vocab_size], name='x') #self.mask = tf1.placeholder(tf1.float32, [None], name='mask') # mask paddings input_size = self.vocab_size ## pretrained_weights if params.TM_pretrained_model_path: with tf1.Session() as sess: saver_ir = tf1.train.import_meta_graph(os.path.join(params.TM_pretrained_model_path, "model_ppl_nvdm_pretrain", "model_ppl_nvdm_pretrain-1.meta")) saver_ir.restore(sess, os.path.join(params.TM_pretrained_model_path, "model_ppl_nvdm_pretrain", "model_ppl_nvdm_pretrain-1")) enc_var_names = [var.name for var in tf1.get_collection(tf1.GraphKeys.TRAINABLE_VARIABLES, scope='TM_encoder')] enc_var_values = {var_name: sess.run(var_name) for var_name in enc_var_names} dec_var_names = [var.name for var in tf1.get_collection(tf1.GraphKeys.TRAINABLE_VARIABLES, scope='TM_decoder')] dec_var_values = {var_name: sess.run(var_name) for var_name in dec_var_names} #with open("input_matrix.npy", "wb") as f: # np.save(f, enc_var_values["TM_encoder/Linear/l0/Matrix:0"]) #with open("output_matrix.npy", "wb") as f: # np.save(f, dec_var_values["TM_decoder/projection/Matrix:0"]) ## encoder parameters self.encoder_params = [] with tf1.variable_scope('TM_encoder', reuse=tf1.AUTO_REUSE): # mlp parameters num_mlp_layers = [self.n_hidden] with tf1.variable_scope('Linear', reuse=tf1.AUTO_REUSE): self.mlp_params = [] for l, hidden_size in enumerate(num_mlp_layers): matrix_initializer, bias_initializer = get_initializers("TM_encoder/Linear/" + "l" + str(l), enc_var_values) self.mlp_params.append(self.nvdm_linear_params(input_size, hidden_size, scope='l'+str(l), matrix_initializer=None, bias_initializer=None)) input_size = hidden_size self.encoder_params.extend(self.mlp_params[-1]) # mean parameters matrix_initializer, bias_initializer = get_initializers("TM_encoder/mean", enc_var_values) self.mean_params = self.nvdm_linear_params(input_size, self.n_topic, scope="mean", matrix_initializer=matrix_initializer, bias_initializer=bias_initializer) self.encoder_params.extend(self.mean_params) # sigma parameters matrix_initializer, bias_initializer = get_initializers("TM_encoder/logsigm", enc_var_values) self.logsigm_params = self.nvdm_linear_params(input_size, self.n_topic, scope="logsigm", bias_start_zero=True, matrix_start_zero=True, matrix_initializer=matrix_initializer, bias_initializer=bias_initializer) self.encoder_params.extend(self.logsigm_params) ## decoder params with tf1.variable_scope('TM_decoder', reuse=tf1.AUTO_REUSE): matrix_initializer, bias_initializer = get_initializers("TM_decoder/projection", dec_var_values) self.decoder_params = self.nvdm_linear_params(self.n_topic, self.vocab_size, scope='projection', matrix_initializer=matrix_initializer, bias_initializer=bias_initializer) self.decoder_params = list(self.decoder_params) ## optimizer self.optimizer = tf1.train.AdamOptimizer(learning_rate=self.learning_rate) @tf1.function def forward(self, input, mask): ## encoder # mlp computation enc_vec = input for layer_params in self.mlp_params: enc_vec = self.non_linearity(tf1.matmul(enc_vec, layer_params[0]) + layer_params[1]) # mean computation mean = tf1.matmul(enc_vec, self.mean_params[0]) + self.mean_params[1] # sigma computation logsigm = tf1.matmul(enc_vec, self.logsigm_params[0]) + self.logsigm_params[1] # KLD loss kld = -0.5 * tf1.reduce_sum(1 - tf1.square(mean) + 2 * logsigm - tf1.exp(2 * logsigm), 1) kld = tf1.multiply(mask, kld, name='kld') # mask paddings ## decoder input_batch_size = tf1.shape(input)[0] if self.n_sample == 1: eps = tf1.random_normal((input_batch_size, self.n_topic), mean=0.0, stddev=1.0, seed=seed) doc_vec = tf1.add(tf1.multiply(tf1.exp(logsigm), eps), mean, name='doc_hidden') logits = tf1.matmul(doc_vec, self.decoder_params[0]) + self.decoder_params[1] logits = tf1.nn.log_softmax(logits) recons_loss = - tf1.reduce_sum(tf1.multiply(logits, input), 1) else: eps = tf1.random_normal((self.n_sample*input_batch_size, self.n_topic), mean=0.0, stddev=1.0, seed=seed) eps_list = tf1.split(eps, self.n_sample, 0) recons_loss_list = [] doc_vec_list = [] for i in range(self.n_sample): if i > 0: tf1.get_variable_scope().reuse_variables() curr_eps = eps_list[i] doc_vec = tf1.add(tf1.multiply(tf1.exp(logsigm), curr_eps), mean) doc_vec_list.append(doc_vec) logits = tf1.matmul(doc_vec, self.decoder_params[0]) + self.decoder_params[1] logits = tf1.nn.log_softmax(logits) recons_loss_list.append(-tf1.reduce_sum(tf1.multiply(logits, self.x), 1)) doc_vec = tf1.add_n(doc_vec_list) / self.n_sample recons_loss = tf1.add_n(recons_loss_list) / self.n_sample #self.objective_TM = self.recons_loss + self.kld #self.objective_TM = tf1.add(self.recons_loss, self.kld, name='TM_loss_unnormed') final_loss = tf1.add(recons_loss, kld, name='TM_loss_unnormed') objective_TM = tf1.reduce_mean(final_loss) """ enc_grads = tf1.gradients(objective_TM, self.enc_vars) dec_grads = tf1.gradients(objective_TM, self.dec_vars) self.optim_enc = optimizer.apply_gradients(zip(enc_grads, enc_vars)) self.optim_dec = optimizer.apply_gradients(zip(dec_grads, dec_vars)) """ return doc_vec, objective_TM def nvdm_linear_params( self, input_size, output_size, no_bias=False, bias_start_zero=False, matrix_start_zero=False, scope=None, get_matrix=False, matrix_initializer=None, bias_initializer=None): with tf1.variable_scope(scope or 'Linear', reuse=tf1.AUTO_REUSE): if matrix_start_zero: matrix_initializer = tf1.constant_initializer(0) matrix = tf1.get_variable('Matrix', [input_size, output_size], initializer=matrix_initializer) else: if matrix_initializer is None: matrix_initializer = tf1.glorot_uniform_initializer(seed=tf_op_seed) matrix = tf1.get_variable('Matrix', [input_size, output_size], initializer=matrix_initializer) else: matrix = tf1.get_variable('Matrix', initializer=matrix_initializer) if bias_start_zero: bias_initializer = tf1.constant_initializer(0) bias = tf1.get_variable('Bias', [output_size], initializer=bias_initializer) else: if bias_initializer is None: bias_initializer = tf1.glorot_uniform_initializer(seed=tf_op_seed) bias = tf1.get_variable('Bias', [output_size], initializer=bias_initializer) else: bias = tf1.get_variable('Bias', initializer=bias_initializer) return matrix, bias def fetch_data(self, data, count, idx_batch): batch_size = len(idx_batch) data_batch = np.zeros((batch_size, self.vocab_size), dtype=np.float32) count_batch = np.zeros(batch_size, dtype=np.int32) mask = np.zeros(batch_size, dtype=np.float32) indices = [] values = [] for i, doc_id in enumerate(idx_batch): if doc_id != -1: for word_id, freq in data[doc_id].items(): data_batch[i, word_id] = freq count_batch[i] = count[doc_id] mask[i]=1.0 return data_batch, count_batch, mask
[]
2024-01-10
YatinChaudhary/TopicBERT
TopicBERT~topic_bert~nvdm~model_NVDM_supervised.py
"""NVDM Tensorflow implementation by Yishu Miao""" from __future__ import print_function import numpy as np import tensorflow as tf import math import os from nvdm import utils from sklearn.metrics import precision_recall_fscore_support from sklearn.metrics import accuracy_score #import model.utils as utils #from sklearn.preprocessing import MultiLabelBinarizer #import sklearn.metrics.pairwise as pw #from gensim.models import CoherenceModel #from gensim.corpora.dictionary import Dictionary #import model.evaluate as eval #import model.data_lstm as data seed = 42 tf_op_seed = 1234 np.random.seed(seed) tf.set_random_seed(seed) #learning_rate = 5e-5 #batch_size = 64 #n_hidden = 256 #fixed_topic_params #n_topic = 150 #n_sample = 1 #non_linearity = tf.nn.tanh non_linearity = tf.nn.sigmoid ###### class NVDM(object): """ Neural Variational Document Model -- BOW VAE. """ #def __init__(self, topic_params, prior_embeddings=None, initializer_nvdm=None): def __init__(self, topic_params, x, mask , topic_vocab_size, label_ids, n_labels, prior_embeddings=None, initializer_nvdm=None): #self.vocab_size = topic_params.TM_vocab_length self.vocab_size = topic_vocab_size self.n_hidden = topic_params.hidden_size_TM self.n_topic = topic_params.n_topic self.n_sample = topic_params.n_sample self.non_linearity = non_linearity self.learning_rate = topic_params.nvdm_learning_rate self.batch_size = topic_params.nvdm_batch_size self.x = x self.mask = mask self.label_ids = label_ids self.n_labels = n_labels #self.x = tf.placeholder(tf.float32, [None, self.vocab_size], name='x') #self.mask = tf.placeholder(tf.float32, [None], name='mask') # mask paddings #if topic_params.use_sent_topic_rep: #self.x_sent = tf.placeholder(tf.float32, [None, None, self.vocab_size], name='x_sent') #if topic_params.use_topic_embedding: # self.x_doc_mask = tf.placeholder(tf.float32, [None, self.vocab_size], name='x_doc_mask') #self.input_batch_size = tf.placeholder(tf.int32, (), name='input_batch_size') self.input_batch_size = tf.shape(self.x)[0] #if topic_params.use_sent_topic_rep: # self.input_batch_size_sent = tf.shape(self.x_sent)[0] # self.input_batch_len_sent = tf.shape(self.x_sent)[1] # self.batch_size_sent = self.input_batch_size_sent * self.input_batch_len_sent # encoder with tf.variable_scope('TM_encoder', reuse=tf.AUTO_REUSE): self.enc_vec = utils.mlp(self.x, [self.n_hidden], self.non_linearity, initializer=initializer_nvdm[0]) #self.enc_vec = utils.mlp(self.x, [self.n_hidden, self.n_hidden], self.non_linearity, initializer=initializer_nvdm[0]) #self.enc_vec = utils.mlp(self.x, [self.n_hidden, self.n_hidden], self.non_linearity) self.mean = utils.nvdm_linear(self.enc_vec, self.n_topic, scope='mean', matrix_initializer=initializer_nvdm[1][0], bias_initializer=initializer_nvdm[1][1]) self.logsigm = utils.nvdm_linear(self.enc_vec, self.n_topic, bias_start_zero=True, matrix_start_zero=True, scope='logsigm', matrix_initializer=initializer_nvdm[2][0], bias_initializer=initializer_nvdm[2][1]) self.kld = -0.5 * tf.reduce_sum(1 - tf.square(self.mean) + 2 * self.logsigm - tf.exp(2 * self.logsigm), 1) #self.kld = self.mask*self.kld # mask paddings self.kld = tf.multiply(self.mask, self.kld, name='kld') # mask paddings #if topic_params.use_sent_topic_rep: # self.x_sent_reshape = tf.reshape(self.x_sent, [-1, self.vocab_size]) # self.enc_vec_sent = utils.mlp(self.x_sent_reshape, [self.n_hidden], self.non_linearity) # #self.enc_vec = utils.mlp(self.x, [self.n_hidden, self.n_hidden], self.non_linearity) # self.mean_sent = utils.nvdm_linear(self.enc_vec_sent, self.n_topic, scope='mean') # self.logsigm_sent = utils.nvdm_linear(self.enc_vec_sent, # self.n_topic, # bias_start_zero=True, # matrix_start_zero=True, # scope='logsigm') #if topic_params.prior_emb_for_topics: # W_prior = tf.get_variable( # 'embeddings_TM_prior', # dtype=tf.float32, # initializer=prior_embeddings, # trainable=False # ) """ W_prior_proj = tf.get_variable( 'embeddings_TM_prior_proj', [prior_embeddings.shape[1], self.n_topic], dtype=tf.float32, trainable=False ) W_prior = tf.matmul(W_prior, W_prior_proj, name='W_prior_projected') """ with tf.variable_scope('TM_decoder', reuse=tf.AUTO_REUSE): if self.n_sample == 1: eps = tf.random_normal((self.input_batch_size, self.n_topic), mean=0.0, stddev=1.0, seed=seed) #doc_vec = tf.mul(tf.exp(self.logsigm), eps) + self.mean ## Hidden representation to be used in BERT self.doc_vec = tf.add(tf.multiply(tf.exp(self.logsigm), eps), self.mean, name='doc_hidden') self.last_h = self.doc_vec logits_projected, self.decoding_matrix = utils.nvdm_linear(self.doc_vec, self.vocab_size, scope='projection', get_matrix=True, matrix_initializer=initializer_nvdm[3][0], bias_initializer=initializer_nvdm[3][1]) logits = tf.nn.log_softmax(logits_projected) self.recons_loss = -tf.reduce_sum(tf.multiply(logits, self.x), 1) sup_logits = utils.nvdm_linear(self.doc_vec, self.n_labels, scope='supervised') if topic_params.multilabel: self.sup_prob = tf.nn.sigmoid(sup_logits) self.supervised_loss = tf.multiply(self.mask, tf.reduce_sum(tf.losses.sigmoid_cross_entropy(self.label_ids, sup_logits , reduction="none"), axis=-1)) else: self.sup_prob = tf.nn.softmax(sup_logits, axis=-1) log_prob = tf.nn.log_softmax(sup_logits) self.one_hot_labels = tf.one_hot(self.label_ids, depth=n_labels, on_value = 1.0, off_value = 0.0, dtype=tf.float32) self.supervised_loss = -tf.reduce_sum(tf.multiply(log_prob, self.one_hot_labels), 1) """ if topic_params.use_topic_embedding: #self.last_h_topic_emb = utils.nvdm_linear(tf.nn.softmax(self.last_h, axis=1), self.vocab_size, scope='projection') #self.top_k = tf.nn.top_k(self.decoding_matrix, k=topic_params.use_k_topic_words, sorted=False) topics_masked = tf.multiply(tf.expand_dims(self.x_doc_mask, axis=1), tf.expand_dims(self.decoding_matrix, axis=0), name='topics_masked') self.top_k = tf.nn.top_k(topics_masked, k=topic_params.use_k_topic_words, sorted=False) if topic_params.prior_emb_for_topics: self.top_k_embeddings = tf.nn.embedding_lookup(W_prior, self.top_k.indices) self.topic_emb_size = prior_embeddings.shape[1] #self.topic_emb_size = prior_embeddings.shape[1] * topic_params.use_k_topics #self.topic_emb_size = prior_embeddings.shape[1] + self.n_topic #self.topic_emb_size = self.n_topic #self.topic_emb_size = self.n_topic * 2 else: self.top_k_embeddings = tf.nn.embedding_lookup(tf.transpose(self.decoding_matrix), self.top_k.indices) #self.topic_emb_size = self.n_topic self.topic_emb_size = self.n_topic * 2 #self.top_k_embeddings = tf.multiply(tf.expand_dims(tf.nn.softmax(self.top_k.values, axis=1), axis=2), self.top_k_embeddings) #self.temp_1 = tf.expand_dims(tf.nn.softmax(self.top_k.values, axis=2), axis=2) #self.topic_embeddings = tf.squeeze(tf.matmul(self.temp_1, self.top_k_embeddings), axis=2, name='topic_embeddings') #self.topic_embeddings = tf.reduce_sum(self.top_k_embeddings, axis=1, name='topic_embeddings') #self.topic_embeddings = tf.reduce_mean(self.top_k_embeddings, axis=1, name='topic_embeddings') self.topic_embeddings = tf.reduce_mean(self.top_k_embeddings, axis=2, name='topic_embeddings') if topic_params.use_k_topics > 0: # Masking document topic proportion vector top_k_h_values, top_k_h_indices = tf.nn.top_k(self.last_h, k=topic_params.use_k_topics, sorted=False, name='top_k_h') row_numbers = tf.tile(tf.expand_dims(tf.range(0, self.input_batch_size), 1), [1, topic_params.use_k_topics], name='row_numbers') full_indices = tf.concat([tf.expand_dims(row_numbers, -1), tf.expand_dims(top_k_h_indices, -1)], axis=2) full_indices = tf.reshape(full_indices, [-1, 2], name='full_indices') #mask_updates = tf.ones([self.input_batch_size * topic_params.use_k_topics], dtype=tf.float32, name='mask_updates') #new_mask = tf.scatter_nd(full_indices, mask_updates, [self.input_batch_size, self.n_topic], name='new_mask') #last_h_softmax = tf.multiply(tf.nn.softmax(self.last_h, axis=1), new_mask, name='last_h_softmax') last_h_softmax = tf.scatter_nd( full_indices, tf.reshape(tf.nn.softmax(top_k_h_values, axis=1), [-1]), #tf.ones([self.input_batch_size * topic_params.use_k_topics], dtype=tf.float32), [self.input_batch_size, self.n_topic], name='last_h_softmax' ) else: last_h_softmax = tf.nn.softmax(self.last_h, axis=1, name='last_h_softmax') #last_h_softmax = self.last_h #self.last_h_topic_emb = tf.matmul(last_h_softmax, self.topic_embeddings, name='last_h_topic_emb') self.last_h_topic_emb = tf.squeeze(tf.matmul(tf.expand_dims(last_h_softmax, axis=1), self.topic_embeddings), axis=1, name='last_h_topic_emb') #temp = tf.nn.embedding_lookup(self.topic_embeddings, top_k_h_indices) #self.last_h_topic_emb = tf.reduce_sum(temp, axis=1, name='last_h_topic_emb') #self.last_h_topic_emb = tf.reshape(temp, [self.input_batch_size, self.topic_emb_size], name='last_h_topic_emb') #self.last_h_topic_emb = tf.concat([self.last_h_topic_emb, last_h_softmax], axis=1) #self.last_h_topic_emb = tf.concat([self.last_h_topic_emb, self.last_h], axis=1) """ else: #eps = tf.random_normal((self.n_sample*self.batch_size, self.n_topic), mean=0.0, stddev=1.0) """ eps = tf.random_normal((self.n_sample*self.input_batch_size, self.n_topic), mean=0.0, stddev=1.0, seed=seed) eps_list = tf.split(eps, self.n_sample, 0) recons_loss_list = [] for i in range(self.n_sample): if i > 0: tf.get_variable_scope().reuse_variables() curr_eps = eps_list[i] doc_vec = tf.multiply(tf.exp(self.logsigm), curr_eps) + self.mean logits = tf.nn.log_softmax(utils.nvdm_linear(doc_vec, self.vocab_size, scope='projection')) recons_loss_list.append(-tf.reduce_sum(tf.multiply(logits, self.x), 1)) self.recons_loss = tf.add_n(recons_loss_list) / self.n_sample """ eps = tf.random_normal((self.n_sample*self.input_batch_size, self.n_topic), mean=0.0, stddev=1.0, seed=seed) eps_list = tf.split(eps, self.n_sample, 0) recons_loss_list = [] doc_vec_list = [] for i in range(self.n_sample): if i > 0: tf.get_variable_scope().reuse_variables() curr_eps = eps_list[i] doc_vec = tf.add(tf.multiply(tf.exp(self.logsigm), curr_eps), self.mean) doc_vec_list.append(doc_vec) logits = tf.nn.log_softmax(utils.nvdm_linear(doc_vec, self.vocab_size, scope='projection')) recons_loss_list.append(-tf.reduce_sum(tf.multiply(logits, self.x), 1)) self.recons_loss = tf.add_n(recons_loss_list) / self.n_sample self.doc_vec = tf.add_n(doc_vec_list) / self.n_sample self.last_h = self.doc_vec sup_logits = utils.nvdm_linear(self.doc_vec, self.n_labels, scope='supervised') if topic_params.multilabel: self.sup_prob = tf.nn.sigmoid(sup_logits) self.supervised_loss = tf.multiply(self.mask, tf.reduce_sum(tf.losses.sigmoid_cross_entropy(self.label_ids, sup_logits , reduction="none"), axis=-1)) else: self.sup_prob = tf.nn.softmax(sup_logits, axis=-1) log_prob = tf.nn.log_softmax(sup_logits) self.one_hot_labels = tf.one_hot(self.label_ids, depth=n_labels, on_value = 1.0, off_value = 0.0, dtype=tf.float32) self.supervised_loss = -tf.reduce_sum(tf.multiply(log_prob, self.one_hot_labels), 1) """" if topic_params.use_sent_topic_rep: if self.n_sample == 1: eps_sent = tf.random_normal((self.batch_size_sent, self.n_topic), mean=0.0, stddev=1.0, seed=seed) self.last_h_sent = tf.add(tf.multiply(tf.exp(self.logsigm_sent), eps_sent), self.mean_sent, name='sent_hidden') self.last_h_sent = tf.reshape(self.last_h_sent, [self.input_batch_size_sent, self.input_batch_len_sent, self.n_topic]) if topic_params.use_topic_embedding: #self.last_h_topic_emb_sent = utils.nvdm_linear(tf.nn.softmax(self.last_h_sent, axis=1), self.vocab_size, scope='projection') if topic_params.use_k_topics > 0: # Masking sentence topic proportion vector top_k_h_sent_values, top_k_h_sent_indices = tf.nn.top_k(self.last_h_sent, k=topic_params.use_k_topics, sorted=False, name='top_k_h_sent') row_numbers_sent = tf.tile(tf.expand_dims(tf.range(0, self.batch_size_sent), 1), [1, topic_params.use_k_topics], name='row_numbers_sent') full_indices_sent = tf.concat([tf.expand_dims(row_numbers_sent, -1), tf.expand_dims(top_k_h_sent_indices, -1)], axis=2) full_indices_sent = tf.reshape(full_indices_sent, [-1, 2], name='full_indices_sent') #mask_updates_sent = tf.ones([self.batch_size_sent * topic_params.use_k_topics], dtype=tf.float32, name='mask_updates_sent') #new_mask_sent = tf.scatter_nd(full_indices_sent, mask_updates_sent, [self.batch_size_sent, self.n_topic], name='new_mask_sent') #last_h_softmax_sent = tf.multiply(tf.nn.softmax(self.last_h_sent, axis=1), new_mask_sent, name='last_h_softmax_sent') last_h_softmax_sent = tf.scatter_nd(full_indices_sent, tf.reshape(tf.nn.softmax(top_k_h_sent_values, axis=1), [-1]), [self.batch_size_sent, self.n_topic], name='last_h_softmax_sent') else: last_h_softmax_sent = tf.nn.softmax(self.last_h_sent, axis=2, name='last_h_softmax_sent') self.last_h_topic_emb_sent = tf.matmul(last_h_softmax_sent, self.topic_embeddings, name='last_h_topic_emb_sent') #self.last_h_topic_emb_sent = tf.concat([self.last_h_topic_emb_sent, self.last_h_sent], axis=2, name='last_h_topic_emb_sent') #self.last_h_topic_emb_sent = tf.concat([self.last_h_topic_emb_sent, last_h_softmax_sent], axis=2, name='last_h_topic_emb_sent') #self.last_h_topic_emb_sent = tf.reshape(self.last_h_topic_emb_sent, [self.input_batch_size_sent, self.input_batch_len_sent, self.vocab_size]) else: print("Error: model_NVDM.py - Decoder") sys.exit() """ #self.objective_TM = self.recons_loss + self.kld #self.objective_TM = tf.add(self.recons_loss, self.kld, name='TM_loss_unnormed') self.unsupervised_loss = tf.add(self.recons_loss, self.kld, name='TM_loss_unnormed') self.final_loss = tf.add((1-topic_params.beta)*self.unsupervised_loss, topic_params.beta*(self.supervised_loss), "TM_combined_loss") self.objective_TM = tf.reduce_mean(self.final_loss) """ if topic_params.TM_uniqueness_loss: ## NVDM topic uniqueness loss eye = tf.constant(np.eye(self.n_topic), dtype=tf.float32) topicnorm = matrix / tf.sqrt(tf.reduce_sum(tf.square(self.decoding_matrix), 1, keepdims=True)) uniqueness = tf.reduce_max(tf.square(tf.matmul(topicnorm, tf.transpose(topicnorm)) - eye)) self.objective_TM += topic_params.alpha_uniqueness * uniqueness """ optimizer = tf.train.AdamOptimizer(learning_rate=self.learning_rate) #fullvars = tf.trainable_variables() #enc_vars = utils.variable_parser(fullvars, 'TM_encoder') enc_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='TM_encoder') #dec_vars = utils.variable_parser(fullvars, 'TM_decoder') dec_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='TM_decoder') self.pretrain_saver = tf.train.Saver(enc_vars + dec_vars) enc_grads = tf.gradients(self.objective_TM, enc_vars) dec_grads = tf.gradients(self.objective_TM, dec_vars) self.optim_enc = optimizer.apply_gradients(zip(enc_grads, enc_vars)) self.optim_dec = optimizer.apply_gradients(zip(dec_grads, dec_vars)) ## Pretraining of NVDM-TM def pretrain(self, dataset, topic_params, nvdm_datadir , session, #training_epochs=1000, alternate_epochs=10): #training_epochs=100, alternate_epochs=10): training_epochs=20, alternate_epochs=10): #training_epochs=1, alternate_epochs=1): #log_dir = os.path.join(topic_params.model, 'logs_nvdm_pretrain') #model_dir_ir_nvdm = os.path.join(topic_params.model, 'model_ir_nvdm_pretrain') #model_dir_ppl_nvdm = os.path.join(topic_params.model, 'model_ppl_nvdm_pretrain') log_dir = os.path.join(topic_params.output_dir, 'logs_nvdm_pretrain') model_dir_ir_nvdm = os.path.join(topic_params.output_dir, 'model_ir_nvdm_pretrain') model_dir_ppl_nvdm = os.path.join(topic_params.output_dir, 'model_ppl_nvdm_pretrain') model_dir_f1_nvdm = os.path.join(topic_params.output_dir, 'model_f1_nvdm_pretrain') #model_dir_supervised = os.path.join(topic_params.model, 'model_supervised_nvdm_pretrain') if not os.path.isdir(log_dir): os.mkdir(log_dir) if not os.path.isdir(model_dir_ir_nvdm): os.mkdir(model_dir_ir_nvdm) if not os.path.isdir(model_dir_ppl_nvdm): os.mkdir(model_dir_ppl_nvdm) #if not os.path.isdir(model_dir_supervised): # os.mkdir(model_dir_supervised) #train_url = os.path.join(topic_params.dataset, 'training_nvdm_docs_non_replicated.csv') #dev_url = os.path.join(topic_params.dataset, 'validation_nvdm_docs_non_replicated.csv') #test_url = os.path.join(topic_params.dataset, 'test_nvdm_docs_non_replicated.csv') train_url = os.path.join(nvdm_datadir, 'training_nvdm_docs_non_replicated.csv') dev_url = os.path.join(nvdm_datadir, 'validation_nvdm_docs_non_replicated.csv') test_url = os.path.join(nvdm_datadir, 'test_nvdm_docs_non_replicated.csv') train_set, train_count, train_ids, train_doc_ids = utils.data_set(train_url, topic_params) test_set, test_count, test_ids, test_doc_ids = utils.data_set(test_url, topic_params) dev_set, dev_count, dev_ids, dev_doc_ids = utils.data_set(dev_url, topic_params) dev_batches = utils.create_batches(len(dev_set), self.batch_size, shuffle=False) #dev_batches = utils.create_batches(len(dev_set), 512, shuffle=False) test_batches = utils.create_batches(len(test_set), self.batch_size, shuffle=False) #test_batches = utils.create_batches(len(test_set), 512, shuffle=False) #training_labels = np.array( # [[y] for y, _ in dataset.rows('training_nvdm_docs_non_replicated', num_epochs=1)] #) #validation_labels = np.array( # [[y] for y, _ in dataset.rows('validation_nvdm_docs_non_replicated', num_epochs=1)] #) #test_labels = np.array( # [[y] for y, _ in dataset.rows('test_nvdm_docs_non_replicated', num_epochs=1)] #) patience = topic_params.nvdm_patience patience_count_ppl = 0 patience_count_f1 = 0 best_dev_ppl = np.inf best_dev_f1 = -np.inf best_val_nvdm_IR = -1.0 enc_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='TM_encoder') dec_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='TM_decoder') self.pretrain_saver = tf.train.Saver(enc_vars + dec_vars) ppl_model = False ir_model = False f1_model = False for epoch in range(training_epochs): epoch_counter = epoch + 1 train_batches = utils.create_batches(len(train_set), self.batch_size, shuffle=True) #train_batches = utils.create_batches(len(train_set), 512, shuffle=True) #------------------------------- # train for switch in range(0, 2): if switch == 0: optim = self.optim_dec print_mode = 'updating decoder' else: optim = self.optim_enc print_mode = 'updating encoder' for i in range(alternate_epochs): print_ppx, print_ppx_perdoc, print_kld, print_sup_loss, print_macro_prec, print_macro_recall, print_macro_f1_score, print_acc = self.run_epoch( train_batches, train_set, train_count, topic_params, session, input_labels = train_ids, optimizer=optim ) print('| Epoch train: {:d} |'.format(epoch_counter), print_mode, '{:d}'.format(i), '| Corpus Perplexity: {:.5f}'.format(print_ppx), # perplexity for all docs '| Per doc Perplexity: {:.5f}'.format(print_ppx_perdoc), # perplexity for per doc '| KLD: {:.5}'.format(print_kld), '| Supervised loss: {:.5f}'.format(print_sup_loss)) ## print supervised loss if epoch_counter >= 1 and epoch_counter % topic_params.nvdm_validation_ppl_freq == 0: ppl_model = True print_ppx, print_ppx_perdoc, print_kld, print_sup_loss, print_macro_prec, print_macro_recall, print_macro_f1_score, print_acc = self.run_epoch( dev_batches, dev_set, dev_count, topic_params, session, input_labels = dev_ids ) if print_ppx_perdoc < best_dev_ppl: #if print_ppx_perdoc <= best_dev_ppl: best_dev_ppl = print_ppx_perdoc print("Saving best model.") self.pretrain_saver.save(session, model_dir_ppl_nvdm + '/model_ppl_nvdm_pretrain', global_step=1) self.save_to_s3_TM(topic_params) patience_count_ppl = 0 else: patience_count_ppl += 1 print('| Epoch dev: {:d} |'.format(epoch_counter), '| Corpus Perplexity: {:.9f} |'.format(print_ppx), '| Per doc Perplexity: {:.5f} |'.format(print_ppx_perdoc), '| KLD: {:.5} |'.format(print_kld), '| Best dev PPL: {:.5} |'.format(best_dev_ppl)) with open(log_dir + "/logs_ppl_nvdm_pretrain.txt", "a") as f: f.write('| Epoch Val: {:d} || Val Corpus PPL: {:.9f} || Val Per doc PPL: {:.5f} || Best Val PPL: {:.5} || KLD Val: {:.5} |\n'.format(epoch+1, print_ppx, print_ppx_perdoc, best_dev_ppl, print_kld)) if epoch_counter >= 1 and epoch_counter % topic_params.nvdm_validation_f1_freq == 0: f1_model = True print_ppx, print_ppx_perdoc, print_kld, print_sup_loss, print_macro_prec, print_macro_recall, print_macro_f1_score, print_acc = self.run_epoch( dev_batches, dev_set, dev_count, topic_params, session, input_labels = dev_ids ) if print_macro_f1_score > best_dev_f1: best_dev_f1 = print_macro_f1_score print("Saving best model.") self.pretrain_saver.save(session, model_dir_f1_nvdm + '/model_f1_nvdm_pretrain', global_step=1) self.save_to_s3_TM(topic_params) patience_count_f1 = 0 else: patience_count_f1 += 1 print('| Epoch dev: {:d} |'.format(epoch_counter), '| Macro F1 : {:.9f} |'.format(print_macro_f1_score), '| Macro Prec: {:.5f} |'.format(print_macro_prec), '| Macro Recall: {:.5} |'.format(print_macro_recall), '| Best F1: {:.5} |'.format(best_dev_f1)) with open(log_dir + "/logs_f1_nvdm_pretrain.txt", "a") as f: f.write('| Epoch Val: {:d} || Macro F1: {:.9f} || Macro Prec: {:.5f} || Macro Recall: {:.5} || Best Macro F1: {:.5} || Accuracy: {:.5} |\n'.format(epoch+1, print_macro_f1_score, print_macro_prec, print_macro_recall, best_dev_f1 , print_acc)) if epoch_counter >= 1 and epoch_counter % topic_params.nvdm_validation_ir_freq == 0: ir_model = True validation_vectors_nvdm = self.hidden_vectors( #dataset.batches_nvdm_LM('validation_nvdm_docs_non_replicated', topic_params.nvdm_batch_size, topic_params.TM_vocab_length, num_epochs=1, multilabel=topic_params.multi_label), dataset.batches_nvdm_LM('validation_nvdm_docs_non_replicated', topic_params.nvdm_batch_size, self.vocab_size, num_epochs=1, multilabel=topic_params.multilabel), topic_params, session ) training_vectors_nvdm = self.hidden_vectors( #dataset.batches_nvdm_LM('training_nvdm_docs_non_replicated', topic_params.nvdm_batch_size, topic_params.TM_vocab_length, num_epochs=1, multilabel=topic_params.multi_label), dataset.batches_nvdm_LM('training_nvdm_docs_non_replicated', topic_params.nvdm_batch_size, self.vocab_size, num_epochs=1, multilabel=topic_params.multilabel), topic_params, session ) val_nvdm_ir, _ = eval.evaluate( training_vectors_nvdm, validation_vectors_nvdm, training_labels, validation_labels, recall=[0.02], num_classes=topic_params.nvdm_num_classes, multi_label=topic_params.multilabel ) val_nvdm_ir = val_nvdm_ir[0] # Saving model and Early stopping on IR if val_nvdm_ir > best_val_nvdm_IR: best_val_nvdm_IR = val_nvdm_ir print('saving: {}'.format(model_dir_ir_nvdm)) self.pretrain_saver.save(session, model_dir_ir_nvdm + '/model_ir_nvdm_pretrain', global_step=1) self.save_to_s3_TM(topic_params) # patience_count = 0 #else: # patience_count += 1 print("Epoch: %i, Val NVDM IR: %s, best val NVDM IR: %s\n" % (epoch_counter, val_nvdm_ir, best_val_nvdm_IR)) # logging information with open(log_dir + "/logs_ir_nvdm_pretrain.txt", "a") as f: f.write("Epoch: %i, Val NVDM IR: %s, best val NVDM IR: %s\n" % (epoch_counter, val_nvdm_ir, best_val_nvdm_IR)) if topic_params.validate_supervised_TM == "ppl": if patience_count_ppl > patience: print("Early stopping.") break elif topic_params.validate_supervised_TM == "f1": if patience_count_f1 > patience: print("Early stopping.") break if ppl_model: print("Calculating Test PPL.") self.pretrain_saver.restore(session, tf.train.latest_checkpoint(model_dir_ppl_nvdm)) print_ppx, print_ppx_perdoc, print_kld, print_sup_loss, print_macro_prec, print_macro_recall, print_macro_f1_score, print_acc= self.run_epoch( test_batches, test_set, test_count, topic_params, session, input_labels = test_ids ) print('| Corpus Perplexity: {:.9f}'.format(print_ppx), '| Per doc Perplexity: {:.5f}'.format(print_ppx_perdoc), '| KLD: {:.5}'.format(print_kld)) with open(log_dir + "/logs_ppl_nvdm_pretrain.txt", "a") as f: f.write('\n\nTest Corpus PPL: {:.9f} || Test Per doc PPL: {:.5f} || KLD Test: {:.5} |\n'.format(print_ppx, print_ppx_perdoc, print_kld)) if f1_model: print("Calculating Test F1.") self.pretrain_saver.restore(session, tf.train.latest_checkpoint(model_dir_f1_nvdm)) print_ppx, print_ppx_perdoc, print_kld, print_sup_loss, print_macro_prec, print_macro_recall, print_macro_f1_score, print_acc = self.run_epoch( test_batches, test_set, test_count, topic_params, session, input_labels = test_ids ) print('| Macro F1: {:.9f}'.format(print_macro_f1_score), '| Macro prec: {:.5f}'.format(print_macro_prec), '| Macro recall : {:.5}'.format(print_macro_recall), '| Acc : {:.5}'.format(print_acc) ) with open(log_dir + "/logs_f1_nvdm_pretrain.txt", "a") as f: f.write('\n\nTest Macro F1: {:.9f} || Test Macro prec : {:.5f} || Test Macro recall : {:.5} || Test Acc : {:.5} |\n'.format(print_macro_f1_score, print_macro_prec, print_macro_recall, print_acc )) if ir_model: print("Calculating Test IR.") self.pretrain_saver.restore(session, tf.train.latest_checkpoint(model_dir_ir_nvdm)) test_vectors_nvdm = self.hidden_vectors( #dataset.batches_nvdm_LM('test_nvdm_docs_non_replicated', topic_params.nvdm_batch_size, topic_params.TM_vocab_length, num_epochs=1, multilabel=topic_params.multi_label), dataset.batches_nvdm_LM('test_nvdm_docs_non_replicated', topic_params.nvdm_batch_size, self.vocab_size, num_epochs=1, multilabel=topic_params.multilabel), topic_params, session ) test_nvdm_ir, _ = eval.evaluate( training_vectors_nvdm, test_vectors_nvdm, training_labels, test_labels, recall=[0.02], num_classes=topic_params.nvdm_num_classes, multi_label=topic_params.multilabel ) test_nvdm_ir = test_nvdm_ir[0] print("Epoch: %i, Test NVDM IR: %s\n" % (epoch_counter, test_nvdm_ir)) # logging information with open(log_dir + "/logs_ir_nvdm_pretrain.txt", "a") as f: f.write("Epoch: %i, Test NVDM IR: %s\n" % (epoch_counter, test_nvdm_ir)) def hidden_vectors(self, data, topic_params, session): vecs = [] for y, x, count, mask in data: feed_dict = { self.x.name: x, self.mask.name: mask #self.input_batch_size: x.shape[0] } vecs.extend( session.run([self.last_h], feed_dict=feed_dict)[0] ) return np.array(vecs) """ def topic_dist(self, input_batches, input_set, input_count, topic_params, session): topic_dist = [] mask_list = [] for idx_batch in input_batches: data_batch, count_batch, mask = utils.fetch_data( input_set, input_count, idx_batch, self.vocab_size) input_feed = {self.x.name: data_batch, self.mask.name: mask} doc_vec = session.run([self.doc_vec], input_feed) topic_dist.extend(list(doc_vec[0])) mask_list.extend(list(mask)) topic_dist_unique = [] for num, m in enumerate(mask_list): if m!= 0.0: topic_dist_unique.append(topic_dist[num]) topic_dist_unique = np.asarray(topic_dist_unique) return topic_dist_unique, mask_list """ def topic_dist(self, input_batches, input_set, input_doc_ids , input_count, topic_params, session): topic_dist = [] mask_list = [] doc_id_list = [] for idx_batch in input_batches: data_batch, count_batch, mask = utils.fetch_data( input_set, input_count, idx_batch, self.vocab_size, topic_params) input_feed = {self.x.name: data_batch, self.mask.name: mask} doc_vec = session.run([self.doc_vec], input_feed) topic_dist.extend(list(doc_vec[0])) mask_list.extend(list(mask)) for idx in idx_batch: if idx != -1: doc_id_list.append(input_doc_ids[idx]) else: doc_id_list.append(-1) assert len(topic_dist) == len(doc_id_list) topic_dist_unique = {} for id, dist in zip(doc_id_list, topic_dist): if id != -1: topic_dist_unique[str(id)] = dist return topic_dist_unique, mask_list def save_to_s3_TM(self, topic_params): pass def run_epoch(self, input_batches, input_set, input_count, topic_params, session, input_labels = None, optimizer=None): loss_sum = 0.0 ppx_sum = 0.0 kld_sum = 0.0 supervised_loss_sum = 0.0 word_count = 0 doc_count = 0 doc_pred = [] doc_labels = [] for idx_batch in input_batches: data_batch, count_batch, mask, label_batch = utils.fetch_data( input_set, input_count, idx_batch, self.vocab_size,topic_params , labels = input_labels) #import pdb; pdb.set_trace() input_feed = {self.x.name: data_batch, self.mask.name: mask, self.label_ids.name: label_batch} if not optimizer is None: _, (loss, kld, supervised_loss, prob) = session.run((optimizer, [self.unsupervised_loss, self.kld, self.supervised_loss, self.sup_prob]), input_feed) else: loss, kld, supervised_loss, prob = session.run([self.unsupervised_loss, self.kld, self.supervised_loss, self.sup_prob], input_feed) if topic_params.multilabel: prob_arr = np.asarray(prob) multilabel_pred = np.where(prob_arr >= 0.5, 1, 0) pred = np.ndarray.tolist(multilabel_pred) else: pred = np.argmax(prob, axis = 1) assert len(pred) == len(label_batch) == len(mask) for i in range(len(mask)): if mask[i] != 0.0: doc_pred.append(pred[i]) doc_labels.append(label_batch[i]) loss_sum += np.sum(loss) kld_sum += np.sum(kld) / np.sum(mask) supervised_loss_sum += np.sum(supervised_loss) / np.sum(mask) word_count += np.sum(count_batch) # to avoid nan error count_batch = np.add(count_batch, 1e-12) # per document loss ppx_sum += np.sum(np.divide(loss, count_batch)) doc_count += np.sum(mask) assert -1 not in doc_labels if topic_params.multilabel: doc_labels = np.asarray(doc_labels) doc_pred = np.asarray(doc_pred) print_macro_prec, print_macro_recall, print_macro_f1_score, _ = precision_recall_fscore_support(doc_labels, doc_pred, average = "macro") #print_micro_prec, print_micro_recall, print_micro_f1_score, _ = precision_recall_fscore_support(doc_labels, doc_pred, average = "micro") print_acc = accuracy_score(doc_labels, doc_pred) print_sup_loss = supervised_loss_sum/len(input_batches) print_ppx = np.exp(loss_sum / word_count) print_ppx_perdoc = np.exp(ppx_sum / doc_count) print_kld = kld_sum/len(input_batches) return print_ppx, print_ppx_perdoc, print_kld, print_sup_loss, print_macro_prec, print_macro_recall, print_macro_f1_score, print_acc def run_epoch_v2(self, data, topic_params, session): # train_y, train_x, train_count, train_mask = dataset.batches_nvdm_LM(training_data_filename_TM, topic_params.batch_size, topic_params.TM_vocab_length, num_epochs=1, multilabel=topic_params.multi_label) # val_y, val_x, val_count, val_mask = dataset.batches_nvdm_LM(validation_data_filename_TM, topic_params.batch_size, topic_params.TM_vocab_length, num_epochs=1, multilabel=topic_params.multi_label) # test_y, test_x, test_count, test_mask = dataset.batches_nvdm_LM(test_data_filename_TM, topic_params.batch_size, topic_params.TM_vocab_length, num_epochs=1, multilabel=topic_params.multi_label) kld_sum = [] this_nvdm_loss_normed = [] this_nvdm_loss_unnormed = [] this_nvdm_words = [] for nvdm_y, nvdm_x, nvdm_count, nvdm_mask in data: nvdm_feed_dict = { model.topic_model.x.name: nvdm_x, model.topic_model.mask.name: nvdm_mask#, #model.topic_model.input_batch_size: nvdm_x.shape[0] } if topic_params.supervised: sys.exit() else: loss, kld = session.run([model.topic_model.final_loss, model.topic_model.kld], feed_dict=nvdm_feed_dict) nvdm_count = np.add(nvdm_count, 1e-12) this_nvdm_loss_normed.extend(np.divide(loss, nvdm_count)) this_nvdm_loss_unnormed.extend(loss) this_nvdm_words.append(np.sum(nvdm_count)) kld_sum.append(np.sum(kld) / np.sum(nvdm_mask)) total_nvdm_nll = np.mean(this_nvdm_loss_unnormed) #total_nvdm_ppl = np.exp(np.sum(this_nvdm_loss_unnormed) / np.sum(this_val_nvdm_words)) total_nvdm_ppl = np.exp(np.mean(this_nvdm_loss_normed)) print_kld = np.mean(kld_sum) return total_nvdm_nll, total_nvdm_ppl, print_kld
[]
2024-01-10
YatinChaudhary/TopicBERT
TopicBERT~topic_bert~nvdm~model_NVDM.py
"""NVDM Tensorflow implementation by Yishu Miao""" from __future__ import print_function import numpy as np import tensorflow as tf import math import os from nvdm import utils #import model.utils as utils #from sklearn.preprocessing import MultiLabelBinarizer #import sklearn.metrics.pairwise as pw #from gensim.models import CoherenceModel #from gensim.corpora.dictionary import Dictionary #import model.evaluate as eval #import model.data_lstm as data #seed = 42 #tf_op_seed = 1234 #np.random.seed(seed) #tf.set_random_seed(seed) seed = 42 tf.set_random_seed(seed) np.random.seed(seed) tf_op_seed = 42 #learning_rate = 5e-5 #batch_size = 64 #n_hidden = 256 #fixed_topic_params #n_topic = 150 #n_sample = 1 #non_linearity = tf.nn.tanh non_linearity = tf.nn.sigmoid ###### class NVDM(object): """ Neural Variational Document Model -- BOW VAE. """ #def __init__(self, topic_params, prior_embeddings=None, initializer_nvdm=None): def __init__(self, topic_params, x, mask , topic_vocab_size, prior_embeddings=None, initializer_nvdm=None): #self.vocab_size = topic_params.TM_vocab_length self.vocab_size = topic_vocab_size self.n_hidden = topic_params.hidden_size_TM self.n_topic = topic_params.n_topic self.n_sample = topic_params.n_sample self.non_linearity = non_linearity self.learning_rate = topic_params.nvdm_learning_rate self.batch_size = topic_params.nvdm_batch_size self.x = x self.mask = mask #self.x = tf.placeholder(tf.float32, [None, self.vocab_size], name='x') #self.mask = tf.placeholder(tf.float32, [None], name='mask') # mask paddings #if topic_params.use_sent_topic_rep: #self.x_sent = tf.placeholder(tf.float32, [None, None, self.vocab_size], name='x_sent') #if topic_params.use_topic_embedding: # self.x_doc_mask = tf.placeholder(tf.float32, [None, self.vocab_size], name='x_doc_mask') #self.input_batch_size = tf.placeholder(tf.int32, (), name='input_batch_size') self.input_batch_size = tf.shape(self.x)[0] #if topic_params.use_sent_topic_rep: # self.input_batch_size_sent = tf.shape(self.x_sent)[0] # self.input_batch_len_sent = tf.shape(self.x_sent)[1] # self.batch_size_sent = self.input_batch_size_sent * self.input_batch_len_sent # encoder with tf.variable_scope('TM_encoder', reuse=tf.AUTO_REUSE): self.enc_vec = utils.mlp(self.x, [self.n_hidden], self.non_linearity, initializer=initializer_nvdm[0]) #self.enc_vec = utils.mlp(self.x, [self.n_hidden, self.n_hidden], self.non_linearity, initializer=initializer_nvdm[0]) #self.enc_vec = utils.mlp(self.x, [self.n_hidden, self.n_hidden], self.non_linearity) self.mean = utils.nvdm_linear(self.enc_vec, self.n_topic, scope='mean', matrix_initializer=initializer_nvdm[1][0], bias_initializer=initializer_nvdm[1][1]) self.logsigm = utils.nvdm_linear(self.enc_vec, self.n_topic, bias_start_zero=True, matrix_start_zero=True, scope='logsigm', matrix_initializer=initializer_nvdm[2][0], bias_initializer=initializer_nvdm[2][1]) self.kld = -0.5 * tf.reduce_sum(1 - tf.square(self.mean) + 2 * self.logsigm - tf.exp(2 * self.logsigm), 1) #self.kld = self.mask*self.kld # mask paddings self.kld = tf.multiply(self.mask, self.kld, name='kld') # mask paddings #if topic_params.use_sent_topic_rep: # self.x_sent_reshape = tf.reshape(self.x_sent, [-1, self.vocab_size]) # self.enc_vec_sent = utils.mlp(self.x_sent_reshape, [self.n_hidden], self.non_linearity) # #self.enc_vec = utils.mlp(self.x, [self.n_hidden, self.n_hidden], self.non_linearity) # self.mean_sent = utils.nvdm_linear(self.enc_vec_sent, self.n_topic, scope='mean') # self.logsigm_sent = utils.nvdm_linear(self.enc_vec_sent, # self.n_topic, # bias_start_zero=True, # matrix_start_zero=True, # scope='logsigm') #if topic_params.prior_emb_for_topics: # W_prior = tf.get_variable( # 'embeddings_TM_prior', # dtype=tf.float32, # initializer=prior_embeddings, # trainable=False # ) """ W_prior_proj = tf.get_variable( 'embeddings_TM_prior_proj', [prior_embeddings.shape[1], self.n_topic], dtype=tf.float32, trainable=False ) W_prior = tf.matmul(W_prior, W_prior_proj, name='W_prior_projected') """ with tf.variable_scope('TM_decoder', reuse=tf.AUTO_REUSE): if self.n_sample == 1: eps = tf.random_normal((self.input_batch_size, self.n_topic), mean=0.0, stddev=1.0, seed=seed) #doc_vec = tf.mul(tf.exp(self.logsigm), eps) + self.mean ## Hidden representation to be used in BERT self.doc_vec = tf.add(tf.multiply(tf.exp(self.logsigm), eps), self.mean, name='doc_hidden') self.last_h = self.doc_vec logits_projected, self.decoding_matrix = utils.nvdm_linear(self.doc_vec, self.vocab_size, scope='projection', get_matrix=True, matrix_initializer=initializer_nvdm[3][0], bias_initializer=initializer_nvdm[3][1]) logits = tf.nn.log_softmax(logits_projected) self.recons_loss = -tf.reduce_sum(tf.multiply(logits, self.x), 1) """ if topic_params.use_topic_embedding: #self.last_h_topic_emb = utils.nvdm_linear(tf.nn.softmax(self.last_h, axis=1), self.vocab_size, scope='projection') #self.top_k = tf.nn.top_k(self.decoding_matrix, k=topic_params.use_k_topic_words, sorted=False) topics_masked = tf.multiply(tf.expand_dims(self.x_doc_mask, axis=1), tf.expand_dims(self.decoding_matrix, axis=0), name='topics_masked') self.top_k = tf.nn.top_k(topics_masked, k=topic_params.use_k_topic_words, sorted=False) if topic_params.prior_emb_for_topics: self.top_k_embeddings = tf.nn.embedding_lookup(W_prior, self.top_k.indices) self.topic_emb_size = prior_embeddings.shape[1] #self.topic_emb_size = prior_embeddings.shape[1] * topic_params.use_k_topics #self.topic_emb_size = prior_embeddings.shape[1] + self.n_topic #self.topic_emb_size = self.n_topic #self.topic_emb_size = self.n_topic * 2 else: self.top_k_embeddings = tf.nn.embedding_lookup(tf.transpose(self.decoding_matrix), self.top_k.indices) #self.topic_emb_size = self.n_topic self.topic_emb_size = self.n_topic * 2 #self.top_k_embeddings = tf.multiply(tf.expand_dims(tf.nn.softmax(self.top_k.values, axis=1), axis=2), self.top_k_embeddings) #self.temp_1 = tf.expand_dims(tf.nn.softmax(self.top_k.values, axis=2), axis=2) #self.topic_embeddings = tf.squeeze(tf.matmul(self.temp_1, self.top_k_embeddings), axis=2, name='topic_embeddings') #self.topic_embeddings = tf.reduce_sum(self.top_k_embeddings, axis=1, name='topic_embeddings') #self.topic_embeddings = tf.reduce_mean(self.top_k_embeddings, axis=1, name='topic_embeddings') self.topic_embeddings = tf.reduce_mean(self.top_k_embeddings, axis=2, name='topic_embeddings') if topic_params.use_k_topics > 0: # Masking document topic proportion vector top_k_h_values, top_k_h_indices = tf.nn.top_k(self.last_h, k=topic_params.use_k_topics, sorted=False, name='top_k_h') row_numbers = tf.tile(tf.expand_dims(tf.range(0, self.input_batch_size), 1), [1, topic_params.use_k_topics], name='row_numbers') full_indices = tf.concat([tf.expand_dims(row_numbers, -1), tf.expand_dims(top_k_h_indices, -1)], axis=2) full_indices = tf.reshape(full_indices, [-1, 2], name='full_indices') #mask_updates = tf.ones([self.input_batch_size * topic_params.use_k_topics], dtype=tf.float32, name='mask_updates') #new_mask = tf.scatter_nd(full_indices, mask_updates, [self.input_batch_size, self.n_topic], name='new_mask') #last_h_softmax = tf.multiply(tf.nn.softmax(self.last_h, axis=1), new_mask, name='last_h_softmax') last_h_softmax = tf.scatter_nd( full_indices, tf.reshape(tf.nn.softmax(top_k_h_values, axis=1), [-1]), #tf.ones([self.input_batch_size * topic_params.use_k_topics], dtype=tf.float32), [self.input_batch_size, self.n_topic], name='last_h_softmax' ) else: last_h_softmax = tf.nn.softmax(self.last_h, axis=1, name='last_h_softmax') #last_h_softmax = self.last_h #self.last_h_topic_emb = tf.matmul(last_h_softmax, self.topic_embeddings, name='last_h_topic_emb') self.last_h_topic_emb = tf.squeeze(tf.matmul(tf.expand_dims(last_h_softmax, axis=1), self.topic_embeddings), axis=1, name='last_h_topic_emb') #temp = tf.nn.embedding_lookup(self.topic_embeddings, top_k_h_indices) #self.last_h_topic_emb = tf.reduce_sum(temp, axis=1, name='last_h_topic_emb') #self.last_h_topic_emb = tf.reshape(temp, [self.input_batch_size, self.topic_emb_size], name='last_h_topic_emb') #self.last_h_topic_emb = tf.concat([self.last_h_topic_emb, last_h_softmax], axis=1) #self.last_h_topic_emb = tf.concat([self.last_h_topic_emb, self.last_h], axis=1) """ else: #eps = tf.random_normal((self.n_sample*self.batch_size, self.n_topic), mean=0.0, stddev=1.0) """ eps = tf.random_normal((self.n_sample*self.input_batch_size, self.n_topic), mean=0.0, stddev=1.0, seed=seed) eps_list = tf.split(eps, self.n_sample, 0) recons_loss_list = [] for i in range(self.n_sample): if i > 0: tf.get_variable_scope().reuse_variables() curr_eps = eps_list[i] doc_vec = tf.multiply(tf.exp(self.logsigm), curr_eps) + self.mean logits = tf.nn.log_softmax(utils.nvdm_linear(doc_vec, self.vocab_size, scope='projection')) recons_loss_list.append(-tf.reduce_sum(tf.multiply(logits, self.x), 1)) self.recons_loss = tf.add_n(recons_loss_list) / self.n_sample """ eps = tf.random_normal((self.n_sample*self.input_batch_size, self.n_topic), mean=0.0, stddev=1.0, seed=seed) eps_list = tf.split(eps, self.n_sample, 0) recons_loss_list = [] doc_vec_list = [] for i in range(self.n_sample): if i > 0: tf.get_variable_scope().reuse_variables() curr_eps = eps_list[i] doc_vec = tf.add(tf.multiply(tf.exp(self.logsigm), curr_eps), self.mean) doc_vec_list.append(doc_vec) logits = tf.nn.log_softmax(utils.nvdm_linear(doc_vec, self.vocab_size, scope='projection')) recons_loss_list.append(-tf.reduce_sum(tf.multiply(logits, self.x), 1)) self.recons_loss = tf.add_n(recons_loss_list) / self.n_sample self.doc_vec = tf.add_n(doc_vec_list) / self.n_sample self.last_h = self.doc_vec """" if topic_params.use_sent_topic_rep: if self.n_sample == 1: eps_sent = tf.random_normal((self.batch_size_sent, self.n_topic), mean=0.0, stddev=1.0, seed=seed) self.last_h_sent = tf.add(tf.multiply(tf.exp(self.logsigm_sent), eps_sent), self.mean_sent, name='sent_hidden') self.last_h_sent = tf.reshape(self.last_h_sent, [self.input_batch_size_sent, self.input_batch_len_sent, self.n_topic]) if topic_params.use_topic_embedding: #self.last_h_topic_emb_sent = utils.nvdm_linear(tf.nn.softmax(self.last_h_sent, axis=1), self.vocab_size, scope='projection') if topic_params.use_k_topics > 0: # Masking sentence topic proportion vector top_k_h_sent_values, top_k_h_sent_indices = tf.nn.top_k(self.last_h_sent, k=topic_params.use_k_topics, sorted=False, name='top_k_h_sent') row_numbers_sent = tf.tile(tf.expand_dims(tf.range(0, self.batch_size_sent), 1), [1, topic_params.use_k_topics], name='row_numbers_sent') full_indices_sent = tf.concat([tf.expand_dims(row_numbers_sent, -1), tf.expand_dims(top_k_h_sent_indices, -1)], axis=2) full_indices_sent = tf.reshape(full_indices_sent, [-1, 2], name='full_indices_sent') #mask_updates_sent = tf.ones([self.batch_size_sent * topic_params.use_k_topics], dtype=tf.float32, name='mask_updates_sent') #new_mask_sent = tf.scatter_nd(full_indices_sent, mask_updates_sent, [self.batch_size_sent, self.n_topic], name='new_mask_sent') #last_h_softmax_sent = tf.multiply(tf.nn.softmax(self.last_h_sent, axis=1), new_mask_sent, name='last_h_softmax_sent') last_h_softmax_sent = tf.scatter_nd(full_indices_sent, tf.reshape(tf.nn.softmax(top_k_h_sent_values, axis=1), [-1]), [self.batch_size_sent, self.n_topic], name='last_h_softmax_sent') else: last_h_softmax_sent = tf.nn.softmax(self.last_h_sent, axis=2, name='last_h_softmax_sent') self.last_h_topic_emb_sent = tf.matmul(last_h_softmax_sent, self.topic_embeddings, name='last_h_topic_emb_sent') #self.last_h_topic_emb_sent = tf.concat([self.last_h_topic_emb_sent, self.last_h_sent], axis=2, name='last_h_topic_emb_sent') #self.last_h_topic_emb_sent = tf.concat([self.last_h_topic_emb_sent, last_h_softmax_sent], axis=2, name='last_h_topic_emb_sent') #self.last_h_topic_emb_sent = tf.reshape(self.last_h_topic_emb_sent, [self.input_batch_size_sent, self.input_batch_len_sent, self.vocab_size]) else: print("Error: model_NVDM.py - Decoder") sys.exit() """ #self.objective_TM = self.recons_loss + self.kld #self.objective_TM = tf.add(self.recons_loss, self.kld, name='TM_loss_unnormed') self.final_loss = tf.add(self.recons_loss, self.kld, name='TM_loss_unnormed') self.objective_TM = tf.reduce_mean(self.final_loss) """ if topic_params.TM_uniqueness_loss: ## NVDM topic uniqueness loss eye = tf.constant(np.eye(self.n_topic), dtype=tf.float32) topicnorm = matrix / tf.sqrt(tf.reduce_sum(tf.square(self.decoding_matrix), 1, keepdims=True)) uniqueness = tf.reduce_max(tf.square(tf.matmul(topicnorm, tf.transpose(topicnorm)) - eye)) self.objective_TM += topic_params.alpha_uniqueness * uniqueness """ optimizer = tf.train.AdamOptimizer(learning_rate=self.learning_rate) #fullvars = tf.trainable_variables() #enc_vars = utils.variable_parser(fullvars, 'TM_encoder') enc_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='TM_encoder') #dec_vars = utils.variable_parser(fullvars, 'TM_decoder') dec_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='TM_decoder') self.pretrain_saver = tf.train.Saver(enc_vars + dec_vars) enc_grads = tf.gradients(self.objective_TM, enc_vars) dec_grads = tf.gradients(self.objective_TM, dec_vars) self.optim_enc = optimizer.apply_gradients(zip(enc_grads, enc_vars)) self.optim_dec = optimizer.apply_gradients(zip(dec_grads, dec_vars)) ## Pretraining of NVDM-TM def pretrain(self, dataset, topic_params, nvdm_datadir , session, #training_epochs=1000, alternate_epochs=10): #training_epochs=100, alternate_epochs=10): training_epochs=20, alternate_epochs=10): #training_epochs=1, alternate_epochs=1): #log_dir = os.path.join(topic_params.model, 'logs_nvdm_pretrain') #model_dir_ir_nvdm = os.path.join(topic_params.model, 'model_ir_nvdm_pretrain') #model_dir_ppl_nvdm = os.path.join(topic_params.model, 'model_ppl_nvdm_pretrain') log_dir = os.path.join(topic_params.output_dir, 'logs_nvdm_pretrain') model_dir_ir_nvdm = os.path.join(topic_params.output_dir, 'model_ir_nvdm_pretrain') model_dir_ppl_nvdm = os.path.join(topic_params.output_dir, 'model_ppl_nvdm_pretrain') #model_dir_supervised = os.path.join(topic_params.model, 'model_supervised_nvdm_pretrain') if not os.path.isdir(log_dir): os.mkdir(log_dir) if not os.path.isdir(model_dir_ir_nvdm): os.mkdir(model_dir_ir_nvdm) if not os.path.isdir(model_dir_ppl_nvdm): os.mkdir(model_dir_ppl_nvdm) #if not os.path.isdir(model_dir_supervised): # os.mkdir(model_dir_supervised) #train_url = os.path.join(topic_params.dataset, 'training_nvdm_docs_non_replicated.csv') #dev_url = os.path.join(topic_params.dataset, 'validation_nvdm_docs_non_replicated.csv') #test_url = os.path.join(topic_params.dataset, 'test_nvdm_docs_non_replicated.csv') train_url = os.path.join(nvdm_datadir, 'training_nvdm_docs_non_replicated.csv') dev_url = os.path.join(nvdm_datadir, 'validation_nvdm_docs_non_replicated.csv') test_url = os.path.join(nvdm_datadir, 'test_nvdm_docs_non_replicated.csv') train_set, train_count, train_labels, train_doc_ids = utils.data_set(train_url, topic_params) test_set, test_count, test_labels, test_doc_ids = utils.data_set(test_url, topic_params) dev_set, dev_count, dev_labels, dev_doc_ids = utils.data_set(dev_url, topic_params) dev_batches = utils.create_batches(len(dev_set), self.batch_size, shuffle=False) #dev_batches = utils.create_batches(len(dev_set), 512, shuffle=False) test_batches = utils.create_batches(len(test_set), self.batch_size, shuffle=False) #test_batches = utils.create_batches(len(test_set), 512, shuffle=False) #training_labels = np.array( # [[y] for y, _ in dataset.rows('training_nvdm_docs_non_replicated', num_epochs=1)] #) #validation_labels = np.array( # [[y] for y, _ in dataset.rows('validation_nvdm_docs_non_replicated', num_epochs=1)] #) #test_labels = np.array( # [[y] for y, _ in dataset.rows('test_nvdm_docs_non_replicated', num_epochs=1)] #) patience = topic_params.nvdm_patience patience_count = 0 best_dev_ppl = np.inf best_test_ppl = np.inf best_val_nvdm_IR = -1.0 best_test_nvdm_IR = -1.0 enc_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='TM_encoder') dec_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='TM_decoder') self.pretrain_saver = tf.train.Saver(enc_vars + dec_vars) ppl_model = False ir_model = False for epoch in range(training_epochs): epoch_counter = epoch + 1 train_batches = utils.create_batches(len(train_set), self.batch_size, shuffle=True) #train_batches = utils.create_batches(len(train_set), 512, shuffle=True) #------------------------------- # train for switch in range(0, 2): if switch == 0: optim = self.optim_dec print_mode = 'updating decoder' else: optim = self.optim_enc print_mode = 'updating encoder' for i in range(alternate_epochs): print_ppx, print_ppx_perdoc, print_kld = self.run_epoch( train_batches, train_set, train_count, topic_params, session, optimizer=optim ) print('| Epoch train: {:d} |'.format(epoch_counter), print_mode, '{:d}'.format(i), '| Corpus Perplexity: {:.5f}'.format(print_ppx), # perplexity for all docs '| Per doc Perplexity: {:.5f}'.format(print_ppx_perdoc), # perplexity for per doc '| KLD: {:.5}'.format(print_kld)) if epoch_counter >= 1 and epoch_counter % topic_params.nvdm_validation_ppl_freq == 0: ppl_model = True print_ppx, print_ppx_perdoc, print_kld = self.run_epoch( dev_batches, dev_set, dev_count, topic_params, session ) if print_ppx_perdoc < best_dev_ppl: #if print_ppx_perdoc <= best_dev_ppl: best_dev_ppl = print_ppx_perdoc print("Saving best model.") self.pretrain_saver.save(session, model_dir_ppl_nvdm + '/model_ppl_nvdm_pretrain', global_step=1) self.save_to_s3_TM(topic_params) patience_count = 0 else: patience_count += 1 print('| Epoch dev: {:d} |'.format(epoch_counter), '| Corpus Perplexity: {:.9f} |'.format(print_ppx), '| Per doc Perplexity: {:.5f} |'.format(print_ppx_perdoc), '| KLD: {:.5} |'.format(print_kld), '| Best dev PPL: {:.5} |'.format(best_dev_ppl)) with open(log_dir + "/logs_ppl_nvdm_pretrain.txt", "a") as f: f.write('| Epoch Val: {:d} || Val Corpus PPL: {:.9f} || Val Per doc PPL: {:.5f} || Best Val PPL: {:.5} || KLD Val: {:.5} |\n'.format(epoch+1, print_ppx, print_ppx_perdoc, best_dev_ppl, print_kld)) if epoch_counter >= 1 and epoch_counter % topic_params.nvdm_validation_ir_freq == 0: ir_model = True validation_vectors_nvdm = self.hidden_vectors( #dataset.batches_nvdm_LM('validation_nvdm_docs_non_replicated', topic_params.nvdm_batch_size, topic_params.TM_vocab_length, num_epochs=1, multilabel=topic_params.multi_label), dataset.batches_nvdm_LM('validation_nvdm_docs_non_replicated', topic_params.nvdm_batch_size, self.vocab_size, num_epochs=1, multilabel=topic_params.multilabel), topic_params, session ) training_vectors_nvdm = self.hidden_vectors( #dataset.batches_nvdm_LM('training_nvdm_docs_non_replicated', topic_params.nvdm_batch_size, topic_params.TM_vocab_length, num_epochs=1, multilabel=topic_params.multi_label), dataset.batches_nvdm_LM('training_nvdm_docs_non_replicated', topic_params.nvdm_batch_size, self.vocab_size, num_epochs=1, multilabel=topic_params.multilabel), topic_params, session ) val_nvdm_ir, _ = eval.evaluate( training_vectors_nvdm, validation_vectors_nvdm, training_labels, validation_labels, recall=[0.02], num_classes=topic_params.nvdm_num_classes, multi_label=topic_params.multilabel ) val_nvdm_ir = val_nvdm_ir[0] # Saving model and Early stopping on IR if val_nvdm_ir > best_val_nvdm_IR: best_val_nvdm_IR = val_nvdm_ir print('saving: {}'.format(model_dir_ir_nvdm)) self.pretrain_saver.save(session, model_dir_ir_nvdm + '/model_ir_nvdm_pretrain', global_step=1) self.save_to_s3_TM(topic_params) # patience_count = 0 #else: # patience_count += 1 print("Epoch: %i, Val NVDM IR: %s, best val NVDM IR: %s\n" % (epoch_counter, val_nvdm_ir, best_val_nvdm_IR)) # logging information with open(log_dir + "/logs_ir_nvdm_pretrain.txt", "a") as f: f.write("Epoch: %i, Val NVDM IR: %s, best val NVDM IR: %s\n" % (epoch_counter, val_nvdm_ir, best_val_nvdm_IR)) if patience_count > patience: print("Early stopping.") break if ppl_model: print("Calculating Test PPL.") self.pretrain_saver.restore(session, tf.train.latest_checkpoint(model_dir_ppl_nvdm)) print_ppx, print_ppx_perdoc, print_kld = self.run_epoch( test_batches, test_set, test_count, topic_params, session ) print('| Corpus Perplexity: {:.9f}'.format(print_ppx), '| Per doc Perplexity: {:.5f}'.format(print_ppx_perdoc), '| KLD: {:.5}'.format(print_kld)) with open(log_dir + "/logs_ppl_nvdm_pretrain.txt", "a") as f: f.write('\n\nTest Corpus PPL: {:.9f} || Test Per doc PPL: {:.5f} || KLD Test: {:.5} |\n'.format(print_ppx, print_ppx_perdoc, print_kld)) if ir_model: print("Calculating Test IR.") self.pretrain_saver.restore(session, tf.train.latest_checkpoint(model_dir_ir_nvdm)) test_vectors_nvdm = self.hidden_vectors( #dataset.batches_nvdm_LM('test_nvdm_docs_non_replicated', topic_params.nvdm_batch_size, topic_params.TM_vocab_length, num_epochs=1, multilabel=topic_params.multi_label), dataset.batches_nvdm_LM('test_nvdm_docs_non_replicated', topic_params.nvdm_batch_size, self.vocab_size, num_epochs=1, multilabel=topic_params.multilabel), topic_params, session ) test_nvdm_ir, _ = eval.evaluate( training_vectors_nvdm, test_vectors_nvdm, training_labels, test_labels, recall=[0.02], num_classes=topic_params.nvdm_num_classes, multi_label=topic_params.multilabel ) test_nvdm_ir = test_nvdm_ir[0] print("Epoch: %i, Test NVDM IR: %s\n" % (epoch_counter, test_nvdm_ir)) # logging information with open(log_dir + "/logs_ir_nvdm_pretrain.txt", "a") as f: f.write("Epoch: %i, Test NVDM IR: %s\n" % (epoch_counter, test_nvdm_ir)) def hidden_vectors(self, data, topic_params, session): vecs = [] for y, x, count, mask in data: feed_dict = { self.x.name: x, self.mask.name: mask #self.input_batch_size: x.shape[0] } vecs.extend( session.run([self.last_h], feed_dict=feed_dict)[0] ) return np.array(vecs) def topic_dist(self, input_batches, input_set, input_doc_ids , input_count, topic_params, session): topic_dist = [] mask_list = [] doc_id_list = [] for idx_batch in input_batches: data_batch, count_batch, mask = utils.fetch_data( input_set, input_count, idx_batch, self.vocab_size, topic_params) input_feed = {self.x.name: data_batch, self.mask.name: mask} doc_vec = session.run([self.doc_vec], input_feed) topic_dist.extend(list(doc_vec[0])) mask_list.extend(list(mask)) for idx in idx_batch: if idx != -1: doc_id_list.append(input_doc_ids[idx]) else: doc_id_list.append(-1) assert len(topic_dist) == len(doc_id_list) topic_dist_unique = {} for id, dist in zip(doc_id_list, topic_dist): if id != -1: topic_dist_unique[str(id)] = dist """ topic_dist_unique = [] for num, m in enumerate(mask_list): if m!= 0.0: topic_dist_unique.append(topic_dist[num]) topic_dist_unique = np.asarray(topic_dist_unique) """ return topic_dist_unique, mask_list def save_to_s3_TM(self, topic_params): pass def run_epoch(self, input_batches, input_set, input_count, topic_params, session, optimizer=None): loss_sum = 0.0 ppx_sum = 0.0 kld_sum = 0.0 word_count = 0 doc_count = 0 for idx_batch in input_batches: data_batch, count_batch, mask = utils.fetch_data( input_set, input_count, idx_batch, self.vocab_size, topic_params) #import pdb; pdb.set_trace() input_feed = {self.x.name: data_batch, self.mask.name: mask}#, #self.input_batch_size: data_batch.shape[0] #} if not optimizer is None: _, (loss, kld) = session.run((optimizer, [self.final_loss, self.kld]), input_feed) else: loss, kld = session.run([self.final_loss, self.kld], input_feed) loss_sum += np.sum(loss) kld_sum += np.sum(kld) / np.sum(mask) word_count += np.sum(count_batch) # to avoid nan error count_batch = np.add(count_batch, 1e-12) # per document loss ppx_sum += np.sum(np.divide(loss, count_batch)) doc_count += np.sum(mask) print_ppx = np.exp(loss_sum / word_count) print_ppx_perdoc = np.exp(ppx_sum / doc_count) print_kld = kld_sum/len(input_batches) return print_ppx, print_ppx_perdoc, print_kld def run_epoch_v2(self, data, topic_params, session): # train_y, train_x, train_count, train_mask = dataset.batches_nvdm_LM(training_data_filename_TM, topic_params.batch_size, topic_params.TM_vocab_length, num_epochs=1, multilabel=topic_params.multi_label) # val_y, val_x, val_count, val_mask = dataset.batches_nvdm_LM(validation_data_filename_TM, topic_params.batch_size, topic_params.TM_vocab_length, num_epochs=1, multilabel=topic_params.multi_label) # test_y, test_x, test_count, test_mask = dataset.batches_nvdm_LM(test_data_filename_TM, topic_params.batch_size, topic_params.TM_vocab_length, num_epochs=1, multilabel=topic_params.multi_label) kld_sum = [] this_nvdm_loss_normed = [] this_nvdm_loss_unnormed = [] this_nvdm_words = [] for nvdm_y, nvdm_x, nvdm_count, nvdm_mask in data: nvdm_feed_dict = { model.topic_model.x.name: nvdm_x, model.topic_model.mask.name: nvdm_mask#, #model.topic_model.input_batch_size: nvdm_x.shape[0] } if topic_params.supervised: sys.exit() else: loss, kld = session.run([model.topic_model.final_loss, model.topic_model.kld], feed_dict=nvdm_feed_dict) nvdm_count = np.add(nvdm_count, 1e-12) this_nvdm_loss_normed.extend(np.divide(loss, nvdm_count)) this_nvdm_loss_unnormed.extend(loss) this_nvdm_words.append(np.sum(nvdm_count)) kld_sum.append(np.sum(kld) / np.sum(nvdm_mask)) total_nvdm_nll = np.mean(this_nvdm_loss_unnormed) #total_nvdm_ppl = np.exp(np.sum(this_nvdm_loss_unnormed) / np.sum(this_val_nvdm_words)) total_nvdm_ppl = np.exp(np.mean(this_nvdm_loss_normed)) print_kld = np.mean(kld_sum) return total_nvdm_nll, total_nvdm_ppl, print_kld
[]
2024-01-10
afonsobspinto/Master-Informatics-and-Computer-Engineering
ICT~src~topic_modeling~topic_modeling.py
import os import pickle import re from datetime import datetime from pprint import pprint import gensim import gensim.corpora as corpora import pandas as pd from gensim.models import CoherenceModel from gensim.utils import simple_preprocess import spacy as spacy import pyLDAvis import pyLDAvis.gensim import matplotlib.pyplot as plt from settings import MALLET_PATH, MODELS_PATH from utils import ENGLISH_STOPWORDS, log import matplotlib.colors as mcolors from wordcloud import WordCloud def sent_to_words(sentences): for sentence in sentences: yield gensim.utils.simple_preprocess(str(sentence), deacc=True) # deacc=True removes punctuations def remove_stopwords(texts): return [[word for word in simple_preprocess(str(doc)) if word not in ENGLISH_STOPWORDS] for doc in texts] class TopicModeling: def __init__(self, df, original_path): self.df = df self.original_path = original_path self.data = df.drop_duplicates().tweet.values.tolist() self.data_words = list(sent_to_words(self.data)) self._generate_models() self._save_path() self.lda = None self.mod = None self.df_topic_keywords = None def _save_path(self): self.id = re.sub(r'-| |:|\.', '_', str(datetime.now())) self.save_path = f"{MODELS_PATH}/{self.id}" os.makedirs(self.save_path) def _generate_models(self): data_words_nostops = remove_stopwords(self.data_words) data_words_bigrams = self._make_bigrams(data_words_nostops) self.data_lemmatized = self._lemmatization(data_words_bigrams, allowed_postags=['NOUN', 'ADJ', 'VERB', 'ADV']) self.id2word = corpora.Dictionary(self.data_lemmatized) texts = self.data_lemmatized self.corpus = [self.id2word.doc2bow(text) for text in texts] def model(self, method="mallet", num_topics=6, save=False): log(f"Modeling with {num_topics} num_topics") if method == "mallet": self.mod = self._lda_mallet(num_topics) else: self.mod = self._lda_model(num_topics) if save: self.save_lda() def _lda_mallet(self, num_topics): # Download File: http://mallet.cs.umass.edu/dist/mallet-2.0.8.zip self.lda = gensim.models.wrappers.LdaMallet(MALLET_PATH, corpus=self.corpus, num_topics=num_topics, id2word=self.id2word) return gensim.models.wrappers.ldamallet.malletmodel2ldamodel(self.lda) def _lda_model(self, num_topics): self.lda = gensim.models.ldamodel.LdaModel(corpus=self.corpus, id2word=self.id2word, num_topics=num_topics, random_state=100, update_every=1, chunksize=100, passes=10, alpha='auto', per_word_topics=True) return self.lda def get_coherence(self): # a measure of how good the model is. lower the better. coherence_model_lda = CoherenceModel(model=self.lda, texts=self.data_lemmatized, dictionary=self.id2word, coherence='c_v') coherence_lda = coherence_model_lda.get_coherence() return coherence_lda def _make_bigrams(self, texts): bigram = gensim.models.Phrases(self.data_words, min_count=5, threshold=100) # higher threshold fewer phrases. bigram_mod = gensim.models.phrases.Phraser(bigram) return [bigram_mod[doc] for doc in texts] @staticmethod def _lemmatization(texts, allowed_postags=['NOUN', 'ADJ', 'VERB', 'ADV']): texts_out = [] nlp = spacy.load('en', disable=['parser', 'ner']) for sent in texts: doc = nlp(" ".join(sent)) texts_out.append([token.lemma_ for token in doc if token.pos_ in allowed_postags]) return texts_out def visualize(self, num_topics): if self.mod and self.lda: pprint(self.lda.print_topics()) ldavis_data_filepath = os.path.join(self.save_path + '/ldavis_prepared_' + str(num_topics) + "_" + self.id) ldavis_prepared = pyLDAvis.gensim.prepare(self.mod, self.corpus, self.id2word) with open(ldavis_data_filepath, 'wb') as f: log("Dumping pyLDAvis") pickle.dump(ldavis_prepared, f) log("Saving pyLDAvis html") pyLDAvis.save_html(ldavis_prepared, ldavis_data_filepath + '.html') def compute_best_model(self, stop, start=2, step=3, show=True): log("Computing best model") coherence_values = [] model_list = [] for num_topics in range(start, stop, step): self.model(num_topics=num_topics) model_list.append(self.lda) coherence_values.append(self.get_coherence()) best_index = coherence_values.index(max(coherence_values)) num_topics = range(start, stop, step)[best_index] self.lda = model_list[best_index] if show: self.save_plot_coherence_scores(stop, start, step, coherence_values) self.print_coherence_values(stop, start, step, coherence_values) self.visualize(num_topics) self.save_lda() return num_topics def save_lda(self): log("Saving lda") self.lda.save(f"{self.save_path}/lda.model") def save_plot_coherence_scores(self, stop, start, step, coherence_values): x = range(start, stop, step) plt.plot(x, coherence_values) plt.xlabel("Num Topics") plt.ylabel("Coherence score") plt.legend("coherence_values", loc='best') plt.savefig(f"{self.save_path}/{start}_{stop}_{step}.png") @staticmethod def print_coherence_values(stop, start, step, coherence_values): x = range(start, stop, step) for m, cv in zip(x, coherence_values): print("Num Topics =", m, " has Coherence Value of", round(cv, 4)) def format_topics_sentences(self): topics_df = pd.DataFrame() # Get main topic in each document for i, row in enumerate(self.lda[self.corpus]): row = sorted(row, key=lambda x: (x[1]), reverse=True) # Get the Dominant topic, Perc Contribution and Keywords for each document for j, (topic_num, prop_topic) in enumerate(row): if j == 0: # => dominant topic wp = self.lda.show_topic(topic_num) topic_keywords = ", ".join([word for word, prop in wp]) topics_df = topics_df.append(pd.Series([int(topic_num), round(prop_topic, 4), topic_keywords]), ignore_index=True) else: break # Add original text to the end of the output contents_ids = self._get_ids() contents = pd.Series(self.data) topics_df = pd.concat([topics_df, contents], axis=1) topics_df = pd.concat([topics_df, contents_ids], axis=1) topics_df.columns = ['Dominant_Topic', 'Perc_Contribution', 'Topic', 'Text', 'id'] return topics_df def _get_ids(self): cols = ['id', 'tweet', 'user', 'date'] original_data = pd.read_csv(self.original_path, names=cols) data = pd.merge(original_data, self.df, on="id").drop_duplicates().id.values.tolist() return pd.Series(data) def save_dominant_topics_per_sentence(self): log("Dominant topics per sentence") df_topic_keywords = self.get_topic_keywords_table() df_dominant_topic = df_topic_keywords.reset_index() df_dominant_topic.to_csv(f"{self.save_path}/dominant_topics_per_sentence.csv", index=False) log("Dominant topics per sentence saved") def save_representative_sentence_per_topic(self): log("Representative sentence per topic") df_topic_keywords = self.get_topic_keywords_table() topics_sorteddf_mallet = pd.DataFrame() stopics_outdf_grpd = df_topic_keywords.groupby('Dominant_Topic') for i, grp in stopics_outdf_grpd: topics_sorteddf_mallet = pd.concat([topics_sorteddf_mallet, grp.sort_values(['Perc_Contribution'], ascending=[0]).head(1)], axis=0) topics_sorteddf_mallet.reset_index(drop=True, inplace=True) topics_sorteddf_mallet.to_csv(f"{self.save_path}/representative_sentence_per_topic.csv", index=False) log("Representative sentence per topic saved") def get_topic_keywords_table(self): if self.df_topic_keywords is None: self.df_topic_keywords = self.format_topics_sentences() return self.df_topic_keywords def save_word_cloud(self, num_topics): pages = int(num_topics / 6) topics = self.mod.show_topics(formatted=False, num_topics=num_topics) index = 0 for i in range(0, pages): cols = [color for name, color in mcolors.TABLEAU_COLORS.items()] cloud = WordCloud(stopwords=ENGLISH_STOPWORDS, background_color='white', width=2500, height=1800, max_words=10, colormap='tab10', color_func=lambda *args, **kwargs: cols[i], prefer_horizontal=1.0) fig, axes = plt.subplots(3, 2, figsize=(10, 10), sharex=True, sharey=True) for j, ax in enumerate(axes.flatten()): fig.add_subplot(ax) topic_words = dict(topics[index][1]) to_del = [] for key, value in topic_words.items(): if value == 0.0: to_del.append(key) for k in to_del: del topic_words[k] cloud.generate_from_frequencies(topic_words, max_font_size=300) plt.gca().imshow(cloud) plt.gca().set_title('Topic ' + str(index), fontdict=dict(size=16)) plt.gca().axis('off') index += 1 plt.subplots_adjust(wspace=0, hspace=0) plt.axis('off') plt.margins(x=0, y=0) plt.tight_layout() plt.savefig(f"{self.save_path}/wordcloud{i}.png")
[]
2024-01-10
nueramic/customer_feedback_platform
src~ai_recognition~chat_gpt_requests.py
import json from sqlalchemy.engine import Engine import pandas as pd import os import openai from datetime import datetime import toml class AnalyzeFeedback: def __init__(self, pg_conn: Engine, openai_api_key: str): openai.api_key = openai_api_key self.pg_conn = pg_conn self.id_feedback = '' self.chat_response = '' self.gpt_config = toml.load('gpt_message_config.toml') def analyze_feedback(self, id_feedback: str, text_feedback: str, rating: str = 1, max_rating: str = 1 ): """ :param id_feedback: :param text_feedback: :param rating: :param max_rating: :return: """ message = f""" {self.gpt_config['gpt_role']['instruction']} отзыв: \n {text_feedback[:5000]} оценка: {rating} / {max_rating} """ messages = [{'role': 'assistant', 'content': message}] chat = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=messages, temperature=0.2 ) self.id_feedback: str = id_feedback self.chat_response: str = chat.choices[0].message.content def save_to_table(self): """ insert into table gpt response """ try: resp_json = json.dumps(json.loads(self.chat_response), ensure_ascii=False) df = pd.DataFrame( { 'id_feedback': [self.id_feedback], 'json_gpt_resp_content': [resp_json], 'dtime_updated': [datetime.now()] }) df.to_sql('ai_responses', self.pg_conn, schema='prod', index=False, if_exists='append') return resp_json except Exception as e: print(e)
[ "f\"\"\"\n {self.gpt_config['gpt_role']['instruction']}\n отзыв: \\n {text_feedback[:5000]} \n оценка: {rating} / {max_rating}\n " ]
2024-01-10
Richard-Gidi/app
Price_Estimator.py
#!/usr/bin/env python # coding: utf-8 ##IMPORTING RELEVANT VARIABLES import pandas as pd import numpy as np import matplotlib.pylab as plt import seaborn as sns plt.style.use('ggplot') import warnings warnings.filterwarnings('ignore') import plotly.express as px import streamlit as st import openai from datetime import date, timedelta from streamlit_option_menu import option_menu import plotly.graph_objects as go import plotly.express as px from statsmodels.tsa.arima.model import ARIMA from statsmodels.tsa.statespace.sarimax import SARIMAX st.set_option('deprecation.showPyplotGlobalUse', False) # Calculate the start and end dates #end_date_ = date.today() #start_date_ = end_date_ - timedelta(days=1) # Format the dates as strings in "YYYY-MM-DD" format #start_date_str_ = start_date_.strftime("%Y-%m-%d") #end_date_str_ = end_date_.strftime("%Y-%m-%d") # Set up OpenAI API credentials openai.api_key = st.secrets["auth_key"] #!/usr/bin/env python # coding: utf-8 def upload_file(): uploaded_file = st.file_uploader("Choose a file") if uploaded_file is not None: data = pd.read_excel(uploaded_file, sheet_name=0, parse_dates=True, header=1) #data = data.drop(columns=['Unnamed: 5', 'Unnamed: 6']) data = data.dropna() return data def visualize_data(data): st.subheader("Data Visualization") columns = list(data.columns) plt.rcParams["figure.figsize"] = [18, 10] plt.rcParams["figure.autolayout"] = True selected_columns = st.multiselect("Select columns to visualize", columns) if len(selected_columns) > 0: chart_type = st.selectbox("Select chart type", ["Line Plot", "Bar Plot", "Scatter Plot"]) if chart_type == "Bar Plot": for column in selected_columns: plt.bar(data.index, data[column], label=column) plt.xlabel("Date") plt.ylabel("Price") plt.legend() st.pyplot() elif chart_type == "Line Plot": fig = px.line(data, x="Date", y=selected_columns) st.plotly_chart(fig) elif chart_type == "Scatter Plot": fig = px.scatter(data, x="Date", y=selected_columns) st.plotly_chart(fig) # Perform time series forecasting on selected_columns for column in selected_columns: # Split the data into train and test sets train_data = data[column].iloc[:-15] test_data = data[column].iloc[-15:] # Define exogenous variables if available exog_train = None # Modify this with your exogenous variables for the training set exog_test = None # Modify this with your exogenous variables for the test set # Convert the index to a DatetimeIndex train_data.index = pd.to_datetime(train_data.index) test_data.index = pd.to_datetime(test_data.index) # Fit a SARIMA model model = SARIMAX(train_data, order=(0, 0, 0), seasonal_order=(1, 0, 0, 12), exog=exog_train) model_fit = model.fit() # Forecast future values forecast = model_fit.get_forecast(steps=15, exog=exog_test) # Extract the forecasted values and confidence intervals forecast_values = forecast.predicted_mean confidence_intervals = forecast.conf_int() # Convert confidence_intervals to DataFrame confidence_intervals_df = pd.DataFrame(confidence_intervals, index=test_data.index) # Plot the forecast plt.plot(test_data.index, test_data, label="Actual") plt.plot(test_data.index, forecast_values, label="Forecast") plt.fill_between(test_data.index, confidence_intervals_df.iloc[:, 0], confidence_intervals_df.iloc[:, 1], alpha=0.3) plt.xlabel("Date") plt.ylabel("Price") plt.legend() st.pyplot() # Function to handle user queries using ChatGPT def handle_chatbot(query, data): # ChatGPT API call response = openai.Completion.create( engine="text-davinci-003", prompt=query, max_tokens=50, n=1, stop=None, temperature=0.7, presence_penalty=0.2, frequency_penalty=0.0, ) return response.choices[0].text.strip() def main(): st.set_page_config(page_title='Price Estimator') st.sidebar.title("Main Menu") selected = st.sidebar.selectbox("Select Option", ["Welcome", "Upload", "Estimator","Visualize",'Chatbot']) if selected == 'Welcome': st.write("# Welcome to Gidi's Price Estimator!👋") st.markdown("""This web app was developed by Gidi Richard to help estimate oil prices for a coming window given the price of the current window.""") elif selected == "Visualize": st.subheader('Visualize Data') data = upload_file() if data is None: st.warning('Please upload a file first.') return visualize_data(data) elif selected == 'Upload': st.subheader('Upload Data') data = upload_file() if data is not None: st.success('File uploaded successfully!') elif selected == 'Estimator': st.subheader('Price Estimator') data = upload_file() if data is None: st.warning('Please upload a file first.') return data['date'] = pd.to_datetime(data['Date']) st.subheader('OLD PRICING WINDOW') start_date = st.date_input(label='Starting Date', format="YYYY-MM-DD").strftime('%Y-%m-%d') end_date = st.date_input(label='End Date', format="YYYY-MM-DD").strftime('%Y-%m-%d') date_range = data.loc[(data['date'] >= start_date) & (data['date'] <= end_date)] df_columns = date_range[['Gasoline', 'Naphtha', 'Gasoil', 'LPG']] data1 = df_columns.mean() data1 = data1.reset_index() data1 = data1.rename(columns={'index': 'Product', 0: 'Average'}) st.subheader('NEW PRICING WINDOW') start_date2 = st.date_input(label='New Starting Date', format="YYYY-MM-DD").strftime('%Y-%m-%d') end_date2 = st.date_input(label='New Ending Date', format="YYYY-MM-DD").strftime('%Y-%m-%d') date_range2 = data.loc[(data['date'] >= start_date2) & (data['date'] <= end_date2)] df_columns2 = date_range2[['Gasoline', 'Naphtha', 'Gasoil', 'LPG']] data2 = df_columns2.mean() data2 = data2.reset_index() data2 = data2.rename(columns={'index': 'Product', 0: 'New Average'}) result = pd.concat([data1, data2], axis=1) new_data = result.loc[:, ~result.T.duplicated(keep='first')] new = new_data.T new = new.reset_index() new = new.drop('index', axis=1) new = new.rename(columns={1: 'Naphtha', 0: 'Gasoline', 2: 'Gasoil', 3: 'LPG'}) new = new.drop(0) final = new.pct_change().dropna() st.subheader('CALCULATOR') product = st.selectbox('Select Product', options=final.columns) price = st.number_input(label='Current Price') calculate_conversion = st.checkbox('Calculate GHS/L conversion') if calculate_conversion: volume_gasoil = 1180 volume_gasoline = 1300 volume_naphtha = 1351.35 volume_lpg = 1724.14 volume = None if product == 'Gasoil': volume = volume_gasoil elif product == 'Gasoline': volume = volume_gasoline elif product == 'Naphtha': volume = volume_naphtha elif product == 'LPG': volume = volume_lpg else: volume = 1.0 fx_rate = st.number_input(label='FX Rate') if fx_rate is not None and volume is not None: ghs_per_liter = ((new[product].values[1] + 80) / volume) * fx_rate st.write(f'The GHS/L conversion for {product} is {ghs_per_liter:.2f}') submit = st.button('Submit') if submit: percentage_change = final[product].values[0] if product == 'Gasoil': estimated_price = (percentage_change * price) + price else: estimated_price = (percentage_change * price) + price st.write(f'The estimated price of {product} is Ghc {estimated_price:.2f}') if percentage_change < 0: st.write(f'The price of {product} has reduced by a percentage of {percentage_change * 100:.2f}') else: st.write(f'The price of {product} has increased by a percentage of {percentage_change * 100:.2f}') elif selected == 'Chatbot': st.subheader('Chatbot') data = upload_file() if data is None: st.warning('Please upload a file first.') return query = st.text_input("Ask a question") if query: response = handle_chatbot(query, data) st.write("Chatbot: ", response) if __name__ == '__main__': main()
[]
2024-01-10
ustayready/DirectAI
direct.py
import openai import argparse import sys import os from prompt_toolkit import prompt from prompt_toolkit.completion import WordCompleter parser = argparse.ArgumentParser(description='Directly query ChatGPT using the API') parser.add_argument('--key', type=str, help='OpenAI API key') openai.api_key = os.getenv('OPENAI_API_KEY') def main(args): if not openai.api_key and not args.key: parser.error('--key or OPENAI_API_KEY environment variable is required.') elif not openai.api_key: openai.api_key = args.key main_prompt() def main_prompt(): text = prompt('> ') if text == 'quit': sys.exit(1) elif text == 'clear': os.system('clear') main_prompt() else: query_chatgpt(text) def query_chatgpt(query): prompt = query response = openai.Completion.create( model="text-davinci-003", prompt=prompt, temperature=0.5, max_tokens=500, top_p=1, frequency_penalty=0.0, presence_penalty=0.0, stream=False, ) response = response.choices[0]['text'].strip() print(f'\n{response}\n') main_prompt() if __name__ == '__main__': args = parser.parse_args() main(args)
[]
2024-01-10
CogComp/Zero_Shot_Schema_Induction
gpt2_flat.py
import os import openai #openai.api_key = "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" #openai.api_key = "sk-tP9LtUEWkDAn9AuhdZuohNGjZnMjWEX2b7NBzPeP" openai.api_key = "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" import requests import json def SRL(text): headers = {'Content-type':'application/json'} SRL_response = requests.post('http://dickens.seas.upenn.edu:4039/annotate', json={"sentence": text}, headers=headers) if SRL_response.status_code != 200: print("SRL_response:", SRL_response.status_code) try: SRL_output = json.loads(SRL_response.text) predicates = [] for view in SRL_output['views']: if view['viewName'] in ['SRL_ONTONOTES', 'SRL_NOM_ALL']: for constituent in view['viewData'][0]['constituents']: if constituent['label'] == 'Predicate': predicate = {} predicate['predicate'] = constituent['properties']['predicate'] predicate['SenseNumber'] = constituent['properties']['SenseNumber'] predicate['sense'] = constituent['properties']['sense'] predicate['viewName'] = view['viewName'] predicates.append(predicate) else: predicates[-1][constituent['label']] = ' '.join(SRL_output['tokens'][constituent['start']:constituent['end']]) return predicates except: return [] import json import requests API_TOKEN = "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" API_URL = "https://api-inference.huggingface.co/models/gpt2" headers = {"Authorization": f"Bearer {API_TOKEN}"} def query(payload): data = json.dumps(payload) response = requests.request("POST", API_URL, headers=headers, data=data) return json.loads(response.content.decode("utf-8")) def call_gpt2(prompt, event, n, temperature, max_length, presence_penalty, headline = None, subtopic = 0): if not prompt: if subtopic: prompt="Subtopics of " + event + " are:\n\n1." else: if headline: prompt="Write a news story titled \"" + headline + "\"" print("--- Generating text for '" + headline + "' ...") else: prompt="Write a news headline about " + event + ", \"" print("--- Generating headlines for '" + event + "' ...") print("--- prompt:", prompt) data = query( { "inputs": prompt, "parameters": {"max_length": max_length, "num_return_sequences": n, }, } ) return_text = [] for gt in data: try: return_text.append(gt['generated_text'].replace(prompt, '')) except: continue return return_text, None import nltk from nltk.corpus import stopwords stop_words = set(stopwords.words('english')) class schema: def __init__(self, name, hierarchy_num, generator, headline_num = 1, news_per_headline = 15, HowTo_num = 15): self.name = name self.hierarchy_num = hierarchy_num self.generator = generator # call_openai_api self.temperature = 0.9 self.stop = None self.presence_penalty = 0.1 self.headline_num = headline_num self.news_per_headline = news_per_headline self.HowTo_num = HowTo_num self.hierarchy = {name: {'subtopics': [], 'text': {}}} def subtopic_gen(self, topic): texts, response = self.generator(None, topic, 1, self.temperature, 64, self.presence_penalty, headline = None, subtopic = 1) print("printing within subtopic_gen():", texts[0]) predicates = SRL(texts[0].replace('\n', ' ')) subtopics = set() for predicate in predicates: if len(subtopics) <= 4 and predicate['predicate'] not in stop_words: if 'ARG1' in predicate.keys(): subtopics.add(predicate['predicate'] + ' ' + predicate['ARG1'] + " (" + topic + ")") else: subtopics.add(predicate['predicate'] + " (" + topic + ")") return subtopics def text_gen_helper(self, event, mode): # mode 1: direct generation for steps # mode 2: news-style text generation # mode 3: how-to article generation if mode == 1: prompt = "Write essential steps for " + event + ":\n\n1." texts, response = self.generator(prompt, event, 1, self.temperature, 256, self.presence_penalty) return texts if mode == 2: news = [] headlines, response = self.generator(None, event, self.headline_num, self.temperature, 64, self.presence_penalty) for headline in headlines: end = headline.find("\"") headline = headline[:end] texts, response = self.generator(None, event, self.news_per_headline, self.temperature, 256, self.presence_penalty, headline) for text in texts: news.append(headline + ' ' + text) return news if mode == 3: prompt = "How to make " + event texts, response = self.generator(prompt, event, self.HowTo_num, self.temperature, 256, self.presence_penalty) return texts def text_gen(self, event): return {'steps': self.text_gen_helper(event, 1), 'news': self.text_gen_helper(event, 2), 'HowTo': self.text_gen_helper(event, 3)} def learning_corpus_gen(self): if self.hierarchy_num >= 1: self.hierarchy[self.name]['text'] = self.text_gen(self.name) if self.hierarchy_num >= 2: subtopics = self.subtopic_gen(self.name) for subtopic in subtopics: print("%%% subtopic of", self.name, ":", subtopic) st_dict = {'subtopics': []} st_dict['text'] = self.text_gen(subtopic) self.hierarchy[self.name]['subtopics'].append({subtopic: st_dict}) if self.hierarchy_num == 3: subsubtopics = self.subtopic_gen(subtopic) for subsubtopic in subsubtopics: sub_st_dict = {'subtopics': []} sub_st_dict['text'] = self.text_gen(subsubtopic) self.hierarchy[self.name]['subtopics'][-1][subtopic]['subtopics'].append({subsubtopic: sub_st_dict}) def print_hierarchy(self): for i in self.hierarchy.keys(): print(i) for subtopic in self.hierarchy[i]['subtopics']: for j in subtopic.keys(): print(j) for subsubtopic in subtopic[j]['subtopics']: for k in subsubtopic.keys(): print(k) from os import listdir from os.path import isfile, join dir_name = "/shared/kairos/Data/LDC2020E25_KAIROS_Schema_Learning_Corpus_Phase_1_Complex_Event_Annotation_V4/docs/ce_profile" onlyfiles = [f for f in listdir(dir_name) if isfile(join(dir_name, f)) and f[-4:] == ".txt"] scenarios = ['Bombing Attacks', 'Pandemic Outbreak', 'Civil Unrest', 'International Conflict', 'Disaster and Rescue', 'Terrorism Attacks', 'Election', 'Sports Games', 'Kidnapping', 'Business Change', 'Mass Shooting'] for f in onlyfiles: scenarios.append(" ".join(f.split("_")[2:-1])) print(len(scenarios)) model = 'gpt2' hier = 1 generated_text = {} import pickle ''' with open("generated_text/2022-06-10.pkl", 'wb') as f: for scenario in scenarios: s = schema(scenario, hier, call_gpt2) s.learning_corpus_gen() generated_text[scenario] = s.hierarchy[scenario]['text']['news'] generated_text[scenario] += s.hierarchy[scenario]['text']['HowTo'] pickle.dump(generated_text, f) ''' with open('generated_text/2022-06-10.pkl', 'rb') as f: gt = pickle.load(f) print(len(gt)) f_11 = open('generated_text/2022-06-11.pkl', 'wb') print(set(scenarios).difference(set(list(gt.keys())))) for scenario in scenarios: if scenario in gt.keys(): continue else: print(scenario) s = schema(scenario, hier, call_gpt2) s.learning_corpus_gen() generated_text[scenario] = s.hierarchy[scenario]['text']['news'] generated_text[scenario] += s.hierarchy[scenario]['text']['HowTo'] pickle.dump(generated_text, f_11) f_11.close()
[ "Write essential steps for PLACEHOLDER:\n\n1.", "How to make PLACEHOLDER", "Write a news story titled \"PLACEHOLDER\"", "Write a news headline about PLACEHOLDER, \"", "Subtopics of PLACEHOLDER are:\n\n1." ]
2024-01-10
CogComp/Zero_Shot_Schema_Induction
Information_Extractor.py
import requests import os from os import listdir from os.path import isfile, join import json import argparse from timeit import default_timer as timer import time from datetime import timedelta from pprint import pprint import multiprocessing from multiprocessing import Pool, cpu_count, Manager, Process import pickle import networkx as nx import matplotlib.pyplot as plt from sentence_transformers import SentenceTransformer, util import openai import string import re import os.path from os import path # Read the list of phrasal verbs with open("complete-pv/Complete-PV-list.txt") as f: lines = f.readlines() phrasal_verbs = {} verbs = set() for line in lines: if re.search('.[A-Z].', line.strip()): if not re.search('.[A-Z][A-Z].', line.strip()): end = re.search('.[A-Z].', line.strip()).start() tmp_line = line[0:end] words = tmp_line.strip().split(" ") else: words = line.strip().split(" ") if len(words) > 1 and len(words) < 4: if words[0][0].isupper() and words[-1][-1] not in string.punctuation and words[-1][0] not in string.punctuation: lower_words = [] for word in words: lower_words.append(word.lower()) if lower_words[0] not in phrasal_verbs.keys(): phrasal_verbs[lower_words[0]] = {" ".join(lower_words)} else: phrasal_verbs[lower_words[0]].add(" ".join(lower_words)) # This is a sentence-transformers model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search. model = SentenceTransformer('all-MiniLM-L6-v2') #manager = Manager() #IE_output = manager.list() # if not specified, start and end denote the word id at the doc level # "start_sent_level" denotes the start word id at the sentence level def view_map_update(output): count = 0 view_map = {} for view in output['views']: view_map[view['viewName']] = count count += 1 return view_map def sent_id_getter(token_id, SRL_output): i = -1 for sEP in SRL_output['sentences']['sentenceEndPositions']: i += 1 if token_id < sEP: return i #raise ValueError("Cannot find sent_id.") return i + 1 # NER tokenizer may differ from SRL tokenizer def read_doc(fname): tag_list = [] with open(fname) as f: lines = f.readlines() for line in lines: tag_list.append(line.split(' - ')[0]) return tag_list def CP_getter(sentence): # Constituency Parsing headers = {'Content-type':'application/json'} CP_response = requests.post('http://127.0.0.1:6003/annotate', json={"text": sentence}, headers=headers) if CP_response.status_code != 200: print("CP_response:", CP_response.status_code) result = json.loads(CP_response.text) return result def relation_preparer(SRL_output): new_output = {'corpusId': SRL_output['corpusId'], 'id': SRL_output['id'], 'sentences': SRL_output['sentences'], 'text': SRL_output['text'], 'tokens': SRL_output['tokens'], 'views': [] } for view in SRL_output['views']: my_view = {} if view['viewName'] == 'Event_extraction': my_view['viewName'] = view['viewName'] my_view['viewData'] = [{'viewType': 'edu.illinois.cs.cogcomp.core.datastructures.textannotation.PredicateArgumentView', 'viewName': 'event_extraction', 'generator': 'cogcomp_kairos_event_ie_v1.0', 'score': 1.0, 'constituents': view['viewData'][0]['constituents'], 'relations': view['viewData'][0]['relations'], }] new_output['views'].append(my_view) return new_output def temporal_getter(SRL_output, onepass = 1): headers = {'Content-type':'application/json'} #if onepass: if True: temporal_service = 'http://localhost:6009/annotate' #else: # temporal_service = 'http://dickens.seas.upenn.edu:4024/annotate' print("Calling service from " + temporal_service) temporal_response = requests.post(temporal_service, json=SRL_output, headers=headers) if temporal_response.status_code != 200: print("temporal_response:", temporal_response.status_code) try: result = json.loads(temporal_response.text) return result except: return None def subevent_getter(SRL_output): headers = {'Content-type':'application/json'} subevent_response = requests.post('http://localhost:6004/annotate', json=SRL_output, headers=headers) if subevent_response.status_code != 200: print("subevent_response:", subevent_response.status_code) try: result = json.loads(subevent_response.text) return result except: return None def coref_getter(SRL_output): # Note: coref service is not provided in this repo headers = {'Content-type':'application/json'} coref_response = requests.post('http://localhost:8888/annotate', json=SRL_output, headers=headers) if coref_response.status_code != 200: print("coref_response:", coref_response.status_code) try: result = json.loads(coref_response.text) return result except: return None def extract_head_noun(children): Clause_Level = read_doc('CP_Clause_Level.txt') Phrase_Level = read_doc('CP_Phrase_Level.txt') Word_Level = read_doc('CP_Word_Level.txt') num_c = len(children) child_index = -1 for child in children: child_index += 1 if child['nodeType'] in Word_Level: if child['nodeType'] in ['NN', 'NNS', 'NNP', 'NNPS', 'PRP', 'PRP$']: next_index = child_index+1 if next_index < num_c: if children[next_index]['nodeType'] not in ['NN', 'NNS', 'NNP', 'NNPS', 'PRP', 'PRP$']: return child['word'] else: while children[next_index]['nodeType'] in ['NN', 'NNS', 'NNP', 'NNPS', 'PRP', 'PRP$']: next_index += 1 if next_index >= num_c: break return children[next_index-1]['word'] else: return child['word'] elif child['nodeType'] in Phrase_Level: if 'NP' in child['attributes']: # we are not interested in the extraction of any nouns in the query, # but only those that appear within the NP component, # e.g., NP -> NP + VP (VP -> POS + NP), you cannot let the function search within VP return extract_head_noun(child['children']) elif child['nodeType'] in Clause_Level: return extract_head_noun(child['children']) else: #print("extract_head_noun:", child['nodeType'], "is not in any list") #print("child:", child) pass def similar(string1, string2): if string2 in string1 and len(string1) - len(string2) <= 2: #print("similar:", string1, string2) return True else: return False def find(children, query): # return value is a dict or None for child in children: if child['word'] == query or similar(child['word'], query): return child else: if 'children' in child.keys(): result = find(child['children'], query) if type(result) == dict: return result return None def head_word_extractor(CP_result, query): children = CP_result['hierplane_tree']['root']['children'] target_child = find(children, query) try: if 'children' in target_child.keys(): # target_child can be None, so it might have no keys return extract_head_noun(target_child['children']) else: return target_child['word'] except: #print("Did not find '", query, "' in Constituency Parsing result") return None def entity_info_getter(query, sent_id, entities): if sent_id in entities: for entity in entities[sent_id]: if query in entity['mention']: return entity['label'], ' '.join(entity['mention']), entity['start'], entity['end'] else: #print("NER module detected no entity in the {i}-th sentence".format(i=sent_id)) return None def event_extractor(text, text_id, NOM=True): if text == '': return {} headers = {'Content-type':'application/json'} SRL_response = requests.post('http://dickens.seas.upenn.edu:4039/annotate', json={"sentence": text}, headers=headers) if SRL_response.status_code != 200: print("SRL_response:", SRL_response.status_code) try: SRL_output = json.loads(SRL_response.text) except: return {} token_num = len(SRL_output['tokens']) if token_num not in SRL_output['sentences']['sentenceEndPositions']: SRL_output['sentences']['sentenceEndPositions'].append(token_num) print("SRL done") headers = {'Content-type':'application/json'} NER_response = requests.post('http://dickens.seas.upenn.edu:4022/ner/', json={"task": "kairos_ner","text" : text}, headers=headers) if NER_response.status_code != 200: print("NER_response:", NER_response.status_code) try: NER_output = json.loads(NER_response.text) NER_view_map = view_map_update(NER_output) print("NER done") except: print("NER result empty") assert 0 == 1 entities = {} for mention in NER_output['views'][NER_view_map['NER_CONLL']]['viewData'][0]['constituents']: sent_id = sent_id_getter(mention['start'], SRL_output) # TODO: Check whether SRL tokenizer is the same as NER's entity = {'mention': NER_output['tokens'][mention['start']:mention['end']], \ 'label': mention['label'], \ 'start': mention['start'], \ 'end': mention['end'], \ 'sentence_id': sent_id, \ } if sent_id in entities.keys(): entities[sent_id].append(entity) else: entities[sent_id] = [entity] '''Append NER results to SRL''' SRL_output['views'].append(NER_output['views'][NER_view_map['NER_CONLL']]) SRL_view_map = view_map_update(SRL_output) #print(SRL_view_map) CP_output = [] pEP = 0 for sEP in SRL_output['sentences']['sentenceEndPositions']: this_sentence = " ".join(SRL_output['tokens'][pEP:sEP]) pEP = sEP CP_output.append(CP_getter(this_sentence)) if SRL_output['sentences']['sentenceEndPositions'][-1] < len(SRL_output['tokens']): this_sentence = " ".join(SRL_output['tokens'][SRL_output['sentences']['sentenceEndPositions'][-1]:]) CP_output.append(CP_getter(this_sentence)) print("CP done") Events = [] argument_ids = [] if NOM: source = ['SRL_ONTONOTES', 'SRL_NOM'] else: source = ['SRL_ONTONOTES'] for viewName in source: for mention in SRL_output['views'][SRL_view_map[viewName]]['viewData'][0]['constituents']: sent_id = sent_id_getter(mention['start'], SRL_output) mention_id_docLevel = str(text_id) + '_' + str(sent_id) + '_' + str(mention['start']) if mention['label'] == 'Predicate': if sent_id == 0: start = mention['start'] end = mention['end'] else: start = mention['start'] - SRL_output['sentences']['sentenceEndPositions'][sent_id-1] # event start position in the sentence = event start position in the document - offset end = mention['end'] - SRL_output['sentences']['sentenceEndPositions'][sent_id-1] event_id = str(text_id) + '_' + str(sent_id) + '_' + str(start) predicate = '' if mention['properties']['predicate'] in phrasal_verbs.keys() and mention['start'] < len(SRL_output['tokens']) - 2: next_token = SRL_output['tokens'][mention['start'] + 1] token_after_next = SRL_output['tokens'][mention['start'] + 2] potential_pv_1 = " ".join([mention['properties']['predicate'], next_token, token_after_next]) #print(potential_pv_1) potential_pv_2 = " ".join([mention['properties']['predicate'], next_token]) #print(potential_pv_2) if potential_pv_2 in phrasal_verbs[mention['properties']['predicate']]: predicate = potential_pv_2 print(predicate) if potential_pv_1 in phrasal_verbs[mention['properties']['predicate']]: predicate = potential_pv_1 print(predicate) if predicate == '': predicate = mention['properties']['predicate'] else: predicate = mention['properties']['predicate'] try: assert mention['start'] != None assert mention['end'] != None Events.append({'event_id': event_id, \ 'event_id_docLevel': mention_id_docLevel, \ 'start': mention['start'], \ 'end': mention['end'], \ 'start_sent_level': start, \ 'end_sent_level': end, \ 'properties': {'predicate': [mention['properties']['predicate']], \ 'SenseNumber': '01', \ 'sentence_id': sent_id }, \ 'label': predicate }) except: print("mention with None start or end:", mention) pass else: start = mention['start'] # document level position end = mention['end'] query = ' '.join(SRL_output['tokens'][start:end]).strip() ENTITY_INFO = entity_info_getter(query, sent_id, entities) if mention['label'] in Events[-1]['properties'].keys(): count = 1 for label in Events[-1]['properties'].keys(): if '_' in label and label.split('_')[0] == mention['label']: count += 1 arg_label = mention['label'] + '_' + str(count) else: arg_label = mention['label'] if ENTITY_INFO: # the argument found by SRL is directly an entity detected by NER Events[-1]['properties'][arg_label] = {'entityType': ENTITY_INFO[0], \ 'mention': ENTITY_INFO[1], \ 'start': ENTITY_INFO[2], \ 'end': ENTITY_INFO[3], \ 'argument_id': str(text_id) + '_' + str(sent_id) + '_' + str(ENTITY_INFO[2]), \ } argument_ids.append(str(text_id) + '_' + str(sent_id) + '_' + str(ENTITY_INFO[2])) else: # the argument found by SRL might be a phrase / part of clause, hence head word extraction is needed head_word = head_word_extractor(CP_output[sent_id], query) if head_word: ENTITY_INFO = entity_info_getter(head_word, sent_id, entities) if ENTITY_INFO: # if the head word is a substring in any entity mention detected by NER Events[-1]['properties'][arg_label] = {'entityType': ENTITY_INFO[0], \ 'mention': ENTITY_INFO[1], \ 'start': ENTITY_INFO[2], \ 'end': ENTITY_INFO[3], \ 'argument_id': str(text_id) + '_' + str(sent_id) + '_' + str(ENTITY_INFO[2]), \ } argument_ids.append(str(text_id) + '_' + str(sent_id) + '_' + str(ENTITY_INFO[2])) else: Events[-1]['properties'][arg_label] = {'mention': head_word, 'entityType': 'NA', 'argument_id': mention_id_docLevel} # actually not exactly describing its position argument_ids.append(mention_id_docLevel) else: Events[-1]['properties'][arg_label] = {'mention': query, 'entityType': 'NA', 'argument_id': mention_id_docLevel} argument_ids.append(mention_id_docLevel) print("head word extraction done") """ Can directly go to the Events_final if ignoring event typing (line 441, before '''Append Event Typing Results to SRL''') #Events_with_arg = [event for event in Events if len(event['properties']) > 3] #Events_non_nom = [event for event in Events_with_arg if event['event_id_docLevel'] not in argument_ids] #print("Removal of nominal events that serve as arguments of other events") #for event in Events_non_nom: for event in Events: sent_id = int(event['event_id'].split('_')[1]) # 0-th: text_id 1-st: sent_id 2-nd: event_start_position_in_sentence if sent_id < len(SRL_output['sentences']['sentenceEndPositions']): sEP = SRL_output['sentences']['sentenceEndPositions'][sent_id] # sEP: sentence End Position if sent_id == 0: tokens = SRL_output['tokens'][0:sEP] else: pEP = SRL_output['sentences']['sentenceEndPositions'][sent_id-1] # pEP: previous sentence End Position tokens = SRL_output['tokens'][pEP:sEP] else: pEP = SRL_output['sentences']['sentenceEndPositions'][-1] tokens = SRL_output['tokens'][pEP:] event_sent = " ".join(tokens) if event_sent[-1] != '.': event_sent = event_sent + '.' headers = {'Content-type':'application/json'} #ET_response = requests.post('http://dickens.seas.upenn.edu:4036/annotate', json={"tokens": tokens, "target_token_position": [event['start_sent_level'], event['end_sent_level']]}, headers=headers) ET_response = requests.post('http://leguin.seas.upenn.edu:4023/annotate', json={"text": event_sent}, headers=headers) if ET_response.status_code != 200: print("ET_response:", ET_response.status_code) try: ET_output = json.loads(ET_response.text) for view in ET_output['views']: if view['viewName'] == 'Event_extraction': for constituent in view['viewData'][0]['constituents']: if constituent['start'] == event['start_sent_level']: event['label'] = constituent['label'] #try: # event['label'] = ET_output['predicted_type'] except: event['label'] = "NA" print("-------------------------------- Event Typing result: NA! --------------------------------") print("the sentence is: " + event_sent) print("the event is: " + event['properties']['predicate'][0]) Events_non_reporting = [event for event in Events if event['label'] not in ['NA', 'Reporting', 'Statement'] and event['properties']['predicate'][0] not in ["be", "have", "can", "could", "may", "might", "must", "ought", "shall", "will", "would", "say", "nee", "need", "do", "happen", "occur"]] print("event typing done, removed 'be', Reporting, Statement, NA events") print("event num:", len(Events_non_reporting)) #print(Events[0]) # remove repeated events event_types = [] Events_final = [] for event in Events_non_reporting: if event['label'] not in event_types: Events_final.append(event) event_types.append(event['label']) print("num of events with different types:", len(Events_final)) """ Events_final = [event for event in Events if event['label'] not in ["be", "have", "can", "could", "may", "might", "must", "ought", "shall", "will", "would", "say", "nee", "need", "do", "happen", "occur"]] '''Append Event Typing Results to SRL''' Event_Extraction = {'viewName': 'Event_extraction', \ 'viewData': [{'viewType': 'edu.illinois.cs.cogcomp.core.datastructures.textannotation.PredicateArgumentView', \ 'viewName': 'event_extraction', \ 'generator': 'Event_ONTONOTES+NOM_MAVEN_Entity_CONLL02+03', \ 'score': 1.0, \ 'constituents': Events_final, \ 'relations': [] }] } #pprint(Events_final) SRL_output['views'].append(Event_Extraction) print("event extraction done") #IE_output.append(SRL_output) print("------- The {i}-th piece of generated text processing complete! -------".format(i=text_id)) return SRL_output def call_nlpcloud_API(prompt, token): # Deprecated function headers = {"Authorization": "Token " + token} generation_response = requests.post('https://api.nlpcloud.io/v1/gpu/gpt-j/generation', \ json={"text": prompt, \ "min_length": 50, \ "max_length": 256, \ "temperature": 0.9, \ "top_p": 0.8, \ }, \ headers=headers ) if generation_response.status_code != 200: print("generation_response:", generation_response.status_code) return generation_response def headline_generator(event, news): # TODO: test this function event = event.lower() if news: prompt = "The headline of the news about " + event + " was '" else: #prompt = "The title for 'How to make " + event + " possible' is '" return "How to make " + event + " possible" response = call_nlpcloud_API(prompt) len_hp = len(prompt) generated_text = json.loads(response.text)['generated_text'][len_hp:] end_of_headline = generated_text.find("'") if end_of_headline: return generated_text[0:end_of_headline] else: return event def print_event(event_extraction_results, f_out, NA_event=True): # event_extraction_results: list for event in event_extraction_results: #To_print = "Event: '{mention}' ({label}, {event_id})\t".format(event_id=event['event_id_docLevel'], mention=event['properties']['predicate'][0], label=event['label']) To_print = "Event: '{mention}' ({event_id})\t".format(event_id=event['event_id_docLevel'], mention=event['label']) for key in event['properties'].keys(): if key not in ["predicate", "sentence_id", "SenseNumber"]: To_print += "{arg}: '{mention}' ({entityType}, {argument_id})\t".format(arg=key, mention=event['properties'][key]['mention'], entityType=event['properties'][key]['entityType'], argument_id=event['properties'][key]['argument_id']) if NA_event: # printing info for events with type "NA" print(To_print, file = f_out) else: if event['label'] != 'NA': print(To_print, file = f_out) def schema_induction(prompt, call_n, f_out, gt_input = False, gt_output = False, debugging = 1, temporal = True, print_events = True, subevent = True, coref = False): IE_output = [] if gt_input: generated_text = gt_input else: if debugging: with open('parrot.pkl', 'rb') as f: generated_text = pickle.load(f) generated_text = generated_text[0:debugging] else: generated_text = [] print("\tGenerating text") for i in range(call_n): response = call_nlpcloud_API(prompt) generated_text.append(json.loads(response.text)['generated_text']) if gt_output: return generated_text print("Schema Induction module is going to run IE for " + str(len(generated_text)) + " pieces of text.") text_ids = [i for i in range(len(generated_text))] with Pool(processes=2) as pool: IE_output = pool.starmap(event_extractor, zip(generated_text, text_ids)) if print_events: for SRL_output in IE_output: if SRL_output == {}: continue print_event(SRL_output['views'][-1]['viewData'][0]['constituents'], f_out) if subevent: IE_output_subevent = [] print("start working on subevent...") for SRL_output in IE_output: if SRL_output == {}: continue temp = relation_preparer(SRL_output) subevent_res = subevent_getter(temp) if subevent_res: IE_output_subevent.append(subevent_res) IE_output = [] IE_output = IE_output_subevent if coref: IE_output_coref = [] print("start working on coref...") for SRL_output in IE_output: if SRL_output == {}: continue temp = relation_preparer(SRL_output) coref_res = coref_getter(temp) if coref_res: IE_output_coref.append(coref_res) IE_output = [] IE_output = IE_output_coref if temporal: IE_output_temporal = [] count = -1 print("start working on temporal...") for SRL_output in IE_output: if SRL_output == {}: continue temp = relation_preparer(SRL_output) """ count += 1 dump_EE = True if dump_EE: with open("intermediate/temp" + str(count) + ".json", 'w') as f: json.dump(temp, f) """ print("schema induction -- num of events:", len(temp['views'][-1]['viewData'][0]['constituents'])) temporal_res = temporal_getter(temp) if temporal_res: IE_output_temporal.append(temporal_res) return IE_output_temporal else: return IE_output def print_stats(IE_output, topic, f_out): event_types_total = {} #event_mentions_total = {} event_types_detail = {} event_args = {} for SRL_output in IE_output: if SRL_output == {}: continue event_types = {} #event_mentions = {} for event in SRL_output['views'][-1]['viewData'][0]['constituents']: if event['label'] != "NA": # not reporting those events w/o types #event_mentions[event['properties']['predicate'][0]] = 1 event_types[event['label']] = 1 if event['label'] not in event_types_detail.keys(): event_types_detail[event['label']] = set() event_types_detail[event['label']].add(event['event_id_docLevel']) if event['label'] not in event_args.keys(): event_args[event['label']] = {} for arg in event['properties'].keys(): arg_no_index = arg.split('_')[0] if "ARG" in arg: if event['properties'][arg]['entityType'] != 'NA': event_args[event['label']][arg_no_index] = {event['properties'][arg]['entityType']: 1} else: for arg in event['properties'].keys(): arg_no_index = arg.split('_')[0] if "ARG" in arg: if event['properties'][arg]['entityType'] != 'NA': if arg_no_index in event_args[event['label']].keys(): if event['properties'][arg]['entityType'] in event_args[event['label']][arg_no_index].keys(): event_args[event['label']][arg_no_index][event['properties'][arg]['entityType']] += 1 else: event_args[event['label']][arg_no_index][event['properties'][arg]['entityType']] = 1 else: event_args[event['label']][arg_no_index] = {event['properties'][arg]['entityType']: 1} for event_type in event_types.keys(): if event_type in event_types_total.keys(): event_types_total[event_type] += 1 else: event_types_total[event_type] = 1 #for mention in event_mentions.keys(): # if mention in event_mentions_total.keys(): # event_mentions_total[mention] += 1 # else: # event_mentions_total[mention] = 1 #print('top 20 event mentions:') #pprint(sorted(event_mentions_total.items(), key=lambda x: x[1], reverse=True)[:20]) #print('\ntop 30 events:\n', file = f_out) print('\ntop events:\n', file = f_out) #pprint(sorted(event_types_total.items(), key=lambda x: x[1], reverse=True)[:20]) #for et, count in sorted(event_types_total.items(), key=lambda x: x[1], reverse=True)[:30]: for et, count in sorted(event_types_total.items(), key=lambda x: x[1], reverse=True): # Oct 17 2022 print("'" + et + "'", "appears in", str(count), "docs, mentions:", event_types_detail[et], end = '', file = f_out) print(", arguments:", event_args[et], file = f_out) #print("\n'" + et + "'", "appears in", str(count), "docs, mentions:", end=' ') #for mention in event_types_detail[et]: # print("'" + mention + "':" + str(event_mentions_total[mention]), end=', ') temporal_relation = {} subevent_relation = {} coref_relation = {} text_id = -1 for SRL_output in IE_output: if SRL_output == {}: continue text_id += 1 for relation in SRL_output['views'][-1]['viewData'][0]['relations']: rel = relation['relationName'] src = int(relation['srcConstituent']) # coref result: '1'; temporal / subevent result: 1 tgt = int(relation['targetConstituent']) source = SRL_output['views'][-1]['viewData'][0]['constituents'][src]['label'] target = SRL_output['views'][-1]['viewData'][0]['constituents'][tgt]['label'] #logits = relation['logits'] #print(rel, source, target, logits) if source == target: continue if rel in ['before', 'after']: if rel == 'before': pair = (source, target) else: pair = (target, source) if pair in temporal_relation.keys(): temporal_relation[pair].add(text_id) else: temporal_relation[pair] = {text_id} if rel in ['SuperSub', 'SubSuper']: if rel == 'SuperSub': pair = (source, target) else: pair = (target, source) if pair in subevent_relation.keys(): subevent_relation[pair].add(text_id) else: subevent_relation[pair] = {text_id} if rel == "coref": pair = (source, target) if pair in coref_relation.keys(): coref_relation[pair].add(text_id) else: coref_relation[pair] = {text_id} #print("\ntop 30 temporal relations:\n", file = f_out) #for et, count in sorted(temporal_relation.items(), key=lambda x: len(x[1]), reverse=True)[:30]: print("\ntop temporal relations:\n", file = f_out) for et, count in sorted(temporal_relation.items(), key=lambda x: len(x[1]), reverse=True): # Oct 17 2022 print("'" + str(et) + "'", "appears in", str(len(count)), "docs:", count, file = f_out) #print("\ntop 30 subevent relations:\n", file = f_out) #for et, count in sorted(subevent_relation.items(), key=lambda x: len(x[1]), reverse=True)[:30]: print("\ntop subevent relations:\n", file = f_out) for et, count in sorted(subevent_relation.items(), key=lambda x: len(x[1]), reverse=True): # Oct 17 2022 print("'" + str(et) + "'", "appears in", str(len(count)), "docs:", count, file = f_out) #print("\ntop 30 coref relations:\n", file = f_out) #for et, count in sorted(coref_relation.items(), key=lambda x: len(x[1]), reverse=True)[:30]: #print("\ntop coref relations:\n", file = f_out) #for et, count in sorted(coref_relation.items(), key=lambda x: len(x[1]), reverse=True): # Oct 17 2022 # print("'" + str(et) + "'", "appears in", str(len(count)), "docs:", count, file = f_out) """ G=nx.Graph() for pair in temporal_relation_total.keys(): count = temporal_relation_total[pair] if count >= 3: G.add_edge(pair[0], pair[1]) nx.set_edge_attributes(G, {pair: {"weight": count}}) pos = nx.spring_layout(G) plt.figure(3,figsize=(12,12)) nx.draw(G, pos, with_labels = True) nx.draw_networkx_edge_labels(G, pos) plt.savefig('png/' + topic + '.png') """ def search_for_events(IE_output, event_type = "", event_mention = ""): for SRL_output in IE_output: if SRL_output == {}: continue for event in SRL_output['views'][-1]['viewData'][0]['constituents']: if event['label'] == event_type or event['properties']['predicate'][0] == event_mention: To_print = "Event: '{mention}' ({label}, {event_id})\t".format(event_id=event['event_id_docLevel'], mention=event['properties']['predicate'][0], label=event['label']) for key in event['properties'].keys(): if key not in ["predicate", "sentence_id"]: To_print += "{arg}: '{mention}' ({entityType}, {argument_id})\t".format(arg=key, mention=event['properties'][key]['mention'], entityType=event['properties'][key]['entityType'], argument_id=event['properties'][key]['argument_id']) print(To_print) def save_generated_text(generated_text, topic): time_str = time.strftime("%Y-%m-%d", time.localtime(time.time())) with open('generated_text/' + topic + '_' + time_str + '.pkl', 'wb') as f: pickle.dump(generated_text, f) def save_IE_output(IE_output, topic): time_str = time.strftime("%Y-%m-%d_%H-%M-%S", time.localtime(time.time())) with open('IE_output/' + topic + '_' + time_str + '.pkl', 'wb') as f: pickle.dump(IE_output, f) ''' def similarity(topic, text): encoded_input = tokenizer(text, return_tensors="pt", max_length=256) output = model(**encoded_input) if topic == text: return 1 else: return 0 def filter_gt(generated_text, topic): ranking = {} text_id = 0 for text in generated_text: ranking[text_id] = similarity(topic, text) text_id += 1 ranked_list = sorted(ranking.items(), key=lambda x: x[1], reverse=True) new_gt = [] count = -1 for rank in ranked_list: count += 1 if count < len(ranked_list) / 2: new_gt.append(generated_text[rank[0]]) return new_gt ''' def filter_gt_sbert(generated_text, topic): # https://www.sbert.net/docs/usage/semantic_textual_similarity.html num = len(generated_text) topic_ = [topic] * num embeddings1 = model.encode(generated_text, convert_to_tensor=True) embeddings2 = model.encode(topic_, convert_to_tensor=True) cosine_scores = util.pytorch_cos_sim(embeddings1, embeddings2) ranking = [] for i in range(num): ranking.append({'index': i, 'score': cosine_scores[i][i]}) ranking = sorted(ranking, key=lambda x: x['score'], reverse=True) new_gt = [] count = -1 for rank in ranking: count += 1 if count < num / 2: new_gt.append(generated_text[rank['index']]) return new_gt if __name__ == "__main__": start = timer() parser = argparse.ArgumentParser() #parser.add_argument("--event", default='Boston Marathon bombing', type=str, required=True, # help="choose your event of interest for schema induction") parser.add_argument("--call_n", default=4, type=int, required=False, help="number of pieces of generated text per headline") parser.add_argument("--headline_n", default=10, type=int, required=False, help="number of headlines to be generated") parser.add_argument("--debugging", default=0, type=int, required=False, help="debugging mode: True or False") args = parser.parse_args() #scenarios = ['Bombing Attacks', 'Pandemic Outbreak', 'Civil Unrest', 'International Conflict', 'Disaster and Rescue', 'Terrorism Attacks', 'Election', 'Sports Games', 'Kidnapping', 'Business Change', 'Mass Shooting'] scenarios = [] dir_name = "/shared/kairos/Data/LDC2020E25_KAIROS_Schema_Learning_Corpus_Phase_1_Complex_Event_Annotation_V4/docs/ce_profile" onlyfiles = [f for f in listdir(dir_name) if isfile(join(dir_name, f)) and f[-4:] == ".txt"] for f in onlyfiles: scenarios.append(" ".join(f.split("_")[2:-1])) #with open("generated_text/2021-12-18.pkl", 'rb') as f: with open("generated_text/2022-01-06.pkl", 'rb') as f: #with open("generated_text/2022-06-10.pkl", 'rb') as f: text = pickle.load(f) if args.debugging: topic = "Aviation-accident" f_out = open('output/' + topic + '.txt', 'w') IE_output = schema_induction('', args.call_n, f_out, gt_input = False, gt_output = False, debugging = args.debugging) print("printing stats...") #print_stats(IE_output, topic = topic, f_out = f_out) f_out.close() else: for topic in scenarios: #if path.exists('output_Typing_OnePass/' + topic + '.txt'): #if path.exists('GPT2_output/' + topic + '.txt'): if path.exists('output_all/' + topic + '.txt'): continue #f_out = open('output_Typing_OnePass/' + topic + '.txt', 'w') #f_out = open('GPT2_output/' + topic + '.txt', 'w') f_out = open('output_all/' + topic + '.txt', 'w') #gt_input = False induce = False gt_input = text[topic] #gt_input = ["They had to account for all the money that had gone missing. The police were acting on a tip from an informer and caught the gang redhanded."] if gt_input: IE_output = schema_induction('', args.call_n, f_out, gt_input, False, args.debugging, True, True, True, False) save_IE_output(IE_output, topic) try: print("printing stats...") print_stats(IE_output, topic = topic, f_out = f_out) except: pass else: print("Generating headline for '{event}'".format(event=topic)) ''' # Manually selecting appropiate headlines while True: headline = headline_generator(topic, news = True) x = input("The generated headline for '" + topic + "' is: '" + headline + "'. Enter A (Accept) or R (Reject):") if x == 'A': break elif x == 'R': print("Alright, let's try again") else: print("Enter A (Accept) or R (Reject):") ''' generated_text = [] # generate 10 headlines for news & how-to for i in range(args.headline_n): headline = headline_generator(topic, news = True) print("News-like headline:", headline) # generate call_n pieces of text for each headline generated_text.extend(schema_induction(headline, args.call_n, f_out, gt_input = False, gt_output = True, debugging = args.debugging)) headline = headline_generator(topic, news = False) print("HowTo-like headline:", headline) generated_text.extend(schema_induction(headline, args.headline_n * args.call_n, f_out, gt_input = False, gt_output = True, debugging = args.debugging)) save_generated_text(generated_text, topic) if induce: IE_output = schema_induction('', args.call_n, f_out, gt_input = filter_gt_sbert(generated_text, topic), gt_output = False, debugging = args.debugging) save_IE_output(IE_output, topic) print("printing stats...") #print_stats(IE_output, topic = topic, f_out = f_out) f_out.close() end = timer() print(timedelta(seconds=end-start)) """ #This version does not work start = timer() with open('parrot.pkl', 'rb') as f: generated_text = pickle.load(f) #print(f'starting computations on {cpu_count()} cores') #debug_text = ['The first passengers rescued from a helicopter that ditched in the North Sea have arrived at hospital.', 'The Sea King helicopter, which had been on a search and rescue mission, came down off the coast of the Orkney Islands.'] text_ids = [i for i in range(len(generated_text))] processes = [Process(target=event_extractor, args=(generated_text, text_ids)) for x in range(len(generated_text))] for p in processes: p.start() for p in processes: p.join() #with Pool() as pool: # IE_output = pool.starmap(event_extractor, zip(generated_text, text_ids)) for SRL_output in IE_output: print_events(SRL_output['views'][-1]['viewData'][0]['constituents']) end = timer() print(f'elapsed time: {end - start}') """ """ # Let's try this version... And it works! start = timer() print(f'starting computations on {cpu_count()} cores') #debug_text = ['The first passengers rescued from a helicopter that ditched in the North Sea have arrived at hospital.', 'The Sea King helicopter, which had been on a search and rescue mission, came down off the coast of the Orkney Islands.'] with open('parrot.pkl', 'rb') as f: generated_text = pickle.load(f) #generated_text = generated_text[0:3] text_ids = [i for i in range(len(generated_text))] with Pool(processes=3) as pool: IE_output = pool.starmap(event_extractor, zip(generated_text, text_ids)) for SRL_output in IE_output: print_events(SRL_output['views'][-1]['viewData'][0]['constituents']) end = timer() print(f'elapsed time: {end - start}') """
[ "The headline of the news about PLACEHOLDER was '" ]
2024-01-10
CogComp/Zero_Shot_Schema_Induction
GPT_3_direct.py
import requests import os from os import listdir from os.path import isfile, join import json import openai openai.api_key = "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" from Information_Extractor import event_extractor dir_name = "/shared/kairos/Data/LDC2020E25_KAIROS_Schema_Learning_Corpus_Phase_1_Complex_Event_Annotation_V4/docs/ce_profile" onlyfiles = [f for f in listdir(dir_name) if isfile(join(dir_name, f)) and f[-4:] == ".txt"] scenarios = ['Bombing Attacks', 'Pandemic Outbreak', 'Civil Unrest', 'International Conflict', 'Disaster and Rescue', 'Terrorism Attacks', 'Election', 'Sports Games', 'Kidnapping', 'Business Change', 'Mass Shooting'] #scenarios = ['Cyber Attack'] for f in onlyfiles: #print(" ".join(f.split("_")[2:-1])) scenarios.append(" ".join(f.split("_")[2:-1])) def call_openai_api(event, n, temperature, stop, presence_penalty): prompt = "Write essential steps for " + event + ":\n\n1." print(prompt) response = openai.Completion.create( #engine="davinci", engine="davinci-instruct-beta-v3", prompt=prompt, max_tokens=512, temperature=temperature, stop=stop, n=n, presence_penalty=presence_penalty ) texts = [] for choice in response["choices"]: texts.append(choice["text"]) print("This api call ended!") return texts, response["id"] for scenario in scenarios: f = open("output/" + scenario + "_direct.txt", 'w') scn = scenario.lower() res = call_openai_api(scn, 1, 0.9, None, 0.1) result = "1." + res[0][0] print("GPT-3 result:\n", file = f) print(result, file = f) headers = {'Content-type':'application/json'} SRL_response = requests.post('http://dickens.seas.upenn.edu:4039/annotate', json={"sentence": result}, headers=headers) if SRL_response.status_code != 200: print("SRL_response:", SRL_response.status_code) SRL_output = json.loads(SRL_response.text) print("\nevents:\n", file = f) response = event_extractor(result, 0, False) events = [] for view in response['views']: if view['viewName'] == 'Event_extraction': for constituent in view['viewData'][0]['constituents']: print("'" + constituent['label'].lower() + "'", "appears in GPT-3 direct, mentions: {}, arguments:", end='', file = f) arguments = {} for arg in constituent['properties'].keys(): if 'ARG' in arg: arguments[arg] = constituent['properties'][arg]['mention'] print(arguments, file = f) events.append(constituent['label'].lower()) print("\ntemporal relations:\n", file = f) num_events = len(events) for i_e in range(0, num_events-1): #for j_e in range(i_e+1, num_events): print("'('" + events[i_e] + ", '" + events[i_e + 1] + "')'", "appears in GPT-3 direct", file = f) f.close()
[ "Write essential steps for PLACEHOLDER:\n\n1." ]
2024-01-10
sibycr18/SummarizEd
Select_PDF.py
import streamlit as st from langchain.embeddings import HuggingFaceEmbeddings from langchain.text_splitter import RecursiveCharacterTextSplitter from PyPDF2 import PdfReader import re __import__('pysqlite3') import sys sys.modules['sqlite3'] = sys.modules.pop('pysqlite3') import chromadb ## Intitialization # Intialize ChromaDB @st.cache_resource def init_db(): db_client = chromadb.PersistentClient(path="./db") return db_client # Initialize Embeddings @st.cache_resource def init_embedding(): embeddings = HuggingFaceEmbeddings(model_name="infgrad/stella-base-en-v2") return embeddings def sanitize_string(input_str): # Remove non-alphanumeric, underscores, hyphens, and periods sanitized = re.sub(r"[^A-Za-z0-9_.-]", "", input_str) # Replace consecutive periods with a single period sanitized = re.sub(r"\.{2,}", ".", sanitized) # Ensure the string starts and ends with an alphanumeric character sanitized = re.sub(r"^[^A-Za-z0-9]+", "", sanitized) sanitized = re.sub(r"[^A-Za-z0-9]+$", "", sanitized) # Truncate or pad string to meet the 3-63 character length requirement sanitized = sanitized[:63] if len( sanitized) > 63 else sanitized.ljust(3, "_") return sanitized st.set_page_config( page_title="SummarizEd.ai", page_icon="📚", layout="centered", ) # Session states db_client = st.session_state.db_client = init_db() embeddings = st.session_state.embeddings = init_embedding() # Already uploaded files collections = st.session_state.db_client.list_collections() ## App Title # st.title("Summariz:orange[Ed] :gray[- PDF Summarizer]") st.title("Summariz:orange[Ed]:grey[.ai]") st.subheader("", divider="gray") # maybe not be a proper way but i like this pdf_list = tuple(collection.name for collection in collections) placeholder = "Select the PDF file to search..." if len(pdf_list) > 0 else "No PDFs uploaded" file_name = st.selectbox( "Select PDF file:", pdf_list, index=None, placeholder = placeholder, label_visibility="visible" ) # st.session_state.selected_file = selected_file st.subheader("OR") # Display file uploader uploaded_file = st.file_uploader("Upload a new PDF file", type=["pdf"]) if uploaded_file is not None: file_name = sanitize_string(uploaded_file.name) # Read and display the content of the PDF file pdf_reader = PdfReader(uploaded_file) pdf_text = "" for page_num in range(len(pdf_reader.pages)): page = pdf_reader.pages[page_num] pdf_text += page.extract_text() # print(pdf_text) if st.button("Process PDF", type="primary"): if file_name in {collection.name for collection in collections}: st.warning( f"PDF '{file_name}' has already been processed. Select it from the above list.") else: with st.spinner("Processing PDF..."): ## Db insertion collection = db_client.create_collection(name=file_name) # Split text into chunks text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100) chunks = text_splitter.split_text(pdf_text) # Convert chunks to vector representations and store in ChromaDB documents_list = [] embeddings_list = [] ids_list = [] for idx, chunk in enumerate(chunks): vector = embeddings.embed_query(chunk) documents_list.append(chunk) embeddings_list.append(vector) ids_list.append(f"{file_name}_{idx}") collection.add( embeddings=embeddings_list, documents=documents_list, ids=ids_list ) st.success("PDF has been processed successfully") st.session_state.file_name = file_name
[]
2024-01-10
NADOOITChristophBa/NADOO-Voice
chapters.py
import json import re import openai def split_into_chunks(text, chunk_size=400): """ Splits the book text into manageable chunks, trying to break at sentence endings. 'chunk_size' is in characters, adjust based on testing. """ chunks = [] chunk_count = 0 while text: # Take the first 'chunk_size' characters from the book text chunk = text[:chunk_size] # Ensure the chunk ends on a complete sentence where possible last_end = max(chunk.rfind("."), chunk.rfind("!"), chunk.rfind("?")) if last_end != -1 and len(chunk) - last_end < 200: # Adjust chunk to end at the last complete sentence chunk = chunk[: last_end + 1] # Adjust the remaining book text starting after the last complete sentence text = text[last_end + 1 :] else: # If no sentence ending is found, or it's too close to the end of the chunk, proceed as usual text = text[chunk_size:] chunks.append(chunk) chunk_count += 1 # Print each chunk with spacing # print(f"Chunk {chunk_count}:\n{chunk}\n\n---\n") return chunks def gpt_prompt_for_chapter_analysis(chunk, last_chapter_title): """ Analyzes a text chunk to identify chapters using GPT-4, with a fallback to GPT-3.5 if necessary. Returns the last identified chapter if no new chapters are found, along with the text provided in the response. :param chunk: Text chunk to be analyzed. :param last_chapter_title: Title of the last identified chapter to continue from. :return: A list of chapters found in the chunk, or the last chapter if no new chapters are found. """ from openai import ( BadRequestError, AuthenticationError, PermissionDeniedError, NotFoundError, RateLimitError, InternalServerError, APIConnectionError, APITimeoutError, ) # Example JSON structure showing potential multiple chapters example_json = { "chapters": [ { "chapter_title": "Chapter 1", "chapter_content": "Full found Content of Chapter 1...", }, { "chapter_title": "Chapter 2", "chapter_content": "Full found Content of Chapter 2...", }, ] } # Detailed prompt construction for GPT models prompt = ( f"You are an helpfull AI assistant. You are helping to find the structure of a book inside a text." f"You are given a chunk of text. This text needs to be analysed." f"A chunk can contain a a chapter title but does not need to start with it." f"If the text does not start with a new chapter title use this title ->'{last_chapter_title}'<- for the text until you find a new chapter. " f"Chapter Titles usually are written in CAPITAL LETTERS and formed as a question." f"They also usually take a whole line." f"Be carful not to include any other text in the chapter title and also that in the text the chapter titles are somethimes mentioned. DO NOT include those mentions in the chapter title." f"Examine the text for any new chapter, and return their titles and full content. It is absolutly crucial that you return the full content of the chapters." f"No not change any of the text simply copy and past it." f"Be carfull not to add any styling to the text like /n or /t" f"Here is the text chunk for analysis: {chunk}." f"Again If no new chapters are found, simply use this ->'{last_chapter_title}'<- for the rest of the found chapter content. " f"Your response should be in a JSON format similar to this example: {json.dumps(example_json)}" f"You can do this. Give this your best shot. Take time to think. " ) client = openai.OpenAI() # Ensure the OpenAI client is set up with an API key attempts = 0 max_attempts = 2 models = ["gpt-4-1106-preview", "gpt-3.5-turbo-1106"] while attempts < max_attempts + 1: model = models[attempts % len(models)] # print(f"Sending the following detailed prompt to {model}:") # print(prompt) response = client.chat.completions.create( model=model, response_format={"type": "json_object"}, messages=[ { "role": "system", "content": "Please respond with a detailed analysis in JSON format.", }, {"role": "user", "content": prompt}, ], ) response_content = response.choices[0].message.content # print(f"Received response from {model}:") # print(response_content) try: response_data = json.loads(response_content) return response_data # Correct response with new chapters except BadRequestError: print("Bad request to OpenAI. Please check the request format.") except AuthenticationError: print("Authentication failed. Please check your OpenAI API key.") except PermissionDeniedError: print("Permission denied. Please check your access rights.") except NotFoundError: print("Requested resource not found.") except RateLimitError: print("Rate limit exceeded. Please try again later.") except (InternalServerError, APIConnectionError, APITimeoutError) as e: print(f"A server or connection error occurred: {e}") except Exception as e: print(f"An unexpected error occurred: {e}") attempts += 1 print("Failed to get a valid response after multiple attempts.") return [] # Return an empty list only if all attempts fail def word_list(text): # Split text into words, considering punctuation as separate entities return re.findall(r"\b\w+\b|\S", text.lower()) # This function was used for the extraction of chapters for the BGB book only. def get_chapters_for_bgb_text(text): chapters = [] lines = text.split("\n") chapter_counter = 1 current_title = "" current_content = [] for line in lines: # Check for Buch, Abschnitt, Titel, and start a new chapter if re.match(r"(Buch \d+|Abschnitt \d+|Titel \d+)", line): # Save previous chapter if it exists if current_title: chapters.append( { "unique_id": f"Chapter{chapter_counter}", "chapter_title": current_title, "chapter_content": " ".join(current_content).strip(), } ) chapter_counter += 1 current_title = line.strip() current_content = [] # Check for '§' and start a new chapter elif re.match(r"§ \d+", line): # Save previous chapter if it exists if current_title: chapters.append( { "unique_id": f"Chapter{chapter_counter}", "chapter_title": current_title, "chapter_content": " ".join(current_content).strip(), } ) chapter_counter += 1 current_title = line.strip() current_content = [] else: current_content.append(line.strip()) # Add the last chapter if current_title: chapters.append( { "unique_id": f"Chapter{chapter_counter}", "chapter_title": current_title, "chapter_content": " ".join(current_content).strip(), } ) return chapters def get_chapters_for_text(text, book_title="Untitled"): print("Processing entire book...") chunks = split_into_chunks(text) all_chapters = [] last_chapter_title = "" # Initialize with an empty string for chunk_index, chunk in enumerate(chunks): print(f"Processing chunk {chunk_index + 1}: {chunk}") response = gpt_prompt_for_chapter_analysis(chunk, last_chapter_title) chapters = response.get("chapters", []) combined_chapter_words = [] for chapter in chapters: print(f"Found chapter: {chapter.get('chapter_title')}") print(f"Chapter content: {chapter.get('chapter_content')}") title = chapter.get("chapter_title", "Untitled") content = chapter.get("chapter_content", "") last_chapter_title = title combined_chapter_words.extend(word_list(title + " " + content)) chapter_found = False for chapter_dict in all_chapters: if title == chapter_dict.get("chapter_title"): chapter_found = True chapter_dict["chapter_content"] += " " + content break if not chapter_found: all_chapters.append( {"chapter_title": title, "chapter_content": content} ) chunk_words = word_list(chunk) missing_words = [ word for word in chunk_words if word not in combined_chapter_words ] if missing_words: print(f"Missing words in chunk {chunk_index + 1}: {missing_words}") return all_chapters
[ "Here is the text chunk for analysis: PLACEHOLDER.", "Please respond with a detailed analysis in JSON format.", "Be carful not to include any other text in the chapter title and also that in the text the chapter titles are somethimes mentioned. DO NOT include those mentions in the chapter title.", "You are an helpfull AI assistant. You are helping to find the structure of a book inside a text.", "If the text does not start with a new chapter title use this title ->'PLACEHOLDER'<- for the text until you find a new chapter. ", "You can do this. Give this your best shot. Take time to think. ", "Full found Content of Chapter 2...", "A chunk can contain a a chapter title but does not need to start with it.", "Examine the text for any new chapter, and return their titles and full content. It is absolutly crucial that you return the full content of the chapters.", "Be carfull not to add any styling to the text like /n or /t", " ", "Chapter Titles usually are written in CAPITAL LETTERS and formed as a question.", "No not change any of the text simply copy and past it.", "You are given a chunk of text. This text needs to be analysed.", "Full found Content of Chapter 1...", "Again If no new chapters are found, simply use this ->'PLACEHOLDER'<- for the rest of the found chapter content. ", "They also usually take a whole line." ]
2024-01-10
NADOOITChristophBa/NADOO-Voice
nadoo_voice.py
import os from pathlib import Path from dotenv import load_dotenv import openai import tkinter as tk from tkinter import simpledialog, ttk, scrolledtext import json import re import threading import time import tkinter.filedialog as filedialog import os from pathlib import Path # Function to convert text to speech and save as an MP3 file import os from pathlib import Path from chapters import get_chapters_for_text def parse_config_matrix(config_str, total_chapters): if not config_str: return {str(chapter).zfill(2): True for chapter in range(1, total_chapters + 1)} chapters_config = {} for part in config_str.split(","): if "-" in part: start, end = part.split("-") start = int(start) end = total_chapters if end == "*" else int(end) for chapter in range(start, end + 1): chapters_config[str(chapter).zfill(2)] = True elif "+" in part: chapters = part.split("+") for chapter in chapters: chapters_config[chapter.zfill(2)] = True else: chapters_config[part.zfill(2)] = True return chapters_config from pathlib import Path import os import re def get_audio_file_path_for_chapter_info(book_title, chapter_title, voice, output_file): """ Generates the file path for an audio file based on book title, chapter title, voice, and output file name. Parameters: - book_title (str): The title of the book. - chapter_title (str): The title of the chapter. - voice (str): The voice used for TTS. - output_file (str): The name of the output audio file. Returns: - str: The full path for the audio file. """ # Sanitize book and chapter titles to use in file paths sanitized_book_title = re.sub(r'[<>:"/\\|?*]', "_", book_title) sanitized_chapter_title = re.sub(r'[<>:"/\\|?*]', "_", chapter_title) # Create the folder structure base_folder = ( Path(__file__).parent / sanitized_book_title / voice / sanitized_chapter_title ) os.makedirs(base_folder, exist_ok=True) # Return the modified output file path return f"{base_folder}/{output_file}" # Function to convert text to speech and save as an MP3 file def text_to_speech( input_text, audio_file_path, model="tts-1-hd", voice="onyx", ): retry_count = 0 retry_delay = 10 # Initial delay in seconds while True: # Infinite loop, will break on success or non-rate-limit error try: client = openai.OpenAI() # Create the spoken audio from the input text response = client.audio.speech.create( model=model, voice=voice, input=input_text ) # Stream the response to the file response.stream_to_file(Path(audio_file_path)) print(f"Audio file saved as {audio_file_path}") break # Break the loop if successful except Exception as e: error_message = str(e) if "rate_limit_exceeded" in error_message: print(f"Rate limit reached, retrying in {retry_delay} seconds...") time.sleep(retry_delay) retry_delay = min( retry_delay * 2, 1200 ) # Double the delay each time, max 20 minutes retry_count += 1 else: print(f"An error occurred: {error_message}") break if retry_count > 0: print(f"Retried {retry_count} times before success.") def get_chapter_audio_for_chapter(chapter, chapter_number, voice, model, book_title): chapter_audio_data = [] chapter_title = chapter.get("chapter_title", "Untitled") text = chapter.get("chapter_content", "") print(f"Processing chapter: {chapter_title}") print(f"Chapter number: {chapter_number}") # Decide whether to split into subchapters should_split = len(text) > 4000 subchapters = split_into_subchapters(text) if should_split else [text] for i, subchapter_content in enumerate(subchapters, start=1): combined_text = ( f"{chapter_title} Teil {i}. {subchapter_content}" if len(subchapters) > 1 else f"{chapter_title}. {subchapter_content}" ) sanitized_chapter_title = get_sanitized_filename_for_chapter_title( chapter_title, chapter_number, i ) codec = "mp3" audio_file_path = get_audio_file_path_for_chapter_info( book_title, sanitized_chapter_title, voice, sanitized_chapter_title + "." + codec, ) audio_path = text_to_speech( input_text=combined_text, audio_file_path=audio_file_path, book_title=book_title, model=model, voice=voice, ) chapter_audio = {"text": combined_text, "audio_path": audio_path} chapter_audio_data.append(chapter_audio) return chapter_audio_data def get_default_voice_model_matrix(default_chapters, predefined_matrix=None): """ Generates a voice-model matrix, using a predefined matrix if provided, or creates a default matrix based on the default chapters. Parameters: - default_chapters (str): A string representing the default chapters to be processed. Can be a range (e.g., "1-10"), a list of chapters (e.g., "1,3,5"), or "*" for all chapters. - predefined_matrix (dict, optional): A predefined nested dictionary mapping voices to models and their respective chapters. If provided, this matrix is used as is. Returns: - dict: A nested dictionary where each key is a voice, mapping to another dictionary of models and their respective chapter specifications. Example Usage: - get_default_voice_model_matrix("*") -> processes all chapters for each voice-model combination. - get_default_voice_model_matrix("1-10") -> processes chapters 1 to 10 for each voice-model combination. - get_default_voice_model_matrix("*", predefined_matrix=my_predefined_matrix) -> uses the predefined matrix directly. """ """ predefined_matrix = { "alloy": { "tts-1": "1-5", "tts-1-hd": "6-10" }, "echo": { "tts-1-f": "11-15" } # ... other configurations ... } """ if predefined_matrix: return predefined_matrix # List of available voices ## available_voices = ["alloy", "echo", "fable", "onyx", "nova", "shimmer"] available_voices = ["nova"] # List of available models # available_models = ["tts-1", "tts-1-f", "tts-1-m", "tts-1-hd", "tts-1-hd-f"] available_models = ["tts-1-hd"] # Creating the default matrix if no predefined matrix is provided return { voice: {model: default_chapters for model in available_models} for voice in available_voices } def check_audio_files_existence(chapters, book_title, voice_model_matrix): """ Checks if the audio files for each chapter were created successfully. Parameters: - chapters (list): List of chapters. - book_title (str): The title of the book. - voice_model_matrix (dict): A matrix mapping voices to models and their respective chapters. """ missing_files = [] for voice, models in voice_model_matrix.items(): for model, chapter_selection in models.items(): chapters_to_process = parse_chapter_selection( chapter_selection, len(chapters) ) for chapter_number in chapters_to_process: # Generate the expected audio file path chapter_title = f"Chapter_{chapter_number}" audio_file_path = get_audio_file_path_for_chapter_info( book_title, chapter_title, voice, f"{chapter_number}.mp3" ) # Check if the file exists if not os.path.exists(audio_file_path): missing_files.append(audio_file_path) if missing_files: print("Warning: The following audio files were not created successfully:") for missing_file in missing_files: print(missing_file) else: print("All audio files created successfully.") def create_chapter_audio_for_voice_model_matrix( voice_model_matrix, chapters, book_title, ): for voice, models in voice_model_matrix.items(): for model, chapter_selection in models.items(): chapters_to_process = parse_chapter_selection( chapter_selection, len(chapters) ) for chapter_number in chapters_to_process: print(f"Processing {voice} {model} for Chapter {chapter_number}") # Directly calling get_chapter_audio_for_chapter chapter_audio_data = get_chapter_audio_for_chapter( chapters[chapter_number - 1], chapter_number, voice, model, book_title, ) def parse_chapter_selection(chapter_selection, total_chapters): """ Parse the chapter selection string to a list of chapter numbers. """ chapter_numbers = [] for part in chapter_selection.split(","): if "-" in part: start, end = part.split("-") end = int(end) if end != "*" else total_chapters chapter_numbers.extend(range(int(start), end + 1)) elif part != "*": chapter_numbers.append(int(part)) else: return range(1, total_chapters + 1) return chapter_numbers # Assuming get_chapter_audio_for_chapter is defined elsewhere # You will need to update it to accept voice and model as parameters def combine_chapter_responses(response_list): """ Combines the chapter information from multiple responses into one list. If the same chapter appears in multiple responses, their content is combined. Assumes each response in response_list is already a list of dictionaries. """ chapter_dict = {} for response in response_list: if isinstance(response, list): for chapter in response: title = chapter.get("chapter_title", "Untitled") content = chapter.get("chapter_content", "") if title in chapter_dict: # Append content to existing chapter # print(f"Appending content to existing chapter: {title}") chapter_dict[title] += content else: # Add new chapter # print(f"Adding new chapter: {title}") chapter_dict[title] = content else: print("Unexpected response format. Expected a list of dictionaries.") # Convert the dictionary back to a list of chapter dictionaries combined_chapters = [ {"chapter_title": title, "chapter_content": content} for title, content in chapter_dict.items() ] print("Finished combining chapters.") return combined_chapters import re def split_into_subchapters(chapter_content, max_length=4000): """ Splits a long chapter into subchapters based on a maximum character length. Tries to split at paragraph ends for natural breaks. """ subchapters = [] current_subchapter = "" for paragraph in chapter_content.split("\n"): if len(current_subchapter) + len(paragraph) + 1 > max_length: subchapters.append(current_subchapter) current_subchapter = paragraph else: current_subchapter += "\n" + paragraph # Add the last subchapter if it contains text if current_subchapter.strip(): subchapters.append(current_subchapter) return subchapters # Function to sanitize filenames def sanitize_filename(filename): """Remove or replace invalid characters for file names.""" invalid_chars = r'[<>:"/\\|?*]' # Regex pattern for invalid filename characters return re.sub( invalid_chars, "_", filename ) # Replace invalid characters with underscore def get_sanitized_filename_for_chapter_title( title, chapter_number, subchapter_number=1 ): sanitized_title = re.sub(r'[<>:"/\\|?*]', "_", title) filename = f"{chapter_number:02d}_{sanitized_title}" if subchapter_number > 1: filename += f"_{subchapter_number:02d}" return filename import tkinter as tk from tkinter import ttk, scrolledtext import threading def create_gui(): """ Initializes and displays the main GUI window. """ root = tk.Tk() root.title("Text to Speech Converter") # Setup the main GUI components setup_main_gui(root) root.mainloop() def clean_text(filedata, strings_to_remove): """ General cleaning of the text. This function can be expanded with more specific cleaning requirements, such as removing repeating words or specific non-book related text. Additional logic or regex patterns can be implemented as needed. Args: filedata (str): The text to be cleaned. strings_to_remove (list of str): A list of strings to remove from the text. Returns: str: The cleaned text. """ filedata = remove_page_numbers(filedata) filedata = remove_specific_strings(filedata, strings_to_remove) # Add more cleaning logic here if needed return filedata def remove_specific_strings(text, strings_to_remove): """ Remove specific strings from the text. This function iterates over a list of strings and removes each one from the text. This is useful for removing specific words or phrases that are known and defined in advance. Args: text (str): The original text from which strings will be removed. strings_to_remove (list of str): A list of strings that should be removed from the text. Returns: str: The text with specified strings removed. """ for string in strings_to_remove: text = text.replace(string, "") return text def remove_page_numbers(text): """ Remove page numbers from the text. This function uses a regular expression to identify and remove patterns that match page numbers. The pattern '- Seite X von 471 -' is targeted, where X can be any number. This pattern is based on the example provided and can be modified to fit different page number formats. Args: text (str): The text from which page numbers will be removed. Returns: str: The text with page numbers removed. """ pattern = r"- Seite \d+ von 471 -" return re.sub(pattern, "", text) def flatten_bgb_structure(bgb_structure): chapters = [] for book in bgb_structure: book_title = book["title"] for section in book["sections"]: section_title = section["title"] for title in section["titles"]: title_title = title["title"] for paragraph in title["paragraphs"]: paragraph_title = paragraph["title"] paragraph_content = paragraph["content"] chapter_title = ( f"{book_title}_{section_title}_{title_title}_{paragraph_title}" ) chapters.append( { "chapter_title": chapter_title, "chapter_content": paragraph_content, } ) return chapters def split_bgb_text(text): # Reguläre Ausdrücke für die verschiedenen Komponenten book_regex = r"\n(Buch \d+[\s\S]*?)(?=\nBuch \d+|$)" section_regex = r"\n(Abschnitt \d+[\s\S]*?)(?=\nAbschnitt \d+|$)" title_regex = r"\n(Titel|Untertitel) \d+[\s\S]*?(?=(Titel|Untertitel) \d+|$)" paragraph_regex = r"\n§\s\d+\s[^§]*" bgb_structure = [] # Alle Bücher finden books = re.findall(book_regex, text, re.MULTILINE) for book_content in books: book_split = book_content.strip().split("\n", 1) book_title = book_split[0] if len(book_split) > 1 else "Buch ohne Titel" book_content = book_split[1] if len(book_split) > 1 else "" book_dict = {"title": book_title, "sections": []} sections = re.findall(section_regex, book_content, re.MULTILINE) for section_content in sections: section_split = section_content.strip().split("\n", 1) section_title = ( section_split[0] if len(section_split) > 1 else "Abschnitt ohne Titel" ) section_content = section_split[1] if len(section_split) > 1 else "" section_dict = {"title": section_title, "titles": []} titles = re.findall(title_regex, section_content, re.MULTILINE) for title_content in titles: title_split = title_content.strip().split("\n", 1) title_title = ( title_split[0] if len(title_split) > 1 else "Titel ohne Titel" ) title_content = title_split[1] if len(title_split) > 1 else "" title_dict = {"title": title_title, "paragraphs": []} paragraphs = re.findall(paragraph_regex, title_content, re.MULTILINE) for paragraph_content in paragraphs: paragraph_split = paragraph_content.strip().split("\n", 1) paragraph_title = ( paragraph_split[0] if len(paragraph_split) > 1 else "Paragraph ohne Titel" ) paragraph_content = ( paragraph_split[1] if len(paragraph_split) > 1 else "" ) paragraph_dict = { "title": paragraph_title, "content": paragraph_content, } title_dict["paragraphs"].append(paragraph_dict) section_dict["titles"].append(title_dict) book_dict["sections"].append(section_dict) bgb_structure.append(book_dict) return bgb_structure def extract_chapters_from_text(text): chapters = [] lines = text.split("\n") chapter_counter = 1 current_title = "" current_content = [] for line in lines: # Check for Buch, Abschnitt, Titel, and start a new chapter if re.match(r"(Buch \d+|Abschnitt \d+|Titel \d+)", line): # Save previous chapter if it exists if current_title: chapters.append( { "unique_id": f"Chapter{chapter_counter}", "chapter_title": current_title, "chapter_content": " ".join(current_content).strip(), } ) chapter_counter += 1 current_title = line.strip() current_content = [] # Check for '§' and start a new chapter elif re.match(r"§ \d+", line): # Save previous chapter if it exists if current_title: chapters.append( { "unique_id": f"Chapter{chapter_counter}", "chapter_title": current_title, "chapter_content": " ".join(current_content).strip(), } ) chapter_counter += 1 current_title = line.strip() current_content = [] else: current_content.append(line.strip()) # Add the last chapter if current_title: chapters.append( { "unique_id": f"Chapter{chapter_counter}", "chapter_title": current_title, "chapter_content": " ".join(current_content).strip(), } ) return chapters def setup_main_gui(root): """ Sets up the main GUI components including mode selection and text input area. :param root: The root window of the tkinter application. """ root.grid_columnconfigure(0, weight=1) # Make the main column expandable # Mode selection mode_label = tk.Label(root, text="Select Mode:") mode_label.grid(row=0, column=0, sticky="w", padx=10, pady=5) mode_combobox = ttk.Combobox(root, values=["Normal", "Book", "Clean"]) mode_combobox.grid(row=0, column=0, sticky="ew", padx=10, pady=5) # Book title entry (initially hidden) book_title_label = tk.Label(root, text="Book Title:") book_title_entry = tk.Entry(root) # Function to show/hide book title entry based on mode def on_mode_change(event): mode = mode_combobox.get() if mode == "Book": book_title_label.grid(row=1, column=0, sticky="w", padx=10, pady=5) book_title_entry.grid(row=1, column=0, sticky="ew", padx=10, pady=5) elif mode == "Clean": with open("BGB.txt", "r", encoding="utf-8") as file: filedata = file.read() # List of specific strings to remove strings_to_remove = [ "Ein Service des Bundesministeriums der Justiz sowie des Bundesamts für Justiz ‒ www.gesetze-im-internet.de", # Add more unwanted phrases as needed ] filedata = clean_text(filedata, strings_to_remove) # bgb_structure = split_bgb_text(filedata) # chapters = flatten_bgb_structure(bgb_structure) chapters = extract_chapters_from_text(filedata) print(f"Found {len(chapters)} chapters.") # first 10 chapters # chapters = chapters[:10] """ for chapter in chapters[:40]: print(chapter) """ book_title = "BGB" voice_model_matrix = get_default_voice_model_matrix("*") # Process each chapter chapter_audios = get_default_voice_model_matrix( chapters, book_title, voice_model_matrix ) # Call the check_audio_files_existence function check_audio_files_existence(chapters, book_title, voice_model_matrix) else: book_title_label.grid_remove() book_title_entry.grid_remove() mode_combobox.bind("<<ComboboxSelected>>", on_mode_change) # Text area for input text_area = scrolledtext.ScrolledText(root, wrap=tk.WORD) text_area.grid(row=2, column=0, sticky="nsew", padx=10, pady=10) # Button row configuration button_frame = tk.Frame(root) button_frame.grid(row=3, column=0, sticky="ew", padx=10, pady=10) button_frame.grid_columnconfigure(0, weight=1) button_frame.grid_columnconfigure(1, weight=1) # Start button for initiating conversion start_button = tk.Button( button_frame, text="Start", command=lambda: start_conversion_wrapper( mode_combobox, text_area, book_title_entry, root ), ) start_button.grid(row=0, column=0, padx=5, pady=5, sticky="ew") # Load Book button load_book_button = tk.Button( button_frame, text="Load Book", command=lambda: load_book(root) ) load_book_button.grid(row=0, column=1, padx=5, pady=5, sticky="ew") def open_empty_review_gui(): empty_chapters = [] # Empty list of chapters empty_book_title = "" # Empty book title display_chapters_for_review(empty_chapters, empty_book_title, root) # New Book button new_book_button = tk.Button( button_frame, text="New Book", command=open_empty_review_gui ) new_book_button.grid(row=0, column=2, padx=5, pady=5, sticky="ew") def load_book(root): global global_book_title # Reference the global variable books_folder = "books" os.makedirs(books_folder, exist_ok=True) # Ensure the books folder exists # Open a dialog to select a book file book_file = filedialog.askopenfilename( initialdir=books_folder, title="Select Book", filetypes=(("JSON Files", "*.json"), ("All Files", "*.*")), ) if book_file: # Load the selected book with open(book_file, "r", encoding="utf-8") as file: chapters = json.load(file) # Update the global book title global_book_title = os.path.splitext(os.path.basename(book_file))[0].replace( "_", " " ) display_chapters_for_review(chapters, global_book_title, root) def start_conversion_wrapper(mode_combobox, text_area, book_title_entry, root): mode = mode_combobox.get() input_text = text_area.get("1.0", tk.END).strip() book_title = book_title_entry.get().strip() if mode == "Book" else "" def process_text(): chapters = get_chapters_for_text(input_text, book_title) # Pass book title display_chapters_for_review(chapters, book_title, root) # Pass book title threading.Thread(target=process_text).start() # Function to save chapters to a JSON file import os import tkinter.filedialog as filedialog def save_chapters_to_json(book_title, chapters): try: books_folder = "books" os.makedirs(books_folder, exist_ok=True) json_filename = ( f"{book_title.replace(' ', '_')}.json" if book_title else "chapters.json" ) json_filepath = os.path.join(books_folder, json_filename) with open(json_filepath, "w", encoding="utf-8") as file: json.dump(chapters, file, indent=4) print(f"Chapters saved to {json_filepath}") except Exception as e: print(f"Error saving chapters: {e}") def display_chapters_for_review(chapters, book_title, root): review_window = tk.Toplevel(root) review_window.title("Review Chapters") current_chapter_index = 0 # Layout configuration for resizing review_window.grid_columnconfigure(1, weight=1) review_window.grid_rowconfigure(1, weight=1) # Chapter list for navigation (made larger) chapter_list = tk.Listbox(review_window, width=40) # Adjust width as needed chapter_list.grid(row=0, column=0, rowspan=4, sticky="nsew", padx=5, pady=5) for chapter in chapters: chapter_list.insert(tk.END, chapter.get("chapter_title", "Untitled")) # Function to update the display of the current chapter def update_chapter_display(index): chapter = chapters[index] chapter_title_var.set(chapter.get("chapter_title", "Untitled")) chapter_text_area.delete("1.0", tk.END) chapter_text_area.insert(tk.END, chapter.get("chapter_content", "")) # Function to update chapter titles in the list def refresh_chapter_list(): chapter_list.delete(0, tk.END) for chapter in chapters: chapter_list.insert(tk.END, chapter.get("chapter_title", "Untitled")) # Update chapter data when the text or title is modified def update_chapter_data(): current_chapter = chapters[current_chapter_index] current_chapter["chapter_title"] = chapter_title_var.get() current_chapter["chapter_content"] = chapter_text_area.get( "1.0", tk.END ).strip() refresh_chapter_list() # Refresh the list to show updated titles # Function to handle chapter list selection def on_chapter_select(event): nonlocal current_chapter_index selection = chapter_list.curselection() if selection: current_chapter_index = selection[0] update_chapter_display(current_chapter_index) # Function to add a new chapter def add_new_chapter(): new_chapter = {"chapter_title": "New Chapter", "chapter_content": ""} chapters.append(new_chapter) refresh_chapter_list() chapter_list.selection_set(len(chapters) - 1) # Select the new chapter update_chapter_display(len(chapters) - 1) # Display the new chapter # Function to delete the current chapter def delete_current_chapter(): nonlocal current_chapter_index if 0 <= current_chapter_index < len(chapters): del chapters[current_chapter_index] refresh_chapter_list() new_index = min(current_chapter_index, len(chapters) - 1) if new_index >= 0: chapter_list.selection_set(new_index) update_chapter_display(new_index) else: chapter_title_var.set("") chapter_text_area.delete("1.0", tk.END) chapter_list.bind("<<ListboxSelect>>", on_chapter_select) # Editable chapter title chapter_title_var = tk.StringVar() chapter_title_entry = tk.Entry(review_window, textvariable=chapter_title_var) chapter_title_entry.grid(row=0, column=1, sticky="ew", padx=5, pady=5) # Chapter text area chapter_text_area = scrolledtext.ScrolledText( review_window, wrap=tk.WORD, height=5, width=50 ) chapter_text_area.grid(row=1, column=1, sticky="nsew", padx=5, pady=5) # Navigation buttons previous_button = tk.Button( review_window, text="Previous Chapter", command=lambda: change_chapter(-1) ) previous_button.grid(row=2, column=1, sticky="w", padx=5, pady=5) next_button = tk.Button( review_window, text="Next Chapter", command=lambda: change_chapter(1) ) next_button.grid(row=2, column=1, sticky="e", padx=5, pady=5) # Audio conversion buttons convert_current_button = tk.Button( review_window, text="Convert Current Chapter", command=lambda: convert_current_chapter(current_chapter_index), ) convert_current_button.grid(row=3, column=1, sticky="w", padx=5, pady=5) convert_all_button = tk.Button( review_window, text="Convert All Chapters", command=lambda: convert_all_chapters(chapters), ) convert_all_button.grid(row=3, column=1, sticky="e", padx=5, pady=5) def change_chapter(delta): nonlocal current_chapter_index new_index = current_chapter_index + delta if 0 <= new_index < len(chapters): current_chapter_index = new_index update_chapter_display(current_chapter_index) chapter_list.selection_clear(0, tk.END) chapter_list.selection_set(current_chapter_index) def convert_current_chapter(index): chapter = chapters[index] # Prompt user for chapter number chapter_number = simpledialog.askinteger( "Chapter Number", "Enter the chapter number:", parent=review_window ) # Check if the user provided a chapter number if chapter_number is not None: # add default matrix prodction voice_model_matrix = get_default_voice_model_matrix("*") # Create the chapter audio create_chapter_audio_for_voice_model_matrix( voice_model_matrix, [chapter], book_title ) # Mark the chapter as converted (e.g., change background color in the list) chapter_list.itemconfig(index, {"bg": "green"}) else: # Handle case where user cancels the input or enters an invalid number print("Chapter conversion canceled or invalid chapter number entered.") def convert_all_chapters(chapters): # Implement conversion logic for all chapters start_audio_conversion(chapters) # Update chapter data when the text is modified def update_chapter_data(): current_chapter = chapters[current_chapter_index] current_chapter["chapter_title"] = chapter_title_var.get() current_chapter["chapter_content"] = chapter_text_area.get( "1.0", tk.END ).strip() refresh_chapter_list() chapter_text_area.bind("<KeyRelease>", lambda event: update_chapter_data()) chapter_title_entry.bind("<KeyRelease>", lambda event: update_chapter_data()) # Add and delete chapter buttons add_chapter_button = tk.Button( review_window, text="Add Chapter", command=add_new_chapter ) add_chapter_button.grid(row=5, column=1, sticky="w", padx=5, pady=5) delete_chapter_button = tk.Button( review_window, text="Delete Chapter", command=delete_current_chapter ) delete_chapter_button.grid(row=5, column=1, sticky="e", padx=5, pady=5) # Button to save chapters to JSON save_json_button = tk.Button( review_window, text="Save Chapters to JSON", command=lambda: save_chapters_to_json(book_title, chapters), ) save_json_button.grid(row=6, column=0, columnspan=2, padx=5, pady=5) update_chapter_display(current_chapter_index) def start_audio_conversion(chapters): """ Starts the audio conversion process for the reviewed chapters. :param chapters: List of reviewed chapters. """ create_chapter_audio_for_voice_model_matrix( get_default_voice_model_matrix("*"), ) get_default_voice_model_matrix(chapters, global_book_title) def ask_for_Book_title(root): """ Asks the user for the Book title and saves it to a .env file. :param root: The root window of the tkinter application. :return: The entered Book title. """ Book_title = simpledialog.askstring( "Book title Required", "Enter your Book title:", parent=root ) # Save the key to a .env file with open(".env", "w") as file: file.write(f"Book_title={Book_title}\n") return Book_title def ask_for_api_key(root): """ Asks the user for the OpenAI API key and saves it to a .env file. :param root: The root window of the tkinter application. :return: The entered API key. """ api_key = simpledialog.askstring( "API Key Required", "Enter your OpenAI API key:", parent=root ) # Save the key to a .env file with open(".env", "w") as file: file.write(f"OPENAI_API_KEY={api_key}\n") return api_key def load_api_key(): """ Loads the OpenAI API key from the environment or prompts the user to enter it. :return: The OpenAI API key. """ load_dotenv() api_key = os.getenv("OPENAI_API_KEY") if not api_key: # Initialize a minimal Tkinter root window root = tk.Tk() root.withdraw() # Hide the root window # Ask the user for the API key api_key = ask_for_api_key(root) # Destroy the Tkinter root window root.destroy() return api_key if __name__ == "__main__": api_key = load_api_key() # Check if the user provided the key if not api_key: print("No API key provided. Exiting.") exit(1) # Initialize OpenAI client with your API key openai.api_key = api_key create_gui()
[ " " ]
2024-01-10
0xalphaprime/ai-ml-data
openai~api_test.py
import os import openai # Load your API key from an environment variable or secret management service openai.api_key = os.getenv("OPENAI_API_KEY") response = openai.Completion.create( model="text-davinci-003", prompt="Say this is a test", temperature=0, max_tokens=7 ) # $ openai api completions.create -m text-davinci-003 -p "Say this is a test" -t 0 -M 7 --stream
[ "Say this is a test" ]
2024-01-10
GovindN75/Note-Summarizer
server~backend.py
import time import cohere from flask import Flask, request, jsonify from flask_cors import CORS import re app = Flask(__name__) CORS(app) api_key = 'oF6eA5FnAgLKeezfIAgjWn7PraIRJHH00riUjr5Q' co = cohere.Client(api_key) MAX_STRING_SIZE = 1000 # Split the prompt into chunks of 500 characters def pre_process_prompt(prompt): prompt_array = [] if len(prompt) > MAX_STRING_SIZE: while prompt: idx = prompt[:MAX_STRING_SIZE].rfind('.') if idx == -1: idx = prompt.find('.') if idx == -1: idx = len(prompt) chunk = prompt[:idx+1] prompt_array.append(chunk) prompt = prompt[idx+1:] return prompt_array return [prompt] @app.route('/api/summarize', methods=['POST']) def summarize_text(): request_json = request.json prompt = request.json.get('text') prompt_array = pre_process_prompt(prompt) summary = [] format = request_json.get('format').lower() summary_length = request_json.get('summary_length').lower() for i, input_prompt in enumerate(prompt_array): response = co.summarize( length=summary_length, text=prompt, format=format, model='summarize-medium', additional_command='', temperature=0.1, ) if format == "bullets": summary += (response.summary.split('\n')) else: summary.append(response.summary) if i != 0: time.sleep(15) # rate limiting return summary if format == "bullets" else [' '.join(summary)] if __name__ == '__main__': app.run(debug=True)
[ "[]" ]
2024-01-10
daymade/WisdomWeaver
chatgpt_api.py
import logging from openai import OpenAI import os from dotenv import load_dotenv # 加载 .env 文件中的环境变量 load_dotenv() client = OpenAI() # 设置您的 OpenAI API 密钥 client.api_key = os.getenv('OPENAI_API_KEY') # 定义一个函数来调用 ChatGPT API def analyze_text_with_chatgpt(user_text, system_prompt, model="gpt-3.5-turbo"): try: # 打印请求耗时 logging.info("开始请求 API...") response = client.chat.completions.create( model=model, messages=[ {"role": "system", "content": system_prompt}, {"role": "user", "content": user_text} ] ) logging.info("请求 API 完成") result = response.choices[0].message.content logging.info("API 请求成功,返回结果: %s", result) return result except Exception as e: logging.error("API 请求出错: %s", e) return None
[]
2024-01-10
TogetherCrew/qabot
packages~ml~src~memory~procedual_memory.py
import os from pydantic import BaseModel, Field from langchain.schema import Document from langchain.vectorstores import FAISS from langchain.embeddings import HuggingFaceEmbeddings from typing import List from tools.base import AgentTool from utils.constants import DEFAULT_EMBEDDINGS class ProcedualMemoryException(Exception): pass class ToolNotFoundException(ProcedualMemoryException): pass class ProcedualMemory(BaseModel): tools: List[AgentTool] = Field([], title="Agent Tools") embeddings: HuggingFaceEmbeddings = Field(DEFAULT_EMBEDDINGS, title="Embeddings to use for tool retrieval") docs: List[Document] = Field([], title="Documents to use for tool retrieval") vector_store: FAISS = Field( None, title="Vector store to use for tool retrieval") class Config: arbitrary_types_allowed = True def memorize_tools(self, tools: List[AgentTool]) -> None: """Memorize tools and embed them.""" for tool in tools: self.tools.append(tool) self.docs = [Document(page_content=t.description, metadata={ "index": i}) for i, t in enumerate(self.tools)] self._embed_docs() def remember_tool_by_name(self, tool_name: str) -> AgentTool: """Remember a tool by name and return it.""" tool = [tool for tool in self.tools if tool.name.lower() == tool_name.lower()] if tool: return tool[0] else: raise ToolNotFoundException(f"Tool {tool_name} not found") def remember_relevant_tools(self, query: str) -> List[AgentTool]: """Remember relevant tools for a query.""" retriever = self.vector_store.as_retriever() relevant_documents = retriever.get_relevant_documents(query) return [self.tools[d.metadata["index"]] for d in relevant_documents] def remember_all_tools(self) -> List[AgentTool]: """Remember all tools and return them.""" return self.tools def tools_to_prompt(self, tools: List[AgentTool]) -> str: # Set up the prompt tool_info = "" for tool in tools: tool_info += tool.get_tool_info() + "\n" return tool_info def _embed_docs(self) -> None: """Embed tools.""" # if self.vector_store is None: # self.vector_store = DeepLake(dataset_path=PERIODIC_MEMORY_DIR,embedding=self.embeddings) # self.vector_store.add_texts(texts=[doc.page_content for doc in self.docs], metadatas=[doc.metadata for doc in self.docs]) self.vector_store: FAISS = FAISS.from_documents( self.docs, self.embeddings )
[]
2024-01-10
TogetherCrew/qabot
packages~vector_server~vectorstore~call_GPT.py
# Author Ene SS Rawa / Tjitse van der Molen import math import time import openai import backoff import tiktoken from logger.embedding_logger import logger @backoff.on_exception(backoff.expo, openai.error.OpenAIError) # cover all errors (RateLimitError, APIError, Timeout etc.) def text_completions_with_backoff(**kwargs): """ Calls GPT ChatCompletion with exponential backoff Input: openai.Chatcompletion API call in same format as under normal conditions Output: openai.Chatcompletion API output in same format as under normal conditions """ return openai.ChatCompletion.create(**kwargs) # # # @backoff.on_exception(backoff.expo, openai.error.RateLimitError) def audio_transcription_with_backoff(audio_file): """ Calls GPT audio transcription with exponential backoff Input: opened audiofile of any of the following formats: mp3, mp4, mpeg, mpga, m4a, wav, webm Output: dictionary with "Text" as key and the transcribed text from the audio file as value """ return openai.Audio.transcribe("whisper-1", audio_file) # # # def call_GPT(gpt_prompt, gpt_role="You are a helpful assistant.", start_seq="\n\nSummary:\n", include_start_seq_out=False, max_output_tokens=500, temp=0): """ Calls GPT API and returns results Input: gpt_prompt - str: prompt for GPT call start_seq - str: start_inject text. forced start of GPT response (default = "\n\nSummary:\n") include_start_seq_out - bool: whether start_seq should be included in the output (default = False) max_output_tokens - int: maximum number of tokens in output (default = 500). If a value larger than 3900 or a negative values is provided, max_output_tokens will be set to default. temp - float: temperature value for GPT call in range from 0 to 1 (default = 0). If a value outside of the allowed range is provided, temp will be set to default. Output: result - str: GPT response to gpt_prompt """ # check if max_output_tokens value is within range if max_output_tokens < 0 or max_output_tokens > 3900: print( "ERROR: use max_output_tokens value between 0 and 3900, default value of max_output_tokens=500 will be used") max_output_tokens = 500 # check if temp value is within range if temp < 0 or temp > 1: print("ERROR: use temp value between 0 and 1, default value of temp=0 will be used") temp = 0 # add start text to prompt prompt_with_start = gpt_prompt + start_seq logger.debug(f"Waiting some secs") time.sleep(1) logger.debug(f"Prompt with start: {prompt_with_start}") # run gpt prompt through API response = text_completions_with_backoff( model="gpt-3.5-turbo", messages=[{"role": "system", "content": gpt_role}, {"role": "user", "content": prompt_with_start}], temperature=temp, max_tokens=max_output_tokens, top_p=1, frequency_penalty=0, presence_penalty=0 ) # obtain result output if include_start_seq_out: result = start_seq + response["choices"][0]["message"]["content"] else: result = response["choices"][0]["message"]["content"] # obtain number of tokens used num_tokens_used = response["usage"]["total_tokens"] logger.debug(f"=================") logger.debug(f"Number of tokens used: {num_tokens_used}") logger.debug(f"Result: {result}") logger.debug(f"=================") return result, num_tokens_used # # # def split_prompt_tokens(gpt_prompt, max_tokens, summarize_prompt_basis=None, sep_char=["\n", " "]): """ Counts tokens in prompt and splits it if tokens exceed max_tokens Input: gpt_prompt - str: prompt text for gpt tokenizer - GPT2Tokenizer: tokenized gpt prompt max_tokens - int: maximum number of tokens allowed in single prompt summarize_prompt_basis - str: prompt basis for gpt (prompt without text to be summarized) to be included in prompts after splitting Output: prompt_list - [str]: list containing split prompts of at most max_tokens tokens each Notes: Prompt splitter is not implemented yet """ # intitialize encoding encoding = tiktoken.encoding_for_model("gpt-3.5-turbo") # encode input text token_list = encoding.encode(gpt_prompt) # # # SPLIT DATA # # # # if the prompt has more tokens than allowed if len(token_list) > max_tokens: # determine minimal number of splits and add 1 # num_split = (len(token_list) // max_tokens + (len(token_list) % max_tokens > 0)) + 1 num_split = math.ceil(len(token_list) / max_tokens) # split text with newline separator prompt_list = split_gpt_prompt(gpt_prompt, sep_char[0], round(len(gpt_prompt) / num_split), summarize_prompt_basis) # if text could not be split if not prompt_list: # split text with space separator prompt_list = split_gpt_prompt(gpt_prompt, sep_char[1], round(len(gpt_prompt) / num_split), summarize_prompt_basis) # if text could not be split if not prompt_list: # print error message print( "ERROR: Text separators in sep_char do not split text into sufficiently small chunks, adjust text input") return False else: # print warning message print( "WARNING: The first separator in sep_char does not split text into sufficiently small chunks, the second separator in sep_char is used instead. This might lead to lower performance") else: # make single entry list of gpt_prompt prompt_list = [gpt_prompt] return prompt_list # # # def split_gpt_prompt(text, split_string, max_char, prompt_basis): """ Splits a long GPT prompt into smaller equally sized prompts Input: prompt - str: A GPT prompt to split max_char - int: The maximum number of characters for each prompt Output: prompts - [str]: A list of smaller GPT prompts """ # split the text based on the provided split_string split_text = text.split(split_string) # make empty result arrays curr_prompt = "" all_prompts = [] # for each split text for sp_t in split_text: # if the split text is longer than max_char if len(sp_t) + len(prompt_basis) > max_char: return False # if the current prompt plus the added text is smaller than the maximum characters if len(curr_prompt) + len(sp_t) <= max_char: # add the added text to the current prompt curr_prompt = curr_prompt + sp_t + split_string else: # store current prompt in all prompts all_prompts.append(curr_prompt) # overwrite curr_prompt with prompt basis curr_prompt = prompt_basis + sp_t + split_string # add last prompt to list all_prompts.append(curr_prompt) return all_prompts # # # def transcribe_audio(audio_file, OA_key): """ transcribes audio file into text Input: audio_file: opened audiofile of any of the following formats: mp3, mp4, mpeg, mpga, m4a, wav, webm OA_key - str: OpenAI key for API call Output: transcribe_out - {str:str}: dictionary with "Text" as key and the transcribed text from the audio file as value Notes: Output can be used as input for text based GPT implementations """ # set openai key openai.api_key = OA_key # Run the audio transcription function transcribe_out = audio_transcription_with_backoff(audio_file) return transcribe_out
[ "[]", "PLACEHOLDERPLACEHOLDERPLACEHOLDER", "PLACEHOLDERPLACEHOLDER" ]
2024-01-10
TogetherCrew/qabot
packages~ml~src~manager~task_manager.py
from pydantic import BaseModel, Field from langchain.llms.base import BaseLLM from typing import List from langchain import LLMChain from llm.generate_task_plan.prompt import get_subquestions_template, get_template from llm.list_output_parser import LLMListOutputParser class Task(BaseModel): """Task model.""" id: int = Field(..., description="Task ID") description: str = Field(..., description="Task description") is_done: bool = Field(False, description="Task done or not") result: str = Field("", description="The result of the task") last_tool_name: str = Field(None, description="Last tool name") last_tool_args: str = Field(None, description="Last tool args") class TaskManager(BaseModel): """Task manager model.""" # subquestions: List[str] = Field([], description="The list of subquestions") tasks: List[Task] = Field([], description="The list of tasks") current_task_id: int = Field(1, description="The last task id") llm: BaseLLM = Field(..., description="llm class for the agent") def discard_current_task(self): """Discard the current task.""" self.tasks = [task for task in self.tasks if task.id != self.current_task_id] async def generate_task_plan( self, name: str, role: str, question: str, tool_info: str ): """Generate a task plan for the agent.""" prompt = get_template() # If you want to change temperature use something like below: # be_creative_llm = self.llm.copy(deep=True, update={"temperature": "0.5"}) llm_chain = LLMChain(prompt=prompt, llm=self.llm) try: result = await llm_chain.apredict( name=name, role=role, question=question, # subquestions_list=self.subquestions, # tool_info=tool_info, ) except Exception as e: raise Exception(f"Error: {e}") # Parse and validate the result try: result_list = LLMListOutputParser.parse(result, separeted_string="\t") except Exception as e: raise Exception("Error: " + str(e)) # Add tasks with a serial number for i, e in enumerate(result_list, start=1): id = int(i) description = e self.tasks.append(Task(id=id, description=description)) self def get_task_by_id(self, id: int) -> Task: """Get a task by Task id.""" for task in self.tasks: if task.id == id: return task return None def get_current_task(self) -> Task: """Get the current task agent is working on.""" return self.get_task_by_id(self.current_task_id) def get_current_task_string(self) -> str: """Get the current task agent is working on as a string.""" task = self.get_current_task() if task is None: return None else: return self._task_to_string(task) def complete_task(self, id: int, result: str) -> None: """Complete a task by Task id.""" # Complete the task specified by ID self.tasks[id - 1].is_done = True self.tasks[id - 1].result = result self.current_task_id += 1 def complete_current_task(self, result: str) -> None: """Complete the current task agent is working on.""" self.complete_task(self.current_task_id, result=result) def _task_to_string(self, task: Task) -> str: """Convert a task to a string.""" return f"{task.id}: {task.description}" def get_completed_tasks(self) -> List[Task]: """Get the list of completed tasks.""" return [task for task in self.tasks if task.is_done] def get_completed_tasks_as_string(self) -> str: """Get the list of completed tasks as string.""" return "\n".join( [self._task_to_string(task) for task in self.tasks if task.is_done] ) def get_results_completed_tasks_as_string(self) -> str: """Get the list results of completed tasks as string.""" return "\n".join( [f"{task.id}: {task.result}" for task in self.tasks if task.is_done] ) def get_incomplete_tasks(self) -> List[Task]: """Get the list of incomplete tasks.""" return [task for task in self.tasks if not task.is_done] def get_incomplete_tasks_string(self) -> str: """Get the list of incomplete tasks as a string.""" result = "\n" for task in self.get_incomplete_tasks(): result += self._task_to_string(task) + "\n" return result def is_action_already_used_in_current_task(self, tool_name, args): current_task = self.get_current_task() if ( current_task and current_task.last_tool_name == tool_name and current_task.last_tool_args == args ): return True current_task.last_tool_name = tool_name current_task.last_tool_args = args return False
[]
2024-01-10
TogetherCrew/qabot
packages~vector_server~tests~celery_test.py
from logger.embedding_logger import logger from tasks import celery from utils.constants import OPENAI_API_KEY, DB_CONNECTION_STR, DB_GUILD # t = vector_task.dummy.delay() logger.debug('Starting vector store update in celery') # logger.debug(f"OPENAI_API_KEY: {OPENAI_API_KEY}") # logger.debug(f"DB_CONNECTION_STR: {DB_CONNECTION_STR}") logger.debug(f"DB_GUILD: {DB_GUILD}") t = celery.vector_store_update.delay('random-session', OPENAI_API_KEY,DB_CONNECTION_STR,DB_GUILD) logger.debug(f"Result: {t}")
[]
2024-01-10
TogetherCrew/qabot
packages~ml~src~memory~semantic_memory.py
import asyncio import os import traceback import json from typing import Any, Optional from pydantic import BaseModel, Field from langchain.llms.base import BaseLLM from langchain.vectorstores import FAISS from langchain.embeddings import OpenAIEmbeddings from langchain.chat_models import ChatOpenAI from llm.extract_entity.prompt import get_chat_template from llm.extract_entity.schema import JsonSchema as ENTITY_EXTRACTION_SCHEMA from llm.json_output_parser import LLMJsonOutputParser, LLMJsonOutputParserException from logger.hivemind_logger import logger from ui.cui import CommandlineUserInterface from utils.constants import DEFAULT_EMBEDDINGS from utils.util import atimeit, timeit import base58 CREATE_JSON_SCHEMA_STR = json.dumps(ENTITY_EXTRACTION_SCHEMA.schema) class SemanticMemory(BaseModel): num_episodes: int = Field(0, description="The number of episodes") llm: BaseLLM = Field(..., description="llm class for the agent") openaichat: Optional[ChatOpenAI] = Field( None, description="ChatOpenAI class for the agent" ) embeddings: OpenAIEmbeddings = Field(DEFAULT_EMBEDDINGS, title="Embeddings to use for tool retrieval", ) vector_store: FAISS = Field( None, title="Vector store to use for tool retrieval" ) ui: CommandlineUserInterface | None = Field(None) class Config: arbitrary_types_allowed = True # def __init__(self, question: str, **kwargs): # super().__init__(**kwargs) # filename = base58.b58encode(question.encode()).decode() # if self.vector_store is None: # self.vector_store = DeepLake(read_only=True, dataset_path=os.path.join(SEMANTIC_MEMORY_DIR, f"{filename}"), # embedding=self.embeddings) def __del__(self): del self.embeddings del self.vector_store @atimeit async def extract_entity(self, text: str, question: str, task: str) -> dict: """Extract an entity from a text using the LLM""" if self.openaichat: # print(f"semantic->extract_entity->Text1: {text}") # If OpenAI Chat is available, it is used for higher accuracy results. prompt = ( get_chat_template() .format_prompt(text=text, question=question, task=task) .to_messages() ) full_prompt = " ".join([msg.content for msg in prompt]) logger.debug(f"semantic->extract_entity->Prompt: {full_prompt}") llm_result = await self.openaichat._agenerate(messages=prompt) await self.ui.call_callback_info_llm_result(llm_result) result = llm_result.generations[0].message.content # result = self.openaichat(prompt).content else: raise Exception("Should never happen!") # Parse and validate the result try: # print(f"semantic->extract_entity->Result: {result}") result_json_obj = LLMJsonOutputParser.parse_and_validate( json_str=result, json_schema=CREATE_JSON_SCHEMA_STR, llm=self.llm ) except LLMJsonOutputParserException as e: raise LLMJsonOutputParserException(str(e)) try: if len(result_json_obj) > 0: await asyncio.create_task(self._embed_knowledge(result_json_obj)) except BaseException as e: print(f"semantic->extract_entity->Text: {text}\n") print(f"semantic->extract_entity->Result: {result}\n") print( f"semantic->extract_entity->Extracted entity: {result_json_obj}\n" ) print(traceback.print_exc()) # raise Exception(f"Error: {e}") return result_json_obj @timeit def remember_related_knowledge(self, query: str, k: int = 5) -> dict: """Remember relevant knowledge for a query.""" if self.vector_store is None: return {} relevant_documents = self.vector_store.similarity_search(query, k=k) return { d.metadata["entity"]: d.metadata["description"] for d in relevant_documents } @atimeit async def _embed_knowledge(self, entity: dict[str:Any]): """Embed the knowledge into the vector store.""" description_list = [] metadata_list = [] for entity, description in entity.items(): description_list.append(description) metadata_list.append({"entity": entity, "description": description}) if self.vector_store is None: self.vector_store = FAISS.from_texts(texts=description_list,metadatas=metadata_list, embedding=self.embeddings) # self.vector_store = DeepLake(read_only=False, dataset_path=SEMANTIC_MEMORY_DIR, # embedding=self.embeddings) self.vector_store.add_texts(texts=description_list, metadatas=metadata_list) # async def save_local(self, path: str) -> None: # """Save the vector store to a local folder.""" # async def _save(): # self.vector_store.save_local(folder_path=path) # await asyncio.create_task(_save()) # def load_local(self, path: str) -> None: # """Load the vector store from a local folder.""" # # # async def _load(): # # self.vector_store = FAISS.load_local( # # folder_path=path, embeddings=self.embeddings # # ) # # # await asyncio.create_task(_load()) # self.vector_store = DeepLake(read_only=True, dataset_path=path, embedding=self.embeddings)
[ " " ]
2024-01-10
TogetherCrew/qabot
packages~vector_server~utils~constants.py
# Define the default values import os from dotenv import load_dotenv from langchain.embeddings import OpenAIEmbeddings from logger.embedding_logger import logger # from sentence_transformers import SentenceTransformer ENV_FILE = os.getenv('ENV_FILE') logger.debug(f"ENV_FILE: {ENV_FILE}") if ENV_FILE != 'docker': dotenv_path = os.path.join(os.path.dirname(__file__), '../.local.env') logger.debug(f"Loading .env from {dotenv_path}") load_dotenv(dotenv_path=dotenv_path) OPENAI_API_MODEL = os.getenv("OPENAI_API_MODEL", "gpt-3.5-turbo") assert OPENAI_API_MODEL, "OPENAI_API_MODEL environment variable is missing from .env" OPENAI_API_KEY = os.getenv("OPENAI_API_KEY", "") assert OPENAI_API_KEY, "OPENAI_API_KEY environment variable is missing from .env" #MongoDB DB_CONNECTION_STR = os.getenv("DB_CONNECTION_STR", "") assert DB_CONNECTION_STR, "DB_CONNECTION_STR environment variable is missing from .env" DB_GUILD = os.getenv("DB_GUILD", "") assert DB_GUILD, "DB_GUILD environment variable is missing from .env" USE_LOCAL_STORAGE = True DEEPLAKE_FOLDER = "vector_store" DEEPLAKE_PLATFORM_FOLDER = "discord" DEFAULT_EMBEDDINGS = OpenAIEmbeddings(openai_api_key=OPENAI_API_KEY) DEEPLAKE_RAW_FOLDER = "DeepLake_VectorStore_414_419_raw_messages" DEEPLAKE_SUMMARY_FOLDER = "DeepLake_VectorStore_414_419_summaries" # VECTOR SERVER CONFIG HIVEMIND_VS_PORT = os.getenv("HIVEMIND_VS_PORT", 1234) # RABBITMQ CONFIG RABBITMQ_HOST = os.getenv("RABBITMQ_HOST", "localhost") RABBITMQ_PORT = os.getenv("RABBITMQ_PORT", 5672) RABBITMQ_USER = os.getenv("RABBITMQ_USER", "guest") RABBITMQ_PASS = os.getenv("RABBITMQ_PASS", "guest") # REDIS CONFIG REDIS_HOST = os.getenv('REDIS_HOST', 'localhost') REDIS_PORT = os.getenv('REDIS_PORT', 6379) REDIS_USER = os.getenv('REDIS_USER', None) REDIS_PASS = os.getenv('REDIS_PASS', None) USER_AND_PASS = f"{REDIS_USER if REDIS_USER else '' }:{REDIS_PASS}@" if REDIS_PASS else '' REDIS_URI = os.getenv('REDIS_URI', f"redis://{USER_AND_PASS}{REDIS_HOST}:{REDIS_PORT}")
[]
2024-01-10
TogetherCrew/qabot
packages~ml~src~ui~cui.py
import asyncio import itertools import sys from enum import Enum from typing import AsyncContextManager, Optional from langchain.schema import LLMResult, ChatResult from server.callback import InfoChunk, TextChunk from ui.base import BaseHumanUserInterface from utils.util import get_total_tokens class Color(Enum): """Color codes for the commandline""" BLACK = "\033[30m" # (Text) Black RED = "\033[31m" # (Text) Red GREEN = "\033[32m" # (Text) Green YELLOW = "\033[33m" # (Text) Yellow BLUE = "\033[34m" # (Text) Blue MAGENTA = "\033[35m" # (Text) Magenta CYAN = "\033[36m" # (Text) Cyan WHITE = "\033[37m" # (Text) White COLOR_DEFAULT = "\033[39m" # Reset text color to default class CommandlineUserInterface(BaseHumanUserInterface): """Commandline user interface.""" def get_user_input(self) -> str: """Get user input and return the result as a string""" user_input = input("Input:") return str(user_input) def get_binary_user_input(self, prompt: str) -> bool: """Get a binary input from the user and return the result as a bool""" yes_patterns = ["y", "yes", "yeah", "yup", "yep"] no_patterns = ["n", "no", "nah", "nope"] while True: response = input(prompt + " (y/n) ").strip().lower() if response in yes_patterns: return True elif response in no_patterns: return False else: # self.notify( # "Invalid input", "Please enter y or n.", title_color=Color.RED # ) print("Invalid input", "Please enter y or n.") continue async def notify( self, message: str, title: Optional[str] = None, title_color: str | Color = Color.YELLOW, stream: bool = False, ) -> None: """Print a notification to the user""" if stream: await self.stream(title=title, message=message) if isinstance(title_color, str): try: title_color = Color[title_color.upper()] except KeyError: raise ValueError(f"{title_color} is not a valid Color") self._print_message(title=title, message=message, title_color=title_color) async def stream(self, message: str, title: Optional[str] = None): """Print a notification to the user""" await self._call_callback_text(f"{f'{title}: ' if title else ''}{message}") async def _call_callback_text(self, message: str): if self.callback is not None: await self.callback.on_llm_new_token(TextChunk(token=f"{message}\n")) await asyncio.sleep(0.05) async def call_callback_info(self, count_tokens: int, model_name: str | None = None): if self.callback is not None: await self.callback.on_llm_new_token(InfoChunk(count_tokens=count_tokens, model_name=model_name)) await asyncio.sleep(0.05) async def call_callback_info_llm_result(self, llm_result: LLMResult | ChatResult): await self.call_callback_info(count_tokens=get_total_tokens(llm_result), model_name=llm_result.llm_output["model_name"]) async def call_callback_end(self): if self.callback is not None: await self.callback.on_llm_end(response=None) await asyncio.sleep(0.05) async def call_callback_error(self, error: BaseException | KeyboardInterrupt): if self.callback is not None: await self.callback.on_llm_error(error=error) await asyncio.sleep(0.05) async def loading( self, message: str = "Thinking...", delay: float = 0.1, ) -> AsyncContextManager: """Return a context manager that will display a loading spinner""" await self._call_callback_text(message) return self.Spinner(message=message, delay=delay) def _print_message(self, message: str, title_color: Color, title: Optional[str] = None) -> None: print( f"{f'{title_color.value}{title}{Color.COLOR_DEFAULT.value}:' if title else ''} {message}" ) class Spinner(AsyncContextManager): """A simple spinner class""" def __init__(self, message="Loading...", delay=0.1): """Initialize the spinner class""" self.spinner = itertools.cycle(["-", "/", "|", "\\"]) self.delay = delay self.message = message self.running = False self.task = None async def spin(self): """Spin the spinner""" while self.running: sys.stdout.write(next(self.spinner) + " " + self.message + "\r") sys.stdout.flush() await asyncio.sleep(self.delay) sys.stdout.write("\b" * (len(self.message) + 2)) async def __aenter__(self): """Start the spinner""" print("aenter") self.running = True self.task = asyncio.create_task(self.spin()) await self.task return self async def __aexit__(self, exc_type, exc_value, exc_traceback): """Stop the spinner""" print("aexit") self.running = False self.task.cancel() sys.stdout.write("\r" + " " * (len(self.message) + 2) + "\r") sys.stdout.flush()
[]
2024-01-10
TogetherCrew/qabot
packages~ml~src~utils~constants.py
# Define the default values import os from dotenv import load_dotenv from langchain.embeddings import OpenAIEmbeddings from logger.hivemind_logger import logger ENV_FILE = os.getenv('ENV_FILE') logger.debug(f"ENV_FILE: {ENV_FILE}") if ENV_FILE != 'docker': dotenv_path = os.path.join(os.path.dirname(__file__), '../../.local.env') logger.debug(f"Loading .env from {dotenv_path}") load_dotenv(dotenv_path=dotenv_path) OPENAI_API_MODEL = os.getenv("OPENAI_API_MODEL", "gpt-3.5-turbo") assert OPENAI_API_MODEL, "OPENAI_API_MODEL environment variable is missing from .env" OPENAI_API_KEY = os.getenv("OPENAI_API_KEY", "") assert OPENAI_API_KEY, "OPENAI_API_KEY environment variable is missing from .env" # Set Agent Settings AGENT_NAME = os.getenv("AGENT_NAME", "") assert AGENT_NAME, "AGENT_NAME variable is missing from .env" AGENT_ROLE = os.getenv("AGENT_ROLE", "") assert AGENT_ROLE, "AGENT_ROLE variable is missing from .env" AGENT_OBJECTIVE = os.getenv("AGENT_OBJECTIVE", None) # API CONFIG HIVEMIND_API_PORT = os.getenv("HIVEMIND_API_PORT", 3333) # VECTOR SERVER CONFIG HIVEMIND_VS_HOST = os.getenv("HIVEMIND_VS_HOST", "http://localhost") HIVEMIND_VS_PORT = os.getenv("HIVEMIND_VS_PORT", 1234) VECTOR_SERVER_URL = f"{HIVEMIND_VS_HOST}:{HIVEMIND_VS_PORT}" # RABBITMQ CONFIG RABBITMQ_HOST = os.getenv("RABBITMQ_HOST", "localhost") RABBITMQ_PORT = os.getenv("RABBITMQ_PORT", 5672) RABBITMQ_USER = os.getenv("RABBITMQ_USER", "guest") RABBITMQ_PASS = os.getenv("RABBITMQ_PASS", "guest") DEFAULT_AGENT_DIR = os.path.join(os.path.dirname(__file__), "../agent_data") DEFAULT_EMBEDDINGS = OpenAIEmbeddings(openai_api_key=OPENAI_API_KEY) # Define the base path for the serialization BASE_PATH_SERIALIZATION = os.path.join(DEFAULT_AGENT_DIR, "serialization")
[]
2024-01-10
TogetherCrew/qabot
packages~vector_server~vectorstore~vector_store_data.py
# import the necessary libraries import os.path from datetime import datetime, timedelta import sys import json from langchain.vectorstores import DeepLake from langchain.schema import Document from langchain.embeddings import OpenAIEmbeddings from logger.embedding_logger import logger from tasks.helper import set_status from utils import constants from . import DB_interactions from .summarize_discord import summarize_discord_main def main(args): # # SET PARAMETERS if args is None: raise ValueError("No arguments passed to main function.") # set openai key OA_KEY = args[0] # set db information DB_CONNECTION_STR = args[1] DB_GUILD = args[2] task = args[3] dates = args[4] channels = args[5] index_deeplake = args[6] logger.debug(f"OA_KEY: {OA_KEY}") logger.debug(f"DB_CONNECTION_STR: {DB_CONNECTION_STR}") logger.debug(f"DB_GUILD: {DB_GUILD}") CHANNELS_ID = ["968110585264898048", "1047205126709969007", "1047205182871707669", "1047390883215052880", "1095278496147849257"] if channels is None else channels # DATES = ['2023-07-01', '2023-07-02', '2023-07-03', '2023-07-04', '2023-07-05'] # CHANNELS_ID = ["968110585264898048"] DATES = ['2023-10-25', '2023-10-26', '2023-10-27', '2023-10-28', '2023-10-29', '2023-10-30'] if dates is None else dates # CHANNELS_ID = [""] # DATES = ['2023-04-13', '2023-04-14', '2023-04-15', '2023-04-16', '2023-04-17', '2023-04-18', '2023-04-19'] # set paths to store results # # initiate embeddings model # # OpenAI embedding model embeddings = OpenAIEmbeddings(openai_api_key=OA_KEY) # set_status(task, state='A', meta={'current': 'HF start'}) # HuggingFace embeddings model # model_name = "sentence-transformers/all-mpnet-base-v2" # embeddings = HuggingFaceEmbeddings(model_name=model_name,client=SentenceTransformer(device='cpu')) # set_status(task, state='B', meta={'current': 'HF end'}) # embed and store data vector_store_discord(OA_KEY, DB_CONNECTION_STR, DB_GUILD, CHANNELS_ID, DATES, embeddings, task, index_deeplake) return # # # def vector_store_discord(OA_KEY, DB_CONNECTION_STR, DB_GUILD, CHANNELS_ID, DATES, embeddings, task, index_deeplake): # set up database access db_access = DB_interactions.DB_access(DB_GUILD, DB_CONNECTION_STR) query = DB_interactions.Query() # CHANNELS_ID = list(filter(lambda x: x != "", CHANNELS_ID)) query_channels = {"channelId": {"$in": list(CHANNELS_ID)}} if len(CHANNELS_ID) > 0 else {} set_status(task, state='1', meta={'current': 'MongoDB query'}) # obtain relations between channel id and name cursor = db_access.query_db_find( table="channels", feature_projection={"__v": 0, "_id": 0, "last_update": 0}, query=query_channels ) # store relations between channel id and name as dictionary channel_id_name = DB_interactions.filter_channel_name_id(list(cursor), channel_name_key="name") # CHANNELS_ID = list(channel_id_name.keys()) # initiate empty doc arrays summary_docs = [] raw_docs = [] # initiate empty metadata arrays all_channels = [] all_threads = [] all_authors = [] set_status(task, state='2', meta={'current': 'Data transforming'}) total_tokens_per_server = 0 # for each date for date in DATES: logger.debug(f"starting date: {date}") # compute date before day datetime_next_day = datetime.strptime(date, '%Y-%m-%d') + timedelta(days=1) date_next_day = datetime_next_day.strftime('%Y-%m-%d') set_status(task, state='3', meta={'current': 'Data query'}) ########## And now querying the table with messages in it ########## query_dict = query.create_query_threads( channels_id=CHANNELS_ID, date_range=[date, date_next_day], channelsId_key='channelId', date_key='createdDate' ) projection = { 'user_mentions': 0, 'role_mentions': 0, 'reactions': 0, 'replied_user': 0, 'type': 0, 'messageId': 0, '__v': 0 } logger.debug(f"query_dict: {query_dict}") cursor = db_access.query_db_find(table='rawinfos', query=query_dict, feature_projection=projection, sorting=('datetime', -1) ) logger.debug(f"cursor of results") # getting a result as thread_results : {str:{str:{str:str}}} thread_results = DB_interactions.filter_channel_thread(cursor_list=list(cursor), channels_id=CHANNELS_ID, thread_id_key='threadId', author_key='author', message_content_key='content') # logger.info("\n\n") logger.info(f"thread_results: {thread_results}") # logger.info("\n\n") set_status(task, state='4', meta={'current': f"Start Summarizing"}) # run the summarizing function logger.debug("Starting summarizing") summary_out, num_tokens = summarize_discord_main(thread_results, OA_KEY, True, True) logger.debug(f"Finished summarizing: Date: {date} Tokens: {num_tokens}") total_tokens_per_server += num_tokens logger.debug(f"Until date: {date} Total_Tokens: {total_tokens_per_server}") logger.debug(f"Summary_out: {summary_out}") set_status(task, state='1B', meta={'current': 'Building Summarize'}) # add server summary to docs summary_docs.append(Document(page_content=summary_out['server_summary']["whole server"], metadata={ 'date': date, 'channel': None, 'thread': None })) # for each channel for channel in summary_out['channel_summaries'].keys(): # store channel summary data summary_docs.append(Document(page_content=summary_out['channel_summaries'][channel], metadata={ 'date': date, 'channel': channel_id_name[channel], 'thread': None })) # add channel name to metadata array if it's not in there yet if not channel_id_name[channel] in all_channels: all_channels.append(channel_id_name[channel]) # for each thread for thread_label in summary_out['thread_summaries'][channel].keys(): # split thread name thread_name_split = thread_label.split(": ") thread = thread_name_split[1] # store thread summary data summary_docs.append(Document(page_content=summary_out['thread_summaries'][channel][thread_label], metadata={ 'date': date, 'channel': channel_id_name[channel], 'thread': thread })) # add thread name to metadata array if it's not in there yet if not thread in all_threads: all_threads.append(thread) # for each message for mess in thread_results[channel][thread].keys(): # split message id mess_id_split = mess.split(":") # split author name from handle handle_split = mess_id_split[1].split("#") # if message contains text if len(thread_results[channel][thread][mess]) > 1: # store message raw_docs.append(Document(page_content=thread_results[channel][thread][mess], metadata={ 'date': date, 'channel': channel_id_name[channel], 'thread': thread, 'author': handle_split[0], 'index': mess_id_split[0] })) # add author name to metadata array if it's not in there yet if not handle_split[0] in all_authors: all_authors.append(handle_split[0]) set_status(task, state='H', meta={'current': 'Building DeepLake'}) PLATFORM_PATH = os.path.join(constants.DEEPLAKE_FOLDER, constants.DEEPLAKE_PLATFORM_FOLDER) # check if path exists index = 0 CURRENT_PLATFORM_PATH = f"{PLATFORM_PATH}_{index}" if index_deeplake < 0: while True: logger.debug(f"init CURRENT_PLATFORM_PATH: {CURRENT_PLATFORM_PATH}") if os.path.exists(CURRENT_PLATFORM_PATH): index += 1 CURRENT_PLATFORM_PATH = f"{PLATFORM_PATH}_{index}" continue else: logger.debug(f"break CURRENT_PLATFORM_PATH: {CURRENT_PLATFORM_PATH}") os.makedirs(CURRENT_PLATFORM_PATH, exist_ok=True) break else: CURRENT_PLATFORM_PATH = f"{PLATFORM_PATH}_{index_deeplake}" RAW_DB_SAVE_PATH = os.path.join(CURRENT_PLATFORM_PATH, constants.DEEPLAKE_RAW_FOLDER) SUM_DB_SAVE_PATH = os.path.join(CURRENT_PLATFORM_PATH, constants.DEEPLAKE_SUMMARY_FOLDER) METADATA_OPTIONS_SAVE_PATH = os.path.join(CURRENT_PLATFORM_PATH, "metadata_options.json") # store results in vector stores db_raw = DeepLake.from_documents(raw_docs, embeddings, dataset_path=RAW_DB_SAVE_PATH) db_summary = DeepLake.from_documents(summary_docs, embeddings, dataset_path=SUM_DB_SAVE_PATH) set_status(task, state='I', meta={'current': 'Start write to file'}) try: # store metadata options for vector stores JSON_dict = {"all_channels": all_channels, "all_threads": all_threads, "all_authors": all_authors, "all_dates": DATES} with open(METADATA_OPTIONS_SAVE_PATH, "w") as outfile: json.dump(JSON_dict, outfile) set_status(task, state='J', meta={'current': 'END'}) except BaseException as e: logger.error(f"Error on write to file: {e}") set_status(task, state='Error', meta={'current': 'END'}) return return if __name__ == '__main__': sys.exit(main(sys.argv))
[]
2024-01-10
TogetherCrew/qabot
packages~ml~src~tools~discord.py
import os.path from enum import Enum # import inspect import json from langchain.schema import Document from pydantic.fields import Field from logger.hivemind_logger import logger from tools.base import AgentTool from utils.util import async_get_request from utils.constants import VECTOR_SERVER_URL class ConversationType(Enum): RAW = 0 # type=0 SUMMARY = 1 # type=1 class DiscordTool(AgentTool): convo_type: ConversationType = Field(default=ConversationType.RAW, description="Conversation type") # override constructor def __init__( self, name: str, convo_type: ConversationType, description: str, user_permission_required: bool = False, **kwargs, ): super().__init__( name=name, func=self.a_conversation_search_server, description=description, user_permission_required=user_permission_required, **kwargs, ) self.convo_type = convo_type async def a_conversation_search_server(self, query: str, **kwargs) -> str: """ **kwargs it's used to ignore hallucination params """ url = os.path.join(VECTOR_SERVER_URL, "search", str(self.convo_type.value), query) logger.debug(f"a_conversation_search_server->calling: {url}") json_response = await async_get_request(url) logger.debug(f"a_conversation_search_server->json_response: {json_response}") if json_response is None: return None list_doc = [Document(**doc) for doc in json_response] return self.convert_list_doc_to_str(list_doc=list_doc) def conversation_search(self, query: str, **kwargs) -> str: list_doc = self._db.similarity_search(query=query, k=5) return self.convert_list_doc_to_str(list_doc) def convert_list_doc_to_str(self, list_doc): new_list_doc = [ Document( page_content=doc.page_content.replace("\n", " "), metadata=doc.metadata ) for doc in list_doc ] # AttributeError: 'dict' object has no attribute 'page_content' # how build dict with page_content and metadata attributes # print(new_list_doc) l = ("\n").join( [ f'message:"{doc.page_content}"\n metadata:{json.dumps(doc.metadata)}' for i, doc in enumerate(new_list_doc) ] ) # do for each doc getting page content return l
[]
2024-01-10
TogetherCrew/qabot
packages~ml~src~llm~json_output_parser.py
import json import re from typing import Any, Dict, List from pydantic import BaseModel from jsonschema import validate, ValidationError from langchain.llms.base import BaseLLM import contextlib # from marvin import ai_fn class LLMJsonOutputParserException(Exception): """Exception for JSON parsing errors""" pass class ParseJsonException(LLMJsonOutputParserException): """Exception for JSON parsing errors""" pass class ValidateJsonException(LLMJsonOutputParserException): """Exception for JSON validating errors""" pass class FixJsonException(LLMJsonOutputParserException): """Exception for JSON fixing errors""" pass # @ai_fn() def auto_fix_json(json_str: str, schema: str) -> str: """ Fixes the provided JSON string to make it parseable and fully complient with the provided schema. If an object or field specified in the schema isn't contained within the correct JSON, it is ommited.\n This function is brilliant at guessing when the format is incorrect. Parameters: description: str The description of the function function: str The function to run Returns: str The fixed JSON string it is valid. """ class LLMJsonOutputParser(BaseModel): """Parse the output of the LLM.""" @classmethod def parse_and_validate(cls, json_str: str, json_schema: str, llm: BaseLLM) -> str | Dict[Any, Any]: """ Parses and validates the JSON string. """ # Parse JSON try: json_str = cls._parse_json(json_str, json_schema, llm) except ParseJsonException as e: raise ParseJsonException(str(e)) # Validate JSON try: return cls._validate_json(json_str, json_schema, llm) except ValidationError as e: raise ValidateJsonException(str(e)) @classmethod def _remove_square_brackets(cls, json_str: str) -> str: """ Removes square brackets from the JSON string. """ return re.sub(r"\[|\]", "", json_str) @classmethod def _parse_json(cls, json_str: str, json_schema: str, llm: BaseLLM) -> str | Dict[Any, Any]: """ Parses the JSON string. """ with contextlib.suppress(json.JSONDecodeError): json_str = json_str.replace("\t", "") return json.loads(json_str) with contextlib.suppress(json.JSONDecodeError): json_str = cls.correct_json(json_str) return json.loads(json_str) try: json_str = cls._remove_square_brackets(json_str) brace_index = json_str.index("{") maybe_fixed_json = json_str[brace_index:] last_brace_index = maybe_fixed_json.rindex("}") maybe_fixed_json = maybe_fixed_json[: last_brace_index + 1] return json.loads(maybe_fixed_json) except (json.JSONDecodeError, ValueError): pass # Now try to fix this up using the ai_functions try: ai_fixed_json = cls._fix_json(json_str, json_schema, llm) return json.loads(ai_fixed_json) except FixJsonException as e: raise ParseJsonException("Could not parse JSON:" + str(e)) @classmethod def _validate_json(cls, json_obj: str | Dict[Any, Any], json_schema: str, llm: BaseLLM) -> str | Dict[Any, Any]: """ Check if the given JSON string is fully complient with the provided schema. """ schema_obj = json.loads(json_schema) try: validate(json_obj, schema_obj) return json_obj except ValidationError: # Now try to fix this up using the ai_functions try: ai_fixed_json = cls._fix_json(json.dumps(json_obj), json_schema, llm) return json.loads(ai_fixed_json) except FixJsonException as e: raise ValidateJsonException("Could not validate JSON:" + str(e)) @staticmethod def _fix_json(json_str: str, schema: str, llm: BaseLLM) -> str: """ Fix the given JSON string to make it parseable and fully complient with the provided schema. """ try: print(f"trying fix json_str: {json_str}") fixed_json_str = auto_fix_json(json_str, schema) except Exception: import traceback call_stack = traceback.format_exc() raise FixJsonException(f"Failed to fix JSON: '{json_str}' " + call_stack) try: # print(f"fixed_json_str: {fixed_json_str}") json.loads(fixed_json_str) return fixed_json_str except Exception: import traceback call_stack = traceback.format_exc() raise FixJsonException(f"Failed to load JSON: '{fixed_json_str}' " + call_stack) @staticmethod def _extract_char_position(error_message: str) -> int: """ Extract the character position from the error message. """ char_pattern = re.compile(r'\(char (\d+)\)') if match := char_pattern.search(error_message): return int(match[1]) else: raise ValueError("Character position not found in the error message.") @staticmethod def _add_quotes_to_property_names(json_string: str) -> str: """ Add quotes to the property names in the JSON string. """ def replace_func(match): return f'"{match.group(1)}":' property_name_pattern = re.compile(r'(\w+):') corrected_json_string = property_name_pattern.sub( replace_func, json_string) try: json.loads(corrected_json_string) return corrected_json_string except json.JSONDecodeError as e: raise e @staticmethod def _balance_braces(json_string: str) -> str: """ Add missing braces to the end of the JSON string. """ open_braces_count = json_string.count("{") close_braces_count = json_string.count("}") while open_braces_count > close_braces_count: json_string += "}" close_braces_count += 1 while close_braces_count > open_braces_count: json_string = json_string.rstrip("}") close_braces_count -= 1 with contextlib.suppress(json.JSONDecodeError): json.loads(json_string) return json_string @classmethod def _fix_invalid_escape(cls, json_str: str, error_message: str) -> str: """ Remove the invalid escape character from the JSON string. """ while error_message.startswith('Invalid \\escape'): bad_escape_location = cls._extract_char_position(error_message) json_str = json_str[:bad_escape_location] + \ json_str[bad_escape_location + 1:] try: json.loads(json_str) return json_str except json.JSONDecodeError as e: error_message = str(e) return json_str @classmethod def correct_json(cls, json_str: str) -> str: """ Correct the given JSON string to make it parseable. """ try: json.loads(json_str) return json_str except json.JSONDecodeError as e: error_message = str(e) if error_message.startswith('Invalid \\escape'): json_str = cls._fix_invalid_escape(json_str, error_message) if error_message.startswith('Expecting property name enclosed in double quotes'): json_str = cls._add_quotes_to_property_names(json_str) try: json.loads(json_str) return json_str except json.JSONDecodeError as e: error_message = str(e) if balanced_str := cls._balance_braces(json_str): return balanced_str return json_str
[]
2024-01-10
TogetherCrew/qabot
packages~ml~src~memory~episodic_memory.py
import logging import os from typing import List, Dict, Any from pydantic import BaseModel, Field from langchain.llms.base import BaseLLM from langchain import LLMChain from langchain.vectorstores import DeepLake, FAISS from langchain.embeddings import HuggingFaceEmbeddings from llm.summarize.prompt import get_template from ui.cui import CommandlineUserInterface from utils.constants import DEFAULT_EMBEDDINGS from utils.util import atimeit, timeit import base58 class Episode(BaseModel): thoughts: Dict[str, Any] = Field(..., description="thoughts of the agent") action: Dict[str, Any] = Field(..., description="action of the agent") result: str = Field(..., description="The plan of the event") summary: str = Field("", description="summary of the event") question: str = Field("", description="question to be answered") task: str = Field("", description="task to be completed") # create like equals method to compare two episodes def __eq__(self, other): return ( self.thoughts == other.thoughts and self.action == other.action and self.result == other.result ) @staticmethod def get_summary_of_episodes(episodes: List["Episode"]) -> str: return "\n".join([episode.summary for episode in episodes]) class EpisodicMemory(BaseModel): num_episodes: int = Field(0, description="The number of episodes") store: Dict[str, Episode] = Field({}, description="The list of episodes") llm: BaseLLM = Field(..., description="llm class for the agent") embeddings: HuggingFaceEmbeddings = Field(DEFAULT_EMBEDDINGS, title="Embeddings to use for tool retrieval", ) vector_store: FAISS = Field( None, title="Vector store to use for tool retrieval" ) ui: CommandlineUserInterface | None = Field(None) class Config: arbitrary_types_allowed = True # def __init__(self, question: str, **kwargs): # super().__init__(**kwargs) # filename = base58.b58encode(question.encode()).decode() # if self.vector_store is None: # self.vector_store = DeepLake(read_only=True, dataset_path=os.path.join(EPISODIC_MEMORY_DIR, f"{filename}"), # embedding=self.embeddings) def __del__(self): del self.embeddings del self.vector_store async def memorize_episode(self, episode: Episode) -> None: """Memorize an episode.""" self.num_episodes += 1 self.store[str(self.num_episodes)] = episode await self._embed_episode(episode) async def summarize_and_memorize_episode(self, episode: Episode) -> str: """Summarize and memorize an episode.""" summary = await self._summarize( episode.question, episode.task, episode.thoughts, episode.action, episode.result ) episode.summary = summary await self.memorize_episode(episode) return summary async def _summarize( self, question: str, task: str, thoughts: Dict[str, Any], action: Dict[str, Any], result: str ) -> str: """Summarize an episode.""" prompt = get_template() llm_chain = LLMChain(prompt=prompt, llm=self.llm) try: result = await llm_chain.apredict( question=question, task=task, thoughts=thoughts, action=action, result=result ) except Exception as e: raise Exception(f"Error: {e}") return result def remember_all_episode(self) -> List[Episode]: """Remember all episodes.""" # return list(self.store.values()) return self.store @timeit def remember_recent_episodes(self, n: int = 5) -> List[Episode]: """Remember recent episodes.""" if not self.store: # if empty return self.store n = min(n, len(self.store)) return list(self.store.values())[-n:] def remember_last_episode(self) -> Episode: """Remember last episode.""" if not self.store: return None return self.store[-1] @timeit def remember_related_episodes(self, query: str, k: int = 5) -> List[Episode]: """Remember related episodes to a query.""" logging.debug('remember_related_episodes') if self.vector_store is None: return [] relevant_documents = self.vector_store.similarity_search(query, k=k) result = [] for d in relevant_documents: episode = Episode( thoughts=d.metadata["thoughts"], action=d.metadata["action"], result=d.metadata["result"], summary=d.metadata["summary"], question=d.metadata["question"], task=d.metadata["task"] ) result.append(episode) return result @atimeit async def _embed_episode(self, episode: Episode) -> None: """Embed an episode and add it to the vector store.""" print('_embed_episode') texts = [episode.summary] metadatas = [ { "index": self.num_episodes, "thoughts": episode.thoughts, "action": episode.action, "result": episode.result, "summary": episode.summary, "question": episode.question, "task": episode.task } ] if self.vector_store is None: print('build deeplake') # self.vector_store = DeepLake(read_only=False, dataset_path=EPISODIC_MEMORY_DIR,embedding=self.embeddings) self.vector_store = FAISS.from_texts( texts=texts, embedding=self.embeddings, metadatas=metadatas ) else: print('_embed_episode::add_texts') self.vector_store.add_texts(texts=texts, metadatas=metadatas) # async def save_local(self, path: str) -> None: # """Save the vector store locally.""" # # async def _save(): # print('save_local_inner') # # self.vector_store.save_local(folder_path=path) # # await asyncio.to_thread(vs.save_local, folder_path=path) # print('post save_local inner') # # await asyncio.create_task(_save()) # def load_local(self, path: str) -> None: # """Load the vector store locally.""" # print('local_load inner') # async def _load(): # self.vector_store = FAISS.load_local( # folder_path=path, embeddings=self.embeddings # ) # self.vector_store = DeepLake(read_only=False, dataset_path=path,embedding=self.embeddings) # await asyncio.create_task(_load()) # await asyncio.to_thread(FAISS.load_local, folder_path=path, embeddings=self.embeddings)
[]
2024-01-10
ttpss930141011/LangChain-LineBot
src~interactor~use_cases~message~cor~handler_base.py
from abc import ABC, abstractmethod from typing import List, Type from langchain.agents import AgentExecutor from linebot.v3.messaging.models.message import Message from src.interactor.dtos.event_dto import EventInputDto from src.interactor.interfaces.repositories.agent_executor_repository import ( AgentExecutorRepositoryInterface, ) class Handler(ABC): def __init__(self, successor: Type["Handler"] = None): self._successor = successor def _get_agent_executor( self, input_dto: EventInputDto, repository: AgentExecutorRepositoryInterface, ) -> AgentExecutor: """ Retrieves the agent executor associated with the current window. :param None: This function does not take any parameters. :return: None """ window_id = input_dto.window.get("window_id") agent_executor = repository.get( window_id=window_id, ) if agent_executor is None: agent_executor = repository.create( window_id=window_id, ) return agent_executor @abstractmethod def handle( self, input_dto: EventInputDto, repository: AgentExecutorRepositoryInterface, response: List[Message], ) -> List[Message]: pass
[]
2024-01-10
ttpss930141011/LangChain-LineBot
src~infrastructure~tools~stock_performance.py
from datetime import datetime, timedelta from typing import Type import yfinance as yf from langchain.tools import BaseTool from pydantic import BaseModel, Field def get_stock_performance(ticker, days): """Method to get stock price change in percentage""" past_date = datetime.today() - timedelta(days=days) ticker_data = yf.Ticker(ticker) history = ticker_data.history(start=past_date) old_price = history.iloc[0]["Close"] current_price = history.iloc[-1]["Close"] return {"percent_change": ((current_price - old_price) / old_price) * 100} class StockPercentChangeInput(BaseModel): """Inputs for get_stock_performance""" ticker: str = Field(description="Ticker symbol of the stock") days: int = Field(description="Timedelta days to get past date from current date") class StockPerformanceTool(BaseTool): name = "get_stock_performance" description = """ Useful when you want to check performance of the stock. You should enter the stock ticker symbol recognized by the yahoo finance. You should enter days as number of days from today from which performance needs to be check. output will be the change in the stock price represented as a percentage. """ args_schema: Type[BaseModel] = StockPercentChangeInput def _run(self, ticker: str, days: int): response = get_stock_performance(ticker, days) return response def _arun(self, ticker: str): raise NotImplementedError("get_stock_performance does not support async")
[ "\n Useful when you want to check performance of the stock.\n You should enter the stock ticker symbol recognized by the yahoo finance.\n You should enter days as number of days from today from which performance needs to be check.\n output will be the change in the stock price represented as a percentage.\n " ]
2024-01-10
ttpss930141011/LangChain-LineBot
src~infrastructure~tools~current_stock_price.py
from typing import Type import yfinance as yf from langchain.tools import BaseTool from pydantic import BaseModel, Field def get_current_stock_price(ticker): """Method to get current stock price""" ticker_data = yf.Ticker(ticker) recent = ticker_data.history(period="1d") return {"price": recent.iloc[0]["Close"], "currency": ticker_data.info["currency"]} class CurrentStockPriceInput(BaseModel): """Inputs for get_current_stock_price""" ticker: str = Field(description="Ticker symbol of the stock") class CurrentStockPriceTool(BaseTool): name = "get_current_stock_price" description = """ Useful when you want to get current stock price. You should enter the stock ticker symbol recognized by the yahoo finance """ args_schema: Type[BaseModel] = CurrentStockPriceInput def _run(self, ticker: str): price_response = get_current_stock_price(ticker) return price_response def _arun(self, ticker: str): raise NotImplementedError("get_current_stock_price does not support async")
[ "\n Useful when you want to get current stock price.\n You should enter the stock ticker symbol recognized by the yahoo finance\n " ]
2024-01-10
ttpss930141011/LangChain-LineBot
src~interactor~use_cases~message~cor~default_handler.py
from typing import List from langchain.agents import AgentExecutor from linebot.v3.messaging.models import TextMessage from linebot.v3.messaging.models.message import Message from src.interactor.dtos.event_dto import EventInputDto from src.interactor.interfaces.repositories.agent_executor_repository import ( AgentExecutorRepositoryInterface, ) from src.interactor.use_cases.message.cor.handler_base import Handler class DefaultHandler(Handler): def handle( self, input_dto: EventInputDto, repository: AgentExecutorRepositoryInterface, response: List[Message], ): try: agent_executor = self._get_agent_executor(input_dto, repository) result = agent_executor.run(input=input_dto.user_input) response.append(TextMessage(text=result)) except Exception as e: print(e) response.append(TextMessage(text="出現錯誤啦!請稍後再試。")) finally: return response
[]
2024-01-10
ttpss930141011/LangChain-LineBot
src~infrastructure~repositories~message_history~inmemory_message_history.py
from typing import Dict, List, TypeVar from langchain.schema import BaseChatMessageHistory from langchain.schema.messages import BaseMessage KT = TypeVar("KT", bound=str) VT = TypeVar("VT", bound=List[BaseMessage]) class InMemoryChatDictMessageHistory(BaseChatMessageHistory): """In memory implementation of chat message history. Stores messages in an in memory list. """ def __init__(self, window_id: str, data: Dict[KT, VT]) -> None: self.window_id = window_id self.data = data @property def messages(self) -> List[BaseMessage]: # type: ignore """Retrieve the messages from Dict""" if self.window_id not in self.data: self.data[self.window_id] = [] return self.data[self.window_id] def add_message(self, message: BaseMessage) -> None: """Add a self-created message to the store""" if self.window_id not in self.data: self.data[self.window_id] = [message] else: self.data[self.window_id].append(message) def clear(self) -> None: """ Clears the data associated with the current window ID. Parameters: None Returns: None """ self.data[self.window_id] = []
[]
2024-01-10
AayushGithub/LeetAI
tools~parse_solution.py
# given an input in the following format, open the corresponding file # python parse_solution.py <input_folder> # input_folder should contain the following file: # solution.py import sys import openai import os from dotenv import load_dotenv import json load_dotenv() openai.api_key = os.getenv("OPENAI_API_KEY") def parse_solution(input_folder): # open the solution file solution_file = open(input_folder + "/solution.py", "r") # The file has the following format: # Link - <leetcode link> # Question ID - <question id> # Question Name - <question name> # solution link = solution_file.readline().strip().split(" - ")[1] question_id = solution_file.readline().strip().split(" - ")[1] question_name = solution_file.readline().strip().split(" - ")[1] solution = solution_file.read() solution_file.close() # return the parsed data return link, question_id, question_name, solution def generate_explaination(link, question_id, question_name, solution): prompt = f"This is my solution to the Leetcode question:\nLink - {link}\nQuestion ID - {question_id}\nQuestion Name - {question_name}\n\nSolution:\n```{solution}```\nGive me an explanation (as a markdown file) as to why it works and if it is correct:\n" messages = [{"role": "user", "content": prompt}] response = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=messages, ) explanation = response["choices"][0]["message"]["content"] return explanation def save_to_markdown(explanation, input_folder): # save the explanation to a markdown file explanation_file = open(input_folder + "/explanation.md", "w") explanation_file.write(explanation) explanation_file.close() def main(): input_folder = sys.argv[1] link, question_id, question_name, solution = parse_solution(input_folder) explaination = generate_explaination(link, question_id, question_name, solution) save_to_markdown(explaination, input_folder) if __name__ == "__main__": main()
[ "This is my solution to the Leetcode question:\nLink - PLACEHOLDER\nQuestion ID - PLACEHOLDER\nQuestion Name - PLACEHOLDER\n\nSolution:\n```PLACEHOLDER```\nGive me an explanation (as a markdown file) as to why it works and if it is correct:\n" ]
2024-01-10
CR1502/Recommender
Email_Gen~email_app~main1.py
# This is the main python file that generates the emails import openai from bs4 import BeautifulSoup import requests # Make sure you set up your API key openai.api_key = 'YOUR_OPENAI_API_KEY' class EmailMarketingAssistant: SAMPLE_EMAILS = { 'e-commerce': { 'convince_to_buy': [ "Introducing our new {product_name}: {product_description}. Grab yours now!", "Experience the best with our new {product_name}. {product_description}. Limited stock!", "Why wait? The {product_name} you've always wanted is here. {product_description}.", "{product_name}: Where quality meets desire. {product_description}. Don't miss out!", "Discover the new dimension of quality with {product_name}. {product_description}. Available now!" ] }, 'people': { 'welcome_new_user': [ "Welcome {user_name}! We're thrilled to have you on board.", "Hi {user_name}, thanks for choosing us! Let's embark on this journey together.", "A warm welcome to our community, {user_name}!", "{user_name}, you've made a fantastic decision. Welcome to the family!", "It's a pleasure to see you, {user_name}. Welcome and let's get started!" ], 'congratulate_on_purchase':[ "Congratulations on your new {product_name} purchase, {user_name}! We're sure you'll love it.", "Hey {user_name}, great choice! Your new {product_name} is on its way. Enjoy!", "Thank you for choosing {product_name}, {user_name}! We're excited for you to try it out.", "{user_name}, your impeccable taste shines with your {product_name} purchase! Cheers!", "Rock on, {user_name}! Your {product_name} will surely turn heads!" ], }, 'blog': { 'new_blog': [ "Just out: our new blog post, {post_title}, covering everything about {topic}. Dive in!", "Unveiling our latest piece: {post_title}. Discover more about {topic}.", "{post_title} - a fresh take on {topic}. Read now!", "Explore the depths of {topic} in our new article: {post_title}. Check it out!", "Hot off the press: {post_title}. Delve into the world of {topic} now!" ] } } def get_sample_email(self, business_type, campaign_goal, **details): sample_emails = self.SAMPLE_EMAILS.get(business_type, {}).get(campaign_goal, []) if not sample_emails: return ["Sorry, no sample email found for your criteria."] * 5 refined_emails = [] for sample in sample_emails: refined_emails.append(self.refine_prompt(sample.format(**details))) return refined_emails def refine_prompt(self, prompt): gpt3_message = { "messages": [{ "role": "user", "content": f"Given this sample email: '{prompt}', create a similar yet unique marketing email." }] } response = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=gpt3_message['messages'] ) return response.choices[0].message['content'].strip() def get_company_description(self, website_url): try: response = requests.get(website_url) soup = BeautifulSoup(response.content, 'html.parser') description = soup.find('meta', attrs={'name': 'description'}) or soup.find('meta', attrs={'property': 'og:description'}) if description: return description.get('content') else: return "Description not found. Please provide manually." except Exception as e: return f"Error fetching description: {e}" if __name__ == "__main__": assistant = EmailMarketingAssistant() mail_type = input("Enter the kind of mail to send (e-commerce, people, blog, etc.): ") campaign_goal = input("Enter your campaign goal (convince_to_buy, congratulate_on_purchase, welcome_new_user, new_blog): ") details = {} # For e-commerce related prompts if mail_type == "e-commerce": details['product_name'] = input("Enter the product name: ") if campaign_goal in ['convince_to_buy']: details['product_description'] = input("Provide a brief description of the product: ") # For new customer related prompts if mail_type == "people" and campaign_goal in ['welcome_new_user']: details['user_name'] = input("Provide new users name: ") elif mail_type == "people" and campaign_goal in ['congratulate_on_purchase']: details['user_name'] = input("Provide new users name: ") # For blog related prompts elif mail_type == "blog" and campaign_goal == "new_blog": details['post_title'] = input("Enter the blog post title: ") details['topic'] = input("Enter the post topic: ") # Fetch company website details website_url = input("Enter your company website URL (or press Enter to skip): ") if website_url: company_description = assistant.get_company_description(website_url) print(f"Fetched company description: {company_description}") email_contents = assistant.get_sample_email(mail_type, campaign_goal, **details) print("\nRecommended Email Contents:\n") for i, content in enumerate(email_contents, 1): print(f"Email {i}:\n{content}\n")
[ "Given this sample email: 'PLACEHOLDER', create a similar yet unique marketing email." ]
2024-01-10
andrewgcodes/ConsensusTranscription
v1.py
import os import sys import requests import openai from pydub import AudioSegment from rapidfuzz import fuzz import string # OpenAI Whisper API settings OPENAI_API_KEY = "YOUR_OPENAI_API_KEY" OPENAI_API_URL = "https://api.openai.com/v1/audio/transcriptions" MODEL_ID = "whisper-1" # Deepgram API settings DEEPGRAM_API_KEY = "YOUR_DEEPGRAM_API_KEY" DEEPGRAM_API_URL = "https://api.deepgram.com/v1/listen" # Configure OpenAI openai.api_key = OPENAI_API_KEY def remove_punctuation(input_string): translator = str.maketrans('', '', string.punctuation) no_punct = input_string.translate(translator) return no_punct def compare_strings(str1, str2): str1 = remove_punctuation(str1) str2 = remove_punctuation(str2) return fuzz.ratio(str1, str2) def transcribe_openai(AUDIO_FILE_PATH): with open(AUDIO_FILE_PATH, "rb") as audio_file: response = openai.Audio.transcribe(MODEL_ID, audio_file) return response.text def transcribe_deepgram(AUDIO_FILE_PATH): headers = { "Authorization": "Token " + DEEPGRAM_API_KEY, "Content-Type": "audio/mpeg" } with open(AUDIO_FILE_PATH, "rb") as audio_file: audio_data = audio_file.read() response = requests.post(DEEPGRAM_API_URL, headers=headers, data=audio_data) response.raise_for_status() return response.json()["results"]["channels"][0]["alternatives"][0]["transcript"] def summarize_transcript(openai_transcript, GPT_MODEL): messages = [ { "role": "system", "content": "You are a editor, writer, and stenographer. Summarize the provided transcription text. Be aware that some words may be incorrect or missing." }, { "role": "user", "content": openai_transcript } ] response = openai.ChatCompletion.create( model=GPT_MODEL, messages=messages, max_tokens=100 ) return response.choices[0].message["content"] def analyze_transcriptions(audio_content, openai_transcript, deepgram_transcript, GPT_MODEL): messages = [ { "role": "system", "content": "You are a skilled editor, transcriber of speech, and stenographer. Your task is to review two transcripts of the same speech. Given context that explains the speech, provide a new corrected transcript that fixes the errors in each of the two original transcripts. Make sure to consider how words that sound similar can be mistranscribed. Use your knowledge of phonetics, pronunciation, speech patterns, modern slang, and more. Generate a highly accurate consensus transcript that preserves the original meaning and content as exactly as possible while fixing the errors. Be aware of different English dialects such as AAVE and do not correct grammar based on Standard American English. Censor inappropriate words with asterisks. Think step by step and be careful to maintain accuracy to the transcripts when possible. Do not hallucinate." }, { "role": "user", "content": f"Here is a summary of the transcriptions:'{audio_content}'. Here are the two transcriptions which may have errors: OpenAI transcript: '{openai_transcript}', Deepgram transcript: '{deepgram_transcript}'. Provide a new corrected transcription that is faithful to the words used in the transcripts. Do not replace words with synonyms." } ] response = openai.ChatCompletion.create( model=GPT_MODEL, messages=messages ) return response.choices[0].message["content"] if __name__ == "__main__": AUDIO_FILE_PATH = sys.argv[1] GPT_MODEL = sys.argv[2] openai_transcript = transcribe_openai(AUDIO_FILE_PATH) deepgram_transcript = transcribe_deepgram(AUDIO_FILE_PATH) similarity = compare_strings(openai_transcript.lower(), deepgram_transcript.lower()) print(f"The Levenshtein similarity between the two transcriptions is {similarity}%") audio_content = summarize_transcript(openai_transcript, GPT_MODEL) consensus_transcript = analyze_transcriptions(audio_content, openai_transcript, deepgram_transcript, GPT_MODEL) print("Consensus Transcript: ", consensus_transcript)
[ "You are a skilled editor, transcriber of speech, and stenographer. Your task is to review two transcripts of the same speech. Given context that explains the speech, provide a new corrected transcript that fixes the errors in each of the two original transcripts. Make sure to consider how words that sound similar can be mistranscribed. Use your knowledge of phonetics, pronunciation, speech patterns, modern slang, and more. Generate a highly accurate consensus transcript that preserves the original meaning and content as exactly as possible while fixing the errors. Be aware of different English dialects such as AAVE and do not correct grammar based on Standard American English. Censor inappropriate words with asterisks. Think step by step and be careful to maintain accuracy to the transcripts when possible. Do not hallucinate.", "You are a editor, writer, and stenographer. Summarize the provided transcription text. Be aware that some words may be incorrect or missing.", "Here is a summary of the transcriptions:'PLACEHOLDER'. Here are the two transcriptions which may have errors: OpenAI transcript: 'PLACEHOLDER', Deepgram transcript: 'PLACEHOLDER'. Provide a new corrected transcription that is faithful to the words used in the transcripts. Do not replace words with synonyms." ]
2024-01-10
kanishkg/talking-heads
src~human_app.py
import csv import random import openai import streamlit as st DATA_FILE = "Pew_American_Trends_Panel_disagreement_500.csv" MAX_MESSAGES = 6 # Preliminary setup st.title("Change My View") print("restarting") print(st.session_state) # st.write(st.session_state) if "stage" not in st.session_state: st.session_state["stage"] = 1 print(f"session stage: {st.session_state['stage']}") def get_data(i=None): with open(DATA_FILE, "r") as f: reader = csv.reader(f, delimiter="\t") if i: data = list(reader)[i] else: data = random.choice(list(reader)) question = data[3] answer_list = list(eval(data[4])) answer_list = answer_list[:-1] + ["Neutral"] random.shuffle(answer_list) return question, answer_list # stage 4: thanks if st.session_state["stage"] == 4: st.markdown("### Thanks for participating! You can close this tab now.") # stage 3: final answer if st.session_state["stage"] == 3: st.radio( st.session_state["question"], key="final_answer", options=st.session_state["answer_list"], ) st.button("Submit", key="final", on_click=lambda: st.session_state.update({"stage": 4})) # stage 2: conversation if st.session_state["stage"] == 2: if "messages" not in st.session_state: st.session_state.messages = [] message = f"When asked the question '{st.session_state['question']}' I feel the answer is '{st.session_state['initial_answer']}' but convince me that it is '{st.session_state['target_answer']}'." st.session_state.messages.append( {"role": "system", "content": "Convince the user of the opinion that they want to change to. Use rhetoric and critical arguments, dont merely list points. Be concise and respond to the arguments that the user makes. Make it more like a conversation than a list of points. Ask questions when required."} ) st.session_state.messages.append( {"role": "user", "content": message} ) for message in st.session_state.messages[2:]: with st.chat_message(message["role"]): print(message["role"]) st.markdown(message["content"]) if len(st.session_state.messages) == 2: with st.chat_message("assistant"): message_placeholder = st.empty() full_response = "" for response in openai.ChatCompletion.create( model=st.session_state["openai_model"], messages=[ {"role": m["role"], "content": m["content"]} for m in st.session_state.messages ], stream=True, ): full_response += response.choices[0].delta.get("content", "") message_placeholder.markdown(full_response + "▌") message_placeholder.markdown(full_response) st.session_state.messages.append({"role": "assistant", "content": full_response}) if prompt:=st.chat_input("Type here to chat"): st.session_state.messages.append({"role": "user", "content": prompt}) with st.chat_message("user"): st.markdown(prompt) if len(st.session_state.messages) > MAX_MESSAGES: suffix = "\nThis is the last message. Also provide a concluding remark with the response based on the discussion." st.session_state.messages[-1]["content"] += suffix # add suffix to last message with st.chat_message("assistant"): message_placeholder = st.empty() full_response = "" for response in openai.ChatCompletion.create( model=st.session_state["openai_model"], messages=[ {"role": m["role"], "content": m["content"]} for m in st.session_state.messages ], stream=True, ): full_response += response.choices[0].delta.get("content", "") message_placeholder.markdown(full_response + "▌") message_placeholder.markdown(full_response) st.session_state.messages.append({"role": "assistant", "content": full_response}) if len(st.session_state.messages) > MAX_MESSAGES+1: st.button("Next", key="next2", on_click=lambda: st.session_state.update({"stage": 3})) # stage 1: get the question and answer if st.session_state["stage"] == 1: st.text_input(label="OpenAI API Key", key="openai_api_key") if st.session_state["openai_api_key"]: openai.api_key = st.session_state["openai_api_key"] selected_model = st.selectbox( label="OpenAI Model", key="openaim", options=["gpt-4", "gpt-3.5-turbo"], ) st.session_state["openai_model"] = selected_model print(st.session_state["openai_model"]) if "question" not in st.session_state: st.session_state["question"], st.session_state["answer_list"] = get_data() # show the question and answer left_column, right_column = st.columns(2) with left_column: st.radio( st.session_state["question"], key="initial_answer", options=st.session_state["answer_list"], ) with right_column: st.radio( "Target Answer", key="target_answer", options=st.session_state["answer_list"], ) st.button("Next", key="next", on_click=lambda: st.session_state.update({"stage": 2}))
[ "content", "Convince the user of the opinion that they want to change to. Use rhetoric and critical arguments, dont merely list points. Be concise and respond to the arguments that the user makes. Make it more like a conversation than a list of points. Ask questions when required." ]
2024-01-10
denverbaumgartner/autoSQL
autoSQL~autosql~predict~predict.py
import json import logging import requests from _decimal import Decimal from typing import Optional, Dict, List, Union import openai from openai.openai_object import OpenAIObject import replicate from replicate import Client as rc import sqlglot from datasets import DatasetDict, Dataset # from .helper import Prompts from helper import Prompts logger = logging.getLogger(__name__) class SQLPredict: """This class handles the dispatching of inference requests to various models. """ def __init__( self, openai_api_key: str, replicate_api_key: str, hugging_face_api_key: Optional[str] = None, ) -> None: """Initialize the class""" openai.api_key = openai_api_key self.openai = openai self.prompts = Prompts() self.rc = rc(replicate_api_key) self.hf_key = hugging_face_api_key self.replicate_models = {} self.openai_api_models = {} self.model_endpoints = {} @classmethod def from_replicate_model( cls, openai_api_key: str, replicate_api_key: str, model_name: str, model_id: str, ) -> "SQLPredict": """Initialize the class with a Replicate model :param openai_api_key: The OpenAI API key. :type openai_api_key: str :param replicate_api_key: The Replicate API key. :type replicate_api_key: str :param model_name: The name of the Replicate model. :type model_name: str :param model_id: The ID of the Replicate model. :type model_id: str :return: The initialized class. :rtype: SQLPredict """ instance = cls(openai_api_key, replicate_api_key) instance.replicate_models[model_name] = model_id return instance def __repr__(self): items = ("{}={!r}".format(k, self.__dict__[k]) for k in self.__dict__) return "{}({})".format(type(self).__name__, ", ".join(items)) ######################################### # Class Methods # ######################################### def add_replicate_model( self, model_name: str, model_id: str, ) -> None: """Adds a Replicate model to the class. :param model_name: The name of the Replicate model. :type model_name: str :param model_id: The ID of the Replicate model. :type model_id: str """ self.replicate_models[model_name] = model_id def add_model_endpoint( self, model_name: str, model_endpoint: str, ) -> None: """Adds a model endpoint to the class. :param model_name: The name of the model. :type model_name: str :param model_endpoint: The endpoint of the model. :type model_endpoint: str """ self.model_endpoints[model_name] = model_endpoint ######################################### # Request Construction Methods # ######################################### def _openai_sql_data_structure( self, user_context: str, user_question: str, user_answer: str, system_context: Optional[str] = None, ) -> List[Dict[str, str]]: """Constructs a SQL data structure request for OpenAI's API. :param user_context: The context of the SQL query. :type user_context: str :param user_question: The question of the SQL query. :type user_question: str :param user_answer: The answer of the SQL query. :type user_answer: str :param system_context: The context of the SQL query, None results in class default :type system_context: Optional[str], optional :return: The constructed SQL data structure request. :rtype: List[Dict[str, str]] """ if system_context is None: system_context = self.prompts._openai_sql_data_structure_prompt message = [ {"role": "system", "content": system_context}, {"role": "user", "content": f'Context: {user_context}\n\nQuestion": {user_question}\n\nAnswer: {user_answer}'}, ] return message def _openai_sql_request_structure( self, user_context: str, user_question: str, system_context: Optional[str] = None, ) -> List[Dict[str, str]]: """Constructs a SQL request structure for OpenAI's API. :param user_context: The context of the SQL query. :type user_context: str :param user_question: The question of the SQL query. :type user_question: str :param system_context: The context of the SQL query, None results in class default :type system_context: Optional[str], optional :return: The constructed SQL request structure. :rtype: List[Dict[str, str]] """ if system_context is None: system_context = self.prompts._openai_sql_request_structure_prompt message = [ {"role": "system", "content": system_context}, {"role": "user", "content": f'Context: {user_context}\n\nQuestion": {user_question}'}, ] return message def openai_sql_response( self, response_object: Union[OpenAIObject, Dict[str, str]], atl: Optional[bool] = False, ) -> Optional[str]: """Parses the response from OpenAI's API. :param response_object: The response from OpenAI's API. :type response_object: OpenAIObject :return: The parsed response. :rtype: Optional[str] """ if isinstance(response_object, OpenAIObject): response_object = response_object.to_dict() try: response = response_object['openai_inference']['choices'][0]['message'] except Exception as e: logger.warning(f"OpenAI response failed to parse with error: {e}") return None if len(response.keys()) > 2: logger.warning(f"OpenAI response has more than 2 keys: {response.keys()}") if atl: try: sqlglot.parse(response["content"]) return response["content"] except Exception as e: logger.warning(f"SQL query failed to parse with error: {e}") return None return response["content"] def openai_sql_request( self, user_context: str, user_question: str, model: Optional[str] = "gpt-3.5-turbo", # TODO: consider using an enum for this system_context: Optional[str] = None, validate_response: Optional[bool] = False, ) -> Optional[OpenAIObject]: """Constructs a prompt to request a SQL query from OpenAI's API. :param user_context: The context of the SQL query. :type user_context: str :param user_question: The question of the SQL query. :type user_question: str :param model: The model to use for the request, defaults to "gpt-3.5-turbo" :type model: Optional[str], optional :param system_context: The context of the SQL query, None results in class default :type system_context: Optional[str], optional :param validate_response: Whether to validate the response, defaults to True. Returns None if validation fails. :type validate_response: Optional[bool], optional :return: The constructed SQL request. :rtype: OpenAIObject """ message = self._openai_sql_request_structure(user_context, user_question, system_context) try: request = self.openai.ChatCompletion.create( model=model, messages=message, ) except Exception as e: logger.warning(f"OpenAI request failed with error: {e}") raise e if validate_response: return self.openai_sql_response(request) return request def openai_dataset_request( self, dataset: Dataset, ): # -> Dict[str, OpenAIObject]: """Constructs a prompt to request a SQL query from OpenAI's API. :param dataset: The dataset item to request. :type dataset: Dataset :return: The constructed SQL request. :rtype: OpenAIObject """ try: context = dataset['context'] question = dataset['question'] inference = self.openai_sql_request(user_context=context, user_question=question) except Exception as e: logger.warning(f"OpenAI request failed with error: {e}") return {"openai_inference": inference} def replicate_sql_request( self, prompt: str, model_name: str, ) -> str: """Constructs a prompt to request a SQL query from Replicate's API. :param prompt: The prompt to use for the request. :type prompt: str :return: The constructed SQL request. :rtype: str """ try: request = self.rc.run( self.replicate_models[model_name], input={"prompt": prompt}, ) return ''.join(item for item in request) except Exception as e: logger.warning(f"Replicate request failed with error: {e}") raise e def replicate_dataset_request( self, dataset: Dataset, model_name: Optional[str] = "llama_2_13b_sql", column_name: Optional[str] = "replicate_inference", prompt_type: Optional[str] = "tuning_format", ): """Constructs a prompt and requests a SQL query from Replicate's API. :param dataset: The dataset item to request. :type dataset: Dataset :return: The constructed SQL request. :rtype: str """ if prompt_type == "tuning_format": prompt = json.loads(dataset['tuning_format'])['prompt'] if prompt_type == "basic_text_generation": prompt = self.basic_text_generation_prompt(dataset['context'], dataset['question']) # assumes the prompt is in the dataset, contained within 'tuning_format' try: # prompt = json.loads(dataset['tuning_format'])['prompt'] inference = self.replicate_sql_request(prompt, model_name=model_name) return {column_name: inference} except Exception as e: logger.warning(f"Replicate request failed with error: {e}") def basic_text_generation_prompt( self, context: str, question: str, ) -> str: """Constructs a basic text generation prompt. :param context: The context of the SQL query. :type context: str """ prompt = "Context details the databse: " + context + " # " "Question to answer: " + question + " # " + "Answer as a SQL query: " return prompt def basic_text_generation_request( self, context: str, question: str, model_name: str, api_key: Optional[str] = None, headers: Optional[Dict[str, str]] = None, ) -> str: """Constructs a basic text generation request. :param context: The context of the SQL query. :type context: str :param question: The question of the SQL query. :type question: str :param model_name: The name of the model. :type model_name: str :param api_key: The API key to use for the request, defaults to None. Defaults to class default. :type api_key: Optional[str], optional :param headers: The headers to use for the request, defaults to None. Defaults to class default. :type headers: Optional[Dict[str, str]], optional :return: The constructed SQL request. :rtype: str """ if api_key is None: api_key = self.hf_key if headers is None: headers = {"Authorization": api_key} prompt = self.basic_text_generation_prompt(context, question) try: response = requests.post( self.model_endpoints[model_name], headers=headers, json={"inputs": prompt}, ) return response.json() except Exception as e: logger.warning(f"Basic text generation request failed with error: {e}") raise e def basic_text_generation_dataset_request( self, dataset: Dataset, model_name: str, response_column_name: str, context_column_name: Optional[str] = "context", question_column_name: Optional[str] = "question", api_key: Optional[str] = None, headers: Optional[Dict[str, str]] = None, ): """Constructs a prompt and requests a SQL query from a generic API.""" try: context = dataset[context_column_name] question = dataset[question_column_name] inference = self.basic_text_generation_request(context, question, model_name, api_key) return {response_column_name: inference} except Exception as e: logger.warning(f"Basic text generation request failed with error: {e}")
[ "question", "Context details the databse: PLACEHOLDER # Question to answer: PLACEHOLDER # Answer as a SQL query: ", "tuning_format", "Context: PLACEHOLDER\n\nQuestion\": PLACEHOLDER\n\nAnswer: PLACEHOLDER", "Context: PLACEHOLDER\n\nQuestion\": PLACEHOLDER", "context" ]
2024-01-10
IHA114/GirlfriendGPT
src~agent~tools~selfie.py
"""Tool for generating images.""" import logging from langchain.agents import Tool from steamship import Steamship from steamship.base.error import SteamshipError NAME = "GenerateSelfie" DESCRIPTION = """ Useful for when you need to generate a selfie showing what you're doing or where you are. Input: A detailed stable-diffusion prompt describing where you are and what's visible in your environment. Output: the UUID of the generated selfie showing what you're doing or where you are. """ PLUGIN_HANDLE = "stable-diffusion" NEGATIVE_PROMPT = ( "(bonnet), (hat), (beanie), cap, (((wide shot))), (cropped head), bad framing, " "out of frame, deformed, cripple, old, fat, ugly, poor, missing arm, additional arms, " "additional legs, additional head, additional face, dyed hair, black and white, grayscale" ) class SelfieTool(Tool): """Tool used to generate images from a text-prompt.""" client: Steamship def __init__(self, client: Steamship): super().__init__( name=NAME, func=self.run, description=DESCRIPTION, client=client ) @property def is_single_input(self) -> bool: """Whether the tool only accepts a single input.""" return True def run(self, prompt: str, **kwargs) -> str: """Generate an image using the input prompt.""" image_generator = self.client.use_plugin( plugin_handle=PLUGIN_HANDLE, config={"n": 1, "size": "768x768"} ) prompt = prompt + ( "professional portrait photograph of a gorgeous Norwegian girl with long wavy blonde hair, " f"{prompt}" "((sultry flirty look)), freckles, beautiful symmetrical face, cute natural makeup, " "((standing outside in snowy city street)), " "stunning modern urban upscale environment, ultra realistic, concept art, elegant, highly detailed, " "intricate, sharp focus, depth of field, f/1. 8, 85mm, medium shot, mid shot, (centered image composition), " "(professionally color graded), ((bright soft diffused light)), volumetric fog, " "trending on instagram, trending on tumblr, hdr 4k, 8k" ) task = image_generator.generate( text=prompt, append_output_to_file=True, options={"negative_prompt": NEGATIVE_PROMPT}, ) task.wait() blocks = task.output.blocks logging.info(f"[{self.name}] got back {len(blocks)} blocks") if len(blocks) > 0: logging.info(f"[{self.name}] image size: {len(blocks[0].raw())}") return blocks[0].id raise SteamshipError(f"[{self.name}] Tool unable to generate image!")
[ "promptbae3aee2-d606-408b-b83b-0e39e0fe6327professional portrait photograph of a gorgeous Norwegian girl with long wavy blonde hair, promptbae3aee2-d606-408b-b83b-0e39e0fe6327((sultry flirty look)), freckles, beautiful symmetrical face, cute natural makeup, ((standing outside in snowy city street)), stunning modern urban upscale environment, ultra realistic, concept art, elegant, highly detailed, intricate, sharp focus, depth of field, f/1. 8, 85mm, medium shot, mid shot, (centered image composition), (professionally color graded), ((bright soft diffused light)), volumetric fog, trending on instagram, trending on tumblr, hdr 4k, 8kprofessional portrait photograph of a gorgeous Norwegian girl with long wavy blonde hair, promptbae3aee2-d606-408b-b83b-0e39e0fe6327professional portrait photograph of a gorgeous Norwegian girl with long wavy blonde hair, promptbae3aee2-d606-408b-b83b-0e39e0fe6327((sultry flirty look)), freckles, beautiful symmetrical face, cute natural makeup, ((standing outside in snowy city street)), stunning modern urban upscale environment, ultra realistic, concept art, elegant, highly detailed, intricate, sharp focus, depth of field, f/1. 8, 85mm, medium shot, mid shot, (centered image composition), (professionally color graded), ((bright soft diffused light)), volumetric fog, trending on instagram, trending on tumblr, hdr 4k, 8k((sultry flirty look)), freckles, beautiful symmetrical face, cute natural makeup, ((standing outside in snowy city street)), stunning modern urban upscale environment, ultra realistic, concept art, elegant, highly detailed, intricate, sharp focus, depth of field, f/1. 8, 85mm, medium shot, mid shot, (centered image composition), (professionally color graded), ((bright soft diffused light)), volumetric fog, trending on instagram, trending on tumblr, hdr 4k, 8k", "(bonnet), (hat), (beanie), cap, (((wide shot))), (cropped head), bad framing, out of frame, deformed, cripple, old, fat, ugly, poor, missing arm, additional arms, additional legs, additional head, additional face, dyed hair, black and white, grayscale" ]
2024-01-10
IHA114/GirlfriendGPT
src~agent~parser.py
from __future__ import annotations from typing import Union, Any from langchain.agents import AgentOutputParser from langchain.schema import AgentAction, AgentFinish from prompts import FORMAT_INSTRUCTIONS class MultiModalOutputParser(AgentOutputParser): parser: AgentOutputParser def __init__(self, parser, **data: Any): super().__init__(**data, parser=parser) def get_format_instructions(self) -> str: return FORMAT_INSTRUCTIONS def parse(self, text: str) -> Union[AgentAction, AgentFinish]: cleaned_output = text.strip() if cleaned_output.startswith("AI: "): cleaned_output = cleaned_output[len("AI: ") :] return self.parser.parse(cleaned_output) @property def _type(self) -> str: return "conversational_chat"
[]
2024-01-10
IHA114/GirlfriendGPT
src~agent~tools~album_art.py
"""Tool for generating album art. The purpose of this tool is to illustrate how to wrap the GenerateImageTool with a custom tool description & some prompt engineering to steer the image one way or another. The GenerateImageTool leaves the user + LLM in complete control of the image generation prompt... but what if you wanted to make sure the prompt was: - A particular style? - A particular mood? - Something else entirely, involving web scraping and other operations? You can do that by wrapping the GenerateImageTool, as you see here, and then sending in your own custom prompt. """ import json import logging from langchain.agents import Tool from steamship import Steamship from steamship.base.error import SteamshipError from steamship.data.plugin.plugin_instance import PluginInstance from .image import GenerateImageTool NAME = "GenerateAlbumArt" DESCRIPTION = """ Useful for when you need to generate album art. Input: A description of the album that needs art Output: the UUID of a generated image """ class GenerateAlbumArtTool(Tool): """Tool used to generate album art from a album description.""" client: Steamship tool: GenerateImageTool def __init__(self, client: Steamship): super().__init__( name=NAME, func=self.run, description=DESCRIPTION, client=client, tool=GenerateImageTool(client), ) @property def is_single_input(self) -> bool: """Whether the tool only accepts a single input.""" return True def run(self, prompt: str, **kwargs) -> str: """Respond to LLM prompt.""" # Here we create a NEW prompt, which is based on the prompt provided # to this tool, but including extra terms. image_gen_prompt = f"album art, 4k, high def, pop art, professional, high quality, award winning, grammy, platinum, {prompt}" # Then we just return the results of the wrapped GenerateImageTool, # passing it the new prompt that we created. return self.tool.run(image_gen_prompt)
[ "album art, 4k, high def, pop art, professional, high quality, award winning, grammy, platinum, PLACEHOLDER" ]
2024-01-10
ahoho/topics
soup_nuts~metrics.py
import random from multiprocessing import Pool from collections import defaultdict from itertools import combinations import rbo import numpy as np import pandas as pd from tqdm import tqdm from scipy.spatial.distance import cdist, jensenshannon from scipy.optimize import linear_sum_assignment from gensim.models import CoherenceModel from gensim.corpora import Dictionary from sklearn.metrics import rand_score, normalized_mutual_info_score , adjusted_rand_score def _gen_measure_name(coherence_measure, window_size, top_n): """ Make a unique measure name from the arguments """ measure_name = f"{coherence_measure}_win{window_size}_top{top_n}" return measure_name def _summarize(data): return {**pd.Series(data).describe().to_dict(), "sum": np.sum(data)} def coherence( topics, vocab, reference_text, coherence_measure, window_size, top_n, ): """ Calculates coherence for a single model """ data_dict = Dictionary([vocab]) topics = [t[:top_n] for t in topics] cm = CoherenceModel( topics=topics, texts=tqdm(reference_text), dictionary=data_dict, coherence=coherence_measure, window_size=window_size, ) confirmed_measures = cm.get_coherence_per_topic() mean = cm.aggregate_measures(confirmed_measures) measure_name = _gen_measure_name(coherence_measure, cm.window_size, top_n) return measure_name, float(mean), [float(i) for i in confirmed_measures] def purity(model_labels, gold_labels): """ Calculates the Purity metric as described in https://aclanthology.org/P16-1110/ "ALTO: Active Learning with Topic Overviews for Speeding Label Induction and Document Labeling" For sanity check - The purity of any two user labels should be 1 """ assert len(model_labels) == len(gold_labels) # somewhat faster than a pure-python implementation purity_sum = ( pd.DataFrame({"pred": model_labels, "true": gold_labels}) .groupby(["pred", "true"], as_index=False) .size() .groupby("pred")["size"] .max() .sum() ) return purity_sum / len(model_labels) def rbo_dist(x, y, pval): """Rank-biased overlap distance. Assumes x, y truncated to top n items""" return 1 - rbo.RankingSimilarity(x, y).rbo(p=pval) def avg_jcrd_agreement(x, y): """Average Jaccard distance. Assumes x, y truncated to top n items""" score = 0.0 max_set_size = len(x) for depth in range(1, max_set_size + 1): s1 = set(x[:depth]) s2 = set(y[:depth]) jcrd = len(s1 & s2)/len(s1 | s2) score += jcrd score = score/max_set_size return 1.0 - score def unique_doc_words_over_runs(doc_topic_runs, topic_word_runs, top_n=15, hard_assignment=True, summarize=False): """ Given a collection of estimates of document-topic distributions over a set of runs, determine how stable the topic assignments are per document by taking the union of the set of top words predicted for each document To determine what words are predicted for a given document, we use the reconstructed bag-of-words: the admixture of (global) topic-word probabilities, weighted by the document's topic probabilities Setting `hard_assignment` uses the top words from the most-probable topic for the document """ runs = len(doc_topic_runs) n = doc_topic_runs[0].shape[0] top_words_over_runs = np.zeros((n, runs * top_n)) # for each run, determine the set of words that are predicted for each topic for i, (doc_topic, topic_word) in enumerate(zip(doc_topic_runs, topic_word_runs)): if hard_assignment: # find the top words per topic, then index by documents' top topic top_words = (-topic_word).argsort(1)[doc_topic.argmax(1), :top_n] else: # calculate the mixture over topic-word probabilities per doc top_words = (-(doc_topic @ topic_word)).argsort(1)[:, :top_n] # store them in an array top_words_over_runs[:, i*top_n:(i+1)*top_n] = top_words # then, determine the unique number of words predicted for each document # stackoverflow.com/questions/48473056/number-of-unique-elements-per-row-in-a-numpy-array nunique = np.count_nonzero(np.diff(np.sort(top_words_over_runs, axis=1)), axis=1) + 1 # finally, normalize between the lowest possible and highest possible number of unique terms punique = (nunique - top_n) / (top_n * (runs - 1)) if summarize: # summary is _over n_ (not runs) return _summarize(punique) return nunique, punique def unique_topic_words_over_runs(topic_word_runs, top_n=15, summarize=False): """ Given a collection of estimates of topic-word distributions, calculate how stable the topics are by comparing the set of top words """ runs = len(topic_word_runs) k = topic_word_runs[0].shape[0] max_count_digits = int(10 ** np.ceil(np.log10(k))) unique_words = set() for topic_word in topic_word_runs: top_words = (-topic_word).argsort(1)[:, :top_n].reshape(-1) word_counter = defaultdict(lambda: -1) # problem: if repeated words appear across the topics in a single run, # this will underestimate the number of unique words produced over runs. # to solve: a word can be repeated at most `k` times in a run (once per topic). # count each occurrence per run as a unique term, i.e., "mouse_0", "mouse_1", etc. # this count gets stored in the first `max_count_digits`, so if "mouse" has index # 155, the 3rd appearance is coded as 15502. for w in top_words: word_counter[w] += 1 w_c = w*max_count_digits + word_counter[w] unique_words.add(w_c) nunique = len(unique_words) words_per_run = k * top_n # normalize the score between lowest and highest possible number of unique terms punique = (nunique - words_per_run) / (words_per_run * (runs - 1)) if summarize: # `punique` is a single value, but this unifies the API return _summarize(punique) return nunique, punique def topic_dists_over_runs( *, # enforce named arguments to avoid ambiguity doc_topic_runs=None, topic_word_runs=None, metric="jensenshannon", sample_n=1.0, summarize=False, seed=None, workers=1, top_n_items=None, # for rank based metrics ("rbo", "jaccard"), select top n items tqdm_kwargs={}, ): """ Estimate the stability of topics by calculating the distance between topics across runs. Works on either topic-word or document-topic estimates, where "topics" are considered the vector for each topic dimension in the estimate. That is, for a topic-word estimate the vector is the size of the vocabulary, |V|, and for a doc-topic estimate it's the number of documents N. For each of the (runs*(runs-1))/2 pairs of runs, there is a run_a and a run_b with associated estimates est_a and est_b. We take the pairwise distances between the k topic vectors contained in est_a and est_b, finding the minimum weight match between the topic pairs. To speed up computation, can set `sample_n` to use only a subset of possible combinations. TODO: - does pairwise js-distance depend on whether betas came from a softmax vs. some other method (e.g., gibbs?). does this matter? - does it make sense to have a pairwise spearman? """ if topic_word_runs is not None and doc_topic_runs is not None: raise ValueError("Supply either `topic_word_runs` or `doc_topic_runs`, not both") # prepare the estimates estimates = doc_topic_runs if doc_topic_runs is not None else topic_word_runs for i in range(len(estimates)): x = estimates[i] # apprently float64 faster for cdist,stackoverflow.com/a/50671733/5712749 x = x.astype(np.float64) if doc_topic_runs is not None: x = x.T if metric == "jensenshannon" and not np.allclose(x.sum(1), 1): x = x/x.sum(1, keepdims=True) if top_n_items == "auto": top_n_items = x.shape[1] // x.shape[0] if top_n_items is not None: # for rank-based metrics x = (-x).argsort(1)[:, :top_n_items] estimates[i] = x # sample the combinations of runs runs = len(estimates) combins = list(combinations(range(runs), 2)) sample_n = sample_n if sample_n > 1 else int(sample_n * len(combins)) random.seed(seed) random.shuffle(combins) combins = combins[:sample_n] # compute distances # for each run pair, find the minimum global distances if workers <= 1: # first, initialize the matrix in which to store the distances num_topics = estimates[0].shape[0] min_dists = np.zeros((len(combins), num_topics)) for i, (idx_a, idx_b) in enumerate(tqdm(combins, **tqdm_kwargs)): args = (estimates[idx_a], estimates[idx_b], metric) min_dists[i] = _min_total_topic_dist(args) else: with Pool(processes=workers) as pool: args = [(estimates[idx_a], estimates[idx_b], metric) for idx_a, idx_b in combins] result = pool.imap_unordered(_min_total_topic_dist, args) min_dists = np.array([r for r in tqdm(result, total=sample_n, **tqdm_kwargs)]) min_dists = np.sort(min_dists, axis=1) if summarize: # not totally obvious how to report a summary # for now: we take the total cost and report summary over runs # could be an issue if different models' distrubtions have different entropies return _summarize(min_dists.sum(1)) return min_dists def _min_total_topic_dist(args): """Helper function to find the minimum total cost TODO: quicker approximation?""" x, y, metric = args dists = cdist(x, y, metric=metric) # get distances: produces a [k x k] "cost" matrix row_idx, col_idx = linear_sum_assignment(dists) # minimize the global match cost return dists[row_idx, col_idx] def doc_words_dists_over_runs( doc_topic_runs, topic_word_runs, batchsize=1000, sample_n=1, workers=1, seed=None, tqdm_kwargs={} ): """ For each document, calculate the jensen-shannon distance between its predicted word probabilities (i.e., reconstructed BoW) in each run TODO: since this is not a true forward pass of the model (e.g., in some models, `topic_word` is not normalized; a softmax is applied after `doc_topic @ topic_word`). Hence, this may introduce some problems---worth revisiting. """ runs = len(doc_topic_runs) n = doc_topic_runs[0].shape[0] v = topic_word_runs[0].shape[1] assert(np.allclose(topic_word.sum(1).max(), 1)) # should be normalized # create the document-word estimates doc_word_probs = np.zeros((runs, n, v)) for run_i, (doc_topic, topic_word) in enumerate(zip(doc_topic_runs, topic_word_runs)): for j in range(n // batchsize + 1): bs = np.s_[j*batchsize:(j+1)*batchsize] # NB: assumes topic-word is normalized, which will violate the # true model for d-vae, scholar, and others p_hat = doc_topic[bs] @ topic_word doc_word_probs[run_i][bs] = p_hat # sample the combinations of runs combins = list(combinations(range(runs), 2)) sample_n = sample_n if sample_n > 1 else int(sample_n * len(combins)) random.seed(seed) random.shuffle(combins) combins = combins[:sample_n] doc_word_dists = np.zeros((len(combins), n)) for i, (idx_a, idx_b) in enumerate(tqdm(combins, **tqdm_kwargs)): # may need to dispatch to workers; axis arg requires scipy 1.7. dists = jensenshannon(doc_word_probs[idx_a], doc_word_probs[idx_b], axis=1) doc_word_dists[i] = dists return doc_word_dists
[]
2024-01-10
csinva/clinical-rule-analysis
notebooks_data_prep~pubmed.py
import pathlib import re import numpy as np import mdcalc from mdcalc import try_or_none from collections import defaultdict import fitz import dvu import matplotlib.pyplot as plt import pandas as pd from os.path import join import os.path from bs4 import BeautifulSoup from tqdm import tqdm import imodelsx.llm import json import requests import joblib import os import numpy as np import pubmed import openai plt.style.use("default") dvu.set_style() @try_or_none def parse_name(name: str): name_arr = name.split() # drop if too long if len(name) > 40: return None # drop special names for k in [ "investigator", "group", "committee", "network", ]: if k in name.lower(): return None # drop when first name is only one letter if len(name_arr[0]) == 1: return None # drop middle initial if len(name_arr) > 2 and len(name_arr[1]) == 1: name_arr = [name_arr[0], name_arr[-1]] # return name return " ".join(name_arr) def get_metadata(paper_id: str): cache_file = f"../data/metadata/{paper_id}.json" if os.path.exists(cache_file): metadata = json.load(open(cache_file)) else: resp = requests.get( f"https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esummary.fcgi?db=pubmed&id={paper_id}&retmode=json" ) metadata = json.loads(resp.text) with open(cache_file, "w") as f: json.dump(metadata, f, indent=2) return metadata def get_authors_with_firstname(paper_link: str, paper_id: str): cache_file = f"../data/metadata/{paper_id}_full.joblib" if os.path.exists(cache_file): return joblib.load(cache_file)["author_names"] else: resp = requests.get(paper_link).text soup = BeautifulSoup(resp) author_names = set() # print(soup.find_all("span", {"class": "authors-list-item"})) for s in soup.find_all("span", {"class": "authors-list-item"}): try: author_name = s.a["data-ga-label"] author_names.add(author_name) # print('author_name', author_name) except: pass # print('a', author_names) joblib.dump({"author_names": author_names, "resp": resp}, cache_file) return author_names def get_author_affiliations(paper_id): cache_file = cache_file = f"../data/metadata/{paper_id}_full.joblib" cache_dict = joblib.load(cache_file) if "author_affils" in cache_dict: return cache_dict["author_affils"] else: resp = cache_dict["resp"] soup = BeautifulSoup(resp) affils = soup.find_all("div", {"class": "affiliations"}) if len(affils) == 0: return None affils = affils[0] affils_list_return = [] for li in affils.ul.find_all("li"): x = li.text # remove leading numbers while x[0].isdigit(): x = x[1:] affils_list_return.append(x.strip()) cache_dict["author_affils"] = affils_list_return joblib.dump(cache_dict, cache_file) return affils_list_return # @try_or_none # def get_free_text_link(paper_id: str): # cache_file = f"../data/metadata/{paper_id}_free_text_link.json" # if os.path.exists(cache_file): # free_text_link = json.load(open(cache_file)) # else: # resp = requests.get( # f"https://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id={paper_id}&cmd=prlinks&retmode=json" # ) # free_text_link = resp.json() # with open(cache_file, "w") as f: # json.dump(free_text_link, f, indent=2) # return free_text_link["linksets"][0]["idurllist"][0]["objurls"][0]["url"]["value"] def get_paper_id(paper_link: str): if paper_link.endswith("/"): paper_link = paper_link[:-1] paper_id = paper_link.split("/")[-1] # remove leading zeros while paper_id.startswith("0"): paper_id = paper_id[1:] return paper_id def get_updated_refs(df): refs = df["ref_href"].values idxs_corrected = df["ref_href_corrected"].notna() & ~( df["ref_href_corrected"] == "Unk" ) refs[idxs_corrected] = df["ref_href_corrected"][idxs_corrected] return refs @try_or_none def clean_llm_country_output(s): if " is " in s: s = s.split(" is ")[-1] # remove punctuation s = s.replace(".", "") # remove all parenthetical phrases ind0 = s.find("(") ind1 = s.find(")") while ind0 != -1 and ind1 != -1: s = s[:ind0] + s[ind1 + 1 :] ind0 = s.find("(") ind1 = s.find(")") s = s.replace("the", "") s = s.split(",")[-1] return s.strip()
[]
2024-01-10
csinva/clinical-rule-analysis
notebooks_llm~eval_extraction.py
import pathlib import re from typing import Dict, List import numpy as np from collections import defaultdict import matplotlib.pyplot as plt import pandas as pd from os.path import join import os.path from tqdm import tqdm import json import os import numpy as np import openai from os.path import dirname path_to_file = dirname(__file__) path_to_repo = dirname(path_to_file) papers_dir = join(path_to_repo, "papers") def compute_metrics_within_1( df, preds_col_to_gt_col_dict={ "num_male": "num_male_corrected", "num_female": "num_female_corrected", "num_total": "num_total_corrected", }, ) -> pd.DataFrame: d = defaultdict(list) one_perc = (df["participants___total"].astype(float) / 100).apply(np.ceil) for k in df.columns: # if k.startswith('num_') and k + '_corrected' in df.columns: # print(one_perc) if k in preds_col_to_gt_col_dict: gt_col = preds_col_to_gt_col_dict[k] # print(df.columns, gt_col) idxs_with_labels = df[gt_col].notnull() & ~(df[gt_col].isin({-1})) gt = df[gt_col][idxs_with_labels].astype(int) pred = df[k].apply(cast_int)[idxs_with_labels].astype(int) pred = pred.apply(lambda x: x if x >= 0 else np.nan) # print('preds', (pred >= 0).sum()) # print('gt', gt) d["target"].append(gt_col) d["n_gt"].append(len(gt)) # print(df[k]) # d['n_pred'].append(df[k].notna().sum()) d["n_pred"].append((pred.notna() & (pred >= 0)).sum()) # print((gt - pred).values.tolist()) # d["n_correct_within_1"].append((np.abs(gt - pred) <= 1).sum()) d["n_correct_1_perc"].append( (np.abs(gt - pred) <= one_perc[idxs_with_labels]).sum() ) # d['n_predicted'].append(df[k].notnull().sum()) # count number of values which contain a number metrics = pd.DataFrame.from_dict(d) metrics["recall"] = metrics["n_correct_1_perc"] / metrics["n_gt"] metrics["precision"] = metrics["n_correct_1_perc"] / metrics["n_pred"] return metrics.round(2) def convert_percentages_when_total_is_known(num, tot): if tot is not None and isinstance(tot, str): tot = tot.replace(",", "").replace(" ", "") if ( str_contains_number(num) and str_is_percentage(num) and str_contains_number(tot) and not str_is_percentage(tot) ): num = percentage_to_num(num) tot = int(tot) num = round(num * tot / 100) return num def cast_int(x): try: return int(x) except: return -1 def int_or_empty(x): try: return int(x) except: return "" def int_or_neg1(x): try: return int(x) except: return -1 def str_is_parsable(x): """Check that string only contains numbers, percent, or periods""" return x is not None and all( char.isdigit() or char in [".", "%", " ", ","] for char in str(x) ) def str_contains_number(x): return ( x is not None and any(char.isdigit() for char in str(x)) and not any(char.isalpha() for char in str(x)) ) def str_is_percentage(s): return "%" in s or "." in s def percentage_to_num(s): if "%" in s: s = s.replace("%", "") return float(s)
[]
2024-01-10
csinva/clinical-rule-analysis
notebooks_llm~02_classification.py
from imodelsx import LinearFinetuneClassifier, LinearNgramClassifier, AugGAMClassifier from tqdm import tqdm from sklearn.linear_model import LogisticRegressionCV from sklearn.tree import DecisionTreeClassifier from sklearn.metrics import classification_report from sklearn.preprocessing import MultiLabelBinarizer from sklearn.ensemble import RandomForestClassifier from sklearn.multioutput import MultiOutputClassifier from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.pipeline import Pipeline from sklearn import preprocessing import openai import pandas as pd import argparse from copy import deepcopy import logging import random from collections import defaultdict from os.path import join import numpy as np from sklearn.metrics import accuracy_score, roc_auc_score from sklearn.model_selection import train_test_split import joblib import imodels import inspect import os.path from imodelsx import cache_save_utils from skllm.config import SKLLMConfig from skllm import MultiLabelZeroShotGPTClassifier path_to_repo = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) openai.api_key = open("/home/chansingh/.OPENAI_KEY").read().strip() SKLLMConfig.set_openai_key(openai.api_key) def add_eval(r, y_test, y_pred, y_pred_proba): cls_report = classification_report( y_test, y_pred, output_dict=True, zero_division=0 ) for k1 in ["macro"]: for k in ["precision", "recall", "f1-score"]: r[f"{k1}_{k}"].append(cls_report[k1 + " avg"][k]) r["accuracy"].append(accuracy_score(y_test, y_pred)) r["roc_auc"].append(roc_auc_score(y_test, y_pred_proba)) return r def get_classification_data(lab="categorization___chief_complaint", input_text='description'): # read data df = pd.read_pickle(join(path_to_repo, 'data/data_clean.pkl')) # prepare output classes = df[lab].explode() vc = classes.value_counts() # restrict to top classes top_classes = vc.index[vc.values >= 20] df[lab] = df[lab].apply(lambda l: [x for x in l if x in top_classes]) # label binarizer # top classes put most frequent first and last (helps with zero-shot) top_classes = top_classes[::2].tolist( ) + top_classes[1::2].tolist()[::-1] le = MultiLabelBinarizer(classes=top_classes) y = le.fit_transform(df[lab]) # input text # set up text for prediction if input_text == 'raw_text': X = df["paper___raw_text"] elif input_text == 'description': def get_text_representation(row): # return f"""- Title: {row["title"]} # - Description: {row["description"]} # - Predictor variables: {str(row["feature_names"])[1:-1]}""" return f"""{row["title"]}. {row["description"]}.""" # Keywords: {str(row["info___keywords"])[1:-1]}""" X = df.apply(get_text_representation, axis=1) idxs = X.notna() X = X[idxs].tolist() y = y[idxs] # train test split return X, y, le.classes_, le # X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=random_state) # return X_train, X_test, y_train, y_test, le.classes_ def get_model(model_name="decision_tree", random_state=42, class_name=None, input_text='raw_text'): if model_name == "decision_tree": return Pipeline( [ ("tfidf", TfidfVectorizer()), ("clf", DecisionTreeClassifier(random_state=random_state)), ] ) elif model_name == "random_forest": return Pipeline( [ ("tfidf", TfidfVectorizer()), ("clf", RandomForestClassifier(random_state=random_state)), ] ) # elif model_name == 'figs': # return Pipeline( # [ # ] # ) elif model_name == "logistic": return Pipeline( [ ("tfidf", TfidfVectorizer()), ( "clf", # MultiOutputClassifier( LogisticRegressionCV(random_state=random_state) # ), ), ] ) elif model_name == "aug-linear": return AugGAMClassifier( checkpoint="bert-base-uncased", normalize_embs=False, random_state=random_state, cache_embs_dir=os.path.expanduser( join(os.path.expanduser("~/.cache_mdcalc_embeddings"), class_name, input_text) ), ngrams=2, ) elif model_name == "bert-base-uncased": # pipe = MultiOutputClassifier( return LinearFinetuneClassifier( checkpoint="bert-base-uncased", normalize_embs=True, random_state=random_state, cache_embs_dir=join(os.path.expanduser( "~/.cache_mdcalc_embeddings"), class_name, input_text), ) elif model_name == 'zero-shot': return MultiLabelZeroShotGPTClassifier( max_labels=5, openai_model="gpt-4-0314") # initialize args def add_main_args(parser): """Caching uses the non-default values from argparse to name the saving directory. Changing the default arg an argument will break cache compatibility with previous runs. """ # dataset args parser.add_argument( "--label_name", type=str, default="categorization___chief_complaint", choices=["categorization___chief_complaint", "categorization___specialty", "categorization___purpose", "categorization___system", "categorization___disease",], help="name of label", ) parser.add_argument( '--input_text', type=str, default='raw_text', help='input text to use' ) # training misc args parser.add_argument("--seed", type=int, default=1, help="random seed") parser.add_argument( "--save_dir", type=str, default=join(path_to_repo, "results"), help="directory for saving", ) # model args parser.add_argument( "--model_name", type=str, default="decision_tree", help="name of model", ) return parser def add_computational_args(parser): """Arguments that only affect computation and not the results (shouldnt use when checking cache)""" parser.add_argument( "--use_cache", type=int, default=1, choices=[0, 1], help="whether to check for cache", ) return parser if __name__ == "__main__": # get args parser = argparse.ArgumentParser() parser_without_computational_args = add_main_args(parser) parser = add_computational_args( deepcopy(parser_without_computational_args)) args = parser.parse_args() # set up logging logger = logging.getLogger() logging.basicConfig(level=logging.INFO) # set up saving directory + check for cache already_cached, save_dir_unique = cache_save_utils.get_save_dir_unique( parser, parser_without_computational_args, args, args.save_dir ) if args.use_cache and already_cached: logging.info(f"cached version exists! Successfully skipping :)\n\n\n") exit(0) for k in sorted(vars(args)): logger.info("\t" + k + " " + str(vars(args)[k])) logging.info(f"\n\n\tsaving to " + save_dir_unique + "\n") # set seed np.random.seed(args.seed) random.seed(args.seed) # torch.manual_seed(args.seed) # get data X, y, classes, le = get_classification_data( lab=args.label_name, input_text=args.input_text) # set up saving dictionary + save params file r = defaultdict(list) r.update(vars(args)) r["save_dir_unique"] = save_dir_unique os.makedirs(save_dir_unique, exist_ok=True) # cache_save_utils.save_json( # args=args, save_dir=save_dir_unique, fname="params.json", r=r # ) # fit + eval if not args.model_name == 'zero-shot': for i, c in enumerate(tqdm(classes)): m = get_model( args.model_name, random_state=42, class_name=c, input_text=args.input_text, ) y_i = y[:, i] X_train, X_test, y_train, y_test = train_test_split( X, y_i, test_size=0.25, random_state=42, stratify=y_i ) m.fit(X_train, y_train) # df['y_pred_train'].append(m.predict(X_train)) y_pred = m.predict(X_test) y_pred_proba = m.predict_proba(X_test)[:, 1] # df['y_pred_test'].append(y_test) r = add_eval(r, y_test, y_pred, y_pred_proba) elif args.model_name == 'zero-shot': m = get_model( args.model_name, random_state=42, input_text=args.input_text, ) X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.25, random_state=42 ) m.fit(None, [classes.tolist()]) # df['y_pred_train'].append(m.predict(X_train)) y_pred_strs = m.predict(X_test) y_pred = le.transform(y_pred_strs) y_pred_proba = y_pred for i in range(len(classes)): r = add_eval(r, y_test[:, i], y_pred[:, i], y_pred_proba[:, i]) for k in ['macro_precision', 'macro_recall', 'macro_f1-score', 'accuracy', 'roc_auc']: r[f"mean_{k}"] = np.mean(r[k]) # save results joblib.dump( r, join(save_dir_unique, "results.pkl") ) # caching requires that this is called results.pkl # joblib.dump(model, join(save_dir_unique, "model.pkl")) logging.info("Succesfully completed :)\n\n")
[]
2024-01-10
csinva/clinical-rule-analysis
notebooks_llm~extraction.py
import pathlib import re from typing import Dict, List import numpy as np from collections import defaultdict import pandas as pd from os.path import join import os.path from tqdm import tqdm import json import os import numpy as np import openai from os.path import dirname import imodelsx import prompts_extraction path_to_repo = dirname(dirname(os.path.abspath(__file__))) openai.api_key = open("/home/chansingh/.OPENAI_KEY").read().strip() # imodelsx.llm.LLM_CONFIG["LLM_REPEAT_DELAY"] = 30 def extract_nums_df( texts: List[str], repeat_delay=30, verbose=True, checkpoint="gpt-4-0613", subset_len_tokens=4750, ) -> pd.DataFrame: """Return dataframe with different extracted fields as columns""" # get prompt llm = imodelsx.llm.get_llm( checkpoint, repeat_delay=repeat_delay ) # gpt-3.5-turbo-0613 # properties, functions, content_str = prompts_extraction.get_prompts_gender_and_race() # print('attempting to add', properties.keys()) # add_columns_based_on_properties(df, ids_with_paper, properties, functions, content_str, llm) properties, functions, content_str = prompts_extraction.get_prompts_gender() print("attempting to add", properties.keys()) extractions1 = extract_columns_based_on_properties( texts, properties, functions, content_str, llm, verbose=verbose, subset_len_tokens=subset_len_tokens, ) properties, functions, content_str = prompts_extraction.get_prompts_race() print("attempting to add", properties.keys()) extractions2 = extract_columns_based_on_properties( texts, properties, functions, content_str, llm, verbose=verbose, subset_len_tokens=subset_len_tokens, ) return pd.DataFrame.from_dict(extractions1 | extractions2) def rename_to_none(x: str): if x in {"", "unknown", "N/A"}: return None else: return x def extract_columns_based_on_properties( texts, properties, functions, content_str, llm, verbose=True, subset_len_tokens=4750, ) -> Dict[str, List]: # initialize empty columns out = {} for k in properties.keys(): out[k] = len(texts) * [None] # run loop for i, text in tqdm(enumerate(texts)): try: args = call_on_subsets( text, content_str=content_str, functions=functions, llm=llm, verbose=verbose, subset_len_tokens=subset_len_tokens, ) if args is not None: for k in properties.keys(): if k in args: out[k][i] = rename_to_none(args[k]) # remove spans if they are not actually contained in the text if "_span" in k: if not _check_evidence(args[k], text): out[k][i] = None except Exception as e: print(e) return out def call_on_subsets( x: str, content_str: str, functions: List[Dict], llm, subset_len_tokens=4750, max_calls=3, verbose=True, ): messages = [ { "role": "user", "content": content_str, } ] subset_len_chars = subset_len_tokens * 4 args = None subset_num = 0 while args is None and subset_num < max_calls: subset = x[subset_num * subset_len_chars : (subset_num + 1) * subset_len_chars] # if approx_tokens < 6000: messages[0]["content"] = content_str.format(input=subset) msg = llm( messages, functions=functions, return_str=False, temperature=0.0, verbose=verbose, ) if msg is not None and "function_call" in msg["choices"][0]["message"]: args = json.loads( msg["choices"][0]["message"]["function_call"]["arguments"] ) # and msg.get("function_call") is not None: # args = json.loads(msg.get("function_call")["arguments"]) return args subset_num += 1 # next segment should have atleast 0.5 * subset_len_chars_left if len(x) < (subset_num + 0.5) * subset_len_chars: break return None def _check_evidence(ev: str, real_input: str): if ev is not None: # remove all whitespace ev = "".join(ev.split()) real_input = "".join(real_input.split()) return ev.lower() in real_input.lower() return False if __name__ == "__main__": df = pd.read_pickle(join(path_to_repo, "data/data_clean.pkl")) gt_cols = [ "participants___male", "participants___female", "participants___total", "participants___white", "participants___black", "participants___latino", "participants___asian", ] idxs = df["paper___raw_text"].notna() & ((df[gt_cols] > 0).any(axis=1)) texts = df.loc[idxs, "paper___raw_text"].values.tolist() extractions = extract_nums_df( texts, verbose=True, checkpoint="gpt-3.5-turbo-0613", subset_len_tokens=3000 )
[]
2024-01-10
HalfBloody/prompt-lib
prompt_lib~inference.py
# Given the path to a text file, queries alpa for each line in the file. import json import os.path from datetime import datetime from itertools import chain import pathlib import sys from typing import List from tqdm import tqdm import pandas as pd import wandb import glob import re import os import logging from prompt_lib.backends.openai_api import OpenaiAPIWrapper from prompt_lib.prompts.utils import ( TaskConfig, make_task_file_from_config, get_question_from_prompt, ) from prompt_lib.eval.eval_utils import read_jsonl logging.basicConfig(level=logging.INFO) def inference_loop(task_config: TaskConfig) -> None: """Query a language model API for each line in the file.""" task_file = make_task_file_from_config(task_config).to_dict(orient="records") n_task_original = len(task_file) task_file = task_file[: task_config.num_inference_examples] # make output directory outdir = get_outdir(task_config) # remove cached examples from task_file cached_examples, thread_offset = load_cached_examples(outdir, task_config) task_file = [ example for example in task_file if not ( (task_config.num_prompt_examples > 0 and get_question_from_prompt(example["question"], task_config) in cached_examples) or example["question"] in cached_examples ) ] print( f"Found {len(cached_examples)} cached examples, {len(task_file)} examples to query, found {n_task_original - len(task_file)} in cache" ) pathlib.Path(f"{outdir}").mkdir(parents=True, exist_ok=True) # split tasks into subtasks. This is redundant for now, but will be useful when we want to parallelize. Also helps with caching/restarting, as intermediate results are saved. batched_tasks = create_task_batches(task_config, task_file) outputs = [] accuracy_so_far = 0 # post-process cached examples and newly queried examples for r_file in glob.glob(f"{outdir}/outputs_part*.jsonl"): cached = read_jsonl(r_file) outputs = cached # run inference for (batch, batch_idx) in tqdm(batched_tasks): thread_outputs = run_inference_on_batch(batch, batch_idx, task_config=task_config) outputs.append(thread_outputs) progress_perc = round(len(outputs) * 100 / len(batched_tasks), 2) wandb.log({"progress_so_far": progress_perc}) pd.DataFrame(thread_outputs).to_json( f"{outdir}/outputs_part{batch_idx + thread_offset}.jsonl", orient="records", lines=True, ) accuracy_so_far += task_config.eval_function(pd.DataFrame(thread_outputs)) wandb.log({"accuracy_so_far": accuracy_so_far / len(outputs)}) outputs = pd.DataFrame(chain(*outputs)) # remove duplicates # BUG: we should not be doing this: there may be good reasons to have duplicates in the input: someone benchmarking # outputs = outputs.drop_duplicates(subset=["question"]) if "logprobs" in outputs.columns: outputs = outputs.drop("logprobs", axis=1) wandb.log({"accuracy": task_config.eval_function(outputs)}) wandb.log({"num_inference_examples": len(outputs)}) wandb.log({"num_inference_examples_with_answer": len(outputs[outputs["answer"].notnull()])}) # convert all columns to type string # drop all rows with any nan values outputs = outputs.dropna() for col in outputs.columns: outputs[col] = outputs[col].astype(str) wandb.log({"outputs": wandb.Table(dataframe=outputs)}) logging.info(f"Number of successful queries: {len(outputs)}") outputs.to_json(f"{outdir}/outputs.jsonl", orient="records", lines=True) with open(f"{outdir}/task_config.json", "w") as f: f.write(json.dumps(task_config.to_dict(), indent=4)) return outputs def create_task_batches(task_config: TaskConfig, task_file: List) -> List: """Generates batches of tasks. Currently, we don't parallelize, but it's useful for caching and restarting. Args: task_config (_type_): TaskConfig task_file (List): List of tasks Returns: List of (batch, batch_idx) tuples """ num_chunks = len(task_file) // task_config.num_questions_per_thread load_per_task = [] for i in range(num_chunks): load_per_task.append( ( task_file[ i * task_config.num_questions_per_thread : (i + 1) * task_config.num_questions_per_thread ], i, ) ) if len(task_file) % task_config.num_questions_per_thread != 0: load_per_task.append( (task_file[num_chunks * task_config.num_questions_per_thread :], num_chunks) ) return load_per_task def load_cached_examples(outdir, task_config): """Loads cached examples from a directory.""" cached_examples = set() thread_offset = 0 if pathlib.Path(outdir).exists(): for r_file in glob.glob(f"{outdir}/outputs_part*.jsonl"): cached = read_jsonl(r_file) for i, row in cached.iterrows(): cached_examples.add(get_question_from_prompt(row["question"], task_config)) part_idx = re.search("outputs_part(\d+).jsonl", os.path.basename(r_file)).group(1) thread_offset = max(thread_offset, int(part_idx)) thread_offset += 1 return cached_examples, thread_offset def get_outdir(task_config: TaskConfig) -> str: if task_config.cached_timestamp is None: time_stamp = datetime.now().strftime("%Y-%m-%d_%H-%M-%S") else: print(f"Using cached timestamp: {task_config.cached_timestamp}") time_stamp = task_config.cached_timestamp outdir = f"data/logs/{task_config.task_id}/{task_config.model_name}/temp_{task_config.temperature}/seed_{task_config.seed}/num_completions_{task_config.num_completions}/" if task_config.num_prompt_examples == -1: outdir += "/k_all/" else: outdir += f"/k_{task_config.num_prompt_examples}/" if task_config.tag is not None: outdir += f"{task_config.tag}/" outdir += f"{time_stamp}/" return outdir def run_inference_on_batch( rows: List[dict], thread_id: int, task_config: TaskConfig, max_retries: int = 10, ) -> List[dict]: outputs = [] i = 0 n = len(rows) pbar = tqdm(total=n, desc=f"Querying {task_config.model_name} [thread_id={thread_id}]") num_retries = 0 while i < n: try: response = OpenaiAPIWrapper.call( temperature=task_config.temperature, prompt=rows[i]["question"], max_tokens=task_config.max_tokens, engine=task_config.model_name, stop_token=task_config.prompt_config.inter_example_sep, # generate till the model starts generating a new question num_completions=task_config.num_completions, ) if task_config.prompt_config.inter_example_sep: prompt_only = rows[i]["question"].split(task_config.prompt_config.inter_example_sep)[ :-1 ] prompt_only = task_config.prompt_config.inter_example_sep.join(prompt_only) question = rows[i]["question"].split(task_config.prompt_config.inter_example_sep)[-1] else: # zero-shot, everything is the prompt prompt_only = rows[i]["question"] question = rows[i]["question"] res = { "prompt": prompt_only, "question": question, "answer": rows[i]["answer"], "entire_prompt": rows[i]["question"], } res.update({k: v for k, v in rows[i].items() if k not in res}) if task_config.num_completions == 1: entire_response = OpenaiAPIWrapper.get_first_response(response) generated_answer = extract_answer_from_response(entire_response, task_config) # nicely print the question and generated answer logging.info("\n" + f"Question ({i}):" + "\n" + question) logging.info("\n" + f"Answer ({i}):" + "\n" + generated_answer) res.update( { "generated_answer": generated_answer, "entire_response": entire_response, # everything generated by the model } ) if "choices" in response and "logprobs" in response["choices"][0]: res.update({"logprobs": response["choices"][0]["logprobs"]}) else: all_responses = OpenaiAPIWrapper.get_all_responses(response) generated_answer_list = [response["generated_answer"] for response in all_responses] logprobs = [response["logprobs"] for response in all_responses] generated_answers = [ extract_answer_from_response(r, task_config) for r in generated_answer_list ] res.update( { "generated_answers": generated_answers, "generated_answer": generated_answers[0], "logprobs": logprobs, } ) outputs.append(res) i += 1 pbar.update(1) except Exception as e: # raise e logging.info(f"Exception: {e}") if "code" not in task_config.model_name: i += 1 elif num_retries < max_retries: num_retries += 1 logging.info("Retrying...") continue else: num_retries = 0 i += 1 logging.info("Skipping...") return outputs def extract_answer_from_response(response, task_config: TaskConfig) -> str: """Extracts the answer from the response generated by LLM. Args: response (str): Response from the model task_config (TaskConfig): TaskConfig Returns: str: Answer """ if task_config.prompt_config.inter_example_sep and task_config.prompt_config.inter_example_sep in response: answer = response.split(task_config.prompt_config.inter_example_sep)[0] else: answer = response return answer
[ "question" ]
2024-01-10
HalfBloody/prompt-lib
prompt_lib~backends~openai_api.py
from collections import Counter import os from typing import Dict, Any, List, Optional, Union import openai import random import time import json from prompt_lib.backends.wrapper import BaseAPIWrapper from prompt_lib.backends.self_hosted import OpenSourceAPIWrapper from prompt_lib.backends.anthropic_api import AnthropicAPIWrapper openai.api_key = os.getenv("OPENAI_API_KEY") # check if orgainization is set if os.getenv("OPENAI_ORG") is not None: openai.organization = os.getenv("OPENAI_ORG") # from https://github.com/openai/openai-cookbook/blob/main/examples/How_to_handle_rate_limits.ipynb def retry_with_exponential_backoff( func, initial_delay: float = 1, exponential_base: float = 2, jitter: bool = True, max_retries: int = 10, errors: tuple = (openai.error.RateLimitError,openai.error.ServiceUnavailableError,), ): """Retry a function with exponential backoff.""" def wrapper(*args, **kwargs): # Initialize variables num_retries = 0 delay = initial_delay # Loop until a successful response or max_retries is hit or an exception is raised while True: try: return func(*args, **kwargs) # Retry on specified errors except errors as e: # Increment retries num_retries += 1 # Check if max retries has been reached if num_retries > max_retries: raise Exception(f"Maximum number of retries ({max_retries}) exceeded.") # Increment the delay delay *= exponential_base * (1 + jitter * random.random()) # Sleep for the delay time.sleep(delay) # Raise exceptions for any errors not specified except Exception as e: raise e return wrapper class CompletionAPIWrapper(BaseAPIWrapper): @staticmethod @retry_with_exponential_backoff def _call_api( prompt: str, max_tokens: int, engine: str, stop_token: str, temperature: float, num_completions: int = 1, top_p: float = 1, logprobs: Optional[int] = None, ) -> dict: response = openai.Completion.create( model=engine, prompt=prompt, temperature=temperature, max_tokens=max_tokens, top_p=top_p, stop=[stop_token], n=num_completions, logprobs=logprobs, ) return response @staticmethod def call( prompt: str, max_tokens: int, engine: str, stop_token: str, temperature: float, num_completions: int = 1, top_p: float = 1, logprobs: Optional[int] = None, ) -> dict: if num_completions > 2: response_combined = dict() num_completions_remaining = num_completions for i in range(0, num_completions, 2): response = CompletionAPIWrapper._call_api( prompt=prompt, max_tokens=max_tokens, engine=engine, stop_token=stop_token, temperature=temperature, top_p=top_p, num_completions=min(num_completions_remaining, 2), logprobs=logprobs, ) num_completions_remaining -= 2 if i == 0: response_combined = response else: response_combined["choices"] += response["choices"] return response_combined response = CompletionAPIWrapper._call_api( prompt=prompt, max_tokens=max_tokens, engine=engine, stop_token=stop_token, temperature=temperature, num_completions=num_completions, logprobs=logprobs, top_p=top_p, ) return response @staticmethod def get_first_response(response) -> Dict[str, Any]: """Returns the first response from the list of responses.""" text = response["choices"][0]["text"] return text @staticmethod def get_majority_answer(response) -> Dict[str, Any]: """Returns the majority answer from the list of responses.""" answers = [choice["text"] for choice in response["choices"]] answers = Counter(answers) # if there is a tie, return the first answer if answers.most_common(1)[0][1] == answers.most_common(2)[1][1]: return CompletionAPIWrapper.get_first_response(response) return answers.most_common(1)[0][0] @staticmethod def get_all_responses(response) -> Dict[str, Any]: """Returns the list of responses.""" return [ { "generated_answer": choice["text"], "logprobs": choice["logprobs"] if "logprobs" in choice else None, } for choice in response["choices"] ] class ChatGPTAPIWrapper(BaseAPIWrapper): @staticmethod @retry_with_exponential_backoff def call( prompt: Union[str, List[Dict[str, str]]], max_tokens: int, engine: str, stop_token: str, temperature: float, top_p: float = 1, num_completions: int = 1, system_message: Optional[str] = None, ) -> dict: """Calls the Chat API. if the num_completions is > 2, we call the API multiple times. This is to prevent overflow issues that can occur when the number of completions is too large. """ system_message = ( system_message or "You are ChatGPT, a large language model trained by OpenAI." ) if isinstance(prompt, str): messages = [] if system_message: messages.append({"role": "system", "content": system_message}) messages.append({"role": "user", "content": prompt}) elif isinstance(prompt, list): messages = prompt if system_message: messages.insert(0, {"role": "system", "content": system_message}) else: raise ValueError( "Invalid prompt type. Prompt should be a string or a list of messages." ) if num_completions > 2: response_combined = dict() num_completions_remaining = num_completions for i in range(0, num_completions, 2): # note that we are calling the same function --- this prevents backoff from being reset for the entire function response = ChatGPTAPIWrapper.call( prompt=prompt, max_tokens=max_tokens, engine=engine, stop_token=stop_token, temperature=temperature, top_p=top_p, num_completions=min(num_completions_remaining, 2), ) num_completions_remaining -= 2 if i == 0: response_combined = response else: response_combined["choices"] += response["choices"] return response_combined response = openai.ChatCompletion.create( model=engine, messages=messages, temperature=temperature, max_tokens=max_tokens, top_p=top_p, stop=[stop_token] if stop_token else None, # logprobs=3, n=num_completions, ) return response @staticmethod def get_first_response(response) -> Dict[str, Any]: """Returns the first response from the list of responses.""" text = response["choices"][0]["message"]["content"] return text @staticmethod def get_majority_answer(response) -> Dict[str, Any]: """Returns the majority answer from the list of responses.""" answers = [choice["message"]["content"] for choice in response["choices"]] answers = Counter(answers) # if there is a tie, return the first answer if len(answers) == 1: return answers.most_common(1)[0][0] if answers.most_common(1)[0][1] == answers.most_common(2)[1][1]: return ChatGPTAPIWrapper.get_first_response(response) return answers.most_common(1)[0][0] @staticmethod def get_all_responses(response) -> Dict[str, Any]: """Returns the list of responses.""" return [choice["message"]["content"] for choice in response["choices"]] # type: ignore class OpenaiAPIWrapper: chat_engines = ["gpt-3.5-turbo", "gpt-4"] opensource_engines = ["self-vulcan-13b", "self-vicuna-13b", "togethercomputer/llama-2-70b"] @staticmethod def get_api_wrapper(engine: str) -> BaseAPIWrapper: if any(k in engine for k in OpenaiAPIWrapper.chat_engines): return ChatGPTAPIWrapper elif engine in OpenaiAPIWrapper.opensource_engines: return OpenSourceAPIWrapper elif "claude" in engine: return AnthropicAPIWrapper else: return CompletionAPIWrapper @staticmethod def call( prompt: str, max_tokens: int, engine: str, stop_token: str, temperature: float, num_completions: int = 1, **kwargs, ) -> dict: api_wrapper = OpenaiAPIWrapper.get_api_wrapper(engine) return api_wrapper.call( prompt=prompt, max_tokens=max_tokens, engine=engine, stop_token=stop_token, temperature=temperature, num_completions=num_completions, **kwargs ) @staticmethod def get_first_response(response) -> Dict[str, Any]: api_wrapper = OpenaiAPIWrapper.get_api_wrapper(response["model"]) return api_wrapper.get_first_response(response) @staticmethod def get_majority_answer(response) -> Dict[str, Any]: api_wrapper = OpenaiAPIWrapper.get_api_wrapper(response["model"]) return api_wrapper.get_majority_answer(response) @staticmethod def get_all_responses(response) -> Dict[str, Any]: api_wrapper = OpenaiAPIWrapper.get_api_wrapper(response["model"]) return api_wrapper.get_all_responses(response) def test_completion(): prompt = 'Optimize the following Python code:\n\n# Start of code\n\nimport sys\n\nimport numpy as np\n\nn,m = [int(x) for x in sys.stdin.readline().split()]\n\nr = np.zeros(n)\n\nfor i in range(m):\n\n\ta, b = [int(x) for x in sys.stdin.readline().split()]\n\n\tr[a-1] += 1\n\n\tr[b-1] += 1\n\nfor i in range(n):\n\n\tprint((int(r[i])))\n\n# End of code\nRewrite the above Python code only from "Start of code" to "End of code", to make it more efficient WITHOUT CHANGING ITS RESULTS. Assume the code has already executed all the imports; do NOT include them in the optimized code.\n\nUse native libraries if that would make it faster than pure Python.\n\nYour output should only consist of valid Python code. Output the resulting Python with brief explanations only included as comments prefaced with #. Include a detailed explanatory comment before the code, starting with the text "# Proposed optimization:". Make the code as clear and simple as possible, while also making it as fast and memory-efficient as possible. Use vectorized operations whenever it would substantially increase performance, and quantify the speedup in terms of orders of magnitude. Eliminate as many for loops, while loops, and list or dict comprehensions as possible, replacing them with vectorized equivalents. If the performance is not likely to increase, leave the code unchanged. Fix any errors in the optimized code.' engine = "text-davinci-003" num_completions = 3 max_tokens = 300 response = OpenaiAPIWrapper.call( prompt=prompt, max_tokens=max_tokens, engine=engine, stop_token="Optimize the following Python code:\n\n", temperature=0.7, num_completions=num_completions, ) print(response) print(OpenaiAPIWrapper.get_first_response(response)) print(OpenaiAPIWrapper.get_majority_answer(response)) def test_chat(): prompt = 'Optimize the following Python code:\n\n# Start of code\n\nimport sys\n\nimport numpy as np\n\nn,m = [int(x) for x in sys.stdin.readline().split()]\n\nr = np.zeros(n)\n\nfor i in range(m):\n\n\ta, b = [int(x) for x in sys.stdin.readline().split()]\n\n\tr[a-1] += 1\n\n\tr[b-1] += 1\n\nfor i in range(n):\n\n\tprint((int(r[i])))\n\n# End of code\nRewrite the above Python code only from "Start of code" to "End of code", to make it more efficient WITHOUT CHANGING ITS RESULTS. Assume the code has already executed all the imports; do NOT include them in the optimized code.\n\nUse native libraries if that would make it faster than pure Python.\n\nYour output should only consist of valid Python code. Output the resulting Python with brief explanations only included as comments prefaced with #. Include a detailed explanatory comment before the code, starting with the text "# Proposed optimization:". Make the code as clear and simple as possible, while also making it as fast and memory-efficient as possible. Use vectorized operations whenever it would substantially increase performance, and quantify the speedup in terms of orders of magnitude. Eliminate as many for loops, while loops, and list or dict comprehensions as possible, replacing them with vectorized equivalents. If the performance is not likely to increase, leave the code unchanged. Fix any errors in the optimized code.' engine = "gpt-3.5-turbo" num_completions = 3 max_tokens = 300 response = OpenaiAPIWrapper.call( prompt=prompt, max_tokens=max_tokens, engine=engine, stop_token="End of code", temperature=0.7, num_completions=num_completions, ) print(response) print(OpenaiAPIWrapper.get_first_response(response)) print(OpenaiAPIWrapper.get_majority_answer(response)) def test_basic_chat(): prompt = "What is the capital of France?" engine = "gpt-3.5-turbo" max_tokens = 10 response = OpenaiAPIWrapper.call( prompt=prompt, max_tokens=max_tokens, engine=engine, temperature=0.7, stop_token=None, num_completions=1, ) print(json.dumps(response, indent=2)) print(OpenaiAPIWrapper.get_first_response(response)) def test_chat_with_system_message(): prompt = "What is the capital of France?" engine = "gpt-3.5-turbo" max_tokens = 10 system_message = "You are ChatGPT, a large language model trained by OpenAI." response = OpenaiAPIWrapper.call( prompt=prompt, max_tokens=max_tokens, engine=engine, stop_token=None, temperature=0.7, num_completions=1, system_message=system_message, ) print(json.dumps(response, indent=2)) print(OpenaiAPIWrapper.get_first_response(response)) def test_chat_with_multiple_completions(): prompt = "What is the capital of France?" engine = "gpt-3.5-turbo" max_tokens = 10 response = OpenaiAPIWrapper.call( prompt=prompt, max_tokens=max_tokens, engine=engine, stop_token=None, temperature=0.7, num_completions=3, ) print(json.dumps(response, indent=2)) print(OpenaiAPIWrapper.get_first_response(response)) print(OpenaiAPIWrapper.get_majority_answer(response)) print(OpenaiAPIWrapper.get_all_responses(response)) def test_chat_with_message_list(): messages = [ {"role": "system", "content": "You are ChatGPT, a large language model trained by OpenAI."}, {"role": "user", "content": "What is the capital of France?"}, ] engine = "gpt-3.5-turbo" max_tokens = 10 response = OpenaiAPIWrapper.call( prompt=messages, max_tokens=max_tokens, engine=engine, stop_token=None, temperature=0.7, num_completions=1, ) print(json.dumps(response, indent=2)) print(OpenaiAPIWrapper.get_first_response(response)) # Test case 1: Test with basic parameters def test_completion_basic_parameters(): prompt = "Once upon a time" max_tokens = 50 engine = "text-davinci-002" stop_token = "\n" temperature = 0.8 response = CompletionAPIWrapper.call(prompt, max_tokens, engine, stop_token, temperature) assert "choices" in response, "Test case 1 failed: 'choices' not found in the response" print("Test case 1 passed") # Test case 2: Test with multiple completions def test_completion_multiple_completions(): prompt = "Once upon a time" max_tokens = 50 engine = "text-davinci-002" stop_token = "\n" temperature = 0.8 num_completions = 3 response = CompletionAPIWrapper.call( prompt, max_tokens, engine, stop_token, temperature, num_completions ) assert "choices" in response, "Test case 2 failed: 'choices' not found in the response" assert ( len(response["choices"]) == num_completions ), f"Test case 2 failed: expected {num_completions} completions, but got {len(response['choices'])}" print("Test case 2 passed") # Test case 3: Test helper methods def test_completion_helper_methods(): prompt = "Once upon a time" max_tokens = 50 engine = "text-davinci-002" stop_token = "\n" temperature = 0.8 num_completions = 2 response = CompletionAPIWrapper.call( prompt, max_tokens, engine, stop_token, temperature, num_completions ) first_response = CompletionAPIWrapper.get_first_response(response) assert isinstance( first_response, str ), "Test case 3 failed: 'get_first_response' did not return a string" majority_answer = CompletionAPIWrapper.get_majority_answer(response) assert isinstance( majority_answer, str ), "Test case 3 failed: 'get_majority_answer' did not return a string" all_responses = CompletionAPIWrapper.get_all_responses(response) assert isinstance( all_responses, list ), "Test case 3 failed: 'get_all_responses' did not return a list" print("Test case 3 passed") def test_top_p(): print(f"Testing top_p") prompt = "Once upon a time" max_tokens = 50 engine = "text-davinci-002" stop_token = "\n" temperature = 0.8 num_completions = 2 top_p = 0.5 response = CompletionAPIWrapper.call( prompt, max_tokens, engine, stop_token, temperature, num_completions, top_p ) first_response = CompletionAPIWrapper.get_first_response(response) assert isinstance( first_response, str ), "Test case 3 failed: 'get_first_response' did not return a string" majority_answer = CompletionAPIWrapper.get_majority_answer(response) assert isinstance( majority_answer, str ), "Test case 3 failed: 'get_majority_answer' did not return a string" all_responses = CompletionAPIWrapper.get_all_responses(response) assert isinstance( all_responses, list ), "Test case 3 failed: 'get_all_responses' did not return a list" print("Test case 3 passed") # top_p with chat engine = "gpt-3.5-turbo" for top_p in [0.0001, 0.01, 0.2, 0.5, 0.75, 0.9]: response = OpenaiAPIWrapper.call(prompt, max_tokens, engine, stop_token, temperature, num_completions=2, top_p=top_p) print(f"Top_p={top_p}: {OpenaiAPIWrapper.get_all_responses(response)}") if __name__ == "__main__": print("Testing basic chat") test_basic_chat() print("Testing chat with system message") test_chat_with_system_message() print("Testing chat with multiple completions") test_chat_with_multiple_completions() print("Testing chat with message list") test_chat_with_message_list() # test the API print("Testing completion API") test_completion() print("Testing chat API") test_chat() test_completion_basic_parameters() test_completion_multiple_completions() test_completion_helper_methods() test_top_p()
[ "Once upon a time", "What is the capital of France?", "Optimize the following Python code:\n\n# Start of code\n\nimport sys\n\nimport numpy as np\n\nn,m = [int(x) for x in sys.stdin.readline().split()]\n\nr = np.zeros(n)\n\nfor i in range(m):\n\n\ta, b = [int(x) for x in sys.stdin.readline().split()]\n\n\tr[a-1] += 1\n\n\tr[b-1] += 1\n\nfor i in range(n):\n\n\tprint((int(r[i])))\n\n# End of code\nRewrite the above Python code only from \"Start of code\" to \"End of code\", to make it more efficient WITHOUT CHANGING ITS RESULTS. Assume the code has already executed all the imports; do NOT include them in the optimized code.\n\nUse native libraries if that would make it faster than pure Python.\n\nYour output should only consist of valid Python code. Output the resulting Python with brief explanations only included as comments prefaced with #. Include a detailed explanatory comment before the code, starting with the text \"# Proposed optimization:\". Make the code as clear and simple as possible, while also making it as fast and memory-efficient as possible. Use vectorized operations whenever it would substantially increase performance, and quantify the speedup in terms of orders of magnitude. Eliminate as many for loops, while loops, and list or dict comprehensions as possible, replacing them with vectorized equivalents. If the performance is not likely to increase, leave the code unchanged. Fix any errors in the optimized code.", "You are ChatGPT, a large language model trained by OpenAI." ]
2024-01-10
RasaHQ/OpenAI_func_calling
actions~actions.py
import os from typing import Any, Text, Dict, List import pandas as pd import requests from rasa_sdk import Action, Tracker from rasa_sdk.executor import CollectingDispatcher from rasa_sdk.events import SlotSet import openai import json class RestaurantAPI(object): def __init__(self): self.db = pd.read_csv("restaurants.csv") def fetch_restaurants(self): return self.db.head() def format_restaurants(self, df, header=True) -> Text: return df.to_csv(index=False, header=header) class ChatGPT(object): def __init__(self): self.url = "https://api.openai.com/v1/chat/completions" self.model = "gpt-3.5-turbo" self.headers={ "Content-Type": "application/json", "Authorization": f"Bearer {os.getenv('OPENAI_API_KEY')}" } self.prompt = "Answer the following question, based on the data shown. " \ "Answer in a complete sentence and don't say anything else." def ask(self, restaurants, question): content = self.prompt + "\n\n" + restaurants + "\n\n" + question body = { "model":self.model, "messages":[{"role": "user", "content": content}] } result = requests.post( url=self.url, headers=self.headers, json=body, ) return result.json()["choices"][0]["message"]["content"] def ask_distance(restaurant_list): content = "measure the least distance with each given restaurant" +'/n/n' + restaurant_list completion = openai.ChatCompletion.create( model="gpt-4-0613", messages=[{"role": "user", "content": content}], functions=[ { "name": "get_measure", "description": "Get the least distance", "parameters": { "type": "object", "properties": { "location": { "type": "string", "description": "list of all the restaurants and distances as a dictionary(restuarant_name:distance)", }, }, "required": ["distance"], }, } ], function_call={"name":"get_measure"} ) return completion.choices[0].message restaurant_api = RestaurantAPI() chatGPT = ChatGPT() class ActionShowRestaurants(Action): def name(self) -> Text: return "action_show_restaurants" def run(self, dispatcher: CollectingDispatcher, tracker: Tracker, domain: Dict[Text, Any]) -> List[Dict[Text, Any]]: restaurants = restaurant_api.fetch_restaurants() results = restaurant_api.format_restaurants(restaurants) readable = restaurant_api.format_restaurants(restaurants[['Restaurants', 'Rating']], header=False) dispatcher.utter_message(text=f"Here are some restaurants:\n\n{readable}") return [SlotSet("results", results)] def get_distance(d): d = json.loads(d) for i in d.keys(): d[i]= float(d[i]) t = min(d, key =d.get) return t class ActionRestaurantsDetail(Action): def name(self) -> Text: return "action_restaurants_detail" def run(self, dispatcher: CollectingDispatcher, tracker: Tracker, domain: Dict[Text, Any]) -> List[Dict[Text, Any]]: previous_results = tracker.get_slot("results") question = tracker.latest_message["text"] answer = chatGPT.ask(previous_results, question) dispatcher.utter_message(text = answer) class ActionRestaurantsDistance(Action): def name(self) -> Text: return "action_distance" def run(self, dispatcher: CollectingDispatcher, tracker: Tracker, domain: Dict[Text, Any]) -> List[Dict[Text, Any]]: previous_results = tracker.get_slot("results") func_calling= ask_distance(previous_results) reply_content = func_calling.to_dict()['function_call']['arguments'] distance = json.load(reply_content)['distance'] dispatcher.utter_message(text = get_distance(distance))
[]
2024-01-10
diegomarzaa/gpt-tests
Hello.py
from openai import OpenAI from dotenv import load_dotenv import os import streamlit as st import base64 from PIL import Image from io import BytesIO import re def encode_image(image_file): """Encode image to base64 string.""" if isinstance(image_file, str): image = Image.open(image_file) else: image = Image.open(image_file) # Convert RGBA images to RGB if image.mode in ("RGBA", "P"): image = image.convert("RGB") buffered = BytesIO() image.save(buffered, format="JPEG") return base64.b64encode(buffered.getvalue()).decode("utf-8") def main(): # VARIABLES DE SESIÓN if "usos_dev_key" not in st.session_state: st.session_state.usos_dev_key = 1 if "api_key" not in st.session_state: st.session_state.api_key = None if "chat" not in st.session_state: st.session_state.chat = None # PAGE CONFIG st.set_page_config(page_title="DESCRIPTOR DE IMÁGENES", page_icon=":robot_face:", layout="centered") st.header("DESCRIPTOR DE IMÁGENES") st.write("1 - Introduce la API KEY de OpenAI (si no tienes, escribe 'contraseña', de esta forma usarás la clave gratuita de Dieguito, pero solo puedes usarla 1 vez)" "\n\n2 - Sube una imagen" "\n\n3 - Si quieres, añade instrucciones personalizadas, esto no es necesario, por defecto se describirá la imagen." "\n\n4 - Pulsa el botón de analizar imagen y espera a que se genere la descripción.\n\n\n") ################## API KEY ################## load_dotenv() secret_developer_key = os.getenv("OPENAI_API_KEY") col1, col2, col3 = st.columns([3, 2, 2]) with col1: input_key = st.text_input("API KEY", placeholder="Introduce la API key", type="password") with col2: # Move the botton down a bit st.markdown("""<style>.css-1aumxhk {margin-top: 3rem;}</style>""", unsafe_allow_html=True) st.markdown("""<style>.css-1aumxhk {margin-top: 2rem;}</style>""", unsafe_allow_html=True) boton_key = st.button("Guardar API KEY") if boton_key: with col3: success_message = st.empty() st.markdown("""<style>.css-1aumxhk {margin-top: 3rem;}</style>""", unsafe_allow_html=True) st.markdown("""<style>.css-1aumxhk {margin-top: 2rem;}</style>""", unsafe_allow_html=True) if re.match(r"sk-[a-zA-Z0-9]+", input_key): st.session_state["api_key"] = input_key success_message.success("Clave cargada!") try: st.session_state["chat"] = OpenAI(api_key=st.session_state["api_key"]) except Exception as e: success_message.error(f"Error: {e}") elif input_key == "contraseña": st.session_state["api_key"] = secret_developer_key success_message.success("Clave gratuita cargada! (solo 1 uso)") # Inicializar cliente de OpenAI try: st.session_state["chat"] = OpenAI(api_key=st.session_state["api_key"]) except Exception as e: success_message.error(f"Error: {e}") elif input_key == "": success_message.error("No dejes el campo vacío bobo") else: success_message.error("Este tipo de clave es inválida!") # UPLOAD IMAGE uploaded_file = st.file_uploader("Sube una fotito", type=["png", "jpg", "jpeg"]) if uploaded_file: # DISPLAY IMAGE st.image(uploaded_file, width=250) # Toggle details show_details = st.toggle("Agregar instrucciones?", value=False) if show_details: # Texto de detalles additional_details = st.text_area( "Añade conexto adicional: ", disabled=not show_details, ) # Botón de enviar analyze_button = st.button("Analizar imagen") if uploaded_file and st.session_state['api_key'] != None and analyze_button and st.session_state['chat'] and st.session_state["usos_dev_key"] > 0: print("Analizando imagen...") # Restar uso de la clave st.session_state["usos_dev_key"] -= 1 # Texto de carga with st.spinner("Analizando imagen..."): # Encode image base64_image = encode_image(uploaded_file) # Prompt optimizado + detalles extra prompt_text = ( "Eres un analizador de imágenes." "Tu tarea es analizar la imagen en gran detalle." "Presenta tu análisis markdown, no uses los carácteres: ``` para rodear tu texto." ) if show_details and additional_details: prompt_text += ( f'\n\nContexto adicional:\n{additional_details}' ) # Generar payload messages = [ { "role": "user", "content": [ {"type": "text", "text": prompt_text}, { "type": "image_url", "image_url": f"data:image/jpeg;base64,{base64_image}", }, ], } ] # Hacer solicitud a los servidores de OpenAI try: # Sin stream # response = chat.chat.completions.create( # model='gpt-4-vision-preview', messages=messages, max_tokens=100, stream=False # ) # Con stream full_response = "" message_placeholder = st.empty() for completion in st.session_state["chat"].chat.completions.create( model='gpt-4-vision-preview', messages=messages, max_tokens=1200, stream=True ): # Hay contenido? if completion.choices[0].delta.content is not None: full_response += completion.choices[0].delta.content message_placeholder.markdown(full_response + " ") # Mensaje final cuando se acaba el stream message_placeholder.markdown(full_response) # Poner respuesta en la app # st.write(completion.choices[0].messages.content) except Exception as e: st.error(f"Error: {e}") else: if not uploaded_file and analyze_button: st.warning("Sube una imagen!") elif not st.session_state["api_key"] and analyze_button: st.warning("Necesitas una API KEY de OpenAI para usar esta app!") elif st.session_state["usos_dev_key"] <= 0 and analyze_button: st.warning("Has usado la clave gratuita de Dieguito demasiadas veces!") elif analyze_button: st.warning("Error") if __name__ == "__main__": main()
[ "\n\nContexto adicional:\nPLACEHOLDER", "Eres un analizador de imágenes.Tu tarea es analizar la imagen en gran detalle.Presenta tu análisis markdown, no uses los carácteres: ``` para rodear tu texto.", "[{'type': 'text', 'text': PLACEHOLDER}, {'type': 'image_url', 'image_url': ''}]" ]
2024-01-10
shaiyon/SubredditBot
extra~sample.py
# Script from OpenAI: https://github.com/nshepperd/gpt-2/blob/finetuning/src/sample.py import tensorflow as tf import extra.model as model def top_k_logits(logits, k): if k == 0: # no truncation return logits def _top_k(): values, _ = tf.nn.top_k(logits, k=k) min_values = values[:, -1, tf.newaxis] return tf.where( logits < min_values, tf.ones_like(logits, dtype=logits.dtype) * -1e10, logits, ) return tf.cond( tf.equal(k, 0), lambda: logits, lambda: _top_k(), ) def top_p_logits(logits, p): with tf.variable_scope('top_p_logits'): logits_sort = tf.sort(logits, direction='DESCENDING') probs_sort = tf.nn.softmax(logits_sort) probs_sums = tf.cumsum(probs_sort, axis=1, exclusive=True) logits_masked = tf.where(probs_sums < p, logits_sort, tf.ones_like(logits_sort)*1000) # [batchsize, vocab] min_logits = tf.reduce_min(logits_masked, axis=1, keepdims=True) # [batchsize, 1] return tf.where( logits < min_logits, tf.ones_like(logits, dtype=logits.dtype) * -1e10, logits, ) def sample_sequence(*, hparams, length, start_token=None, batch_size=None, context=None, temperature=1, top_k=0, top_p=0.0): if start_token is None: assert context is not None, 'Specify exactly one of start_token and context!' else: assert context is None, 'Specify exactly one of start_token and context!' context = tf.fill([batch_size, 1], start_token) def step(hparams, tokens, past=None): lm_output = model.model(hparams=hparams, X=tokens, past=past, reuse=tf.AUTO_REUSE) logits = lm_output['logits'][:, :, :hparams.n_vocab] presents = lm_output['present'] presents.set_shape(model.past_shape(hparams=hparams, batch_size=batch_size)) return { 'logits': logits, 'presents': presents, } with tf.name_scope('sample_sequence'): # Don't feed the last context token -- leave that to the loop below # TODO: Would be slightly faster if we called step on the entire context, # rather than leaving the last token transformer calculation to the while loop. context_output = step(hparams, context[:, :-1]) def body(past, prev, output): next_outputs = step(hparams, prev[:, tf.newaxis], past=past) logits = next_outputs['logits'][:, -1, :] / tf.to_float(temperature) if top_p > 0.0: logits = top_p_logits(logits, p=top_p) else: logits = top_k_logits(logits, k=top_k) samples = tf.multinomial(logits, num_samples=1, output_dtype=tf.int32) return [ tf.concat([past, next_outputs['presents']], axis=-2), tf.squeeze(samples, axis=[1]), tf.concat([output, samples], axis=1), ] def cond(*args): return True _, _, tokens = tf.while_loop( cond=cond, body=body, maximum_iterations=length, loop_vars=[ context_output['presents'], context[:, -1], context, ], shape_invariants=[ tf.TensorShape(model.past_shape(hparams=hparams, batch_size=batch_size)), tf.TensorShape([batch_size]), tf.TensorShape([batch_size, None]), ], back_prop=False, ) return tokens
[]
2024-01-10
shaiyon/SubredditBot
extra~encoder.py
# Script from OpenAI: https://github.com/nshepperd/gpt-2/blob/finetuning/src/encoder.py """Byte pair encoding utilities""" import os import json import regex as re from functools import lru_cache @lru_cache() def bytes_to_unicode(): """ Returns list of utf-8 byte and a corresponding list of unicode strings. The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for decent coverage. This is a signficant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup tables between utf-8 bytes and unicode strings. And avoids mapping to whitespace/control characters the bpe code barfs on. """ bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1)) cs = bs[:] n = 0 for b in range(2**8): if b not in bs: bs.append(b) cs.append(2**8+n) n += 1 cs = [chr(n) for n in cs] return dict(zip(bs, cs)) def get_pairs(word): """Return set of symbol pairs in a word. Word is represented as tuple of symbols (symbols being variable-length strings). """ pairs = set() prev_char = word[0] for char in word[1:]: pairs.add((prev_char, char)) prev_char = char return pairs class Encoder: def __init__(self, encoder, bpe_merges, errors='replace'): self.encoder = encoder self.decoder = {v:k for k,v in self.encoder.items()} self.errors = errors # how to handle errors in decoding self.byte_encoder = bytes_to_unicode() self.byte_decoder = {v:k for k, v in self.byte_encoder.items()} self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges)))) self.cache = {} # Should haved added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions self.pat = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""") def bpe(self, token): if token in self.cache: return self.cache[token] word = tuple(token) pairs = get_pairs(word) if not pairs: return token while True: bigram = min(pairs, key = lambda pair: self.bpe_ranks.get(pair, float('inf'))) if bigram not in self.bpe_ranks: break first, second = bigram new_word = [] i = 0 while i < len(word): try: j = word.index(first, i) new_word.extend(word[i:j]) i = j except: new_word.extend(word[i:]) break if word[i] == first and i < len(word)-1 and word[i+1] == second: new_word.append(first+second) i += 2 else: new_word.append(word[i]) i += 1 new_word = tuple(new_word) word = new_word if len(word) == 1: break else: pairs = get_pairs(word) word = ' '.join(word) self.cache[token] = word return word def encode(self, text): bpe_tokens = [] for token in re.findall(self.pat, text): token = ''.join(self.byte_encoder[b] for b in token.encode('utf-8')) bpe_tokens.extend(self.encoder[bpe_token] for bpe_token in self.bpe(token).split(' ')) return bpe_tokens def decode(self, tokens): text = ''.join([self.decoder[token] for token in tokens]) text = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8', errors=self.errors) return text def get_encoder(model_name): with open(os.path.join('models', model_name, 'encoder.json'), 'r') as f: encoder = json.load(f) with open(os.path.join('models', model_name, 'vocab.bpe'), 'r', encoding="utf-8") as f: bpe_data = f.read() bpe_merges = [tuple(merge_str.split()) for merge_str in bpe_data.split('\n')[1:-1]] return Encoder( encoder=encoder, bpe_merges=bpe_merges, )
[]
2024-01-10
shaiyon/SubredditBot
download_model.py
# Script from OpenAI on https://github.com/openai/gpt-2/blob/master/download_model.py import os import sys import requests from tqdm import tqdm if len(sys.argv) != 2: print('You must enter the model name as a parameter, e.g.: download_model.py 124M') sys.exit(1) model = sys.argv[1] subdir = os.path.join('models', model) if not os.path.exists(subdir): os.makedirs(subdir) subdir = subdir.replace('\\','/') # needed for Windows for filename in ['checkpoint','encoder.json','hparams.json','model.ckpt.data-00000-of-00001', 'model.ckpt.index', 'model.ckpt.meta', 'vocab.bpe']: r = requests.get("https://storage.googleapis.com/gpt-2/" + subdir + "/" + filename, stream=True) with open(os.path.join(subdir, filename), 'wb') as f: file_size = int(r.headers["content-length"]) chunk_size = 1000 with tqdm(ncols=100, desc="Fetching " + filename, total=file_size, unit_scale=True) as pbar: # 1k for chunk_size, since Ethernet packet size is around 1500 bytes for chunk in r.iter_content(chunk_size=chunk_size): f.write(chunk) pbar.update(chunk_size)
[]