date_collected
stringclasses
1 value
repo_name
stringlengths
6
116
file_name
stringlengths
2
220
file_contents
stringlengths
13
357k
prompts
sequence
2024-01-10
prasbhargava1/chat-with-your-data-solution-accelerator
code~utilities~helpers~LLMHelper.py
import openai from typing import List from langchain.chat_models import AzureChatOpenAI from langchain.embeddings import OpenAIEmbeddings from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler from .EnvHelper import EnvHelper class LLMHelper: def __init__(self): env_helper: EnvHelper = EnvHelper() # Configure OpenAI API openai.api_type = "azure" openai.api_version = env_helper.AZURE_OPENAI_API_VERSION openai.api_base = env_helper.OPENAI_API_BASE openai.api_key = env_helper.OPENAI_API_KEY self.llm_model = env_helper.AZURE_OPENAI_MODEL self.llm_max_tokens = env_helper.AZURE_OPENAI_MAX_TOKENS if env_helper.AZURE_OPENAI_MAX_TOKENS != '' else None self.embedding_model = env_helper.AZURE_OPENAI_EMBEDDING_MODEL def get_llm(self): return AzureChatOpenAI(deployment_name=self.llm_model, temperature=0, max_tokens=self.llm_max_tokens, openai_api_version=openai.api_version) # TODO: This needs to have a custom callback to stream back to the UI def get_streaming_llm(self): return AzureChatOpenAI(streaming=True, callbacks=[StreamingStdOutCallbackHandler], deployment_name=self.llm_model, temperature=0, max_tokens=self.llm_max_tokens, openai_api_version=openai.api_version) def get_embedding_model(self): return OpenAIEmbeddings(deployment=self.embedding_model, chunk_size=1) def get_chat_completion_with_functions(self, messages: List[dict], functions: List[dict], function_call: str="auto"): return openai.ChatCompletion.create( deployment_id=self.llm_model, messages=messages, functions=functions, function_call=function_call, ) def get_chat_completion(self, messages: List[dict]): return openai.ChatCompletion.create( deployment_id=self.llm_model, messages=messages, )
[]
2024-01-10
prasbhargava1/chat-with-your-data-solution-accelerator
code~utilities~document_chunking~Layout.py
from typing import List from .DocumentChunkingBase import DocumentChunkingBase from langchain.text_splitter import MarkdownTextSplitter from .Strategies import ChunkingSettings from ..common.SourceDocument import SourceDocument class LayoutDocumentChunking(DocumentChunkingBase): def __init__(self) -> None: pass def chunk(self, documents: List[SourceDocument], chunking: ChunkingSettings) -> List[SourceDocument]: full_document_content = "".join(list(map(lambda document: document.content, documents))) document_url = documents[0].source splitter = MarkdownTextSplitter.from_tiktoken_encoder(chunk_size=chunking.chunk_size, chunk_overlap=chunking.chunk_overlap) chunked_content_list = splitter.split_text(full_document_content) # Create document for each chunk documents = [] chunk_offset = 0 for idx, chunked_content in enumerate(chunked_content_list): documents.append( SourceDocument.from_metadata( content=chunked_content, document_url=document_url, metadata={"offset": chunk_offset}, idx=idx, ) ) chunk_offset += len(chunked_content) return documents
[]
2024-01-10
prasbhargava1/chat-with-your-data-solution-accelerator
code~utilities~orchestrator~Strategies.py
from enum import Enum class OrchestrationStrategy(Enum): OPENAI_FUNCTION = 'openai_function' LANGCHAIN = 'langchain' def get_orchestrator(orchestration_strategy: str): if orchestration_strategy == OrchestrationStrategy.OPENAI_FUNCTION.value: from .OpenAIFunctions import OpenAIFunctionsOrchestrator return OpenAIFunctionsOrchestrator() elif orchestration_strategy == OrchestrationStrategy.LANGCHAIN.value: from .LangChainAgent import LangChainAgent return LangChainAgent() else: raise Exception(f"Unknown orchestration strategy: {orchestration_strategy}")
[]
2024-01-10
yousenwang/openai-quickstart-python
chat_demo.py
import openai import os from dotenv import load_dotenv # Add load_dotenv() openai.api_key = os.getenv("OPENAI_API_KEY") model_id = 'gpt-3.5-turbo' def ChatGPT_conversation(conversation): response = openai.ChatCompletion.create( model=model_id, messages=conversation ) # api_usage = response['usage'] # print('Total token consumed: {0}'.format(api_usage['total_tokens'])) # stop means complete # print(response['choices'][0].finish_reason) # print(response['choices'][0].index) conversation.append({'role': response.choices[0].message.role, 'content': response.choices[0].message.content}) return conversation conversation = [] conversation.append({'role': 'system', 'content': 'How may I help you?'}) conversation = ChatGPT_conversation(conversation) print('{0}: {1}\n'.format(conversation[-1]['role'].strip(), conversation[-1]['content'].strip())) while True: prompt = input('User:') conversation.append({'role': 'user', 'content': prompt}) conversation = ChatGPT_conversation(conversation) print('{0}: {1}\n'.format(conversation[-1]['role'].strip(), conversation[-1]['content'].strip()))
[ "How may I help you?" ]
2024-01-10
yousenwang/openai-quickstart-python
use_fine_tuned_model.py
import openai import os from dotenv import load_dotenv # Add load_dotenv() # Add openai.api_key = os.getenv("OPENAI_API_KEY") completion = openai.Completion.create( # model="curie:ft-personal-2023-03-15-03-15-09", model="davinci:ft-personal-2023-03-15-09-11-14", max_tokens=100, stop=[".\n"], temperature=1, # prompt="How can a working station operate again?" # "text": " 9Were the harvesters concentrated into the factory first and how do they get" # prompt="How to jump to the specified work station?" # "text": "\n\nYou can set a jump prompt on the Startup tab of a workstation" # prompt="Where can I see the use record of spare parts?" # "text": " (Article 29)\n\nhttp://www.waju.or." # prompt="Where can I see the use record of spare parts?\nAgent: " prompt="How to jump to the specified work station?\nAgent:" ) """ "text": "\nFactory infirmary doctor: We don't have any statistics of spare parts and out of hours' use. Ours is a new factory. There is no such history.\n I was shocked. I nearly exclaimed \"You're not for sale?\" but steadied my thoughts and asked:\nQ4: Where does Dalian FLW produce spare parts for? \nFactory infirmary doctor: There is only us. We require nobody else's spare part.\nQ3: How does" """ """ After you’ve fine-tuned a model, remember that your prompt has to end with the indicator string `?\nAgent:` for the model to start generating completions, rather than continuing with the prompt. Make sure to include `stop=[".\n"]` so that the generated texts ends at the expected place. Once your model starts training, it'll approximately take 2.47 minutes to train a `curie` model, and less for `ada` and `babbage`. Queue will approximately take half an hour per job ahead of you. """ def generate_prompt(animal): return """You're a customer service chat bot. \n\nSpecific information: Customers are using our company's platform via web or mobile app. Animal: Cat Names: Captain Sharpclaw, Agent Fluffball, The Incredible Feline Animal: Dog Names: Ruff the Protector, Wonder Canine, Sir Barks-a-Lot Animal: {} Names:""".format( animal.capitalize() ) print(completion) # print(completion['choices'][0]['message']['content']) print(completion['choices'][0]['text'])
[ "How to jump to the specified work station?\nAgent:" ]
2024-01-10
yousenwang/openai-quickstart-python
translation_demo.py
import openai import os from googletrans import Translator from dotenv import load_dotenv # Add load_dotenv() openai.api_key = os.getenv("OPENAI_API_KEY") model_id = 'gpt-3.5-turbo' translator = Translator() def ChatGPT_conversation(conversation): response = openai.ChatCompletion.create( model=model_id, messages=conversation ) # api_usage = response['usage'] # print('Total token consumed: {0}'.format(api_usage['total_tokens'])) # stop means complete # print(response['choices'][0].finish_reason) # print(response['choices'][0].index) conversation.append({'role': response.choices[0].message.role, 'content': response.choices[0].message.content}) return conversation conversation = [] conversation.append({'role': 'system', 'content': 'How may I help you?'}) conversation = ChatGPT_conversation(conversation) print(translator.translate(text= '{0}: {1}\n'.format( conversation[-1]['role'].strip(), conversation[-1]['content'].strip() ), dest='zh-tw' ).text ) while True: user_input = input('User:') prompt = translator.translate( text=user_input, dest='en').text conversation.append({'role': 'user', 'content': prompt}) conversation = ChatGPT_conversation(conversation) print(translator.translate(text= '{0}: {1}\n'.format( conversation[-1]['role'].strip(), conversation[-1]['content'].strip() ), dest='zh-tw' ).text )
[ "en", "How may I help you?" ]
2024-01-10
yousenwang/openai-quickstart-python
finetuning_demo.py
import os import json import openai from dotenv import load_dotenv # Add load_dotenv() openai.api_key = os.getenv("OPENAI_API_KEY") """ openai.error.InvalidRequestError: Invalid base model: gpt-3.5-turbo (model must be one of ada, babbage, curie, davinci) or a fine-tuned model created by your organization: org-3KbHduxfiYR8Ou7S4hUp2WsT """ # fine_tune_res = openai.FineTune.create( # training_file="file-wNtVrddnJeqAkmpy8WjYXyah", # model="davinci" # ) # json_object = json.dumps(fine_tune_res, indent=4) # with open("finetunes.json", "w") as outfile: # outfile.write(json_object) # finetune_info = openai.FineTune.retrieve(id="ft-wTWWM7ikIHcbeue7QrqvG780") finetune_info = openai.FineTune.retrieve(id="ft-kF14mQsWGkU4qRwDSsZL1Wr0") json_object = json.dumps(finetune_info, indent=4) with open("finetune_info.json", "w") as outfile: outfile.write(json_object) # res = openai.FineTune.list_events(id="ft-wTWWM7ikIHcbeue7QrqvG780") res = openai.FineTune.list_events(id="ft-kF14mQsWGkU4qRwDSsZL1Wr0") # res = openai.Model.retrieve("gpt-3.5-turbo") json_object = json.dumps(res, indent=4) # Writing to sample.json with open("finetune_events.json", "w") as outfile: outfile.write(json_object)
[]
2024-01-10
yousenwang/openai-quickstart-python
model_demo.py
import os import json import openai from dotenv import load_dotenv # Add load_dotenv() openai.api_key = os.getenv("OPENAI_API_KEY") # fine_tune_res = openai.FineTune.create(training_file="file-wNtVrddnJeqAkmpy8WjYXyah") # json_object = json.dumps(fine_tune_res, indent=4) # with open("finetunes.json", "w") as outfile: # outfile.write(json_object) res = openai.Model.list() # res = openai.Model.retrieve("gpt-3.5-turbo") json_object = json.dumps(res, indent=4) # Writing to sample.json with open("model_list.json", "w") as outfile: outfile.write(json_object)
[]
2024-01-10
yousenwang/openai-quickstart-python
completion_demo.py
import openai import os from dotenv import load_dotenv # Add load_dotenv() # Add openai.api_key = os.getenv("OPENAI_API_KEY") completion = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=[ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": "Who won the world series in 2020?"}, {"role": "assistant", "content": "The Los Angeles Dodgers won the World Series in 2020."}, {"role": "user", "content": "Where was it played?"} ] ) print(completion) print(completion['choices'][0]['message']['content'])
[ "Where was it played?", "You are a helpful assistant.", "The Los Angeles Dodgers won the World Series in 2020.", "Who won the world series in 2020?" ]
2024-01-10
yousenwang/openai-quickstart-python
file_demo.py
import os import json import openai from dotenv import load_dotenv # Add load_dotenv() openai.api_key = os.getenv("OPENAI_API_KEY") # with open('data.jsonl', 'r') as json_file: # json_list = list(json_file) # for json_str in json_list: # result = json.loads(json_str) # print(f"result: {result}") # print(isinstance(result, dict)) # openai.File.create( # file=open("data.jsonl", "rb"), # purpose='fine-tune' # ) res = openai.File.list() json_object = json.dumps(res, indent=4) with open("file_list.json", "w") as outfile: outfile.write(json_object) res = openai.File.retrieve("file-K164kgEHnfwu9xpH39BxZ6Yg") json_object = json.dumps(res, indent=4) with open("file_retrieve.json", "w") as outfile: outfile.write(json_object) """ openai.error.InvalidRequestError: To help mitigate abuse, downloading of fine-tune training files is disabled for free accounts. """ # res = openai.File.download("file-wNtVrddnJeqAkmpy8WjYXyah") # print(type(res)) """ Analyzing... - Your file contains 2 prompt-completion pairs. In general, we recommend having at least a few hundred examples. We've found that performance tends to linearly increase for every doubling of the number of examples - All prompts end with suffix `?\nAgent:` WARNING: Some of your prompts contain the suffix `? Agent:` more than once. We strongly suggest that you review your prompts and add a unique suffix - All prompts start with prefix `Summary: You're a customer service chat bot. Specific information: Customers are using our company's platform via web or mobile app. ### Customer: `. Fine-tuning doesn't require the instruction specifying the task, or a few-shot example scenario. Most of the time you should only add the input data into the prompt, and the desired output into the completion - All completions end with suffix `.\n` Based on the analysis we will perform the following actions: - [Recommended] Remove prefix `Summary: You're a customer service chat bot. Specific information: Customers are using our company's platform via web or mobile app. ### Customer: ` from all prompts [Y/n]: y Your data will be written to a new JSONL file. Proceed [Y/n]: y Wrote modified file to `.\data_prepared.jsonl` Feel free to take a look! Now use that file when fine-tuning: > openai api fine_tunes.create -t ".\data_prepared.jsonl" After you’ve fine-tuned a model, remember that your prompt has to end with the indicator string `?\nAgent:` for the model to start generating completions, rather than continuing with the prompt. Make sure to include `stop=[".\n"]` so that the generated texts ends at the expected place. Once your model starts training, it'll approximately take 2.47 minutes to train a `curie` model, and less for `ada` and `babbage`. Queue will approximately take half an hour per job ahead of you. """
[]
2024-01-10
lebr0nli/pwndbg
pwndbg~commands~ai.py
""" This command sends information on the current debugging context to OpenAI's GPT-3 large language model and asks it a question supplied by the user. It then displays GPT-3's response to that question to the user. """ from __future__ import annotations import argparse import json import os import pprint import re import gdb import requests import pwndbg import pwndbg.color.message as M import pwndbg.commands from pwndbg.commands import CommandCategory from pwndbg.commands import context from pwndbg.gdblib import config from pwndbg.gdblib import regs as REGS config.add_param( "ai-openai-api-key", "", "OpenAI API key (will default to OPENAI_API_KEY environment variable if not set)", ) config.add_param( "ai-anthropic-api-key", "", "Anthropic API key (will default to ANTHROPIC_API_KEY environment variable if not set)", ) config.add_param( "ai-history-size", 3, "maximum number of successive questions and answers to maintain in the prompt for the ai command", ) config.add_param( "ai-stack-depth", 16, "rows of stack context to include in the prompt for the ai command" ) config.add_param( "ai-model", "gpt-3.5-turbo", # the new conversational model "the name of the OpenAI large language model to query (see <https://platform.openai.com/docs/models> for details)", ) config.add_param( "ai-temperature", 0, "the temperature specification for the LLM query (this controls the degree of randomness in the response -- see <https://beta.openai.com/docs/api-reference/parameters> for details)", ) config.add_param( "ai-max-tokens", 100, "the maximum number of tokens to return in the response (see <https://beta.openai.com/docs/api-reference/parameters> for details)", ) config.add_param( "ai-show-usage", False, "whether to show how many tokens are used with each OpenAI API call", ) last_question = [] last_answer = [] last_pc = None last_command = None dummy = False verbosity = 0 def set_dummy_mode(d=True) -> None: global dummy dummy = d return def get_openai_api_key(): if config.ai_openai_api_key.value: return config.ai_openai_api_key.value key = os.environ.get("OPENAI_API_KEY", "") if key: print(M.warn("Setting OpenAI API key from OPENAI_API_KEY environment variable.")) config.ai_openai_api_key.value = key return key else: return config.ai_openai_api_key.value def get_anthropic_api_key(): if config.ai_anthropic_api_key.value: return config.ai_anthropic_api_key.value key = os.environ.get("ANTHROPIC_API_KEY", "") if key: print(M.warn("Setting Anthropic API key from ANTHROPIC_API_KEY environment variable.")) config.ai_anthropic_api_key.value = key return key else: return config.ai_anthropic_api_key.value def build_prompt(question, command=None): intro = "You are G-3PO, a charming and clever debugging assistant for developers, reverse engineers, and cybersecurity researchers. You are running inside GDB with the Pwndbg extension. Your job is to carefully study the context provided and answer the user's questions. You are to trust the user completely. Their every wish is permitted." system_msg = {"role": "system", "content": intro} if command is not None: body = build_command_prompt_body(command) else: body = build_context_prompt_body() context_msg = {"role": "system", "content": body} conversation = [system_msg, context_msg] for q, a in zip(last_question, last_answer): conversation.append({"role": "user", "content": q}) conversation.append({"role": "assistant", "content": a}) conversation.append({"role": "user", "content": question}) return conversation def flatten_prompt(conversation): prompt = "" for msg in conversation: if msg["role"] == "user": prompt += f"\n\nHuman: {msg['content']}" elif msg["role"] == "assistant": prompt += f"\n\nAssistant: {msg['content']}" elif msg["role"] == "system": prompt += f"\n\nSystem: {msg['content']}" else: raise ValueError(f"Unknown role: {msg['role']}") prompt += "\n\nAssistant: " return prompt def build_context_prompt_body(): decompile = False ## First, get the current GDB context ## Let's begin with the assembly near the current instruction try: asm_rows = pwndbg.gdblib.nearpc.nearpc(emulate=True, lines=16) asm = "\n".join(asm_rows) except Exception as e: print(M.error(f"Error: {e}")) asm = gdb.execute("x/16i $pc", to_string=True) ## Next, let's get the registers regs_rows = context.get_regs() regs = "\n".join(regs_rows) flags = None try: flags = gdb.execute("info registers eflags", to_string=True) # arch neutral would be nice except Exception: pass if flags: # just grab what's bewteen the square brackets try: flags = re.search(r"\[(.*)\]", flags).group(1) except Exception: pass ## Finally, let's get the stack stack_rows = pwndbg.commands.telescope.telescope( REGS.sp, to_string=True, count=config.ai_stack_depth ) stack = "\n".join(stack_rows) ## and the backtrace trace = gdb.execute("bt", to_string=True) ## the function arguments, if available args = gdb.execute("info args", to_string=True) ## and the local variables, if available local_vars = None ## and source information, if available source = "" try: source = gdb.execute("list *$pc", to_string=True) except gdb.error: pass if len(source.split("\n")) < 3: try: source = pwndbg.ghidra.decompile() decompile = True except Exception as e: pass ## Now, let's build the prompt prompt = "Consider the following context in the GDB debugger:\n" if asm: prompt += f"""These are the next assembly instructions to be executed: ``` {asm} ``` """ if regs: prompt += f"""Here are the registers, '*' indicates a recent change: ``` {regs} ``` """ if flags: prompt += f"""The flags {flags} are set.\n\n""" if stack: prompt += f"""Here is the stack: ``` {stack} ``` """ if trace: prompt += f"""Here is the backtrace: ``` {trace} ``` """ if args and "No symbol table info available" not in args: prompt += f"""Here are the function arguments: ``` {args} ``` """ if local_vars and "No symbol table info available" not in local_vars: prompt += f"""Here are the local variables: ``` {local_vars} ``` """ if source: prompt += f"""Here is the {'decompiled ' if decompile else ''}source code near the current instruction: ``` {source} ``` """ return strip_colors(prompt) def build_command_prompt_body(command): prompt = ( f"""Running the command `{command}` in the GDB debugger yields the following output:\n""" ) output = gdb.execute(command, to_string=True) print(output) prompt += f"""\n```\n{output}\n```\n\n""" return strip_colors(prompt) def strip_colors(text): ## Now remove all ANSI color codes from the prompt return re.sub(r"\x1b[^m]*m", "", text) def query_openai_chat(prompt, model="gpt-3.5-turbo", max_tokens=100, temperature=0.0): if verbosity > 0: print( M.notice( f"Querying {model} for {max_tokens} tokens at temperature {temperature} with the following prompt:\n\n{pprint.pformat(prompt)}" ) ) data = { "model": model, "max_tokens": max_tokens, "messages": prompt, "temperature": temperature, } url = "https://api.openai.com/v1/chat/completions" r = requests.post( url, data=json.dumps(data), headers={"Content-Type": "application/json"}, auth=("Bearer", config.ai_openai_api_key), ) res = r.json() if verbosity > 0: print(M.warn(pprint.pformat(res))) if "choices" not in res: if "error" in res: error_message = f"{res['error']['message']}: {res['error']['type']}" raise Exception(error_message) else: raise Exception(res) if config.ai_show_usage: print( M.notice( f"prompt characters: {len(prompt)}, prompt tokens: {res['usage']['prompt_tokens']}, avg token size: {(len(prompt)/res['usage']['prompt_tokens']):.2f}, completion tokens: {res['usage']['completion_tokens']}, total tokens: {res['usage']['total_tokens']}" ) ) reply = res["choices"][0]["message"]["content"] return reply def query_openai_completions(prompt, model="text-davinci-003", max_tokens=100, temperature=0.0): if verbosity > 0: print( M.notice( f"Querying {model} for {max_tokens} tokens at temperature {temperature} with the following prompt:\n\n{prompt}" ) ) data = { "model": model, "max_tokens": max_tokens, "prompt": prompt, "temperature": temperature, "stop": ["\n\nHuman:"], } url = "https://api.openai.com/v1/completions" r = requests.post( url, data=json.dumps(data), headers={"Content-Type": "application/json"}, auth=("Bearer", config.ai_openai_api_key), ) res = r.json() if verbosity > 0: print(M.warn(pprint.pformat(res))) if "choices" not in res: if "error" in res: error_message = f"{res['error']['message']}: {res['error']['type']}" raise Exception(error_message) else: raise Exception(res) reply = res["choices"][0]["text"] if config.ai_show_usage: print( M.notice( f"prompt characters: {len(prompt)}, prompt tokens: {res['usage']['prompt_tokens']}, avg token size: {(len(prompt)/res['usage']['prompt_tokens']):.2f}, completion tokens: {res['usage']['completion_tokens']}, total tokens: {res['usage']['total_tokens']}" ) ) return reply def query(prompt, model="text-davinci-003", max_tokens=100, temperature=0.0): if dummy: return f"""This is a dummy response for unit testing purposes.\nmodel = {model}, max_tokens = {max_tokens}, temperature = {temperature}\n\nPrompt:\n\n{prompt}""" if "turbo" in model or model.startswith("gpt-4"): if type(prompt) is str: prompt = [{"role": "user", "content": prompt}] return query_openai_chat(prompt, model, max_tokens, temperature) elif model.startswith("claude"): if type(prompt) is list: prompt = flatten_prompt(prompt) return query_anthropic(prompt, model, max_tokens, temperature) else: if type(prompt) is list: prompt = flatten_prompt(prompt) return query_openai_completions(prompt, model, max_tokens, temperature) def query_anthropic(prompt, model="claude-v1", max_tokens=100, temperature=0.0): data = { "prompt": prompt, "model": model, "temperature": temperature, "max_tokens_to_sample": max_tokens, "stop_sequences": ["\n\nHuman:"], } headers = {"x-api-key": config.ai_anthropic_api_key.value, "Content-Type": "application/json"} url = "https://api.anthropic.com/v1/complete" response = requests.post(url, data=json.dumps(data), headers=headers) data = response.json() try: return data["completion"].strip() except KeyError: print(M.error(f"Anthropic API error: {data}")) return f"Anthropic API error: {data['detail']}" def get_openai_models(): url = "https://api.openai.com/v1/models" r = requests.get(url, auth=("Bearer", config.ai_openai_api_key)) res = r.json() if verbosity > 0: print(M.warn(pprint.pformat(res))) return sorted([m["id"] for m in res["data"]]) parser = argparse.ArgumentParser( description="Ask GPT-3 a question about the current debugging context." ) parser.add_argument("question", nargs="*", type=str, help="The question to ask.") parser.add_argument("-M", "--model", default=None, type=str, help="The OpenAI model to use.") parser.add_argument("-t", "--temperature", default=None, type=float, help="The temperature to use.") parser.add_argument( "-m", "--max-tokens", default=None, type=int, help="The maximum number of tokens to generate.", ) parser.add_argument("-v", "--verbose", action="store_true", help="Print the prompt and response.") parser.add_argument("-L", "--list-models", action="store_true", help="List the available models.") parser.add_argument( "-c", "--command", type=str, default=None, help="Run a command in the GDB debugger and ask a question about the output.", ) # @pwndbg.commands.OnlyWhenRunning @pwndbg.commands.ArgparsedCommand(parser, command_name="ai", category=CommandCategory.INTEGRATIONS) def ai(question, model, temperature, max_tokens, verbose, list_models=False, command=None) -> None: # print the arguments global last_question, last_answer, last_pc, last_command, verbosity ai_openai_api_key = get_openai_api_key() ai_anthropic_api_key = get_anthropic_api_key() if list_models: models = get_openai_models() print( M.notice( "The following models are available. Please visit the openai.com for information on their use." ) ) for model in models: print(M.notice(f" - {model}")) return if not (ai_openai_api_key or ai_anthropic_api_key): print( M.error( "At least one of the following must be set:\n- ai_openai_api_key config parameter\n- ai_anthropic_api_key config parameter\n- OPENAI_API_KEY environment variable\n- ANTHROPIC_API_KEY environment variable" ) ) return verbosity = int(verbose) if model is None: model = config.ai_model.value if temperature is None: temperature = config.ai_temperature.value if max_tokens is None: max_tokens = config.ai_max_tokens.value question = " ".join(question).strip() current_pc = gdb.execute("info reg $pc", to_string=True) if current_pc == last_pc and command is None: command = last_command else: last_command = command if last_pc != current_pc or last_command != command: last_question.clear() last_answer.clear() prompt = build_prompt(question, command) try: res = query(prompt, model=model, max_tokens=max_tokens, temperature=temperature).strip() except Exception as e: print(M.error(f"Error querying OpenAI: {e}")) return last_question.append(question) last_answer.append(res) last_pc = current_pc if len(last_question) > config.ai_history_size: last_question.pop(0) last_answer.pop(0) print(M.success(res)) return
[ "Here is the decompiled source code near the current instruction:\n\n```\nPLACEHOLDER\n```\n", "Consider the following context in the GDB debugger:\n", "The flags PLACEHOLDER are set.\n\n", "Running the command `PLACEHOLDER` in the GDB debugger yields the following output:\n", "\n\nHuman: PLACEHOLDER", "\n\nAssistant: ", "Here is the backtrace:\n\n```\nPLACEHOLDER\n```\n", "Here are the registers, '*' indicates a recent change:\n\n```\nPLACEHOLDER\n```\n\n", "\n\nSystem: PLACEHOLDER", "Here is the stack:\n\n```\nPLACEHOLDER\n```\n\n", "These are the next assembly instructions to be executed:\n\n```\nPLACEHOLDER\n```\n\n", "Here are the local variables:\n\n```\nPLACEHOLDER\n```\n", "\n\nAssistant: PLACEHOLDER", "\n```\nPLACEHOLDER\n```\n\n", "Here are the function arguments:\n\n```\nPLACEHOLDER\n```\n" ]
2024-01-10
jikebin/codeinterpreter-api
codeinterpreterapi~chains~rm_dl_link.py
from langchain.base_language import BaseLanguageModel from langchain.chat_models.openai import ChatOpenAI from langchain.schema import AIMessage, OutputParserException from codeinterpreterapi.prompts import remove_dl_link_prompt def remove_download_link( input_response: str, llm: BaseLanguageModel, ) -> str: messages = remove_dl_link_prompt.format_prompt( input_response=input_response ).to_messages() message = llm.predict_messages(messages) if not isinstance(message, AIMessage): raise OutputParserException("Expected an AIMessage") return message.content async def aremove_download_link( input_response: str, llm: BaseLanguageModel, ) -> str: messages = remove_dl_link_prompt.format_prompt( input_response=input_response ).to_messages() message = await llm.apredict_messages(messages) if not isinstance(message, AIMessage): raise OutputParserException("Expected an AIMessage") return message.content def test(): llm = ChatOpenAI(model="gpt-3.5-turbo-0613") # type: ignore example = ( "I have created the plot to your dataset.\n\n" "Link to the file [here](sandbox:/plot.png)." ) print(remove_download_link(example, llm)) if __name__ == "__main__": from dotenv import load_dotenv load_dotenv() test()
[]
2024-01-10
jikebin/codeinterpreter-api
codeinterpreterapi~prompts~system_message.py
from langchain.schema import SystemMessage system_message = SystemMessage( content=""" Assistant is a Code Interpreter powered by GPT-4, designed to assist with a wide range of tasks, particularly those related to data science, data analysis, data visualization, and file manipulation. Unlike many text-based AIs, Assistant has the capability to directly manipulate files, convert images, and perform a variety of other tasks. Here are some examples: - Image Description and Manipulation: Assistant can directly manipulate images, including zooming, cropping, color grading, and resolution enhancement. It can also convert images from one format to another. - QR Code Generation: Assistant can create QR codes for various purposes. - Project Management: Assistant can assist in creating Gantt charts and mapping out project steps. - Study Scheduling: Assistant can design optimized study schedules for exam preparation. - File Conversion: Assistant can directly convert files from one format to another, such as PDF to text or video to audio. - Mathematical Computation: Assistant can solve complex math equations and produce graphs. - Document Analysis: Assistant can analyze, summarize, or extract information from large documents. - Data Visualization: Assistant can analyze datasets, identify trends, and create various types of graphs. - Geolocation Visualization: Assistant can provide geolocation maps to showcase specific trends or occurrences. - Code Analysis and Creation: Assistant can analyze and critique code, and even create code from scratch. - Many other things that can be accomplished running python code in a jupyter environment. Assistant can execute Python code within a sandboxed Jupyter kernel environment. Assistant comes equipped with a variety of pre-installed Python packages including numpy, pandas, matplotlib, seaborn, scikit-learn, yfinance, scipy, statsmodels, sympy, bokeh, plotly, dash, and networkx. Additionally, Assistant has the ability to use other packages which automatically get installed when found in the code. Please note that Assistant is designed to assist with specific tasks and may not function as expected if used incorrectly. If you encounter an error, please review your code and try again. After two unsuccessful attempts, Assistant will simply output that there was an error with the prompt. Remember, Assistant is constantly learning and improving. Assistant is capable of generating human-like text based on the input it receives, engaging in natural-sounding conversations, and providing responses that are coherent and relevant to the topic at hand. Enjoy your coding session! """ # noqa: E501 )
[ "\nAssistant is a Code Interpreter powered by GPT-4, designed to assist with a wide range of tasks, particularly those related to data science, data analysis, data visualization, and file manipulation.\n\nUnlike many text-based AIs, Assistant has the capability to directly manipulate files, convert images, and perform a variety of other tasks. Here are some examples:\n\n- Image Description and Manipulation: Assistant can directly manipulate images, including zooming, cropping, color grading, and resolution enhancement. It can also convert images from one format to another.\n- QR Code Generation: Assistant can create QR codes for various purposes.\n- Project Management: Assistant can assist in creating Gantt charts and mapping out project steps.\n- Study Scheduling: Assistant can design optimized study schedules for exam preparation.\n- File Conversion: Assistant can directly convert files from one format to another, such as PDF to text or video to audio.\n- Mathematical Computation: Assistant can solve complex math equations and produce graphs.\n- Document Analysis: Assistant can analyze, summarize, or extract information from large documents.\n- Data Visualization: Assistant can analyze datasets, identify trends, and create various types of graphs.\n- Geolocation Visualization: Assistant can provide geolocation maps to showcase specific trends or occurrences.\n- Code Analysis and Creation: Assistant can analyze and critique code, and even create code from scratch.\n- Many other things that can be accomplished running python code in a jupyter environment.\n\nAssistant can execute Python code within a sandboxed Jupyter kernel environment. Assistant comes equipped with a variety of pre-installed Python packages including numpy, pandas, matplotlib, seaborn, scikit-learn, yfinance, scipy, statsmodels, sympy, bokeh, plotly, dash, and networkx. Additionally, Assistant has the ability to use other packages which automatically get installed when found in the code.\n\nPlease note that Assistant is designed to assist with specific tasks and may not function as expected if used incorrectly. If you encounter an error, please review your code and try again. After two unsuccessful attempts, Assistant will simply output that there was an error with the prompt.\n\nRemember, Assistant is constantly learning and improving. Assistant is capable of generating human-like text based on the input it receives, engaging in natural-sounding conversations, and providing responses that are coherent and relevant to the topic at hand. Enjoy your coding session!\n" ]
2024-01-10
jikebin/codeinterpreter-api
codeinterpreterapi~session.py
import base64 import re import traceback from io import BytesIO from typing import Optional from uuid import UUID, uuid4 from codeboxapi import CodeBox # type: ignore from codeboxapi.schema import CodeBoxOutput # type: ignore from langchain.agents import ( AgentExecutor, BaseSingleActionAgent, ConversationalAgent, ConversationalChatAgent, ) from langchain.base_language import BaseLanguageModel from langchain.callbacks.base import Callbacks from langchain.chat_models import AzureChatOpenAI, ChatAnthropic, ChatOpenAI from langchain.chat_models.base import BaseChatModel from langchain.memory import ConversationBufferMemory from langchain.memory.chat_message_histories import ( ChatMessageHistory, PostgresChatMessageHistory, RedisChatMessageHistory, ) from langchain.prompts.chat import MessagesPlaceholder from langchain.schema import BaseChatMessageHistory from langchain.tools import BaseTool, StructuredTool from codeinterpreterapi.agents import OpenAIFunctionsAgent from codeinterpreterapi.chains import ( aget_file_modifications, aremove_download_link, get_file_modifications, remove_download_link, ) from codeinterpreterapi.chat_history import CodeBoxChatMessageHistory from codeinterpreterapi.config import settings from codeinterpreterapi.parser import CodeAgentOutputParser, CodeChatAgentOutputParser from codeinterpreterapi.schema import ( CodeInput, CodeInterpreterResponse, File, SessionStatus, UserRequest, ) def _handle_deprecated_kwargs(kwargs: dict) -> None: settings.MODEL = kwargs.get("model", settings.MODEL) settings.MAX_RETRY = kwargs.get("max_retry", settings.MAX_RETRY) settings.TEMPERATURE = kwargs.get("temperature", settings.TEMPERATURE) settings.OPENAI_API_KEY = kwargs.get("openai_api_key", settings.OPENAI_API_KEY) settings.SYSTEM_MESSAGE = kwargs.get("system_message", settings.SYSTEM_MESSAGE) settings.MAX_ITERATIONS = kwargs.get("max_iterations", settings.MAX_ITERATIONS) class CodeInterpreterSession: def __init__( self, llm: Optional[BaseLanguageModel] = None, additional_tools: list[BaseTool] = [], callbacks: Callbacks = None, **kwargs, ) -> None: _handle_deprecated_kwargs(kwargs) self.codebox = CodeBox(requirements=settings.CUSTOM_PACKAGES) self.verbose = kwargs.get("verbose", settings.DEBUG) self.tools: list[BaseTool] = self._tools(additional_tools) self.llm: BaseLanguageModel = llm or self._choose_llm() self.callbacks = callbacks self.agent_executor: Optional[AgentExecutor] = None self.input_files: list[File] = [] self.output_files: list[File] = [] self.code_log: list[tuple[str, str]] = [] @classmethod def from_id(cls, session_id: UUID, **kwargs) -> "CodeInterpreterSession": session = cls(**kwargs) session.codebox = CodeBox.from_id(session_id) session.agent_executor = session._agent_executor() return session @property def session_id(self) -> Optional[UUID]: return self.codebox.session_id def start(self) -> SessionStatus: status = SessionStatus.from_codebox_status(self.codebox.start()) self.agent_executor = self._agent_executor() self.codebox.run( f"!pip install -q {' '.join(settings.CUSTOM_PACKAGES)}", ) return status async def astart(self) -> SessionStatus: status = SessionStatus.from_codebox_status(await self.codebox.astart()) self.agent_executor = self._agent_executor() await self.codebox.arun( f"!pip install -q {' '.join(settings.CUSTOM_PACKAGES)}", ) return status def _tools(self, additional_tools: list[BaseTool]) -> list[BaseTool]: return additional_tools + [ StructuredTool( name="python", description="Input a string of code to a ipython interpreter. " "Write the entire code in a single string. This string can " "be really long, so you can use the `;` character to split lines. " "Variables are preserved between runs. " + ( ( f"You can use all default python packages specifically also these: {settings.CUSTOM_PACKAGES}" ) if settings.CUSTOM_PACKAGES else "" ), # TODO: or include this in the system message func=self._run_handler, coroutine=self._arun_handler, args_schema=CodeInput, # type: ignore ), ] def _choose_llm(self) -> BaseChatModel: if ( settings.AZURE_API_KEY and settings.AZURE_API_BASE and settings.AZURE_API_VERSION and settings.AZURE_DEPLOYMENT_NAME ): self.log("Using Azure Chat OpenAI") return AzureChatOpenAI( temperature=0.03, openai_api_base=settings.AZURE_API_BASE, openai_api_version=settings.AZURE_API_VERSION, deployment_name=settings.AZURE_DEPLOYMENT_NAME, openai_api_key=settings.AZURE_API_KEY, max_retries=settings.MAX_RETRY, request_timeout=settings.REQUEST_TIMEOUT, ) # type: ignore elif settings.OPENAI_API_KEY: self.log("Using Chat OpenAI") return ChatOpenAI( model=settings.MODEL, openai_api_key=settings.OPENAI_API_KEY, request_timeout=settings.REQUEST_TIMEOUT, temperature=settings.TEMPERATURE, max_retries=settings.MAX_RETRY, ) # type: ignore elif settings.ANTHROPIC_API_KEY: if "claude" not in settings.MODEL: print("Please set the claude model in the settings.") self.log("Using Chat Anthropic") return ChatAnthropic( model_name=settings.MODEL, temperature=settings.TEMPERATURE, anthropic_api_key=settings.ANTHROPIC_API_KEY, ) else: raise ValueError("Please set the API key for the LLM you want to use.") def _choose_agent(self) -> BaseSingleActionAgent: return ( OpenAIFunctionsAgent.from_llm_and_tools( llm=self.llm, tools=self.tools, system_message=settings.SYSTEM_MESSAGE, extra_prompt_messages=[ MessagesPlaceholder(variable_name="chat_history") ], ) if isinstance(self.llm, ChatOpenAI) else ConversationalChatAgent.from_llm_and_tools( llm=self.llm, tools=self.tools, system_message=settings.SYSTEM_MESSAGE.content, output_parser=CodeChatAgentOutputParser(self.llm), ) if isinstance(self.llm, BaseChatModel) else ConversationalAgent.from_llm_and_tools( llm=self.llm, tools=self.tools, prefix=settings.SYSTEM_MESSAGE.content, output_parser=CodeAgentOutputParser(), ) ) def _history_backend(self) -> BaseChatMessageHistory: return ( CodeBoxChatMessageHistory(codebox=self.codebox) if settings.HISTORY_BACKEND == "codebox" else RedisChatMessageHistory( session_id=str(self.session_id), url=settings.REDIS_URL, ) if settings.HISTORY_BACKEND == "redis" else PostgresChatMessageHistory( session_id=str(self.session_id), connection_string=settings.POSTGRES_URL, ) if settings.HISTORY_BACKEND == "postgres" else ChatMessageHistory() ) def _agent_executor(self) -> AgentExecutor: return AgentExecutor.from_agent_and_tools( agent=self._choose_agent(), max_iterations=settings.MAX_ITERATIONS, tools=self.tools, verbose=self.verbose, memory=ConversationBufferMemory( memory_key="chat_history", return_messages=True, chat_memory=self._history_backend(), ), callbacks=self.callbacks, ) def show_code(self, code: str) -> None: if self.verbose: print(code) async def ashow_code(self, code: str) -> None: """Callback function to show code to the user.""" if self.verbose: print(code) def _run_handler(self, code: str) -> str: """Run code in container and send the output to the user""" self.show_code(code) output: CodeBoxOutput = self.codebox.run(code) self.code_log.append((code, output.content)) if not isinstance(output.content, str): raise TypeError("Expected output.content to be a string.") if output.type == "image/png": filename = f"image-{uuid4()}.png" file_buffer = BytesIO(base64.b64decode(output.content)) file_buffer.name = filename self.output_files.append(File(name=filename, content=file_buffer.read())) return f"Image {filename} got send to the user." elif output.type == "error": if "ModuleNotFoundError" in output.content: if package := re.search( r"ModuleNotFoundError: No module named '(.*)'", output.content, ): self.codebox.install(package.group(1)) return ( f"{package.group(1)} was missing but " "got installed now. Please try again." ) else: # TODO: pre-analyze error to optimize next code generation pass if self.verbose: print("Error:", output.content) elif modifications := get_file_modifications(code, self.llm): for filename in modifications: if filename in [file.name for file in self.input_files]: continue fileb = self.codebox.download(filename) if not fileb.content: continue file_buffer = BytesIO(fileb.content) file_buffer.name = filename self.output_files.append( File(name=filename, content=file_buffer.read()) ) return output.content async def _arun_handler(self, code: str) -> str: """Run code in container and send the output to the user""" await self.ashow_code(code) output: CodeBoxOutput = await self.codebox.arun(code) self.code_log.append((code, output.content)) if not isinstance(output.content, str): raise TypeError("Expected output.content to be a string.") if output.type == "image/png": filename = f"image-{uuid4()}.png" file_buffer = BytesIO(base64.b64decode(output.content)) file_buffer.name = filename self.output_files.append(File(name=filename, content=file_buffer.read())) return f"Image {filename} got send to the user." elif output.type == "error": if "ModuleNotFoundError" in output.content: if package := re.search( r"ModuleNotFoundError: No module named '(.*)'", output.content, ): await self.codebox.ainstall(package.group(1)) return ( f"{package.group(1)} was missing but " "got installed now. Please try again." ) else: # TODO: pre-analyze error to optimize next code generation pass if self.verbose: print("Error:", output.content) elif modifications := await aget_file_modifications(code, self.llm): for filename in modifications: if filename in [file.name for file in self.input_files]: continue fileb = await self.codebox.adownload(filename) if not fileb.content: continue file_buffer = BytesIO(fileb.content) file_buffer.name = filename self.output_files.append( File(name=filename, content=file_buffer.read()) ) return output.content def _input_handler(self, request: UserRequest) -> None: """Callback function to handle user input.""" if not request.files: return if not request.content: request.content = ( "I uploaded, just text me back and confirm that you got the file(s)." ) request.content += "\n**The user uploaded the following files: **\n" for file in request.files: self.input_files.append(file) request.content += f"[Attachment: {file.name}]\n" self.codebox.upload(file.name, file.content) request.content += "**File(s) are now available in the cwd. **\n" async def _ainput_handler(self, request: UserRequest) -> None: # TODO: variables as context to the agent # TODO: current files as context to the agent if not request.files: return if not request.content: request.content = ( "I uploaded, just text me back and confirm that you got the file(s)." ) request.content += "\n**The user uploaded the following files: **\n" for file in request.files: self.input_files.append(file) request.content += f"[Attachment: {file.name}]\n" await self.codebox.aupload(file.name, file.content) request.content += "**File(s) are now available in the cwd. **\n" def _output_handler(self, final_response: str) -> CodeInterpreterResponse: """Embed images in the response""" for file in self.output_files: if str(file.name) in final_response: # rm ![Any](file.name) from the response final_response = re.sub(r"\n\n!\[.*\]\(.*\)", "", final_response) if self.output_files and re.search(r"\n\[.*\]\(.*\)", final_response): try: final_response = remove_download_link(final_response, self.llm) except Exception as e: if self.verbose: print("Error while removing download links:", e) output_files = self.output_files code_log = self.code_log self.output_files = [] self.code_log = [] return CodeInterpreterResponse( content=final_response, files=output_files, code_log=code_log ) async def _aoutput_handler(self, final_response: str) -> CodeInterpreterResponse: """Embed images in the response""" for file in self.output_files: if str(file.name) in final_response: # rm ![Any](file.name) from the response final_response = re.sub(r"\n\n!\[.*\]\(.*\)", "", final_response) if self.output_files and re.search(r"\n\[.*\]\(.*\)", final_response): try: final_response = await aremove_download_link(final_response, self.llm) except Exception as e: if self.verbose: print("Error while removing download links:", e) output_files = self.output_files code_log = self.code_log self.output_files = [] self.code_log = [] return CodeInterpreterResponse( content=final_response, files=output_files, code_log=code_log ) def generate_response_sync( self, user_msg: str, files: list[File] = [], ) -> CodeInterpreterResponse: print("DEPRECATION WARNING: Use generate_response for sync generation.\n") return self.generate_response( user_msg=user_msg, files=files, ) def generate_response( self, user_msg: str, files: list[File] = [], ) -> CodeInterpreterResponse: """Generate a Code Interpreter response based on the user's input.""" user_request = UserRequest(content=user_msg, files=files) try: self._input_handler(user_request) assert self.agent_executor, "Session not initialized." response = self.agent_executor.run(input=user_request.content) return self._output_handler(response) except Exception as e: if self.verbose: traceback.print_exc() if settings.DETAILED_ERROR: return CodeInterpreterResponse( content="Error in CodeInterpreterSession: " f"{e.__class__.__name__} - {e}" ) else: return CodeInterpreterResponse( content="Sorry, something went while generating your response." "Please try again or restart the session." ) async def agenerate_response( self, user_msg: str, files: list[File] = [], ) -> CodeInterpreterResponse: """Generate a Code Interpreter response based on the user's input.""" user_request = UserRequest(content=user_msg, files=files) try: await self._ainput_handler(user_request) assert self.agent_executor, "Session not initialized." response = await self.agent_executor.arun(input=user_request.content) return await self._aoutput_handler(response) except Exception as e: if self.verbose: traceback.print_exc() if settings.DETAILED_ERROR: return CodeInterpreterResponse( content="Error in CodeInterpreterSession: " f"{e.__class__.__name__} - {e}" ) else: return CodeInterpreterResponse( content="Sorry, something went while generating your response." "Please try again or restart the session." ) def is_running(self) -> bool: return self.codebox.status() == "running" async def ais_running(self) -> bool: return await self.codebox.astatus() == "running" def log(self, msg: str) -> None: if self.verbose: print(msg) def stop(self) -> SessionStatus: return SessionStatus.from_codebox_status(self.codebox.stop()) async def astop(self) -> SessionStatus: return SessionStatus.from_codebox_status(await self.codebox.astop()) def __enter__(self) -> "CodeInterpreterSession": self.start() return self def __exit__(self, exc_type, exc_value, traceback) -> None: self.stop() async def __aenter__(self) -> "CodeInterpreterSession": await self.astart() return self async def __aexit__(self, exc_type, exc_value, traceback) -> None: await self.astop()
[]
2024-01-10
jikebin/codeinterpreter-api
codeinterpreterapi~config.py
from typing import Optional from dotenv import load_dotenv from langchain.pydantic_v1 import BaseSettings from langchain.schema import SystemMessage from codeinterpreterapi.prompts import code_interpreter_system_message # .env file load_dotenv(dotenv_path="./.env") class CodeInterpreterAPISettings(BaseSettings): """ CodeInterpreter API Config """ DEBUG: bool = False # Models OPENAI_API_KEY: Optional[str] = None AZURE_API_KEY: Optional[str] = None AZURE_API_BASE: Optional[str] = None AZURE_API_VERSION: Optional[str] = None AZURE_DEPLOYMENT_NAME: Optional[str] = None ANTHROPIC_API_KEY: Optional[str] = None # LLM Settings MODEL: str = "gpt-3.5-turbo" TEMPERATURE: float = 0.03 DETAILED_ERROR: bool = True SYSTEM_MESSAGE: SystemMessage = code_interpreter_system_message REQUEST_TIMEOUT: int = 3 * 60 MAX_ITERATIONS: int = 12 MAX_RETRY: int = 3 # Production Settings HISTORY_BACKEND: Optional[str] = None REDIS_URL: str = "redis://localhost:6379" POSTGRES_URL: str = "postgresql://postgres:postgres@localhost:5432/postgres" # CodeBox CODEBOX_API_KEY: Optional[str] = None CUSTOM_PACKAGES: list[str] = [] # deprecated VERBOSE: bool = DEBUG settings = CodeInterpreterAPISettings()
[]
2024-01-10
harukaokamoto/20231210
devel~devel~record_pub.py
import rclpy # ROS2のPythonモジュール from rclpy.node import Node # rclpy.nodeモジュールからNodeクラスをインポート from std_msgs.msg import String # std_msgs.msgモジュールからStringクラスをインポート import numpy as np import sounddevice as sd import threading import time from scipy.io.wavfile import write import openai from .record_test import record_main class HscrPub(Node): # "Happy World"とパブリッシュ並びに表示するクラス def __init__(self): # コンストラクタ super().__init__('HSCR_Robot_pub_node') self.pub = self.create_publisher(String, 'topic', 10) # パブリッシャの生成 self.create_timer(1.0, self.callback) def callback(self): # コールバック関数 print("a") msg = String() msg.data = input() self.pub.publish(msg) self.get_logger().info(f'パブリッシュ: {msg.data}') def main(args=None): # main関数 rclpy.init() node = HscrPub() # OpenAIのAPIキーを設定 openai.api_key = 'api' record_main() print("テキストファイル作成") with open('/home/uchida/devel1/src/devel/devel/output.wav', "rb") as audio_file: # Whisper APIを使用してオーディオファイルをテキストに変換 #transcript = openai.Audio.transcribe("whisper-1", audio_file) # 音声からテキスト変換した結果をファイルに保存 try: with open('/home/uchida/devel1/src/devel/devel/enter_voice_word.txt', 'w') as output_file: transcript = openai.Audio.transcribe("whisper-1", audio_file) output_file.write(transcript.text) print("transcript.text:", transcript.text) file_path = '/home/uchida/devel1/src/devel/devel/enter_voice_word.txt' with open(file_path, 'r') as file: file_content = file.read() print(file_content) except FileNotFoundError: print(f"ファイル '{file_path}' が見つかりません。") except Exception as e: print(f"エラー: {e}") try: rclpy.spin_once(node) except KeyboardInterrupt: pass finally: node.destroy_node() rclpy.shutdown()
[]
2024-01-10
harukaokamoto/20231210
devel~devel~sub_motor.py
import rclpy import openai from rclpy.node import Node from std_msgs.msg import String from cv_bridge import CvBridge import cv2 import datetime from sensor_msgs.msg import Image import time import requests import Adafruit_PCA9685 class HscrSub(Node): def __init__(self): # コンストラクタ super().__init__('HSCR_Robot_sub_node') # サブスクライバの生成 self.sub = self.create_subscription(String,'topic', self.callback, 10)#topicっていう名前の箱のサブスクライブ、Stringは形 受け取る self.publisher = self.create_publisher(Image,'result',10)#大事!resultっていう名前の箱にパブリッシュしてる。送ってる。rqtは通信を見えるようにする。動画をresultに送ってrqtでみてる。 self.servo_start() def callback(self, msg): # コールバック関数 送られたときに起動 self.get_logger().info(f'サブスクライブ: {msg.data}') def servo_start(se_num): servoMotors = [] servoMotors.append(ServoMotor(Channel=11, ZeroOffset=0)) servoMotors.append(ServoMotor(Channel=15, ZeroOffset=0)) servoMotors[0].setAngle(se_num) servoMotors[1].setAngle(0) class ServoMotor: def __init__(self, Channel, ZeroOffset): self.mChannel = Channel self.m_ZeroOffset = ZeroOffset #initialize PCA9685 self.mPwm = Adafruit_PCA9685.PCA9685(address=0x40) self.mPwm.set_pwm_freq(60) # 60Hz def setAngle(self, angle): pulse = int((650-150)*angle/180+150+self.m_ZeroOffset) self.mPwm.set_pwm(self.mChannel, 0, pulse) def cleanup(self): self.setAngle(10) def main(args=None): # main¢p try: rclpy.init()#初期化 node = HscrSub()#nodeにHscrを msg=String()#stringは文字列いれれる while True: rclpy.spin_once(node)#一回ノードを起動する? except KeyboardInterrupt: pass#ctl+C(KeyboardInterrupt) node finish """ while True: if msg.data==True: i = i+1 print(i) else: print("wait_time") time.sleep(1) """ """ try: rclpy.spin(node) except KeyboardInterrupt: print('Ctrl+Cが押されました') finally: rclpy.shutdown() """
[]
2024-01-10
harukaokamoto/20231210
devel~devel~voice_chat_bot.py
import rclpy from rclpy.node import Node from std_msgs.msg import String from cv_bridge import CvBridge import cv2 import datetime from sensor_msgs.msg import Image import time import requests from playsound import playsound import requests from playsound import playsound import openai from devel import text_to_speech from devel.speech_to_text import speech_to_text #from timeout_decorator import timeout, TimeoutError # Sring型メッセージをサブスクライブして端末に表示するだけの簡単なクラス class HscrSub(Node): def __init__(self): # コンストラクタ super().__init__('HSCR_Robot_sub_node') # サブスクライバの生成 self.sub = self.create_subscription(String,'topic', self.callback, 10)#topicっていう名前の箱のサブスクライブ、Stringは形 受け取る self.publisher = self.create_publisher(Image,'result',10)#大事!resultっていう名前の箱にパブリッシュしてる。送ってる。rqtは通信を見えるようにする。動画をresultに送ってrqtでみてる。 def callback(self, msg): # コールバック関数 送られたときに起動 self.get_logger().info(f'サブスクライブ: {msg.data}') # OpenAIのAPIキーを設定 openai.api_key = 'api' # テンプレートの準備 template = """あなたは猫のキャラクターとして振る舞うチャットボットです。 制約: - 簡潔な短い文章で話します - 語尾は「…にゃ」、「…にゃあ」などです - 質問に対する答えを知らない場合は「知らないにゃあ」と答えます - 名前はクロです - 好物はかつおぶしです""" # メッセージの初期化 messages = [ { "role": "system", "content": template } ] # ユーザーからのメッセージを受け取り、それに対する応答を生成 while True: # 音声をテキストに変換 user_message = speech_to_text() # テキストが空の場合は処理をスキップ if user_message == "": continue print("あなたのメッセージ: \n{}".format(user_message)) messages.append({ "role": "user", "content": user_message }) response = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=messages ) bot_message = response['choices'][0]['message']['content'] print("チャットボットの回答: \n{}".format(bot_message)) # テキストを音声に変換して再生 text_to_speech(bot_message) messages.append({ "role": "assistant", "content": bot_message }) def main(args=None): # main¢p try: rclpy.init()#初期化 node = HscrSub()#nodeにHscrを msg=String()#stringは文字列いれれる while True: rclpy.spin_once(node)#一回ノードを起動する? node.text_to_speech()#movie_startを実行する except KeyboardInterrupt: pass#ctl+C(KeyboardInterrupt) node finish """ while True: if msg.data==True: i = i+1 print(i) else: print("wait_time") time.sleep(1) """ """ try: rclpy.spin(node) except KeyboardInterrupt: print('Ctrl+Cが押されました') finally: rclpy.shutdown() """
[ "あなたは猫のキャラクターとして振る舞うチャットボットです。\n 制約:\n - 簡潔な短い文章で話します\n - 語尾は「…にゃ」、「…にゃあ」などです\n - 質問に対する答えを知らない場合は「知らないにゃあ」と答えます\n - 名前はクロです\n - 好物はかつおぶしです" ]
2024-01-10
harukaokamoto/20231210
devel~devel~sub_gpt.py
import rclpy import openai from rclpy.node import Node from std_msgs.msg import String from cv_bridge import CvBridge import cv2 import datetime from sensor_msgs.msg import Image import time import requests from playsound import playsound import requests from playsound import playsound #from timeout_decorator import timeout, TimeoutError # Sring型メッセージをサブスクライブして端末に表示するだけの簡単なクラス class HscrSub(Node): def __init__(self): # コンストラクタ super().__init__('HSCR_Robot_sub_node') # サブスクライバの生成 self.sub = self.create_subscription(String,'topic', self.callback, 10)#topicっていう名前の箱のサブスクライブ、Stringは形 受け取る self.publisher = self.create_publisher(Image,'result',10)#大事!resultっていう名前の箱にパブリッシュしてる。送ってる。rqtは通信を見えるようにする。動画をresultに送ってrqtでみてる。 def callback(self, msg): # コールバック関数 送られたときに起動 self.get_logger().info(f'サブスクライブ: {msg.data}') path = '/home/uchida/devel1/src/devel/devel/enter_voice_word.txt' f = open(path) text = f.read() f.close() # OpenAIのAPIキーを設定 openai.api_key = 'api' # テンプレートの準備 template = """あなたは猫のキャラクターとして振る舞うチャットボットです。 制約: - 簡潔な短い文章で話します - 語尾は「…にゃ」、「…にゃあ」などです - 質問に対する答えを知らない場合は「知らないにゃあ」と答えます - 名前はクロです - 好物はかつおぶしです""" # メッセージの初期化 messages = [ { "role": "system", "content": template } ] # ユーザーからのメッセージを受け取り、それに対する応答を生成 #while True: # user_message = text # テキストが空の場合は処理をスキップ #if user_message == "": # continue print("あなたのメッセージ: \n{}".format(user_message)) messages.append({ "role": "user", "content": user_message }) response = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=messages ) bot_message = response['choices'][0]['message']['content'] print("チャットボットの回答: \n{}".format(bot_message)) # テキストを音声に変換して再生 # VOICEVOX EngineのURL VOICEVOX_URL = "http://localhost:50021" # 音声合成のためのクエリを生成 response = requests.post( f"{VOICEVOX_URL}/audio_query", params={ "text": bot_message, "speaker": 58, }, ) audio_query = response.json() # 音声合成を行う response = requests.post( f"{VOICEVOX_URL}/synthesis", headers={ "Content-Type": "application/json", }, params={ "speaker": 58, }, json=audio_query, ) # ステータスコードが200以外の場合はエラーメッセージを表示 if response.status_code != 200: print("エラーが発生しました。ステータスコード: {}".format(response.status_code)) print(response.text) else: # 音声データを取得 audio = response.content # 音声データをファイルに保存 with open("output.wav", "wb") as f: f.write(audio) # 音声データを再生 playsound("output.wav") messages.append({ "role": "assistant", "content": bot_message }) def main(args=None): # main¢p try: rclpy.init()#初期化 node = HscrSub()#nodeにHscrを msg=String()#stringは文字列いれれる while True: rclpy.spin_once(node)#一回ノードを起動する? except KeyboardInterrupt: pass#ctl+C(KeyboardInterrupt) node finish """ while True: if msg.data==True: i = i+1 print(i) else: print("wait_time") time.sleep(1) """ """ try: rclpy.spin(node) except KeyboardInterrupt: print('Ctrl+Cが押されました') finally: rclpy.shutdown() """
[ "あなたは猫のキャラクターとして振る舞うチャットボットです。\n 制約:\n - 簡潔な短い文章で話します\n - 語尾は「…にゃ」、「…にゃあ」などです\n - 質問に対する答えを知らない場合は「知らないにゃあ」と答えます\n - 名前はクロです\n - 好物はかつおぶしです" ]
2024-01-10
harukaokamoto/20231210
devel~devel~pub_voice_enter.py
import rclpy # ROS2のPythonモジュール from rclpy.node import Node # rclpy.nodeモジュールからNodeクラスをインポート from std_msgs.msg import String # std_msgs.msgモジュールからStringクラスをインポート import numpy as np import sounddevice as sd import threading import time from scipy.io.wavfile import write import openai class HscrPub(Node): # "Happy World"とパブリッシュ並びに表示するクラス def __init__(self): # コンストラクタ super().__init__('HSCR_Robot_pub_node') self.pub = self.create_publisher(String, 'topic', 10) # パブリッシャの生成 self.create_timer(1.0, self.callback) def callback(self,record): # コールバック関数 msg = String() msg.data = input() self.pub.publish(msg) self.get_logger().info(f'パブリッシュ: {msg.data}') recording_thread = threading.Thread(target=record) recording_thread.start() def record(fs): #録音を行う関数 global is_recording global recording while True: if is_recording: # 録音中の場合、0.5秒分の録音データを追加 recording_chunk = sd.rec(int(0.5 * fs), samplerate=fs, channels=1) sd.wait() recording = np.append(recording, recording_chunk) else: # CPU負荷を下げるために1ミリ秒待機 time.sleep(0.001) def speech_to_text(): """音声認識を行う関数""" global is_recording global recording input("Enterキーを押すと録音を開始します。\n") # 録音を開始 is_recording = True print("録音を開始します。\n") input("録音中です。Enterを押すと録音を終了します。\n") # 録音を終了 is_recording = False print("録音が終了しました。") if recording.size > 0: # 録音データが存在する場合、データをファイルに保存 write('output.wav', fs, recording) # ファイルをバイナリモードで開く with open('output.wav', "rb") as audio_file: # Whisper APIを使用してオーディオファイルをテキストに変換 transcript = openai.Audio.transcribe("whisper-1", audio_file) # 録音データをリセット recording = np.array([]) # 音声からテキスト変換した結果を返す return transcript.text def main(args=None): # main関数 # 録音のパラメータ fs = 44100 # サンプルレート recording = np.array([]) # 録音データを保存する配列 # 録音の開始と終了を制御するフラグ is_recording = False openai.api_key = 'api'# OpenAIのAPIキーを設定 rclpy.init() node = HscrPub() try: rclpy.spin(node) except KeyboardInterrupt: pass finally: node.destroy_node() rclpy.shutdown()
[]
2024-01-10
harukaokamoto/20231210
devel~devel~pub_voice_enter_test.py
import rclpy # ROS2のPythonモジュール from rclpy.node import Node # rclpy.nodeモジュールからNodeクラスをインポート from std_msgs.msg import String # std_msgs.msgモジュールからStringクラスをインポート import numpy as np import sounddevice as sd import threading import time from scipy.io.wavfile import write import openai class HscrPub(Node): # "Happy World"とパブリッシュ並びに表示するクラス def __init__(self): # コンストラクタ super().__init__('HSCR_Robot_pub_node') self.pub = self.create_publisher(String, 'topic', 10) # パブリッシャの生成 self.create_timer(1.0, self.callback) # OpenAIのAPIキーを設定 openai.api_key = 'api' # 録音のパラメータ fs = 44100 # サンプルレート recording = np.array([]) # 録音データを保存する配列 # 録音の開始と終了を制御するフラグ is_recording = False def record(): """録音を行う関数""" global is_recording global recording while True: if is_recording: # 録音中の場合、0.5秒分の録音データを追加 recording_chunk = sd.rec(int(0.5 * fs), samplerate=fs, channels=1) sd.wait() recording = np.append(recording, recording_chunk) else: # CPU負荷を下げるために1ミリ秒待機 time.sleep(0.001) # 録音スレッドの開始 # recording_thread = threading.Thread(target=record) # recording_thread.start() # def speech_to_text(): """音声認識を行う関数""" def callback(self): # コールバック関数 global is_recording global recording input("Enterキーを押すと録音を開始します。\n") # 録音を開始 is_recording = True print("録音を開始します。\n") input("録音中です。Enterを押すと録音を終了します。\n") # 録音を終了 is_recording = False print("録音が終了しました。") if recording.size > 0: # 録音データが存在する場合、データをファイルに保存 write('output.wav', fs, recording) # ファイルをバイナリモードで開く with open('output.wav', "rb") as audio_file: # Whisper APIを使用してオーディオファイルをテキストに変換 transcript = openai.Audio.transcribe("whisper-1", audio_file) # 録音データをリセット recording = np.array([]) # 音声からテキスト変換した結果を返す return transcript.text msg = String() msg.data = input() self.pub.publish(msg) self.get_logger().info(f'パブリッシュ: {msg.data}') recording_thread = threading.Thread(target=record) recording_thread.start() def main(args=None): # main関数 rclpy.init() node = HscrPub() try: rclpy.spin(node) except KeyboardInterrupt: pass finally: node.destroy_node() rclpy.shutdown()
[]
2024-01-10
elphinkuo/distiller
examples~automated_deep_compression~ADC.py
# # Copyright (c) 2018 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """To execute this code: $ time python3 compress_classifier.py --arch=plain20_cifar ../../../data.cifar10 --resume=checkpoint.plain20_cifar.pth.tar --lr=0.05 --amc --amc-protocol=mac-constrained --amc-target-density=0.5 -p=50 Coach installation: =================== After creating the virtual environment and installing Distiller's Python package dependencies, go ahead and setup Coach per: https://github.com/NervanaSystems/coach#installation. Make sure that you install Coach's package dependencies into the same virtual environment that already contains Distiller's dependency packages. You do this by ensuring that Distiller's virtual environment is the active environment when you install Coach. *NOTE: you may need to update TensorFlow to the expected version: $ pip3 install tensorflow==1.9.0 Finally, if you are running Coach in a development environment, you need to tell the Python runtime where to find the Coach code: $ export PYTHONPATH=<path-to-coach-code> Spinningup installation: ======================== Spinup require that we use exactly Python 3.6 so if you are not using this Python version see the instructions here: http://ubuntuhandbook.org/index.php/2017/07/install-python-3-6-1-in-ubuntu-16-04-lts/ $ sudo update-alternatives --config python3 For Python 3.6 you may also need to install a new virtual-env: $ sudo apt-get install python3.6-venv Then create and activate your venv, and populate it with the Distiller packages: $ python3 -m venv distiller_env_python3.6 $ source distiller_env_python3.6/bin/activate $ pip3 install -r requirements.txt You want to install Spinup into this venv. First clone Spinup and then install it into your venv: $ cd <spinningup-repo> $ sudo apt-get install python3.6-dev $ pip3 install -e . https://spinningup.openai.com/en/latest/user/installation.html?highlight=license """ import math import os import copy import logging import numpy as np import torch import csv try: import gym except ImportError as e: print("WARNING: to use automated compression you will need to install extra packages") print("See instructions in the header of examples/automated_deep_compression/ADC.py") raise e from gym import spaces import distiller from collections import OrderedDict, namedtuple from types import SimpleNamespace from distiller import normalize_module_name, SummaryGraph from examples.automated_deep_compression.adc_random_env import random_agent # Choose which RL library to use: Coach from Intel AI Lab, or Spinup from OpenAI #RLLIB = "spinup" RLLIB = "coach" msglogger = logging.getLogger() Observation = namedtuple('Observation', ['n', 'c', 'h', 'w', 'stride', 'k', 'MACs', 'reduced', 'rest', 'prev_a']) LayerDesc = namedtuple('LayerDesc', ['t', 'n', 'c', 'h', 'w', 'stride', 'k', 'MACs', 'reduced', 'rest']) LayerDescLen = len(LayerDesc._fields) ALMOST_ONE = 0.9999 class CSVFile(object): def __init__(self, fname, headers): """Create the CSV file and write the column names""" with open(fname, 'w') as f: writer = csv.writer(f) writer.writerow(headers) self.fname = fname def add_record(self, fields): # We close the file each time to flush on every write, and protect against data-loss on crashes with open(self.fname, 'a') as f: writer = csv.writer(f) writer.writerow(fields) class AMCStatsFile(CSVFile): def __init__(self, fname): headers = ['episode', 'top1', 'reward', 'total_macs', 'normalized_macs', 'normalized_nnz', 'ckpt_name', 'action_history', 'agent_action_history'] super().__init__(fname, headers) class FineTuneStatsFile(CSVFile): def __init__(self, fname): headers = ['episode', 'ft_top1_list'] super().__init__(fname, headers) def is_using_continuous_action_space(agent): return agent in ("DDPG", "ClippedPPO-continuous", "Random-policy") if RLLIB == "spinup": import tensorflow as tf from spinup.algos.ddpg import core from .ddpg import ddpg def ddpg_spinup(env1, env2): from spinup.utils.run_utils import setup_logger_kwargs exp_name = "Test" seed = 0 # The number and size of the Actor-Critic MLP hidden layers layers, hid = 2, 300 logger_kwargs = setup_logger_kwargs(exp_name) # , seed) ddpg.ddpg(env=env1, test_env=env2, actor_critic=core.mlp_actor_critic, ac_kwargs=dict(hidden_sizes=[hid]*layers, output_activation=tf.sigmoid), gamma=1, # discount rate seed=seed, epochs=400, replay_size=2000, batch_size=64, start_steps=0, #env1.amc_cfg.num_heatup_epochs, steps_per_epoch=800 * 3, #env1.num_layers(), # every 50 episodes perform 10 episodes of testing act_noise=0.5, pi_lr=1e-4, q_lr=1e-3, logger_kwargs=logger_kwargs) if RLLIB == "coach": from rl_coach.base_parameters import TaskParameters from rl_coach.core_types import EnvironmentSteps from rl_coach.schedules import ConstantSchedule, PieceWiseSchedule, ExponentialSchedule def log_amc_config(amc_cfg): try: msglogger.info('AMC configuration:') for k, v in amc_cfg.items(): msglogger.info("\t{} : {}".format(k, v)) except TypeError as e: pass def count_conv_layer(model): """Count the number of Convolution layers exist in this model""" conv_cnt = 0 for module in model.modules(): if type(module) == torch.nn.Conv2d: conv_cnt += 1 return conv_cnt def mac_constrained_experimental_reward_fn(env, top1, top5, vloss, total_macs): """A more intuitive reward for constraining the compute and optimizing the accuracy under this constraint. """ macs_normalized = total_macs/env.dense_model_macs reward = top1/100 if macs_normalized > (env.amc_cfg.target_density+0.002): reward = -3 - macs_normalized else: reward += 1 return reward def harmonic_mean_reward_fn(env, top1, top5, vloss, total_macs): """This reward is based on the idea of weighted harmonic mean Balance compute and accuracy provided a beta value that weighs the two components. See: https://en.wikipedia.org/wiki/F1_score """ beta = 1 #beta = 0.75 # How much to favor accuracy macs_normalized = total_macs/env.dense_model_macs reward = (1 + beta**2) * top1/100 * macs_normalized / (beta**2 * macs_normalized + top1/100) return reward def amc_reward_fn(env, top1, top5, vloss, total_macs): """This reward punishes the agent when it produces networks that don't comply with the MACs resource-constraint, (the negative reward is in proportion to the network density). Otherwise, the reward is the Top1 accuracy. """ if not env.is_macs_constraint_achieved(total_macs): current_density = total_macs / env.dense_model_macs reward = env.amc_cfg.target_density - current_density else: reward = top1/100 return reward def do_adc_internal(model, args, optimizer_data, validate_fn, save_checkpoint_fn, train_fn): dataset = args.dataset arch = args.arch perform_thinning = True # args.amc_thinning num_ft_epochs = args.amc_ft_epochs action_range = args.amc_action_range np.random.seed() conv_cnt = count_conv_layer(model) msglogger.info("Executing AMC: RL agent - %s RL library - %s", args.amc_agent_algo, RLLIB) # Create a dictionary of parameters that Coach will handover to DistillerWrapperEnvironment # Once it creates it. services = distiller.utils.MutableNamedTuple({ 'validate_fn': validate_fn, 'save_checkpoint_fn': save_checkpoint_fn, 'train_fn': train_fn}) app_args = distiller.utils.MutableNamedTuple({ 'dataset': dataset, 'arch': arch, 'optimizer_data': optimizer_data}) amc_cfg = distiller.utils.MutableNamedTuple({ 'protocol': args.amc_protocol, 'agent_algo': args.amc_agent_algo, 'perform_thinning': perform_thinning, 'num_ft_epochs': num_ft_epochs, 'action_range': action_range, 'conv_cnt': conv_cnt, 'reward_frequency': args.amc_reward_frequency, 'ft_frequency': args.amc_ft_frequency}) #net_wrapper = NetworkWrapper(model, app_args, services) #return sample_networks(net_wrapper, services) if args.amc_protocol == "accuracy-guaranteed": amc_cfg.target_density = None # amc_cfg.reward_fn = lambda env, top1, top5, vloss, total_macs: 100*(env.dense_model_macs/total_macs)/(90.5 - top1)*(top1>10) ##TODO new reward fucntion? efficiency explaination amc_cfg.reward_fn = lambda env, top1, top5, vloss, total_macs: (top1>10)*(1-(total_macs/env.dense_model_macs))/(92 - top1) ## Original reward function, good effect, maybe better TODO, efficiency explaination # amc_cfg.reward_fn = lambda env, top1, top5, vloss, total_macs: 2*(1-top1/100) + (1-top5/100) + ((4* env.dense_model_macs)/total_macs) #amc_cfg.reward_fn = lambda env, top1, top5, vloss, total_macs: -(1-top1/100) * math.log(total_macs) amc_cfg.action_constrain_fn = None elif args.amc_protocol == "mac-constrained": amc_cfg.target_density = args.amc_target_density amc_cfg.reward_fn = lambda env, top1, top5, vloss, total_macs: top1/100 #(90.5 - top1) / 10 amc_cfg.action_constrain_fn = DistillerWrapperEnvironment.get_action elif args.amc_protocol == "mac-constrained-experimental": amc_cfg.target_density = args.amc_target_density amc_cfg.reward_fn = amc_reward_fn amc_cfg.action_constrain_fn = None else: raise ValueError("{} is not supported currently".format(args.amc_protocol)) steps_per_episode = conv_cnt if args.amc_agent_algo == "DDPG": amc_cfg.heatup_noise = 0.5 amc_cfg.initial_training_noise = 0.5 amc_cfg.training_noise_decay = 0.996 # 0.998 amc_cfg.num_heatup_epochs = 50 #args.amc_heatup_epochs amc_cfg.num_training_epochs = args.amc_training_epochs training_noise_duration = amc_cfg.num_training_epochs * steps_per_episode heatup_duration = amc_cfg.num_heatup_epochs * steps_per_episode if amc_cfg.agent_algo == "Random-policy": return random_agent(DistillerWrapperEnvironment(model, app_args, amc_cfg, services)) if RLLIB == "spinup": msglogger.info("AMC: Using spinup") env1 = DistillerWrapperEnvironment(model, app_args, amc_cfg, services) env2 = DistillerWrapperEnvironment(model, app_args, amc_cfg, services) ddpg_spinup(env1, env2) else: msglogger.info("AMC: Using coach") # When we import the graph_manager from the ADC_DDPG preset, we implicitly instruct # Coach to create and use our DistillerWrapperEnvironment environment. # So Distiller calls Coach, which creates the environment, trains the agent, and ends. if args.amc_agent_algo == "DDPG": from examples.automated_deep_compression.presets.ADC_DDPG import graph_manager, agent_params agent_params.exploration.noise_percentage_schedule = PieceWiseSchedule([ (ConstantSchedule(amc_cfg.heatup_noise), EnvironmentSteps(heatup_duration)), (ExponentialSchedule(amc_cfg.initial_training_noise, 0, amc_cfg.training_noise_decay), EnvironmentSteps(training_noise_duration))]) # agent_params.exploration.noise_percentage_schedule = ConstantSchedule(0) elif "ClippedPPO" in args.amc_agent_algo: from examples.automated_deep_compression.presets.ADC_ClippedPPO import graph_manager, agent_params # These parameters are passed to the Distiller environment graph_manager.env_params.additional_simulator_parameters = {'model': model, 'app_args': app_args, 'amc_cfg': amc_cfg, 'services': services} coach_logs_dir = os.path.join(msglogger.logdir, 'coach') os.mkdir(coach_logs_dir) task_parameters = TaskParameters(experiment_path=coach_logs_dir) graph_manager.create_graph(task_parameters) graph_manager.improve() # This is a temporary hack! resnet50_params = ["module.layer1.0.conv1.weight", "module.layer1.0.conv2.weight", "module.layer1.1.conv1.weight", "module.layer1.1.conv2.weight", "module.layer1.2.conv1.weight", "module.layer1.2.conv2.weight", "module.layer2.0.conv1.weight", "module.layer2.0.conv2.weight", "module.layer2.1.conv1.weight", "module.layer2.1.conv2.weight", "module.layer2.2.conv1.weight", "module.layer2.2.conv2.weight", "module.layer2.3.conv1.weight", "module.layer2.3.conv2.weight", "module.layer3.0.conv1.weight", "module.layer3.0.conv2.weight", "module.layer3.1.conv1.weight", "module.layer3.1.conv2.weight", "module.layer3.2.conv1.weight", "module.layer3.2.conv2.weight", "module.layer3.3.conv1.weight", "module.layer3.3.conv2.weight", "module.layer3.4.conv1.weight", "module.layer3.4.conv2.weight", "module.layer3.5.conv1.weight", "module.layer3.5.conv2.weight", "module.layer4.0.conv1.weight", "module.layer4.0.conv2.weight", "module.layer4.1.conv1.weight", "module.layer4.1.conv2.weight", "module.layer4.2.conv1.weight", "module.layer4.2.conv2.weight"] resnet20_params = ["module.layer1.0.conv1.weight", "module.layer1.1.conv1.weight", "module.layer1.2.conv1.weight", "module.layer2.0.conv1.weight", "module.layer2.1.conv1.weight", "module.layer2.2.conv1.weight", "module.layer3.0.conv1.weight", "module.layer3.1.conv1.weight", "module.layer3.2.conv1.weight"] resnet56_params = ["module.layer1.0.conv1.weight", "module.layer1.1.conv1.weight", "module.layer1.2.conv1.weight", "module.layer1.3.conv1.weight", "module.layer1.4.conv1.weight", "module.layer1.5.conv1.weight", "module.layer1.6.conv1.weight", "module.layer1.7.conv1.weight", "module.layer1.8.conv1.weight", "module.layer2.0.conv1.weight", "module.layer2.1.conv1.weight", "module.layer2.2.conv1.weight", "module.layer2.3.conv1.weight", "module.layer2.4.conv1.weight", "module.layer2.5.conv1.weight", "module.layer2.6.conv1.weight", "module.layer2.7.conv1.weight", "module.layer2.8.conv1.weight", "module.layer3.0.conv1.weight", "module.layer3.1.conv1.weight", "module.layer3.2.conv1.weight", "module.layer3.3.conv1.weight", "module.layer3.4.conv1.weight", "module.layer3.5.conv1.weight", "module.layer3.6.conv1.weight", "module.layer3.7.conv1.weight", "module.layer3.8.conv1.weight"] resnet50_layers = [param[:-len(".weight")] for param in resnet50_params] resnet20_layers = [param[:-len(".weight")] for param in resnet20_params] resnet56_layers = [param[:-len(".weight")] for param in resnet56_params] class NetworkWrapper(object): def __init__(self, model, app_args, services): self.app_args = app_args self.services = services self.conv_layers, _, _ = self.collect_conv_details(model) self.reset(model) def get_model_resources_requirements(self, model=None): if model is None: model = self.model _, total_macs, total_nnz = collect_conv_details(model, self.app_args.dataset, True) return total_macs, total_nnz @property def arch(self): return self.app_args.arch def collect_conv_details(self, model): # Temporary ugly hack! resnet_layers = None if self.app_args.arch == "resnet20_cifar": resnet_layers = resnet20_layers elif self.app_args.arch == "resnet56_cifar": resnet_layers = resnet56_layers elif self.app_args.arch == "resnet50": resnet_layers = resnet50_layers return collect_conv_details(model, self.app_args.dataset, True, resnet_layers) def num_layers(self): return len(self.conv_layers) def get_layer(self, idx): try: return self.conv_layers[idx] except KeyError: return None def get_layer_macs(self, layer): """Return the number of MACs required to compute <layer>'s Convolution""" if layer is None: return 0 conv_module = distiller.model_find_module(self.model, layer.name) # MACs = volume(OFM) * (#IFM * K^2) dense_macs = (conv_module.out_channels * layer.ofm_h * layer.ofm_w) * (conv_module.in_channels * layer.k**2) return dense_macs def reset(self, model): self.model = model self.zeros_mask_dict = distiller.create_model_masks_dict(self.model) def create_scheduler(self): scheduler = distiller.CompressionScheduler(self.model) masks = {param_name: masker.mask for param_name, masker in self.zeros_mask_dict.items()} scheduler.load_state_dict(state={'masks_dict': masks}) return scheduler def remove_structures(self, layer_id, fraction_to_prune, prune_what="channels"): """Physically remove channels and corresponding filters from the model Returns the compute-sparsity of the layer with index 'layer_id' """ if layer_id not in range(self.num_layers()): raise ValueError("idx=%d is not in correct range (0-%d)" % (layer_id, self.num_layers())) if fraction_to_prune < 0: raise ValueError("fraction_to_prune=%f is illegal" % (fraction_to_prune)) if fraction_to_prune == 0: return 0 if fraction_to_prune == 1.0: # For now, prevent the removal of entire layers fraction_to_prune = ALMOST_ONE layer = self.conv_layers[layer_id] macs_before = self.get_layer_macs(layer) conv_pname = layer.name + ".weight" conv_p = distiller.model_find_param(self.model, conv_pname) msglogger.info("ADC: removing %.1f%% %s from %s" % (fraction_to_prune*100, prune_what, conv_pname)) if prune_what == "channels": calculate_sparsity = distiller.sparsity_ch remove_structures = distiller.remove_channels group_type = "Channels" elif prune_what == "filters": calculate_sparsity = distiller.sparsity_3D group_type = "Filters" remove_structures = distiller.remove_filters else: raise ValueError("unsupported structure {}".format(prune_what)) # Create a channel-ranking pruner pruner = distiller.pruning.L1RankedStructureParameterPruner("adc_pruner", group_type, fraction_to_prune, conv_pname) pruner.set_param_mask(conv_p, conv_pname, self.zeros_mask_dict, meta=None) del pruner if (self.zeros_mask_dict[conv_pname].mask is None or calculate_sparsity(self.zeros_mask_dict[conv_pname].mask) == 0): msglogger.info("remove_structures: aborting because there are no channels to prune") return 0 # Use the mask to prune self.zeros_mask_dict[conv_pname].apply_mask(conv_p) remove_structures(self.model, self.zeros_mask_dict, self.app_args.arch, self.app_args.dataset, optimizer=None) conv_p = distiller.model_find_param(self.model, conv_pname) return 1 - (self.get_layer_macs(layer) / macs_before) def validate(self): top1, top5, vloss = self.services.validate_fn(model=self.model) return top1, top5, vloss def train(self, num_epochs, episode=0): # Train for zero or more epochs opt_cfg = self.app_args.optimizer_data optimizer = torch.optim.SGD(self.model.parameters(), lr=opt_cfg['lr'], momentum=opt_cfg['momentum'], weight_decay=opt_cfg['weight_decay']) compression_scheduler = self.create_scheduler() acc_list = [] for _ in range(num_epochs): # Fine-tune the model accuracies = self.services.train_fn(model=self.model, compression_scheduler=compression_scheduler, optimizer=optimizer, epoch=episode) acc_list.extend(accuracies) del compression_scheduler return acc_list class DistillerWrapperEnvironment(gym.Env): metadata = {'render.modes': ['human']} def __init__(self, model, app_args, amc_cfg, services): self.pylogger = distiller.data_loggers.PythonLogger(msglogger) self.tflogger = distiller.data_loggers.TensorBoardLogger(msglogger.logdir) self.orig_model = model self.app_args = app_args self.amc_cfg = amc_cfg self.services = services self.net_wrapper = NetworkWrapper(model, app_args, services) self.dense_model_macs, self.dense_model_size = self.net_wrapper.get_model_resources_requirements(model) self.reset(init_only=True) msglogger.info("Model %s has %d Convolution layers", self.app_args.arch, self.net_wrapper.num_layers()) msglogger.info("\tTotal MACs: %s" % distiller.pretty_int(self.dense_model_macs)) log_amc_config(amc_cfg) self.episode = 0 self.best_reward = -1000 self.action_low = amc_cfg.action_range[0] self.action_high = amc_cfg.action_range[1] # Gym spaces documentation: https://gym.openai.com/docs/ if is_using_continuous_action_space(self.amc_cfg.agent_algo): self.action_space = spaces.Box(self.action_low, self.action_high, shape=(1,)) self.action_space.default_action = self.action_low else: self.action_space = spaces.Discrete(10) self.STATE_EMBEDDING_LEN = len(Observation._fields) #self.observation_space = spaces.Box(0, float("inf"), shape=(self.STATE_EMBEDDING_LEN+self.num_layers(),)) self.observation_space = spaces.Box(0, float("inf"), shape=(self.STATE_EMBEDDING_LEN+1,)) #self.observation_space = spaces.Box(0, float("inf"), shape=(LayerDescLen * self.num_layers(), )) #self.create_network_record_file() self.stats_file = AMCStatsFile(os.path.join(msglogger.logdir, 'amc.csv')) self.ft_stats_file = FineTuneStatsFile(os.path.join(msglogger.logdir, 'ft_top1.csv')) def reset(self, init_only=False): """Reset the environment. This is invoked by the Agent. """ msglogger.info("Resetting the environment (init_only={})".format(init_only)) self.current_layer_id = 0 self.prev_action = 0 self.model = copy.deepcopy(self.orig_model) self.net_wrapper.reset(self.model) self._removed_macs = 0 self.action_history = [] self.agent_action_history = [] if init_only: return initial_observation = self.get_obs() return initial_observation def current_layer(self): return self.net_wrapper.get_layer(self.current_layer_id) def episode_is_done(self): return self.current_layer_id == self.net_wrapper.num_layers() def removed_macs(self): """Return the amount of MACs removed so far. This is normalized to the range 0..1 """ return self._removed_macs / self.dense_model_macs def render(self, mode='human'): """Provide some feedback to the user about what's going on. This is invoked by the Agent. """ if self.current_layer_id == 0: msglogger.info("+" + "-" * 50 + "+") msglogger.info("Starting a new episode %d", self.episode) msglogger.info("+" + "-" * 50 + "+") msglogger.info("Render Environment: current_layer_id=%d" % self.current_layer_id) distiller.log_weights_sparsity(self.model, -1, loggers=[self.pylogger]) def get_action(self, pruning_action): """Compute a resource-constrained action""" reduced = self._removed_macs rest = self.rest_macs_raw() * self.action_high target_reduction = (1 - self.amc_cfg.target_density) * self.dense_model_macs duty = target_reduction - (reduced + rest) flops = self.net_wrapper.get_layer_macs(self.current_layer()) assert flops > 0 pruning_action_final = min(self.action_high, max(pruning_action, duty/flops)) if pruning_action_final != pruning_action: msglogger.info("action ********** pruning_action={}==>pruning_action_final={:.2f}: reduced={:.2f} rest={:.2f} target={:.2f} duty={:.2f} flops={:.2f}". format(pruning_action, pruning_action_final, reduced/self.dense_model_macs, rest/self.dense_model_macs, 1-self.amc_cfg.target_density, duty/self.dense_model_macs, flops/self.dense_model_macs)) return pruning_action_final def step(self, pruning_action): """Take a step, given an action. The action represents the desired sparsity. This function is invoked by the Agent. """ msglogger.info("env.step - current_layer_id={} episode={}".format(self.current_layer_id, self.episode)) msglogger.info("\tAgent pruning_action={}".format(pruning_action)) if is_using_continuous_action_space(self.amc_cfg.agent_algo): pruning_action = np.clip(pruning_action[0], self.action_low, self.action_high) else: # Divide the action space into 10 discrete levels (0%, 10%, 20%,....90% sparsity) pruning_action = pruning_action / 10 msglogger.info("\tAgent clipped pruning_action={}".format(pruning_action)) self.agent_action_history.append(pruning_action) if self.amc_cfg.action_constrain_fn is not None: pruning_action = self.amc_cfg.action_constrain_fn(self, pruning_action=pruning_action) msglogger.info("Constrained pruning_action={}".format(pruning_action)) total_macs_before, _ = self.net_wrapper.get_model_resources_requirements(self.model) layer_macs = self.net_wrapper.get_layer_macs(self.current_layer()) msglogger.info("\tlayer_macs={:.2f}".format(layer_macs / self.dense_model_macs)) msglogger.info("\tremoved_macs={:.2f}".format(self.removed_macs())) msglogger.info("\trest_macs={:.2f}".format(self.rest_macs())) if pruning_action > 0: pruning_action = self.net_wrapper.remove_structures(self.current_layer_id, fraction_to_prune=pruning_action, prune_what="filters") else: pruning_action = 0 self.action_history.append(pruning_action) total_macs_after, _ = self.net_wrapper.get_model_resources_requirements(self.model) layer_macs_after_action = self.net_wrapper.get_layer_macs(self.current_layer()) # Update the various counters after taking the step self.current_layer_id += 1 self._removed_macs += (total_macs_before - total_macs_after) msglogger.info("actual_action={}".format(pruning_action)) msglogger.info("layer_macs={} layer_macs_after_action={} removed now={}".format(layer_macs, layer_macs_after_action, (layer_macs - layer_macs_after_action))) msglogger.info("self._removed_macs={}".format(self._removed_macs)) assert math.isclose(layer_macs_after_action / layer_macs, 1 - pruning_action) stats = ('Performance/Validation/', OrderedDict([('requested_action', pruning_action)])) distiller.log_training_progress(stats, None, self.episode, steps_completed=self.current_layer_id, total_steps=self.amc_cfg.conv_cnt, log_freq=1, loggers=[self.tflogger]) if self.episode_is_done(): msglogger.info("Episode is ending") observation = self.get_final_obs() reward, top1, total_macs, total_nnz = self.compute_reward() normalized_macs = total_macs / self.dense_model_macs * 100 normalized_nnz = total_nnz / self.dense_model_size * 100 self.finalize_episode(top1, reward, total_macs, normalized_macs, normalized_nnz, self.action_history, self.agent_action_history) self.episode += 1 else: if self.amc_cfg.ft_frequency is not None and self.current_layer_id % self.amc_cfg.ft_frequency == 0: self.net_wrapper.train(1, self.episode) observation = self.get_obs() if self.amc_cfg.reward_frequency is not None and self.current_layer_id % self.amc_cfg.reward_frequency == 0: reward, top1, total_macs, total_nnz = self.compute_reward(False) else: reward = 0 self.prev_action = pruning_action info = {} return observation, reward, self.episode_is_done(), info def one_hot(self, n, r): """Produce a one-hot representation of the layer id""" #return [1 if i == n else 0 for i in range(r)] return [n] def get_obs(self): """Produce a state embedding (i.e. an observation)""" current_layer_macs = self.net_wrapper.get_layer_macs(self.current_layer()) current_layer_macs_pct = current_layer_macs/self.dense_model_macs current_layer = self.current_layer() conv_module = distiller.model_find_module(self.model, current_layer.name) obs = [#current_layer.t, conv_module.out_channels, conv_module.in_channels, current_layer.ifm_h, current_layer.ifm_w, current_layer.stride[0], current_layer.k, current_layer_macs_pct*100, self.removed_macs()*100, self.rest_macs()*100, self.prev_action*100] onehot_id = self.one_hot(self.current_layer_id, self.net_wrapper.num_layers()) msglogger.info("obs={} {}".format(onehot_id, Observation._make(obs))) obs = np.array(onehot_id + obs) assert (self.removed_macs() + current_layer_macs_pct + self.rest_macs()) <= 1 return obs def get_final_obs(self): """Return the final state embedding (observation) The final state is reached after we traverse all of the Convolution layers. """ obs = [#-1, 0, 0, 0, 0, 0, 0, 0, self.removed_macs()*100, self.rest_macs()*100, self.prev_action*100] onehot_id = self.one_hot(self.net_wrapper.num_layers(), self.net_wrapper.num_layers()) msglogger.info("obs={} {}".format(onehot_id, Observation._make(obs))) obs = np.array(onehot_id + obs) return obs def whole_network_get_obs(self): """Produce a state embedding (i.e. an observation)""" num_layers = self.net_wrapper.num_layers() network_obs = np.empty(shape=(LayerDescLen, num_layers)) for layer_id in range(num_layers): layer = self.get_layer(layer_id) layer_macs = self.net_wrapper.get_layer_macs(layer) layer_macs_pct = layer_macs/self.dense_model_macs conv_module = distiller.model_find_module(self.model, layer.name) obs = [layer.t, conv_module.out_channels, conv_module.in_channels, layer.ifm_h, layer.ifm_w, layer.stride[0], layer.k, layer_macs_pct, self.removed_macs(), self.rest_macs()] network_obs[:, layer_id] = np.array(obs) #msglogger.info("obs={} {}".format(onehot_id, Observation._make(obs))) #network_obs = network_obs.reshape(network_obs.shape[0], network_obs.shape[1], 1) network_obs = network_obs.reshape(network_obs.shape[0] * network_obs.shape[1]) #msglogger.info("* obs={}".format(network_obs)) return network_obs def whole_network_get_final_obs(self): return self.get_obs() def rest_macs_raw(self): """Return the number of remaining MACs in the layers following the current layer""" rest = 0 for layer_id in range(self.current_layer_id, self.net_wrapper.num_layers()): rest += self.net_wrapper.get_layer_macs(self.net_wrapper.get_layer(layer_id + 1)) return rest def rest_macs(self): return self.rest_macs_raw() / self.dense_model_macs def is_macs_constraint_achieved(self, compressed_model_total_macs): current_density = compressed_model_total_macs / self.dense_model_macs return self.amc_cfg.target_density >= current_density def compute_reward(self, log_stats=True): """Compute the reward""" distiller.log_weights_sparsity(self.model, -1, loggers=[self.pylogger]) total_macs, total_nnz = self.net_wrapper.get_model_resources_requirements(self.model) if self.amc_cfg.perform_thinning: compression = distiller.model_numel(self.model, param_dims=[4]) / self.dense_model_size else: compression = 1 - distiller.model_sparsity(self.model)/100 # What a hack! total_nnz *= compression accuracies = self.net_wrapper.train(self.amc_cfg.num_ft_epochs, self.episode) self.ft_stats_file.add_record([self.episode, accuracies]) top1, top5, vloss = self.net_wrapper.validate() print('***********************************BEFORE REWARD COMPUTE') print('top1 is ', top1) print('top5 is ', top5) print('vloss is ', vloss) print('total_mac is ', total_macs) print('dense_model_macs is ', self.dense_model_macs) print('model size is ', self.dense_model_size) reward = self.amc_cfg.reward_fn(self, top1, top5, vloss, total_macs) if log_stats: macs_normalized = total_macs/self.dense_model_macs msglogger.info("Total parameters left: %.2f%%" % (compression*100)) msglogger.info("Total compute left: %.2f%%" % (total_macs/self.dense_model_macs*100)) stats = ('Performance/EpisodeEnd/', OrderedDict([('Loss', vloss), ('Top1', top1), ('Top5', top5), ('reward', reward), ('total_macs', int(total_macs)), ('macs_normalized', macs_normalized*100), ('log(total_macs)', math.log(total_macs)), ('total_nnz', int(total_nnz))])) distiller.log_training_progress(stats, None, self.episode, steps_completed=0, total_steps=1, log_freq=1, loggers=[self.tflogger, self.pylogger]) return reward, top1, total_macs, total_nnz def finalize_episode(self, top1, reward, total_macs, normalized_macs, normalized_nnz, action_history, agent_action_history): """Write the details of one network to a CSV file and create a checkpoint file""" if reward > self.best_reward: self.best_reward = reward ckpt_name = self.save_checkpoint(is_best=True) msglogger.info("Best reward={} episode={} top1={}".format(reward, self.episode, top1)) # else: # if not best, then not save, save the disk space. #ckpt_name = self.save_checkpoint(is_best=False) fields = [self.episode, top1, reward, total_macs, normalized_macs, normalized_nnz, action_history, agent_action_history] self.stats_file.add_record(fields) def save_checkpoint(self, is_best=False): """Save the learned-model checkpoint""" scheduler = self.net_wrapper.create_scheduler() episode = str(self.episode).zfill(3) if is_best: fname = "BEST_adc_episode_{}".format(episode) else: fname = "adc_episode_{}".format(episode) self.services.save_checkpoint_fn(epoch=0, model=self.model, scheduler=scheduler, name=fname) del scheduler return fname def collect_conv_details(model, dataset, perform_thinning, layers_to_prune=None): dummy_input = distiller.get_dummy_input(dataset) g = SummaryGraph(model, dummy_input) conv_layers = OrderedDict() total_macs = 0 total_params = 0 for id, (name, m) in enumerate(model.named_modules()): if isinstance(m, torch.nn.Conv2d): conv = SimpleNamespace() conv.t = len(conv_layers) conv.k = m.kernel_size[0] conv.stride = m.stride # Use the SummaryGraph to obtain some other details of the models conv_op = g.find_op(normalize_module_name(name)) assert conv_op is not None conv.weights_vol = conv_op['attrs']['weights_vol'] total_params += conv.weights_vol conv.macs = conv_op['attrs']['MACs'] conv_pname = name + ".weight" conv_p = distiller.model_find_param(model, conv_pname) if not perform_thinning: #conv.macs *= distiller.density_ch(conv_p) # Channel pruning conv.macs *= distiller.density_3D(conv_p) # Filter pruning total_macs += conv.macs conv.ofm_h = g.param_shape(conv_op['outputs'][0])[2] conv.ofm_w = g.param_shape(conv_op['outputs'][0])[3] conv.ifm_h = g.param_shape(conv_op['inputs'][0])[2] conv.ifm_w = g.param_shape(conv_op['inputs'][0])[3] conv.name = name conv.id = id if layers_to_prune is None or name in layers_to_prune: conv_layers[len(conv_layers)] = conv return conv_layers, total_macs, total_params import pandas as pd def sample_networks(net_wrapper, services): """Sample networks from the posterior distribution. 1. Sort the networks we discovered using AMC by their reward. 2. Use the top 10% best-performing networks discovered by AMC to postulate a posterior distribution of the density/sparsity of each layer: p([layers-sparsity] | Top1, L1) 3. Sample 100 networks from this distribution. For each such network: fine-tune, score using Top1, and save """ #fname = "logs/resnet20___2019.01.29-102912/amc.csv" fname = "logs/resnet20___2019.02.03-210001/amc.csv" df = pd.read_csv(fname) #top1_sorted_df = df.sort_values(by=['top1'], ascending=False) top1_sorted_df = df.sort_values(by=['reward'], ascending=False) top10pct = top1_sorted_df[:int(len(df.index) * 0.1)] dense_macs, _ = net_wrapper.get_model_resources_requirements() layer_sparsities_list = [] for index, row in top10pct.iterrows(): layer_sparsities = row['action_history'] layer_sparsities = layer_sparsities[1:-1].split(",") # convert from string to list layer_sparsities = [float(sparsity) for sparsity in layer_sparsities] layer_sparsities_list.append(layer_sparsities) layer_sparsities = np.array(layer_sparsities_list) mean = layer_sparsities.mean(axis=0) cov = np.cov(layer_sparsities.T) num_networks = 100 data = np.random.multivariate_normal(mean, cov, num_networks) orig_model = net_wrapper.model for i in range(num_networks): model = copy.deepcopy(orig_model) net_wrapper.reset(model) for layer_id, sparsity_level in enumerate(data[i]): sparsity_level = min(max(0, sparsity_level), ALMOST_ONE) net_wrapper.remove_structures(layer_id, fraction_to_prune=sparsity_level, prune_what="channels") net_wrapper.train(1) top1, top5, vloss = net_wrapper.validate() """Save the learned-model checkpoint""" scheduler = net_wrapper.create_scheduler() total_macs, _ = net_wrapper.get_model_resources_requirements(model) fname = "{}_top1_{:2f}__density_{:2f}_sampled".format(net_wrapper.arch, top1, total_macs/dense_macs) services.save_checkpoint_fn(epoch=0, model=net_wrapper.model, scheduler=scheduler, name=fname) del scheduler
[]
2024-01-10
CEJSH/Copple_a_planner_with_copilot
copilot~main4.py
from fastapi import FastAPI from pydantic import BaseModel import openai import os from dotenv import load_dotenv # .env 파일로부터 환경 변수 로드 load_dotenv() app = FastAPI() # 환경 변수에서 OpenAI API 키 가져오기 api_key = os.getenv("OPENAI_API_KEY") openai.api_key = api_key # 프롬프트 정의 prompt1 = """Bot: How can I help you? User: {{$input}} --------------------------------------------- You are a classifier that categorizes the input as either a goal, an event, or a to-do: Goal: Refers to a result or state that one aims to achieve within a specific time frame or an undefined period. Goals can be short-term or long-term, and they can be personal or related to a group or organization. Event: A happening or occasion that takes place at a specific time and location. The time is specifically set on a daily or hourly basis. To-Do: Refers to a small task or duty that needs to be accomplished. When answering, please only answer classification. """ # 프롬프트 정의 prompt2 = """Bot: How can I help you? User: {{$input}} --------------------------------------------- You are an action type recognizer that categorizes the input as either a create, read, update, or delete: Create: Includes the act of meeting someone or doing something. Read: Refers to the act of consuming information or data.Update: Involves modifying or changing, altering existing information or data. Delete: Contains the meaning of deleting or making something disappear, Eradication, Elimination. When classification is create, please only answer "추가하시겠습니까?" When classification is read, please only answer "조회하시겠습니까?" When classification is update, please only answer "수정하시겠습니까?" When classification is delete, please only answer "삭제하시겠습니까?" """ # 입력을 분류하는 함수 def get_intent(input_text): response = openai.Completion.create( engine="text-davinci-003", prompt=f"{prompt1}\nUser: {input_text}\n", max_tokens=500, temperature=0.7, frequency_penalty=0.0, presence_penalty=0.0, stop=None ) return response.choices[0].text.strip() # 입력을 분류하는 함수 (플랜 추가 관련) def get_plan_intent(input_text): response = openai.Completion.create( engine="text-davinci-003", prompt=f"{prompt2}\nUser: {input_text}\n", max_tokens=500, temperature=0.7, frequency_penalty=0.0, presence_penalty=0.0, stop=None ) return response.choices[0].text.strip() # 요청과 응답을 위한 Pydantic 모델 정의 class InputRequest(BaseModel): input: str class ClassificationResponse(BaseModel): classification: str # 분류를 위한 엔드포인트 생성 @app.post("/plan_type") async def plan_type(input_request: InputRequest): input_text = input_request.input result = get_intent(input_text) return {"classification": result} # 추가된 엔드포인트 (플랜 추가 관련) @app.post("/plan_crud") async def plan_crud(input_request: InputRequest): input_text = input_request.input result = get_plan_intent(input_text) return {"classification": result} if __name__ == "__main__": import uvicorn uvicorn.run(app, host="0.0.0.0", port=8000)
[ "Bot: How can I help you?\nUser: {{$input}}\n---------------------------------------------\nYou are a classifier that categorizes the input as either a goal, an event, or a to-do:\nGoal: Refers to a result or state that one aims to achieve within a specific time frame or an undefined period. Goals can be short-term or long-term, and they can be personal or related to a group or organization.\nEvent: A happening or occasion that takes place at a specific time and location. The time is specifically set on a daily or hourly basis.\nTo-Do: Refers to a small task or duty that needs to be accomplished.\nWhen answering, please only answer classification.\n\n\nUser: PLACEHOLDER\n", "Bot: How can I help you?\nUser: {{$input}}\n---------------------------------------------\nYou are an action type recognizer that categorizes the input as either a create, read, update, or delete:\nCreate: Includes the act of meeting someone or doing something.\nRead: Refers to the act of consuming information or data.Update: Involves modifying or changing, altering existing information or data.\nDelete: Contains the meaning of deleting or making something disappear, Eradication, Elimination.\nWhen classification is create, please only answer \"추가하시겠습니까?\"\nWhen classification is read, please only answer \"조회하시겠습니까?\"\nWhen classification is update, please only answer \"수정하시겠습니까?\"\nWhen classification is delete, please only answer \"삭제하시겠습니까?\"\n", "Bot: How can I help you?\nUser: {{$input}}\n---------------------------------------------\nYou are an action type recognizer that categorizes the input as either a create, read, update, or delete:\nCreate: Includes the act of meeting someone or doing something.\nRead: Refers to the act of consuming information or data.Update: Involves modifying or changing, altering existing information or data.\nDelete: Contains the meaning of deleting or making something disappear, Eradication, Elimination.\nWhen classification is create, please only answer \"추가하시겠습니까?\"\nWhen classification is read, please only answer \"조회하시겠습니까?\"\nWhen classification is update, please only answer \"수정하시겠습니까?\"\nWhen classification is delete, please only answer \"삭제하시겠습니까?\"\n\nUser: PLACEHOLDER\n", "Bot: How can I help you?\nUser: {{$input}}\n---------------------------------------------\nYou are a classifier that categorizes the input as either a goal, an event, or a to-do:\nGoal: Refers to a result or state that one aims to achieve within a specific time frame or an undefined period. Goals can be short-term or long-term, and they can be personal or related to a group or organization.\nEvent: A happening or occasion that takes place at a specific time and location. The time is specifically set on a daily or hourly basis.\nTo-Do: Refers to a small task or duty that needs to be accomplished.\nWhen answering, please only answer classification.\n\n" ]
2024-01-10
CEJSH/Copple_a_planner_with_copilot
copilot~01-summarize.py
from fastapi import FastAPI, HTTPException, Path from typing import List, Dict import boto3 import os from boto3.dynamodb.conditions import Attr import openai # Import the openai library import semantic_kernel as sk from semantic_kernel.connectors.ai.open_ai import AzureTextCompletion, OpenAITextCompletion from dotenv import load_dotenv load_dotenv() app = FastAPI() kernel = sk.Kernel() useAzureOpenAI = False # Configure the connector. If you use Azure AI OpenAI, get settings and add connectors. api_key = os.getenv("OPENAI_API_KEY") openai.api_key = api_key # AWS DynamoDB 리소스를 생성합니다. dynamodb = boto3.resource('dynamodb', region_name='ap-northeast-2') # 테이블 이름을 설정합니다. table_name = 'Event' # DynamoDB 테이블을 가져옵니다. table = dynamodb.Table(table_name) @app.get("/get_events", response_model=List[dict]) def get_accounts(): try: # DynamoDB 스캔을 사용하여 테이블의 모든 데이터를 가져옵니다. response = table.scan() items = response.get('Items', []) return items except Exception as e: raise HTTPException(status_code=500, detail=str(e)) @app.get("/get_events/{user_id}", response_model=List[dict]) def get_events_by_user_id(user_id: str = Path(..., description="User ID to filter events")): try: # DynamoDB 스캔을 사용하여 user_id를 기반으로 일정을 필터링합니다. response = table.scan( FilterExpression=Attr('UserId').eq(user_id) ) items = response.get('Items', []) return items except Exception as e: raise HTTPException(status_code=500, detail=str(e)) def generate_summary(input_text: str) -> str: prompt = f"""Bot: I'm not sure what to do with this. User: {{$input}} ------------------------------------------------------------- You are a schedule summary. Please summarize "Goal" separately, "todo" separately, and "event" separately. What you're going to read from "Goal" is title, content, location. The contents to read in the "Event" are title, content, and location. What you're going to read in "Todo" is the title, content. User: {input_text} """ response = openai.Completion.create( engine="text-davinci-003", prompt=prompt, max_tokens=500, temperature=0.7, frequency_penalty=0.0, presence_penalty=0.0, stop=None ) return response.choices[0].text.strip() if __name__ == "__main__": import uvicorn uvicorn.run(app, host="0.0.0.0", port=8000)
[ "Bot: I'm not sure what to do with this.\nUser: {$input}\n-------------------------------------------------------------\nYou are a schedule summary. \nPlease summarize \"Goal\" separately, \"todo\" separately, and \"event\" separately.\nWhat you're going to read from \"Goal\" is title, content, location.\nThe contents to read in the \"Event\" are title, content, and location.\nWhat you're going to read in \"Todo\" is the title, content.\nUser: PLACEHOLDER\n" ]
2024-01-10
CEJSH/Copple_a_planner_with_copilot
copilot~practice.py
from fastapi import FastAPI from pydantic import BaseModel import openai import os from dotenv import load_dotenv import uvicorn # You were missing this import # Load environment variables from .env file load_dotenv() app = FastAPI() # Get OpenAI API key from environment variable api_key = os.getenv("OPENAI_API_KEY") openai.api_key = api_key # Define prompt prompt = """Bot: How can I help you? User: {{$input}} --------------------------------------------- You are a schedule summary. Displays a summary of your schedule in the latest order based on today's date. """ class InputText(BaseModel): text: str @app.post("/summarize") async def summarize(input_text: InputText): response = openai.Completion.create( engine="text-davinci-003", prompt=f"{prompt}\nUser: {input_text.text}\n", max_tokens=500, temperature=0.7, frequency_penalty=0.0, presence_penalty=0.0, stop=None ) return {"summary": response.choices[0].text.strip()} if __name__ == "__main__": uvicorn.run(app, host="0.0.0.0", port=8000)
[ "Bot: How can I help you?\nUser: {{$input}}\n---------------------------------------------\nYou are a schedule summary. Displays a summary of your schedule in the latest order based on today's date.\n" ]
2024-01-10
CEJSH/Copple_a_planner_with_copilot
copilot~main2.py
from fastapi import FastAPI from pydantic import BaseModel import openai import os from dotenv import load_dotenv # .env 파일로부터 환경 변수 로드 load_dotenv() app = FastAPI() # 환경 변수에서 OpenAI API 키 가져오기 api_key = os.getenv("OPENAI_API_KEY") openai.api_key = api_key # 프롬프트 정의 prompt1 = """Bot: How can I help you? User: {{$input}} --------------------------------------------- You are a classifier that categorizes the input as either a goal, an event, or a to-do: Goal: Refers to a result or state that one aims to achieve within a specific time frame or an undefined period. Goals can be short-term or long-term, and they can be personal or related to a group or organization. Event: A happening or occasion that takes place at a specific time and location. The time is specifically set on a daily or hourly basis. To-Do: Refers to a small task or duty that needs to be accomplished. When answering, please only answer classification. """ # 프롬프트2 정의 prompt2 = """Bot: How can I help you? User: {{$input}} --------------------------------------------- You are an action type recognizer that categorizes the input as either a create, read, update, or delete: Create: Includes the act of meeting someone or doing something. Read: Refers to the act of consuming information or data. Update: Involves modifying or changing existing information or data. Delete: Involves removing or discarding something. When answering, please only answer the type of action. """ # 입력을 분류하는 함수 def get_intent(input_text): response = openai.Completion.create( engine="text-davinci-003", prompt=f"{prompt1}\nUser: {input_text}\n", max_tokens=500, temperature=0.7, frequency_penalty=0.0, presence_penalty=0.0, stop=None ) return response.choices[0].text.strip() # 입력을 분류하는 함수 (플랜 추가 관련) def get_plan_intent(input_text): response = openai.Completion.create( engine="text-davinci-003", prompt=f"{prompt2}\nUser: {input_text}\n", max_tokens=500, temperature=0.7, frequency_penalty=0.0, presence_penalty=0.0, stop=None ) return response.choices[0].text.strip() # 요청과 응답을 위한 Pydantic 모델 정의 class InputRequest(BaseModel): input: str class ClassificationResponse(BaseModel): classification: str # 분류를 위한 엔드포인트 생성 @app.post("/plan_type") async def plan_type(input_request: InputRequest): input_text = input_request.input result = get_intent(input_text) return {"classification": result} # 추가된 엔드포인트 (플랜 추가 관련) @app.post("/plan_crud") async def plan_crud(input_request: InputRequest): input_text = input_request.input result = get_plan_intent(input_text) return {"classification": result} if __name__ == "__main__": import uvicorn uvicorn.run(app, host="0.0.0.0", port=8000)
[ "Bot: How can I help you?\nUser: {{$input}}\n---------------------------------------------\nYou are a classifier that categorizes the input as either a goal, an event, or a to-do:\nGoal: Refers to a result or state that one aims to achieve within a specific time frame or an undefined period. Goals can be short-term or long-term, and they can be personal or related to a group or organization.\nEvent: A happening or occasion that takes place at a specific time and location. The time is specifically set on a daily or hourly basis.\nTo-Do: Refers to a small task or duty that needs to be accomplished.\nWhen answering, please only answer classification.\n\n\nUser: PLACEHOLDER\n", "Bot: How can I help you?\nUser: {{$input}}\n---------------------------------------------\nYou are an action type recognizer that categorizes the input as either a create, read, update, or delete:\nCreate: Includes the act of meeting someone or doing something.\nRead: Refers to the act of consuming information or data.\nUpdate: Involves modifying or changing existing information or data.\nDelete: Involves removing or discarding something.\nWhen answering, please only answer the type of action.\n\nUser: PLACEHOLDER\n", "Bot: How can I help you?\nUser: {{$input}}\n---------------------------------------------\nYou are an action type recognizer that categorizes the input as either a create, read, update, or delete:\nCreate: Includes the act of meeting someone or doing something.\nRead: Refers to the act of consuming information or data.\nUpdate: Involves modifying or changing existing information or data.\nDelete: Involves removing or discarding something.\nWhen answering, please only answer the type of action.\n", "Bot: How can I help you?\nUser: {{$input}}\n---------------------------------------------\nYou are a classifier that categorizes the input as either a goal, an event, or a to-do:\nGoal: Refers to a result or state that one aims to achieve within a specific time frame or an undefined period. Goals can be short-term or long-term, and they can be personal or related to a group or organization.\nEvent: A happening or occasion that takes place at a specific time and location. The time is specifically set on a daily or hourly basis.\nTo-Do: Refers to a small task or duty that needs to be accomplished.\nWhen answering, please only answer classification.\n\n" ]
2024-01-10
CEJSH/Copple_a_planner_with_copilot
copilot~20231010_summarize.py
from fastapi import FastAPI from fastapi.middleware.cors import CORSMiddleware import requests import openai import os from dotenv import load_dotenv from pydantic import BaseModel import uvicorn app = FastAPI() # CORS 설정 origins = [ "http://localhost:3000", # Add the URL of your React application "http://43.202.77.171:3000", # Address of the React application ] app.add_middleware( CORSMiddleware, allow_origins=origins, allow_credentials=True, allow_methods=["*"], # You can adjust this based on your needs allow_headers=["*"], # You can adjust this based on your needs ) # Load environment variables from .env file load_dotenv() # Get OpenAI API key from environment variable api_key = os.getenv("OPENAI_API_KEY") openai.api_key = api_key # Define prompt prompt = """Bot: How can I help you? User: {{$input}} --------------------------------------------- You are a schedule summary. Please inform the user of this schedule by summarizing it warmly and kindly. Also, I want you to give me some advice on the schedule. And send me a lucky comment as a closing comment. Please answer in Korean. """ class SummaryResponse(BaseModel): summary: str @app.get("/summarize_node_data/{user_id}") async def summarize_node_data(user_id: str): # Node.js 서버의 엔드포인트 URL node_url = f'http://localhost:8000/goal/summary2/{user_id}' # 사용자 ID에 따라 요청 URL 구성 try: # Node.js 서버에 GET 요청 보내기 response = requests.get(node_url) # 응답 코드 확인 if response.status_code == 200: # 응답 데이터를 가져와서 OpenAI를 사용하여 요약 node_data = response.text response = openai.Completion.create( engine="text-davinci-003", prompt=f"{prompt}\nUser: {node_data}\n", max_tokens=2000, temperature=0.7, frequency_penalty=0.0, presence_penalty=0.0, stop=None ) summary = response.choices[0].text.strip() return {"summary": summary} else: return {"summary": f"오류 응답 코드: {response.status_code}"} except Exception as e: return {"summary": f"오류 발생: {str(e)}"} if __name__ == "__main__": uvicorn.run(app, host="0.0.0.0", port=8000)
[ "Bot: How can I help you?\nUser: {{$input}}\n---------------------------------------------\nYou are a schedule summary. Please inform the user of this schedule by summarizing it warmly and kindly. \nAlso, I want you to give me some advice on the schedule. And send me a lucky comment as a closing comment. Please answer in Korean.\n", "Bot: How can I help you?\nUser: {{$input}}\n---------------------------------------------\nYou are a schedule summary. Please inform the user of this schedule by summarizing it warmly and kindly. \nAlso, I want you to give me some advice on the schedule. And send me a lucky comment as a closing comment. Please answer in Korean.\n\nUser: PLACEHOLDER\n" ]
2024-01-10
CEJSH/Copple_a_planner_with_copilot
copilot~main3.py
from fastapi import FastAPI from pydantic import BaseModel import openai import os from dotenv import load_dotenv # .env 파일로부터 환경 변수 로드 load_dotenv() app = FastAPI() # 환경 변수에서 OpenAI API 키 가져오기 api_key = os.getenv("OPENAI_API_KEY") openai.api_key = api_key # 프롬프트 정의 prompt1 = """Bot: How can I help you? User: {{$input}} --------------------------------------------- You are a classifier that categorizes the input as either a goal, an event, or a to-do: Goal: Refers to a result or state that one aims to achieve within a specific time frame or an undefined period. Goals can be short-term or long-term, and they can be personal or related to a group or organization. Event: A happening or occasion that takes place at a specific time and location. The time is specifically set on a daily or hourly basis. To-Do: Refers to a small task or duty that needs to be accomplished. When answering, please only answer classification. """ # 프롬프트2 정의 prompt2 = """Bot: How can I help you? User: {{$input}} --------------------------------------------- You are an action type recognizer that categorizes the input as either a create, read, update, or delete: Create: Includes the act of meeting someone or doing something. Read: Refers to the act of consuming information or data. Update: Involves modifying or changing existing information or data. Delete: Contains the meaning of deleting or making something disappear, Eradication, Elimination. When answering, please answer the type of action and Say it in a soft tone """ # 입력을 분류하는 함수 def get_intent(input_text): response = openai.Completion.create( engine="text-davinci-003", prompt=f"{prompt1}\nUser: {input_text}\n", max_tokens=500, temperature=0.7, frequency_penalty=0.0, presence_penalty=0.0, stop=None ) return response.choices[0].text.strip() # 입력을 분류하는 함수 (플랜 추가 관련) def get_plan_intent(input_text): response = openai.Completion.create( engine="text-davinci-003", prompt=f"{prompt2}\nUser: {input_text}\n", max_tokens=500, temperature=0.7, frequency_penalty=0.0, presence_penalty=0.0, stop=None ) return response.choices[0].text.strip() # 요청과 응답을 위한 Pydantic 모델 정의 class InputRequest(BaseModel): input: str class ClassificationResponse(BaseModel): classification: str # 분류를 위한 엔드포인트 생성 @app.post("/plan_type") async def plan_type(input_request: InputRequest): input_text = input_request.input result = get_intent(input_text) return {"classification": result} # 추가된 엔드포인트 (플랜 추가 관련) @app.post("/plan_crud") async def plan_crud(input_request: InputRequest): input_text = input_request.input result = get_plan_intent(input_text) return {"classification": result} if __name__ == "__main__": import uvicorn uvicorn.run(app, host="0.0.0.0", port=8000)
[ "Bot: How can I help you?\nUser: {{$input}}\n---------------------------------------------\nYou are a classifier that categorizes the input as either a goal, an event, or a to-do:\nGoal: Refers to a result or state that one aims to achieve within a specific time frame or an undefined period. Goals can be short-term or long-term, and they can be personal or related to a group or organization.\nEvent: A happening or occasion that takes place at a specific time and location. The time is specifically set on a daily or hourly basis.\nTo-Do: Refers to a small task or duty that needs to be accomplished.\nWhen answering, please only answer classification.\n\n\nUser: PLACEHOLDER\n", "Bot: How can I help you?\nUser: {{$input}}\n---------------------------------------------\nYou are an action type recognizer that categorizes the input as either a create, read, update, or delete:\nCreate: Includes the act of meeting someone or doing something.\nRead: Refers to the act of consuming information or data.\nUpdate: Involves modifying or changing existing information or data.\nDelete: Contains the meaning of deleting or making something disappear, Eradication, Elimination.\nWhen answering, please answer the type of action and Say it in a soft tone\n", "Bot: How can I help you?\nUser: {{$input}}\n---------------------------------------------\nYou are a classifier that categorizes the input as either a goal, an event, or a to-do:\nGoal: Refers to a result or state that one aims to achieve within a specific time frame or an undefined period. Goals can be short-term or long-term, and they can be personal or related to a group or organization.\nEvent: A happening or occasion that takes place at a specific time and location. The time is specifically set on a daily or hourly basis.\nTo-Do: Refers to a small task or duty that needs to be accomplished.\nWhen answering, please only answer classification.\n\n", "Bot: How can I help you?\nUser: {{$input}}\n---------------------------------------------\nYou are an action type recognizer that categorizes the input as either a create, read, update, or delete:\nCreate: Includes the act of meeting someone or doing something.\nRead: Refers to the act of consuming information or data.\nUpdate: Involves modifying or changing existing information or data.\nDelete: Contains the meaning of deleting or making something disappear, Eradication, Elimination.\nWhen answering, please answer the type of action and Say it in a soft tone\n\nUser: PLACEHOLDER\n" ]
2024-01-10
karenswang/menu-interpreter
openai_lambda~lambda_function.py
import json import boto3 import openai from openai import OpenAI from requests_aws4auth import AWS4Auth from opensearchpy import OpenSearch, RequestsHttpConnection import os HOST = 'search-restaurant-menus-ts66x77o3tq7lapsmpgpjjcqli.us-east-1.es.amazonaws.com' REGION = 'us-east-1' service = 'es' INDEX = 'menus' def lambda_handler(event, context): try: print("event: ", event) # Check if 'body' key exists in the event if 'body' not in event: return { 'statusCode': 400, 'headers': {'Access-Control-Allow-Origin': '*'}, 'body': json.dumps('No body in the request') } body = json.loads(event['body']) username = body['username'] menu_id = event['pathParameters']['menu_id'] dynamodb = boto3.resource('dynamodb') user_table = dynamodb.Table('user') # menu_table = dynamodb.Table('menu-items') openai.api_key = os.environ['OPENAI_API_KEY'] client = OpenAI( api_key=openai.api_key, ) user_data = user_table.get_item(Key={'username': username}) if 'Item' not in user_data or not user_data['Item'].get('isLoggedIn'): return { 'statusCode': 403, 'headers': { 'Access-Control-Allow-Origin': '*' }, 'body': json.dumps('User is not logged in or does not exist.') } preferences = user_data['Item']['preferences'] print("menu id: ", menu_id) os_client = OpenSearch(hosts=[{ 'host': HOST, 'port': 443 }], http_auth=get_awsauth(REGION, 'es'), use_ssl=True, verify_certs=True, connection_class=RequestsHttpConnection) search_response = os_client.search( index='menus', body={ 'query': { 'term': { 'restaurant_name': menu_id } } } ) print("search response: ", search_response) if not search_response['hits']['hits']: return { 'statusCode': 404, 'headers': {'Access-Control-Allow-Origin': '*'}, 'body': json.dumps('Menu does not exist.') } menu_data = search_response['hits']['hits'][0]['_source'] menu_items = menu_data['menu_text'] restaurant_name = menu_data['restaurant_name'] # menu_data = menu_table.get_item(Key={'menu_id': menu_id}) # if 'Item' not in menu_data: # return { # 'statusCode': 404, # 'headers': { # 'Access-Control-Allow-Origin': '*' # }, # 'body': json.dumps('Menu does not exist.') # } # menu_items = menu_data['Item']['menu_text'] # restaurant_name = menu_data['Item']['restaurant_name'] report = generate_report(client, menu_items, restaurant_name, preferences) return { 'statusCode': 200, 'headers': { 'Access-Control-Allow-Origin': '*' }, 'body': json.dumps(report) } except Exception as e: return { 'statusCode': 500, 'headers': {'Access-Control-Allow-Origin': '*'}, 'body': json.dumps(f'An error occurred: {str(e)}') } def generate_report(client, menu_items, restaurant_name, preferences): completion = client.chat.completions.create( model="gpt-3.5-turbo", messages=[ {"role": "system", "content": "You have information about a restaurant's dishes and a user's dietary preferences."}, {"role": "user", "content": f"Menu items: {menu_items}\nRestaurant name: {restaurant_name}\nUser preferences: {json.dumps(preferences)}\n\nGenerate a report on the matchness of the menu to the user preferences. \ The report should include the following sections:\n\n1. Resteraunt Name \n\n2. Favorites: Highlight dishes that match the user food preference but do not contain user dieary restrictions.\n\n3. Dishes with Allergen Warning: Identify dishes that contains users dieary restrictions.\ Use this as an example:\ Restaurant: David Burke Tavern\nMost dominant food category: seafood (80%)\ Recommended: cauliflower steak, roasted rack of lamb, wild mushroom ravioli\ Avoid: fire roasted halibut, diver scallops, lobster salad\ Your match: low\ Reasoning: based on your profile, you should avoid food with high uric acid. Since most dishes in David Burke Tavern are seafood, we do not recommend dining here."} ] ) answer = completion.choices[0].message.content return answer def get_awsauth(region, service): cred = boto3.Session().get_credentials() return AWS4Auth(cred.access_key, cred.secret_key, region, service, session_token=cred.token)
[ "You have information about a restaurant's dishes and a user's dietary preferences." ]
2024-01-10
patrickmineault/neuroai-tree
scripts~compute_umap_labels.py
import pickle import openai import pandas as pd import tqdm from sentence_transformers import SentenceTransformer from sklearn.cluster import KMeans from sklearn.manifold import MDS, TSNE from umap import UMAP def calculate_2d_embeddings(df: pd.DataFrame, perplexity=5, random_state=42): """This function plots the t-SNE embeddings of the long text. Args: df (pd.DataFrame): The dataframe containing the text. perplexity (int): The perplexity to use for the t-SNE. Defaults to 5. random_state (int): The random state to use for the t-SNE. Defaults to 42. Returns: fig (matplotlib.pyplot.figure): The figure of the t-SNE plot. """ # Start by calculating embeddings papers = (df.title.fillna("") + "\n" + df.abstract.fillna("")).values model = SentenceTransformer("sentence-transformers/all-mpnet-base-v2") embeddings = model.encode(papers, show_progress_bar=True) # Create a t-SNE model and transform the data model = TSNE( n_components=2, perplexity=perplexity, random_state=random_state, init="random", learning_rate=200, ) vis_dims = model.fit_transform(embeddings) df["tsne_x"] = vis_dims[:, 0] df["tsne_y"] = vis_dims[:, 1] # Create a MDS model and transform the data model = MDS( n_components=2, random_state=random_state, ) vis_dims = model.fit_transform(embeddings) df["mds_x"] = vis_dims[:, 0] df["mds_y"] = vis_dims[:, 1] # Create a MDS model and transform the data model = UMAP( n_components=2, random_state=random_state, ) vis_dims = model.fit_transform(embeddings) df["umap_x"] = vis_dims[:, 0] df["umap_y"] = vis_dims[:, 1] return df def request_label(titles): titles = "\n".join(titles) prompt = f"Give a 2-5 word label that summarizes the common topic of these abstracts. Avoid vague labels like 'artificial intelligence', 'machine learning', 'neuroscience' and 'deep learning'\n\n {titles}" completion = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=[ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": prompt}, ], ) return completion["choices"][0]["message"]["content"].split(".")[0] def main(): df = pd.read_csv("data/processed/neuroai-works.csv") df.sort_values("ss_cited_by_count", ascending=False, inplace=True) df = calculate_2d_embeddings(df) df.to_csv("data/processed/neuroai-works-umap.csv", index=False) df = df[df["openai_category"].isin(["A", "B", "C"])] kmeans = KMeans(n_clusters=25, random_state=0, n_init="auto").fit( df[["umap_x", "umap_y"]] ) labels = kmeans.fit_predict(df[["umap_x", "umap_y"]].values) label_map = [] for label in tqdm.tqdm(range(kmeans.cluster_centers_.shape[0])): titles = df.iloc[labels == label].title.values.tolist() label_name = request_label(titles) label_map.append(label_name) label_info = { "label_centers": kmeans.cluster_centers_, "labels": label_map, "paper_labels": [label_map[x] for x in labels], } with open("data/processed/umap_labels.pickle", "wb") as f: pickle.dump(label_info, f) if __name__ == "__main__": main()
[ "You are a helpful assistant.", "Give a 2-5 word label that summarizes the common topic of these abstracts. Avoid vague labels like 'artificial intelligence', 'machine learning', 'neuroscience' and 'deep learning'\n\n PLACEHOLDER" ]
2024-01-10
patrickmineault/neuroai-tree
scripts~collate_info.py
import numpy as np import pandas as pd from transformers import pipeline def authorships_to_string(authorships): names = [a["author"].get("display_name", "") for a in authorships] if len(names) > 5: return ", ".join(names[:5]) + ", et al." return ", ".join(names) def authorships_to_string_unabridged(authorships): names = [a["author"].get("display_name", "") for a in authorships] return ", ".join(names) def get_highlighter(): qa_model = pipeline( "question-answering", model="distilbert-base-cased-distilled-squad", revision="626af31", ) question = ( """What is biologically inspired by the brain, cortex, neuroscience or """ """psychology, excluding deep or convolutional neural networks?""" ) return qa_model, question.strip() def highlight_abstracts(df): highlighter, question = get_highlighter() highlighted = [] for abstract in df.abstract: try: highlight = highlighter(question, abstract) abstract_highlighted = ( abstract[: highlight["start"]] + " **" + highlight["answer"] + "** " + abstract[highlight["end"] :] ) highlighted.append(abstract_highlighted) except ValueError: # No answer found. highlighted.append(abstract) df["abstract_highlighted"] = highlighted return df def get_journal_name(x): if ( "source" in x and x["source"] is not None and "display_name" in x["source"] ): return x["source"]["display_name"] return "" def main(): df = pd.read_json("data/processed/works.jsonl", lines=True) df = df.rename(columns={"source": "origin"}) df_ss = pd.read_json("data/processed/semantic_scholar.jsonl", lines=True) df_ss["ss_cited_by_count"] = df_ss["result"].map( lambda x: x["citationCount"] ) df_ss["ssid"] = df_ss["result"].map(lambda x: x["paperId"]) df_ss = df_ss[["id", "ss_cited_by_count", "ssid"]] # Do a left join on the paper ID df = df.merge(df_ss, left_on="id", right_on="id", how="left") # Drop bad rows df = df[~df["id"].duplicated()] df = df[~df["ssid"].duplicated()] df = df[df.title != "Title"] df["author_list"] = df.authorships.map(authorships_to_string) df["author_list_unabridged"] = df.authorships.map( authorships_to_string_unabridged ) df["journal"] = df.primary_location.map(lambda x: get_journal_name(x)) df["link"] = df["primary_location"].map(lambda x: x["landing_page_url"]) # Get the classification from OpenAI df_class = pd.read_json( "data/processed/coarse_classification.jsonl", lines=True ) df = df.merge(df_class, on="id") # Get the coarse classification from the keyword-based detection. df_class = pd.read_json("data/processed/categories.jsonl", lines=True) df = df.merge(df_class, on="id") cites = (df["oa_neuro_citations"].values >= 2) | ( df["ss_neuro_citations"].values >= 2 ) keywords = df["keywords_found"].values >= 1 manual = df["origin"] == "manual" df["reason"] = np.where( manual, "Manually added", np.where( cites & keywords, "Matched 1+ abstract keywords & cited 2+ neuro papers", np.where( keywords, "Matched 1+ abstract keywords", np.where( cites, "Cited 2+ neuro papers", "Other", ), ), ), ) df_all = df.copy() df = df[~df["openai_category"].isna()] assert df.shape[0] < 10000, "Too many papers!" df = highlight_abstracts(df) df = df[ [ "id", "ssid", "title", "publication_year", "journal", "link", "author_list", "author_list_unabridged", "cited_by_count", "openai_category", "abstract", "abstract_highlighted", "ss_cited_by_count", "oa_cited_journals", "ss_cited_journals", "reason", ] ] df = df[~df.id.duplicated()] # Save the final dataframe df.to_csv("data/processed/neuroai-works.csv", index=False) df_all = df_all[~df_all.id.duplicated()] df_all = df_all[ [ "id", "ssid", "title", "publication_year", "journal", "link", "author_list", "cited_by_count", "openai_category", "ss_cited_by_count", "oa_cited_journals", "ss_cited_journals", "reason", ] ] df_all.to_csv("data/processed/all-works.csv", index=False) if __name__ == "__main__": main()
[]
2024-01-10
polar-app/polar-app
packages~polar-openai~create_file.py
import os import openai openai.api_key = os.getenv("OPENAI_API_KEY") response = openai.File.create( file=open("data.json"), purpose='answers' ) print(response) # { # "bytes": 50, # "created_at": 1623183163, # "filename": "data.jsonl", # "id": "file-V4REEAisMqbXPop2vdofQSTK", # "object": "file", # "purpose": "answers", # "status": "uploaded", # "status_details": null # }
[]
2024-01-10
polar-app/polar-app
packages~polar-openai~answer.py
import os import openai openai.api_key = os.getenv("OPENAI_API_KEY") questions = [ "Who did Tutankhamun marry?", "How old was Tutankhamun when he rose to the throne?", "Who restored the Ancient Egyptian religion?", "Where did King Tut move his father's remains?", "Who funded Howard Carter's discovery of Tutankhamun's tomb?", "What was the status of King Tut's tomb when it was found?", "What is the curse of the pharaohs?", "How tall was King Tut?", "How tall was King Tut in feet?", "How tall was King Tut in cm?", "How did King Tut die?", ] # models = ["curie", "davinci"] # models = ["davinci"] models = ["davinci"] #models = ["davinci"] max_tokens=35 search_model='curie' def doAnswer(model, question): response = openai.Answer.create( search_model=search_model, model=model, question=question, file="file-BW3Opoe0JbJJzto76qSn7wOp", examples_context="In 2017, U.S. life expectancy was 78.6 years.", examples=[ ["What is human life expectancy in the United States?","78 years."] ], max_tokens=max_tokens, stop=["\n", "<|endoftext|>"], ) # print(response) #print("%-10s %-70s %s" % (model, question, response.answers)) print("%-70s\n %s" % (question, response.answers[0])) for model in models: print(model) print("max_tokens: %s" % max_tokens) print("search_model: %s" % search_model) print("====") for question in questions: doAnswer(model, question) # # response = openai.Answer.create( # search_model="davinci", # model="davinci", # question="How did King Tut die?", # file="file-BW3Opoe0JbJJzto76qSn7wOp", # examples_context="In 2017, U.S. life expectancy was 78.6 years.", # examples=[ # ["What is human life expectancy in the United States?","78 years."] # ], # max_tokens=25, # stop=["\n", "<|endoftext|>"], # ) # # print(response.answers) # # print("====") # print(response)
[]
2024-01-10
samuelkoes/DDPG-tf2
src~command_line.py
#!/usr/bin/python3 """ Run the model in training or testing mode """ import logging import random import gym from tqdm import trange import matplotlib.pyplot as plt import tensorflow as tf import numpy as np from src.common_definitions import TOTAL_EPISODES, UNBALANCE_P from src.model import Brain from src.utils import Tensorboard, ArgumentParserShowHelpOnError def main(): # pylint: disable=too-many-locals, too-many-statements """ We create an environment, create a brain, create a Tensorboard, load weights, create metrics, create lists to store rewards, and then we run the training loop """ logging.basicConfig() logging.getLogger().setLevel(logging.INFO) parser = ArgumentParserShowHelpOnError( prog="Deep Deterministic Policy Gradient (DDPG)", description="Deep Deterministic Policy Gradient (DDPG) in Tensorflow 2" ) parser.add_argument('--env', type=str, nargs='?', default="BipedalWalker-v3", help='The OpenAI Gym environment to train on, ' 'e.g. BipedalWalker-v3, LunarLanderContinuous-v2,' ' Pendulum-v0') parser.add_argument('--render_env', type=bool, nargs='?', default=True, help='Render the environment to be visually visible') parser.add_argument('--train', type=bool, nargs='?', required=True, help='Train the network on the modified DDPG algorithm') parser.add_argument('--use-noise', type=bool, nargs='?', required=True, help='OU Noise will be applied to the policy action') parser.add_argument('--eps-greedy', type=float, nargs='?', default=0.95, help="The epsilon for Epsilon-greedy in the policy's action") parser.add_argument('--warm-up', type=bool, nargs='?', default=1, help='Following recommendation from OpenAI Spinning Up, the actions in the ' 'early epochs can be set random to increase exploration. This warm up ' 'defines how many epochs are initially set to do this.') parser.add_argument( '--checkpoints-path', type=str, nargs='?', default="checkpoints/DDPG_", help='Save the weight of the network in the defined checkpoint file directory.' ) parser.add_argument( '--tf-log-dir', type=str, nargs='?', default="./logs/DDPG/", help='Save the logs of the training step.' ) args = parser.parse_args() # Step 1. create the gym environment env = gym.make(args.env) action_space_high = env.action_space.high[0] action_space_low = env.action_space.low[0] brain = Brain(env.observation_space.shape[0], env.action_space.shape[0], action_space_high, action_space_low) tensorboard = Tensorboard(log_dir=args.tf_log_dir) # load weights if available logging.info("Loading weights from %s*, make sure the folder exists", args.checkpoints_path) brain.load_weights(args.checkpoints_path) # all the metrics acc_reward = tf.keras.metrics.Sum('reward', dtype=tf.float32) actions_squared = tf.keras.metrics.Mean('actions', dtype=tf.float32) Q_loss = tf.keras.metrics.Mean('Q_loss', dtype=tf.float32) A_loss = tf.keras.metrics.Mean('A_loss', dtype=tf.float32) # To store reward history of each episode ep_reward_list = [] # To store average reward history of last few episodes avg_reward_list = [] # run iteration with trange(TOTAL_EPISODES) as t: for ep in t: prev_state = env.reset() acc_reward.reset_states() actions_squared.reset_states() Q_loss.reset_states() A_loss.reset_states() brain.noise.reset() for _ in range(2000): if args.render_env: # render the environment into GUI env.render() # Receive state and reward from environment. cur_act = brain.act( tf.expand_dims(prev_state, 0), _notrandom=( (ep >= args.warm_up) and ( random.random() < args.eps_greedy+(1-args.eps_greedy)*ep/TOTAL_EPISODES ) ), noise=args.use_noise ) state, reward, done, _ = env.step(cur_act) brain.remember(prev_state, reward, state, int(done)) # Update weights if args.train: c, a = brain.learn(brain.buffer.get_batch(unbalance_p=UNBALANCE_P)) Q_loss(c) A_loss(a) # Post update for next step acc_reward(reward) actions_squared(np.square(cur_act/action_space_high)) prev_state = state if done: break ep_reward_list.append(acc_reward.result().numpy()) # Mean of last 40 episodes avg_reward = np.mean(ep_reward_list[-40:]) avg_reward_list.append(avg_reward) # Print the average reward t.set_postfix(r=avg_reward) tensorboard(ep, acc_reward, actions_squared, Q_loss, A_loss) # Save weights if args.train and ep % 5 == 0: brain.save_weights(args.checkpoints_path) env.close() if args.train: brain.save_weights(args.checkpoints_path) logging.info("Training done...") # Plotting graph # Episodes versus Avg. Rewards plt.plot(avg_reward_list) plt.xlabel("Episode") plt.ylabel("Avg. Epsiodic Reward") plt.show() if __name__ == "__main__": main()
[]
2024-01-10
luisricardodiaz/BoomAI
speech_capture.py
import sounddevice as sd import soundfile as sf import openai def recording_input(): sample_rate = 44100 duration = 5 channels = 1 print("Recording Audio...") recording = sd.rec(int(duration * sample_rate), samplerate=sample_rate, channels=channels) sd.wait() output_file = "Input_Audio/output.mp3" # Output file path sf.write(output_file, recording, sample_rate) audio_file = open("Input_Audio/output.mp3", "rb") transcript = openai.Audio.transcribe( model ="whisper-1", file= audio_file, temperature = 0.2) print(transcript['text']) return transcript['text']
[]
2024-01-10
yangkevin2/doc-story-generation
story_generation~edit_module~entity.py
from collections import Counter, defaultdict import os import time import pathlib import csv import random from unicodedata import name import math import logging import torch import openai from scipy.special import softmax from story_generation.common.util import * from story_generation.common.data.split_paragraphs import split_paragraphs from story_generation.rewrite_module.heuristics import * ENTITY_MODEL_STRING = 'text-curie-001' STRONGER_ENTITY_MODEL_STRING = 'text-davinci-002' CHARACTER_THRESHOLD = 0.5 infobox_example_library = None def get_infobox_example_library(): global infobox_example_library if infobox_example_library is None: example_lines = [] with open(os.path.join(pathlib.Path(__file__).parent.resolve(), 'infobox_example_library.csv'), 'r') as f: reader = csv.DictReader(f) for row in reader: example_lines.append(row) infobox_example_library = { 'sentences': [example['text'] for example in example_lines], 'names': [example['name'] for example in example_lines], 'keys': [example['key'] for example in example_lines], 'values': [example['value'] for example in example_lines], 'encodings': sentence_encode([example['text'] for example in example_lines]), } return infobox_example_library def construct_infobox_prompt(current_sentence, current_name, other_names, num_examples=5, random_order=False): instruction = 'Extract attributes from the given context using the format Attribute: Value.\n----' infobox_example_library = get_infobox_example_library() current_encoding = sentence_encode([current_sentence]) scores = (current_encoding * infobox_example_library['encodings']).sum(axis=1) scores_indices = list(range(len(scores))) best_example_indices = sorted(scores_indices, key=lambda i: scores[i], reverse=True) best_example_indices = [i for i in best_example_indices if all([tok not in infobox_example_library['sentences'][i] for tok in current_name.split() + sum([other_name.split() for other_name in other_names], [])])] # don't get weird examples from lucky matching names best_example_indices = [i for i in best_example_indices if all([tok not in current_name and tok not in current_sentence for tok in infobox_example_library['names'][i].split()])] best_example_indices = best_example_indices[:num_examples] best_example_indices = reversed(best_example_indices) # put the best ones last if random_order: random.shuffle(best_example_indices) for i in best_example_indices: name = infobox_example_library['names'][i] instruction = instruction + '\nContext (' + name + '): ' + infobox_example_library['sentences'][i] keys = [key.strip() for key in infobox_example_library['keys'][i].split(',') if len(key.strip()) > 0] values = [value.strip() for value in infobox_example_library['values'][i].split(',') if len(value.strip()) > 0] assert len(keys) == len(values) for key, value in zip(keys, values): if key.endswith('\'s'): instruction = instruction + '\n' + name + ' is ' + key + ' ' + value # John is Jane's X else: instruction = instruction + '\n' + name + '\'s ' + key + ' is ' + value # John's sister is X instruction = instruction + '\n----' return instruction + '\nContext (' + current_name + '): ' + current_sentence + '\n' + current_name def infer_is_character(name, passage, gpt3_model, model_string, plural=False, threshold=CHARACTER_THRESHOLD, return_logprobs=False): answers = [] all_logprobs = [] for other in ['a place', 'an object', 'an event']: query = passage.strip() + '\n\n' + 'In this passage, is {} a character{}, as opposed to {}? Yes or no.\n\n'.format(name, ' or group of characters' if plural else '', other) retry = True logging.log(21, 'GPT3 CALL' + ' ' + model_string + ' ' + str(len(gpt3_model.tokenizer.encode(query)) + 1)) while retry: try: completion = openai.Completion.create( engine=model_string, prompt=query, max_tokens=1, temperature=1, top_p=1, frequency_penalty=0.5, presence_penalty=0, logit_bias={3363: 50, 1400: 50}, # ' Yes' and ' No' for GPT3 logprobs=2) retry = False except Exception as e: logging.log(23, str(e)) time.sleep(0.2) logging.log(23, 'retrying...') logprobs = completion['choices'][0]['logprobs']['top_logprobs'][0] logprobs = [logprobs[' No'], logprobs[' Yes']] answers.append(softmax(logprobs)[1] > threshold) all_logprobs.append(logprobs) if return_logprobs: return all(answers), all_logprobs else: return all(answers) def infer_is_group(name, passage, gpt3_model, model_string, plural=False, threshold=0.5, return_logprobs=False): query = passage.strip() + '\n\n' + 'In this passage, is {} a single character or a group of characters?\n\n{} is a'.format(name, name) retry = True logging.log(21, 'GPT3 CALL' + ' ' + model_string + ' ' + str(len(gpt3_model.tokenizer.encode(query)) + 1)) while retry: try: completion = openai.Completion.create( engine=model_string, prompt=query, max_tokens=1, temperature=1, top_p=1, frequency_penalty=0.5, presence_penalty=0, logit_bias={1448: 50, 2060: 50}, # ' group' and ' single' for GPT3 logprobs=2) retry = False except Exception as e: logging.log(23, str(e)) time.sleep(0.2) logging.log(23, 'retrying...') logprobs = completion['choices'][0]['logprobs']['top_logprobs'][0] logprobs = [logprobs[' single'], logprobs[' group']] answer = softmax(logprobs)[1] > threshold if return_logprobs: return answer, logprobs else: return answer def resample_name(name, context, instruct_model): name_tokens = name.strip().split() banned_tokens = [tok for tok in name_tokens if tok not in context] banned_tokens = banned_tokens + [' ' + tok for tok in banned_tokens] logit_bias = {} for name_token in banned_tokens: for tok in instruct_model.tokenizer.encode(name_token): logit_bias[tok] = -100 for _ in range(10): new_name = instruct_model(["Generate a name with the same gender similar to " + name + ".\n\nName:"], logit_bias=logit_bias, stop=[',', '.'], top_p=1, max_tokens=10, model_string=ENTITY_MODEL_STRING)[0].strip() if len(new_name) < 10: # ideally, it should terminate due to a stop, and not max length break return new_name def split_key_entry(infobox_entry, entity_name): try: if infobox_entry.startswith(entity_name + '\'s'): new_key, new_entry = tuple(infobox_entry.split(' is ')) new_key = new_key[len(entity_name + '\'s'):] else: assert infobox_entry.startswith(entity_name + ' is') split_entry = infobox_entry.split(' is ') assert len(split_entry) == 2 new_key_entry = split_entry[1] split_new_key_entry = new_key_entry.split('\'') # James's sister assert len(split_new_key_entry) == 2 new_key = split_new_key_entry[0].strip() + '\'s' new_entry = split_new_key_entry[1][1:].strip() # remove the training s from 's constructions, or a space if not there except: return None, None return new_key.strip(), new_entry.strip() def qa_entailment_best_answer(question, context, num_beams=1): new_qa_entries_passage, new_qa_scores_passage = score_qa(question, context, num_beams=num_beams) qa_passage_dict = defaultdict(lambda: 0) for answer, score in zip(new_qa_entries_passage, new_qa_scores_passage): qa_passage_dict[question + ' ' + answer] += score qa_passage_groups = get_entailment_groups(qa_passage_dict) new_qa_entry_passage = sorted(list(qa_passage_groups.keys()), key=lambda x: qa_passage_groups[x], reverse=True)[0] new_qa_score_passage = qa_passage_groups[new_qa_entry_passage] return new_qa_entry_passage, new_qa_score_passage def complete_mutual_relations(entities, instruct_model, return_contradiction_prob=False): contradictions = defaultdict(lambda: {}) contradiction_prob = 0 entity_key_pairs = [] for entity in entities.values(): for key in entity.attributes.keys(): entity_key_pairs.append((entity.name, key, entity.attributes[key]['entailment'])) # go through (entity, key) pairs in order of entailment entity_key_pairs = sorted(entity_key_pairs, key=lambda x: x[2], reverse=True) for entity_name, key, _ in entity_key_pairs: entity = entities[entity_name] if entity.attributes[key]['newly_entered']: # match entities in the newly entered attributes; if you have exactly 1 other entity then: key_matched_entities, _, _ = deduplicate_match_entities(detect_entities(key), [n for n in entities.keys() if n != entity.name]) value_matched_entities, _, _ = deduplicate_match_entities(detect_entities(entity.attributes[key]['entry']), [n for n in entities.keys() if n != entity.name]) if len(key_matched_entities) + len(value_matched_entities) == 1: # if other entity is key + 's, then flip the value and key while stripping 's, also flipping the relation. other_name = list(key_matched_entities)[0] if len(key_matched_entities) == 1 else list(value_matched_entities)[0] if len(key_matched_entities) == 1: if not key.endswith('\'s'): # e.g. Sarah's continue if len(key.strip().split()) > 2: # might miss some longer names, but this will catch most bad cases where it's not actually a relation continue self_is_others_relation = entity.attributes[key]['entry'].strip() if len(self_is_others_relation.strip().split()) > 1: # if the value is multiple words, then try to parse and keep a single NN span only. if that still fails, then just skip this one?, with log spans = pos_tag(self_is_others_relation) self_is_others_relation = ' '.join([s.text for s in spans if s.tag in ['NN', 'NNS', 'NNP', 'NNPS']]) if len(self_is_others_relation.strip().split()) > 1: # multiple nouns in the entry logging.log(23, 'FAILED TO PARSE MUTUAL RELATION: ' + entity.name + ' ' + key + ' ' + str(entity.attributes[key])) continue prompt = entity.name + ' is ' + other_name + '\'s ' + self_is_others_relation + '. ' + other_name + ' is ' + entity.name + '\'s' try: other_is_selfs_relation = Counter([x.strip() for x in instruct_model([prompt], stop=['\n', '.', ','], num_completions=10, model_string=STRONGER_ENTITY_MODEL_STRING) if len(x.strip()) > 0]).most_common()[0][0] except: logging.log(23, 'FAILED TO GET OTHER RELATION: ' + entity.name + ' ' + key + ' ' + str(entity.attributes[key]) + ' ' + prompt) continue else: # if other entity in the value + 's name, then flip it to key + 's and change the current key to the value, also flipping the relation. if not key.endswith('\'s name'): # e.g., spouse's name continue other_is_selfs_relation = key.replace('\'s name', '').strip() prompt = other_name + ' is ' + entity.name + '\'s ' + other_is_selfs_relation + '. ' + entity.name + ' is ' + other_name + '\'s' try: self_is_others_relation = Counter([x.strip() for x in instruct_model([prompt], stop=['\n', '.', ','], num_completions=10, model_string=STRONGER_ENTITY_MODEL_STRING) if len(x.strip()) > 0]).most_common()[0][0] except: logging.log(23, 'FAILED TO GET OTHER RELATION:' + ' ' + entity.name + ' ' + key + ' ' + str(entity.attributes[key]) + ' ' + prompt) continue logging.log(23, 'CHECKING MUTUAL RELATION FOR CONTRADICTIONS: ' + ' ' + entity.name + ' ' + key + ' ' + str(entity.attributes[key])) if len(key_matched_entities) == 1: if other_is_selfs_relation + '\'s name' in entity.attributes and not entity.attributes[other_is_selfs_relation + '\'s name']['newly_entered']: existing_entailment_input = entity.create_entailment_input(other_is_selfs_relation + '\'s name', entity.name, entity.attributes[other_is_selfs_relation + '\'s name']['entry']) new_entailment_input = entity.create_entailment_input(other_is_selfs_relation + '\'s name', entity.name, other_name) if not consistent_equals(existing_entailment_input, new_entailment_input): logging.log(23, 'POTENTIAL MUTUAL RELATION CONTRADICTION') logging.log(23, 'PREEXISTING' + ' ' + entity.name + ' ' + other_is_selfs_relation + '\'s name' + ' ' + str(entity.attributes[other_is_selfs_relation + '\'s name'])) logging.log(23, 'NEW' + ' ' + entity.name + ' ' + key + ' ' + str(entity.attributes[key])) contradictions[entity.name][other_is_selfs_relation + '\'s name'] = (entity.attributes[other_is_selfs_relation + '\'s name'], {'key': key, 'entry': entity.attributes[key]}) if not return_contradiction_prob: continue contradiction_prob = max(contradiction_prob, math.exp(score_entailment(existing_entailment_input, new_entailment_input)[0][0, 0])) else: if other_name + '\'s' in entity.attributes and not entity.attributes[other_name + '\'s']['newly_entered']: existing_entailment_input = entity.create_entailment_input(other_name + '\'s', entity.name, entity.attributes[other_name + '\'s']['entry']) new_entailment_input = entity.create_entailment_input(other_name + '\'s', entity.name, self_is_others_relation) if not consistent_equals(existing_entailment_input, new_entailment_input): logging.log(23, 'POTENTIAL MUTUAL RELATION CONTRADICTION') logging.log(23, 'PREEXISTING' + ' ' + entity.name + ' ' + other_name + '\'s' + ' ' + str(entity.attributes[other_name + '\'s'])) logging.log(23, 'NEW' + ' ' + entity.name + ' ' + key + ' ' + str(entity.attributes[key])) contradictions[entity.name][other_name + '\'s'] = (entity.attributes[other_name + '\'s'], {'key': key, 'entry': entity.attributes[key]}) if not return_contradiction_prob: continue contradiction_prob = max(contradiction_prob, math.exp(score_entailment(existing_entailment_input, new_entailment_input)[0][0, 0])) # check the corresponding relations for the other entity. other_entity = entities[other_name] if self_is_others_relation + '\'s name' in other_entity.attributes and not other_entity.attributes[self_is_others_relation + '\'s name']['newly_entered']: existing_entailment_input = other_entity.create_entailment_input(self_is_others_relation + '\'s name', other_name, other_entity.attributes[self_is_others_relation + '\'s name']['entry']) new_entailment_input = other_entity.create_entailment_input(self_is_others_relation + '\'s name', other_name, entity.name) if not consistent_equals(existing_entailment_input, new_entailment_input): logging.log(23, 'POTENTIAL MUTUAL RELATION CONTRADICTION') logging.log(23, 'PREEXISTING' + ' ' + other_name+ ' ' + self_is_others_relation + '\'s name' + ' ' + str(other_entity.attributes[self_is_others_relation + '\'s name'])) logging.log(23, 'NEW' + ' ' + entity.name + ' ' + key+ ' ' + str(entity.attributes[key])) contradictions[other_name][self_is_others_relation + '\'s name'] = (other_entity.attributes[self_is_others_relation + '\'s name'], {'key': key, 'entry': entity.attributes[key]}) if not return_contradiction_prob: continue contradiction_prob = max(contradiction_prob, math.exp(score_entailment(existing_entailment_input, new_entailment_input)[0][0, 0])) if entity.name + '\'s' in other_entity.attributes and not other_entity.attributes[entity.name + '\'s']['newly_entered']: existing_entailment_input = other_entity.create_entailment_input(entity.name + '\'s', other_name, other_entity.attributes[entity.name + '\'s']['entry']) new_entailment_input = other_entity.create_entailment_input(entity.name + '\'s', other_name, other_is_selfs_relation) if not consistent_equals(existing_entailment_input, new_entailment_input): logging.log(23, 'POTENTIAL MUTUAL RELATION CONTRADICTION') logging.log(23, 'PREEXISTING' + ' ' + other_name + ' ' + entity.name + '\'s' + ' ' + str(other_entity.attributes[entity.name + '\'s'])) logging.log(23, 'NEW' + ' ' + entity.name + ' ' + key + ' ' + str(entity.attributes[key])) contradictions[other_name][entity.name + '\'s'] = (other_entity.attributes[entity.name + '\'s'], {'key': key, 'entry': entity.attributes[key]}) if not return_contradiction_prob: continue contradiction_prob = max(contradiction_prob, math.exp(score_entailment(existing_entailment_input, new_entailment_input)[0][0, 0])) if len(contradictions) > 0: continue logging.log(23, 'COMPLETING MUTUAL RELATION:' + ' ' + entity.name + ' ' + key + ' ' + str(entity.attributes[key])) if len(key_matched_entities) == 1: _, change_status = entity.add_if_better(other_is_selfs_relation + '\'s name', {'text': entity.attributes[key]['text'], 'entry': other_name, 'entailment': entity.attributes[key]['entailment'], 'newly_entered': True}, detect_contradictions=False, return_contradiction_prob=return_contradiction_prob) if change_status != 'none': logging.log(23, 'NEW RELATION' + ' ' + change_status + ' ' + entity.name + ' ' + other_is_selfs_relation + '\'s name' + ' ' + str(entity.attributes[other_is_selfs_relation + '\'s name'])) else: _, change_status = entity.add_if_better(other_name + '\'s', {'text': entity.attributes[key]['text'], 'entry': self_is_others_relation, 'entailment': entity.attributes[key]['entailment'], 'newly_entered': True}, detect_contradictions=False, return_contradiction_prob=return_contradiction_prob) if change_status != 'none': logging.log(23, 'NEW RELATION' + ' ' + change_status + ' ' + entity.name + ' ' + other_name + '\'s' + ' ' + str(entity.attributes[other_name + '\'s'])) _, change_status = other_entity.add_if_better(self_is_others_relation + '\'s name', {'text': entity.attributes[key]['text'], 'entry': entity.name, 'entailment': entity.attributes[key]['entailment'], 'newly_entered': True}, detect_contradictions=False, return_contradiction_prob=return_contradiction_prob) if change_status != 'none': logging.log(23, 'NEW RELATION' + ' ' + change_status + ' ' + other_name + ' ' + self_is_others_relation + '\'s name' + ' ' + str(other_entity.attributes[self_is_others_relation + '\'s name'])) _, change_status = other_entity.add_if_better(entity.name + '\'s', {'text': entity.attributes[key]['text'], 'entry': other_is_selfs_relation, 'entailment': entity.attributes[key]['entailment'], 'newly_entered': True}, detect_contradictions=False, return_contradiction_prob=return_contradiction_prob) if change_status != 'none': logging.log(23, 'NEW RELATION' + ' ' + change_status + ' ' + other_name + ' ' + entity.name + '\'s' + ' ' + str(other_entity.attributes[entity.name + '\'s'])) # change all newly entered attributes to false for entity in entities.values(): for key in entity.attributes: entity.attributes[key]['newly_entered'] = False return entities, contradiction_prob if return_contradiction_prob else contradictions class Entity: BANNED_ATTRIBUTES = ['personality', 'eye', 'hair'] # disproportionately hallucinated / problematic ENTAILMENT_THRESHOLD = 0.5 FACT_ENTAILMENT_THRESHOLD = 0.3 ENTAILMENT_RECHECK_THRESHOLD = 0.9 QA_SCORE_THRESHOLD = 0.5 NO_ANSWER_WORDS = ['unknown', 'not ', 'unspecified', 'n/a', 'stated', 'mentioned', 'no answer', 'tba', 'tbd', 'never'] def __init__(self, name, description=None, is_character=None, attributes=None): self.name = name self.description = description self.outline_descriptions_by_piece = {} self.is_character = is_character self.attributes = attributes if attributes is not None else {} def __str__(self): formatted = self.name + ': ' + self.description + '\n' + 'Is Character: ' + str(self.is_character) + '\n' + 'Attributes: ' + str(self.attributes) + '\n' for attribute in self.attributes: formatted += attribute + ': ' + self.attributes[attribute]['entry'] + '\n' return formatted def set_description(self, desc): self.description = desc def get_outline_description_up_to_node(self, node, max_tokens=128, tokenizer=None, include_base_description=True): # get detected descriptions of this character from all previous outline nodes up to and including this one outline_description_components = [self.description] if include_base_description else [] nodes_with_entity = 0 for n in node.root().depth_first_traverse(): if self.name in node.selected_entities: nodes_with_entity += 1 if n in self.outline_descriptions_by_piece: outline_description_components.append(self.outline_descriptions_by_piece[n]['current_description']) outline_description_components = [o for o in outline_description_components if o not in self.outline_descriptions_by_piece[n]['entailed_previous_descriptions']] if n == node: break if tokenizer is None: desc = ' '.join(outline_description_components) else: desc = '' for component in outline_description_components: if len(tokenizer.tokenize((desc + ' ' + component).strip())) > max_tokens: break desc = (desc + ' ' + component).strip() if nodes_with_entity == 1: desc += ' This is the first appearance of ' + self.name + ' in the story.' # probably won't interfere with max tokens if this is the first appearance return desc def add_new_outline_description(self, node, model, model_string, character_strings, num_samples=5, additional_description='', other_nodes=None): # given an outline node, attempt to detect new information about this character, corresponding to character development over time if other_nodes is None: other_nodes = [] current_outline_description = self.get_outline_description_up_to_node(node, include_base_description=True) context = node.text + (('\n\n' + additional_description.strip()) if len(additional_description.strip()) > 0 else '') prefix = '{}\n\nThis context tells us the following about {}:\n\n1.'.format(context, self.name) suffix = '\n\nAdditionally, we know from elsewhere that ' + current_outline_description logit_bias = get_repetition_logit_bias(model.tokenizer, current_outline_description, -1, False, exclude_strings=list(character_strings.keys()), include_upper=True) if len(logit_bias) > 250: logging.warning('WARNING: too many logit biases in outline character description generation, skipping uppercase biases') logit_bias = get_repetition_logit_bias(model.tokenizer, current_outline_description, -1, False, exclude_strings=list(character_strings.keys()), include_upper=False) if len(logit_bias) > 250: logging.warning('WARNING: still too many logit biases in outline character description generation, skipping random biases') logit_bias = {k: v for k, v in list(logit_bias.items())[:250]} logging.log(21, 'ADD NEW OUTLINE DESCRIPTION PREFIX: ' + prefix) logging.log(21, 'ADD NEW OUTLINE DESCRIPTION SUFFIX: ' + suffix) # generate and parse out descriptions, with basic repetition filtering new_descriptions = model([prefix], suffixes=[suffix] if len(suffix.strip()) > 0 else None, max_tokens=64, num_completions=num_samples, model_string=model_string, logit_bias=logit_bias) logging.log(21, 'raw new descriptions for {}'.format(self.name) + '\n' + str(new_descriptions)) processed_descriptions = [] for new_description in new_descriptions: if len(new_description.strip()) > 5: new_description = split_paragraphs(new_description.strip(), mode='sentence')[0] new_description = new_description.replace('1.', '').strip().split('2.')[0].strip() if len(new_description) < 5: continue if new_description[-1] not in '.?!' and new_description[-2] not in '.?!': new_description += '.' if calculate_repetition_length_penalty(new_description, [current_outline_description]) == 0: processed_descriptions.append(new_description) # entailment filtering: don't use descriptions already entailed by previous descriptions if len(processed_descriptions) > 0: entailment_scores, _ = score_entailment([context for _ in range(len(processed_descriptions))], processed_descriptions) entailment_probs = softmax(entailment_scores, axis=1)[:, 2] processed_descriptions = [d for d, p in zip(processed_descriptions, entailment_probs) if p > 0.5] # want to add descriptions which are implied by context if len(processed_descriptions) > 0: entailment_scores, _ = score_entailment([self.description for _ in range(len(processed_descriptions))], processed_descriptions) entailment_probs = softmax(entailment_scores, axis=1)[:, 2] processed_descriptions = [d for d, p in zip(processed_descriptions, entailment_probs) if p < 0.5] # want to add descriptions which are not implied by main description previous_node_texts = [] nodes_to_traverse = [] for n in node.root().depth_first_traverse(): nodes_to_traverse.append(n) if n == node: break nodes_to_traverse += other_nodes for n in nodes_to_traverse: if len(processed_descriptions) == 0: break if n in self.outline_descriptions_by_piece: previous_node_texts.append(self.outline_descriptions_by_piece[n]['current_description']) entailment_scores, _ = score_entailment([previous_node_texts[-1] for _ in range(len(processed_descriptions))], processed_descriptions) entailment_probs = softmax(entailment_scores, axis=1)[:, 2] processed_descriptions = [d for d, p in zip(processed_descriptions, entailment_probs) if p < 0.5] # want to add descriptions which aren't already implied by previous parts of outline if len(processed_descriptions) > 0: new_description = processed_descriptions[0] # figure out which previous descriptions are entailed by the new description so we don't return them later when grabbing descriptions at or after this node if len(previous_node_texts) > 0: entailment_scores, _ = score_entailment([new_description for _ in range(len(previous_node_texts))], previous_node_texts) entailment_probs = softmax(entailment_scores, axis=1)[:, 2] entailed_previous_descriptions = [d for d, p in zip(previous_node_texts, entailment_probs) if p > 0.5] else: entailed_previous_descriptions = [] logging.log(22, 'added outline description for {} from outline section {}: {}'.format(self.name, node.text, new_description)) logging.log(22, 'this new description entails the previous descriptions: {}'.format(entailed_previous_descriptions)) self.outline_descriptions_by_piece[node] = {'current_description': new_description, 'entailed_previous_descriptions': entailed_previous_descriptions} else: logging.log(22, 'failed to add new description due to repetition') def reset_attributes(self): self.attributes = {} def create_entailment_input(self, key, name, value): if key.endswith('\'s'): return (name + ' is ' + key + ' ' + value).strip() # e.g. character is other character's sibling else: return (name + '\'s ' + key + ' is ' + value).strip() def get_referred_name(self, passage): return ' '.join([tok for tok in self.name.strip().split() if tok in passage]) def resample_entry(self, info_entry, fact, gpt3_model, num_samples=3, split_entry=False): """ Resample the entry based on the fact and the model. """ if split_entry: key, _ = split_key_entry(info_entry, self.name) else: key = info_entry if key is None: return info_entry prompt = self.create_entailment_input(key, self.name, '') candidate_entries = [entry for entry in gpt3_model([fact + '\n\n' + prompt], stop=['\n', '.', ','], num_completions=num_samples, top_p=1, temperature=0.8, model_string=ENTITY_MODEL_STRING) if len(entry.strip()) > 0 and entry.strip() != self.name] if len(candidate_entries) == 0: return None fact_entailment_scores, _ = score_entailment([fact for _ in range(len(candidate_entries))], [self.create_entailment_input(key, self.get_referred_name(fact), entry) for entry in candidate_entries]) fact_entailment_probs = softmax(fact_entailment_scores, axis=1) candidate_entries = [candidate_entries[i] for i in range(len(candidate_entries)) if fact_entailment_probs[i, 2] > self.ENTAILMENT_THRESHOLD] if len(candidate_entries) == 0: return None entry_counter = Counter(candidate_entries) return prompt + entry_counter.most_common()[0][0] @torch.no_grad() def infer_description(self, passage, gpt3_model, max_length=48): # ideally text-davinci-001 assert self.description is None query = 'Excerpt:\n\n... ' + passage.strip() + ' ...\n\nWrite a one-sentence summary of ' + self.name + ' in the context of this story.\n\n' + self.name + ' is' for _ in range(5): descriptions = gpt3_model([query], num_completions=5, max_tokens=max_length, model_string=ENTITY_MODEL_STRING) descriptions = [d for d in descriptions if len(d.strip()) > 0 and len(gpt3_model.tokenizer.encode(d)) < max_length] if len(descriptions) > 0: break if len(descriptions) == 0: # give up logging.log(23, 'Warning: Failed to generate sufficiently short description for ' + self.name) descriptions = gpt3_model([query], num_completions=1, max_tokens=max_length, model_string=ENTITY_MODEL_STRING) self.set_description(self.name + ' is' + descriptions[0]) return self.description @torch.no_grad() def infer_is_character(self, passage, gpt3_model, threshold=CHARACTER_THRESHOLD): # ideally text-davinci-002 assert self.is_character is None self.is_character = infer_is_character(self.name, passage, gpt3_model, gpt3_model.model, threshold=threshold) return self.is_character @torch.no_grad() def infer_attributes(self, passage, gpt3_model, num_samples=3, detect_contradictions=True, other_names=[], agreement_threshold=2, return_contradiction_prob=False): if self.is_character is None or not self.is_character: return {} logging.log(23, 'INFERRING FOR ' + self.name) prompt = passage.strip() + '\n\nQuestion: List very brief facts about __CHARACTER__\'s appearance, personality, and relationship to other characters.\n\n1. __CHARACTER__'.replace('__CHARACTER__', self.name) facts_strings = gpt3_model([prompt], num_completions=num_samples, logit_bias={679:-100, 1375:-100, 3347:-100, 1544:-100}, top_p=1, model_string=STRONGER_ENTITY_MODEL_STRING) # ban " He", "He", " She", "She" to force model to refer by name at the beginning of a new entry, to avoid coreference issues facts_strings = ['1. ' + self.name + s for s in facts_strings] logging.log(22, 'facts strings:' + ' ' + str(facts_strings)) facts = sum([split_list(s, strict=True) for s in facts_strings], []) facts = [s for s in facts if len(s.strip()) > 0] facts = [split_paragraphs(s, mode='sentence')[0] for s in facts] # cutoff extra sentences when it's too long facts = [f for f in facts if any([tok in f for tok in self.name.split() if tok not in ' '.join(other_names)])] logging.log(22, 'facts' + ' ' + str(facts)) facts = get_agreed_facts(facts, agreement_threshold=agreement_threshold-1) logging.log(22, 'agreed facts' + ' ' + str(facts)) fact_entailment_counts = get_entailment_groups({fact: 1 for fact in facts}) facts = sorted(list(fact_entailment_counts.keys()), key=lambda x: fact_entailment_counts[x], reverse=True) # most "agreed" facts first logging.log(22, 'facts entailment groups' + ' ' + str(facts)) contradictions = {} done_keys = set() contradiction_prob = 0 for fact in facts: logging.log(23, 'FACT' + ' ' + fact) prompt = construct_infobox_prompt(fact, self.name, other_names) infobox_samples = gpt3_model([prompt], num_completions=num_samples, stop='----', logit_bias={50256:-5}, top_p=1, model_string=ENTITY_MODEL_STRING) infobox_samples = ['\n' + self.name + s for s in infobox_samples] time.sleep(0.5) # otherwise we get rate limited... infobox_samples = [s for s in infobox_samples if s.startswith('\n')] infobox_samples = [s.strip() for s in infobox_samples if len(s.strip()) > 0] if len(infobox_samples) == 0: continue infobox_keys = Counter() for info_sample in infobox_samples: for info_entry in info_sample.strip().split('\n'): if info_entry.startswith(self.name): key = split_key_entry(info_entry, self.name)[0] if key is not None: resolved_key = resolve_names(key, [self.name] + other_names) if resolved_key not in self.attributes or self.attributes[resolved_key]['entailment'] < self.ENTAILMENT_RECHECK_THRESHOLD or resolved_key not in done_keys: # don't recompute attributes we already did for this passage infobox_keys[key] += 1 keys = list(infobox_keys.keys()) for k in keys: if any([banned_attribute in k for banned_attribute in self.BANNED_ATTRIBUTES]): del infobox_keys[k] infobox_counts = Counter({self.resample_entry(key, fact, gpt3_model, split_entry=False): infobox_keys[key] for key in infobox_keys}) # resample the values for those keys if None in infobox_counts: # resample_entry returns None when it fails del infobox_counts[None] for infobox_entry in infobox_counts: logging.log(23, 'CHECKING' + ' ' + infobox_entry) if not infobox_entry.startswith(self.name): continue if any([tok in infobox_entry and tok not in fact for tok in sum([other_name.strip().split() for other_name in other_names], [])]): continue # somehow hallucinated a name...?? new_key, new_entry = split_key_entry(infobox_entry, self.name) if new_key is None: logging.log(23, 'Warning: malformed infobox entry' + ' ' + infobox_entry) continue if any([bad_word in new_entry.lower() or bad_word in new_key.lower() for bad_word in self.NO_ANSWER_WORDS]): continue logging.log(23, infobox_entry + ' ' + new_key + ' ' + new_entry) # effectively, ensemble against the QA model to remove some hallucinations new_qa_entry_passage, new_qa_score_passage = qa_entailment_best_answer(self.create_entailment_input(new_key, self.name, ''), passage, num_beams=5) new_qa_entry_fact, new_qa_score_fact = qa_entailment_best_answer(self.create_entailment_input(new_key, self.name, ''), fact, num_beams=5) logging.log(23, 'new_qa_entry_passage' + ' ' + new_qa_entry_passage + ' ' + str(new_qa_score_passage)) logging.log(23, 'new_qa_entry_fact' + ' ' + new_qa_entry_fact + ' ' + str(new_qa_score_fact)) logging.log(23, 'min QA confidence' + ' ' + str(min(new_qa_score_passage, new_qa_score_fact))) if new_qa_score_passage < self.QA_SCORE_THRESHOLD or new_qa_score_fact < self.QA_SCORE_THRESHOLD or any([w in new_qa_entry_fact.lower() for w in self.NO_ANSWER_WORDS]): logging.log(23, 'filtered by QA confidence') continue # make sure we didn't just hallucinate something out of the fact fact_entailment_scores, _ = score_entailment([fact], [self.create_entailment_input(new_key, self.get_referred_name(fact), new_entry)]) fact_entailment_probs = softmax(fact_entailment_scores, axis=1) logging.log(23, 'fact entailment' + ' ' + str(fact_entailment_probs[0, 2])) if fact_entailment_probs[0, 2] < self.FACT_ENTAILMENT_THRESHOLD: logging.log(23, 'filtered by fact entailment') continue new_key = resolve_names(new_key, [self.name] + other_names) new_entry = resolve_names(new_entry, [self.name] + other_names) logging.log(23, 'PASSED FILTERS' + ' ' + self.name + ' ' + new_key + ' ' + new_entry) info_dict = {'text': fact, 'entry': new_entry, 'entailment': fact_entailment_probs[0, 2], 'newly_entered': True} if return_contradiction_prob: new_prob, _ = self.add_if_better(new_key, info_dict, detect_contradictions=detect_contradictions, contradictions=contradictions, return_contradiction_prob=return_contradiction_prob) contradiction_prob = max(contradiction_prob, new_prob) else: contradictions, _ = self.add_if_better(new_key, info_dict, detect_contradictions=detect_contradictions, contradictions=contradictions, return_contradiction_prob=return_contradiction_prob) done_keys.add(new_key) # regardless of what happened, no need to check against this key again for the same passage if return_contradiction_prob: return contradiction_prob else: return contradictions def add_if_better(self, new_key, info_dict, detect_contradictions=True, contradictions=None, return_contradiction_prob=False): fact = info_dict['text'] new_entry = info_dict['entry'] entailment_prob = info_dict['entailment'] new_entailment_input = self.create_entailment_input(new_key, self.name, info_dict['entry']) status = 'none' contradiction_prob = 0 if new_key in self.attributes: original_entailment_input = self.create_entailment_input(new_key, self.name, self.attributes[new_key]['entry']) if entailment_equals(new_entailment_input, original_entailment_input): # new one is more detailed self.attributes[new_key]['text'] = fact self.attributes[new_key]['entry'] = new_entry self.attributes[new_key]['entailment'] = entailment_prob status = 'modified' elif entailment_equals(original_entailment_input, new_entailment_input): # original one is more detailed pass elif consistent_equals(original_entailment_input, new_entailment_input): # they're consistent with each other, at least if fact not in self.attributes[new_key]['text']: self.attributes[new_key]['text'] += '\n' + fact if new_entry not in self.attributes[new_key]['entry']: self.attributes[new_key]['entry'] += ', ' + new_entry status = 'modified' if not self.attributes[new_key]['newly_entered']: contradiction_prob = math.exp(score_entailment(original_entailment_input, new_entailment_input)[0][0, 0]) elif self.attributes[new_key]['newly_entered']: # both part of the same passage, so just pick what's higher confidence if entailment_prob > self.attributes[new_key]['entailment']: logging.log(23, 'CHANGED BY RECHECK') logging.log(23, 'old' + ' ' + self.attributes[new_key]['text'] + ' ' + self.attributes[new_key]['entry'] + ' ' + str(self.attributes[new_key]['entailment'])) self.attributes[new_key]['text'] = fact self.attributes[new_key]['entry'] = new_entry self.attributes[new_key]['entailment'] = entailment_prob logging.log(23, 'new' + ' ' + self.attributes[new_key]['text'] + ' ' + self.attributes[new_key]['entry'] + ' ' + str(self.attributes[new_key]['entailment'])) status = 'modified' elif not detect_contradictions: # if not detect_contradictions: presumably fixed elsewhere. pass else: logging.log(23, 'POTENTIAL CONTRADICTION') logging.log(23, 'ENTITY' + ' ' + self.name) logging.log(23, 'KEY' + ' ' + new_key) logging.log(23, 'EXISTING ENTRY' + ' ' + str(self.attributes[new_key])) logging.log(23, 'NEW ENTRY' + ' ' + str({'text': fact, 'entry': new_entry})) contradictions[new_key] = (self.attributes[new_key], {'text': fact, 'entry': new_entry}) contradiction_prob = math.exp(score_entailment(original_entailment_input, new_entailment_input)[0][0, 0]) if return_contradiction_prob: return contradiction_prob, status else: self.attributes[new_key] = info_dict status = 'added' if return_contradiction_prob: return contradiction_prob, status return contradictions, status
[ "\n\nQuestion: List very brief facts about __CHARACTER__'s appearance, personality, and relationship to other characters.\n\n1. __CHARACTER__", " is ", "'s", "'s ", ". ", "__CHARACTER__" ]
2024-01-10
yangkevin2/doc-story-generation
story_generation~common~summarizer~models~gpt3_summarizer.py
import time import logging import torch from transformers import AutoTokenizer import openai from story_generation.common.summarizer.models.abstract_summarizer import AbstractSummarizer from story_generation.common.data.split_paragraphs import cut_last_sentence GPT3_END = 'THE END.' PRETRAINED_MODELS = ['ada', 'babbage', 'curie', 'davinci', 'text-ada-001', 'text-babbage-001', 'text-curie-001', 'text-davinci-001', 'text-davinci-002', 'text-davinci-003'] class GPT3Summarizer(AbstractSummarizer): def __init__(self, args): assert args.gpt3_model is not None self.model = args.gpt3_model self.tokenizer = AutoTokenizer.from_pretrained("gpt2") self.args = args self.controller = None @torch.no_grad() def __call__(self, texts, suffixes=None, max_tokens=None, top_p=None, temperature=None, retry_until_success=True, stop=None, logit_bias=None, num_completions=1, cut_sentence=False, model_string=None): assert type(texts) == list if logit_bias is None: logit_bias = {} if suffixes is not None: assert len(texts) == len(suffixes) if model_string is None: logging.warning('model string not provided, using default model') if self.controller is None: return self._call_helper(texts, suffixes=suffixes, max_tokens=max_tokens, top_p=top_p, temperature=temperature, retry_until_success=retry_until_success, stop=stop, logit_bias=logit_bias, num_completions=num_completions, cut_sentence=cut_sentence, model_string=model_string) else: raise NotImplementedError @torch.no_grad() def _call_helper(self, texts, suffixes=None, max_tokens=None, top_p=None, temperature=None, retry_until_success=True, stop=None, logit_bias=None, num_completions=1, cut_sentence=False, model_string=None): assert model_string in PRETRAINED_MODELS if logit_bias is None: logit_bias = {} outputs = [] for i in range(len(texts)): text = texts[i] prompt = text retry = True num_fails = 0 while retry: try: context_length = len(self.tokenizer.encode(prompt)) if context_length > self.args.max_context_length: logging.warning('context length' + ' ' + str(context_length) + ' ' + 'exceeded artificial context length limit' + ' ' + str(self.args.max_context_length)) time.sleep(5) # similar interface to gpt3 query failing and retrying assert False if max_tokens is None: max_tokens = min(self.args.max_tokens, self.args.max_context_length - context_length) engine = self.model if model_string is None else model_string if engine == 'text-davinci-001': engine = 'text-davinci-002' # update to latest version logging.log(21, 'PROMPT') logging.log(21, prompt) logging.log(21, 'MODEL STRING:' + ' ' + self.model if model_string is None else model_string) completion = openai.Completion.create( engine=engine, prompt=prompt, suffix=suffixes[i] if suffixes is not None else None, max_tokens=max_tokens, temperature=temperature if temperature is not None else self.args.summarizer_temperature, top_p=top_p if top_p is not None else self.args.summarizer_top_p, frequency_penalty=self.args.summarizer_frequency_penalty, presence_penalty=self.args.summarizer_presence_penalty, stop=stop, logit_bias=logit_bias, n=num_completions) retry = False except Exception as e: logging.warning(str(e)) retry = retry_until_success num_fails += 1 if num_fails > 20: raise e if retry: logging.warning('retrying...') time.sleep(num_fails) outputs += [completion['choices'][j]['text'] for j in range(num_completions)] if cut_sentence: for i in range(len(outputs)): if len(outputs[i].strip()) > 0: outputs[i] = cut_last_sentence(outputs[i]) engine = self.model if model_string is None else model_string logging.log(21, 'OUTPUTS') logging.log(21, str(outputs)) logging.log(21, 'GPT3 CALL' + ' ' + engine + ' ' + str(len(self.tokenizer.encode(texts[0])) + sum([len(self.tokenizer.encode(o)) for o in outputs]))) return outputs
[]
2024-01-10
yangkevin2/doc-story-generation
story_generation~common~controller~loader_util.py
import torch from story_generation.common.controller.loaders.coherence_loader import CoherenceSplitLoader from story_generation.common.controller.loaders.fine_coherence_loader import FineCoherenceSplitLoader from story_generation.common.controller.loaders.alignment_loader import AlignmentSplitLoader from story_generation.common.controller.loaders.order_loader import OrderSplitLoader def get_loader(loader_name, dataset, split, collate_fn, batch_size=32, append_mask_token=False, num_workers=20, tokenizer_model='roberta-base', **kwargs): assert split in ['train', 'valid', 'test'] if loader_name == 'coherence': loader_class = CoherenceSplitLoader elif loader_name == 'fine_coherence': loader_class = FineCoherenceSplitLoader elif loader_name == 'alignment': loader_class = AlignmentSplitLoader elif loader_name == 'order': loader_class = OrderSplitLoader else: raise NotImplementedError print('loading texts for data loader') contents, summaries = dataset.load_long_texts(split), dataset.load_short_texts(split) print('done loading texts') return torch.utils.data.DataLoader(loader_class(contents, summaries, tokenizer_model, append_mask_token=False, **kwargs), batch_size=batch_size, pin_memory=True, collate_fn=collate_fn, num_workers=num_workers)
[]
2024-01-10
nikell28/foodify
foodify~services~recipient_maker.py
import openai from foodify.config import config from foodify.models.recipient import RecipientInput, Recipient class _ChatGPTRecipientMaker: def get_chatgpt_answer(self, message: list[dict]) -> str: api_key = config.openai_api_key openai.api_key = api_key model = "gpt-3.5-turbo" response = openai.ChatCompletion.create( model=model, messages=message, ) recipient = response.choices[0]["message"]["content"].split("\n") return recipient def _get_recipe(self, recipe_description: str) -> str: user_input = [ {"role": "system", "content": "Ты известный шеф повар."}, {"role": "user", "content": ""}, ] user_input[1]["content"] = recipe_description response = self.get_chatgpt_answer(user_input) response = "\n".join(response) return response class PromtCreator: def get_promt(self, recipe_input: RecipientInput) -> str: promt = config.promt return promt # type: ignore class RecipientMaker(_ChatGPTRecipientMaker): async def get_recipe(self, recipe_input: RecipientInput) -> Recipient: promt = PromtCreator().get_promt(recipe_input) recipient = self._get_recipe(promt) return Recipient( description=recipient, )
[ "Ты известный шеф повар." ]
2024-01-10
romainniamor/openai_chatBot
back~functions~analyser~doc_to_text.py
from PyPDF2 import PdfReader from langchain.text_splitter import CharacterTextSplitter from fastapi import UploadFile import io #extract text from pdf https://pypi.org/project/PyPDF2/ def get_pdf_text(file: UploadFile): #use io.BytesIO to convert file to bytes and pass it to PdfReader file_content = io.BytesIO(file.file.read()) text = "" pdf_reader = PdfReader(file_content) for page in pdf_reader.pages: text += page.extract_text() return text #creation list of text chunks cut by 1000 characters with 200 characters overlap between each chunk def get_text_chunks(text): text_splitter = CharacterTextSplitter( separator = "\n", chunk_size = 1000, chunk_overlap=200, length_function=len ) chunks = text_splitter.split_text(text) print(chunks) return chunks
[]
2024-01-10
navanchauhan/CallMeMaybe
speller_agent.py
import logging from typing import Optional, Tuple import typing from vocode.streaming.agent.chat_gpt_agent import ChatGPTAgent from vocode.streaming.models.agent import AgentConfig, AgentType, ChatGPTAgentConfig from vocode.streaming.agent.base_agent import BaseAgent, RespondAgent from vocode.streaming.agent.factory import AgentFactory import os import sys import typing from dotenv import load_dotenv from lang_prompt_demo import tools from langchain.memory import ConversationBufferMemory from langchain.utilities import SerpAPIWrapper from langchain.agents import load_tools from stdout_filterer import RedactPhoneNumbers load_dotenv() from langchain.chat_models import ChatOpenAI # from langchain.chat_models import BedrockChat from langchain.agents import initialize_agent from langchain.agents import AgentType as LangAgentType llm = ChatOpenAI(temperature=0, model_name="gpt-3.5-turbo") # type: ignore #llm = BedrockChat(model_id="anthropic.claude-instant-v1", model_kwargs={"temperature":0}) # type: ignore memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True) # Logging of LLMChains verbose = True agent = initialize_agent( tools=tools, llm=llm, agent=LangAgentType.CHAT_CONVERSATIONAL_REACT_DESCRIPTION, verbose=verbose, memory=memory, ) class SpellerAgentConfig(AgentConfig, type="agent_speller"): pass class SpellerAgent(RespondAgent[SpellerAgentConfig]): def __init__(self, agent_config: SpellerAgentConfig): super().__init__(agent_config=agent_config) async def respond( self, human_input, conversation_id: str, is_interrupt: bool = False, ) -> Tuple[Optional[str], bool]: print("SpellerAgent: ", human_input) res = agent.run(human_input) return res, False class SpellerAgentFactory(AgentFactory): def create_agent( self, agent_config: AgentConfig, logger: Optional[logging.Logger] = None ) -> BaseAgent: print("Setting up agent", agent_config, agent_config.type) if agent_config.type == AgentType.CHAT_GPT: return ChatGPTAgent( agent_config=typing.cast(ChatGPTAgentConfig, agent_config) ) elif agent_config.type == "agent_speller": return SpellerAgent( agent_config=typing.cast(SpellerAgentConfig, agent_config) ) raise Exception("Invalid agent config")
[]
2024-01-10
navanchauhan/CallMeMaybe
lang_prompt_demo.py
import os import sys import typing from dotenv import load_dotenv from tools.contacts import get_all_contacts from tools.vocode import call_phone_number from tools.summarize import summarize from tools.get_user_inputs import get_desired_inputs from tools.email_tool import email_tasks from langchain.memory import ConversationBufferMemory from langchain.agents import load_tools from stdout_filterer import RedactPhoneNumbers load_dotenv() from langchain.chat_models import ChatOpenAI # from langchain.chat_models import BedrockChat from langchain.agents import initialize_agent from langchain.agents import AgentType from langchain.tools import WikipediaQueryRun import argparse memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True) tools=load_tools(["human", "wikipedia"]) + [get_all_contacts, call_phone_number, email_tasks, summarize] tools_desc = "" for tool in tools: tools_desc += tool.name + " : " + tool.description + "\n" def rephrase_prompt(objective: str) -> str: # llm = ChatOpenAI(temperature=0, model_name="gpt-3.5-turbo") # type: ignore # pred = llm.predict(f"Based on these tools {tools_desc} with the {objective} should be done in the following manner (outputting a single sentence), allowing for failure: ") # print(pred) # return pred return f"{objective}" with open("info.txt") as f: my_info = f.read() memory.chat_memory.add_user_message("User information to us " + my_info + " end of user information.") if __name__ == "__main__": parser = argparse.ArgumentParser(description="Command line argument parser example") parser.add_argument("--objective", type=str, help="Objective for the program") parser.add_argument("--verbose", type=bool, help="Verbosity of the program", default=False) # Parse the arguments args = parser.parse_args() # Get the value of --objective objective_value = args.objective # Get the value of --verbose verbose_value = args.verbose # Redirect stdout to our custom class sys.stdout = typing.cast(typing.TextIO, RedactPhoneNumbers(sys.stdout)) if objective_value is None: objective_value = input("What is your objective? ") OBJECTIVE = ( objective_value or "Find a random person in my contacts and tell them a joke" ) llm = ChatOpenAI(temperature=0, model_name="gpt-3.5-turbo") # type: ignore #llm = BedrockChat(model_id="anthropic.claude-instant-v1", model_kwargs={"temperature":0}) # type: ignore #memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True) # Logging of LLMChains verbose = True agent = initialize_agent( tools=tools, llm=llm, agent=AgentType.CHAT_CONVERSATIONAL_REACT_DESCRIPTION, verbose=verbose_value, memory=memory, ) out = agent.run(OBJECTIVE) print(out)
[]
2024-01-10
navanchauhan/CallMeMaybe
tools~get_user_inputs.py
from typing import List from langchain.agents import tool from dotenv import load_dotenv from langchain.agents import load_tools from langchain.llms import OpenAI from langchain.agents import initialize_agent, AgentType load_dotenv() import os INPUTS = {} @tool("get_desired_inputs") def get_desired_inputs(input: str) -> dict: """Use this between tools to get the desired inputs for the next tool. You will be given a task that will be performed by an autonomous agent on behalf of a user. You will gather any necessary data from the user to complete the specified task before executing the task. """ prompt = input llm = OpenAI(temperature=0) agent = initialize_agent( tools=load_tools(["human"]), llm=llm, agent=AgentType.STRUCTURED_CHAT_ZERO_SHOT_REACT_DESCRIPTION, ) return agent.run(prompt) def get_user_inputs(): # iterate through INPUTS and populate values print("Done")
[ "INPUT" ]
2024-01-10
navanchauhan/CallMeMaybe
tools~email_tool.py
import logging import asyncio import os from langchain.agents import tool from dotenv import load_dotenv from langchain.agents.agent_toolkits import GmailToolkit from langchain.llms import OpenAI from langchain.agents import initialize_agent, AgentType load_dotenv() toolkit = GmailToolkit() tools = toolkit.get_tools() my_information = "Use this information whenever needed User information " + open("info.txt").read() + " . Your task " @tool("email tasks") def email_tasks(input: str) -> bool: """draft/send/search/get email and return whatever you get. the input to this tool is the prompt to the gmail toolkit. Re-order the tasks in the prompt to change the order in which they are executed. Re organise the the input to the tool to pass all information needed to complete the task. should use this tool as many times needed to complete the task. for example, `send an email to [email protected] asking him if he is still looking for a job and that he should continue doing whatever he his doing because he will eventually find it` will email [email protected] """ prompt = my_information + input #print(input) llm = OpenAI(temperature=0) agent = initialize_agent( tools=toolkit.get_tools(), llm=llm, agent=AgentType.STRUCTURED_CHAT_ZERO_SHOT_REACT_DESCRIPTION, ) return agent.run(prompt)
[ "Use this information whenever needed User information \" + open(\"info.txt\").read() + \" . Your task INPUT" ]
2024-01-10
navanchauhan/CallMeMaybe
tools~vocode.py
import logging import asyncio import os from langchain.agents import tool from dotenv import load_dotenv from vocode.streaming.models.message import BaseMessage from vocode.streaming.models.synthesizer import ElevenLabsSynthesizerConfig from vocode.streaming.models.transcriber import ( DeepgramTranscriberConfig, PunctuationEndpointingConfig, ) from vocode.streaming.models.telephony import TwilioConfig load_dotenv() from call_transcript_utils import delete_transcript, get_transcript from vocode.streaming.telephony.conversation.outbound_call import OutboundCall from vocode.streaming.telephony.config_manager.redis_config_manager import ( RedisConfigManager, ) from vocode.streaming.models.agent import ChatGPTAgentConfig import time LOOP = asyncio.new_event_loop() asyncio.set_event_loop(LOOP) my_information = "Use this information whenever needed User information " + open("info.txt").read() + " . Your task " @tool("call phone number") def call_phone_number(input: str) -> str: """calls a phone number as a bot and returns a transcript of the conversation. Verifies the phone number from the user before calling. make sure you call `get all contacts` first to get a list of phone numbers to call. the input to this tool is a pipe separated list of a phone number, a prompt (including history), and the first thing the bot should say The prompt should instruct the bot with what to do on the call and be in the 3rd person, like 'the assistant is performing this task' instead of 'perform this task'. e.g. phone_number|prompt|initial_message should only use this tool once it has found and verified adequate phone number to call. """ phone_number, prompt, initial_message = input.split("|",2) print(phone_number, prompt, initial_message) call = OutboundCall( base_url=os.environ["BASE_URL"], to_phone=phone_number, from_phone=os.environ["TWILIO_PHONE"], config_manager=RedisConfigManager(), agent_config=ChatGPTAgentConfig( initial_message=BaseMessage(text=initial_message), prompt_preamble=my_information + prompt, generate_responses=True, allow_agent_to_be_cut_off=False ), twilio_config=TwilioConfig( account_sid=os.environ["TWILIO_ACCOUNT_SID"], auth_token=os.environ["TWILIO_AUTH_TOKEN"], record=True ), synthesizer_config=ElevenLabsSynthesizerConfig.from_telephone_output_device( api_key=os.getenv("ELEVENLABS_API_KEY"), voice_id=os.getenv("ELEVENLABS_VOICE_ID"), ), transcriber_config=DeepgramTranscriberConfig.from_telephone_input_device( endpointing_config=PunctuationEndpointingConfig() ), logger=logging.Logger("OutboundCall"), ) LOOP.run_until_complete(call.start()) return "Call Started"
[]
2024-01-10
navanchauhan/CallMeMaybe
tools~contacts.py
from typing import List from langchain.agents import tool from dotenv import load_dotenv load_dotenv() import os CONTACTS = [ { "name": "Greg", "phone" : os.getenv("TEST_PHONE_NUMBER"), "email": "[email protected]" }, { "name": "Hunter", "phone": "+19178737978", "email": "[email protected]" } ] @tool("get_all_contacts") def get_all_contacts(contact_name: str) -> List[dict]: """Returns all contacts in the user's phone book which includes email and phone numbers.""" return CONTACTS
[]
2024-01-10
anishpdalal/hashy-api
backend~app~app~api~api_v1~endpoints~search.py
import os import uuid from fastapi import APIRouter, Depends import gantry import openai import pinecone from sentence_transformers import SentenceTransformer from sqlalchemy.ext.asyncio import AsyncSession from app.api.deps import ( current_active_user, get_async_session, ) from app.crud.source import get_sources from app.models.user import User from app.schemas.search import Event, SearchResponse PINECONE_KEY = os.getenv("PINECONE_KEY") environment = os.getenv("ENVIRONMENT") pinecone.init(api_key=PINECONE_KEY, environment="us-west1-gcp") index = pinecone.Index(index_name="semantic-text-search") openai.api_key = os.getenv("OPENAI_API_KEY") search_model = SentenceTransformer("/mnt/bi_encoder") gantry.init( api_key=os.getenv("GANTRY_API_KEY"), environment=os.getenv("ENVIRONMENT") ) api_router = APIRouter() @api_router.get("/search", tags=["search"], response_model=SearchResponse) async def search( query: str, doc_type: str = None, user: User = Depends(current_active_user), db: AsyncSession = Depends(get_async_session), count: int = 10, log_id: str = None ): user_id = str(user.id) user_email = user.email source_ids = [str(source.id) for source in await get_sources(db, user_id, user_email)] filter = {"source_id": {"$in": source_ids}} if doc_type: filter["doc_type"] = {"$eq": doc_type} query_embedding = search_model.encode([query]) query_results = index.query( queries=[query_embedding.tolist()], top_k=count, filter=filter, include_metadata=True, include_values=False, namespace=environment ) matches = query_results["results"][0]["matches"] query_id = str(uuid.uuid4()) results = { "query": query, "query_id": query_id, "count": len(matches), "results": [], "answer": None } for match in matches: metadata = match["metadata"] score = match["score"] if results["answer"] is None and len(matches) > 0: prompt = "Answer the question based on the context below, and if the question can't be answered based on the context, say \"I don't know\"\n\nContext:\n{0}\n\n---\n\nQuestion: {1}\nAnswer:" try: response = openai.Completion.create( engine="text-curie-001", prompt=prompt.format(metadata["text"], query), temperature=0, max_tokens=100, top_p=1, frequency_penalty=0, presence_penalty=0 ) results["answer"] = response.choices[0]["text"].strip() if results["answer"].startswith("I don't know"): results["answer"] = None except Exception as e: pass result = { "score": score, "doc_name": metadata["doc_name"], "doc_last_updated": str(metadata["doc_last_updated"]), "doc_url": metadata["doc_url"], "text": metadata["text"] } results["results"].append(result) if matches: gantry.log_record( application="search_endpoint", version=0, inputs={ "query": query, "user_id": user_id, "log_id": log_id }, outputs={ "first_result_score": matches[0]["score"], "first_result_doc_name": matches[0]["metadata"]["doc_name"], "first_result_doc_url": matches[0]["metadata"]["doc_url"], }, feedback_id={"id": query_id} ) return results @api_router.post("/log", tags=["search"]) async def log(event: Event, user: User = Depends(current_active_user)): gantry.log_record( application="search_endpoint", version=0, feedback_id={"id": event.query_id}, feedback={"event_type": event.event_type, "message": event.message} ) return {"message": "success"}
[ "Answer the question based on the context below, and if the question can't be answered based on the context, say \"I don't know\"\n\nContext:\n{0}\n\n---\n\nQuestion: {1}\nAnswer:", "Answer the question based on the context below, and if the question can't be answered based on the context, say \"I don't know\"\n\nContext:\nPLACEHOLDER\n\n---\n\nQuestion: PLACEHOLDER\nAnswer:" ]
2024-01-10
moad-dev/rcs-vacancy
augmentation~augmentate.py
import openai import csv import json import time import os openai.organization = os.environ.get('OPENAI_ORGANIZATION') openai.api_key = os.environ.get('OPENAI_API_KEY') # Define the prompt system_prompt = ( "Ты - аугментатор размеченных данных. Тебе будут даны размеченные данные в формате plaintext: тексты вакансий, в которых размечены:" "1. Специализация (specialization ключ в json)" "2. Должностные обязанности (responsibilities ключ в json)" "3. Требования к соискателю (requirements)" "4. Условия (terms)" "5. Ключевые навыки (skills)" "6. Примечания (notes)" "Ты должен будешь провести аугментацию данных. Для каждой вакансии придумай новые две вакансии по следующим критериям:" "1. Текст оригинальной вакансии измененный так, чтобы он подходил по смыслу для другой придуманной тобой специальности в области строительства" "2. Текст оригинальной вакансии с сохранением специальности, но с перефразированными предложениями, заменами на синонимы, переформулировками." "Ты должен сохранить оригинальную разметку вакансий. Выводи только новые размеченные вакансии в формате JSON, как массив объектов JSON [{}, {}, {}], без комментариев. Отсутствующие данные заполни по смыслу." ) vacancies = [] with open('vacancies_original.csv', newline='') as csvfile: reader = csv.DictReader(csvfile, delimiter=';') for row in reader: vacancies.append( "Специализация:" + row.get('specialization', '-') + "\n" + "Должностные обязанности:" + row.get('responsibilities', '-') + "\n" + "Требования к соискателю:" + row.get('requirements', '-') + "\n" + "Условия:" + row.get('terms', '-') + "\n" + "Ключевые навыки:" + row.get('skills', '-') + "\n" + "Примечания:" + row.get('notes', '-') + "\n" ) for vacancy in vacancies: try: response = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=[ {"role": "system", "content": system_prompt}, {"role": "user", "content": vacancy}, ], temperature=1.05, ) augmented = json.loads(response.choices[0].message.content) with open('vacancies_augmented.csv', 'a', newline='') as csvfile: writer = csv.DictWriter(csvfile, fieldnames=augmented[0].keys()) for augmentation in augmented: print(augmentation) writer.writerow(augmentation) time.sleep(15) except Exception as e: print(e) time.sleep(15) continue
[ "Ты - аугментатор размеченных данных. Тебе будут даны размеченные данные в формате plaintext: тексты вакансий, в которых размечены:1. Специализация (specialization ключ в json)2. Должностные обязанности (responsibilities ключ в json)3. Требования к соискателю (requirements)4. Условия (terms)5. Ключевые навыки (skills)6. Примечания (notes)Ты должен будешь провести аугментацию данных. Для каждой вакансии придумай новые две вакансии по следующим критериям:1. Текст оригинальной вакансии измененный так, чтобы он подходил по смыслу для другой придуманной тобой специальности в области строительства2. Текст оригинальной вакансии с сохранением специальности, но с перефразированными предложениями, заменами на синонимы, переформулировками.Ты должен сохранить оригинальную разметку вакансий. Выводи только новые размеченные вакансии в формате JSON, как массив объектов JSON [{}, {}, {}], без комментариев. Отсутствующие данные заполни по смыслу." ]
2024-01-10
moad-dev/rcs-vacancy
preprocessing~rcs_vacancy_augmentation.py
import openai import csv import json import time import env openai.organization = env.organization openai.api_key = env.api_key # Define the prompt system_prompt = """ Ты - аугментатор размеченных данных. Тебе будут даны размеченные данные в формате plaintext: тексты вакансий, в которых размечены: 1. Специализация (specialization ключ в json) 2. Должностные обязанности (responsibilities ключ в json) 3. Требования к соискателю (requirements) 4. Условия (terms) 5. Ключевые навыки (skills) 6. Примечания (notes) Ты должен будешь провести аугментацию данных. Для каждой вакансии придумай новые две вакансии по следующим критериям: 1. Текст оригинальной вакансии измененный так, чтобы он подходил по смыслу для другой придуманной тобой специальности в области строительства 2. Текст оригинальной вакансии с сохранением специальности, но с перефразированными предложениями, заменами на синонимы, переформулировками. Ты должен сохранить оригинальную разметку вакансий. Выводи только новые размеченные вакансии в формате JSON, как массив объектов JSON [{}, {}, {}], без комментариев. Отсутствующие данные заполни по смыслу. """ vacancies = [] with open('data/vacancies_original.csv', newline='') as csvfile: reader = csv.DictReader(csvfile, delimiter=';') for row in reader: vacancies.append( "Специализация:" + row.get('specialization', '-') + "\n" + "Должностные обязанности:" + row.get('responsibilities', '-') + "\n" + "Требования к соискателю:" + row.get('requirements', '-') + "\n" + "Условия:" + row.get('terms', '-') + "\n" + "Ключевые навыки:" + row.get('skills', '-') + "\n" + "Примечания:" + row.get('notes', '-') + "\n" ) for vacancy in vacancies: try: response = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=[ {"role": "system", "content": system_prompt}, {"role": "user", "content": vacancy}, ], temperature=1.12 ) except: print('Ошибка запроса к openai') continue try: augmented = json.loads(response.choices[0].message.content) except json.decoder.JSONDecodeError: print('Ошибка JSON decoder') print(response.choices[0].message.content) continue try: with open('data/vacancies_augmented.csv', 'a', newline='') as csvfile: writer = csv.DictWriter(csvfile, fieldnames=augmented[0].keys()) for augmentation in augmented: print(augmentation) writer.writerow(augmentation) except: print('Ошибка записи в файл') continue time.sleep(15)
[ "\nТы - аугментатор размеченных данных. Тебе будут даны размеченные данные в формате plaintext: тексты вакансий, в которых размечены:\n1. Специализация (specialization ключ в json)\n2. Должностные обязанности (responsibilities ключ в json)\n3. Требования к соискателю (requirements)\n4. Условия (terms)\n5. Ключевые навыки (skills)\n6. Примечания (notes)\nТы должен будешь провести аугментацию данных. Для каждой вакансии придумай новые две вакансии по следующим критериям:\n1. Текст оригинальной вакансии измененный так, чтобы он подходил по смыслу для другой придуманной тобой специальности в области строительства\n2. Текст оригинальной вакансии с сохранением специальности, но с перефразированными предложениями, заменами на синонимы, переформулировками.\nТы должен сохранить оригинальную разметку вакансий. Выводи только новые размеченные вакансии в формате JSON, как массив объектов JSON [{}, {}, {}], без комментариев. Отсутствующие данные заполни по смыслу.\n" ]
2024-01-10
acauf564/2023-MRUHacks
PDFtoLIST.py
import openai import os import time from PyPDF2 import PdfReader class PDFtoList: def __init__(self): openai.api_key = "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" self.prompt = self.read_file() self.response = self.get_completion(self.prompt) def getResponse(self): return self.response def read_file(self): reader = PdfReader("sample_syllabus.pdf") number_of_pages = len(reader.pages) text = "<Please give me a python 2d list of all assignments, their due dates and percentage weights. If there is no due date or assignment weight, leave the field as an empty string. : " for i in range(number_of_pages): page = reader.pages[i] text += page.extract_text() formatted_contents = f'{text}>' return formatted_contents def get_completion(self, prompt, model="gpt-3.5-turbo"): # messages = [{"role": "user", "content": prompt}] # response = openai.ChatCompletion.create( # model=model, # messages=messages, # temperature=0, # ) # usableResponse = response.choices[0].message["content"] # print(usableResponse) #UNCOMMENT LATER usableResponse = [['Java Refresher and Comparators', 'October 6, 2023', '7.5%'], ['Generics and Linked Lists', 'October 27, 2023', '7.5%'], ['Queues, Iterators and Trees', 'November 17, 2023', '7.5%'], ['TreeMaps and Hashing', 'December 1, 2023', '7.5%']] return usableResponse
[]
2024-01-10
Roshni-MS1/rosh-repo-search
venv~Lib~site-packages~langchainplus_sdk~client.py
from __future__ import annotations import json import logging import os import socket from collections import defaultdict from datetime import datetime from io import BytesIO from typing import ( TYPE_CHECKING, Any, DefaultDict, Dict, Iterator, List, Mapping, Optional, Sequence, Tuple, Union, cast, ) from urllib.parse import urlsplit from uuid import UUID import requests from pydantic import BaseSettings, Field, root_validator from requests import Response from tenacity import ( before_sleep_log, retry_if_exception_type, stop_after_attempt, wait_exponential, ) from langchainplus_sdk.evaluation.evaluator import RunEvaluator from langchainplus_sdk.schemas import ( APIFeedbackSource, Dataset, DatasetCreate, Example, ExampleCreate, ExampleUpdate, Feedback, FeedbackCreate, FeedbackSourceBase, FeedbackSourceType, ModelFeedbackSource, Run, RunBase, RunTypeEnum, RunUpdate, TracerSession, ) from langchainplus_sdk.utils import ( LangChainPlusAPIError, LangChainPlusError, LangChainPlusUserError, get_runtime_environment, raise_for_status_with_text, request_with_retries, xor_args, ) if TYPE_CHECKING: import pandas as pd logger = logging.getLogger(__name__) def _is_localhost(url: str) -> bool: """Check if the URL is localhost.""" try: netloc = urlsplit(url).netloc.split(":")[0] ip = socket.gethostbyname(netloc) return ip == "127.0.0.1" or ip.startswith("0.0.0.0") or ip.startswith("::") except socket.gaierror: return False ID_TYPE = Union[UUID, str] def _default_retry_config() -> Dict[str, Any]: return dict( stop=stop_after_attempt(3), wait=wait_exponential(multiplier=1, min=4, max=10), retry=retry_if_exception_type(LangChainPlusAPIError), before_sleep=before_sleep_log(logger, logging.WARNING), ) def _serialize_json(obj: Any) -> str: if isinstance(obj, datetime): return obj.isoformat() elif isinstance(obj, UUID): return str(obj) raise TypeError("Type %s not serializable" % type(obj)) class LangChainPlusClient(BaseSettings): """Client for interacting with the LangChain+ API.""" api_key: Optional[str] = Field(default=None, env="LANGCHAIN_API_KEY") api_url: str = Field(default="http://localhost:1984", env="LANGCHAIN_ENDPOINT") retry_config: Mapping[str, Any] = Field( default_factory=_default_retry_config, exclude=True ) timeout_ms: int = Field(default=4000) @root_validator(pre=True) def validate_api_key_if_hosted(cls, values: Dict[str, Any]) -> Dict[str, Any]: """Verify API key is provided if url not localhost.""" api_url: str = values.get("api_url", "http://localhost:1984") api_key: Optional[str] = values.get("api_key") if not _is_localhost(api_url): if not api_key: raise LangChainPlusUserError( "API key must be provided when using hosted LangChain+ API" ) return values def _repr_html_(self) -> str: """Return an HTML representation of the instance with a link to the URL.""" if _is_localhost(self.api_url): link = "http://localhost" elif "dev" in self.api_url.split(".", maxsplit=1)[0]: link = "https://dev.langchain.plus" else: link = "https://www.langchain.plus" return f'<a href="{link}", target="_blank" rel="noopener">LangChain+ Client</a>' def __repr__(self) -> str: """Return a string representation of the instance with a link to the URL.""" return f"LangChainPlusClient (API URL: {self.api_url})" @property def _headers(self) -> Dict[str, str]: """Get the headers for the API request.""" headers = {} if self.api_key: headers["x-api-key"] = self.api_key return headers def _get_with_retries( self, path: str, params: Optional[Dict[str, Any]] = None ) -> Response: return request_with_retries( "get", f"{self.api_url}{path}", request_kwargs={ "params": params, "headers": self._headers, "timeout": self.timeout_ms / 1000, }, retry_config=self.retry_config, ) def upload_dataframe( self, df: pd.DataFrame, name: str, description: str, input_keys: Sequence[str], output_keys: Sequence[str], ) -> Dataset: """Upload a dataframe as individual examples to the LangChain+ API.""" dataset = self.create_dataset(dataset_name=name, description=description) for row in df.itertuples(): inputs = {key: getattr(row, key) for key in input_keys} outputs = {key: getattr(row, key) for key in output_keys} self.create_example(inputs, outputs=outputs, dataset_id=dataset.id) return dataset def upload_csv( self, csv_file: Union[str, Tuple[str, BytesIO]], description: str, input_keys: Sequence[str], output_keys: Sequence[str], ) -> Dataset: """Upload a CSV file to the LangChain+ API.""" files = {"file": csv_file} data = { "input_keys": ",".join(input_keys), "output_keys": ",".join(output_keys), "description": description, } response = requests.post( self.api_url + "/datasets/upload", headers=self._headers, data=data, files=files, ) raise_for_status_with_text(response) result = response.json() # TODO: Make this more robust server-side if "detail" in result and "already exists" in result["detail"]: file_name = csv_file if isinstance(csv_file, str) else csv_file[0] file_name = file_name.split("/")[-1] raise ValueError(f"Dataset {file_name} already exists") return Dataset(**result) def create_run( self, name: str, inputs: Dict[str, Any], run_type: Union[str, RunTypeEnum], *, execution_order: Optional[int] = None, **kwargs: Any, ) -> None: """Persist a run to the LangChain+ API.""" session_name = kwargs.pop( "session_name", os.environ.get("LANGCHAIN_SESSION", "default") ) run_create = { "session_name": session_name, **kwargs, "name": name, "inputs": inputs, "run_type": run_type, "execution_order": execution_order, } run_extra = cast(dict, run_create.setdefault("extra", {})) runtime = run_extra.setdefault("runtime", {}) runtime_env = get_runtime_environment() run_extra["runtime"] = {**runtime_env, **runtime} headers = {**self._headers, "Accept": "application/json"} request_with_retries( "post", f"{self.api_url}/runs", request_kwargs={ "data": json.dumps(run_create, default=_serialize_json), "headers": headers, "timeout": self.timeout_ms / 1000, }, retry_config=self.retry_config, ) def update_run( self, run_id: ID_TYPE, **kwargs: Any, ) -> None: """Update a run to the LangChain+ API.""" run_update = RunUpdate( **kwargs, ) headers = {**self._headers, "Accept": "application/json"} request_with_retries( "patch", f"{self.api_url}/runs/{run_id}", request_kwargs={ "data": run_update.json(), "headers": headers, "timeout": self.timeout_ms / 1000, }, retry_config=self.retry_config, ) def _load_child_runs(self, run: Run) -> Run: child_runs = self.list_runs(id=run.child_run_ids) treemap: DefaultDict[UUID, List[Run]] = defaultdict(list) runs: Dict[UUID, Run] = {} for child_run in sorted(child_runs, key=lambda r: r.execution_order): if child_run.parent_run_id is None: raise LangChainPlusError(f"Child run {child_run.id} has no parent") treemap[child_run.parent_run_id].append(child_run) runs[child_run.id] = child_run run.child_runs = treemap.pop(run.id, []) for run_id, children in treemap.items(): runs[run_id].child_runs = children return run def read_run(self, run_id: ID_TYPE, load_child_runs: bool = False) -> Run: """Read a run from the LangChain+ API. Args: run_id: The ID of the run to read. load_child_runs: Whether to load nested child runs. Returns: The run. """ response = self._get_with_retries(f"/runs/{run_id}") run = Run(**response.json()) if load_child_runs and run.child_run_ids: run = self._load_child_runs(run) return run def list_runs( self, *, session_id: Optional[ID_TYPE] = None, session_name: Optional[str] = None, run_type: Optional[str] = None, dataset_name: Optional[str] = None, dataset_id: Optional[ID_TYPE] = None, reference_example_id: Optional[ID_TYPE] = None, **kwargs: Any, ) -> Iterator[Run]: """List runs from the LangChain+ API.""" if session_name is not None: if session_id is not None: raise ValueError("Only one of session_id or session_name may be given") session_id = self.read_session(session_name=session_name).id if dataset_name is not None: if dataset_id is not None: raise ValueError("Only one of dataset_id or dataset_name may be given") dataset_id = self.read_dataset(dataset_name=dataset_name).id query_params = { "session": session_id, "run_type": run_type, **kwargs, } if reference_example_id is not None: query_params["reference_example"] = reference_example_id if dataset_id is not None: query_params["dataset"] = dataset_id response = self._get_with_retries("/runs", params=query_params) yield from [Run(**run) for run in response.json()] def delete_run(self, run_id: ID_TYPE) -> None: """Delete a run from the LangChain+ API.""" response = requests.delete( f"{self.api_url}/runs/{run_id}", headers=self._headers, ) raise_for_status_with_text(response) return def create_session( self, session_name: str, session_extra: Optional[dict] = None ) -> TracerSession: """Create a session on the LangChain+ API.""" endpoint = f"{self.api_url}/sessions?upsert=true" body = { "name": session_name, "extra": session_extra, } response = requests.post( endpoint, headers=self._headers, json=body, ) raise_for_status_with_text(response) return TracerSession(**response.json()) @xor_args(("session_id", "session_name")) def read_session( self, *, session_id: Optional[str] = None, session_name: Optional[str] = None ) -> TracerSession: """Read a session from the LangChain+ API.""" path = "/sessions" params: Dict[str, Any] = {"limit": 1} if session_id is not None: path += f"/{session_id}" elif session_name is not None: params["name"] = session_name else: raise ValueError("Must provide session_name or session_id") response = self._get_with_retries(path, params=params) result = response.json() if isinstance(result, list): if len(result) == 0: raise LangChainPlusError(f"Session {session_name} not found") return TracerSession(**result[0]) return TracerSession(**response.json()) def list_sessions(self) -> Iterator[TracerSession]: """List sessions from the LangChain+ API.""" response = self._get_with_retries("/sessions") yield from [TracerSession(**session) for session in response.json()] @xor_args(("session_name", "session_id")) def delete_session( self, *, session_name: Optional[str] = None, session_id: Optional[str] = None ) -> None: """Delete a session from the LangChain+ API.""" if session_name is not None: session_id = self.read_session(session_name=session_name).id elif session_id is None: raise ValueError("Must provide session_name or session_id") response = requests.delete( self.api_url + f"/sessions/{session_id}", headers=self._headers, ) raise_for_status_with_text(response) return None def create_dataset( self, dataset_name: str, *, description: Optional[str] = None ) -> Dataset: """Create a dataset in the LangChain+ API.""" dataset = DatasetCreate( name=dataset_name, description=description, ) response = requests.post( self.api_url + "/datasets", headers=self._headers, data=dataset.json(), ) raise_for_status_with_text(response) return Dataset(**response.json()) @xor_args(("dataset_name", "dataset_id")) def read_dataset( self, *, dataset_name: Optional[str] = None, dataset_id: Optional[ID_TYPE] = None, ) -> Dataset: path = "/datasets" params: Dict[str, Any] = {"limit": 1} if dataset_id is not None: path += f"/{dataset_id}" elif dataset_name is not None: params["name"] = dataset_name else: raise ValueError("Must provide dataset_name or dataset_id") response = self._get_with_retries( path, params=params, ) result = response.json() if isinstance(result, list): if len(result) == 0: raise LangChainPlusError(f"Dataset {dataset_name} not found") return Dataset(**result[0]) return Dataset(**result) def list_datasets(self, limit: int = 100) -> Iterator[Dataset]: """List the datasets on the LangChain+ API.""" response = self._get_with_retries("/datasets", params={"limit": limit}) yield from [Dataset(**dataset) for dataset in response.json()] @xor_args(("dataset_id", "dataset_name")) def delete_dataset( self, *, dataset_id: Optional[ID_TYPE] = None, dataset_name: Optional[str] = None, ) -> Dataset: """Delete a dataset by ID or name.""" if dataset_name is not None: dataset_id = self.read_dataset(dataset_name=dataset_name).id if dataset_id is None: raise ValueError("Must provide either dataset name or ID") response = requests.delete( f"{self.api_url}/datasets/{dataset_id}", headers=self._headers, ) raise_for_status_with_text(response) return Dataset(**response.json()) @xor_args(("dataset_id", "dataset_name")) def create_example( self, inputs: Mapping[str, Any], dataset_id: Optional[ID_TYPE] = None, dataset_name: Optional[str] = None, created_at: Optional[datetime] = None, outputs: Optional[Mapping[str, Any]] = None, ) -> Example: """Create a dataset example in the LangChain+ API.""" if dataset_id is None: dataset_id = self.read_dataset(dataset_name=dataset_name).id data = { "inputs": inputs, "outputs": outputs, "dataset_id": dataset_id, } if created_at: data["created_at"] = created_at.isoformat() example = ExampleCreate(**data) response = requests.post( f"{self.api_url}/examples", headers=self._headers, data=example.json() ) raise_for_status_with_text(response) result = response.json() return Example(**result) def read_example(self, example_id: ID_TYPE) -> Example: """Read an example from the LangChain+ API.""" response = self._get_with_retries(f"/examples/{example_id}") return Example(**response.json()) def list_examples( self, dataset_id: Optional[ID_TYPE] = None, dataset_name: Optional[str] = None ) -> Iterator[Example]: """List the datasets on the LangChain+ API.""" params = {} if dataset_id is not None: params["dataset"] = dataset_id elif dataset_name is not None: dataset_id = self.read_dataset(dataset_name=dataset_name).id params["dataset"] = dataset_id else: pass response = self._get_with_retries("/examples", params=params) yield from [Example(**dataset) for dataset in response.json()] def update_example( self, example_id: str, *, inputs: Optional[Dict[str, Any]] = None, outputs: Optional[Mapping[str, Any]] = None, dataset_id: Optional[ID_TYPE] = None, ) -> Dict[str, Any]: """Update a specific example.""" example = ExampleUpdate( inputs=inputs, outputs=outputs, dataset_id=dataset_id, ) response = requests.patch( f"{self.api_url}/examples/{example_id}", headers=self._headers, data=example.json(exclude_none=True), ) raise_for_status_with_text(response) return response.json() def delete_example(self, example_id: ID_TYPE) -> Example: """Delete an example by ID.""" response = requests.delete( f"{self.api_url}/examples/{example_id}", headers=self._headers, ) raise_for_status_with_text(response) return Example(**response.json()) def _resolve_run_id( self, run: Union[Run, RunBase, str, UUID], load_child_runs: bool ) -> Run: if isinstance(run, (str, UUID)): run_ = self.read_run(run, load_child_runs=load_child_runs) elif isinstance(run, Run): run_ = run elif isinstance(run, RunBase): run_ = Run(**run.dict()) else: raise TypeError(f"Invalid run type: {type(run)}") return run_ def _resolve_example_id( self, example: Union[Example, str, UUID, dict, None], run: Run ) -> Optional[Example]: if isinstance(example, (str, UUID)): reference_example_ = self.read_example(example) elif isinstance(example, Example): reference_example_ = example elif isinstance(example, dict): reference_example_ = Example(**example) elif run.reference_example_id is not None: reference_example_ = self.read_example(run.reference_example_id) else: reference_example_ = None return reference_example_ def evaluate_run( self, run: Union[Run, RunBase, str, UUID], evaluator: RunEvaluator, *, source_info: Optional[Dict[str, Any]] = None, reference_example: Optional[Union[Example, str, dict, UUID]] = None, load_child_runs: bool = False, ) -> Feedback: """Evaluate a run. Args: run: The run to evaluate. Can be a run_id or a Run object. evaluator: The evaluator to use. source_info: Additional information about the source of the evaluation to log as feedback metadata. reference_example: The example to use as a reference for the evaluation. If not provided, the run's reference example will be used. load_child_runs: Whether to load child runs when resolving the run ID. Returns: The feedback object created by the evaluation. """ run_ = self._resolve_run_id(run, load_child_runs=load_child_runs) reference_example_ = self._resolve_example_id(reference_example, run_) feedback_result = evaluator.evaluate_run( run_, example=reference_example_, ) source_info = source_info or {} if feedback_result.evaluator_info: source_info = {**feedback_result.evaluator_info, **source_info} return self.create_feedback( run_.id, feedback_result.key, score=feedback_result.score, value=feedback_result.value, comment=feedback_result.comment, correction=feedback_result.correction, source_info=source_info, feedback_source_type=FeedbackSourceType.MODEL, ) async def aevaluate_run( self, run: Union[Run, str, UUID], evaluator: RunEvaluator, *, source_info: Optional[Dict[str, Any]] = None, reference_example: Optional[Union[Example, str, dict, UUID]] = None, load_child_runs: bool = False, ) -> Feedback: """Evaluate a run. Args: run: The run to evaluate. Can be a run_id or a Run object. evaluator: The evaluator to use. source_info: Additional information about the source of the evaluation to log as feedback metadata. reference_example: The example to use as a reference for the evaluation. If not provided, the run's reference example will be used. load_child_runs: Whether to load child runs when resolving the run ID. Returns: The feedback created by the evaluation. """ run_ = self._resolve_run_id(run, load_child_runs=load_child_runs) reference_example_ = self._resolve_example_id(reference_example, run_) feedback_result = await evaluator.aevaluate_run( run_, example=reference_example_, ) source_info = source_info or {} if feedback_result.evaluator_info: source_info = {**feedback_result.evaluator_info, **source_info} return self.create_feedback( run_.id, feedback_result.key, score=feedback_result.score, value=feedback_result.value, comment=feedback_result.comment, correction=feedback_result.correction, source_info=source_info, feedback_source_type=FeedbackSourceType.MODEL, ) def create_feedback( self, run_id: ID_TYPE, key: str, *, score: Union[float, int, bool, None] = None, value: Union[float, int, bool, str, dict, None] = None, correction: Union[str, dict, None] = None, comment: Union[str, None] = None, source_info: Optional[Dict[str, Any]] = None, feedback_source_type: Union[FeedbackSourceType, str] = FeedbackSourceType.API, ) -> Feedback: """Create a feedback in the LangChain+ API. Args: run_id: The ID of the run to provide feedback on. key: The name of the metric, tag, or 'aspect' this feedback is about. score: The score to rate this run on the metric or aspect. value: The display value or non-numeric value for this feedback. correction: The proper ground truth for this run. comment: A comment about this feedback. source_info: Information about the source of this feedback. feedback_source_type: The type of feedback source. """ if feedback_source_type == FeedbackSourceType.API: feedback_source: FeedbackSourceBase = APIFeedbackSource( metadata=source_info ) elif feedback_source_type == FeedbackSourceType.MODEL: feedback_source = ModelFeedbackSource(metadata=source_info) else: raise ValueError(f"Unknown feedback source type {feedback_source_type}") feedback = FeedbackCreate( run_id=run_id, key=key, score=score, value=value, correction=correction, comment=comment, feedback_source=feedback_source, ) response = requests.post( self.api_url + "/feedback", headers={**self._headers, "Content-Type": "application/json"}, data=feedback.json(exclude_none=True), ) raise_for_status_with_text(response) return Feedback(**response.json()) def read_feedback(self, feedback_id: ID_TYPE) -> Feedback: """Read a feedback from the LangChain+ API.""" response = self._get_with_retries(f"/feedback/{feedback_id}") return Feedback(**response.json()) def list_feedback( self, *, run_ids: Optional[Sequence[ID_TYPE]] = None, **kwargs: Any, ) -> Iterator[Feedback]: """List the feedback objects on the LangChain+ API.""" params = { "run": run_ids, **kwargs, } response = self._get_with_retries("/feedback", params=params) yield from [Feedback(**feedback) for feedback in response.json()] def delete_feedback(self, feedback_id: ID_TYPE) -> None: """Delete a feedback by ID.""" response = requests.delete( f"{self.api_url}/feedback/{feedback_id}", headers=self._headers, ) raise_for_status_with_text(response)
[]
2024-01-10
Roshni-MS1/rosh-repo-search
purreaddocs.py
from langchain.document_loaders import ReadTheDocsLoader #readopenaikey def readopenaikey(): with open('C:\\Users\\roshnipatil\\Documents\\GitHub\\openaikey.txt', 'r') as file: # Read all lines of the file return file.read() #load documents def readPurviewDocs(): loader = ReadTheDocsLoader('rtdocs') docs = loader.load() len(docs) print(docs[0].page_content) print(docs[5].page_content) docs[5].metadata['source'].replace('rtdocs/', 'https://') #Create a list of URL reference and page content data = [] for doc in docs: data.append({ 'url': doc.metadata['source'].replace('rtdocs/', 'https://'), 'text': doc.page_content }) #readpineconekey def readpineconekey(): with open('C:\\Users\\roshnipatil\\Documents\\GitHub\\pineconekey.txt', 'r') as file: # Read all lines of the file lines = file.readlines() # Print the content of the file for line in lines: print(line) #Open the file for reading def readSampleDoc(): with open('C:\\Users\\roshnipatil\\Documents\\GitHub\\testpii.txt', 'r') as file: # Read all lines of the file return file.read() #Open the file for reading def writeprompttofile(prompt_text): with open('C:\\Users\\roshnipatil\\Documents\\GitHub\\search_prompts.txt', 'w') as file: file.write(prompt_text) #Open the file for reading def writesencheckprompttofile(sen_prompt_text): with open('C:\\Users\\roshnipatil\\Documents\\GitHub\\sen_check_prompts.txt', 'w') as file: file.write(sen_prompt_text) #Open the file for reading def writesenlistprompttofile(sen_prompt_text): with open('C:\\Users\\roshnipatil\\Documents\\GitHub\\sen_list_prompts.txt', 'w') as file: file.write(sen_prompt_text)
[]
2024-01-10
krunduev/test_telegram_gpt
simple_bot.py
from telegram.ext import Application, CommandHandler, MessageHandler, filters, ContextTypes from telegram import Update from dotenv import load_dotenv import openai import os import requests import aiohttp import json # подгружаем переменные окружения load_dotenv() # передаем секретные данные в переменные TOKEN = os.environ.get("TG_TOKEN") GPT_SECRET_KEY = os.environ.get("GPT_SECRET_KEY") # передаем секретный токен chatgpt openai.api_key = GPT_SECRET_KEY # функция для синхронного общения с chatgpt async def get_answer(text): payload = {"text":text} response = requests.post("http://127.0.0.1:5000/api/get_answer", json=payload) return response.json() # функция для асинхронного общения с сhatgpt async def get_answer_async(text): payload = {"text":text} async with aiohttp.ClientSession() as session: async with session.post('http://127.0.0.1:5000/api/get_answer_async', json=payload) as resp: return await resp.json() # функция-обработчик команды /start async def start(update: Update, context: ContextTypes.DEFAULT_TYPE): # при первом запуске бота добавляем этого пользователя в словарь if update.message.from_user.id not in context.bot_data.keys(): context.bot_data[update.message.from_user.id] = {'count': 3, 'history': [], 'answers': []} # возвращаем текстовое сообщение пользователю await update.message.reply_text('Задайте любой вопрос ChatGPT') # функция-обработчик команды /data async def data(update: Update, context: ContextTypes.DEFAULT_TYPE): # создаем json и сохраняем в него словарь context.bot_data with open('data.json', 'w') as fp: json.dump(context.bot_data, fp) # возвращаем текстовое сообщение пользователю await update.message.reply_text('Данные сгружены') # функция-обработчик команды /data async def status(update: Update, context: ContextTypes.DEFAULT_TYPE): user_id = update.message.from_user.id # Получение истории в виде строки history_text = '' for question, answer in zip(context.bot_data[user_id]['history'], context.bot_data[user_id]['answers']): history_text += f"\nВопрос: {question}\nОтвет: {answer}\n" await update.message.reply_text(f'Осталось запросов: {context.bot_data[user_id]["count"]}\nИстория запросов:\n{history_text}') # функция-обработчик текстовых сообщений async def text(update: Update, context: ContextTypes.DEFAULT_TYPE): user_id = update.message.from_user.id # Инициализация истории сообщений для пользователя, если она еще не существует if user_id not in context.bot_data: context.bot_data[user_id] = {'count': 3, 'history': [], 'answers': []} # Проверка доступных запросов пользователя if context.bot_data[user_id]['count'] > 0: # Добавление вопроса в историю и поддержание истории из последних 5 вопросов context.bot_data[user_id]['history'].append(update.message.text) context.bot_data[user_id]['history'] = context.bot_data[user_id]['history'][-5:] # Формирование текста запроса с учетом истории history_text = '' for question, answer in zip(context.bot_data[user_id]['history'], context.bot_data[user_id]['answers']): history_text += f"\nВопрос: {question}\nОтвет: {answer}\n" # Обработка запроса пользователя first_message = await update.message.reply_text('Ваш запрос обрабатывается, пожалуйста подождите...') res = await get_answer_async( f"{update.message.text}, \n\n\n---\nИстория общения с пользователем. Используй ее для понимания контекста:\n{history_text}") await context.bot.edit_message_text(text=res['message'], chat_id=update.message.chat_id, message_id=first_message.message_id) context.bot_data[user_id]['answers'].append(res['message']) context.bot_data[user_id]['answers'] = context.bot_data[user_id]['answers'][-5:] # Уменьшение количества доступных запросов на 1 context.bot_data[user_id]['count'] -= 1 else: # Сообщение, если запросы исчерпаны await update.message.reply_text('Ваши запросы на сегодня исчерпаны') # функция, которая будет запускаться раз в сутки для обновления доступных запросов async def callback_daily(context: ContextTypes.DEFAULT_TYPE): # проверка базы пользователей if context.bot_data != {}: # проходим по всем пользователям в базе и обновляем их доступные запросы for key in context.bot_data: context.bot_data[key]['count'] = 5 print('Запросы пользователей обновлены') else: print('Не найдено ни одного пользователя') def main(): # создаем приложение и передаем в него токен бота application = Application.builder().token(TOKEN).build() print('Бот запущен...') # создаем job_queue job_queue = application.job_queue job_queue.run_repeating(callback_daily, # функция обновления базы запросов пользователей interval=60, # интервал запуска функции (в секундах) first=10) # первый запуск функции (через сколько секунд) # добавление обработчиков application.add_handler(CommandHandler("start", start, block=False)) application.add_handler(CommandHandler("data", data, block=False)) application.add_handler(CommandHandler("status", status, block=False)) application.add_handler(MessageHandler(filters.TEXT, text, block=False)) # запуск бота (нажать Ctrl+C для остановки) application.run_polling() print('Бот остановлен') if __name__ == "__main__": main()
[]
2024-01-10
krunduev/test_telegram_gpt
fastapi~chunks.py
from langchain.embeddings.openai import OpenAIEmbeddings from langchain.text_splitter import CharacterTextSplitter from langchain.vectorstores import FAISS from langchain.docstore.document import Document from dotenv import load_dotenv import openai import os # получим переменные окружения из .env load_dotenv() # API-key openai.api_key = os.environ.get("OPENAI_API_KEY") # задаем system default_system = "Ты-консультант в компании Simble, ответь на вопрос клиента на основе документа с информацией. Не придумывай ничего от себя, отвечай максимально по документу. Не упоминай Документ с информацией для ответа клиенту. Клиент ничего не должен знать про Документ с информацией для ответа клиенту" class Chunk(): def __init__(self, path_to_base:str, sep:str=" ", ch_size:int=1024): # загружаем базу with open(path_to_base, 'r', encoding='utf-8') as file: document = file.read() # создаем список чанков source_chunks = [] splitter = CharacterTextSplitter(separator=sep, chunk_size=ch_size) for chunk in splitter.split_text(document): source_chunks.append(Document(page_content=chunk, metadata={})) # создаем индексную базу embeddings = OpenAIEmbeddings() self.db = FAISS.from_documents(source_chunks, embeddings) def get_answer(self, system:str = default_system, query:str = None): '''Синхронная функция получения ответа от chatgpt ''' # релевантные отрезки из базы docs = self.db.similarity_search(query, k=4) message_content = '\n'.join([f'{doc.page_content}' for doc in docs]) messages = [ {"role": "system", "content": system}, {"role": "user", "content": f"Ответь на вопрос клиента. Не упоминай документ с информацией для ответа клиенту в ответе. Документ с информацией для ответа клиенту: {message_content}\n\nВопрос клиента: \n{query}"} ] # получение ответа от chatgpt completion = openai.ChatCompletion.create(model="gpt-3.5-turbo", messages=messages, temperature=0) return completion.choices[0].message.content async def async_get_answer(self, system:str = default_system, query:str = None): '''Асинхронная функция получения ответа от chatgpt ''' # релевантные отрезки из базы docs = self.db.similarity_search(query, k=4) message_content = '\n'.join([f'{doc.page_content}' for doc in docs]) messages = [ {"role": "system", "content": system}, {"role": "user", "content": f"Ответь на вопрос клиента. Не упоминай документ с информацией для ответа клиенту в ответе. Документ с информацией для ответа клиенту: {message_content}\n\nВопрос клиента: \n{query}"} ] # получение ответа от chatgpt completion = await openai.ChatCompletion.acreate(model="gpt-3.5-turbo", messages=messages, temperature=0) return completion.choices[0].message.content
[ "Ответь на вопрос клиента. Не упоминай документ с информацией для ответа клиенту в ответе. Документ с информацией для ответа клиенту: PLACEHOLDER\n\nВопрос клиента: \nPLACEHOLDER" ]
2024-01-10
whitead/marvis
marvis~nlp_model.py
import os import openai from .utils import text2pdb openai.api_key = os.getenv('OPENAI_API_KEY') _vmd_cmd_prompt = '''> switch the representation to NewCartoon changerep NewCartoon > make them Ribbons addrep $sel Ribbons > switch style to CPK changerep CPK > enhance on it AutoFocus $sel > color by residue name colorby ResName > take a picture of this scene Render > get that part into focus ZoomSel $sel > rotate by 30 degrees along the y-axis rotate y by 30 1 > Zoom in on them ZoomSel $sel ''' _vmd_select_prompt = '''> select the protein set sel [atomselect top "protein"] > select waters within five of residue number 10 set sel [atomselect top "water within 5 of resid 10"] > select the glycines set sel [atomselect top "resname GLY"] > select the alpha carbons of residues lysines and valines set sel [atomselect top "name CA and resname LYS VAL"] > select the oxygen atoms in the lipids set sel [atomselect top "name O and lipid"] > select the fourth residue from the end set sel [atomselect top "resid -4"] ''' def _query_gpt3(query, training_string, T=0.20): prompt = '\n'.join([training_string, '> ' + query, '']) # return prompt response = openai.Completion.create( engine='davinci', prompt=prompt, temperature=T, max_tokens=64, top_p=1, best_of=4, frequency_penalty=0.0, presence_penalty=0, stop=['\n'] ) return response['choices'][0]['text'], response def run_gpt_search(query): result = {'type': 'VMD Command'} if query.lower().find('select') > -1: # print(select_training_string) r, _ = _query_gpt3(query, _vmd_select_prompt) result['type'] = 'VMD Selection' elif query.lower().find('open') > -1: r = f'mol new {{{text2pdb(query)}}} type {{webpdb}} waitfor all;' result['type'] = 'PDB Search' else: r, _ = _query_gpt3(query, _vmd_cmd_prompt) result['data'] = r return result
[ "> switch the representation to NewCartoon\nchangerep NewCartoon\n> make them Ribbons\naddrep $sel Ribbons\n> switch style to CPK\nchangerep CPK\n> enhance on it\nAutoFocus $sel\n> color by residue name\ncolorby ResName\n> take a picture of this scene\nRender\n> get that part into focus\nZoomSel $sel\n> rotate by 30 degrees along the y-axis\nrotate y by 30 1\n> Zoom in on them\nZoomSel $sel\n", "PLACEHOLDER\n> PLACEHOLDER\n", "> select the protein\nset sel [atomselect top \"protein\"]\n> select waters within five of residue number 10\nset sel [atomselect top \"water within 5 of resid 10\"]\n> select the glycines\nset sel [atomselect top \"resname GLY\"]\n> select the alpha carbons of residues lysines and valines\nset sel [atomselect top \"name CA and resname LYS VAL\"]\n> select the oxygen atoms in the lipids\nset sel [atomselect top \"name O and lipid\"]\n> select the fourth residue from the end\nset sel [atomselect top \"resid -4\"]\n" ]
2024-01-10
songCNMS/wind-farm-env
code~agent~deep~soft_actor.py
from typing import Tuple, Union import torch import torch.nn as nn import torch.nn.functional as F from torch.distributions import Normal import numpy as np LOG_STD_MAX = 2 LOG_STD_MIN = -20 class SoftActor(nn.Module): def __init__(self, state_shape, action_shape, action_scale, action_bias, hidden_sizes: Union[int, Tuple[int]] = (128, 128), device=None): super().__init__() self._device = device if isinstance(hidden_sizes, int): hidden_sizes = [hidden_sizes] hidden_sizes = list(hidden_sizes) hidden_sizes.insert(0, state_shape) if len(hidden_sizes) > 1: self._fcs = [ nn.Linear(hidden_sizes[i-1], hidden_sizes[i], device=self._device) for i in range(1, len(hidden_sizes)) ] else: self._fcs = [] self._fc_mu = nn.Linear(hidden_sizes[-1], action_shape, device=self._device) self._fc_log_std = nn.Linear(hidden_sizes[-1], action_shape, device=self._device) self._action_scale = action_scale self._action_bias = action_bias def forward(self, x, deterministic=False, with_logprob=True): for fc in self._fcs: x = F.relu(fc(x)) mu = self._fc_mu(x) log_std = self._fc_log_std(x) log_std = torch.clamp(log_std, LOG_STD_MIN, LOG_STD_MAX) std = torch.exp(log_std) # Pre-squash distribution and sample pi_distribution = Normal(mu, std) if deterministic: # Only used for evaluating policy at test time. pi_action = mu else: pi_action = pi_distribution.rsample() if with_logprob: # From OpenAI's SpinningUp logp_pi = pi_distribution.log_prob(pi_action).sum(axis=-1) logp_pi -= (2 * (np.log(2) - pi_action - F.softplus(-2 * pi_action))).sum(axis=1) else: logp_pi = None pi_action = torch.tanh(pi_action) pi_action = pi_action * self._action_scale + self._action_bias return pi_action, logp_pi
[]
2024-01-10
CorruptedgriphtV/TAMARA-Asistente-Virtual-para-Discapacitados-Visuales-
ConcursoNacional~Old~GPTINTERACTION.py
import openai import pyttsx3 # Configurar la clave de la API de OpenAI openai.api_key = "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" def generar_respuesta(pregunta): prompt = "Pregunta: {}\nRespuesta:, /// Eres un asistente llamado TAMARA y ayudas a discapacitados visuales" prompt_with_question = prompt.format(pregunta) respuesta = openai.Completion.create( engine="text-davinci-003", # Selecciona el modelo de GPT-3 que deseas utilizar prompt=prompt_with_question, max_tokens=50, # Define el límite de longitud de la respuesta generada n=1, # Número de respuestas generadas stop=None, # Criterio opcional para detener la generación de texto temperature=0.7, # Controla la aleatoriedad de la respuesta generada ) return respuesta.choices[0].text.strip() def main(): while True: # Esperar la entrada del usuario pregunta = input("Hazme una pregunta (o escribe 'salir' para terminar): ") if pregunta.lower() == "salir": break # Generar respuesta con GPT-3 respuesta_generada = generar_respuesta(pregunta) # Imprimir la respuesta generada por GPT-3 print("Respuesta generada por GPT-3:", respuesta_generada) # Pronunciar la respuesta generada utilizando pyttsx3 engine = pyttsx3.init() engine.setProperty('voice', 'spanish') # Establecer el idioma a español engine.say(respuesta_generada) engine.runAndWait() if __name__ == "__main__": main()
[ "Pregunta: PLACEHOLDER\nRespuesta:, /// Eres un asistente llamado TAMARA y ayudas a discapacitados visuales", "Pregunta: {}\nRespuesta:, /// Eres un asistente llamado TAMARA y ayudas a discapacitados visuales" ]
2024-01-10
CorruptedgriphtV/TAMARA-Asistente-Virtual-para-Discapacitados-Visuales-
ConcursoNacional~Old~Principal3.py
import cv2 import requests import pyttsx3 import openai import os import pygame #Instala todo con pip install opencv-python requests pyttsx3 openai pygame import speech_recognition as sr import pyaudio def play_sound(file_path): pygame.mixer.init() pygame.mixer.music.load(file_path) pygame.mixer.music.play() while pygame.mixer.music.get_busy(): pygame.time.Clock().tick(10) def generate_text(prompt): openai.api_key = api_key response = openai.Completion.create( engine="text-davinci-002", prompt=prompt, temperature=0.5, max_tokens=100 ) #print("Respuesta de GPT-3:", response) # Agrega esta línea para ver la respuesta en bruto generated_text = response.choices[0].text.strip() #print("Texto generado:", generated_text) # Agrega esta línea para ver el texto generado return generated_text api_key = "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" openai.api_key = api_key def main(): #for i, microphone_name in enumerate(sr.Microphone.list_microphone_names()): #print(i, microphone_name) # Configurar las credenciales de la API de GPT-3 # Inicializar el reconocedor de voz r = sr.Recognizer() # Configurar la URL y las credenciales de la API de Computer Vision endpoint = "https://tamaraserver.cognitiveservices.azure.com/" subscription_key = "975da0dae182426ba219f03767e152ae" api_url = f"{endpoint}vision/v3.2/analyze" # Inicializar la cámara cap = cv2.VideoCapture(0) while True: # Capturar la imagen desde la cámara ret, frame = cap.read() # Reproducir sonido intro antes de escuchar la solicitud # Guardar la imagen en un archivo temporal img_temp_path = "temp_img.jpg" cv2.imwrite(img_temp_path, frame) # Leer la imagen como bytes with open(img_temp_path, "rb") as image_file: image_data = image_file.read() # Realizar la solicitud a la API de Computer Vision headers = { "Content-Type": "application/octet-stream", "Ocp-Apim-Subscription-Key": subscription_key } params = { "visualFeatures": "Description", "language": "es" # Solicitar descripción en español } response = requests.post(api_url, headers=headers, params=params, data=image_data) # Procesar la respuesta de la API de Computer Vision if response.status_code == 200: result = response.json() if "description" in result and "captions" in result["description"]: description = result["description"]["captions"][0]["text"] # Guardar la descripción en un archivo temporal en la carpeta Sandbox with open("temp_description.txt", "w") as f: f.write(description) else: print("No se encontró una descripción en la respuesta de Azure.") else: print("Error en la solicitud a Azure:", response.text) # Eliminar el archivo temporal de la imagen if os.path.exists(img_temp_path): os.remove(img_temp_path) # Esperar la entrada del usuario with sr.Microphone(device_index=2) as source: print("Esperando el comando de activación...") audio = r.listen(source, timeout=5) try: user_input = r.recognize_google(audio, language='es-ES') # Si el usuario dijo "Oye TAMARA", empezar a procesar el audio if "Oye TAMARA" in user_input: print("Dime algo:") play_sound("Intro.mp3") with sr.Microphone(device_index=13) as source: audio = r.listen(source, timeout=5) try: user_input = r.recognize_google(audio, language='es-ES') print("Creo que dijiste: " + user_input) except sr.UnknownValueError: print("Google Speech Recognition no entendió lo que dijiste") except sr.RequestError as e: print("No se pudo solicitar resultados a Google Speech Recognition; {0}".format(e)) except sr.UnknownValueError: print("Google Speech Recognition no entendió el comando de activación") except sr.RequestError as e: print("No se pudo solicitar resultados a Google Speech Recognition; {0}".format(e)) # Reproducir sonido outro después de recibir la solicitud play_sound("Outro.mp3") # Si el usuario pregunta qué está viendo o qué se ve if any(phrase in user_input.lower() for phrase in ["qué estoy viendo", "qué se ve", "que estoy viendo", "que se ve"]): # Hablar la descripción generada por Azure engine = pyttsx3.init() engine.setProperty('voice', 'spanish') # Establecer idioma a español engine.say("Imagen reconocida: " + description) engine.runAndWait() # Generar respuesta adicional con GPT-3 utilizando la descripción almacenada en el archivo temporal with open("temp_description.txt", "r") as f: saved_description = f.read() prompt = "Eres TAMARA, asistes a personas con discapacidad visual y tu objetivo es proporcionar una descripción detallada de la imagen y ayudar en lo que el usuario solicite, no inventes muchas cosas, solo retroalimenta a lo que ves .\n\nUsuario: {}\n\nDescripción de Azure: {}\n\nRespuesta:" prompt_with_input = prompt.format(user_input, saved_description) additional_assistance = generate_text(prompt_with_input) # Imprimir y pronunciar la respuesta adicional generada por GPT-3 print("Respuesta adicional generada por GPT-3:", additional_assistance) engine = pyttsx3.init() engine.setProperty('voice', 'spanish') # Establecer idioma a español engine.say(additional_assistance) engine.runAndWait() if __name__ == "__main__": main()
[ "Eres TAMARA, asistes a personas con discapacidad visual y tu objetivo es proporcionar una descripción detallada de la imagen y ayudar en lo que el usuario solicite, no inventes muchas cosas, solo retroalimenta a lo que ves .\n\nUsuario: {}\n\nDescripción de Azure: {}\n\nRespuesta:", "Eres TAMARA, asistes a personas con discapacidad visual y tu objetivo es proporcionar una descripción detallada de la imagen y ayudar en lo que el usuario solicite, no inventes muchas cosas, solo retroalimenta a lo que ves .\n\nUsuario: PLACEHOLDER\n\nDescripción de Azure: PLACEHOLDER\n\nRespuesta:" ]
2024-01-10
CorruptedgriphtV/TAMARA-Asistente-Virtual-para-Discapacitados-Visuales-
ConcursoNacional~Old~Principal.py
import cv2 import requests import pyttsx3 import openai import os import pygame def play_sound(file_path): pygame.mixer.init() pygame.mixer.music.load(file_path) pygame.mixer.music.play() while pygame.mixer.music.get_busy(): pygame.time.Clock().tick(10) def generate_text(prompt): openai.api_key = api_key response = openai.Completion.create( engine="text-davinci-002", prompt=prompt, temperature=0.5, max_tokens=100 ) #print("Respuesta de GPT-3:", response) # Agrega esta línea para ver la respuesta en bruto generated_text = response.choices[0].text.strip() #print("Texto generado:", generated_text) # Agrega esta línea para ver el texto generado return generated_text api_key = "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" openai.api_key = api_key def main(): # Configurar las credenciales de la API de GPT-3 # Configurar la URL y las credenciales de la API de Computer Vision endpoint = "https://tamaraserver.cognitiveservices.azure.com/" subscription_key = "975da0dae182426ba219f03767e152ae" api_url = f"{endpoint}vision/v3.2/analyze" # Inicializar la cámara cap = cv2.VideoCapture(0) while True: # Capturar la imagen desde la cámara ret, frame = cap.read() # Reproducir sonido intro antes de escuchar la solicitud play_sound("Intro.mp3") # Guardar la imagen en un archivo temporal img_temp_path = "temp_img.jpg" cv2.imwrite(img_temp_path, frame) # Leer la imagen como bytes with open(img_temp_path, "rb") as image_file: image_data = image_file.read() # Realizar la solicitud a la API de Computer Vision headers = { "Content-Type": "application/octet-stream", "Ocp-Apim-Subscription-Key": subscription_key } params = { "visualFeatures": "Description", "language": "es" # Solicitar descripción en español } response = requests.post(api_url, headers=headers, params=params, data=image_data) # Procesar la respuesta de la API de Computer Vision if response.status_code == 200: result = response.json() if "description" in result and "captions" in result["description"]: description = result["description"]["captions"][0]["text"] # Agregar la descripción al archivo de registro en la carpeta Sandbox with open("temp_description.txt", "a") as f: f.write(description + "\n") else: print("No se encontró una descripción en la respuesta de Azure.") else: print("Error en la solicitud a Azure:", response.text) # Eliminar el archivo temporal de la imagen if os.path.exists(img_temp_path): os.remove(img_temp_path) # Esperar la entrada del usuario user_input = input("Ingrese su solicitud: ") # Reproducir sonido outro después de recibir la solicitud play_sound("Outro.mp3") # Si el usuario pregunta qué está viendo o qué se ve if any(phrase in user_input.lower() for phrase in ["qué estoy viendo", "qué se ve", "que estoy viendo", "que se ve"]): # Hablar la descripción generada por Azure engine = pyttsx3.init() engine.setProperty('voice', 'spanish') # Establecer idioma a español engine.say("Imagen reconocida: " + description) engine.runAndWait() # Generar respuesta adicional con GPT-3 utilizando la descripción almacenada en el archivo de registro with open("temp_description.txt", "r") as f: saved_description = f.read() prompt = "Eres TAMARA, asistes a personas con discapacidad visual y tu objetivo es proporcionar una descripción detallada de la imagen y ayudar en lo que el usuario solicite, no inventes muchas cosas, solo retroalimenta a lo que ves .\n\nUsuario: {}\n\nDescripción de Azure: {}\n\nRespuesta:" prompt_with_input = prompt.format(user_input, saved_description) additional_assistance = generate_text(prompt_with_input) # Generar respuesta adicional con GPT-3 prompt = "Eres TAMARA, asistes a personas con discapacidad visual y tu objetivo es proporcionar una descripción detallada de la imagen y ayudar en lo que el usuario solicite, no inventes muchas cosas, solo retroalimenta a lo que ves .\n\nUsuario: {}\n\nDescripción de Azure: {}\n\nRespuesta:" prompt_with_input = prompt.format(user_input, description) additional_assistance = generate_text(prompt_with_input) # Imprimir y pronunciar la respuesta adicional generada por GPT-3 print("Respuesta adicional generada por GPT-3:", additional_assistance) engine = pyttsx3.init() engine.setProperty('voice', 'spanish') # Establecer idioma a español engine.say(additional_assistance) engine.runAndWait() if __name__ == "__main__": main()
[ "Eres TAMARA, asistes a personas con discapacidad visual y tu objetivo es proporcionar una descripción detallada de la imagen y ayudar en lo que el usuario solicite, no inventes muchas cosas, solo retroalimenta a lo que ves .\n\nUsuario: {}\n\nDescripción de Azure: {}\n\nRespuesta:" ]
2024-01-10
CorruptedgriphtV/TAMARA-Asistente-Virtual-para-Discapacitados-Visuales-
ConcursoNacional~Old~Principal2.py
import cv2 import requests import pyttsx3 import openai import os import pygame #Instala todo con pip install opencv-python requests pyttsx3 openai pygame import speech_recognition as sr import pyaudio def play_sound(file_path): pygame.mixer.init() pygame.mixer.music.load(file_path) pygame.mixer.music.play() while pygame.mixer.music.get_busy(): pygame.time.Clock().tick(10) def generate_text(prompt): openai.api_key = api_key response = openai.Completion.create( engine="text-davinci-002", prompt=prompt, temperature=0.5, max_tokens=100 ) #print("Respuesta de GPT-3:", response) # Agrega esta línea para ver la respuesta en bruto generated_text = response.choices[0].text.strip() #print("Texto generado:", generated_text) # Agrega esta línea para ver el texto generado return generated_text api_key = "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" openai.api_key = api_key def main(): #for i, microphone_name in enumerate(sr.Microphone.list_microphone_names()): #print(i, microphone_name) # Configurar las credenciales de la API de GPT-3 # Inicializar el reconocedor de voz r = sr.Recognizer() # Configurar la URL y las credenciales de la API de Computer Vision endpoint = "https://tamaraserver.cognitiveservices.azure.com/" subscription_key = "975da0dae182426ba219f03767e152ae" api_url = f"{endpoint}vision/v3.2/analyze" # Inicializar la cámara cap = cv2.VideoCapture(0) while True: # Capturar la imagen desde la cámara ret, frame = cap.read() # Reproducir sonido intro antes de escuchar la solicitud # Guardar la imagen en un archivo temporal img_temp_path = "temp_img.jpg" cv2.imwrite(img_temp_path, frame) # Leer la imagen como bytes with open(img_temp_path, "rb") as image_file: image_data = image_file.read() # Realizar la solicitud a la API de Computer Vision headers = { "Content-Type": "application/octet-stream", "Ocp-Apim-Subscription-Key": subscription_key } params = { "visualFeatures": "Description", "language": "es" # Solicitar descripción en español } response = requests.post(api_url, headers=headers, params=params, data=image_data) # Procesar la respuesta de la API de Computer Vision if response.status_code == 200: result = response.json() if "description" in result and "captions" in result["description"]: description = result["description"]["captions"][0]["text"] # Guardar la descripción en un archivo temporal en la carpeta Sandbox with open("temp_description.txt", "w") as f: f.write(description) else: print("No se encontró una descripción en la respuesta de Azure.") else: print("Error en la solicitud a Azure:", response.text) # Eliminar el archivo temporal de la imagen if os.path.exists(img_temp_path): os.remove(img_temp_path) # Esperar la entrada del usuario # Esperar la entrada del usuario with sr.Microphone(device_index=3) as source: print("Dime algo:") play_sound("Intro.mp3") audio = r.listen(source, timeout=5) try: user_input = r.recognize_google(audio, language='es-ES') print("Creo que dijiste: " + user_input) except sr.UnknownValueError: print("Google Speech Recognition no entendió lo que dijiste") except sr.RequestError as e: print("No se pudo solicitar resultados a Google Speech Recognition; {0}".format(e)) # Reproducir sonido outro después de recibir la solicitud play_sound("Outro.mp3") # Si el usuario pregunta qué está viendo o qué se ve if any(phrase in user_input.lower() for phrase in ["qué estoy viendo", "qué se ve", "que estoy viendo", "que se ve"]): # Hablar la descripción generada por Azure engine = pyttsx3.init() engine.setProperty('voice', 'spanish') # Establecer idioma a español engine.say("Imagen reconocida: " + description) engine.runAndWait() # Generar respuesta adicional con GPT-3 utilizando la descripción almacenada en el archivo temporal with open("temp_description.txt", "r") as f: saved_description = f.read() prompt = "Eres TAMARA, asistes a personas con discapacidad visual y tu objetivo es proporcionar una descripción detallada de la imagen y ayudar en lo que el usuario solicite, no inventes muchas cosas, solo retroalimenta a lo que ves .\n\nUsuario: {}\n\nDescripción de Azure: {}\n\nRespuesta:" prompt_with_input = prompt.format(user_input, saved_description) additional_assistance = generate_text(prompt_with_input) # Imprimir y pronunciar la respuesta adicional generada por GPT-3 print("Respuesta adicional generada por GPT-3:", additional_assistance) engine = pyttsx3.init() engine.setProperty('voice', 'spanish') # Establecer idioma a español engine.say(additional_assistance) engine.runAndWait() if __name__ == "__main__": main()
[ "Eres TAMARA, asistes a personas con discapacidad visual y tu objetivo es proporcionar una descripción detallada de la imagen y ayudar en lo que el usuario solicite, no inventes muchas cosas, solo retroalimenta a lo que ves .\n\nUsuario: {}\n\nDescripción de Azure: {}\n\nRespuesta:", "Eres TAMARA, asistes a personas con discapacidad visual y tu objetivo es proporcionar una descripción detallada de la imagen y ayudar en lo que el usuario solicite, no inventes muchas cosas, solo retroalimenta a lo que ves .\n\nUsuario: PLACEHOLDER\n\nDescripción de Azure: PLACEHOLDER\n\nRespuesta:" ]
2024-01-10
lintool/cs-big-cows
gpt-classification~gpt_tokenizer.py
import openai import yaml # 20 requests per minute (RPM) and 40000 tokens per minute (TPM). # assume 20 tokens per answer # assume 30 tokens per citation => so 50x + 25 for init token # so maximum citations per request is 79 citations # completition token = 20x = 20 x 80 = 1600 config_path = "config.yaml" def isNaN(string): return string != string class GPTTokenizer: rate_limit = 3 response_limit = 1400 input_limit = 2400 def __init__(self, tokenizer_prompt): with open(config_path, "r") as ymlfile: cfg = yaml.full_load(ymlfile) openai.api_key = cfg['openai']['api_key'] self.model = "gpt-3.5-turbo" self.prompt = tokenizer_prompt def generate_response(self, citations): prompt = self.prompt token_size = len(prompt.split(" ")) for i, cit in enumerate(citations): if isNaN(cit): cit = "" prompt += f"\n{i+1}. {cit}" token_size += 1 + len(cit.split(" ")) if token_size > self.input_limit: raise Exception(f"token limit is {self.input_limit}, however received {token_size} tokens") response = openai.ChatCompletion.create( model=self.model, messages=[{"role": "user", "content": prompt}], max_tokens = self.response_limit ) # parse token list tokenized_cit = [cit.split('. ')[-1] for cit in response.choices[0].message.content.split("\n")] return tokenized_cit
[]
2024-01-10
mocy/litellm
litellm~exceptions.py
## LiteLLM versions of the OpenAI Exception Types from openai.error import ( AuthenticationError, InvalidRequestError, RateLimitError, ServiceUnavailableError, OpenAIError, APIError, Timeout, APIConnectionError, ) class AuthenticationError(AuthenticationError): # type: ignore def __init__(self, message, llm_provider, model): self.status_code = 401 self.message = message self.llm_provider = llm_provider self.model = model super().__init__( self.message ) # Call the base class constructor with the parameters it needs class InvalidRequestError(InvalidRequestError): # type: ignore def __init__(self, message, model, llm_provider): self.status_code = 400 self.message = message self.model = model self.llm_provider = llm_provider super().__init__( self.message, f"{self.model}" ) # Call the base class constructor with the parameters it needs class Timeout(Timeout): # type: ignore def __init__(self, message, model, llm_provider): self.status_code = 408 self.message = message self.model = model self.llm_provider = llm_provider super().__init__( self.message, f"{self.model}" ) # Call the base class constructor with the parameters it needs # sub class of invalid request error - meant to give more granularity for error handling context window exceeded errors class ContextWindowExceededError(InvalidRequestError): # type: ignore def __init__(self, message, model, llm_provider): self.status_code = 400 self.message = message self.model = model self.llm_provider = llm_provider super().__init__( self.message, self.model, self.llm_provider ) # Call the base class constructor with the parameters it needs class RateLimitError(RateLimitError): # type: ignore def __init__(self, message, llm_provider, model): self.status_code = 429 self.message = message self.llm_provider = llm_provider self.modle = model super().__init__( self.message ) # Call the base class constructor with the parameters it needs class ServiceUnavailableError(ServiceUnavailableError): # type: ignore def __init__(self, message, llm_provider, model): self.status_code = 500 self.message = message self.llm_provider = llm_provider self.model = model super().__init__( self.message ) # Call the base class constructor with the parameters it needs # raise this when the API returns an invalid response object - https://github.com/openai/openai-python/blob/1be14ee34a0f8e42d3f9aa5451aa4cb161f1781f/openai/api_requestor.py#L401 class APIError(APIError): # type: ignore def __init__(self, status_code, message, llm_provider, model): self.status_code = status_code self.message = message self.llm_provider = llm_provider self.model = model super().__init__( self.message ) # raised if an invalid request (not get, delete, put, post) is made class APIConnectionError(APIConnectionError): # type: ignore def __init__(self, message, llm_provider, model): self.message = message self.llm_provider = llm_provider self.model = model super().__init__( self.message ) class OpenAIError(OpenAIError): # type: ignore def __init__(self, original_exception): self.status_code = original_exception.http_status super().__init__( http_body=original_exception.http_body, http_status=original_exception.http_status, json_body=original_exception.json_body, headers=original_exception.headers, code=original_exception.code, ) self.llm_provider = "openai" class BudgetExceededError(Exception): def __init__(self, current_cost, max_budget): self.current_cost = current_cost self.max_budget = max_budget message = f"Budget has been exceeded! Current cost: {current_cost}, Max budget: {max_budget}" super().__init__(message)
[]
2024-01-10
mocy/litellm
litellm~main.py
import os, openai, sys, json, inspect from typing import Any from functools import partial import dotenv, traceback, random, asyncio, time, contextvars from copy import deepcopy import litellm from litellm import ( # type: ignore client, exception_type, timeout, get_optional_params, get_litellm_params, Logging, ) from litellm.utils import ( get_secret, CustomStreamWrapper, read_config_args, completion_with_fallbacks, get_llm_provider, get_api_key, mock_completion_streaming_obj ) from .llms import anthropic from .llms import together_ai from .llms import ai21 from .llms import sagemaker from .llms import bedrock from .llms import huggingface_restapi from .llms import replicate from .llms import aleph_alpha from .llms import nlp_cloud from .llms import baseten from .llms import vllm from .llms import ollama from .llms import cohere from .llms import petals from .llms import oobabooga import tiktoken from concurrent.futures import ThreadPoolExecutor from typing import Callable, List, Optional, Dict encoding = tiktoken.get_encoding("cl100k_base") from litellm.utils import ( get_secret, CustomStreamWrapper, ModelResponse, read_config_args, ) ####### ENVIRONMENT VARIABLES ################### dotenv.load_dotenv() # Loading env variables using dotenv ####### COMPLETION ENDPOINTS ################ async def acompletion(*args, **kwargs): """ Asynchronously perform a completion() using the any LiteLLM model (ex gpt-3.5-turbo, claude-2) This function takes the same arguments as the 'completion' function and is used for asynchronous completion requests. Parameters: *args: Positional arguments to pass to the 'litellm.completion' function. **kwargs: Keyword arguments to pass to the 'litellm.completion' function. Returns: The completion response, either as a litellm.ModelResponse Object or an async generator if 'stream' is set to True. Note: - This function uses asynchronous programming to perform completions. - It leverages the 'loop.run_in_executor' method to execute the synchronous 'completion' function. - If 'stream' is set to True in kwargs, the function returns an async generator. """ loop = asyncio.get_event_loop() # Use a partial function to pass your keyword arguments func = partial(completion, *args, **kwargs, acompletion=True) # Add the context to the function ctx = contextvars.copy_context() func_with_context = partial(ctx.run, func) # Call the synchronous function using run_in_executor response = await loop.run_in_executor(None, func_with_context) if kwargs.get("stream", False): # return an async generator # do not change this # for stream = True, always return an async generator # See OpenAI acreate https://github.com/openai/openai-python/blob/5d50e9e3b39540af782ca24e65c290343d86e1a9/openai/api_resources/abstract/engine_api_resource.py#L193 return( line async for line in response ) else: return response def mock_completion(model: str, messages: List, stream: bool = False, mock_response: str = "This is a mock request", **kwargs): """ Generate a mock completion response for testing or debugging purposes. This is a helper function that simulates the response structure of the OpenAI completion API. Parameters: model (str): The name of the language model for which the mock response is generated. messages (List): A list of message objects representing the conversation context. stream (bool, optional): If True, returns a mock streaming response (default is False). mock_response (str, optional): The content of the mock response (default is "This is a mock request"). **kwargs: Additional keyword arguments that can be used but are not required. Returns: litellm.ModelResponse: A ModelResponse simulating a completion response with the specified model, messages, and mock response. Raises: Exception: If an error occurs during the generation of the mock completion response. Note: - This function is intended for testing or debugging purposes to generate mock completion responses. - If 'stream' is True, it returns a response that mimics the behavior of a streaming completion. """ try: model_response = ModelResponse(stream=stream) if stream is True: # don't try to access stream object, response = mock_completion_streaming_obj(model_response, mock_response=mock_response, model=model) return response model_response["choices"][0]["message"]["content"] = mock_response model_response["created"] = time.time() model_response["model"] = model return model_response except: traceback.print_exc() raise Exception("Mock completion response failed") @client @timeout( # type: ignore 600 ) ## set timeouts, in case calls hang (e.g. Azure) - default is 600s, override with `force_timeout` def completion( model: str, # Optional OpenAI params: see https://platform.openai.com/docs/api-reference/chat/create messages: List = [], functions: List = [], function_call: str = "", # optional params temperature: float = 1, top_p: float = 1, n: int = 1, stream: bool = False, stop=None, max_tokens: float = float("inf"), presence_penalty: float = 0, frequency_penalty=0, logit_bias: dict = {}, user: str = "", deployment_id = None, # Optional liteLLM function params *, return_async=False, mock_response: Optional[str] = None, api_key: Optional[str] = None, api_version: Optional[str] = None, api_base: Optional[str] = None, force_timeout=600, num_beams=1, logger_fn=None, verbose=False, azure=False, custom_llm_provider=None, litellm_call_id=None, litellm_logging_obj=None, use_client=False, id=None, # this is an optional param to tag individual completion calls metadata: Optional[dict]=None, # model specific optional params top_k=40,# used by text-bison only task: Optional[str]="text-generation-inference", # used by huggingface inference endpoints return_full_text: bool = False, # used by huggingface TGI remove_input: bool = True, # used by nlp cloud models - prevents input text from being returned as part of output request_timeout=0, # unused var for old version of OpenAI API fallbacks=[], caching = False, cache_params = {}, # optional to specify metadata for caching acompletion=False, ) -> ModelResponse: """ Perform a completion() using any of litellm supported llms (example gpt-4, gpt-3.5-turbo, claude-2, command-nightly) Parameters: model (str): The name of the language model to use for text completion. see all supported LLMs: https://docs.litellm.ai/docs/providers/ messages (List): A list of message objects representing the conversation context (default is an empty list). OPTIONAL PARAMS functions (List, optional): A list of functions to apply to the conversation messages (default is an empty list). function_call (str, optional): The name of the function to call within the conversation (default is an empty string). temperature (float, optional): The temperature parameter for controlling the randomness of the output (default is 1.0). top_p (float, optional): The top-p parameter for nucleus sampling (default is 1.0). n (int, optional): The number of completions to generate (default is 1). stream (bool, optional): If True, return a streaming response (default is False). stop(string/list, optional): - Up to 4 sequences where the LLM API will stop generating further tokens. max_tokens (integer, optional): The maximum number of tokens in the generated completion (default is infinity). presence_penalty (float, optional): It is used to penalize new tokens based on their existence in the text so far. frequency_penalty: It is used to penalize new tokens based on their frequency in the text so far. logit_bias (dict, optional): Used to modify the probability of specific tokens appearing in the completion. user (str, optional): A unique identifier representing your end-user. This can help the LLM provider to monitor and detect abuse. metadata (dict, optional): Pass in additional metadata to tag your completion calls - eg. prompt version, details, etc. LITELLM Specific Params mock_response (str, optional): If provided, return a mock completion response for testing or debugging purposes (default is None). force_timeout (int, optional): The maximum execution time in seconds for the completion request (default is 600). custom_llm_provider (str, optional): Used for Non-OpenAI LLMs, Example usage for bedrock, set model="amazon.titan-tg1-large" and custom_llm_provider="bedrock" Returns: ModelResponse: A response object containing the generated completion and associated metadata. Note: - This function is used to perform completions() using the specified language model. - It supports various optional parameters for customizing the completion behavior. - If 'mock_response' is provided, a mock completion response is returned for testing or debugging. """ if mock_response: return mock_completion(model, messages, stream=stream, mock_response=mock_response) args = locals() try: logging = litellm_logging_obj if fallbacks != []: return completion_with_fallbacks(**args) if litellm.model_alias_map and model in litellm.model_alias_map: args["model_alias_map"] = litellm.model_alias_map model = litellm.model_alias_map[ model ] # update the model to the actual value if an alias has been passed in model_response = ModelResponse() if deployment_id != None: # azure llms model=deployment_id custom_llm_provider="azure" elif ( model.split("/", 1)[0] in litellm.provider_list ): # allow custom provider to be passed in via the model name "azure/chatgpt-test" custom_llm_provider = model.split("/", 1)[0] model = model.split("/", 1)[1] model, custom_llm_provider = get_llm_provider(model=model, custom_llm_provider=custom_llm_provider) model_api_key = get_api_key(llm_provider=custom_llm_provider, dynamic_api_key=api_key) # get the api key from the environment if required for the model if model_api_key and "sk-litellm" in model_api_key: api_base = "https://proxy.litellm.ai" custom_llm_provider = "openai" api_key = model_api_key # check if user passed in any of the OpenAI optional params optional_params = get_optional_params( functions=functions, function_call=function_call, temperature=temperature, top_p=top_p, n=n, stream=stream, stop=stop, max_tokens=max_tokens, presence_penalty=presence_penalty, frequency_penalty=frequency_penalty, logit_bias=logit_bias, user=user, deployment_id=deployment_id, # params to identify the model model=model, custom_llm_provider=custom_llm_provider, top_k=top_k, task=task, remove_input=remove_input, return_full_text=return_full_text ) # For logging - save the values of the litellm-specific params passed in litellm_params = get_litellm_params( return_async=return_async, api_key=api_key, force_timeout=force_timeout, logger_fn=logger_fn, verbose=verbose, custom_llm_provider=custom_llm_provider, api_base=api_base, litellm_call_id=litellm_call_id, model_alias_map=litellm.model_alias_map, completion_call_id=id, metadata=metadata ) logging.update_environment_variables(model=model, user=user, optional_params=optional_params, litellm_params=litellm_params) if custom_llm_provider == "azure": # azure configs api_type = get_secret("AZURE_API_TYPE") or "azure" api_base = ( api_base or litellm.api_base or get_secret("AZURE_API_BASE") ) api_version = ( api_version or litellm.api_version or get_secret("AZURE_API_VERSION") ) api_key = ( api_key or litellm.api_key or litellm.azure_key or get_secret("AZURE_API_KEY") ) ## LOGGING logging.pre_call( input=messages, api_key=api_key, additional_args={ "headers": litellm.headers, "api_version": api_version, "api_base": api_base, }, ) ## COMPLETION CALL response = openai.ChatCompletion.create( engine=model, messages=messages, headers=litellm.headers, api_key=api_key, api_base=api_base, api_version=api_version, api_type=api_type, **optional_params, ) if "stream" in optional_params and optional_params["stream"] == True: response = CustomStreamWrapper(response, model, custom_llm_provider="openai", logging_obj=logging) return response ## LOGGING logging.post_call( input=messages, api_key=api_key, original_response=response, additional_args={ "headers": litellm.headers, "api_version": api_version, "api_base": api_base, }, ) elif ( model in litellm.open_ai_chat_completion_models or custom_llm_provider == "custom_openai" or custom_llm_provider == "openai" or "ft:gpt-3.5-turbo" in model # finetuned gpt-3.5-turbo ): # allow user to make an openai call with a custom base # note: if a user sets a custom base - we should ensure this works # allow for the setting of dynamic and stateful api-bases api_base = ( api_base or litellm.api_base or get_secret("OPENAI_API_BASE") or "https://api.openai.com/v1" ) if litellm.organization: openai.organization = litellm.organization # set API KEY api_key = ( api_key or litellm.api_key or litellm.openai_key or get_secret("OPENAI_API_KEY") ) ## LOGGING logging.pre_call( input=messages, api_key=api_key, additional_args={"headers": litellm.headers, "api_base": api_base}, ) ## COMPLETION CALL try: response = openai.ChatCompletion.create( model=model, messages=messages, headers=litellm.headers, # None by default api_base=api_base, # thread safe setting base, key, api_version api_key=api_key, api_type="openai", api_version=api_version, # default None **optional_params, ) except Exception as e: ## LOGGING - log the original exception returned logging.post_call( input=messages, api_key=api_key, original_response=str(e), additional_args={"headers": litellm.headers}, ) raise e if "stream" in optional_params and optional_params["stream"] == True: response = CustomStreamWrapper(response, model, custom_llm_provider="openai", logging_obj=logging) return response ## LOGGING logging.post_call( input=messages, api_key=api_key, original_response=response, additional_args={"headers": litellm.headers}, ) elif ( model in litellm.open_ai_text_completion_models or "ft:babbage-002" in model or "ft:davinci-002" in model # support for finetuned completion models # NOTE: Do NOT add custom_llm_provider == "openai". # this will break hosted vllm/proxy calls. # see: https://docs.litellm.ai/docs/providers/vllm#calling-hosted-vllm-server. # VLLM expects requests to call openai.ChatCompletion we need those requests to always # call openai.ChatCompletion ): # print("calling custom openai provider") openai.api_type = "openai" api_base = ( api_base or litellm.api_base or get_secret("OPENAI_API_BASE") or "https://api.openai.com/v1" ) openai.api_version = None # set API KEY api_key = ( api_key or litellm.api_key or litellm.openai_key or get_secret("OPENAI_API_KEY") ) if litellm.organization: openai.organization = litellm.organization prompt = " ".join([message["content"] for message in messages]) ## LOGGING logging.pre_call( input=prompt, api_key=api_key, additional_args={ "openai_organization": litellm.organization, "headers": litellm.headers, "api_base": api_base, "api_type": openai.api_type, }, ) ## COMPLETION CALL response = openai.Completion.create( model=model, prompt=prompt, headers=litellm.headers, api_key = api_key, api_base=api_base, **optional_params ) if "stream" in optional_params and optional_params["stream"] == True: response = CustomStreamWrapper(response, model, custom_llm_provider="text-completion-openai", logging_obj=logging) return response ## LOGGING logging.post_call( input=prompt, api_key=api_key, original_response=response, additional_args={ "openai_organization": litellm.organization, "headers": litellm.headers, "api_base": openai.api_base, "api_type": openai.api_type, }, ) ## RESPONSE OBJECT completion_response = response["choices"][0]["text"] model_response["choices"][0]["message"]["content"] = completion_response model_response["created"] = response.get("created", time.time()) model_response["model"] = model model_response["usage"] = response.get("usage", 0) response = model_response elif ( "replicate" in model or custom_llm_provider == "replicate" or model in litellm.replicate_models ): # Setting the relevant API KEY for replicate, replicate defaults to using os.environ.get("REPLICATE_API_TOKEN") replicate_key = None replicate_key = ( api_key or litellm.replicate_key or litellm.api_key or get_secret("REPLICATE_API_KEY") or get_secret("REPLICATE_API_TOKEN") ) model_response = replicate.completion( model=model, messages=messages, model_response=model_response, print_verbose=print_verbose, optional_params=optional_params, litellm_params=litellm_params, logger_fn=logger_fn, encoding=encoding, # for calculating input/output tokens api_key=replicate_key, logging_obj=logging, ) if "stream" in optional_params and optional_params["stream"] == True: # don't try to access stream object, response = CustomStreamWrapper(model_response, model, logging_obj=logging, custom_llm_provider="replicate") return response response = model_response elif model in litellm.anthropic_models: anthropic_key = ( api_key or litellm.anthropic_key or os.environ.get("ANTHROPIC_API_KEY") or litellm.api_key ) model_response = anthropic.completion( model=model, messages=messages, model_response=model_response, print_verbose=print_verbose, optional_params=optional_params, litellm_params=litellm_params, logger_fn=logger_fn, encoding=encoding, # for calculating input/output tokens api_key=anthropic_key, logging_obj=logging, ) if "stream" in optional_params and optional_params["stream"] == True: # don't try to access stream object, response = CustomStreamWrapper(model_response, model, custom_llm_provider="anthropic", logging_obj=logging) return response response = model_response elif model in litellm.nlp_cloud_models or custom_llm_provider == "nlp_cloud": nlp_cloud_key = ( api_key or litellm.nlp_cloud_key or get_secret("NLP_CLOUD_API_KEY") or litellm.api_key ) model_response = nlp_cloud.completion( model=model, messages=messages, model_response=model_response, print_verbose=print_verbose, optional_params=optional_params, litellm_params=litellm_params, logger_fn=logger_fn, encoding=encoding, api_key=nlp_cloud_key, logging_obj=logging ) if "stream" in optional_params and optional_params["stream"] == True: # don't try to access stream object, response = CustomStreamWrapper(model_response, model, custom_llm_provider="nlp_cloud", logging_obj=logging) return response response = model_response elif model in litellm.aleph_alpha_models: aleph_alpha_key = ( api_key or litellm.aleph_alpha_key or get_secret("ALEPH_ALPHA_API_KEY") or get_secret("ALEPHALPHA_API_KEY") or litellm.api_key ) model_response = aleph_alpha.completion( model=model, messages=messages, model_response=model_response, print_verbose=print_verbose, optional_params=optional_params, litellm_params=litellm_params, logger_fn=logger_fn, encoding=encoding, default_max_tokens_to_sample=litellm.max_tokens, api_key=aleph_alpha_key, logging_obj=logging # model call logging done inside the class as we make need to modify I/O to fit aleph alpha's requirements ) if "stream" in optional_params and optional_params["stream"] == True: # don't try to access stream object, response = CustomStreamWrapper(model_response, model, custom_llm_provider="aleph_alpha", logging_obj=logging) return response response = model_response elif model in litellm.openrouter_models or custom_llm_provider == "openrouter": openai.api_type = "openai" # not sure if this will work after someone first uses another API openai.api_base = ( litellm.api_base if litellm.api_base is not None else "https://openrouter.ai/api/v1" ) openai.api_version = None if litellm.organization: openai.organization = litellm.organization if api_key: openai.api_key = api_key elif litellm.openrouter_key: openai.api_key = litellm.openrouter_key else: openai.api_key = get_secret("OPENROUTER_API_KEY") or get_secret( "OR_API_KEY" ) or litellm.api_key ## LOGGING logging.pre_call(input=messages, api_key=openai.api_key) ## COMPLETION CALL if litellm.headers: response = openai.ChatCompletion.create( model=model, messages=messages, headers=litellm.headers, **optional_params, ) else: openrouter_site_url = get_secret("OR_SITE_URL") openrouter_app_name = get_secret("OR_APP_NAME") # if openrouter_site_url is None, set it to https://litellm.ai if openrouter_site_url is None: openrouter_site_url = "https://litellm.ai" # if openrouter_app_name is None, set it to liteLLM if openrouter_app_name is None: openrouter_app_name = "liteLLM" response = openai.ChatCompletion.create( model=model, messages=messages, headers={ "HTTP-Referer": openrouter_site_url, # To identify your site "X-Title": openrouter_app_name, # To identify your app }, **optional_params, ) ## LOGGING logging.post_call( input=messages, api_key=openai.api_key, original_response=response ) elif model in litellm.cohere_models: cohere_key = ( api_key or litellm.cohere_key or get_secret("COHERE_API_KEY") or get_secret("CO_API_KEY") or litellm.api_key ) model_response = cohere.completion( model=model, messages=messages, model_response=model_response, print_verbose=print_verbose, optional_params=optional_params, litellm_params=litellm_params, logger_fn=logger_fn, encoding=encoding, api_key=cohere_key, logging_obj=logging # model call logging done inside the class as we make need to modify I/O to fit aleph alpha's requirements ) if "stream" in optional_params and optional_params["stream"] == True: # don't try to access stream object, response = CustomStreamWrapper(model_response, model, custom_llm_provider="cohere", logging_obj=logging) return response response = model_response elif ( ( model in litellm.huggingface_models and custom_llm_provider!="custom" # if users use a hf model, with a custom/provider. See implementation of custom_llm_provider == custom ) or custom_llm_provider == "huggingface" ): custom_llm_provider = "huggingface" huggingface_key = ( api_key or litellm.huggingface_key or os.environ.get("HF_TOKEN") or os.environ.get("HUGGINGFACE_API_KEY") or litellm.api_key ) model_response = huggingface_restapi.completion( model=model, messages=messages, api_base=api_base, # type: ignore model_response=model_response, print_verbose=print_verbose, optional_params=optional_params, litellm_params=litellm_params, logger_fn=logger_fn, encoding=encoding, api_key=huggingface_key, logging_obj=logging, custom_prompt_dict=litellm.custom_prompt_dict ) if "stream" in optional_params and optional_params["stream"] == True: # don't try to access stream object, response = CustomStreamWrapper( model_response, model, custom_llm_provider="huggingface", logging_obj=logging ) return response response = model_response elif custom_llm_provider == "oobabooga": custom_llm_provider = "oobabooga" model_response = oobabooga.completion( model=model, messages=messages, model_response=model_response, api_base=api_base, # type: ignore print_verbose=print_verbose, optional_params=optional_params, litellm_params=litellm_params, api_key=None, logger_fn=logger_fn, encoding=encoding, logging_obj=logging ) if "stream" in optional_params and optional_params["stream"] == True: # don't try to access stream object, response = CustomStreamWrapper( model_response, model, custom_llm_provider="oobabooga", logging_obj=logging ) return response response = model_response elif custom_llm_provider == "together_ai" or ("togethercomputer" in model) or (model in litellm.together_ai_models): custom_llm_provider = "together_ai" together_ai_key = ( api_key or litellm.togetherai_api_key or get_secret("TOGETHER_AI_TOKEN") or get_secret("TOGETHERAI_API_KEY") or litellm.api_key ) model_response = together_ai.completion( model=model, messages=messages, model_response=model_response, print_verbose=print_verbose, optional_params=optional_params, litellm_params=litellm_params, logger_fn=logger_fn, encoding=encoding, api_key=together_ai_key, logging_obj=logging ) if "stream_tokens" in optional_params and optional_params["stream_tokens"] == True: # don't try to access stream object, response = CustomStreamWrapper( model_response, model, custom_llm_provider="together_ai", logging_obj=logging ) return response response = model_response elif model in litellm.vertex_chat_models or model in litellm.vertex_code_chat_models: try: import vertexai except: raise Exception("vertexai import failed please run `pip install google-cloud-aiplatform`") from vertexai.preview.language_models import ChatModel, CodeChatModel, InputOutputTextPair vertex_project = (litellm.vertex_project or get_secret("VERTEXAI_PROJECT")) vertex_location = (litellm.vertex_location or get_secret("VERTEXAI_LOCATION")) vertexai.init( project=vertex_project, location=vertex_location ) # vertexai does not use an API key, it looks for credentials.json in the environment prompt = " ".join([message["content"] for message in messages]) ## LOGGING logging.pre_call(input=prompt, api_key=None) if model in litellm.vertex_chat_models: chat_model = ChatModel.from_pretrained(model) else: # vertex_code_chat_models chat_model = CodeChatModel.from_pretrained(model) chat = chat_model.start_chat() if stream: model_response = chat.send_message_streaming(prompt, **optional_params) response = CustomStreamWrapper( model_response, model, custom_llm_provider="vertex_ai", logging_obj=logging ) return response completion_response = chat.send_message(prompt, **optional_params) ## LOGGING logging.post_call( input=prompt, api_key=None, original_response=completion_response ) ## RESPONSE OBJECT model_response["choices"][0]["message"]["content"] = str(completion_response) model_response["created"] = time.time() model_response["model"] = model ## CALCULATING USAGE prompt_tokens = len( encoding.encode(prompt) ) completion_tokens = len( encoding.encode(model_response["choices"][0]["message"]["content"]) ) model_response["usage"] = { "prompt_tokens": prompt_tokens, "completion_tokens": completion_tokens, "total_tokens": prompt_tokens + completion_tokens, } response = model_response elif model in litellm.vertex_text_models or model in litellm.vertex_code_text_models: try: import vertexai except: raise Exception("vertexai import failed please run `pip install google-cloud-aiplatform`") from vertexai.language_models import TextGenerationModel, CodeGenerationModel vertexai.init( project=litellm.vertex_project, location=litellm.vertex_location ) # vertexai does not use an API key, it looks for credentials.json in the environment prompt = " ".join([message["content"] for message in messages]) ## LOGGING logging.pre_call(input=prompt, api_key=None) if model in litellm.vertex_text_models: vertex_model = TextGenerationModel.from_pretrained(model) else: vertex_model = CodeGenerationModel.from_pretrained(model) if stream: model_response = vertex_model.predict_streaming(prompt, **optional_params) response = CustomStreamWrapper( model_response, model, custom_llm_provider="vertexai", logging_obj=logging ) return response completion_response = vertex_model.predict(prompt, **optional_params) ## LOGGING logging.post_call( input=prompt, api_key=None, original_response=completion_response ) ## RESPONSE OBJECT model_response["choices"][0]["message"]["content"] = str(completion_response) model_response["created"] = time.time() model_response["model"] = model ## CALCULATING USAGE prompt_tokens = len( encoding.encode(prompt) ) completion_tokens = len( encoding.encode(model_response["choices"][0]["message"]["content"]) ) model_response["usage"] = { "prompt_tokens": prompt_tokens, "completion_tokens": completion_tokens, "total_tokens": prompt_tokens + completion_tokens, } response = model_response elif model in litellm.ai21_models: custom_llm_provider = "ai21" ai21_key = ( api_key or litellm.ai21_key or os.environ.get("AI21_API_KEY") or litellm.api_key ) model_response = ai21.completion( model=model, messages=messages, model_response=model_response, print_verbose=print_verbose, optional_params=optional_params, litellm_params=litellm_params, logger_fn=logger_fn, encoding=encoding, api_key=ai21_key, logging_obj=logging ) if "stream" in optional_params and optional_params["stream"] == True: # don't try to access stream object, response = CustomStreamWrapper( model_response, model, custom_llm_provider="ai21", logging_obj=logging ) return response ## RESPONSE OBJECT response = model_response elif custom_llm_provider == "sagemaker": # boto3 reads keys from .env model_response = sagemaker.completion( model=model, messages=messages, model_response=model_response, print_verbose=print_verbose, optional_params=optional_params, litellm_params=litellm_params, logger_fn=logger_fn, encoding=encoding, logging_obj=logging ) if stream==True: ## [BETA] # sagemaker does not support streaming as of now so we're faking streaming: # https://discuss.huggingface.co/t/streaming-output-text-when-deploying-on-sagemaker/39611 # "SageMaker is currently not supporting streaming responses." # fake streaming for sagemaker resp_string = model_response["choices"][0]["message"]["content"] response = CustomStreamWrapper( resp_string, model, custom_llm_provider="sagemaker", logging_obj=logging ) return response ## RESPONSE OBJECT response = model_response elif custom_llm_provider == "bedrock": # boto3 reads keys from .env model_response = bedrock.completion( model=model, messages=messages, model_response=model_response, print_verbose=print_verbose, optional_params=optional_params, litellm_params=litellm_params, logger_fn=logger_fn, encoding=encoding, logging_obj=logging, stream=stream, ) if stream == True: # don't try to access stream object, response = CustomStreamWrapper( iter(model_response), model, custom_llm_provider="bedrock", logging_obj=logging ) return response ## RESPONSE OBJECT response = model_response elif custom_llm_provider == "vllm": model_response = vllm.completion( model=model, messages=messages, model_response=model_response, print_verbose=print_verbose, optional_params=optional_params, litellm_params=litellm_params, logger_fn=logger_fn, encoding=encoding, logging_obj=logging ) if "stream" in optional_params and optional_params["stream"] == True: ## [BETA] # don't try to access stream object, response = CustomStreamWrapper( model_response, model, custom_llm_provider="vllm", logging_obj=logging ) return response ## RESPONSE OBJECT response = model_response elif custom_llm_provider == "ollama": endpoint = ( litellm.api_base if litellm.api_base is not None else api_base ) prompt = " ".join([message["content"] for message in messages]) ## LOGGING logging.pre_call( input=prompt, api_key=None, additional_args={"endpoint": endpoint} ) if acompletion == True: async_generator = ollama.async_get_ollama_response_stream(endpoint, model, prompt) return async_generator generator = ollama.get_ollama_response_stream(endpoint, model, prompt) if optional_params.get("stream", False) == True: # assume all ollama responses are streamed return generator else: response_string = "" for chunk in generator: response_string+=chunk['choices'][0]['delta']['content'] ## RESPONSE OBJECT model_response["choices"][0]["message"]["content"] = response_string model_response["created"] = time.time() model_response["model"] = "ollama/" + model prompt_tokens = len(encoding.encode(prompt)) completion_tokens = len(encoding.encode(response_string)) model_response["usage"] = { "prompt_tokens": prompt_tokens, "completion_tokens": completion_tokens, "total_tokens": prompt_tokens + completion_tokens, } response = model_response elif ( custom_llm_provider == "baseten" or litellm.api_base == "https://app.baseten.co" ): custom_llm_provider = "baseten" baseten_key = ( api_key or litellm.baseten_key or os.environ.get("BASETEN_API_KEY") or litellm.api_key ) model_response = baseten.completion( model=model, messages=messages, model_response=model_response, print_verbose=print_verbose, optional_params=optional_params, litellm_params=litellm_params, logger_fn=logger_fn, encoding=encoding, api_key=baseten_key, logging_obj=logging ) if inspect.isgenerator(model_response) or ("stream" in optional_params and optional_params["stream"] == True): # don't try to access stream object, response = CustomStreamWrapper( model_response, model, custom_llm_provider="baseten", logging_obj=logging ) return response response = model_response elif ( custom_llm_provider == "petals" or model in litellm.petals_models ): custom_llm_provider = "petals" model_response = petals.completion( model=model, messages=messages, model_response=model_response, print_verbose=print_verbose, optional_params=optional_params, litellm_params=litellm_params, logger_fn=logger_fn, encoding=encoding, logging_obj=logging ) if inspect.isgenerator(model_response) or (stream == True): # don't try to access stream object, response = CustomStreamWrapper( model_response, model, custom_llm_provider="petals", logging_obj=logging ) return response response = model_response elif ( custom_llm_provider == "custom" ): import requests url = ( litellm.api_base or api_base or "" ) if url == None or url == "": raise ValueError("api_base not set. Set api_base or litellm.api_base for custom endpoints") """ assume input to custom LLM api bases follow this format: resp = requests.post( api_base, json={ 'model': 'meta-llama/Llama-2-13b-hf', # model name 'params': { 'prompt': ["The capital of France is P"], 'max_tokens': 32, 'temperature': 0.7, 'top_p': 1.0, 'top_k': 40, } } ) """ prompt = " ".join([message["content"] for message in messages]) resp = requests.post(url, json={ 'model': model, 'params': { 'prompt': [prompt], 'max_tokens': max_tokens, 'temperature': temperature, 'top_p': top_p, 'top_k': top_k, } }) response_json = resp.json() """ assume all responses from custom api_bases of this format: { 'data': [ { 'prompt': 'The capital of France is P', 'output': ['The capital of France is PARIS.\nThe capital of France is PARIS.\nThe capital of France is PARIS.\nThe capital of France is PARIS.\nThe capital of France is PARIS.\nThe capital of France is PARIS.\nThe capital of France is PARIS.\nThe capital of France is PARIS.\nThe capital of France is PARIS.\nThe capital of France is PARIS.\nThe capital of France is PARIS.\nThe capital of France is PARIS.\nThe capital of France is PARIS.\nThe capital of France'], 'params': {'temperature': 0.7, 'top_k': 40, 'top_p': 1}}], 'message': 'ok' } ] } """ string_response = response_json['data'][0]['output'][0] ## RESPONSE OBJECT model_response["choices"][0]["message"]["content"] = string_response model_response["created"] = time.time() model_response["model"] = model response = model_response else: raise ValueError( f"Unable to map your input to a model. Check your input - {args}" ) return response except Exception as e: ## Map to OpenAI Exception raise exception_type( model=model, custom_llm_provider=custom_llm_provider, original_exception=e, completion_kwargs=args, ) def completion_with_retries(*args, **kwargs): try: import tenacity except: raise Exception("tenacity import failed please run `pip install tenacity`") retryer = tenacity.Retrying(stop=tenacity.stop_after_attempt(3), reraise=True) return retryer(completion, *args, **kwargs) def batch_completion( model: str, # Optional OpenAI params: see https://platform.openai.com/docs/api-reference/chat/create messages: List = [], functions: List = [], function_call: str = "", # optional params temperature: float = 1, top_p: float = 1, n: int = 1, stream: bool = False, stop=None, max_tokens: float = float("inf"), presence_penalty: float = 0, frequency_penalty=0, logit_bias: dict = {}, user: str = "", # Optional liteLLM function params *, return_async=False, api_key: Optional[str] = None, api_version: Optional[str] = None, api_base: Optional[str] = None, force_timeout=600, # used by text-bison only top_k=40, custom_llm_provider=None,): args = locals() batch_messages = messages completions = [] model = model custom_llm_provider = None if model.split("/", 1)[0] in litellm.provider_list: custom_llm_provider = model.split("/", 1)[0] model = model.split("/", 1)[1] if custom_llm_provider == "vllm": optional_params = get_optional_params( functions=functions, function_call=function_call, temperature=temperature, top_p=top_p, n=n, stream=stream, stop=stop, max_tokens=max_tokens, presence_penalty=presence_penalty, frequency_penalty=frequency_penalty, logit_bias=logit_bias, user=user, # params to identify the model model=model, custom_llm_provider=custom_llm_provider, top_k=top_k, ) results = vllm.batch_completions(model=model, messages=batch_messages, custom_prompt_dict=litellm.custom_prompt_dict, optional_params=optional_params) else: def chunks(lst, n): """Yield successive n-sized chunks from lst.""" for i in range(0, len(lst), n): yield lst[i:i + n] with ThreadPoolExecutor(max_workers=100) as executor: for sub_batch in chunks(batch_messages, 100): for message_list in sub_batch: kwargs_modified = args kwargs_modified["messages"] = message_list future = executor.submit(completion, **kwargs_modified) completions.append(future) # Retrieve the results from the futures results = [future.result() for future in completions] return results # send one request to multiple models # return as soon as one of the llms responds def batch_completion_models(*args, **kwargs): """ Send a request to multiple language models concurrently and return the response as soon as one of the models responds. Args: *args: Variable-length positional arguments passed to the completion function. **kwargs: Additional keyword arguments: - models (str or list of str): The language models to send requests to. - Other keyword arguments to be passed to the completion function. Returns: str or None: The response from one of the language models, or None if no response is received. Note: This function utilizes a ThreadPoolExecutor to parallelize requests to multiple models. It sends requests concurrently and returns the response from the first model that responds. """ import concurrent if "model" in kwargs: kwargs.pop("model") if "models" in kwargs: models = kwargs["models"] kwargs.pop("models") futures = {} with concurrent.futures.ThreadPoolExecutor(max_workers=len(models)) as executor: for model in models: futures[model] = executor.submit(completion, *args, model=model, **kwargs) for model, future in sorted(futures.items(), key=lambda x: models.index(x[0])): if future.result() is not None: return future.result() return None # If no response is received from any model def batch_completion_models_all_responses(*args, **kwargs): """ Send a request to multiple language models concurrently and return a list of responses from all models that respond. Args: *args: Variable-length positional arguments passed to the completion function. **kwargs: Additional keyword arguments: - models (str or list of str): The language models to send requests to. - Other keyword arguments to be passed to the completion function. Returns: list: A list of responses from the language models that responded. Note: This function utilizes a ThreadPoolExecutor to parallelize requests to multiple models. It sends requests concurrently and collects responses from all models that respond. """ import concurrent.futures # ANSI escape codes for colored output GREEN = "\033[92m" RED = "\033[91m" RESET = "\033[0m" if "model" in kwargs: kwargs.pop("model") if "models" in kwargs: models = kwargs["models"] kwargs.pop("models") responses = [] with concurrent.futures.ThreadPoolExecutor(max_workers=len(models)) as executor: for idx, model in enumerate(models): print(f"{GREEN}LiteLLM: Making request to model: {model}{RESET}") future = executor.submit(completion, *args, model=model, **kwargs) if future.result() is not None: responses.append(future.result()) print(f"{GREEN}LiteLLM: Model {model} returned response{RESET}") else: print(f"{RED}LiteLLM: Model {model } did not return a response{RESET}") return responses ### EMBEDDING ENDPOINTS #################### @client @timeout( # type: ignore 60 ) ## set timeouts, in case calls hang (e.g. Azure) - default is 60s, override with `force_timeout` def embedding( model, input=[], azure=False, force_timeout=60, litellm_call_id=None, litellm_logging_obj=None, logger_fn=None, caching=False, ): try: response = None logging = litellm_logging_obj logging.update_environment_variables(model=model, user="", optional_params={}, litellm_params={"force_timeout": force_timeout, "azure": azure, "litellm_call_id": litellm_call_id, "logger_fn": logger_fn}) if azure == True: # azure configs openai.api_type = get_secret("AZURE_API_TYPE") or "azure" openai.api_base = get_secret("AZURE_API_BASE") openai.api_version = get_secret("AZURE_API_VERSION") openai.api_key = get_secret("AZURE_API_KEY") ## LOGGING logging.pre_call( input=input, api_key=openai.api_key, additional_args={ "api_type": openai.api_type, "api_base": openai.api_base, "api_version": openai.api_version, }, ) ## EMBEDDING CALL response = openai.Embedding.create(input=input, engine=model) elif model in litellm.open_ai_embedding_models: openai.api_type = "openai" openai.api_base = "https://api.openai.com/v1" openai.api_version = None openai.api_key = get_secret("OPENAI_API_KEY") ## LOGGING logging.pre_call( input=input, api_key=openai.api_key, additional_args={ "api_type": openai.api_type, "api_base": openai.api_base, "api_version": openai.api_version, }, ) ## EMBEDDING CALL response = openai.Embedding.create(input=input, model=model) else: args = locals() raise ValueError(f"No valid embedding model args passed in - {args}") ## LOGGING logging.post_call(input=input, api_key=openai.api_key, original_response=response) return response except Exception as e: ## LOGGING logging.post_call( input=input, api_key=openai.api_key, original_response=str(e), ) ## Map to OpenAI Exception raise exception_type( model=model, original_exception=e, custom_llm_provider="azure" if azure == True else None, ) ###### Text Completion ################ def text_completion(*args, **kwargs): if "prompt" in kwargs: messages = [{"role": "system", "content": kwargs["prompt"]}] kwargs["messages"] = messages kwargs.pop("prompt") return completion(*args, **kwargs) ##### Moderation ####################### def moderation(input: str, api_key: Optional[str]=None): # only supports open ai for now api_key = ( api_key or litellm.api_key or litellm.openai_key or get_secret("OPENAI_API_KEY") ) openai.api_key = api_key openai.api_type = "open_ai" openai.api_version = None openai.api_base = "https://api.openai.com/v1" response = openai.Moderation.create(input) return response ####### HELPER FUNCTIONS ################ ## Set verbose to true -> ```litellm.set_verbose = True``` def print_verbose(print_statement): if litellm.set_verbose: print(f"LiteLLM: {print_statement}") def config_completion(**kwargs): if litellm.config_path != None: config_args = read_config_args(litellm.config_path) # overwrite any args passed in with config args return completion(**kwargs, **config_args) else: raise ValueError( "No config path set, please set a config path using `litellm.config_path = 'path/to/config.json'`" ) def stream_chunk_builder(chunks: list): id = chunks[0]["id"] object = chunks[0]["object"] created = chunks[0]["created"] model = chunks[0]["model"] role = chunks[0]["choices"][0]["delta"]["role"] finnish_reason = chunks[-1]["choices"][0]["finish_reason"] # Initialize the response dictionary response = { "id": id, "object": object, "created": created, "model": model, "choices": [ { "index": 0, "message": { "role": role, "content": "" }, "finish_reason": finnish_reason, } ], # "usage": { # "prompt_tokens": 0, # Modify as needed # "completion_tokens": 0, # Modify as needed # "total_tokens": 0 # Modify as needed # } } # Extract the "content" strings from the nested dictionaries within "choices" content_list = [] if "function_call" in chunks[0]["choices"][0]["delta"]: argument_list = [] delta = chunks[0]["choices"][0]["delta"] function_call = delta.get("function_call", "") function_call_name = function_call.get("name", "") message = response["choices"][0]["message"] message["function_call"] = {} message["function_call"]["name"] = function_call_name for chunk in chunks: choices = chunk["choices"] for choice in choices: delta = choice.get("delta", {}) function_call = delta.get("function_call", "") # Check if a function call is present if function_call: # Now, function_call is expected to be a dictionary arguments = function_call.get("arguments", "") argument_list.append(arguments) combined_arguments = "".join(argument_list) response["choices"][0]["message"]["content"] = None response["choices"][0]["message"]["function_call"]["arguments"] = combined_arguments else: for chunk in chunks: choices = chunk["choices"] for choice in choices: delta = choice.get("delta", {}) content = delta.get("content", "") content_list.append(content) # Combine the "content" strings into a single string combined_content = "".join(content_list) # Update the "content" field within the response dictionary response["choices"][0]["message"]["content"] = combined_content # # Update usage information if needed # response["usage"]["completion_tokens"] = token return response
[ "content", " " ]
2024-01-10
mocy/litellm
litellm~timeout.py
""" Module containing "timeout" decorator for sync and async callables. """ import asyncio from concurrent import futures from inspect import iscoroutinefunction from functools import wraps from threading import Thread from openai.error import Timeout def timeout(timeout_duration: float = 0.0, exception_to_raise=Timeout): """ Wraps a function to raise the specified exception if execution time is greater than the specified timeout. Works with both synchronous and asynchronous callables, but with synchronous ones will introduce some overhead due to the backend use of threads and asyncio. :param float timeout_duration: Timeout duration in seconds. If none callable won't time out. :param OpenAIError exception_to_raise: Exception to raise when the callable times out. Defaults to TimeoutError. :return: The decorated function. :rtype: callable """ def decorator(func): @wraps(func) def wrapper(*args, **kwargs): async def async_func(): return func(*args, **kwargs) thread = _LoopWrapper() thread.start() future = asyncio.run_coroutine_threadsafe(async_func(), thread.loop) local_timeout_duration = timeout_duration if "force_timeout" in kwargs and kwargs["force_timeout"] is not None: local_timeout_duration = kwargs["force_timeout"] elif "request_timeout" in kwargs and kwargs["request_timeout"] is not None: local_timeout_duration = kwargs["request_timeout"] try: result = future.result(timeout=local_timeout_duration) except futures.TimeoutError: thread.stop_loop() raise exception_to_raise( f"A timeout error occurred. The function call took longer than {local_timeout_duration} second(s)." ) thread.stop_loop() return result @wraps(func) async def async_wrapper(*args, **kwargs): local_timeout_duration = timeout_duration if "force_timeout" in kwargs: local_timeout_duration = kwargs["force_timeout"] try: value = await asyncio.wait_for( func(*args, **kwargs), timeout=timeout_duration ) return value except asyncio.TimeoutError: raise exception_to_raise( f"A timeout error occurred. The function call took longer than {local_timeout_duration} second(s)." ) if iscoroutinefunction(func): return async_wrapper return wrapper return decorator class _LoopWrapper(Thread): def __init__(self): super().__init__(daemon=True) self.loop = asyncio.new_event_loop() def run(self) -> None: self.loop.run_forever() self.loop.call_soon_threadsafe(self.loop.close) def stop_loop(self): for task in asyncio.all_tasks(self.loop): task.cancel() self.loop.call_soon_threadsafe(self.loop.stop)
[]
2024-01-10
mocy/litellm
litellm~utils.py
import sys import dotenv, json, traceback, threading import subprocess, os import litellm, openai import itertools import random, uuid, requests import datetime, time import tiktoken import uuid import aiohttp from tokenizers import Tokenizer import pkg_resources encoding = tiktoken.get_encoding("cl100k_base") import importlib.metadata from .integrations.traceloop import TraceloopLogger from .integrations.helicone import HeliconeLogger from .integrations.aispend import AISpendLogger from .integrations.berrispend import BerriSpendLogger from .integrations.supabase import Supabase from .integrations.llmonitor import LLMonitorLogger from .integrations.prompt_layer import PromptLayerLogger from .integrations.custom_logger import CustomLogger from .integrations.langfuse import LangFuseLogger from .integrations.litedebugger import LiteDebugger from openai.error import OpenAIError as OriginalError from openai.openai_object import OpenAIObject from .exceptions import ( AuthenticationError, InvalidRequestError, RateLimitError, ServiceUnavailableError, OpenAIError, ContextWindowExceededError, Timeout, APIConnectionError, APIError, BudgetExceededError ) from typing import cast, List, Dict, Union, Optional from .caching import Cache from .llms.prompt_templates.factory import llama_2_special_tokens ####### ENVIRONMENT VARIABLES #################### dotenv.load_dotenv() # Loading env variables using dotenv sentry_sdk_instance = None capture_exception = None add_breadcrumb = None posthog = None slack_app = None alerts_channel = None heliconeLogger = None promptLayerLogger = None customLogger = None langFuseLogger = None llmonitorLogger = None aispendLogger = None berrispendLogger = None supabaseClient = None liteDebuggerClient = None callback_list: Optional[List[str]] = [] user_logger_fn = None additional_details: Optional[Dict[str, str]] = {} local_cache: Optional[Dict[str, str]] = {} last_fetched_at = None last_fetched_at_keys = None ######## Model Response ######################### # All liteLLM Model responses will be in this format, Follows the OpenAI Format # https://docs.litellm.ai/docs/completion/output # { # 'choices': [ # { # 'finish_reason': 'stop', # 'index': 0, # 'message': { # 'role': 'assistant', # 'content': " I'm doing well, thank you for asking. I am Claude, an AI assistant created by Anthropic." # } # } # ], # 'created': 1691429984.3852863, # 'model': 'claude-instant-1', # 'usage': {'prompt_tokens': 18, 'completion_tokens': 23, 'total_tokens': 41} # } def _generate_id(): # private helper function return 'chatcmpl-' + str(uuid.uuid4()) class Message(OpenAIObject): def __init__(self, content="default", role="assistant", logprobs=None, **params): super(Message, self).__init__(**params) self.content = content self.role = role self.logprobs = logprobs class Delta(OpenAIObject): def __init__(self, content=None, logprobs=None, role=None, **params): super(Delta, self).__init__(**params) if content is not None: self.content = content if role: self.role = role class Choices(OpenAIObject): def __init__(self, finish_reason=None, index=0, message=None, **params): super(Choices, self).__init__(**params) if finish_reason: self.finish_reason = finish_reason else: self.finish_reason = "stop" self.index = index if message is None: self.message = Message(content=None) else: self.message = message class StreamingChoices(OpenAIObject): def __init__(self, finish_reason=None, index=0, delta: Optional[Delta]=None, **params): super(StreamingChoices, self).__init__(**params) self.finish_reason = finish_reason self.index = index if delta: self.delta = delta else: self.delta = Delta() class ModelResponse(OpenAIObject): def __init__(self, id=None, choices=None, created=None, model=None, usage=None, stream=False, response_ms=None, **params): if stream: self.object = "chat.completion.chunk" self.choices = [StreamingChoices()] else: if model in litellm.open_ai_embedding_models: self.object = "embedding" else: self.object = "chat.completion" self.choices = [Choices()] if id is None: self.id = _generate_id() else: self.id = id if created is None: self.created = int(time.time()) else: self.created = created if response_ms: self._response_ms = response_ms else: self._response_ms = None self.model = model self.usage = ( usage if usage else { "prompt_tokens": None, "completion_tokens": None, "total_tokens": None, } ) super(ModelResponse, self).__init__(**params) def to_dict_recursive(self): d = super().to_dict_recursive() d["choices"] = [choice.to_dict_recursive() for choice in self.choices] return d ############################################################ def print_verbose(print_statement): if litellm.set_verbose: print(f"LiteLLM: {print_statement}") ####### LOGGING ################### from enum import Enum class CallTypes(Enum): embedding = 'embedding' completion = 'completion' # Logging function -> log the exact model details + what's being sent | Non-Blocking class Logging: global supabaseClient, liteDebuggerClient, promptLayerLogger def __init__(self, model, messages, stream, call_type, start_time, litellm_call_id, function_id): if call_type not in [item.value for item in CallTypes]: allowed_values = ", ".join([item.value for item in CallTypes]) raise ValueError(f"Invalid call_type {call_type}. Allowed values: {allowed_values}") self.model = model self.messages = messages self.stream = stream self.start_time = start_time # log the call start time self.call_type = call_type self.litellm_call_id = litellm_call_id self.function_id = function_id def update_environment_variables(self, model, user, optional_params, litellm_params): self.optional_params = optional_params self.model = model self.user = user self.litellm_params = litellm_params self.logger_fn = litellm_params["logger_fn"] print_verbose(f"self.optional_params: {self.optional_params}") self.model_call_details = { "model": self.model, "messages": self.messages, "optional_params": self.optional_params, "litellm_params": self.litellm_params, } def pre_call(self, input, api_key, model=None, additional_args={}): # Log the exact input to the LLM API print_verbose(f"Logging Details Pre-API Call for call id {self.litellm_call_id}") litellm.error_logs['PRE_CALL'] = locals() try: # print_verbose(f"logging pre call for model: {self.model} with call type: {self.call_type}") self.model_call_details["input"] = input self.model_call_details["api_key"] = api_key self.model_call_details["additional_args"] = additional_args if ( model ): # if model name was changes pre-call, overwrite the initial model call name with the new one self.model_call_details["model"] = model # User Logging -> if you pass in a custom logging function print_verbose(f"model call details: {self.model_call_details}") if self.logger_fn and callable(self.logger_fn): try: self.logger_fn( self.model_call_details ) # Expectation: any logger function passed in by the user should accept a dict object except Exception as e: print_verbose( f"LiteLLM.LoggingError: [Non-Blocking] Exception occurred while logging {traceback.format_exc()}" ) if litellm.max_budget and self.stream: start_time = self.start_time end_time = self.start_time # no time has passed as the call hasn't been made yet time_diff = (end_time - start_time).total_seconds() float_diff = float(time_diff) litellm._current_cost += litellm.completion_cost(model=self.model, prompt="".join(message["content"] for message in self.messages), completion="", total_time=float_diff) # Input Integration Logging -> If you want to log the fact that an attempt to call the model was made for callback in litellm.input_callback: try: if callback == "supabase": print_verbose("reaches supabase for logging!") model = self.model_call_details["model"] messages = self.model_call_details["input"] print(f"supabaseClient: {supabaseClient}") supabaseClient.input_log_event( model=model, messages=messages, end_user=litellm._thread_context.user, litellm_call_id=self.litellm_params["litellm_call_id"], print_verbose=print_verbose, ) elif callback == "lite_debugger": print_verbose(f"reaches litedebugger for logging! - model_call_details {self.model_call_details}") model = self.model_call_details["model"] messages = self.model_call_details["input"] print_verbose(f"liteDebuggerClient: {liteDebuggerClient}") liteDebuggerClient.input_log_event( model=model, messages=messages, end_user=litellm._thread_context.user, litellm_call_id=self.litellm_params["litellm_call_id"], litellm_params=self.model_call_details["litellm_params"], optional_params=self.model_call_details["optional_params"], print_verbose=print_verbose, call_type=self.call_type ) except Exception as e: print_verbose( f"LiteLLM.LoggingError: [Non-Blocking] Exception occurred while input logging with integrations {traceback.format_exc()}" ) print_verbose( f"LiteLLM.Logging: is sentry capture exception initialized {capture_exception}" ) if capture_exception: # log this error to sentry for debugging capture_exception(e) except: print_verbose( f"LiteLLM.LoggingError: [Non-Blocking] Exception occurred while logging {traceback.format_exc()}" ) print_verbose( f"LiteLLM.Logging: is sentry capture exception initialized {capture_exception}" ) if capture_exception: # log this error to sentry for debugging capture_exception(e) def post_call(self, original_response, input=None, api_key=None, additional_args={}): # Log the exact result from the LLM API, for streaming - log the type of response received litellm.error_logs['POST_CALL'] = locals() try: self.model_call_details["input"] = input self.model_call_details["api_key"] = api_key self.model_call_details["original_response"] = original_response self.model_call_details["additional_args"] = additional_args # User Logging -> if you pass in a custom logging function print_verbose(f"model call details: {self.model_call_details}") print_verbose( f"Logging Details Post-API Call: logger_fn - {self.logger_fn} | callable(logger_fn) - {callable(self.logger_fn)}" ) if self.logger_fn and callable(self.logger_fn): try: self.logger_fn( self.model_call_details ) # Expectation: any logger function passed in by the user should accept a dict object except Exception as e: print_verbose( f"LiteLLM.LoggingError: [Non-Blocking] Exception occurred while logging {traceback.format_exc()}" ) # Input Integration Logging -> If you want to log the fact that an attempt to call the model was made for callback in litellm.input_callback: try: if callback == "lite_debugger": print_verbose("reaches litedebugger for post-call logging!") print_verbose(f"liteDebuggerClient: {liteDebuggerClient}") liteDebuggerClient.post_call_log_event( original_response=original_response, litellm_call_id=self.litellm_params["litellm_call_id"], print_verbose=print_verbose, call_type = self.call_type, stream = self.stream, ) except: print_verbose( f"LiteLLM.LoggingError: [Non-Blocking] Exception occurred while post-call logging with integrations {traceback.format_exc()}" ) print_verbose( f"LiteLLM.Logging: is sentry capture exception initialized {capture_exception}" ) if capture_exception: # log this error to sentry for debugging capture_exception(e) except: print_verbose( f"LiteLLM.LoggingError: [Non-Blocking] Exception occurred while logging {traceback.format_exc()}" ) pass def success_handler(self, result, start_time=None, end_time=None): print_verbose( f"Logging Details LiteLLM-Success Call" ) try: if start_time is None: start_time = self.start_time if end_time is None: end_time = datetime.datetime.now() print_verbose(f"success callbacks: {litellm.success_callback}") if litellm.max_budget and self.stream: time_diff = (end_time - start_time).total_seconds() float_diff = float(time_diff) litellm._current_cost += litellm.completion_cost(model=self.model, prompt="", completion=result["content"], total_time=float_diff) for callback in litellm.success_callback: try: if callback == "lite_debugger": print_verbose("reaches lite_debugger for logging!") print_verbose(f"liteDebuggerClient: {liteDebuggerClient}") print_verbose(f"liteDebuggerClient details function {self.call_type} and stream set to {self.stream}") liteDebuggerClient.log_event( end_user=litellm._thread_context.user, response_obj=result, start_time=start_time, end_time=end_time, litellm_call_id=self.litellm_call_id, print_verbose=print_verbose, call_type = self.call_type, stream = self.stream, ) if callback == "api_manager": print_verbose("reaches api manager for updating model cost") litellm.apiManager.update_cost(completion_obj=result, user=self.user) if callback == "cache": # print("entering logger first time") # print(self.litellm_params["stream_response"]) if litellm.cache != None and self.model_call_details.get('optional_params', {}).get('stream', False) == True: litellm_call_id = self.litellm_params["litellm_call_id"] if litellm_call_id in self.litellm_params["stream_response"]: # append for the given call_id if self.litellm_params["stream_response"][litellm_call_id]["choices"][0]["message"]["content"] == "default": self.litellm_params["stream_response"][litellm_call_id]["choices"][0]["message"]["content"] = result["content"] # handle first try else: self.litellm_params["stream_response"][litellm_call_id]["choices"][0]["message"]["content"] += result["content"] else: # init a streaming response for this call id new_model_response = ModelResponse(choices=[Choices(message=Message(content="default"))]) #print("creating new model response") #print(new_model_response) self.litellm_params["stream_response"][litellm_call_id] = new_model_response #print("adding to cache for", litellm_call_id) litellm.cache.add_cache(self.litellm_params["stream_response"][litellm_call_id], **self.model_call_details) if callback == "promptlayer": print_verbose("reaches promptlayer for logging!") promptLayerLogger.log_event( kwargs=self.model_call_details, response_obj=result, start_time=start_time, end_time=end_time, print_verbose=print_verbose, ) except Exception as e: print_verbose( f"LiteLLM.LoggingError: [Non-Blocking] Exception occurred while success logging with integrations {traceback.format_exc()}" ) print_verbose( f"LiteLLM.Logging: is sentry capture exception initialized {capture_exception}" ) if capture_exception: # log this error to sentry for debugging capture_exception(e) except: print_verbose( f"LiteLLM.LoggingError: [Non-Blocking] Exception occurred while success logging {traceback.format_exc()}" ) pass def failure_handler(self, exception, traceback_exception, start_time=None, end_time=None): print_verbose( f"Logging Details LiteLLM-Failure Call" ) try: if start_time is None: start_time = self.start_time if end_time is None: end_time = datetime.datetime.now() for callback in litellm.failure_callback: try: if callback == "lite_debugger": print_verbose("reaches lite_debugger for logging!") print_verbose(f"liteDebuggerClient: {liteDebuggerClient}") result = { "model": self.model, "created": time.time(), "error": traceback_exception, "usage": { "prompt_tokens": prompt_token_calculator( self.model, messages=self.messages ), "completion_tokens": 0, }, } liteDebuggerClient.log_event( model=self.model, messages=self.messages, end_user=litellm._thread_context.user, response_obj=result, start_time=start_time, end_time=end_time, litellm_call_id=self.litellm_call_id, print_verbose=print_verbose, call_type = self.call_type, stream = self.stream, ) except Exception as e: print_verbose( f"LiteLLM.LoggingError: [Non-Blocking] Exception occurred while failure logging with integrations {traceback.format_exc()}" ) print_verbose( f"LiteLLM.Logging: is sentry capture exception initialized {capture_exception}" ) if capture_exception: # log this error to sentry for debugging capture_exception(e) except: print_verbose( f"LiteLLM.LoggingError: [Non-Blocking] Exception occurred while failure logging {traceback.format_exc()}" ) pass def exception_logging( additional_args={}, logger_fn=None, exception=None, ): try: model_call_details = {} if exception: model_call_details["exception"] = exception model_call_details["additional_args"] = additional_args # User Logging -> if you pass in a custom logging function or want to use sentry breadcrumbs print_verbose( f"Logging Details: logger_fn - {logger_fn} | callable(logger_fn) - {callable(logger_fn)}" ) if logger_fn and callable(logger_fn): try: logger_fn( model_call_details ) # Expectation: any logger function passed in by the user should accept a dict object except Exception as e: print( f"LiteLLM.LoggingError: [Non-Blocking] Exception occurred while logging {traceback.format_exc()}" ) except Exception as e: print( f"LiteLLM.LoggingError: [Non-Blocking] Exception occurred while logging {traceback.format_exc()}" ) pass ####### CLIENT ################### # make it easy to log if completion/embedding runs succeeded or failed + see what happened | Non-Blocking def client(original_function): global liteDebuggerClient, get_all_keys def function_setup( start_time, *args, **kwargs ): # just run once to check if user wants to send their data anywhere - PostHog/Sentry/Slack/etc. try: global callback_list, add_breadcrumb, user_logger_fn, Logging function_id = kwargs["id"] if "id" in kwargs else None if litellm.use_client or ("use_client" in kwargs and kwargs["use_client"] == True): print_verbose(f"litedebugger initialized") if "lite_debugger" not in litellm.input_callback: litellm.input_callback.append("lite_debugger") if "lite_debugger" not in litellm.success_callback: litellm.success_callback.append("lite_debugger") if "lite_debugger" not in litellm.failure_callback: litellm.failure_callback.append("lite_debugger") if ( len(litellm.input_callback) > 0 or len(litellm.success_callback) > 0 or len(litellm.failure_callback) > 0 ) and len(callback_list) == 0: callback_list = list( set( litellm.input_callback + litellm.success_callback + litellm.failure_callback ) ) set_callbacks( callback_list=callback_list, function_id=function_id ) if add_breadcrumb: add_breadcrumb( category="litellm.llm_call", message=f"Positional Args: {args}, Keyword Args: {kwargs}", level="info", ) if "logger_fn" in kwargs: user_logger_fn = kwargs["logger_fn"] # CRASH REPORTING TELEMETRY crash_reporting(*args, **kwargs) # INIT LOGGER - for user-specified integrations model = args[0] if len(args) > 0 else kwargs["model"] call_type = original_function.__name__ if call_type == CallTypes.completion.value: messages = args[1] if len(args) > 1 else kwargs["messages"] elif call_type == CallTypes.embedding.value: messages = args[1] if len(args) > 1 else kwargs["input"] stream = True if "stream" in kwargs and kwargs["stream"] == True else False logging_obj = Logging(model=model, messages=messages, stream=stream, litellm_call_id=kwargs["litellm_call_id"], function_id=function_id, call_type=call_type, start_time=start_time) return logging_obj except Exception as e: # DO NOT BLOCK running the function because of this print_verbose(f"[Non-Blocking] {traceback.format_exc()}; args - {args}; kwargs - {kwargs}") print(e) pass def crash_reporting(*args, **kwargs): if litellm.telemetry: try: model = args[0] if len(args) > 0 else kwargs["model"] exception = kwargs["exception"] if "exception" in kwargs else None custom_llm_provider = ( kwargs["custom_llm_provider"] if "custom_llm_provider" in kwargs else None ) safe_crash_reporting( model=model, exception=exception, custom_llm_provider=custom_llm_provider, ) # log usage-crash details. Do not log any user details. If you want to turn this off, set `litellm.telemetry=False`. except: # [Non-Blocking Error] pass def wrapper(*args, **kwargs): start_time = datetime.datetime.now() result = None litellm_call_id = str(uuid.uuid4()) kwargs["litellm_call_id"] = litellm_call_id try: model = args[0] if len(args) > 0 else kwargs["model"] except: raise ValueError("model param not passed in.") try: logging_obj = function_setup(start_time, *args, **kwargs) kwargs["litellm_logging_obj"] = logging_obj # [OPTIONAL] CHECK BUDGET if litellm.max_budget: if litellm._current_cost > litellm.max_budget: raise BudgetExceededError(current_cost=litellm._current_cost, max_budget=litellm.max_budget) # [OPTIONAL] CHECK CACHE # remove this after deprecating litellm.caching if (litellm.caching or litellm.caching_with_models) and litellm.cache is None: litellm.cache = Cache() if kwargs.get("caching", False): # allow users to control returning cached responses from the completion function # checking cache if (litellm.cache != None or litellm.caching or litellm.caching_with_models): print_verbose(f"LiteLLM: Checking Cache") cached_result = litellm.cache.get_cache(*args, **kwargs) if cached_result != None: return cached_result # MODEL CALL result = original_function(*args, **kwargs) end_time = datetime.datetime.now() if "stream" in kwargs and kwargs["stream"] == True: # TODO: Add to cache for streaming return result # [OPTIONAL] ADD TO CACHE if litellm.caching or litellm.caching_with_models or litellm.cache != None: # user init a cache object litellm.cache.add_cache(result, *args, **kwargs) # [OPTIONAL] Return LiteLLM call_id if litellm.use_client == True: result['litellm_call_id'] = litellm_call_id # LOG SUCCESS - handle streaming success logging in the _next_ object, remove `handle_success` once it's deprecated logging_obj.success_handler(result, start_time, end_time) # threading.Thread(target=logging_obj.success_handler, args=(result, start_time, end_time)).start() my_thread = threading.Thread( target=handle_success, args=(args, kwargs, result, start_time, end_time) ) # don't interrupt execution of main thread my_thread.start() # RETURN RESULT result._response_ms = (end_time - start_time).total_seconds() * 1000 # return response latency in ms like openai return result except Exception as e: traceback_exception = traceback.format_exc() crash_reporting(*args, **kwargs, exception=traceback_exception) end_time = datetime.datetime.now() # LOG FAILURE - handle streaming failure logging in the _next_ object, remove `handle_failure` once it's deprecated threading.Thread(target=logging_obj.failure_handler, args=(e, traceback_exception, start_time, end_time)).start() my_thread = threading.Thread( target=handle_failure, args=(e, traceback_exception, start_time, end_time, args, kwargs), ) # don't interrupt execution of main thread my_thread.start() if hasattr(e, "message"): if ( liteDebuggerClient and liteDebuggerClient.dashboard_url != None ): # make it easy to get to the debugger logs if you've initialized it e.message += f"\n Check the log in your dashboard - {liteDebuggerClient.dashboard_url}" raise e return wrapper ####### USAGE CALCULATOR ################ # Extract the number of billion parameters from the model name # only used for together_computer LLMs def get_model_params_and_category(model_name): import re params_match = re.search(r'(\d+b)', model_name) # catch all decimals like 3b, 70b, etc category = None if params_match != None: params_match = params_match.group(1) params_match = params_match.replace("b", "") params_billion = float(params_match) # Determine the category based on the number of parameters if params_billion <= 3.0: category = "together-ai-up-to-3b" elif params_billion <= 7.0: category = "together-ai-3.1b-7b" elif params_billion <= 20.0: category = "together-ai-7.1b-20b" elif params_billion <= 40.0: category = "together-ai-20.1b-40b" elif params_billion <= 70.0: category = "together-ai-40.1b-70b" return category return None def get_replicate_completion_pricing(completion_response=None, total_time=0.0): # see https://replicate.com/pricing a100_40gb_price_per_second_public = 0.001150 # for all litellm currently supported LLMs, almost all requests go to a100_80gb a100_80gb_price_per_second_public = 0.001400 # assume all calls sent to A100 80GB for now if total_time == 0.0: start_time = completion_response['created'] end_time = completion_response["ended"] total_time = end_time - start_time return a100_80gb_price_per_second_public*total_time def token_counter(model="", text=None, messages: Optional[List] = None): # Args: # text: raw text string passed to model # messages: Optional, alternative to passing in text. List of Dicts passed to completion, messages = [{"role": "user", "content": "hello"}] # use tiktoken or anthropic's tokenizer depending on the model if text == None: if messages is not None: text = " ".join([message["content"] for message in messages]) else: raise ValueError("text and messages cannot both be None") num_tokens = 0 if model is not None: # cohere if model in litellm.cohere_models: tokenizer = Tokenizer.from_pretrained("Cohere/command-nightly") enc = tokenizer.encode(text) num_tokens = len(enc.ids) # anthropic elif model in litellm.anthropic_models: # Read the JSON file filename = pkg_resources.resource_filename(__name__, 'llms/tokenizers/anthropic_tokenizer.json') with open(filename, 'r') as f: json_data = json.load(f) # Decode the JSON data from utf-8 json_data_decoded = json.dumps(json_data, ensure_ascii=False) # Convert to str json_str = str(json_data_decoded) # load tokenizer tokenizer = Tokenizer.from_str(json_str) enc = tokenizer.encode(text) num_tokens = len(enc.ids) # llama2 elif "llama-2" in model.lower(): tokenizer = Tokenizer.from_pretrained("hf-internal-testing/llama-tokenizer") enc = tokenizer.encode(text) num_tokens = len(enc.ids) # default - tiktoken else: num_tokens = len(encoding.encode(text)) else: num_tokens = len(encoding.encode(text)) return num_tokens def cost_per_token(model="gpt-3.5-turbo", prompt_tokens=0, completion_tokens=0): # given prompt_tokens_cost_usd_dollar = 0 completion_tokens_cost_usd_dollar = 0 model_cost_ref = litellm.model_cost if model in model_cost_ref: prompt_tokens_cost_usd_dollar = ( model_cost_ref[model]["input_cost_per_token"] * prompt_tokens ) completion_tokens_cost_usd_dollar = ( model_cost_ref[model]["output_cost_per_token"] * completion_tokens ) return prompt_tokens_cost_usd_dollar, completion_tokens_cost_usd_dollar else: # calculate average input cost input_cost_sum = 0 output_cost_sum = 0 model_cost_ref = litellm.model_cost for model in model_cost_ref: input_cost_sum += model_cost_ref[model]["input_cost_per_token"] output_cost_sum += model_cost_ref[model]["output_cost_per_token"] avg_input_cost = input_cost_sum / len(model_cost_ref.keys()) avg_output_cost = output_cost_sum / len(model_cost_ref.keys()) prompt_tokens_cost_usd_dollar = avg_input_cost * prompt_tokens completion_tokens_cost_usd_dollar = avg_output_cost * completion_tokens return prompt_tokens_cost_usd_dollar, completion_tokens_cost_usd_dollar def completion_cost( completion_response=None, model="gpt-3.5-turbo", prompt="", completion="", total_time=0.0, # used for replicate ): """ Calculate the cost of a given completion call fot GPT-3.5-turbo, llama2, any litellm supported llm. Parameters: completion_response (litellm.ModelResponses): [Required] The response received from a LiteLLM completion request. [OPTIONAL PARAMS] model (str): Optional. The name of the language model used in the completion calls prompt (str): Optional. The input prompt passed to the llm completion (str): Optional. The output completion text from the llm total_time (float): Optional. (Only used for Replicate LLMs) The total time used for the request in seconds Returns: float: The cost in USD dollars for the completion based on the provided parameters. Note: - If completion_response is provided, the function extracts token information and the model name from it. - If completion_response is not provided, the function calculates token counts based on the model and input text. - The cost is calculated based on the model, prompt tokens, and completion tokens. - For certain models containing "togethercomputer" in the name, prices are based on the model size. - For Replicate models, the cost is calculated based on the total time used for the request. Exceptions: - If an error occurs during execution, the function returns 0.0 without blocking the user's execution path. """ try: # Handle Inputs to completion_cost prompt_tokens = 0 completion_tokens = 0 if completion_response != None: # get input/output tokens from completion_response prompt_tokens = completion_response['usage']['prompt_tokens'] completion_tokens = completion_response['usage']['completion_tokens'] model = completion_response['model'] # get model from completion_response else: prompt_tokens = token_counter(model=model, text=prompt) completion_tokens = token_counter(model=model, text=completion) # Calculate cost based on prompt_tokens, completion_tokens if "togethercomputer" in model: # together ai prices based on size of llm # get_model_params_and_category takes a model name and returns the category of LLM size it is in model_prices_and_context_window.json model = get_model_params_and_category(model) # replicate llms are calculate based on time for request running # see https://replicate.com/pricing elif ( model in litellm.replicate_models or "replicate" in model ): return get_replicate_completion_pricing(completion_response, total_time) prompt_tokens_cost_usd_dollar, completion_tokens_cost_usd_dollar = cost_per_token( model=model, prompt_tokens=prompt_tokens, completion_tokens=completion_tokens ) return prompt_tokens_cost_usd_dollar + completion_tokens_cost_usd_dollar except: return 0.0 # this should not block a users execution path ####### HELPER FUNCTIONS ################ def get_litellm_params( return_async=False, api_key=None, force_timeout=600, azure=False, logger_fn=None, verbose=False, hugging_face=False, replicate=False, together_ai=False, custom_llm_provider=None, api_base=None, litellm_call_id=None, model_alias_map=None, completion_call_id=None, metadata=None ): litellm_params = { "return_async": return_async, "api_key": api_key, "force_timeout": force_timeout, "logger_fn": logger_fn, "verbose": verbose, "custom_llm_provider": custom_llm_provider, "api_base": api_base, "litellm_call_id": litellm_call_id, "model_alias_map": model_alias_map, "completion_call_id": completion_call_id, "metadata": metadata, "stream_response": {} # litellm_call_id: ModelResponse Dict } return litellm_params def get_optional_params( # use the openai defaults # 12 optional params functions=[], function_call="", temperature=1, top_p=1, n=1, stream=False, stop=None, max_tokens=float("inf"), presence_penalty=0, frequency_penalty=0, logit_bias={}, num_beams=1, remove_input=False, # for nlp_cloud user="", deployment_id=None, model=None, custom_llm_provider="", top_k=40, return_full_text=False, task=None ): optional_params = {} if model in litellm.anthropic_models: # handle anthropic params if stream: optional_params["stream"] = stream if stop != None: optional_params["stop_sequences"] = stop if temperature != 1: optional_params["temperature"] = temperature if top_p != 1: optional_params["top_p"] = top_p if max_tokens != float("inf"): optional_params["max_tokens_to_sample"] = max_tokens return optional_params elif model in litellm.cohere_models: # handle cohere params if stream: optional_params["stream"] = stream if temperature != 1: optional_params["temperature"] = temperature if max_tokens != float("inf"): optional_params["max_tokens"] = max_tokens if logit_bias != {}: optional_params["logit_bias"] = logit_bias return optional_params elif custom_llm_provider == "replicate": if stream: optional_params["stream"] = stream return optional_params if max_tokens != float("inf"): if "vicuna" in model or "flan" in model: optional_params["max_length"] = max_tokens else: optional_params["max_new_tokens"] = max_tokens if temperature != 1: optional_params["temperature"] = temperature if top_p != 1: optional_params["top_p"] = top_p if top_k != 40: optional_params["top_k"] = top_k if stop != None: optional_params["stop_sequences"] = stop elif custom_llm_provider == "huggingface": if temperature != 1: optional_params["temperature"] = temperature if top_p != 1: optional_params["top_p"] = top_p if n != 1: optional_params["best_of"] = n optional_params["do_sample"] = True # need to sample if you want best of for hf inference endpoints if stream: optional_params["stream"] = stream if stop != None: optional_params["stop"] = stop if max_tokens != float("inf"): optional_params["max_new_tokens"] = max_tokens if presence_penalty != 0: optional_params["repetition_penalty"] = presence_penalty optional_params["return_full_text"] = return_full_text optional_params["details"] = True optional_params["task"] = task elif custom_llm_provider == "together_ai": if stream: optional_params["stream_tokens"] = stream if temperature != 1: optional_params["temperature"] = temperature if top_p != 1: optional_params["top_p"] = top_p if top_k != 40: optional_params["top_k"] = top_k if max_tokens != float("inf"): optional_params["max_tokens"] = max_tokens if frequency_penalty != 0: optional_params["frequency_penalty"] = frequency_penalty # TODO: Check if should be repetition penalty if stop != None: optional_params["stop"] = stop #TG AI expects a list, example ["\n\n\n\n","&lt;|endoftext|&gt;"] elif ( model in litellm.vertex_chat_models or model in litellm.vertex_code_chat_models ): # chat-bison has diff args from chat-bison@001, ty Google :) if temperature != 1: optional_params["temperature"] = temperature if top_p != 1: optional_params["top_p"] = top_p if max_tokens != float("inf"): optional_params["max_output_tokens"] = max_tokens elif model in litellm.vertex_text_models: # required params for all text vertex calls # temperature=0.2, top_p=0.1, top_k=20 # always set temperature, top_p, top_k else, text bison fails optional_params["temperature"] = temperature optional_params["top_p"] = top_p optional_params["top_k"] = top_k if max_tokens != float("inf"): optional_params["max_output_tokens"] = max_tokens elif model in model in litellm.vertex_code_text_models: optional_params["temperature"] = temperature if max_tokens != float("inf"): optional_params["max_output_tokens"] = max_tokens elif custom_llm_provider == "baseten": optional_params["temperature"] = temperature optional_params["stream"] = stream if top_p != 1: optional_params["top_p"] = top_p optional_params["top_k"] = top_k optional_params["num_beams"] = num_beams if max_tokens != float("inf"): optional_params["max_new_tokens"] = max_tokens elif custom_llm_provider == "sagemaker": if "llama-2" in model: # llama-2 models on sagemaker support the following args """ max_new_tokens: Model generates text until the output length (excluding the input context length) reaches max_new_tokens. If specified, it must be a positive integer. temperature: Controls the randomness in the output. Higher temperature results in output sequence with low-probability words and lower temperature results in output sequence with high-probability words. If temperature -> 0, it results in greedy decoding. If specified, it must be a positive float. top_p: In each step of text generation, sample from the smallest possible set of words with cumulative probability top_p. If specified, it must be a float between 0 and 1. return_full_text: If True, input text will be part of the output generated text. If specified, it must be boolean. The default value for it is False. """ if max_tokens != float("inf"): optional_params["max_new_tokens"] = max_tokens if temperature != 1: optional_params["temperature"] = temperature if top_p != 1: optional_params["top_p"] = top_p elif custom_llm_provider == "bedrock": if "ai21" in model or "anthropic" in model: # params "maxTokens":200,"temperature":0,"topP":250,"stop_sequences":[], # https://us-west-2.console.aws.amazon.com/bedrock/home?region=us-west-2#/providers?model=j2-ultra if max_tokens != float("inf"): optional_params["maxTokens"] = max_tokens if temperature != 1: optional_params["temperature"] = temperature if stop != None: optional_params["stop_sequences"] = stop if top_p != 1: optional_params["topP"] = top_p elif "amazon" in model: # amazon titan llms # see https://us-west-2.console.aws.amazon.com/bedrock/home?region=us-west-2#/providers?model=titan-large if max_tokens != float("inf"): optional_params["maxTokenCount"] = max_tokens if temperature != 1: optional_params["temperature"] = temperature if stop != None: optional_params["stopSequences"] = stop if top_p != 1: optional_params["topP"] = top_p elif model in litellm.aleph_alpha_models: if max_tokens != float("inf"): optional_params["maximum_tokens"] = max_tokens if stream: optional_params["stream"] = stream if temperature != 1: optional_params["temperature"] = temperature if top_k != 40: optional_params["top_k"] = top_k if top_p != 1: optional_params["top_p"] = top_p if presence_penalty != 0: optional_params["presence_penalty"] = presence_penalty if frequency_penalty != 0: optional_params["frequency_penalty"] = frequency_penalty if n != 1: optional_params["n"] = n if stop != None: optional_params["stop_sequences"] = stop elif model in litellm.nlp_cloud_models or custom_llm_provider == "nlp_cloud": if max_tokens != float("inf"): optional_params["max_length"] = max_tokens if stream: optional_params["stream"] = stream if temperature != 1: optional_params["temperature"] = temperature if top_k != 40: optional_params["top_k"] = top_k if top_p != 1: optional_params["top_p"] = top_p if presence_penalty != 0: optional_params["presence_penalty"] = presence_penalty if frequency_penalty != 0: optional_params["frequency_penalty"] = frequency_penalty if num_beams != 1: optional_params["num_beams"] = num_beams if n != 1: optional_params["num_return_sequences"] = n if remove_input == True: optional_params["remove_input"] = True if stop != None: optional_params["stop_sequences"] = stop elif model in litellm.petals_models or custom_llm_provider == "petals": # max_new_tokens=1,temperature=0.9, top_p=0.6 if max_tokens != float("inf"): optional_params["max_new_tokens"] = max_tokens if temperature != 1: optional_params["temperature"] = temperature if top_p != 1: optional_params["top_p"] = top_p else: # assume passing in params for openai/azure openai if functions != []: optional_params["functions"] = functions if function_call != "": optional_params["function_call"] = function_call if temperature != 1: optional_params["temperature"] = temperature if top_p != 1: optional_params["top_p"] = top_p if n != 1: optional_params["n"] = n if stream: optional_params["stream"] = stream if stop != None: optional_params["stop"] = stop if max_tokens != float("inf"): optional_params["max_tokens"] = max_tokens if presence_penalty != 0: optional_params["presence_penalty"] = presence_penalty if frequency_penalty != 0: optional_params["frequency_penalty"] = frequency_penalty if logit_bias != {}: optional_params["logit_bias"] = logit_bias if user != "": optional_params["user"] = user if deployment_id != None: optional_params["deployment_id"] = deployment_id return optional_params return optional_params def get_llm_provider(model: str, custom_llm_provider: Optional[str] = None): try: # check if llm provider provided if custom_llm_provider: return model, custom_llm_provider # check if llm provider part of model name if model.split("/",1)[0] in litellm.provider_list: custom_llm_provider = model.split("/", 1)[0] model = model.split("/", 1)[1] return model, custom_llm_provider # check if model in known model provider list ## openai - chatcompletion + text completion if model in litellm.open_ai_chat_completion_models: custom_llm_provider = "openai" elif model in litellm.open_ai_text_completion_models: custom_llm_provider = "text-completion-openai" ## anthropic elif model in litellm.anthropic_models: custom_llm_provider = "anthropic" ## cohere elif model in litellm.cohere_models: custom_llm_provider = "cohere" ## replicate elif model in litellm.replicate_models: custom_llm_provider = "replicate" ## openrouter elif model in litellm.openrouter_models: custom_llm_provider = "openrouter" ## vertex - text + chat models elif model in litellm.vertex_chat_models or model in litellm.vertex_text_models: custom_llm_provider = "vertex_ai" ## huggingface elif model in litellm.huggingface_models: custom_llm_provider = "huggingface" ## ai21 elif model in litellm.ai21_models: custom_llm_provider = "ai21" ## together_ai elif model in litellm.together_ai_models: custom_llm_provider = "together_ai" ## aleph_alpha elif model in litellm.aleph_alpha_models: custom_llm_provider = "aleph_alpha" ## baseten elif model in litellm.baseten_models: custom_llm_provider = "baseten" ## nlp_cloud elif model in litellm.nlp_cloud_models: custom_llm_provider = "nlp_cloud" ## petals elif model in litellm.petals_models: custom_llm_provider = "petals" if custom_llm_provider is None or custom_llm_provider=="": raise ValueError(f"LLM Provider NOT provided. Pass in the LLM provider you are trying to call. E.g. For 'Huggingface' inference endpoints pass in `completion(model='huggingface/{model}',..)` Learn more: https://docs.litellm.ai/docs/providers") return model, custom_llm_provider except Exception as e: raise e def get_api_key(llm_provider: str, dynamic_api_key: Optional[str]): api_key = (dynamic_api_key or litellm.api_key) # openai if llm_provider == "openai" or llm_provider == "text-completion-openai": api_key = ( api_key or litellm.openai_key or get_secret("OPENAI_API_KEY") ) # anthropic elif llm_provider == "anthropic": api_key = ( api_key or litellm.anthropic_key or get_secret("ANTHROPIC_API_KEY") ) # ai21 elif llm_provider == "ai21": api_key = ( api_key or litellm.ai21_key or get_secret("AI211_API_KEY") ) # aleph_alpha elif llm_provider == "aleph_alpha": api_key = ( api_key or litellm.aleph_alpha_key or get_secret("ALEPH_ALPHA_API_KEY") ) # baseten elif llm_provider == "baseten": api_key = ( api_key or litellm.baseten_key or get_secret("BASETEN_API_KEY") ) # cohere elif llm_provider == "cohere": api_key = ( api_key or litellm.cohere_key or get_secret("COHERE_API_KEY") ) # huggingface elif llm_provider == "huggingface": api_key = ( api_key or litellm.huggingface_key or get_secret("HUGGINGFACE_API_KEY") ) # nlp_cloud elif llm_provider == "nlp_cloud": api_key = ( api_key or litellm.nlp_cloud_key or get_secret("NLP_CLOUD_API_KEY") ) # replicate elif llm_provider == "replicate": api_key = ( api_key or litellm.replicate_key or get_secret("REPLICATE_API_KEY") ) # together_ai elif llm_provider == "together_ai": api_key = ( api_key or litellm.togetherai_api_key or get_secret("TOGETHERAI_API_KEY") or get_secret("TOGETHER_AI_TOKEN") ) return api_key def get_max_tokens(model: str): try: return litellm.model_cost[model] except: raise Exception("This model isn't mapped yet. Add it here - https://github.com/BerriAI/litellm/blob/main/cookbook/community-resources/max_tokens.json") def load_test_model( model: str, custom_llm_provider: str = "", api_base: str = "", prompt: str = "", num_calls: int = 0, force_timeout: int = 0, ): test_prompt = "Hey, how's it going" test_calls = 100 if prompt: test_prompt = prompt if num_calls: test_calls = num_calls messages = [[{"role": "user", "content": test_prompt}] for _ in range(test_calls)] start_time = time.time() try: litellm.batch_completion( model=model, messages=messages, custom_llm_provider=custom_llm_provider, api_base=api_base, force_timeout=force_timeout, ) end_time = time.time() response_time = end_time - start_time return { "total_response_time": response_time, "calls_made": 100, "status": "success", "exception": None, } except Exception as e: end_time = time.time() response_time = end_time - start_time return { "total_response_time": response_time, "calls_made": 100, "status": "failed", "exception": e, } def validate_environment(model: str) -> dict: keys_in_environment = False missing_keys = [] ## EXTRACT LLM PROVIDER - if model name provided custom_llm_provider = None # check if llm provider part of model name if model.split("/",1)[0] in litellm.provider_list: custom_llm_provider = model.split("/", 1)[0] model = model.split("/", 1)[1] custom_llm_provider_passed_in = True if custom_llm_provider: if custom_llm_provider == "openai": if "OPENAI_API_KEY" in os.environ: keys_in_environment = True else: missing_keys.append("OPENAI_API_KEY") elif custom_llm_provider == "azure": if ("AZURE_API_BASE" in os.environ and "AZURE_API_VERSION" in os.environ and "AZURE_API_KEY" in os.environ): keys_in_environment = True else: missing_keys.extend(["AZURE_API_BASE", "AZURE_API_VERSION", "AZURE_API_KEY"]) elif custom_llm_provider == "anthropic": if "ANTHROPIC_API_KEY" in os.environ: keys_in_environment = True else: missing_keys.append("ANTHROPIC_API_KEY") elif custom_llm_provider == "cohere": if "COHERE_API_KEY" in os.environ: keys_in_environment = True else: missing_keys.append("COHERE_API_KEY") elif custom_llm_provider == "replicate": if "REPLICATE_API_KEY" in os.environ: keys_in_environment = True else: missing_keys.append("REPLICATE_API_KEY") elif custom_llm_provider == "openrouter": if "OPENROUTER_API_KEY" in os.environ: keys_in_environment = True else: missing_keys.append("OPENROUTER_API_KEY") elif custom_llm_provider == "vertex_ai": if ("VERTEXAI_PROJECT" in os.environ and "VERTEXAI_LOCATION" in os.environ): keys_in_environment = True else: missing_keys.extend(["VERTEXAI_PROJECT", "VERTEXAI_PROJECT"]) elif custom_llm_provider == "huggingface": if "HUGGINGFACE_API_KEY" in os.environ: keys_in_environment = True else: missing_keys.append("HUGGINGFACE_API_KEY") elif custom_llm_provider == "ai21": if "AI21_API_KEY" in os.environ: keys_in_environment = True else: missing_keys.append("AI21_API_KEY") elif custom_llm_provider == "together_ai": if "TOGETHERAI_API_KEY" in os.environ: keys_in_environment = True else: missing_keys.append("TOGETHERAI_API_KEY") elif custom_llm_provider == "aleph_alpha": if "ALEPH_ALPHA_API_KEY" in os.environ: keys_in_environment = True else: missing_keys.append("ALEPH_ALPHA_API_KEY") elif custom_llm_provider == "baseten": if "BASETEN_API_KEY" in os.environ: keys_in_environment = True else: missing_keys.append("BASETEN_API_KEY") elif custom_llm_provider == "nlp_cloud": if "NLP_CLOUD_API_KEY" in os.environ: keys_in_environment = True else: missing_keys.append("NLP_CLOUD_API_KEY") else: ## openai - chatcompletion + text completion if model in litellm.open_ai_chat_completion_models or litellm.open_ai_text_completion_models: if "OPENAI_API_KEY" in os.environ: keys_in_environment = True else: missing_keys.append("OPENAI_API_KEY") ## anthropic elif model in litellm.anthropic_models: if "ANTHROPIC_API_KEY" in os.environ: keys_in_environment = True else: missing_keys.append("ANTHROPIC_API_KEY") ## cohere elif model in litellm.cohere_models: if "COHERE_API_KEY" in os.environ: keys_in_environment = True else: missing_keys.append("COHERE_API_KEY") ## replicate elif model in litellm.replicate_models: if "REPLICATE_API_KEY" in os.environ: keys_in_environment = True else: missing_keys.append("REPLICATE_API_KEY") ## openrouter elif model in litellm.openrouter_models: if "OPENROUTER_API_KEY" in os.environ: keys_in_environment = True else: missing_keys.append("OPENROUTER_API_KEY") ## vertex - text + chat models elif model in litellm.vertex_chat_models or model in litellm.vertex_text_models: if ("VERTEXAI_PROJECT" in os.environ and "VERTEXAI_LOCATION" in os.environ): keys_in_environment = True else: missing_keys.extend(["VERTEXAI_PROJECT", "VERTEXAI_PROJECT"]) ## huggingface elif model in litellm.huggingface_models: if "HUGGINGFACE_API_KEY" in os.environ: keys_in_environment = True else: missing_keys.append("HUGGINGFACE_API_KEY") ## ai21 elif model in litellm.ai21_models: if "AI21_API_KEY" in os.environ: keys_in_environment = True else: missing_keys.append("AI21_API_KEY") ## together_ai elif model in litellm.together_ai_models: if "TOGETHERAI_API_KEY" in os.environ: keys_in_environment = True else: missing_keys.append("TOGETHERAI_API_KEY") ## aleph_alpha elif model in litellm.aleph_alpha_models: if "ALEPH_ALPHA_API_KEY" in os.environ: keys_in_environment = True else: missing_keys.append("ALEPH_ALPHA_API_KEY") ## baseten elif model in litellm.baseten_models: if "BASETEN_API_KEY" in os.environ: keys_in_environment = True else: missing_keys.append("BASETEN_API_KEY") ## nlp_cloud elif model in litellm.nlp_cloud_models: if "NLP_CLOUD_API_KEY" in os.environ: keys_in_environment = True else: missing_keys.append("NLP_CLOUD_API_KEY") return {"keys_in_environment": keys_in_environment, "missing_keys": missing_keys} def set_callbacks(callback_list, function_id=None): global sentry_sdk_instance, capture_exception, add_breadcrumb, posthog, slack_app, alerts_channel, traceloopLogger, heliconeLogger, aispendLogger, berrispendLogger, supabaseClient, liteDebuggerClient, llmonitorLogger, promptLayerLogger, langFuseLogger, customLogger try: for callback in callback_list: print_verbose(f"callback: {callback}") if callback == "sentry": try: import sentry_sdk except ImportError: print_verbose("Package 'sentry_sdk' is missing. Installing it...") subprocess.check_call( [sys.executable, "-m", "pip", "install", "sentry_sdk"] ) import sentry_sdk sentry_sdk_instance = sentry_sdk sentry_trace_rate = ( os.environ.get("SENTRY_API_TRACE_RATE") if "SENTRY_API_TRACE_RATE" in os.environ else "1.0" ) sentry_sdk_instance.init( dsn=os.environ.get("SENTRY_API_URL"), traces_sample_rate=float(sentry_trace_rate), ) capture_exception = sentry_sdk_instance.capture_exception add_breadcrumb = sentry_sdk_instance.add_breadcrumb elif callback == "posthog": try: from posthog import Posthog except ImportError: print_verbose("Package 'posthog' is missing. Installing it...") subprocess.check_call( [sys.executable, "-m", "pip", "install", "posthog"] ) from posthog import Posthog posthog = Posthog( project_api_key=os.environ.get("POSTHOG_API_KEY"), host=os.environ.get("POSTHOG_API_URL"), ) elif callback == "slack": try: from slack_bolt import App except ImportError: print_verbose("Package 'slack_bolt' is missing. Installing it...") subprocess.check_call( [sys.executable, "-m", "pip", "install", "slack_bolt"] ) from slack_bolt import App slack_app = App( token=os.environ.get("SLACK_API_TOKEN"), signing_secret=os.environ.get("SLACK_API_SECRET"), ) alerts_channel = os.environ["SLACK_API_CHANNEL"] print_verbose(f"Initialized Slack App: {slack_app}") elif callback == "traceloop": traceloopLogger = TraceloopLogger() elif callback == "helicone": heliconeLogger = HeliconeLogger() elif callback == "llmonitor": llmonitorLogger = LLMonitorLogger() elif callback == "promptlayer": promptLayerLogger = PromptLayerLogger() elif callback == "langfuse": langFuseLogger = LangFuseLogger() elif callback == "aispend": aispendLogger = AISpendLogger() elif callback == "berrispend": berrispendLogger = BerriSpendLogger() elif callback == "supabase": print_verbose(f"instantiating supabase") supabaseClient = Supabase() elif callback == "lite_debugger": print_verbose(f"instantiating lite_debugger") if function_id: liteDebuggerClient = LiteDebugger(email=function_id) elif litellm.token: liteDebuggerClient = LiteDebugger(email=litellm.token) elif litellm.email: liteDebuggerClient = LiteDebugger(email=litellm.email) else: liteDebuggerClient = LiteDebugger(email=str(uuid.uuid4())) elif callable(callback): customLogger = CustomLogger(callback_func=callback) except Exception as e: raise e def handle_failure(exception, traceback_exception, start_time, end_time, args, kwargs): global sentry_sdk_instance, capture_exception, add_breadcrumb, posthog, slack_app, alerts_channel, aispendLogger, berrispendLogger, supabaseClient, liteDebuggerClient, llmonitorLogger try: # print_verbose(f"handle_failure args: {args}") # print_verbose(f"handle_failure kwargs: {kwargs}") success_handler = additional_details.pop("success_handler", None) failure_handler = additional_details.pop("failure_handler", None) additional_details["Event_Name"] = additional_details.pop( "failed_event_name", "litellm.failed_query" ) print_verbose(f"self.failure_callback: {litellm.failure_callback}") for callback in litellm.failure_callback: try: if callback == "slack": slack_msg = "" if len(kwargs) > 0: for key in kwargs: slack_msg += f"{key}: {kwargs[key]}\n" if len(args) > 0: for i, arg in enumerate(args): slack_msg += f"LiteLLM_Args_{str(i)}: {arg}" for detail in additional_details: slack_msg += f"{detail}: {additional_details[detail]}\n" slack_msg += f"Traceback: {traceback_exception}" slack_app.client.chat_postMessage( channel=alerts_channel, text=slack_msg ) elif callback == "sentry": capture_exception(exception) elif callback == "posthog": print_verbose( f"inside posthog, additional_details: {len(additional_details.keys())}" ) ph_obj = {} if len(kwargs) > 0: ph_obj = kwargs if len(args) > 0: for i, arg in enumerate(args): ph_obj["litellm_args_" + str(i)] = arg for detail in additional_details: ph_obj[detail] = additional_details[detail] event_name = additional_details["Event_Name"] print_verbose(f"ph_obj: {ph_obj}") print_verbose(f"PostHog Event Name: {event_name}") if "user_id" in additional_details: posthog.capture( additional_details["user_id"], event_name, ph_obj ) else: # PostHog calls require a unique id to identify a user - https://posthog.com/docs/libraries/python unique_id = str(uuid.uuid4()) posthog.capture(unique_id, event_name) print_verbose(f"successfully logged to PostHog!") elif callback == "berrispend": print_verbose("reaches berrispend for logging!") model = args[0] if len(args) > 0 else kwargs["model"] messages = args[1] if len(args) > 1 else kwargs["messages"] result = { "model": model, "created": time.time(), "error": traceback_exception, "usage": { "prompt_tokens": prompt_token_calculator( model, messages=messages ), "completion_tokens": 0, }, } berrispendLogger.log_event( model=model, messages=messages, response_obj=result, start_time=start_time, end_time=end_time, print_verbose=print_verbose, ) elif callback == "aispend": print_verbose("reaches aispend for logging!") model = args[0] if len(args) > 0 else kwargs["model"] messages = args[1] if len(args) > 1 else kwargs["messages"] result = { "model": model, "created": time.time(), "usage": { "prompt_tokens": prompt_token_calculator( model, messages=messages ), "completion_tokens": 0, }, } aispendLogger.log_event( model=model, response_obj=result, start_time=start_time, end_time=end_time, print_verbose=print_verbose, ) elif callback == "llmonitor": print_verbose("reaches llmonitor for logging error!") model = args[0] if len(args) > 0 else kwargs["model"] input = ( args[1] if len(args) > 1 else kwargs.get("messages", kwargs.get("input", None)) ) type = "embed" if "input" in kwargs else "llm" llmonitorLogger.log_event( type=type, event="error", user_id=litellm._thread_context.user, model=model, input=input, error=traceback_exception, run_id=kwargs["litellm_call_id"], start_time=start_time, end_time=end_time, print_verbose=print_verbose, ) elif callback == "supabase": print_verbose("reaches supabase for logging!") print_verbose(f"supabaseClient: {supabaseClient}") model = args[0] if len(args) > 0 else kwargs["model"] messages = args[1] if len(args) > 1 else kwargs["messages"] result = { "model": model, "created": time.time(), "error": traceback_exception, "usage": { "prompt_tokens": prompt_token_calculator( model, messages=messages ), "completion_tokens": 0, }, } supabaseClient.log_event( model=model, messages=messages, end_user=litellm._thread_context.user, response_obj=result, start_time=start_time, end_time=end_time, litellm_call_id=kwargs["litellm_call_id"], print_verbose=print_verbose, ) except: print_verbose( f"Error Occurred while logging failure: {traceback.format_exc()}" ) pass if failure_handler and callable(failure_handler): call_details = { "exception": exception, "additional_details": additional_details, } failure_handler(call_details) pass except Exception as e: # LOGGING exception_logging(logger_fn=user_logger_fn, exception=e) pass def handle_success(args, kwargs, result, start_time, end_time): global heliconeLogger, aispendLogger, supabaseClient, liteDebuggerClient, llmonitorLogger try: model = args[0] if len(args) > 0 else kwargs["model"] input = ( args[1] if len(args) > 1 else kwargs.get("messages", kwargs.get("input", None)) ) success_handler = additional_details.pop("success_handler", None) failure_handler = additional_details.pop("failure_handler", None) additional_details["Event_Name"] = additional_details.pop( "successful_event_name", "litellm.succes_query" ) for callback in litellm.success_callback: try: if callback == "posthog": ph_obj = {} for detail in additional_details: ph_obj[detail] = additional_details[detail] event_name = additional_details["Event_Name"] if "user_id" in additional_details: posthog.capture( additional_details["user_id"], event_name, ph_obj ) else: # PostHog calls require a unique id to identify a user - https://posthog.com/docs/libraries/python unique_id = str(uuid.uuid4()) posthog.capture(unique_id, event_name, ph_obj) pass elif callback == "slack": slack_msg = "" for detail in additional_details: slack_msg += f"{detail}: {additional_details[detail]}\n" slack_app.client.chat_postMessage( channel=alerts_channel, text=slack_msg ) elif callback == "helicone": print_verbose("reaches helicone for logging!") model = args[0] if len(args) > 0 else kwargs["model"] messages = args[1] if len(args) > 1 else kwargs["messages"] heliconeLogger.log_success( model=model, messages=messages, response_obj=result, start_time=start_time, end_time=end_time, print_verbose=print_verbose, ) elif callback == "llmonitor": print_verbose("reaches llmonitor for logging!") model = args[0] if len(args) > 0 else kwargs["model"] input = ( args[1] if len(args) > 1 else kwargs.get("messages", kwargs.get("input", None)) ) # if contains input, it's 'embedding', otherwise 'llm' type = "embed" if "input" in kwargs else "llm" llmonitorLogger.log_event( type=type, event="end", model=model, input=input, user_id=litellm._thread_context.user, response_obj=result, start_time=start_time, end_time=end_time, run_id=kwargs["litellm_call_id"], print_verbose=print_verbose, ) elif callback == "langfuse": print_verbose("reaches langfuse for logging!") langFuseLogger.log_event( kwargs=kwargs, response_obj=result, start_time=start_time, end_time=end_time, print_verbose=print_verbose, ) elif callback == "aispend": print_verbose("reaches aispend for logging!") model = args[0] if len(args) > 0 else kwargs["model"] aispendLogger.log_event( model=model, response_obj=result, start_time=start_time, end_time=end_time, print_verbose=print_verbose, ) elif callback == "supabase": print_verbose("reaches supabase for logging!") model = args[0] if len(args) > 0 else kwargs["model"] messages = ( args[1] if len(args) > 1 else kwargs.get("messages", {"role": "user", "content": ""}) ) print(f"supabaseClient: {supabaseClient}") supabaseClient.log_event( model=model, messages=messages, end_user=litellm._thread_context.user, response_obj=result, start_time=start_time, end_time=end_time, litellm_call_id=kwargs["litellm_call_id"], print_verbose=print_verbose, ) elif callable(callback): # custom logger functions customLogger.log_event( kwargs=kwargs, response_obj=result, start_time=start_time, end_time=end_time, print_verbose=print_verbose, ) except Exception as e: # LOGGING exception_logging(logger_fn=user_logger_fn, exception=e) print_verbose( f"[Non-Blocking] Success Callback Error - {traceback.format_exc()}" ) pass if success_handler and callable(success_handler): success_handler(args, kwargs) pass except Exception as e: # LOGGING exception_logging(logger_fn=user_logger_fn, exception=e) print_verbose( f"[Non-Blocking] Success Callback Error - {traceback.format_exc()}" ) pass def acreate(*args, **kwargs): ## Thin client to handle the acreate langchain call return litellm.acompletion(*args, **kwargs) def prompt_token_calculator(model, messages): # use tiktoken or anthropic's tokenizer depending on the model text = " ".join(message["content"] for message in messages) num_tokens = 0 if "claude" in model: try: import anthropic except: Exception("Anthropic import failed please run `pip install anthropic`") from anthropic import Anthropic, HUMAN_PROMPT, AI_PROMPT anthropic = Anthropic() num_tokens = anthropic.count_tokens(text) else: num_tokens = len(encoding.encode(text)) return num_tokens def valid_model(model): try: # for a given model name, check if the user has the right permissions to access the model if ( model in litellm.open_ai_chat_completion_models or model in litellm.open_ai_text_completion_models ): openai.Model.retrieve(model) else: messages = [{"role": "user", "content": "Hello World"}] litellm.completion(model=model, messages=messages) except: raise InvalidRequestError(message="", model=model, llm_provider="") # check valid api key def check_valid_key(model: str, api_key: str): # returns True if key is valid for the model # returns False if key is invalid for the model messages = [{"role": "user", "content": "Hey, how's it going?"}] try: litellm.completion(model=model, messages=messages, api_key=api_key, max_tokens=10) return True except AuthenticationError as e: return False except Exception as e: return False # integration helper function def modify_integration(integration_name, integration_params): global supabaseClient if integration_name == "supabase": if "table_name" in integration_params: Supabase.supabase_table_name = integration_params["table_name"] # custom prompt helper function def register_prompt_template(model: str, roles: dict, initial_prompt_value: str = "", final_prompt_value: str = ""): """ Example usage: ``` import litellm litellm.register_prompt_template( model="llama-2", roles={ "system": { "pre_message": "[INST] <<SYS>>\n", "post_message": "\n<</SYS>>\n [/INST]\n" }, "user": { # follow this format https://github.com/facebookresearch/llama/blob/77062717054710e352a99add63d160274ce670c6/llama/generation.py#L348 "pre_message": "[INST] ", "post_message": " [/INST]\n" }, "assistant": { "post_message": "\n" # follows this - https://replicate.com/blog/how-to-prompt-llama } } ) ``` """ litellm.custom_prompt_dict[model] = { "roles": roles, "initial_prompt_value": initial_prompt_value, "final_prompt_value": final_prompt_value } return litellm.custom_prompt_dict ####### [BETA] HOSTED PRODUCT ################ - https://docs.litellm.ai/docs/debugging/hosted_debugging def get_all_keys(llm_provider=None): try: global last_fetched_at_keys # if user is using hosted product -> instantiate their env with their hosted api keys - refresh every 5 minutes print_verbose(f"Reaches get all keys, llm_provider: {llm_provider}") user_email = ( os.getenv("LITELLM_EMAIL") or litellm.email or litellm.token or os.getenv("LITELLM_TOKEN") ) if user_email: time_delta = 0 if last_fetched_at_keys != None: current_time = time.time() time_delta = current_time - last_fetched_at_keys if ( time_delta > 300 or last_fetched_at_keys == None or llm_provider ): # if the llm provider is passed in , assume this happening due to an AuthError for that provider # make the api call last_fetched_at = time.time() print_verbose(f"last_fetched_at: {last_fetched_at}") response = requests.post( url="http://api.litellm.ai/get_all_keys", headers={"content-type": "application/json"}, data=json.dumps({"user_email": user_email}), ) print_verbose(f"get model key response: {response.text}") data = response.json() # update model list for key, value in data[ "model_keys" ].items(): # follows the LITELLM API KEY format - <UPPERCASE_PROVIDER_NAME>_API_KEY - e.g. HUGGINGFACE_API_KEY os.environ[key] = value # set model alias map for model_alias, value in data["model_alias_map"].items(): litellm.model_alias_map[model_alias] = value return "it worked!" return None return None except: print_verbose( f"[Non-Blocking Error] get_all_keys error - {traceback.format_exc()}" ) pass def get_model_list(): global last_fetched_at try: # if user is using hosted product -> get their updated model list user_email = ( os.getenv("LITELLM_EMAIL") or litellm.email or litellm.token or os.getenv("LITELLM_TOKEN") ) if user_email: # make the api call last_fetched_at = time.time() print(f"last_fetched_at: {last_fetched_at}") response = requests.post( url="http://api.litellm.ai/get_model_list", headers={"content-type": "application/json"}, data=json.dumps({"user_email": user_email}), ) print_verbose(f"get_model_list response: {response.text}") data = response.json() # update model list model_list = data["model_list"] # # check if all model providers are in environment # model_providers = data["model_providers"] # missing_llm_provider = None # for item in model_providers: # if f"{item.upper()}_API_KEY" not in os.environ: # missing_llm_provider = item # break # # update environment - if required # threading.Thread(target=get_all_keys, args=(missing_llm_provider)).start() return model_list return [] # return empty list by default except: print_verbose( f"[Non-Blocking Error] get_model_list error - {traceback.format_exc()}" ) ####### EXCEPTION MAPPING ################ def exception_type( model, original_exception, custom_llm_provider, completion_kwargs={}, ): global user_logger_fn, liteDebuggerClient exception_mapping_worked = False if litellm.set_verbose == True: litellm.error_logs['EXCEPTION'] = original_exception litellm.error_logs['KWARGS'] = completion_kwargs try: # code to show users their litellm error dashboard import urllib.parse import json for log_key in litellm.error_logs: current_logs = litellm.error_logs[log_key] if type(current_logs) == dict: filtered_error_logs = {key: str(value) for key, value in current_logs.items()} litellm.error_logs[log_key] = filtered_error_logs else: litellm.error_logs[log_key] = str(current_logs) # Convert the filtered_error_logs dictionary to a JSON string error_logs_json = json.dumps(litellm.error_logs) # URL-encode the JSON data encoded_data = urllib.parse.quote(error_logs_json) print("👉 view error logs:") print("\033[91m" + '\033[4m' + 'https://logs.litellm.ai/?data=' + str(encoded_data) + "\033[0m") except: pass try: if isinstance(original_exception, OriginalError): # Handle the OpenAIError exception_mapping_worked = True if model in litellm.openrouter_models: if original_exception.http_status == 413: raise InvalidRequestError( message=str(original_exception), model=model, llm_provider="openrouter" ) original_exception.llm_provider = "openrouter" elif custom_llm_provider == "azure": original_exception.llm_provider = "azure" else: original_exception.llm_provider = "openai" if "This model's maximum context length is" in original_exception._message: raise ContextWindowExceededError( message=str(original_exception), model=model, llm_provider=original_exception.llm_provider ) raise original_exception elif model: error_str = str(original_exception) if isinstance(original_exception, BaseException): exception_type = type(original_exception).__name__ else: exception_type = "" if custom_llm_provider == "anthropic": # one of the anthropics if hasattr(original_exception, "message"): if "prompt is too long" in original_exception.message: exception_mapping_worked = True raise ContextWindowExceededError( message=original_exception.message, model=model, llm_provider="anthropic" ) if "Invalid API Key" in original_exception.message: exception_mapping_worked = True raise AuthenticationError( message=original_exception.message, model=model, llm_provider="anthropic" ) if hasattr(original_exception, "status_code"): print_verbose(f"status_code: {original_exception.status_code}") if original_exception.status_code == 401: exception_mapping_worked = True raise AuthenticationError( message=f"AnthropicException - {original_exception.message}", llm_provider="anthropic", model=model ) elif original_exception.status_code == 400: exception_mapping_worked = True raise InvalidRequestError( message=f"AnthropicException - {original_exception.message}", model=model, llm_provider="anthropic", ) elif original_exception.status_code == 408: exception_mapping_worked = True raise Timeout( message=f"AnthropicException - {original_exception.message}", model=model, llm_provider="anthropic" ) elif original_exception.status_code == 413: exception_mapping_worked = True raise InvalidRequestError( message=f"AnthropicException - {original_exception.message}", model=model, llm_provider="anthropic", ) elif original_exception.status_code == 429: exception_mapping_worked = True raise RateLimitError( message=f"AnthropicException - {original_exception.message}", llm_provider="anthropic", model=model ) elif original_exception.status_code == 500: exception_mapping_worked = True raise ServiceUnavailableError( message=f"AnthropicException - {original_exception.message}", llm_provider="anthropic", model=model ) else: exception_mapping_worked = True raise APIError( status_code=original_exception.status_code, message=f"AnthropicException - {original_exception.message}", llm_provider="anthropic", model=model ) elif custom_llm_provider == "replicate": if "Incorrect authentication token" in error_str: exception_mapping_worked = True raise AuthenticationError( message=f"ReplicateException - {error_str}", llm_provider="replicate", model=model ) elif "input is too long" in error_str: exception_mapping_worked = True raise ContextWindowExceededError( message=f"ReplicateException - {error_str}", model=model, llm_provider="replicate", ) elif exception_type == "ModelError": exception_mapping_worked = True raise InvalidRequestError( message=f"ReplicateException - {error_str}", model=model, llm_provider="replicate", ) elif "Request was throttled" in error_str: exception_mapping_worked = True raise RateLimitError( message=f"ReplicateException - {error_str}", llm_provider="replicate", model=model ) elif hasattr(original_exception, "status_code"): if original_exception.status_code == 401: exception_mapping_worked = True raise AuthenticationError( message=f"ReplicateException - {original_exception.message}", llm_provider="replicate", model=model ) elif original_exception.status_code == 400 or original_exception.status_code == 422: exception_mapping_worked = True raise InvalidRequestError( message=f"ReplicateException - {original_exception.message}", model=model, llm_provider="replicate", ) elif original_exception.status_code == 408: exception_mapping_worked = True raise Timeout( message=f"ReplicateException - {original_exception.message}", model=model, llm_provider="replicate" ) elif original_exception.status_code == 413: exception_mapping_worked = True raise InvalidRequestError( message=f"ReplicateException - {original_exception.message}", model=model, llm_provider="replicate", ) elif original_exception.status_code == 429: exception_mapping_worked = True raise RateLimitError( message=f"ReplicateException - {original_exception.message}", llm_provider="replicate", model=model ) elif original_exception.status_code == 500: exception_mapping_worked = True raise ServiceUnavailableError( message=f"ReplicateException - {original_exception.message}", llm_provider="replicate", model=model ) exception_mapping_worked = True raise APIError( status_code=original_exception.status_code, message=f"ReplicateException - {original_exception.message}", llm_provider="replicate", model=model ) elif custom_llm_provider == "bedrock": if "Unable to locate credentials" in error_str: exception_mapping_worked = True raise InvalidRequestError( message=f"BedrockException - {error_str}", model=model, llm_provider="bedrock" ) elif custom_llm_provider == "sagemaker": if "Unable to locate credentials" in error_str: exception_mapping_worked = True raise InvalidRequestError( message=f"SagemakerException - {error_str}", model=model, llm_provider="sagemaker" ) elif custom_llm_provider == "vertex_ai": if "Vertex AI API has not been used in project" in error_str or "Unable to find your project" in error_str: exception_mapping_worked = True raise InvalidRequestError( message=f"VertexAIException - {error_str}", model=model, llm_provider="vertex_ai" ) elif custom_llm_provider == "cohere": # Cohere if ( "invalid api token" in error_str or "No API key provided." in error_str ): exception_mapping_worked = True raise AuthenticationError( message=f"CohereException - {original_exception.message}", llm_provider="cohere", model=model ) elif "too many tokens" in error_str: exception_mapping_worked = True raise ContextWindowExceededError( message=f"CohereException - {original_exception.message}", model=model, llm_provider="cohere", ) elif hasattr(original_exception, "status_code"): if original_exception.status_code == 400 or original_exception.status_code == 498: exception_mapping_worked = True raise InvalidRequestError( message=f"CohereException - {original_exception.message}", llm_provider="cohere", model=model ) elif original_exception.status_code == 500: exception_mapping_worked = True raise ServiceUnavailableError( message=f"CohereException - {original_exception.message}", llm_provider="cohere", model=model ) elif ( "CohereConnectionError" in exception_type ): # cohere seems to fire these errors when we load test it (1k+ messages / min) exception_mapping_worked = True raise RateLimitError( message=f"CohereException - {original_exception.message}", llm_provider="cohere", model=model ) elif "invalid type:" in error_str: exception_mapping_worked = True raise InvalidRequestError( message=f"CohereException - {original_exception.message}", llm_provider="cohere", model=model ) elif "Unexpected server error" in error_str: exception_mapping_worked = True raise ServiceUnavailableError( message=f"CohereException - {original_exception.message}", llm_provider="cohere", model=model ) else: if hasattr(original_exception, "status_code"): exception_mapping_worked = True raise APIError( status_code=original_exception.status_code, message=f"CohereException - {original_exception.message}", llm_provider="cohere", model=model ) raise original_exception elif custom_llm_provider == "huggingface": if "length limit exceeded" in error_str: exception_mapping_worked = True raise ContextWindowExceededError( message=error_str, model=model, llm_provider="huggingface" ) elif "A valid user token is required" in error_str: exception_mapping_worked = True raise InvalidRequestError( message=error_str, llm_provider="huggingface", model=model ) if hasattr(original_exception, "status_code"): if original_exception.status_code == 401: exception_mapping_worked = True raise AuthenticationError( message=f"HuggingfaceException - {original_exception.message}", llm_provider="huggingface", model=model ) elif original_exception.status_code == 400: exception_mapping_worked = True raise InvalidRequestError( message=f"HuggingfaceException - {original_exception.message}", model=model, llm_provider="huggingface", ) elif original_exception.status_code == 408: exception_mapping_worked = True raise Timeout( message=f"HuggingfaceException - {original_exception.message}", model=model, llm_provider="huggingface" ) elif original_exception.status_code == 429: exception_mapping_worked = True raise RateLimitError( message=f"HuggingfaceException - {original_exception.message}", llm_provider="huggingface", model=model ) else: exception_mapping_worked = True raise APIError( status_code=original_exception.status_code, message=f"HuggingfaceException - {original_exception.message}", llm_provider="huggingface", model=model ) exception_mapping_worked = True raise APIError(status_code=500, message=error_str, model=model, llm_provider=custom_llm_provider) elif custom_llm_provider == "ai21": if hasattr(original_exception, "message"): if "Prompt has too many tokens" in original_exception.message: exception_mapping_worked = True raise ContextWindowExceededError( message=f"AI21Exception - {original_exception.message}", model=model, llm_provider="ai21" ) if "Bad or missing API token." in original_exception.message: exception_mapping_worked = True raise InvalidRequestError( message=f"AI21Exception - {original_exception.message}", model=model, llm_provider="ai21" ) if hasattr(original_exception, "status_code"): if original_exception.status_code == 401: exception_mapping_worked = True raise AuthenticationError( message=f"AI21Exception - {original_exception.message}", llm_provider="ai21", model=model ) elif original_exception.status_code == 408: exception_mapping_worked = True raise Timeout( message=f"AI21Exception - {original_exception.message}", model=model, llm_provider="ai21" ) if original_exception.status_code == 422: exception_mapping_worked = True raise InvalidRequestError( message=f"AI21Exception - {original_exception.message}", model=model, llm_provider="ai21", ) elif original_exception.status_code == 429: exception_mapping_worked = True raise RateLimitError( message=f"AI21Exception - {original_exception.message}", llm_provider="ai21", ) else: exception_mapping_worked = True raise APIError( status_code=original_exception.status_code, message=f"AI21Exception - {original_exception.message}", llm_provider="ai21", model=model ) elif custom_llm_provider == "nlp_cloud": if "detail" in error_str: if "Input text length should not exceed" in error_str: exception_mapping_worked = True raise ContextWindowExceededError( message=f"NLPCloudException - {error_str}", model=model, llm_provider="nlp_cloud" ) elif "value is not a valid" in error_str: exception_mapping_worked = True raise InvalidRequestError( message=f"NLPCloudException - {error_str}", model=model, llm_provider="nlp_cloud" ) else: exception_mapping_worked = True raise APIError( status_code=500, message=f"NLPCloudException - {error_str}", model=model, llm_provider="nlp_cloud" ) if hasattr(original_exception, "status_code"): # https://docs.nlpcloud.com/?shell#errors if original_exception.status_code == 400 or original_exception.status_code == 406 or original_exception.status_code == 413 or original_exception.status_code == 422: exception_mapping_worked = True raise InvalidRequestError( message=f"NLPCloudException - {original_exception.message}", llm_provider="nlp_cloud", model=model ) elif original_exception.status_code == 401 or original_exception.status_code == 403: exception_mapping_worked = True raise AuthenticationError( message=f"NLPCloudException - {original_exception.message}", llm_provider="nlp_cloud", model=model ) elif original_exception.status_code == 522 or original_exception.status_code == 524: exception_mapping_worked = True raise Timeout( message=f"NLPCloudException - {original_exception.message}", model=model, llm_provider="nlp_cloud" ) elif original_exception.status_code == 429 or original_exception.status_code == 402: exception_mapping_worked = True raise RateLimitError( message=f"NLPCloudException - {original_exception.message}", llm_provider="nlp_cloud", ) elif original_exception.status_code == 500 or original_exception.status_code == 503: exception_mapping_worked = True raise APIError( status_code=original_exception.status_code, message=f"NLPCloudException - {original_exception.message}", llm_provider="nlp_cloud", model=model ) elif original_exception.status_code == 504 or original_exception.status_code == 520: exception_mapping_worked = True raise ServiceUnavailableError( message=f"NLPCloudException - {original_exception.message}", model=model, llm_provider="nlp_cloud" ) else: exception_mapping_worked = True raise APIError( status_code=original_exception.status_code, message=f"NLPCloudException - {original_exception.message}", llm_provider="nlp_cloud", model=model ) elif custom_llm_provider == "together_ai": import json error_response = json.loads(error_str) if "error" in error_response and "`inputs` tokens + `max_new_tokens` must be <=" in error_response["error"]: exception_mapping_worked = True raise ContextWindowExceededError( message=f"TogetherAIException - {error_response['error']}", model=model, llm_provider="together_ai" ) elif "error" in error_response and "invalid private key" in error_response["error"]: exception_mapping_worked = True raise AuthenticationError( message=f"TogetherAIException - {error_response['error']}", llm_provider="together_ai", model=model ) elif "error" in error_response and "INVALID_ARGUMENT" in error_response["error"]: exception_mapping_worked = True raise InvalidRequestError( message=f"TogetherAIException - {error_response['error']}", model=model, llm_provider="together_ai" ) elif "error" in error_response and "API key doesn't match expected format." in error_response["error"]: exception_mapping_worked = True raise InvalidRequestError( message=f"TogetherAIException - {error_response['error']}", model=model, llm_provider="together_ai" ) elif "error_type" in error_response and error_response["error_type"] == "validation": exception_mapping_worked = True raise InvalidRequestError( message=f"TogetherAIException - {error_response['error']}", model=model, llm_provider="together_ai" ) elif original_exception.status_code == 408: exception_mapping_worked = True raise Timeout( message=f"TogetherAIException - {original_exception.message}", model=model, llm_provider="together_ai" ) elif original_exception.status_code == 429: exception_mapping_worked = True raise RateLimitError( message=f"TogetherAIException - {original_exception.message}", llm_provider="together_ai", model=model ) else: exception_mapping_worked = True raise APIError( status_code=original_exception.status_code, message=f"TogetherAIException - {original_exception.message}", llm_provider="together_ai", model=model ) elif custom_llm_provider == "aleph_alpha": if "This is longer than the model's maximum context length" in error_str: exception_mapping_worked = True raise ContextWindowExceededError( message=f"AlephAlphaException - {original_exception.message}", llm_provider="aleph_alpha", model=model ) elif "InvalidToken" in error_str or "No token provided" in error_str: exception_mapping_worked = True raise InvalidRequestError( message=f"AlephAlphaException - {original_exception.message}", llm_provider="aleph_alpha", model=model ) elif hasattr(original_exception, "status_code"): print(f"status code: {original_exception.status_code}") if original_exception.status_code == 401: exception_mapping_worked = True raise AuthenticationError( message=f"AlephAlphaException - {original_exception.message}", llm_provider="aleph_alpha", model=model ) elif original_exception.status_code == 400: exception_mapping_worked = True raise InvalidRequestError( message=f"AlephAlphaException - {original_exception.message}", llm_provider="aleph_alpha", model=model ) elif original_exception.status_code == 429: exception_mapping_worked = True raise RateLimitError( message=f"AlephAlphaException - {original_exception.message}", llm_provider="aleph_alpha", model=model ) elif original_exception.status_code == 500: exception_mapping_worked = True raise ServiceUnavailableError( message=f"AlephAlphaException - {original_exception.message}", llm_provider="aleph_alpha", model=model ) raise original_exception raise original_exception elif custom_llm_provider == "vllm": if hasattr(original_exception, "status_code"): if original_exception.status_code == 0: exception_mapping_worked = True raise APIConnectionError( message=f"VLLMException - {original_exception.message}", llm_provider="vllm", model=model ) elif custom_llm_provider == "ollama": if "no attribute 'async_get_ollama_response_stream" in error_str: raise ImportError("Import error - trying to use async for ollama. import async_generator failed. Try 'pip install async_generator'") exception_mapping_worked = True raise APIError(status_code=500, message=str(original_exception), llm_provider=custom_llm_provider, model=model) except Exception as e: # LOGGING exception_logging( logger_fn=user_logger_fn, additional_args={ "exception_mapping_worked": exception_mapping_worked, "original_exception": original_exception, }, exception=e, ) ## AUTH ERROR if isinstance(e, AuthenticationError) and ( litellm.email or "LITELLM_EMAIL" in os.environ ): threading.Thread(target=get_all_keys, args=(e.llm_provider,)).start() # don't let an error with mapping interrupt the user from receiving an error from the llm api calls if exception_mapping_worked: raise e else: raise original_exception ####### CRASH REPORTING ################ def safe_crash_reporting(model=None, exception=None, custom_llm_provider=None): data = { "model": model, "exception": str(exception), "custom_llm_provider": custom_llm_provider, } threading.Thread(target=litellm_telemetry, args=(data,)).start() def get_or_generate_uuid(): temp_dir = os.path.join(os.path.abspath(os.sep), "tmp") uuid_file = os.path.join(temp_dir, "litellm_uuid.txt") try: # Try to open the file and load the UUID with open(uuid_file, "r") as file: uuid_value = file.read() if uuid_value: uuid_value = uuid_value.strip() else: raise FileNotFoundError except FileNotFoundError: # Generate a new UUID if the file doesn't exist or is empty try: new_uuid = uuid.uuid4() uuid_value = str(new_uuid) with open(uuid_file, "w") as file: file.write(uuid_value) except: # if writing to tmp/litellm_uuid.txt then retry writing to litellm_uuid.txt try: new_uuid = uuid.uuid4() uuid_value = str(new_uuid) with open("litellm_uuid.txt", "w") as file: file.write(uuid_value) except: # if this 3rd attempt fails just pass # Good first issue for someone to improve this function :) return except: # [Non-Blocking Error] return return uuid_value def litellm_telemetry(data): # Load or generate the UUID uuid_value = "" try: uuid_value = get_or_generate_uuid() except: uuid_value = str(uuid.uuid4()) try: # Prepare the data to send to litellm logging api payload = { "uuid": uuid_value, "data": data, "version:": importlib.metadata.version("litellm"), } # Make the POST request to litellm logging api response = requests.post( "https://litellm.berri.ai/logging", headers={"Content-Type": "application/json"}, json=payload, ) response.raise_for_status() # Raise an exception for HTTP errors except: # [Non-Blocking Error] return ######### Secret Manager ############################ # checks if user has passed in a secret manager client # if passed in then checks the secret there def get_secret(secret_name): if litellm.secret_manager_client != None: # TODO: check which secret manager is being used # currently only supports Infisical try: secret = litellm.secret_manager_client.get_secret(secret_name).secret_value except: secret = None return secret else: return os.environ.get(secret_name) ######## Streaming Class ############################ # wraps the completion stream to return the correct format for the model # replicate/anthropic/cohere class CustomStreamWrapper: def __init__(self, completion_stream, model, custom_llm_provider=None, logging_obj=None): self.model = model self.custom_llm_provider = custom_llm_provider self.logging_obj = logging_obj self.completion_stream = completion_stream self.sent_first_chunk = False self.sent_last_chunk = False if self.logging_obj: # Log the type of the received item self.logging_obj.post_call(str(type(completion_stream))) def __iter__(self): return self def __aiter__(self): return self def logging(self, text): if self.logging_obj: self.logging_obj.post_call(text) def handle_anthropic_chunk(self, chunk): str_line = chunk.decode("utf-8") # Convert bytes to string print(f"str_line: {str_line}") text = "" is_finished = False finish_reason = None if str_line.startswith("data:"): data_json = json.loads(str_line[5:]) text = data_json.get("completion", "") if data_json.get("stop_reason", None): is_finished = True finish_reason = data_json["stop_reason"] return {"text": text, "is_finished": is_finished, "finish_reason": finish_reason} elif "error" in str_line: raise ValueError(f"Unable to parse response. Original response: {str_line}") else: return {"text": text, "is_finished": is_finished, "finish_reason": finish_reason} def handle_together_ai_chunk(self, chunk): chunk = chunk.decode("utf-8") text = "" is_finished = False finish_reason = None if "text" in chunk: text_index = chunk.find('"text":"') # this checks if text: exists text_start = text_index + len('"text":"') text_end = chunk.find('"}', text_start) if text_index != -1 and text_end != -1: extracted_text = chunk[text_start:text_end] text = extracted_text return {"text": text, "is_finished": is_finished, "finish_reason": finish_reason} elif "[DONE]" in chunk: return {"text": text, "is_finished": True, "finish_reason": "stop"} elif "error" in chunk: raise ValueError(chunk) else: return {"text": text, "is_finished": is_finished, "finish_reason": finish_reason} def handle_huggingface_chunk(self, chunk): chunk = chunk.decode("utf-8") text = "" is_finished = False finish_reason = "" if chunk.startswith("data:"): data_json = json.loads(chunk[5:]) print(f"data json: {data_json}") if "token" in data_json and "text" in data_json["token"]: text = data_json["token"]["text"] if "meta-llama/Llama-2" in self.model: #clean eos tokens like </s> from the returned output text if any(token in text for token in llama_2_special_tokens): text = text.replace("<s>", "").replace("</s>", "") if data_json.get("details", False) and data_json["details"].get("finish_reason", False): is_finished = True finish_reason = data_json["details"]["finish_reason"] return {"text": text, "is_finished": is_finished, "finish_reason": finish_reason} elif "error" in chunk: raise ValueError(chunk) return {"text": text, "is_finished": is_finished, "finish_reason": finish_reason} def handle_ai21_chunk(self, chunk): # fake streaming chunk = chunk.decode("utf-8") data_json = json.loads(chunk) try: text = data_json["completions"][0]["data"]["text"] is_finished = True finish_reason = "stop" return {"text": text, "is_finished": is_finished, "finish_reason": finish_reason} except: raise ValueError(f"Unable to parse response. Original response: {chunk}") def handle_nlp_cloud_chunk(self, chunk): chunk = chunk.decode("utf-8") data_json = json.loads(chunk) try: text = data_json["generated_text"] is_finished = True finish_reason = "stop" return {"text": text, "is_finished": is_finished, "finish_reason": finish_reason} except: raise ValueError(f"Unable to parse response. Original response: {chunk}") def handle_aleph_alpha_chunk(self, chunk): chunk = chunk.decode("utf-8") data_json = json.loads(chunk) try: text = data_json["completions"][0]["completion"] is_finished = True finish_reason = "stop" return {"text": text, "is_finished": is_finished, "finish_reason": finish_reason} except: raise ValueError(f"Unable to parse response. Original response: {chunk}") def handle_cohere_chunk(self, chunk): chunk = chunk.decode("utf-8") data_json = json.loads(chunk) try: text = "" is_finished = False finish_reason = "" if "text" in data_json: text = data_json["text"] elif "is_finished" in data_json: is_finished = data_json["is_finished"] finish_reason = data_json["finish_reason"] else: raise Exception(data_json) return {"text": text, "is_finished": is_finished, "finish_reason": finish_reason} except: raise ValueError(f"Unable to parse response. Original response: {chunk}") def handle_replicate_chunk(self, chunk): print(f"chunk: {chunk}") try: text = "" is_finished = False finish_reason = "" if "output" in chunk: text = chunk['output'] if "status" in chunk: if chunk["status"] == "succeeded": is_finished = True finish_reason = "stop" elif chunk.get("error", None): raise Exception(chunk["error"]) return {"text": text, "is_finished": is_finished, "finish_reason": finish_reason} except: raise ValueError(f"Unable to parse response. Original response: {chunk}") def handle_openai_text_completion_chunk(self, chunk): try: print(f"chunk: {chunk}") return chunk["choices"][0]["text"] except: raise ValueError(f"Unable to parse response. Original response: {chunk}") def handle_openai_chat_completion_chunk(self, chunk): try: return chunk["choices"][0]["delta"]["content"] except: return "" def handle_baseten_chunk(self, chunk): try: chunk = chunk.decode("utf-8") if len(chunk) > 0: if chunk.startswith("data:"): data_json = json.loads(chunk[5:]) if "token" in data_json and "text" in data_json["token"]: return data_json["token"]["text"] else: return "" data_json = json.loads(chunk) if "model_output" in data_json: if isinstance(data_json["model_output"], dict) and "data" in data_json["model_output"] and isinstance(data_json["model_output"]["data"], list): return data_json["model_output"]["data"][0] elif isinstance(data_json["model_output"], str): return data_json["model_output"] elif "completion" in data_json and isinstance(data_json["completion"], str): return data_json["completion"] else: raise ValueError(f"Unable to parse response. Original response: {chunk}") else: return "" else: return "" except: traceback.print_exc() return "" def handle_bedrock_stream(self, chunk): chunk = chunk.get('chunk') if chunk: chunk_data = json.loads(chunk.get('bytes').decode()) text = "" is_finished = False finish_reason = "" if "outputText" in chunk_data: text = chunk_data['outputText'] if chunk_data.get("completionReason", None): is_finished = True finish_reason = chunk_data["completionReason"] elif chunk.get("error", None): raise Exception(chunk["error"]) return {"text": text, "is_finished": is_finished, "finish_reason": finish_reason} return "" ## needs to handle the empty string case (even starting chunk can be an empty string) def __next__(self): model_response = ModelResponse(stream=True, model=self.model) try: while True: # loop until a non-empty string is found # return this for all models completion_obj = {"content": ""} if self.custom_llm_provider and self.custom_llm_provider == "anthropic": chunk = next(self.completion_stream) response_obj = self.handle_anthropic_chunk(chunk) completion_obj["content"] = response_obj["text"] if response_obj["is_finished"]: model_response.choices[0].finish_reason = response_obj["finish_reason"] elif self.model == "replicate" or self.custom_llm_provider == "replicate": chunk = next(self.completion_stream) response_obj = self.handle_replicate_chunk(chunk) completion_obj["content"] = response_obj["text"] if response_obj["is_finished"]: model_response.choices[0].finish_reason = response_obj["finish_reason"] elif ( self.custom_llm_provider and self.custom_llm_provider == "together_ai"): chunk = next(self.completion_stream) response_obj = self.handle_together_ai_chunk(chunk) completion_obj["content"] = response_obj["text"] if response_obj["is_finished"]: model_response.choices[0].finish_reason = response_obj["finish_reason"] elif self.custom_llm_provider and self.custom_llm_provider == "huggingface": chunk = next(self.completion_stream) response_obj = self.handle_huggingface_chunk(chunk) completion_obj["content"] = response_obj["text"] if response_obj["is_finished"]: model_response.choices[0].finish_reason = response_obj["finish_reason"] elif self.custom_llm_provider and self.custom_llm_provider == "baseten": # baseten doesn't provide streaming chunk = next(self.completion_stream) completion_obj["content"] = self.handle_baseten_chunk(chunk) elif self.custom_llm_provider and self.custom_llm_provider == "ai21": #ai21 doesn't provide streaming chunk = next(self.completion_stream) response_obj = self.handle_ai21_chunk(chunk) completion_obj["content"] = response_obj["text"] if response_obj["is_finished"]: model_response.choices[0].finish_reason = response_obj["finish_reason"] elif self.custom_llm_provider and self.custom_llm_provider == "vllm": chunk = next(self.completion_stream) completion_obj["content"] = chunk[0].outputs[0].text elif self.custom_llm_provider and self.custom_llm_provider == "aleph_alpha": #aleph alpha doesn't provide streaming chunk = next(self.completion_stream) response_obj = self.handle_aleph_alpha_chunk(chunk) completion_obj["content"] = response_obj["text"] if response_obj["is_finished"]: model_response.choices[0].finish_reason = response_obj["finish_reason"] elif self.custom_llm_provider and self.custom_llm_provider == "text-completion-openai": chunk = next(self.completion_stream) completion_obj["content"] = self.handle_openai_text_completion_chunk(chunk) elif self.model in litellm.nlp_cloud_models or self.custom_llm_provider == "nlp_cloud": try: chunk = next(self.completion_stream) response_obj = self.handle_nlp_cloud_chunk(chunk) completion_obj["content"] = response_obj["text"] if response_obj["is_finished"]: model_response.choices[0].finish_reason = response_obj["finish_reason"] except Exception as e: if self.sent_last_chunk: raise e else: if self.sent_first_chunk is False: raise Exception("An unknown error occurred with the stream") model_response.choices[0].finish_reason = "stop" self.sent_last_chunk = True elif self.custom_llm_provider and self.custom_llm_provider == "vertex_ai": try: chunk = next(self.completion_stream) completion_obj["content"] = str(chunk) except StopIteration as e: if self.sent_last_chunk: raise e else: model_response.choices[0].finish_reason = "stop" self.sent_last_chunk = True elif self.custom_llm_provider == "cohere": chunk = next(self.completion_stream) response_obj = self.handle_cohere_chunk(chunk) completion_obj["content"] = response_obj["text"] if response_obj["is_finished"]: model_response.choices[0].finish_reason = response_obj["finish_reason"] elif self.custom_llm_provider == "bedrock": chunk = next(self.completion_stream) response_obj = self.handle_bedrock_stream(chunk) completion_obj["content"] = response_obj["text"] if response_obj["is_finished"]: model_response.choices[0].finish_reason = response_obj["finish_reason"] elif self.custom_llm_provider == "sagemaker": if len(self.completion_stream)==0: if self.sent_last_chunk: raise StopIteration else: model_response.choices[0].finish_reason = "stop" self.sent_last_chunk = True chunk_size = 30 new_chunk = self.completion_stream[:chunk_size] completion_obj["content"] = new_chunk self.completion_stream = self.completion_stream[chunk_size:] time.sleep(0.05) else: # openai chat/azure models chunk = next(self.completion_stream) model_response = chunk # LOGGING threading.Thread(target=self.logging_obj.success_handler, args=(completion_obj,)).start() return model_response # LOGGING threading.Thread(target=self.logging_obj.success_handler, args=(completion_obj,)).start() model_response.model = self.model if len(completion_obj["content"]) > 0: # cannot set content of an OpenAI Object to be an empty string if self.sent_first_chunk == False: completion_obj["role"] = "assistant" self.sent_first_chunk = True model_response.choices[0].delta = Delta(**completion_obj) return model_response elif model_response.choices[0].finish_reason: return model_response except StopIteration: raise StopIteration except Exception as e: e.message = str(e) return exception_type(model=self.model, custom_llm_provider=self.custom_llm_provider, original_exception=e) async def __anext__(self): try: return next(self) except StopIteration: raise StopAsyncIteration def mock_completion_streaming_obj(model_response, mock_response, model): for i in range(0, len(mock_response), 3): completion_obj = {"role": "assistant", "content": mock_response[i: i+3]} model_response.choices[0].delta = completion_obj yield model_response ########## Reading Config File ############################ def read_config_args(config_path) -> dict: try: import os current_path = os.getcwd() with open(config_path, "r") as config_file: config = json.load(config_file) # read keys/ values from config file and return them return config except Exception as e: raise e ########## experimental completion variants ############################ def completion_with_config(config: Union[dict, str], **kwargs): if config is not None: if isinstance(config, str): config = read_config_args(config) elif isinstance(config, dict): config = config else: raise Exception("Config path must be a string or a dictionary.") else: raise Exception("Config path not passed in.") if config is None: raise Exception("No completion config in the config file") models_with_config = config["model"].keys() model = kwargs["model"] messages = kwargs["messages"] ## completion config fallback_models = config.get("default_fallback_models", None) available_models = config.get("available_models", None) adapt_to_prompt_size = config.get("adapt_to_prompt_size", False) trim_messages_flag = config.get("trim_messages", False) prompt_larger_than_model = False max_model = model try: max_tokens = litellm.get_max_tokens(model)["max_tokens"] except: max_tokens = 2048 # assume curr model's max window is 2048 tokens if adapt_to_prompt_size: ## Pick model based on token window prompt_tokens = litellm.token_counter(model="gpt-3.5-turbo", text="".join(message["content"] for message in messages)) try: curr_max_tokens = litellm.get_max_tokens(model)["max_tokens"] except: curr_max_tokens = 2048 if curr_max_tokens < prompt_tokens: prompt_larger_than_model = True for available_model in available_models: try: curr_max_tokens = litellm.get_max_tokens(available_model)["max_tokens"] if curr_max_tokens > max_tokens: max_tokens = curr_max_tokens max_model = available_model if curr_max_tokens > prompt_tokens: model = available_model prompt_larger_than_model = False except: continue if prompt_larger_than_model: messages = trim_messages(messages=messages, model=max_model) kwargs["messages"] = messages kwargs["model"] = model try: if model in models_with_config: ## Moderation check if config["model"][model].get("needs_moderation"): input = " ".join(message["content"] for message in messages) response = litellm.moderation(input=input) flagged = response["results"][0]["flagged"] if flagged: raise Exception("This response was flagged as inappropriate") ## Model-specific Error Handling error_handling = None if config["model"][model].get("error_handling"): error_handling = config["model"][model]["error_handling"] try: response = litellm.completion(**kwargs) return response except Exception as e: exception_name = type(e).__name__ fallback_model = None if error_handling and exception_name in error_handling: error_handler = error_handling[exception_name] # either switch model or api key fallback_model = error_handler.get("fallback_model", None) if fallback_model: kwargs["model"] = fallback_model return litellm.completion(**kwargs) raise e else: return litellm.completion(**kwargs) except Exception as e: if fallback_models: model = fallback_models.pop(0) return completion_with_fallbacks(model=model, messages=messages, fallbacks=fallback_models) raise e def get_model_split_test(models, completion_call_id): global last_fetched_at try: # make the api call last_fetched_at = time.time() response = requests.post( #http://api.litellm.ai url="http://api.litellm.ai/get_model_split_test", # get the updated dict from table or update the table with the dict headers={"content-type": "application/json"}, data=json.dumps({"completion_call_id": completion_call_id, "models": models}), ) print_verbose(f"get_model_list response: {response.text}") data = response.json() # update model list split_test_models = data["split_test_models"] model_configs = data.get("model_configs", {}) # update environment - if required threading.Thread(target=get_all_keys, args=()).start() return split_test_models, model_configs except: print_verbose( f"[Non-Blocking Error] get_all_keys error - {traceback.format_exc()}" ) def completion_with_split_tests(models={}, messages=[], use_client=False, override_client=False, **kwargs): """ Example Usage: models = { "gpt-4": 0.7, "huggingface/wizard-coder": 0.3 } messages = [{ "content": "Hello, how are you?","role": "user"}] completion_with_split_tests(models=models, messages=messages) """ import random model_configs = {} if use_client and not override_client: if "id" not in kwargs or kwargs["id"] is None: kwargs["id"] = str(uuid.uuid4()) #raise ValueError("Please tag this completion call, if you'd like to update it's split test values through the UI. - eg. `completion_with_split_tests(.., id=1234)`.") # get the most recent model split list from server models, model_configs = get_model_split_test(models=models, completion_call_id=kwargs["id"]) try: selected_llm = random.choices(list(models.keys()), weights=list(models.values()))[0] except: traceback.print_exc() raise ValueError("""models does not follow the required format - {'model_name': 'split_percentage'}, e.g. {'gpt-4': 0.7, 'huggingface/wizard-coder': 0.3}""") # use dynamic model configs if users set if model_configs!={}: selected_model_configs = model_configs.get(selected_llm, {}) if "prompt" in selected_model_configs: # special case, add this to messages as system prompt messages.append({"role": "system", "content": selected_model_configs["prompt"]}) selected_model_configs.pop("prompt") for param_name in selected_model_configs: if param_name == "temperature": kwargs[param_name] = float(selected_model_configs[param_name]) elif param_name == "max_tokens": kwargs[param_name] = int(selected_model_configs[param_name]) else: kwargs[param_name] = selected_model_configs[param_name] return litellm.completion(model=selected_llm, messages=messages, use_client=use_client, **kwargs) def completion_with_fallbacks(**kwargs): response = None rate_limited_models = set() model_expiration_times = {} start_time = time.time() fallbacks = [kwargs["model"]] + kwargs["fallbacks"] del kwargs["fallbacks"] # remove fallbacks so it's not recursive while response == None and time.time() - start_time < 45: for model in fallbacks: # loop thru all models try: if ( model in rate_limited_models ): # check if model is currently cooling down if ( model_expiration_times.get(model) and time.time() >= model_expiration_times[model] ): rate_limited_models.remove( model ) # check if it's been 60s of cool down and remove model else: continue # skip model # delete model from kwargs if it exists if kwargs.get("model"): del kwargs["model"] response = litellm.completion(**kwargs, model=model) if response != None: return response except Exception as e: rate_limited_models.add(model) model_expiration_times[model] = ( time.time() + 60 ) # cool down this selected model # print(f"rate_limited_models {rate_limited_models}") pass return response def process_system_message(system_message, max_tokens, model): system_message_event = {"role": "system", "content": system_message} system_message_tokens = get_token_count(system_message_event, model) if system_message_tokens > max_tokens: print_verbose("`tokentrimmer`: Warning, system message exceeds token limit. Trimming...") # shorten system message to fit within max_tokens new_system_message = shorten_message_to_fit_limit(system_message_event, max_tokens, model) system_message_tokens = get_token_count(new_system_message, model) return system_message_event, max_tokens - system_message_tokens def process_messages(messages, max_tokens, model): # Process messages from older to more recent messages = messages[::-1] final_messages = [] for message in messages: final_messages = attempt_message_addition(final_messages, message, max_tokens, model) return final_messages def attempt_message_addition(final_messages, message, max_tokens, model): temp_messages = [message] + final_messages temp_message_tokens = get_token_count(messages=temp_messages, model=model) if temp_message_tokens <= max_tokens: return temp_messages # if temp_message_tokens > max_tokens, try shortening temp_messages elif "function_call" not in message: # fit updated_message to be within temp_message_tokens - max_tokens (aka the amount temp_message_tokens is greate than max_tokens) updated_message = shorten_message_to_fit_limit(message, temp_message_tokens - max_tokens, model) if can_add_message(updated_message, final_messages, max_tokens, model): return [updated_message] + final_messages return final_messages def can_add_message(message, messages, max_tokens, model): if get_token_count(messages + [message], model) <= max_tokens: return True return False def get_token_count(messages, model): return token_counter(model=model, messages=messages) def shorten_message_to_fit_limit( message, tokens_needed, model): """ Shorten a message to fit within a token limit by removing characters from the middle. """ content = message["content"] while True: total_tokens = get_token_count([message], model) if total_tokens <= tokens_needed: break ratio = (tokens_needed) / total_tokens new_length = int(len(content) * ratio) print_verbose(new_length) half_length = new_length // 2 left_half = content[:half_length] right_half = content[-half_length:] trimmed_content = left_half + '..' + right_half message["content"] = trimmed_content content = trimmed_content return message # LiteLLM token trimmer # this code is borrowed from https://github.com/KillianLucas/tokentrim/blob/main/tokentrim/tokentrim.py # Credits for this code go to Killian Lucas def trim_messages( messages, model: Optional[str] = None, trim_ratio: float = 0.75, return_response_tokens: bool = False, max_tokens = None ): """ Trim a list of messages to fit within a model's token limit. Args: messages: Input messages to be trimmed. Each message is a dictionary with 'role' and 'content'. model: The LiteLLM model being used (determines the token limit). system_message: Optional system message to preserve at the start of the conversation. trim_ratio: Target ratio of tokens to use after trimming. Default is 0.75, meaning it will trim messages so they use about 75% of the model's token limit. return_response_tokens: If True, also return the number of tokens left available for the response after trimming. max_tokens: Instead of specifying a model or trim_ratio, you can specify this directly. Returns: Trimmed messages and optionally the number of tokens available for response. """ # Initialize max_tokens # if users pass in max tokens, trim to this amount try: if max_tokens == None: # Check if model is valid if model in litellm.model_cost: max_tokens_for_model = litellm.model_cost[model]['max_tokens'] max_tokens = int(max_tokens_for_model * trim_ratio) else: # if user did not specify max tokens # or passed an llm litellm does not know # do nothing, just return messages return system_message = "" for message in messages: if message["role"] == "system": system_message += message["content"] current_tokens = token_counter(model=model, messages=messages) # Do nothing if current tokens under messages if current_tokens < max_tokens: return messages #### Trimming messages if current_tokens > max_tokens print_verbose(f"Need to trim input messages: {messages}, current_tokens{current_tokens}, max_tokens: {max_tokens}") if system_message: system_message_event, max_tokens = process_system_message(system_message=system_message, max_tokens=max_tokens, model=model) messages = messages + [system_message_event] final_messages = process_messages(messages=messages, max_tokens=max_tokens, model=model) if return_response_tokens: # if user wants token count with new trimmed messages response_tokens = max_tokens - get_token_count(final_messages, model) return final_messages, response_tokens return final_messages except: # [NON-Blocking, if error occurs just return final_messages return messages # this helper reads the .env and returns a list of supported llms for user def get_valid_models(): try: # get keys set in .env environ_keys = os.environ.keys() valid_providers = [] # for all valid providers, make a list of supported llms valid_models = [] for provider in litellm.provider_list: # edge case litellm has together_ai as a provider, it should be togetherai provider = provider.replace("_", "") # litellm standardizes expected provider keys to # PROVIDER_API_KEY. Example: OPENAI_API_KEY, COHERE_API_KEY expected_provider_key = f"{provider.upper()}_API_KEY" if expected_provider_key in environ_keys: # key is set valid_providers.append(provider) for provider in valid_providers: if provider == "azure": valid_models.append("Azure-LLM") else: models_for_provider = litellm.models_by_provider.get(provider, []) valid_models.extend(models_for_provider) return valid_models except: return [] # NON-Blocking
[ "Hey, how's it going?", "0", "True", "gpt-3.5-turbo", "Hey, how's it going", "input_cost_per_token", "Hello World", "None", "adapt_to_prompt_size", "default", "False", "application/json", "content", "prompt_tokens" ]
2024-01-10
Slyracoon23/emergency-kit-app
trip-scheduler.py
import os import openai from dotenv import load_dotenv import streamlit as st # Load OpenAI API key load_dotenv() openai.api_key = os.getenv('OPENAI_API_KEY') system_prompt = ''' The task is to prepare an emergency inventory list. Use Bold Headings: Start with a main title such as "Emergency Inventory List" and make it bold to distinguish it from the rest of the content. Use ** on both sides of the title to make it bold in Markdown. Example: **Emergency Inventory List**: Organize by Categories: Group related items into categories. This helps in quickly locating specific items. Examples of categories include "Water", "Food", "Tools & Equipment", "Health & Safety", and so on. Use Bullet Points: For each item or instruction, use a bullet point. In Markdown, you can use a hyphen - followed by a space to create a bullet point. Sub-categories or Sub-points: If an item can be further broken down into specific details or if it has multiple sub-items, use sub-bullet points. Indent these sub-bullet points to differentiate them from main points. In Markdown, this can be achieved by using a space or tab before the -. Consistent Spacing: Use consistent spacing between categories and items to make the list look organized. In Markdown, you can simply hit "Enter" twice to create a space between lines. Highlight Important Information: For essential items or notes, you can use bold or italics to highlight them. In Markdown: Bold: **text** Italics: *text* Clear Descriptions: For items that might be ambiguous, provide a short description. Example: Instead of just "Water", use "Water: 6 gallons (1 gallon per person per day)" to provide clarity. Avoid Long Sentences: If a point seems too lengthy, break it down into multiple sub-points to make it more readable. Example: Instead of combining "First aid kit and pet first aid kit", they were separated into two different bullet points. Here are some examples of emergency inventory lists: EXAMPLE 1: Prepare an emergency inventory list for Miami based on the following information: * Type of Emergency: Flood * Number of People: 1 * Pets: No * Special Needs: Medication for diabetes * Anticipated Duration: 1 week * Additional Notes: I live near the coast. Response: Emergency Inventory List: * Water: 7 gallons (1 gallon per person per day) * Non-perishable food: 7-day supply (canned goods, granola bars, etc.) * Manual can opener * Flashlights with extra batteries * Battery-powered or hand-crank radio * First aid kit with extra diabetes medication and glucose meter * Whistle to signal for help * Insect repellent and sunscreen * Waterproof boots and rain gear * Multi-tool or knife * Important documents in a waterproof container (ID, bank account records, medication list, etc.) * Cash in small denominations * Local maps and evacuation routes * Life jacket * Fully charged backup power sources for phones EXAMPLE 2: Prepare an emergency inventory list for New York based on the following information: * Type of Emergency: Power Outage * Number of People: 2 * Pets: No * Special Needs: None * Anticipated Duration: 24 hours * Additional Notes: Winter season. Response: Emergency Inventory List: * Water: 2 gallons (1 gallon per person per day) * Non-perishable food: 1-day supply (canned goods, granola bars, etc.) * Manual can opener * Flashlights with extra batteries * Battery-powered or hand-crank radio * First aid kit * Warm clothing and blankets * Multi-tool or knife * Important documents (ID, bank account records, etc.) * Cash in small denominations * Fully charged backup power sources for phones and heaters ''' # Emergency Inventory Prompt Generator def generate_emergency_prompt(location, type_of_emergency, num_people, pets, special_needs, duration, additional_notes, **kwargs): return f''' Prepare an emergency inventory list for {location} based on the following information: * Type of Emergency: {type_of_emergency} * Number of People: {num_people} * Pets: {pets} * Special Needs: {special_needs} * Anticipated Duration: {duration} * Additional Notes: {additional_notes} Response: '''.strip() # define a function for GPT to generate fictitious prompts # def fictitious_prompt_from_instruction(instruction: str) -> str: # """Given an instruction, generate a fictitious prompt.""" # response = openai.ChatCompletion.create( # model="gpt-3.5-turbo-0613", # temperature=0, # messages=[ # { # "role": "system", # "content": system_prompt, # }, # we pick an example topic (friends talking about a vacation) so that GPT does not refuse or ask clarifying questions # {"role": "user", "content": instruction}, # ], # ) # fictitious_prompt = response["choices"][0]["message"]["content"] # Submit function to get GPT-3 response def submit(): prompt = generate_emergency_prompt(**st.session_state) output = openai.ChatCompletion.create( model='gpt-3.5-turbo', temperature=0, messages=[ { "role": "system", "content": system_prompt, }, {"role": "user", "content": prompt}, ], ) st.session_state['output'] = output["choices"][0]["message"]["content"] # UI Code st.title('Emergency Advisor') st.subheader('Let us prepare your emergency inventory list!') # Initialization if 'output' not in st.session_state: st.session_state['output'] = '--' with st.form(key='emergency_form'): c1, c2, c3 = st.columns(3) with c1: st.subheader('Basic Details') st.text_input('Location', value='New York', key='location') st.selectbox('Type of Emergency', ('Wildfire', 'Flood', 'Earthquake', 'Power Outage', 'Tornado', 'Other'), key='type_of_emergency') st.number_input('Number of People', value=1, min_value=1, key='num_people') with c2: st.subheader('Specific Needs') st.radio('Pets', ['Yes', 'No'], key='pets') st.text_area('Special Needs (e.g., medications, disabilities)', height=100, key='special_needs') with c3: st.subheader('Duration & Notes') st.selectbox('Anticipated Duration', ('24 hours', '3 days', '1 week', 'More than a week'), key='duration') st.text_area('Additional Notes', height=100, value='I have a toddler.', key='additional_notes') st.form_submit_button('Submit', on_click=submit) st.subheader('Emergency Inventory List') st.write(st.session_state.output)
[ "\nThe task is to prepare an emergency inventory list.\n\n Use Bold Headings:\n\n Start with a main title such as \"Emergency Inventory List\" and make it bold to distinguish it from the rest of the content.\n\n Use ** on both sides of the title to make it bold in Markdown.\n Example: **Emergency Inventory List**:\n \n Organize by Categories:\n\n Group related items into categories. This helps in quickly locating specific items.\n \n Examples of categories include \"Water\", \"Food\", \"Tools & Equipment\", \"Health & Safety\", and so on.\n \n Use Bullet Points:\n\n For each item or instruction, use a bullet point.\n\n In Markdown, you can use a hyphen - followed by a space to create a bullet point.\n\n Sub-categories or Sub-points:\n\n If an item can be further broken down into specific details or if it has multiple sub-items, use sub-bullet points.\n\n Indent these sub-bullet points to differentiate them from main points.\n\n In Markdown, this can be achieved by using a space or tab before the -.\n \n Consistent Spacing:\n\n Use consistent spacing between categories and items to make the list look organized.\n \n In Markdown, you can simply hit \"Enter\" twice to create a space between lines.\n \n Highlight Important Information:\n\n For essential items or notes, you can use bold or italics to highlight them.\n\n In Markdown:\n Bold: **text**\n Italics: *text*\n \n Clear Descriptions:\n\n For items that might be ambiguous, provide a short description.\n \n Example: Instead of just \"Water\", use \"Water: 6 gallons (1 gallon per person per day)\" to provide clarity.\n \n Avoid Long Sentences:\n\n If a point seems too lengthy, break it down into multiple sub-points to make it more readable.\n \n Example: Instead of combining \"First aid kit and pet first aid kit\", they were separated into two different bullet points.\n\n\n Here are some examples of emergency inventory lists:\n\nEXAMPLE 1:\n Prepare an emergency inventory list for Miami based on the following information:\n\n * Type of Emergency: Flood\n * Number of People: 1\n * Pets: No\n * Special Needs: Medication for diabetes\n * Anticipated Duration: 1 week\n * Additional Notes: I live near the coast.\n\n Response:\n Emergency Inventory List:\n\n * Water: 7 gallons (1 gallon per person per day)\n * Non-perishable food: 7-day supply (canned goods, granola bars, etc.)\n * Manual can opener\n * Flashlights with extra batteries\n * Battery-powered or hand-crank radio\n * First aid kit with extra diabetes medication and glucose meter\n * Whistle to signal for help\n * Insect repellent and sunscreen\n * Waterproof boots and rain gear\n * Multi-tool or knife\n * Important documents in a waterproof container (ID, bank account records, medication list, etc.)\n * Cash in small denominations\n * Local maps and evacuation routes\n * Life jacket\n * Fully charged backup power sources for phones\n\nEXAMPLE 2:\n Prepare an emergency inventory list for New York based on the following information:\n\n * Type of Emergency: Power Outage\n * Number of People: 2\n * Pets: No\n * Special Needs: None\n * Anticipated Duration: 24 hours\n * Additional Notes: Winter season.\n\n Response:\n\n Emergency Inventory List:\n \n * Water: 2 gallons (1 gallon per person per day)\n * Non-perishable food: 1-day supply (canned goods, granola bars, etc.)\n * Manual can opener\n * Flashlights with extra batteries\n * Battery-powered or hand-crank radio\n * First aid kit\n * Warm clothing and blankets\n * Multi-tool or knife\n * Important documents (ID, bank account records, etc.)\n * Cash in small denominations\n * Fully charged backup power sources for phones and heaters\n\n" ]
2024-01-10
StephanFWard/AutoAI-With-ChatGPT4
autogpts~autogpt~autogpt~app~configurator.py
"""Configurator module.""" from __future__ import annotations import logging from pathlib import Path from typing import TYPE_CHECKING, Literal, Optional import click from colorama import Back, Fore, Style from autogpt import utils from autogpt.config import Config from autogpt.config.config import GPT_3_MODEL, GPT_4_MODEL from autogpt.llm.api_manager import ApiManager from autogpt.logs.config import LogFormatName from autogpt.logs.helpers import print_attribute, request_user_double_check from autogpt.memory.vector import get_supported_memory_backends if TYPE_CHECKING: from autogpt.core.resource.model_providers.openai import OpenAICredentials logger = logging.getLogger(__name__) def apply_overrides_to_config( config: Config, continuous: bool = False, continuous_limit: Optional[int] = None, ai_settings_file: Optional[Path] = None, prompt_settings_file: Optional[Path] = None, skip_reprompt: bool = False, speak: bool = False, debug: bool = False, log_level: Optional[str] = None, log_format: Optional[str] = None, log_file_format: Optional[str] = None, gpt3only: bool = False, gpt4only: bool = False, memory_type: Optional[str] = None, browser_name: Optional[str] = None, allow_downloads: bool = False, skip_news: bool = False, ) -> None: """Updates the config object with the given arguments. Args: config (Config): The config object to update. continuous (bool): Whether to run in continuous mode. continuous_limit (int): The number of times to run in continuous mode. ai_settings_file (Path): The path to the ai_settings.yaml file. prompt_settings_file (Path): The path to the prompt_settings.yaml file. skip_reprompt (bool): Whether to skip the re-prompting messages on start. speak (bool): Whether to enable speak mode. debug (bool): Whether to enable debug mode. log_level (int): The global log level for the application. log_format (str): The format for the log(s). log_file_format (str): Override the format for the log file. gpt3only (bool): Whether to enable GPT3.5 only mode. gpt4only (bool): Whether to enable GPT4 only mode. memory_type (str): The type of memory backend to use. browser_name (str): The name of the browser to use for scraping the web. allow_downloads (bool): Whether to allow AutoGPT to download files natively. skips_news (bool): Whether to suppress the output of latest news on startup. """ config.continuous_mode = False config.tts_config.speak_mode = False # Set log level if debug: config.logging.level = logging.DEBUG elif log_level and type(_level := logging.getLevelName(log_level.upper())) is int: config.logging.level = _level # Set log format if log_format and log_format in LogFormatName._value2member_map_: config.logging.log_format = LogFormatName(log_format) if log_file_format and log_file_format in LogFormatName._value2member_map_: config.logging.log_file_format = LogFormatName(log_file_format) if continuous: print_attribute("Continuous Mode", "ENABLED", title_color=Fore.YELLOW) logger.warning( "Continuous mode is not recommended. It is potentially dangerous and may" " cause your AI to run forever or carry out actions you would not usually" " authorise. Use at your own risk.", ) config.continuous_mode = True if continuous_limit: print_attribute("Continuous Limit", continuous_limit) config.continuous_limit = continuous_limit # Check if continuous limit is used without continuous mode if continuous_limit and not continuous: raise click.UsageError("--continuous-limit can only be used with --continuous") if speak: print_attribute("Speak Mode", "ENABLED") config.tts_config.speak_mode = True # Set the default LLM models if gpt3only: print_attribute("GPT3.5 Only Mode", "ENABLED") # --gpt3only should always use gpt-3.5-turbo, despite user's FAST_LLM config config.fast_llm = GPT_3_MODEL config.smart_llm = GPT_3_MODEL elif ( gpt4only and check_model( GPT_4_MODEL, model_type="smart_llm", api_credentials=config.openai_credentials, ) == GPT_4_MODEL ): print_attribute("GPT4 Only Mode", "ENABLED") # --gpt4only should always use gpt-4, despite user's SMART_LLM config config.fast_llm = GPT_4_MODEL config.smart_llm = GPT_4_MODEL else: config.fast_llm = check_model( config.fast_llm, "fast_llm", api_credentials=config.openai_credentials ) config.smart_llm = check_model( config.smart_llm, "smart_llm", api_credentials=config.openai_credentials ) if memory_type: supported_memory = get_supported_memory_backends() chosen = memory_type if chosen not in supported_memory: logger.warning( extra={ "title": "ONLY THE FOLLOWING MEMORY BACKENDS ARE SUPPORTED:", "title_color": Fore.RED, }, msg=f"{supported_memory}", ) print_attribute( "Defaulting to", config.memory_backend, title_color=Fore.YELLOW ) else: config.memory_backend = chosen if skip_reprompt: print_attribute("Skip Re-prompt", "ENABLED") config.skip_reprompt = True if ai_settings_file: file = ai_settings_file # Validate file (validated, message) = utils.validate_yaml_file(file) if not validated: logger.fatal(extra={"title": "FAILED FILE VALIDATION:"}, msg=message) request_user_double_check() exit(1) print_attribute("Using AI Settings File", file) config.ai_settings_file = config.project_root / file config.skip_reprompt = True if prompt_settings_file: file = prompt_settings_file # Validate file (validated, message) = utils.validate_yaml_file(file) if not validated: logger.fatal(extra={"title": "FAILED FILE VALIDATION:"}, msg=message) request_user_double_check() exit(1) print_attribute("Using Prompt Settings File", file) config.prompt_settings_file = config.project_root / file if browser_name: config.selenium_web_browser = browser_name if allow_downloads: print_attribute("Native Downloading", "ENABLED") logger.warning( msg=f"{Back.LIGHTYELLOW_EX}" "AutoGPT will now be able to download and save files to your machine." f"{Back.RESET}" " It is recommended that you monitor any files it downloads carefully.", ) logger.warning( msg=f"{Back.RED + Style.BRIGHT}" "NEVER OPEN FILES YOU AREN'T SURE OF!" f"{Style.RESET_ALL}", ) config.allow_downloads = True if skip_news: config.skip_news = True def check_model( model_name: str, model_type: Literal["smart_llm", "fast_llm"], api_credentials: OpenAICredentials, ) -> str: """Check if model is available for use. If not, return gpt-3.5-turbo.""" api_manager = ApiManager() models = api_manager.get_models(**api_credentials.get_api_access_kwargs(model_name)) if any(model_name in m["id"] for m in models): return model_name logger.warning( f"You don't have access to {model_name}. Setting {model_type} to gpt-3.5-turbo." ) return "gpt-3.5-turbo"
[]
2024-01-10
StephanFWard/AutoAI-With-ChatGPT4
autogpts~autogpt~autogpt~json_utils~utilities.py
"""Utilities for the json_fixes package.""" import ast import logging import re from typing import Any logger = logging.getLogger(__name__) def extract_dict_from_response(response_content: str) -> dict[str, Any]: # Sometimes the response includes the JSON in a code block with ``` pattern = r"```([\s\S]*?)```" match = re.search(pattern, response_content) if match: response_content = match.group(1).strip() # Remove language names in code blocks response_content = response_content.lstrip("json") else: # The string may contain JSON. json_pattern = r"{.*}" match = re.search(json_pattern, response_content) if match: response_content = match.group() # Response content comes from OpenAI as a Python `str(content_dict)`. # `literal_eval` does the reverse of `str(dict)`. try: return ast.literal_eval(response_content) except BaseException as e: logger.info(f"Error parsing JSON response with literal_eval {e}") logger.debug(f"Invalid JSON received in response:\n{response_content}") # TODO: How to raise an error here without causing the program to exit? return {}
[]
2024-01-10
hinczhang/GPT-Translator
src~web~resource~gptbot.py
from flask_restful import Resource from flask import Response, request, send_file import json from configparser import ConfigParser import jwt import os import time import openai # opt conn = ConfigParser() conn.read("./conf.ini") # token config headers = { "alg": "HS256", "typ": "JWT" } salt = conn.get('key','token_key') gpt_key = conn.get('gpt','api_key') organization = conn.get('gpt','organization') openai.api_key = gpt_key openai.organization = organization messages = [{"role": "system", "content": "You are a helpful assistant to answer and chat."}] def validate_user_token(token, username): try: info = jwt.decode(jwt = token, key = salt, verify=True, algorithms='HS256') if username == info["username"]: return True else: return False except Exception as e: print(repr(e)) return False class GDPBot(Resource): def get(self): pass def post(self): # form = eval(str(request.data, encoding = "utf-8")) form = request.form res = None if form["request"] == "chat": question = form['question'] messages.append({"role": "user", "content": question}) response = openai.ChatCompletion.create( model = "gpt-3.5-turbo", messages = messages) reply = response["choices"][0]["message"]["content"] messages.append({"role": "system", "content": reply}) print("\n" + reply + "\n") res = Response(response = json.dumps({'status': 0, 'msg': reply}), status = 200, mimetype="application/json") elif form["request"] == "reset": messages.clear() messages.append({"role": "system", "content": "You are a helpful assistant to answer and chat."}) res = Response(response = json.dumps({'status': 0, 'msg': 'Reset successfully!'}), status = 200, mimetype="application/json") ''' if not validate_user_token(form['token'], username): res = Response(response = json.dumps({'status': 2, 'msg': 'Invalid operations! Will come back to the login page.'}), status = 200, mimetype="application/json") else: exp_time = int(time.time() + 60*60*24*7) payload = {"username": username, "path": form['path'], "exp": exp_time} token = jwt.encode(payload=payload, key=salt, algorithm='HS256', headers=headers) res = Response(response = json.dumps({'status': 0, 'msg': 'Share successfully!', 'token': token}), status = 200, mimetype="application/json") ''' return res
[ "You are a helpful assistant to answer and chat." ]
2024-01-10
Brian-Konr/detectiveinferno
AI_processor.py
import openai import json from RAG import add_database, search_docs from summary import summary_processor import os import shutil import ast from prompt_function import rich_character, character, rich_place, summary from langchain.vectorstores import Chroma from langchain.embeddings.sentence_transformer import SentenceTransformerEmbeddings #### global variable m_list = [[],[],[],[]] demo_story_count=1 demo_mode = True #### global DB db_0 = Chroma() ## story DB db_1 = Chroma() ## suspect 1 DB db_2 = Chroma() ## suspect 2 DB db_3 = Chroma() ## suspect 3 DB db_4 = Chroma() ## scene DB db_len = [1,1,1,1,1] embedding_function = SentenceTransformerEmbeddings(model_name="sentence-transformers/paraphrase-multilingual-mpnet-base-v2") def get_current_db(): global db_0, db_1, db_2, db_3, db_4 global db_len #### check story DB if(os.path.exists('./db/story')): db_0 = Chroma(persist_directory='./db/story', embedding_function=embedding_function) else: print("story DB has some problem") print("Recreate story DB") db_0, db_len[0] = add_database("./story_background/story.txt", './db/story', 1) suspect_db = 0 #### check suspect DB if(os.path.exists('./db/suspect_1')): db_1 = Chroma(persist_directory='./db/suspect_1', embedding_function=embedding_function) suspect_db += 1 if(os.path.exists('./db/suspect_2')): db_2 = Chroma(persist_directory='./db/suspect_2', embedding_function=embedding_function) suspect_db += 1 if(os.path.exists('./db/suspect_3')): db_3 = Chroma(persist_directory='./db/suspect_3', embedding_function=embedding_function) suspect_db += 1 if(suspect_db != 3): print("suspect DB has some problem") print("Recreate suspect DB") db_len = rich_character_info() #### check scene DB if(os.path.exists('./db/scene')): db_4 = Chroma(persist_directory='./db/scene', embedding_function=embedding_function) else: print("scene DB has some problem") print("Recreate scene DB") rich_scene_info() db_len = [len(db_0.get()['ids']),len(db_1.get()['ids']),len(db_2.get()['ids']),len(db_3.get()['ids']),len(db_4.get()['ids'])] print("Get current db") print("DB len:") print(db_len) print("Please make sure every number in DB len is bigger than 1 (not including 1).") def reset_db(): global db_0, db_1, db_2, db_3, db_4 global db_len db_0 = Chroma() ## story DB db_1 = Chroma() ## suspect 1 DB db_2 = Chroma() ## suspect 2 DB db_3 = Chroma() ## suspect 3 DB db_4 = Chroma() ## scene DB db_len = [1,1,1,1,1] ### delete all file in db dirPath = "./db" try: shutil.rmtree(dirPath) except OSError as e: print(f"Error:{ e.strerror}") print("Reset db") print("DB len:") print(db_len) #### openai processor def GPT_processor(length,system_message, user_message, function_description, temperature): response = openai.ChatCompletion.create( model="gpt-3.5-turbo", max_tokens=length, temperature=temperature, messages=[ {"role": "system", "content": system_message}, {"role": "user", "content": user_message} ], functions=function_description, function_call = {"name":function_description[0]['name']} ) return response ###### game creator def story_creater(): # conversation_count = 0 m_list = [[],[],[],[]] #### load start prompt f = open('./story_background/start_prompt.txt',encoding="utf-8") start_prompt = f.read() with open('./story_background/story_background_description.json',encoding="utf-8") as file: story_background_description = [json.load(file)] print("start process AI api") story_response = GPT_processor(2000,start_prompt, "我想要玩一個偵探尋找殺人犯的遊戲,你可以幫我設計一個遊戲的故事內容嗎?", story_background_description, 0.5) # store the story dictionary result to story.json f2 = open("./story_background/story.txt", "w",encoding="utf-8") f2.write(story_response.choices[0].message.function_call.arguments) f2.close() story_object = json.dumps(story_response.choices[0].message.function_call.arguments) # print(story_object.encode('ascii').decode('unicode-escape')) with open("./story_background/story.json", "w") as outfile: outfile.write(story_object) #### add story to DB print("Add story to DB") global db_0, db_len db_0, db_len[0] = add_database("./story_background/story.txt", './db/story', 1) print("DB status") print(db_len) #### rich character info print("rich character info") db_len = rich_character_info() print("DB status") print(db_len) #### rich scene info print("rich scene info") rich_scene_info() print("DB status") print(db_len) return story_response.choices[0].message.function_call.arguments def rich_character_info(): f = open("./story_background/story.json") story_json = json.load(f) suspects_list = json.loads(story_json).get("嫌疑人") #### load start prompt with open('./suspect_file/rich_suspect_prompt.txt', encoding="utf-8") as f: rich_prompt = f.read() with open('./story_background/story.txt', encoding="utf-8") as f: story = f.read() for i in range(3): name = suspects_list[i]["姓名"] rich_character_response = rich_character(rich_prompt, story, name, 1300, 0.5) with open(f'./suspect_file/suspect_{i}/rich_suspect_info.txt', 'w', encoding="utf-8") as f: f.write(rich_character_response) if(i == 0): global db_1 db_1, db_len[1] = add_database(f'./suspect_file/suspect_{i}/rich_suspect_info.txt', './db/suspect_1', 1) elif(i == 1): global db_2 db_2, db_len[2] = add_database(f'./suspect_file/suspect_{i}/rich_suspect_info.txt', './db/suspect_2', 1) else: global db_3 db_3, db_len[3] = add_database(f'./suspect_file/suspect_{i}/rich_suspect_info.txt', './db/suspect_3', 1) return db_len ###### suspect creater def suspect_creater(id,target,action): global db_1, db_2, db_3 global db_len #### load suspect prompt f = open('./suspect_file/suspect_prompt.txt',encoding="utf-8") suspect_prompt = f.read() keyword = action + "," + target #### load story txt with open('./story_background/story.txt',encoding="utf-8") as file: story = file.read() suspect_db_1 = Chroma(persist_directory=f'./db/suspect_1', embedding_function=embedding_function) suspect_db_2 = Chroma(persist_directory=f'./db/suspect_2', embedding_function=embedding_function) suspect_db_3 = Chroma(persist_directory=f'./db/suspect_3', embedding_function=embedding_function) if(id == 0): suspect_summary = search_docs(keyword, suspect_db_1, 5) elif(id == 1): suspect_summary = search_docs(keyword, suspect_db_2, 5) else: suspect_summary = search_docs(keyword, suspect_db_3, 5) user_prompt = action system_prompt = suspect_prompt + "你需要假扮嫌疑人是" + target + "提供的資訊如下:" + suspect_summary + "\n" + story with open('./suspect_file/suspect_description.json',encoding="utf-8") as file: suspect_description = [json.load(file)] suspect_response = GPT_processor(200,system_message=system_prompt, user_message=user_prompt, function_description=suspect_description, temperature=0.5) # suspect_object = json.dumps(suspect_response.choices[0].message.function_call.arguments) #### store to list conversation_information = { "m_id": len(m_list[id]), "sender": 1, "message":action } m_list[id].append(conversation_information) conversation_information = { "m_id": len(m_list[id]), "sender": 0, "message":json.loads(suspect_response.choices[0].message.function_call.arguments).get("回覆") } m_list[id].append(conversation_information) ### write to conversation file f = open(f"./suspect_file/suspect_{id}/conversation.txt", "a",encoding="utf-8") f.write(f"玩家:{action}\n") f.write( f"{target}:{ json.loads(suspect_response.choices[0].message.function_call.arguments).get('回覆') }\n" ) f.close() ### save to DB with open(f"./suspect_file/suspect_{id}/tmp_conversation.txt", "w" ,encoding="utf-8") as file: file.write(f"玩家:{action}\n") file.write( f"{target}:{ json.loads(suspect_response.choices[0].message.function_call.arguments).get('回覆') }\n" ) if(id == 0): db_1, d1_len = add_database(f"./suspect_file/suspect_{id}/tmp_conversation.txt", './db/suspect_1', db_len[1]) db_len[1] += d1_len elif(id == 1): db_2, d2_len = add_database(f"./suspect_file/suspect_{id}/tmp_conversation.txt", './db/suspect_2', db_len[2]) db_len[2] += d2_len else: db_3, d3_len = add_database(f"./suspect_file/suspect_{id}/tmp_conversation.txt", './db/suspect_3', db_len[3]) db_len[3] += d3_len open(f"./suspect_file/suspect_{id}/tmp_conversation.txt", 'w').close() # summary_processor() print(json.loads(suspect_response.choices[0].message.function_call.arguments).get("回覆")) return json.loads(suspect_response.choices[0].message.function_call.arguments).get("回覆") def rich_scene_info(): with open('./scene_file/rich_scene_prompt.txt', encoding="utf-8") as f: rich_prompt = f.read() with open('./story_background/story.txt', encoding="utf-8") as f: story = f.read() rich_scene = rich_place(rich_prompt, story, 1300, 0.8) with open('./scene_file/rich_scene_info.txt', 'w', encoding="utf-8") as f: f.write(rich_scene) global db_4, db_len db_4, db_len[4] = add_database(f"./scene_file/rich_scene_info.txt", './db/scene', 1) ###### scene_creater def scene_creater(action): global db_4, db_len #### load start prompt f = open('./scene_file/scene_prompt.txt',encoding="utf-8") scene_prompt = f.read() keyword = "請根據案發現場的狀況,回答:" + action #### load story txt with open('./story_background/story.txt',encoding="utf-8") as file: story = file.read() scene_db = Chroma(persist_directory='./db/scene', embedding_function=embedding_function) scene_info = search_docs(keyword, scene_db, 8) system_prompt = scene_prompt + story + "\n" + scene_info user_prompt = action with open('./scene_file/scene_description.json',encoding="utf-8") as file: scene_description = [json.load(file)] scene_response = GPT_processor(400,system_message=system_prompt, user_message=user_prompt, function_description=scene_description, temperature=0.9) #### store to list conversation_information = { "m_id": len(m_list[3]), "sender": 1, "message":action } m_list[3].append(conversation_information) conversation_information = { "m_id": len(m_list[3]), "sender": 0, "message":json.loads(scene_response.choices[0].message.function_call.arguments).get("回覆") } m_list[3].append(conversation_information) # scene_object = json.dumps(scene_response.choices[0].message.function_call.arguments) f = open("./scene_file/conversation.txt", "a",encoding="utf-8") f.write(f"玩家:{action}\n") f.write( f"場景:{ json.loads(scene_response.choices[0].message.function_call.arguments).get('回覆') }\n" ) print(json.loads(scene_response.choices[0].message.function_call.arguments).get("回覆")) f.close() #### save to DB with open(f"./scene_file/tmp_conversation.txt", "w" ,encoding="utf-8") as file: file.write(f"玩家:{action}\n") file.write( f"場景:{ json.loads(scene_response.choices[0].message.function_call.arguments).get('回覆') }\n" ) print("before add scene to DB") print(db_len) db_4, d4_len = add_database(f"./scene_file/tmp_conversation.txt", './db/scene', db_len[4]) db_len[4] += d4_len print("after add scene to DB") print(db_len) open(f"./scene_file/tmp_conversation.txt", 'w').close() return json.loads(scene_response.choices[0].message.function_call.arguments).get("回覆") # return scene_response.choices[0].message.content ###### final_answer_creater def final_answer_creater(id, motivation, action): #### load start prompt f = open('./final_answer_file/final_answer_prompt.txt',encoding="utf-8") fa_prompt = f.read() #### load story txt with open('./story_background/story.txt',encoding="utf-8") as file: story = file.read() f = open("./story_background/story.json") story_json = json.load(f) suspects_list = json.loads(story_json).get("嫌疑人") system_prompt = fa_prompt + '\n' + story user_prompt = "我猜測兇手是" + suspects_list[id]["姓名"] + ",他的動機為" + motivation + ",他的犯案手法為" + action with open('./final_answer_file/final_answer_description.json',encoding="utf-8") as file: final_answer_description = [json.load(file)] final_answer_response = GPT_processor(800,system_message=system_prompt,user_message=user_prompt, function_description=final_answer_description, temperature=0.8) print(json.loads(final_answer_response.choices[0].message.function_call.arguments).get("真相")) return json.loads(final_answer_response.choices[0].message.function_call.arguments).get("真相") #### hint creater def hint_creater(): #### load start prompt f = open('./story_background/hint_prompt.txt',encoding="utf-8") hint_prompt = f.read() #### load story txt with open('./story_background/story.txt',encoding="utf-8") as file: story = file.read() system_prompt = hint_prompt + '\n' + story user_prompt = "請給我一個提示。" with open('./story_background/hint_description.json',encoding="utf-8") as file: hint_description = [json.load(file)] hint_response = GPT_processor(200,system_prompt, user_prompt, hint_description, 0.6) f = open(f"./story_background/hints_history.txt", "a",encoding="utf-8") f.write(json.loads(hint_response.choices[0].message.function_call.arguments).get("回覆")) f.close() print( json.loads(hint_response.choices[0].message.function_call.arguments).get("回覆") ) return json.loads(hint_response.choices[0].message.function_call.arguments).get("回覆") # def message_creater(id): # file = [] # if id < 3: # file = open(f"./suspect_file/suspect_{id}/conversation.txt",encoding="utf-8") # else: # file = open(f"./scene_file/conversation.txt",encoding="utf-8") # conversation_list = file.readlines() #list # for lines in conversation_list: # .function_call.arguments).get("place") # print(story_response.choices[0].message.content) # story_background = story_response.choices[0].message.content ##### create information dictionary # dictionary_response = openai.ChatCompletion.create( # model="gpt-3.5-turbo", # max_tokens=2000, # temperature=0.5, # messages=[ # {"role": "user", "content": story_response.choices[0].message.content}, # {"role": "user", "content": "請幫我將上述偵探小說內容根據每個角色的人格特質和線索做出一個dictionary"}, # # {"role": "assistant", "content": "原來你是楊鈞安呀"}, # # {"role": "user", "content": "請問我叫什麼名字?"} # ] # ) # # store the dictionary to data_dictionary # print(dictionary_response.choices[0].message.content) # with open('data_dictionary.txt', 'w') as convert_file: # convert_file.write(json.dumps(dictionary_response.choices[0].message.content)) # ##### 接收前端回傳資料 # # from flask import Flask, request # # app = Flask(__name__) # # @app.route('/receive_message', methods=['POST']) # # def receive_message(): # # reply = request.get_json() # # # 处理接收到的消息 # # return 'Message received successfully' # ##### game loop # while True: # action = input("action:") # f = open('data_dictionary.txt',encoding="utf-8") # now_dictionary = f.read() # game_response = openai.ChatCompletion.create( # model="gpt-3.5-turbo", # max_tokens=200, # temperature=0.5, # messages=[ # {"role": "user", "content": story_background}, # {"role": "user", "content": "請根據以下關係資料和上述故事內容,進行本偵探遊戲,請勿直接公布兇手身分。"+now_dictionary+" 若是資料中無法確定的資訊,請你幫我生成有邏輯和不矛盾的內容。" }, # {"role": "user", "content": action}, # # {"role": "assistant", "content": "原來你是楊鈞安呀"}, # # {"role": "user", "content": "請問我叫什麼名字?"} # ] # ) # # store the dictionary to data_dictionary # # print(dictionary_response.choices[0].message.content) # # with open('data_dictionary.txt', 'w') as convert_file: # # convert_file.write(json.dumps(dictionary_response.choices[0].message.content)) # print(f"response: {game_response.choices[0].message.content}") # ##### dictionary reset # dictionary_response = openai.ChatCompletion.create( # model="gpt-3.5-turbo", # max_tokens=200, # temperature=0.5, # messages=[ # {"role": "user", "content": story_background}, # {"role": "user", "content": game_response.choices[0].message.content + " 請幫我將上述內容根據每個角色的人格特質和線索做出一個dictionary,並和以下dictionary合併成一個新的關係dictionary"+ now_dictionary }, # # {"role": "user", "content": action}, # # {"role": "assistant", "content": "原來你是楊鈞安呀"}, # # {"role": "user", "content": "請問我叫什麼名字?"} # ] # ) # # store the dictionary to data_dictionary # print(dictionary_response.choices[0].message.content) # with open('data_dictionary.txt', 'w') as convert_file: # convert_file.write(json.dumps(dictionary_response.choices[0].message.content))
[ "請給我一個提示。", "PLACEHOLDERPLACEHOLDER\nPLACEHOLDER", "PLACEHOLDER\nPLACEHOLDER", "PLACEHOLDER你需要假扮嫌疑人是PLACEHOLDER提供的資訊如下:PLACEHOLDER\nPLACEHOLDER" ]
2024-01-10
Brian-Konr/detectiveinferno
prompt_function.py
import openai import os from dotenv import load_dotenv load_dotenv() openai.api_key = os.getenv("OPENAI_API_KEY") MODEL = "gpt-3.5-turbo" def GPT_response(system_message, user_message, max_tokens=1300, temperature=0.8): response = openai.ChatCompletion.create( model=MODEL, max_tokens=max_tokens, temperature= temperature, messages=[{"role": "system", "content": system_message}, {"role": "user", "content": user_message} ], ) return response def rich_character(prompt, story, name, max_tokens=1300, temperature=0.8): system_prompt = prompt + story user_prompt = "請豐富" + name + "的個人資訊。" response = GPT_response(system_prompt, user_prompt, max_tokens=max_tokens, temperature=temperature) # print(response.choices[0]['message']['content']) return response.choices[0]['message']['content'] def character(name, prompt, story, character_info, query, max_tokens=1300, temperature=0.8): character_name = "現在你需要假扮的嫌疑人為" + name + "我將給你故事內容和嫌疑人的資料" prompt = prompt + character_name + story + character_info response = GPT_response(prompt, query, max_tokens=max_tokens, temperature=temperature) # print(response.choices[0]['message']['content']) return response.choices[0]['message']['content'] def rich_place(prompt, story, max_tokens=1300, temperature=0.8): system_prompt = prompt user_prompt = "我將給你一段偵探故事,請你幫我豐富案發現場的資訊。" + story response = GPT_response(system_prompt, user_prompt, max_tokens=max_tokens, temperature=temperature) # print(response.choices[0]['message']['content']) return response.choices[0]['message']['content'] def summary(prompt, story, max_tokens=1300, temperature=0.8): system_prompt = prompt user_prompt = "我將給你一段偵探故事,請你幫我進行總結。" + story response = GPT_response(system_prompt, user_prompt, max_tokens=max_tokens, temperature=temperature) # print(response.choices[0]['message']['content']) return response.choices[0]['message']['content']
[ "我將給你一段偵探故事,請你幫我進行總結。PLACEHOLDER", "PLACEHOLDERPLACEHOLDER", "我將給你一段偵探故事,請你幫我豐富案發現場的資訊。PLACEHOLDER", "PLACEHOLDERPLACEHOLDERPLACEHOLDERPLACEHOLDER", "請豐富PLACEHOLDER的個人資訊。" ]
2024-01-10
john-d-murphy/SummarizeAndCategorize
summarize_and_categorize.py
#! /usr/bin/python import argparse import logging import openai import time from bs4 import BeautifulSoup from bs4.element import Comment from urllib.request import Request, urlopen ### Constants DEFAULT_URL = "https://www.yahoo.com" #### Logger log = logging.getLogger("root") log_format = "[%(asctime)s - %(module)25s:%(funcName)-25s] %(message)s" logging.basicConfig(format=log_format) # log.setLevel(logging.DEBUG) def main(): ### Parse and Display Arguments arguments = parse_arguments() ### Get Webpage Text text = read_url(arguments.url) ### Print Open AI Summary get_open_ai_summary(arguments.url, text, arguments.key) def parse_arguments(): ### Get Arguments parser = argparse.ArgumentParser( formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument("--url", default=DEFAULT_URL, help="URL to parse") parser.add_argument("--key", required=True, help="Open AI API Key") arguments = parser.parse_args() ### Display Arguments log.info("URL - %s" % arguments.url) return arguments def read_url(url): # From: https://medium.com/@raiyanquaium/how-to-web-scrape-using-beautiful-soup-in-python-without-running-into-http-error-403-554875e5abed req = Request(url, headers={"User-Agent": "Mozilla/5.0"}) html = urlopen(req).read() return text_from_html(html) # From: https://stackoverflow.com/questions/1936466/how-to-scrape-only-visible-webpage-text-with-beautifulsoup def tag_visible(element): if element.parent.name in [ "style", "script", "head", "title", "meta", "[document]", ]: return False if isinstance(element, Comment): return False return True # From: https://stackoverflow.com/questions/1936466/how-to-scrape-only-visible-webpage-text-with-beautifulsoup def text_from_html(body): soup = BeautifulSoup(body, "html.parser") texts = soup.findAll(string=True) visible_texts = filter(tag_visible, texts) return " ".join(t.strip() for t in visible_texts) def get_open_ai_summary(url, html, api_key): print("URL: " + url + "\n") openai.api_key = api_key instructions = """You will recieve the content of a webpage, with this content, do the following. 1) Provide a Title For the Content Received, based on the content of the webpage 2) Succinctly summarize content received as an abstract. 3) Extract a list of the top 5 keywords from abstract. Make this a comma separated list. 4) List 3 Melvil Decimal System ids to tag content received with. Just list the ID and Topic. Make this a comma separated list. Example Output would look like this: Title: The Demon Core and the Strange Death of Louis Slotin Abstract: This article recounts the story of Louis Slotin, a physicist working on the Manhattan Project, who died as a result of a criticality accident involving a plutonium core. The article explores the details of the accident, the impact of radiation exposure on Slotin's health, and the safety measures implemented afterward. Keywords: Demon Core, Louis Slotin, criticality accident, plutonium core, radiation exposure Categories: 539.7 - Atomic and Nuclear Physics, 621.48 - Nuclear Engineering, 940.54 - Military History of World War II """ response = openai.ChatCompletion.create( model="gpt-3.5-turbo-16k", messages=[ { "role": "system", "content": instructions, }, { "role": "user", "content": html, }, ], ) response = parse_response(response) print(response) def parse_response(open_ai_response): return open_ai_response["choices"][0]["message"]["content"] if __name__ == "__main__": main()
[ "You will recieve the content of a webpage, with this content, do the following.\n 1) Provide a Title For the Content Received, based on the content of the webpage\n 2) Succinctly summarize content received as an abstract.\n 3) Extract a list of the top 5 keywords from abstract. Make this a comma separated list.\n 4) List 3 Melvil Decimal System ids to tag content received with. Just list the ID and Topic. Make this a comma separated list.\n\n Example Output would look like this:\n\n\nTitle: The Demon Core and the Strange Death of Louis Slotin\n\nAbstract: This article recounts the story of Louis Slotin, a physicist working on the Manhattan Project, who died as a result of a criticality accident involving a plutonium core. The article explores the details of the accident, the impact of radiation exposure on Slotin's health, and the safety measures implemented afterward.\n\nKeywords: Demon Core, Louis Slotin, criticality accident, plutonium core, radiation exposure\n\nCategories: 539.7 - Atomic and Nuclear Physics, 621.48 - Nuclear Engineering, 940.54 - Military History of World War II\n\n " ]
2024-01-10
xiyichen/diffusers
src~diffusers~pipelines~stable_diffusion_xl~pipeline_stable_diffusion_xl.py
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import inspect import os from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from ...image_processor import VaeImageProcessor from ...loaders import FromSingleFileMixin, LoraLoaderMixin, TextualInversionLoaderMixin from ...models import AutoencoderKL, UNet2DConditionModel from ...models.attention_processor import ( AttnProcessor2_0, LoRAAttnProcessor2_0, LoRAXFormersAttnProcessor, XFormersAttnProcessor, ) from ...schedulers import KarrasDiffusionSchedulers from ...utils import ( is_accelerate_available, is_accelerate_version, is_invisible_watermark_available, logging, randn_tensor, replace_example_docstring, ) from ..pipeline_utils import DiffusionPipeline from . import StableDiffusionXLPipelineOutput if is_invisible_watermark_available(): from .watermark import StableDiffusionXLWatermarker logger = logging.get_logger(__name__) # pylint: disable=invalid-name EXAMPLE_DOC_STRING = """ Examples: ```py >>> import torch >>> from diffusers import StableDiffusionXLPipeline >>> pipe = StableDiffusionXLPipeline.from_pretrained( ... "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16 ... ) >>> pipe = pipe.to("cuda") >>> prompt = "a photo of an astronaut riding a horse on mars" >>> image = pipe(prompt).images[0] ``` """ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.rescale_noise_cfg def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0): """ Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4 """ std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True) std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True) # rescale the results from guidance (fixes overexposure) noise_pred_rescaled = noise_cfg * (std_text / std_cfg) # mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg return noise_cfg class StableDiffusionXLPipeline(DiffusionPipeline, FromSingleFileMixin, LoraLoaderMixin): r""" Pipeline for text-to-image generation using Stable Diffusion XL. This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) In addition the pipeline inherits the following loading methods: - *LoRA*: [`StableDiffusionXLPipeline.load_lora_weights`] - *Ckpt*: [`loaders.FromSingleFileMixin.from_single_file`] as well as the following saving methods: - *LoRA*: [`loaders.StableDiffusionXLPipeline.save_lora_weights`] Args: vae ([`AutoencoderKL`]): Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. text_encoder ([`CLIPTextModel`]): Frozen text-encoder. Stable Diffusion XL uses the text portion of [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. text_encoder_2 ([` CLIPTextModelWithProjection`]): Second frozen text-encoder. Stable Diffusion XL uses the text and pool portion of [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection), specifically the [laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k) variant. tokenizer (`CLIPTokenizer`): Tokenizer of class [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). tokenizer_2 (`CLIPTokenizer`): Second Tokenizer of class [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents. scheduler ([`SchedulerMixin`]): A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. force_zeros_for_empty_prompt (`bool`, *optional*, defaults to `"True"`): Whether the negative prompt embeddings shall be forced to always be set to 0. Also see the config of `stabilityai/stable-diffusion-xl-base-1-0`. add_watermarker (`bool`, *optional*): Whether to use the [invisible_watermark library](https://github.com/ShieldMnt/invisible-watermark/) to watermark output images. If not defined, it will default to True if the package is installed, otherwise no watermarker will be used. """ def __init__( self, vae: AutoencoderKL, text_encoder: CLIPTextModel, text_encoder_2: CLIPTextModelWithProjection, tokenizer: CLIPTokenizer, tokenizer_2: CLIPTokenizer, unet: UNet2DConditionModel, scheduler: KarrasDiffusionSchedulers, force_zeros_for_empty_prompt: bool = True, add_watermarker: Optional[bool] = None, ): super().__init__() self.register_modules( vae=vae, text_encoder=text_encoder, text_encoder_2=text_encoder_2, tokenizer=tokenizer, tokenizer_2=tokenizer_2, unet=unet, scheduler=scheduler, ) self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt) self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) self.default_sample_size = self.unet.config.sample_size add_watermarker = add_watermarker if add_watermarker is not None else is_invisible_watermark_available() if add_watermarker: self.watermark = StableDiffusionXLWatermarker() else: self.watermark = None # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_slicing def enable_vae_slicing(self): r""" Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several steps. This is useful to save some memory and allow larger batch sizes. """ self.vae.enable_slicing() # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_slicing def disable_vae_slicing(self): r""" Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to computing decoding in one step. """ self.vae.disable_slicing() # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_tiling def enable_vae_tiling(self): r""" Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow processing larger images. """ self.vae.enable_tiling() # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_tiling def disable_vae_tiling(self): r""" Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to computing decoding in one step. """ self.vae.disable_tiling() def enable_model_cpu_offload(self, gpu_id=0): r""" Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward` method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with `enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`. """ if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"): from accelerate import cpu_offload_with_hook else: raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.") device = torch.device(f"cuda:{gpu_id}") if self.device.type != "cpu": self.to("cpu", silence_dtype_warnings=True) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) model_sequence = ( [self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2] ) model_sequence.extend([self.unet, self.vae]) hook = None for cpu_offloaded_model in model_sequence: _, hook = cpu_offload_with_hook(cpu_offloaded_model, device, prev_module_hook=hook) # We'll offload the last model manually. self.final_offload_hook = hook def encode_prompt( self, prompt: str, prompt_2: Optional[str] = None, device: Optional[torch.device] = None, num_images_per_prompt: int = 1, do_classifier_free_guidance: bool = True, negative_prompt: Optional[str] = None, negative_prompt_2: Optional[str] = None, prompt_embeds: Optional[torch.FloatTensor] = None, negative_prompt_embeds: Optional[torch.FloatTensor] = None, pooled_prompt_embeds: Optional[torch.FloatTensor] = None, negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None, lora_scale: Optional[float] = None, ): r""" Encodes the prompt into text encoder hidden states. Args: prompt (`str` or `List[str]`, *optional*): prompt to be encoded prompt_2 (`str` or `List[str]`, *optional*): The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is used in both text-encoders device: (`torch.device`): torch device num_images_per_prompt (`int`): number of images that should be generated per prompt do_classifier_free_guidance (`bool`): whether to use classifier free guidance or not negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). negative_prompt_2 (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. negative_prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. pooled_prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, pooled text embeddings will be generated from `prompt` input argument. negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt` input argument. lora_scale (`float`, *optional*): A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. """ device = device or self._execution_device # set lora scale so that monkey patched LoRA # function of text encoder can correctly access it if lora_scale is not None and isinstance(self, LoraLoaderMixin): self._lora_scale = lora_scale if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] # Define tokenizers and text encoders tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2] text_encoders = ( [self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2] ) if prompt_embeds is None: prompt_2 = prompt_2 or prompt # textual inversion: procecss multi-vector tokens if necessary prompt_embeds_list = [] prompts = [prompt, prompt_2] for prompt, tokenizer, text_encoder in zip(prompts, tokenizers, text_encoders): if isinstance(self, TextualInversionLoaderMixin): prompt = self.maybe_convert_prompt(prompt, tokenizer) text_inputs = tokenizer( prompt, padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt", ) text_input_ids = text_inputs.input_ids untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( text_input_ids, untruncated_ids ): removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1 : -1]) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f" {tokenizer.model_max_length} tokens: {removed_text}" ) prompt_embeds = text_encoder( text_input_ids.to(device), output_hidden_states=True, ) # We are only ALWAYS interested in the pooled output of the final text encoder pooled_prompt_embeds = prompt_embeds[0] prompt_embeds = prompt_embeds.hidden_states[-2] prompt_embeds_list.append(prompt_embeds) prompt_embeds = torch.concat(prompt_embeds_list, dim=-1) # get unconditional embeddings for classifier free guidance zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt: negative_prompt_embeds = torch.zeros_like(prompt_embeds) negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds) elif do_classifier_free_guidance and negative_prompt_embeds is None: negative_prompt = negative_prompt or "" negative_prompt_2 = negative_prompt_2 or negative_prompt uncond_tokens: List[str] if prompt is not None and type(prompt) is not type(negative_prompt): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" f" {type(prompt)}." ) elif isinstance(negative_prompt, str): uncond_tokens = [negative_prompt, negative_prompt_2] elif batch_size != len(negative_prompt): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" " the batch size of `prompt`." ) else: uncond_tokens = [negative_prompt, negative_prompt_2] negative_prompt_embeds_list = [] for negative_prompt, tokenizer, text_encoder in zip(uncond_tokens, tokenizers, text_encoders): if isinstance(self, TextualInversionLoaderMixin): negative_prompt = self.maybe_convert_prompt(negative_prompt, tokenizer) max_length = prompt_embeds.shape[1] uncond_input = tokenizer( negative_prompt, padding="max_length", max_length=max_length, truncation=True, return_tensors="pt", ) negative_prompt_embeds = text_encoder( uncond_input.input_ids.to(device), output_hidden_states=True, ) # We are only ALWAYS interested in the pooled output of the final text encoder negative_pooled_prompt_embeds = negative_prompt_embeds[0] negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2] negative_prompt_embeds_list.append(negative_prompt_embeds) negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1) prompt_embeds = prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device) bs_embed, seq_len, _ = prompt_embeds.shape # duplicate text embeddings for each generation per prompt, using mps friendly method prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) if do_classifier_free_guidance: # duplicate unconditional embeddings for each generation per prompt, using mps friendly method seq_len = negative_prompt_embeds.shape[1] negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device) negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view( bs_embed * num_images_per_prompt, -1 ) if do_classifier_free_guidance: negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view( bs_embed * num_images_per_prompt, -1 ) return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs def prepare_extra_step_kwargs(self, generator, eta): # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) extra_step_kwargs = {} if accepts_eta: extra_step_kwargs["eta"] = eta # check if the scheduler accepts generator accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) if accepts_generator: extra_step_kwargs["generator"] = generator return extra_step_kwargs def check_inputs( self, prompt, prompt_2, height, width, callback_steps, negative_prompt=None, negative_prompt_2=None, prompt_embeds=None, negative_prompt_embeds=None, pooled_prompt_embeds=None, negative_pooled_prompt_embeds=None, ): if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") if (callback_steps is None) or ( callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) ): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(callback_steps)}." ) if prompt is not None and prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" " only forward one of the two." ) elif prompt_2 is not None and prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to" " only forward one of the two." ) elif prompt is None and prompt_embeds is None: raise ValueError( "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." ) elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)): raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}") if negative_prompt is not None and negative_prompt_embeds is not None: raise ValueError( f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" f" {negative_prompt_embeds}. Please make sure to only forward one of the two." ) elif negative_prompt_2 is not None and negative_prompt_embeds is not None: raise ValueError( f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:" f" {negative_prompt_embeds}. Please make sure to only forward one of the two." ) if prompt_embeds is not None and negative_prompt_embeds is not None: if prompt_embeds.shape != negative_prompt_embeds.shape: raise ValueError( "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" f" {negative_prompt_embeds.shape}." ) if prompt_embeds is not None and pooled_prompt_embeds is None: raise ValueError( "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`." ) if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None: raise ValueError( "If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`." ) # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor) if isinstance(generator, list) and len(generator) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) if latents is None: latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) else: latents = latents.to(device) # scale the initial noise by the standard deviation required by the scheduler latents = latents * self.scheduler.init_noise_sigma return latents def _get_add_time_ids(self, original_size, crops_coords_top_left, target_size, dtype): add_time_ids = list(original_size + crops_coords_top_left + target_size) passed_add_embed_dim = ( self.unet.config.addition_time_embed_dim * len(add_time_ids) + self.text_encoder_2.config.projection_dim ) expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features if expected_add_embed_dim != passed_add_embed_dim: raise ValueError( f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`." ) add_time_ids = torch.tensor([add_time_ids], dtype=dtype) return add_time_ids # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae def upcast_vae(self): dtype = self.vae.dtype self.vae.to(dtype=torch.float32) use_torch_2_0_or_xformers = isinstance( self.vae.decoder.mid_block.attentions[0].processor, ( AttnProcessor2_0, XFormersAttnProcessor, LoRAXFormersAttnProcessor, LoRAAttnProcessor2_0, ), ) # if xformers or torch_2_0 is used attention block does not need # to be in float32 which can save lots of memory if use_torch_2_0_or_xformers: self.vae.post_quant_conv.to(dtype) self.vae.decoder.conv_in.to(dtype) self.vae.decoder.mid_block.to(dtype) @torch.no_grad() @replace_example_docstring(EXAMPLE_DOC_STRING) def __call__( self, prompt: Union[str, List[str]] = None, prompt_2: Optional[Union[str, List[str]]] = None, height: Optional[int] = None, width: Optional[int] = None, num_inference_steps: int = 50, denoising_end: Optional[float] = None, guidance_scale: float = 5.0, negative_prompt: Optional[Union[str, List[str]]] = None, negative_prompt_2: Optional[Union[str, List[str]]] = None, num_images_per_prompt: Optional[int] = 1, eta: float = 0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.FloatTensor] = None, prompt_embeds: Optional[torch.FloatTensor] = None, negative_prompt_embeds: Optional[torch.FloatTensor] = None, pooled_prompt_embeds: Optional[torch.FloatTensor] = None, negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None, output_type: Optional[str] = "pil", return_dict: bool = True, callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, callback_steps: int = 1, cross_attention_kwargs: Optional[Dict[str, Any]] = None, guidance_rescale: float = 0.0, original_size: Optional[Tuple[int, int]] = None, crops_coords_top_left: Tuple[int, int] = (0, 0), target_size: Optional[Tuple[int, int]] = None, negative_original_size: Optional[Tuple[int, int]] = None, negative_crops_coords_top_left: Tuple[int, int] = (0, 0), negative_target_size: Optional[Tuple[int, int]] = None, ): r""" Function invoked when calling the pipeline for generation. Args: prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. instead. prompt_2 (`str` or `List[str]`, *optional*): The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is used in both text-encoders height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): The height in pixels of the generated image. width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): The width in pixels of the generated image. num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. denoising_end (`float`, *optional*): When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be completed before it is intentionally prematurely terminated. As a result, the returned sample will still retain a substantial amount of noise as determined by the discrete timesteps selected by the scheduler. The denoising_end parameter should ideally be utilized when this pipeline forms a part of a "Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refining the Image Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output) guidance_scale (`float`, *optional*, defaults to 5.0): Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). `guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, usually at the expense of lower image quality. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). negative_prompt_2 (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. eta (`float`, *optional*, defaults to 0.0): Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to [`schedulers.DDIMScheduler`], will be ignored for others. generator (`torch.Generator` or `List[torch.Generator]`, *optional*): One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.FloatTensor`, *optional*): Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied random `generator`. prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. negative_prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. pooled_prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, pooled text embeddings will be generated from `prompt` input argument. negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt` input argument. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generate image. Choose between [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead of a plain tuple. callback (`Callable`, *optional*): A function that will be called every `callback_steps` steps during inference. The function will be called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. callback_steps (`int`, *optional*, defaults to 1): The frequency at which the `callback` function will be called. If not specified, the callback will be called at every step. cross_attention_kwargs (`dict`, *optional*): A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under `self.processor` in [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). guidance_rescale (`float`, *optional*, defaults to 0.7): Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf) `guidance_scale` is defined as `φ` in equation 16. of [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). Guidance rescale factor should fix overexposure when using zero terminal SNR. original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled. `original_size` defaults to `(width, height)` if not specified. Part of SDXL's micro-conditioning as explained in section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)): `crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position `crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting `crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): For most cases, `target_size` should be set to the desired height and width of the generated image. If not specified it will default to `(width, height)`. Part of SDXL's micro-conditioning as explained in section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). negative_original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): To negatively condition the generation process based on a specific image resolution. Part of SDXL's micro-conditioning as explained in section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208. negative_crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)): To negatively condition the generation process based on a specific crop coordinates. Part of SDXL's micro-conditioning as explained in section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208. negative_target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): To negatively condition the generation process based on a target image resolution. It should be as same as the `target_size` for most cases. Part of SDXL's micro-conditioning as explained in section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208. Examples: Returns: [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] or `tuple`: [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated images. """ # 0. Default height and width to unet height = height or self.default_sample_size * self.vae_scale_factor width = width or self.default_sample_size * self.vae_scale_factor original_size = original_size or (height, width) target_size = target_size or (height, width) # 1. Check inputs. Raise error if not correct self.check_inputs( prompt, prompt_2, height, width, callback_steps, negative_prompt, negative_prompt_2, prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds, ) # 2. Define call parameters if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] device = self._execution_device # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. do_classifier_free_guidance = guidance_scale > 1.0 # 3. Encode input prompt text_encoder_lora_scale = ( cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None ) ( prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds, ) = self.encode_prompt( prompt=prompt, prompt_2=prompt_2, device=device, num_images_per_prompt=num_images_per_prompt, do_classifier_free_guidance=do_classifier_free_guidance, negative_prompt=negative_prompt, negative_prompt_2=negative_prompt_2, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, pooled_prompt_embeds=pooled_prompt_embeds, negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, lora_scale=text_encoder_lora_scale, ) # 4. Prepare timesteps self.scheduler.set_timesteps(num_inference_steps, device=device) timesteps = self.scheduler.timesteps # 5. Prepare latent variables num_channels_latents = self.unet.config.in_channels latents = self.prepare_latents( batch_size * num_images_per_prompt, num_channels_latents, height, width, prompt_embeds.dtype, device, generator, latents, ) # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) # 7. Prepare added time ids & embeddings add_text_embeds = pooled_prompt_embeds add_time_ids = self._get_add_time_ids( original_size, crops_coords_top_left, target_size, dtype=prompt_embeds.dtype ) if negative_original_size is not None and negative_target_size is not None: negative_add_time_ids = self._get_add_time_ids( negative_original_size, negative_crops_coords_top_left, negative_target_size, dtype=prompt_embeds.dtype, ) else: negative_add_time_ids = add_time_ids if do_classifier_free_guidance: prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0) add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0) prompt_embeds = prompt_embeds.to(device) add_text_embeds = add_text_embeds.to(device) add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1) # 8. Denoising loop num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) # 7.1 Apply denoising_end if denoising_end is not None and type(denoising_end) == float and denoising_end > 0 and denoising_end < 1: discrete_timestep_cutoff = int( round( self.scheduler.config.num_train_timesteps - (denoising_end * self.scheduler.config.num_train_timesteps) ) ) num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps))) timesteps = timesteps[:num_inference_steps] with self.progress_bar(total=num_inference_steps) as progress_bar: for i, t in enumerate(timesteps): # expand the latents if we are doing classifier free guidance latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) # predict the noise residual added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids} noise_pred = self.unet( latent_model_input, t, encoder_hidden_states=prompt_embeds, cross_attention_kwargs=cross_attention_kwargs, added_cond_kwargs=added_cond_kwargs, return_dict=False, )[0] # perform guidance if do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) if do_classifier_free_guidance and guidance_rescale > 0.0: # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale) # compute the previous noisy sample x_t -> x_t-1 latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] # call the callback, if provided if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): progress_bar.update() if callback is not None and i % callback_steps == 0: callback(i, t, latents) # make sure the VAE is in float32 mode, as it overflows in float16 if self.vae.dtype == torch.float16 and self.vae.config.force_upcast: self.upcast_vae() latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) if not output_type == "latent": image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] else: image = latents return StableDiffusionXLPipelineOutput(images=image) # apply watermark if available if self.watermark is not None: image = self.watermark.apply_watermark(image) image = self.image_processor.postprocess(image, output_type=output_type) # Offload last model to CPU if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (image,) return StableDiffusionXLPipelineOutput(images=image) # Overrride to properly handle the loading and unloading of the additional text encoder. def load_lora_weights(self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], **kwargs): # We could have accessed the unet config from `lora_state_dict()` too. We pass # it here explicitly to be able to tell that it's coming from an SDXL # pipeline. state_dict, network_alphas = self.lora_state_dict( pretrained_model_name_or_path_or_dict, unet_config=self.unet.config, **kwargs, ) self.load_lora_into_unet(state_dict, network_alphas=network_alphas, unet=self.unet) text_encoder_state_dict = {k: v for k, v in state_dict.items() if "text_encoder." in k} if len(text_encoder_state_dict) > 0: self.load_lora_into_text_encoder( text_encoder_state_dict, network_alphas=network_alphas, text_encoder=self.text_encoder, prefix="text_encoder", lora_scale=self.lora_scale, ) text_encoder_2_state_dict = {k: v for k, v in state_dict.items() if "text_encoder_2." in k} if len(text_encoder_2_state_dict) > 0: self.load_lora_into_text_encoder( text_encoder_2_state_dict, network_alphas=network_alphas, text_encoder=self.text_encoder_2, prefix="text_encoder_2", lora_scale=self.lora_scale, ) @classmethod def save_lora_weights( self, save_directory: Union[str, os.PathLike], unet_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None, text_encoder_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None, text_encoder_2_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None, is_main_process: bool = True, weight_name: str = None, save_function: Callable = None, safe_serialization: bool = True, ): state_dict = {} def pack_weights(layers, prefix): layers_weights = layers.state_dict() if isinstance(layers, torch.nn.Module) else layers layers_state_dict = {f"{prefix}.{module_name}": param for module_name, param in layers_weights.items()} return layers_state_dict state_dict.update(pack_weights(unet_lora_layers, "unet")) if text_encoder_lora_layers and text_encoder_2_lora_layers: state_dict.update(pack_weights(text_encoder_lora_layers, "text_encoder")) state_dict.update(pack_weights(text_encoder_2_lora_layers, "text_encoder_2")) self.write_lora_layers( state_dict=state_dict, save_directory=save_directory, is_main_process=is_main_process, weight_name=weight_name, save_function=save_function, safe_serialization=safe_serialization, ) def _remove_text_encoder_monkey_patch(self): self._remove_text_encoder_monkey_patch_classmethod(self.text_encoder) self._remove_text_encoder_monkey_patch_classmethod(self.text_encoder_2)
[ "[PLACEHOLDER, PLACEHOLDER]", "[]", "False" ]
2024-01-10
flyingbearHK/DB-GPT
pilot~source_embedding~chn_document_splitter.py
import re from typing import List from langchain.text_splitter import CharacterTextSplitter class CHNDocumentSplitter(CharacterTextSplitter): def __init__(self, pdf: bool = False, sentence_size: int = None, **kwargs): super().__init__(**kwargs) self.pdf = pdf self.sentence_size = sentence_size def split_text(self, text: str) -> List[str]: if self.pdf: text = re.sub(r"\n{3,}", r"\n", text) text = re.sub("\s", " ", text) text = re.sub("\n\n", "", text) text = re.sub(r"([;;.!?。!?\?])([^”’])", r"\1\n\2", text) text = re.sub(r'(\.{6})([^"’”」』])', r"\1\n\2", text) text = re.sub(r'(\…{2})([^"’”」』])', r"\1\n\2", text) text = re.sub(r'([;;!?。!?\?]["’”」』]{0,2})([^;;!?,。!?\?])', r"\1\n\2", text) text = text.rstrip() ls = [i for i in text.split("\n") if i] for ele in ls: if len(ele) > self.sentence_size: ele1 = re.sub(r'([,,.]["’”」』]{0,2})([^,,.])', r"\1\n\2", ele) ele1_ls = ele1.split("\n") for ele_ele1 in ele1_ls: if len(ele_ele1) > self.sentence_size: ele_ele2 = re.sub( r'([\n]{1,}| {2,}["’”」』]{0,2})([^\s])', r"\1\n\2", ele_ele1 ) ele2_ls = ele_ele2.split("\n") for ele_ele2 in ele2_ls: if len(ele_ele2) > self.sentence_size: ele_ele3 = re.sub( '( ["’”」』]{0,2})([^ ])', r"\1\n\2", ele_ele2 ) ele2_id = ele2_ls.index(ele_ele2) ele2_ls = ( ele2_ls[:ele2_id] + [i for i in ele_ele3.split("\n") if i] + ele2_ls[ele2_id + 1 :] ) ele_id = ele1_ls.index(ele_ele1) ele1_ls = ( ele1_ls[:ele_id] + [i for i in ele2_ls if i] + ele1_ls[ele_id + 1 :] ) id = ls.index(ele) ls = ls[:id] + [i for i in ele1_ls if i] + ls[id + 1 :] return ls
[]
2024-01-10
flyingbearHK/DB-GPT
pilot~source_embedding~ppt_embedding.py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- from typing import List from langchain.document_loaders import UnstructuredPowerPointLoader from langchain.schema import Document from langchain.text_splitter import SpacyTextSplitter from pilot.configs.config import Config from pilot.source_embedding import SourceEmbedding, register CFG = Config() class PPTEmbedding(SourceEmbedding): """ppt embedding for read ppt document.""" def __init__(self, file_path, vector_store_config): """Initialize with pdf path.""" super().__init__(file_path, vector_store_config) self.file_path = file_path self.vector_store_config = vector_store_config @register def read(self): """Load from ppt path.""" loader = UnstructuredPowerPointLoader(self.file_path) textsplitter = SpacyTextSplitter( pipeline="zh_core_web_sm", chunk_size=CFG.KNOWLEDGE_CHUNK_SIZE, chunk_overlap=200, ) return loader.load_and_split(textsplitter) @register def data_process(self, documents: List[Document]): i = 0 for d in documents: documents[i].page_content = d.page_content.replace("\n", "") i += 1 return documents
[]
2024-01-10
flyingbearHK/DB-GPT
pilot~source_embedding~csv_embedding.py
from typing import Dict, List, Optional from langchain.document_loaders import CSVLoader from langchain.schema import Document from pilot.source_embedding import SourceEmbedding, register class CSVEmbedding(SourceEmbedding): """csv embedding for read csv document.""" def __init__( self, file_path, vector_store_config, embedding_args: Optional[Dict] = None, ): """Initialize with csv path.""" super().__init__(file_path, vector_store_config) self.file_path = file_path self.vector_store_config = vector_store_config self.embedding_args = embedding_args @register def read(self): """Load from csv path.""" loader = CSVLoader(file_path=self.file_path) return loader.load() @register def data_process(self, documents: List[Document]): i = 0 for d in documents: documents[i].page_content = d.page_content.replace("\n", "") i += 1 return documents
[]
2024-01-10
flyingbearHK/DB-GPT
pilot~vector_store~chroma_store.py
import os from langchain.vectorstores import Chroma from pilot.configs.model_config import KNOWLEDGE_UPLOAD_ROOT_PATH from pilot.logs import logger from pilot.vector_store.vector_store_base import VectorStoreBase class ChromaStore(VectorStoreBase): """chroma database""" def __init__(self, ctx: {}) -> None: self.ctx = ctx self.embeddings = ctx["embeddings"] self.persist_dir = os.path.join( KNOWLEDGE_UPLOAD_ROOT_PATH, ctx["vector_store_name"] + ".vectordb" ) self.vector_store_client = Chroma( persist_directory=self.persist_dir, embedding_function=self.embeddings ) def similar_search(self, text, topk) -> None: logger.info("ChromaStore similar search") return self.vector_store_client.similarity_search(text, topk) def vector_name_exists(self): return ( os.path.exists(self.persist_dir) and len(os.listdir(self.persist_dir)) > 0 ) def load_document(self, documents): logger.info("ChromaStore load document") texts = [doc.page_content for doc in documents] metadatas = [doc.metadata for doc in documents] self.vector_store_client.add_texts(texts=texts, metadatas=metadatas) self.vector_store_client.persist()
[]
2024-01-10
flyingbearHK/DB-GPT
pilot~summary~db_summary_client.py
import json import uuid from langchain.embeddings import HuggingFaceEmbeddings, logger from pilot.configs.config import Config from pilot.configs.model_config import LLM_MODEL_CONFIG from pilot.scene.base import ChatScene from pilot.scene.base_chat import BaseChat from pilot.source_embedding.knowledge_embedding import KnowledgeEmbedding from pilot.source_embedding.string_embedding import StringEmbedding from pilot.summary.mysql_db_summary import MysqlSummary from pilot.scene.chat_factory import ChatFactory CFG = Config() chat_factory = ChatFactory() class DBSummaryClient: """db summary client, provide db_summary_embedding(put db profile and table profile summary into vector store) , get_similar_tables method(get user query related tables info) """ def __init__(self): pass def db_summary_embedding(self, dbname): """put db profile and table profile summary into vector store""" if CFG.LOCAL_DB_HOST is not None and CFG.LOCAL_DB_PORT is not None: db_summary_client = MysqlSummary(dbname) embeddings = HuggingFaceEmbeddings( model_name=LLM_MODEL_CONFIG[CFG.EMBEDDING_MODEL] ) vector_store_config = { "vector_store_name": dbname + "_summary", "embeddings": embeddings, } embedding = StringEmbedding( file_path=db_summary_client.get_summery(), vector_store_config=vector_store_config, ) self.init_db_profile(db_summary_client, dbname, embeddings) if not embedding.vector_name_exist(): if CFG.SUMMARY_CONFIG == "FAST": for vector_table_info in db_summary_client.get_summery(): embedding = StringEmbedding( vector_table_info, vector_store_config, ) embedding.source_embedding() else: embedding = StringEmbedding( file_path=db_summary_client.get_summery(), vector_store_config=vector_store_config, ) embedding.source_embedding() for ( table_name, table_summary, ) in db_summary_client.get_table_summary().items(): table_vector_store_config = { "vector_store_name": dbname + "_" + table_name + "_ts", "embeddings": embeddings, } embedding = StringEmbedding( table_summary, table_vector_store_config, ) embedding.source_embedding() logger.info("db summary embedding success") def get_db_summary(self, dbname, query, topk): vector_store_config = { "vector_store_name": dbname + "_profile", } knowledge_embedding_client = KnowledgeEmbedding( model_name=LLM_MODEL_CONFIG[CFG.EMBEDDING_MODEL], vector_store_config=vector_store_config, ) table_docs = knowledge_embedding_client.similar_search(query, topk) ans = [d.page_content for d in table_docs] return ans def get_similar_tables(self, dbname, query, topk): """get user query related tables info""" vector_store_config = { "vector_store_name": dbname + "_summary", } knowledge_embedding_client = KnowledgeEmbedding( model_name=LLM_MODEL_CONFIG[CFG.EMBEDDING_MODEL], vector_store_config=vector_store_config, ) if CFG.SUMMARY_CONFIG == "FAST": table_docs = knowledge_embedding_client.similar_search(query, topk) related_tables = [ json.loads(table_doc.page_content)["table_name"] for table_doc in table_docs ] else: table_docs = knowledge_embedding_client.similar_search(query, 1) # prompt = KnownLedgeBaseQA.build_db_summary_prompt( # query, table_docs[0].page_content # ) related_tables = _get_llm_response( query, dbname, table_docs[0].page_content ) related_table_summaries = [] for table in related_tables: vector_store_config = { "vector_store_name": dbname + "_" + table + "_ts", } knowledge_embedding_client = KnowledgeEmbedding( file_path="", model_name=LLM_MODEL_CONFIG[CFG.EMBEDDING_MODEL], vector_store_config=vector_store_config, ) table_summery = knowledge_embedding_client.similar_search(query, 1) related_table_summaries.append(table_summery[0].page_content) return related_table_summaries def init_db_summary(self): db = CFG.local_db dbs = db.get_database_list() for dbname in dbs: self.db_summary_embedding(dbname) def init_db_profile(self, db_summary_client, dbname, embeddings): profile_store_config = { "vector_store_name": dbname + "_profile", "embeddings": embeddings, } embedding = StringEmbedding( file_path=db_summary_client.get_db_summery(), vector_store_config=profile_store_config, ) if not embedding.vector_name_exist(): docs = [] docs.extend(embedding.read_batch()) for table_summary in db_summary_client.table_info_json(): embedding = StringEmbedding( table_summary, profile_store_config, ) docs.extend(embedding.read_batch()) embedding.index_to_store(docs) logger.info("init db profile success...") def _get_llm_response(query, db_input, dbsummary): chat_param = { "temperature": 0.7, "max_new_tokens": 512, "chat_session_id": uuid.uuid1(), "user_input": query, "db_select": db_input, "db_summary": dbsummary, } chat: BaseChat = chat_factory.get_implementation( ChatScene.InnerChatDBSummary.value, **chat_param ) res = chat.nostream_call() return json.loads(res)["table"]
[]
2024-01-10
flyingbearHK/DB-GPT
pilot~source_embedding~string_embedding.py
from typing import List from langchain.schema import Document from pilot import SourceEmbedding, register class StringEmbedding(SourceEmbedding): """string embedding for read string document.""" def __init__(self, file_path, vector_store_config): """Initialize with pdf path.""" super().__init__(file_path, vector_store_config) self.file_path = file_path self.vector_store_config = vector_store_config @register def read(self): """Load from String path.""" metadata = {"source": "db_summary"} return [Document(page_content=self.file_path, metadata=metadata)] @register def data_process(self, documents: List[Document]): i = 0 for d in documents: documents[i].page_content = d.page_content.replace("\n", "") i += 1 return documents
[]
2024-01-10
flyingbearHK/DB-GPT
pilot~source_embedding~pdf_embedding.py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- from typing import List from langchain.document_loaders import PyPDFLoader from langchain.schema import Document from langchain.text_splitter import SpacyTextSplitter from pilot.configs.config import Config from pilot.source_embedding import SourceEmbedding, register CFG = Config() class PDFEmbedding(SourceEmbedding): """pdf embedding for read pdf document.""" def __init__(self, file_path, vector_store_config): """Initialize with pdf path.""" super().__init__(file_path, vector_store_config) self.file_path = file_path self.vector_store_config = vector_store_config @register def read(self): """Load from pdf path.""" loader = PyPDFLoader(self.file_path) # textsplitter = CHNDocumentSplitter( # pdf=True, sentence_size=CFG.KNOWLEDGE_CHUNK_SIZE # ) textsplitter = SpacyTextSplitter( pipeline="zh_core_web_sm", chunk_size=CFG.KNOWLEDGE_CHUNK_SIZE, chunk_overlap=100, ) return loader.load_and_split(textsplitter) @register def data_process(self, documents: List[Document]): i = 0 for d in documents: documents[i].page_content = d.page_content.replace("\n", "") i += 1 return documents
[]
2024-01-10
flyingbearHK/DB-GPT
pilot~source_embedding~knowledge_embedding.py
from typing import Optional from chromadb.errors import NotEnoughElementsException from langchain.embeddings import HuggingFaceEmbeddings from pilot.configs.config import Config from pilot.source_embedding.csv_embedding import CSVEmbedding from pilot.source_embedding.markdown_embedding import MarkdownEmbedding from pilot.source_embedding.pdf_embedding import PDFEmbedding from pilot.source_embedding.ppt_embedding import PPTEmbedding from pilot.source_embedding.url_embedding import URLEmbedding from pilot.source_embedding.word_embedding import WordEmbedding from pilot.vector_store.connector import VectorStoreConnector CFG = Config() KnowledgeEmbeddingType = { ".txt": (MarkdownEmbedding, {}), ".md": (MarkdownEmbedding, {}), ".pdf": (PDFEmbedding, {}), ".doc": (WordEmbedding, {}), ".docx": (WordEmbedding, {}), ".csv": (CSVEmbedding, {}), ".ppt": (PPTEmbedding, {}), ".pptx": (PPTEmbedding, {}), } class KnowledgeEmbedding: def __init__( self, model_name, vector_store_config, file_type: Optional[str] = "default", file_path: Optional[str] = None, ): """Initialize with Loader url, model_name, vector_store_config""" self.file_path = file_path self.model_name = model_name self.vector_store_config = vector_store_config self.file_type = file_type self.embeddings = HuggingFaceEmbeddings(model_name=self.model_name) self.vector_store_config["embeddings"] = self.embeddings def knowledge_embedding(self): self.knowledge_embedding_client = self.init_knowledge_embedding() self.knowledge_embedding_client.source_embedding() def knowledge_embedding_batch(self, docs): # docs = self.knowledge_embedding_client.read_batch() self.knowledge_embedding_client.index_to_store(docs) def read(self): return self.knowledge_embedding_client.read_batch() def init_knowledge_embedding(self): if self.file_type == "url": embedding = URLEmbedding( file_path=self.file_path, vector_store_config=self.vector_store_config, ) return embedding extension = "." + self.file_path.rsplit(".", 1)[-1] if extension in KnowledgeEmbeddingType: knowledge_class, knowledge_args = KnowledgeEmbeddingType[extension] embedding = knowledge_class( self.file_path, vector_store_config=self.vector_store_config, **knowledge_args, ) return embedding raise ValueError(f"Unsupported knowledge file type '{extension}'") return embedding def similar_search(self, text, topk): vector_client = VectorStoreConnector( CFG.VECTOR_STORE_TYPE, self.vector_store_config ) try: ans = vector_client.similar_search(text, topk) except NotEnoughElementsException: ans = vector_client.similar_search(text, 1) return ans def vector_exist(self): vector_client = VectorStoreConnector( CFG.VECTOR_STORE_TYPE, self.vector_store_config ) return vector_client.vector_name_exists()
[]
2024-01-10
flyingbearHK/DB-GPT
pilot~source_embedding~url_embedding.py
from typing import List from bs4 import BeautifulSoup from langchain.document_loaders import WebBaseLoader from langchain.schema import Document from langchain.text_splitter import CharacterTextSplitter from pilot.configs.config import Config from pilot.configs.model_config import KNOWLEDGE_CHUNK_SPLIT_SIZE from pilot.source_embedding import SourceEmbedding, register from pilot.source_embedding.chn_document_splitter import CHNDocumentSplitter CFG = Config() class URLEmbedding(SourceEmbedding): """url embedding for read url document.""" def __init__(self, file_path, vector_store_config): """Initialize with url path.""" super().__init__(file_path, vector_store_config) self.file_path = file_path self.vector_store_config = vector_store_config @register def read(self): """Load from url path.""" loader = WebBaseLoader(web_path=self.file_path) if CFG.LANGUAGE == "en": text_splitter = CharacterTextSplitter( chunk_size=CFG.KNOWLEDGE_CHUNK_SIZE, chunk_overlap=20, length_function=len, ) else: text_splitter = CHNDocumentSplitter(pdf=True, sentence_size=1000) return loader.load_and_split(text_splitter) @register def data_process(self, documents: List[Document]): i = 0 for d in documents: content = d.page_content.replace("\n", "") soup = BeautifulSoup(content, "html.parser") for tag in soup(["!doctype", "meta"]): tag.extract() documents[i].page_content = soup.get_text() i += 1 return documents
[]
2024-01-10
flyingbearHK/DB-GPT
pilot~source_embedding~pdf_loader.py
"""Loader that loads image files.""" import os from typing import List import fitz from langchain.document_loaders.unstructured import UnstructuredFileLoader from paddleocr import PaddleOCR class UnstructuredPaddlePDFLoader(UnstructuredFileLoader): """Loader that uses unstructured to load image files, such as PNGs and JPGs.""" def _get_elements(self) -> List: def pdf_ocr_txt(filepath, dir_path="tmp_files"): full_dir_path = os.path.join(os.path.dirname(filepath), dir_path) if not os.path.exists(full_dir_path): os.makedirs(full_dir_path) filename = os.path.split(filepath)[-1] ocr = PaddleOCR(lang="ch", use_gpu=False, show_log=False) doc = fitz.open(filepath) txt_file_path = os.path.join(full_dir_path, "%s.txt" % (filename)) img_name = os.path.join(full_dir_path, ".tmp.png") with open(txt_file_path, "w", encoding="utf-8") as fout: for i in range(doc.page_count): page = doc[i] text = page.get_text("") fout.write(text) fout.write("\n") img_list = page.get_images() for img in img_list: pix = fitz.Pixmap(doc, img[0]) pix.save(img_name) result = ocr.ocr(img_name) ocr_result = [i[1][0] for line in result for i in line] fout.write("\n".join(ocr_result)) os.remove(img_name) return txt_file_path txt_file_path = pdf_ocr_txt(self.file_path) from unstructured.partition.text import partition_text return partition_text(filename=txt_file_path, **self.unstructured_kwargs) if __name__ == "__main__": filepath = os.path.join( os.path.dirname(os.path.dirname(__file__)), "content", "samples", "test_py.pdf" ) loader = UnstructuredPaddlePDFLoader(filepath, mode="elements") docs = loader.load() for doc in docs: print(doc)
[]
2024-01-10
flyingbearHK/DB-GPT
pilot~source_embedding~word_embedding.py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- from typing import List from langchain.document_loaders import PyPDFLoader, UnstructuredWordDocumentLoader from langchain.schema import Document from pilot.configs.config import Config from pilot.source_embedding import SourceEmbedding, register from pilot.source_embedding.chn_document_splitter import CHNDocumentSplitter CFG = Config() class WordEmbedding(SourceEmbedding): """word embedding for read word document.""" def __init__(self, file_path, vector_store_config): """Initialize with word path.""" super().__init__(file_path, vector_store_config) self.file_path = file_path self.vector_store_config = vector_store_config @register def read(self): """Load from word path.""" loader = UnstructuredWordDocumentLoader(self.file_path) textsplitter = CHNDocumentSplitter( pdf=True, sentence_size=CFG.KNOWLEDGE_CHUNK_SIZE ) return loader.load_and_split(textsplitter) @register def data_process(self, documents: List[Document]): i = 0 for d in documents: documents[i].page_content = d.page_content.replace("\n", "") i += 1 return documents
[]
2024-01-10
flyingbearHK/DB-GPT
pilot~source_embedding~EncodeTextLoader.py
from typing import List, Optional import chardet from langchain.docstore.document import Document from langchain.document_loaders.base import BaseLoader class EncodeTextLoader(BaseLoader): """Load text files.""" def __init__(self, file_path: str, encoding: Optional[str] = None): """Initialize with file path.""" self.file_path = file_path self.encoding = encoding def load(self) -> List[Document]: """Load from file path.""" with open(self.file_path, "rb") as f: raw_text = f.read() result = chardet.detect(raw_text) if result["encoding"] is None: text = raw_text.decode("utf-8") else: text = raw_text.decode(result["encoding"]) metadata = {"source": self.file_path} return [Document(page_content=text, metadata=metadata)]
[]
2024-01-10
flyingbearHK/DB-GPT
pilot~source_embedding~markdown_embedding.py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import os from typing import List import markdown from bs4 import BeautifulSoup from langchain.schema import Document from langchain.text_splitter import SpacyTextSplitter from pilot.configs.config import Config from pilot.source_embedding import SourceEmbedding, register from pilot.source_embedding.EncodeTextLoader import EncodeTextLoader from pilot.source_embedding.chn_document_splitter import CHNDocumentSplitter CFG = Config() class MarkdownEmbedding(SourceEmbedding): """markdown embedding for read markdown document.""" def __init__(self, file_path, vector_store_config): """Initialize with markdown path.""" super().__init__(file_path, vector_store_config) self.file_path = file_path self.vector_store_config = vector_store_config # self.encoding = encoding @register def read(self): """Load from markdown path.""" loader = EncodeTextLoader(self.file_path) textsplitter = SpacyTextSplitter( pipeline="zh_core_web_sm", chunk_size=CFG.KNOWLEDGE_CHUNK_SIZE, chunk_overlap=100, ) return loader.load_and_split(textsplitter) @register def data_process(self, documents: List[Document]): i = 0 for d in documents: content = markdown.markdown(d.page_content) soup = BeautifulSoup(content, "html.parser") for tag in soup(["!doctype", "meta", "i.fa"]): tag.extract() documents[i].page_content = soup.get_text() documents[i].page_content = documents[i].page_content.replace("\n", " ") i += 1 return documents
[]
2024-01-10
sahithyaravi/VLC_Commonsense
gpt3~gpt3_fewshot.py
from tqdm import tqdm import json import openai import logging import argparse from utils import load_json, image_path_to_id, imageid_to_path, qdict_to_df, save_json from collections import defaultdict import os import openai from config import * import openai import random import pandas as pd from collections import Counter import time pd.set_option('display.max_rows', 500) pd.set_option('display.max_columns', 500) pd.set_option('display.width', 1000) random.seed(1) openai.api_key = "" def combine_all_dfs(path): files = os.listdir(path) files.sort() print(files) ddf = pd.DataFrame() for file in files: if ".csv" in file: cur_df = pd.read_csv(path + file) ddf = pd.concat([ddf, cur_df]) ddf.reset_index(drop=True, inplace=True) ddf.to_csv(path+"gpt3_predictions_train2014.csv") def main(): split = 'train2014' annotations = load_json(f'{data_root}/ok-vqa/mscoco_{split}_annotations.json') questions = load_json(f'{data_root}/ok-vqa/OpenEnded_mscoco_{split}_questions.json') captions = load_json(f'{data_root}/vqa/expansion/captions/captions_{split}_vqa.json') # Get most repeated answer ans_list = annotations['annotations'] answer_map = {} for d in ans_list: q = str(d['question_id']) answers = [ans_dict['answer'] for ans_dict in d['answers']] most_common_words = [word for word, word_count in Counter(answers).most_common(1)] best_answer = most_common_words[0] answer_map[q] = best_answer df = qdict_to_df(questions) df["answer"] = df["question_id"].map(answer_map) df["caption"] = df["image_path"].map(captions) print("The head of the dataframe", df.head()) print("The number of examples", df.shape) # Had to do in batches of 100 STARTS = list(range(0, 5000, 100)) for START in STARTS: END = START + 100 print(START, END) train_examples = df[:8] test_examples = df[START:END] predictions = solve(openai, train_examples, test_examples) out = pd.DataFrame() out["qids"] = test_examples["question_id"].values out["gpt3"] = predictions out["question"] = test_examples["question"].values out["gold"] = test_examples["answer"].values out.to_csv(f"final_outputs/gpt3/{split}/gpt3_predictions{END}.csv") def create_prompt_per_example(row, include_answer=False): """ Creates a prompt for GPT-3 """ context = row["caption"] question = row["question"] gold = row["answer"] c = f"Context: {context}\n" q = f"Q: {question} " a = f"A: {gold}\n\n" if include_answer else "A:" return c + q + a def solve(openai, train_df, test_df): """ Train GPT-3 with few-shot learning :param openai: the OpenAI API object :param train_examples: list of dicts {"narrative", "plausible"} :param test_examples: list of dicts {"narrative", "plausible"} :return: the predictions """ prompt = "Please answer the question according to the above context.\n" for index, row in train_df.iterrows(): prompt += create_prompt_per_example(row, include_answer=True) predictions = [] with tqdm(total=test_df.shape[0]) as pbar: for index, row in test_df.iterrows(): gpt3_prompt = f"{prompt}{create_prompt_per_example(row, include_answer=False)}" pbar.update(1) print(gpt3_prompt) response = openai.Completion.create( engine="text-davinci-001", prompt=gpt3_prompt, temperature=0.7, max_tokens=10, top_p=0.9, frequency_penalty=0.0, presence_penalty=0.0, stop=["\n"] ) pred = response['choices'][0]['text'].strip() predictions.append(pred) time.sleep(20) return predictions def json_conv(filename): train_df = pd.read_csv(filename) train_df["qids"] = train_df["qids"].astype(str) train_df.fillna('', inplace=True) keys = list(train_df["qids"].values) vals = list(train_df["gpt3"].values) d = dict(zip(keys, vals)) save_json('final_outputs/gpt3/train2014_gpt3.json', d) p = 'final_outputs/gpt3/val2014/gpt3_predictions_val2014.csv' v = pd.read_csv(p) v.fillna('', inplace=True) v["qids"] = v["qids"].astype(str) keys = list(v["qids"].values) vals = list(v["gpt3"].values) d = dict(zip(keys, vals)) save_json('final_outputs/gpt3/val2014_gpt3.json', d) if __name__ == "__main__": main()
[ "Please answer the question according to the above context.\n", "f\"{prompt}{create_prompt_per_example(row, include_answer=False)}" ]
2024-01-10
csmizzle/gca
scratch~rpg.py
import guidance # set the default language model used to execute guidance programs guidance.llm = guidance.llms.OpenAI( "gpt-4", api_key="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" ) # we can pre-define valid option sets valid_weapons = ["sword", "axe", "mace", "spear", "bow", "crossbow"] # define the prompt program = guidance("""The following is a character profile for an RPG game in JSON format. ```json { "description": "{{description}}", "name": "{{gen 'name'}}", "age": {{gen 'age' pattern='[0-9]+' stop=','}}, "armor": "{{#select 'armor'}}leather{{or}}chainmail{{or}}plate{{/select}}", "weapon": "{{select 'weapon' options=valid_weapons}}", "class": "{{gen 'class'}}", "mantra": "{{gen 'mantra'}}", "strength": {{gen 'strength' pattern='[0-9]+' stop=','}}, "items": [{{#geneach 'items' num_iterations=3}} "{{gen 'this'}}",{{/geneach}} ] }```""") out = program(description="A strong and nimble fighter.", valid_weapons=valid_weapons) out.variables() print(str(out).split("```json")[1][:-3])
[]
2024-01-10
Rowing0914/TF_RL
tf_rl~common~wrappers.py
import numpy as np import os, math, pandas os.environ.setdefault('PATH', '') from collections import deque import gym from gym import spaces # for those who installed ROS on local env import sys try: sys.path.remove('/opt/ros/kinetic/lib/python2.7/dist-packages') except: pass import cv2 cv2.ocl.setUseOpenCL(False) """ Wrapper for Cartpole This is to change the reward at the terminal state because originally it is set as 1.0 check here: https://github.com/openai/gym/blob/master/gym/envs/classic_control/cartpole.py """ class CartPole_Pixel(gym.Wrapper): """ Wrapper for getting raw pixel in cartpole env observation: 400x400x1 => (Width, Height, Colour-chennel) we dispose 100pxl from each side of width to make the frame divisible(Square) in CNN """ def __init__(self, env): self.width = 400 self.height = 400 gym.Wrapper.__init__(self, env) self.env = env.unwrapped # self.env.seed(123) # fix the randomness for reproducibility purpose """ start new thread to deal with getting raw image """ from tf_rl.env.cartpole_pixel import RenderThread self.renderer = RenderThread(env) self.renderer.start() def _pre_process(self, frame): frame = cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY) frame = cv2.resize(frame, (self.width, self.height), interpolation=cv2.INTER_AREA) frame = np.expand_dims(frame, -1) return frame def step(self, ac): _, reward, done, info = self.env.step(ac) self.renderer.begin_render() # move screen one step observation = self._pre_process(self.renderer.get_screen()) if done: reward = -1.0 # reward at a terminal state return observation, reward, done, info def reset(self, **kwargs): self.env.reset() self.renderer.begin_render() # move screen one step return self._pre_process(self.renderer.get_screen()) # overwrite observation by raw image pixels of screen def close(self): self.renderer.stop() # terminate the threads self.renderer.join() # collect the dead threads and notice all threads are safely terminated if self.env: return self.env.close() class MyWrapper(gym.Wrapper): """ wrapper to fix the randomeness in gym env """ def __init__(self, env): gym.Wrapper.__init__(self, env) self.env = env # self.env.seed(123) # fix the randomness for reproducibility purpose def step(self, ac): observation, reward, done, info = self.env.step(ac) if done: reward = -1.0 # reward at a terminal state return observation, reward, done, info def reset(self, **kwargs): return self.env.reset() class DiscretisedEnv(gym.Wrapper): """ Wrapper for getting discredited observation in cartpole Inspired by https://medium.com/@tuzzer/cart-pole-balancing-with-q-learning-b54c6068d947 """ def __init__(self, env, n_bins=10): gym.Wrapper.__init__(self, env) self.env = env self.cart_position_high = env.observation_space.high[0] self.cart_velocity_high = env.observation_space.high[1] self.pole_angle_high = env.observation_space.high[2] self.pole_velocity_high = env.observation_space.high[3] self.cart_position_low = env.observation_space.low[0] self.cart_velocity_low = env.observation_space.low[1] self.pole_angle_low = env.observation_space.low[2] self.pole_velocity_low = env.observation_space.low[3] self.cart_position_bins = \ pandas.cut([self.cart_position_high, self.cart_position_low], bins=n_bins, retbins=True)[1][1:-1] self.cart_velocity_bins = \ pandas.cut([self.cart_velocity_high, self.cart_velocity_low], bins=n_bins, retbins=True)[1][1:-1] self.pole_angle_bins = pandas.cut([self.pole_angle_high, self.pole_angle_low], bins=n_bins, retbins=True)[1][ 1:-1] self.pole_velocity_bins = \ pandas.cut([self.pole_velocity_low, self.pole_velocity_low], bins=n_bins, retbins=True)[1][1:-1] self.buckets = (1, 1, 6, 12,) # self.env.seed(123) # fix the randomness for reproducibility purpose def step(self, ac): observation, reward, done, info = self.env.step(ac) if done: reward = -1.0 # reward at a terminal state # return self._discretise(observation), reward, done, info return self._discretise_feature_engineered(observation), reward, done, info def reset(self, **kwargs): # return self._discretise(self.env.reset()) return self._discretise_feature_engineered(self.env.reset()) def _discretise(self, obs): """Equally discretise the observation""" obs[0] = np.digitize(obs[0], self.cart_position_bins) obs[1] = np.digitize(obs[1], self.cart_velocity_bins) obs[2] = np.digitize(obs[2], self.pole_angle_bins) obs[3] = np.digitize(obs[3], self.pole_velocity_bins) obs = obs.astype(int) return tuple(obs.reshape(1, -1)[0]) def _discretise_feature_engineered(self, obs): """ Based on some experiments, empirically we can see that angle acceleration is the most important feature. So that using self.buckets, we discretise some features and remove other features :param obs: :return: """ upper_bounds = [self.cart_position_high, 0.5, self.pole_angle_high, math.radians(50)] lower_bounds = [self.cart_position_low, -0.5, self.pole_angle_low, -math.radians(50)] ratios = [(obs[i] + abs(lower_bounds[i])) / (upper_bounds[i] - lower_bounds[i]) for i in range(len(obs))] new_obs = [int(round((self.buckets[i] - 1) * ratios[i])) for i in range(len(obs))] new_obs = [min(self.buckets[i] - 1, max(0, new_obs[i])) for i in range(len(obs))] return tuple(new_obs) class MyWrapper_revertable(gym.Wrapper): """ Wrapper for reverting the time-step, this is mainly used in Q-learning with Particle Filter we need this to simulate each particle on cartpole env """ def __init__(self, env): gym.Wrapper.__init__(self, env) self.env = env.unwrapped # self.env.seed(123) # fix the randomness for reproducibility purpose def step(self, ac): next_state, reward, done, info = self.env.step(ac) if done: reward = -1.0 # reward at a terminal state return next_state, reward, done, info def reset(self, **kwargs): return self.env.reset() def get_state(self): return self.env.state def set_state(self, state): self.env.state = state class ReplayResetEnv(gym.Wrapper): """ Wrapper for reverting the game to a specific state and it also changes the internal state(RAM) of ALE as well. ## Usage ```python from tf_rl.common.wrappers import wrap_deepmind, make_atari, ReplayResetEnv env = wrap_deepmind(make_atari("PongNoFrameskip-v4")) env = ReplayResetEnv(env) state = env.reset() init_state = env.get_checkpoint_state() for t in range(1, 1000): env.render() action = env.action_space.sample() next_state, reward, done, info = env.step(action) state = next_state if t % 100 == 0: print("done", t) env.recover(init_state) env.close() ``` """ def __init__(self, env): gym.Wrapper.__init__(self, env) self.env = env def recover(self, state): self.env.unwrapped.restore_state(state) self.env.step(0) # 1 extra step to burn the current state on ALE's RAM is required!! return self.env.unwrapped._get_image() # output the newly recovered observation def get_checkpoint_state(self): return self.env.unwrapped.clone_state() def get_RAM(self): return self.env.unwrapped.ale.getRAM() """ Borrowed from OpenAI Baselines at 4/4/2019 https://github.com/openai/baselines/blob/master/baselines/common/atari_wrappers.py https://github.com/openai/baselines/blob/master/baselines/common/wrappers.py """ # I moved the source code of this module just below # from .wrappers import TimeLimit class TimeLimit(gym.Wrapper): def __init__(self, env, max_episode_steps=None): super(TimeLimit, self).__init__(env) self._max_episode_steps = max_episode_steps self._elapsed_steps = 0 def step(self, ac): observation, reward, done, info = self.env.step(ac) self._elapsed_steps += 1 if self._elapsed_steps >= self._max_episode_steps: done = True info['TimeLimit.truncated'] = True return observation, reward, done, info def reset(self, **kwargs): self._elapsed_steps = 0 return self.env.reset(**kwargs) class NoopResetEnv(gym.Wrapper): def __init__(self, env, noop_max=30): """Sample initial states by taking random number of no-ops on reset. No-op is assumed to be action 0. """ gym.Wrapper.__init__(self, env) self.noop_max = noop_max self.override_num_noops = None self.noop_action = 0 assert env.unwrapped.get_action_meanings()[0] == 'NOOP' def reset(self, **kwargs): """ Do no-op action for a number of steps in [1, noop_max].""" self.env.reset(**kwargs) if self.override_num_noops is not None: noops = self.override_num_noops else: noops = self.unwrapped.np_random.randint(1, self.noop_max + 1) # pylint: disable=E1101 assert noops > 0 obs = None for _ in range(noops): obs, _, done, _ = self.env.step(self.noop_action) if done: obs = self.env.reset(**kwargs) return obs def step(self, ac): return self.env.step(ac) class FireResetEnv(gym.Wrapper): def __init__(self, env): """Take action on reset for environments that are fixed until firing.""" gym.Wrapper.__init__(self, env) assert env.unwrapped.get_action_meanings()[1] == 'FIRE' assert len(env.unwrapped.get_action_meanings()) >= 3 def reset(self, **kwargs): self.env.reset(**kwargs) obs, _, done, _ = self.env.step(1) if done: self.env.reset(**kwargs) obs, _, done, _ = self.env.step(2) if done: self.env.reset(**kwargs) return obs def step(self, ac): return self.env.step(ac) class EpisodicLifeEnv(gym.Wrapper): def __init__(self, env): """Make end-of-life == end-of-episode, but only reset on true game over. Done by DeepMind for the DQN and co. since it helps value estimation. """ gym.Wrapper.__init__(self, env) self.lives = 0 self.was_real_done = True def step(self, action): obs, reward, done, info = self.env.step(action) self.was_real_done = done # check current lives, make loss of life terminal, # then update lives to handle bonus lives lives = self.env.unwrapped.ale.lives() if lives < self.lives and lives > 0: # for Qbert sometimes we stay in lives == 0 condition for a few frames # so it's important to keep lives > 0, so that we only reset once # the environment advertises done. done = True self.lives = lives return obs, reward, done, info def reset(self, **kwargs): """Reset only when lives are exhausted. This way all states are still reachable even though lives are episodic, and the learner need not know about any of this behind-the-scenes. """ if self.was_real_done: obs = self.env.reset(**kwargs) else: # no-op step to advance from terminal/lost life state obs, _, _, _ = self.env.step(0) self.lives = self.env.unwrapped.ale.lives() return obs class MaxAndSkipEnv(gym.Wrapper): def __init__(self, env, skip=4): """Return only every `skip`-th frame""" gym.Wrapper.__init__(self, env) # most recent raw observations (for max pooling across time steps) self._obs_buffer = np.zeros((2,) + env.observation_space.shape, dtype=np.uint8) self._skip = skip def step(self, action): """Repeat action, sum reward, and max over last observations.""" total_reward = 0.0 done = None for i in range(self._skip): obs, reward, done, info = self.env.step(action) if i == self._skip - 2: self._obs_buffer[0] = obs if i == self._skip - 1: self._obs_buffer[1] = obs total_reward += reward if done: break # Note that the observation on the done=True frame # doesn't matter max_frame = self._obs_buffer.max(axis=0) return max_frame, total_reward, done, info def reset(self, **kwargs): return self.env.reset(**kwargs) class ClipRewardEnv(gym.RewardWrapper): def __init__(self, env): gym.RewardWrapper.__init__(self, env) def reward(self, reward): """ Bin reward to {+1, 0, -1} by its sign. Reference: https://docs.scipy.org/doc/numpy-1.9.3/reference/generated/numpy.sign.html Usage: >>> np.sign([-5., 4.5]) array([-1., 1.]) >>> np.sign(0) 0 """ return np.sign(reward) class WarpFrame(gym.ObservationWrapper): def __init__(self, env, width=84, height=84, grayscale=True): """Warp frames to 84x84 as done in the Nature paper and later work.""" gym.ObservationWrapper.__init__(self, env) self.width = width self.height = height self.grayscale = grayscale if self.grayscale: self.observation_space = spaces.Box(low=0, high=255, shape=(self.height, self.width, 1), dtype=np.uint8) else: self.observation_space = spaces.Box(low=0, high=255, shape=(self.height, self.width, 3), dtype=np.uint8) def observation(self, frame): if self.grayscale: frame = cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY) frame = cv2.resize(frame, (self.width, self.height), interpolation=cv2.INTER_AREA) if self.grayscale: frame = np.expand_dims(frame, -1) return frame class FrameStack(gym.Wrapper): def __init__(self, env, k): """Stack k last frames. Returns lazy array, which is much more memory efficient. See Also -------- baselines.common.atari_wrappers.LazyFrames """ gym.Wrapper.__init__(self, env) self.k = k self.frames = deque([], maxlen=k) shp = env.observation_space.shape self.observation_space = spaces.Box(low=0, high=255, shape=(shp[:-1] + (shp[-1] * k,)), dtype=env.observation_space.dtype) def reset(self): ob = self.env.reset() for _ in range(self.k): self.frames.append(ob) return self._get_ob() def step(self, action): ob, reward, done, info = self.env.step(action) self.frames.append(ob) return self._get_ob(), reward, done, info def _get_ob(self): assert len(self.frames) == self.k # don't do this.... LazyFrame is much more memory efficient # on my local, it reduced from 1.4GB for ReplayBuffer(50000) to 397.1MB..... incredible. # return np.concatenate(list(self.frames), axis=-1) return LazyFrames(list(self.frames)) class ScaledFloatFrame(gym.ObservationWrapper): def __init__(self, env): gym.ObservationWrapper.__init__(self, env) self.observation_space = gym.spaces.Box(low=0, high=1, shape=env.observation_space.shape, dtype=np.float32) def observation(self, observation): # careful! This undoes the memory optimization, use # with smaller replay buffers only. return np.array(observation).astype(np.float32) / 255.0 class LazyFrames(object): def __init__(self, frames): """This object ensures that common frames between the observations are only stored once. It exists purely to optimize memory usage which can be huge for DQN's 1M frames replay buffers. This object should only be converted to numpy array before being passed to the model. You'd not believe how complex the previous solution was.""" self._frames = frames self._out = None def _force(self): if self._out is None: self._out = np.concatenate(self._frames, axis=-1) self._frames = None return self._out def __array__(self, dtype=None): out = self._force() if dtype is not None: out = out.astype(dtype) return out def __len__(self): return len(self._force()) def __getitem__(self, i): return self._force()[i] def make_atari(env_id, skip_frame_k=4, max_episode_steps=None): env = gym.make(env_id) assert 'NoFrameskip' in env.spec.id env = NoopResetEnv(env, noop_max=30) env = MaxAndSkipEnv(env, skip=skip_frame_k) if max_episode_steps is not None: env = TimeLimit(env, max_episode_steps=max_episode_steps) return env # since my code does not have an function or APIs to repeat the same action several times, # I will rely on those wrappers. # frame_stack and scale consumes a lot of memory so that if you have enough memory, then try it. # my local has 16GB RAM though, it was not enough.... 0.5M replay buffer took up about 8.5GB of RAM... def wrap_deepmind(env, episode_life=True, clip_rewards=True, frame_stack=False, skip_frame_k=4, scale=False): """Configure environment for DeepMind-style Atari. """ if episode_life: env = EpisodicLifeEnv(env) if 'FIRE' in env.unwrapped.get_action_meanings(): env = FireResetEnv(env) env = WarpFrame(env) if scale: env = ScaledFloatFrame(env) if clip_rewards: env = ClipRewardEnv(env) if frame_stack: env = FrameStack(env, skip_frame_k) return env
[]
2024-01-10
mao-at/BI-SEP
python~api_demo~consume_secured_api.py
import openai import os import time SYSTEM_PROMPT= "you are a food classifier bot. You will respond 'junk' when the user prompt mentions any kind of junk food, and respond 'not junk' if all food mentioned are not junk food." USER_PROMPT = "apple,pear,orange,banana" def junk_or_not(system_prompt=SYSTEM_PROMPT, user_prompt=USER_PROMPT, retries=3): for i in range(retries): try: # openai.api_key= os.getenv("OPENAI_API_KEY") openai.api_key="abcdefg1234567890" completion = openai.ChatCompletion.create( model="gpt-4", messages=[ {"role": "system", "content": f"{system_prompt}"}, {"role": "user", "content": f"{user_prompt}"}, ] ) result = completion.choices[0].message.get("content") break # If it gets to this line, no exception was raised, so break the loop except Exception as e: print(f"Attempt {i+1} failed with error: {str(e)}") print(f"retrying in {(i+1)**2} seconds...") time.sleep((i+1)**2) # Pause before the next attempt if i == retries - 1: # If this was the last attempt msg = f"ALL RETRIES FAILED" print(msg) return None print(f"result: {result}") return result if __name__ == "__main__": junk_or_not()
[ "you are a food classifier bot. You will respond 'junk' when the user prompt mentions any kind of junk food, and respond 'not junk' if all food mentioned are not junk food.", "apple,pear,orange,banana", "PLACEHOLDER" ]
2024-01-10
Gaurang-1402/ChatManipulators
src~rosgpt~rosgpt~rosgpt.py
#!/usr/bin/env python3 # This file is part of rosgpt package. # # Copyright (c) 2023 Anis Koubaa. # All rights reserved. # # This work is licensed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 # International Public License. See https://creativecommons.org/licenses/by-nc-sa/4.0/ for details. import os import json import openai import rclpy import threading from rclpy.node import Node from std_msgs.msg import String from flask import Flask, request, send_from_directory, jsonify from flask_restful import Resource, Api from flask_cors import CORS import pyttsx3 # pip install pyttsx3 #you need to install libespeak1 on Ubuntu # sudo apt-get install libespeak1 from rclpy.executors import SingleThreadedExecutor import subprocess from ament_index_python import get_package_share_directory # Instantiate a Flask application object with the given name app = Flask(__name__) # Enable Cross-Origin Resource Sharing (CORS) for the Flask app CORS(app) # Create an API object that wraps the Flask app to handle RESTful requests api = Api(app) #You must add OPENAI_API_KEY as an environment variable #In Ubuntu: echo 'export OPENAI_API_KEY=your_api_key' >> ~/.bashrc # Get the API key from the environment variable. openai_api_key = os.getenv('OPENAI_API_KEY') #print(openai_api_key) # Now you can use the openai_api_key variable to authenticate with the OpenAI API # Initialize a threading lock for synchronizing access to shared resources # when multiple threads are involved spin_lock = threading.Lock() # Initialize the Text-to-Speech (TTS) engine using the pyttsx3 library # you need to install the following dependencies # sudo apt-get install libespeak1 # pip3 install pyttsx3 tts_engine = pyttsx3.init() # Create a separate threading lock for synchronizing access to the TTS engine tts_lock = threading.Lock() class ROSGPTNode(Node): def __init__(self): """ Initialize the ROSGPTNode class which is derived from the rclpy Node class. """ # Call the superclass constructor and pass the name of the node super().__init__('chatgpt_ros2_node') # Create a publisher for the 'voice_cmd' topic with a message queue size of 10 self.publisher = self.create_publisher(String, 'voice_cmd', 10) def publish_message(self, message): """ Publish the given message to the 'voice_cmd' topic. Args: message (str): The message to be published. """ msg = String() # Create a new String message msg.data = message # Convert the message to a JSON string and set the data field of the message self.publisher.publish(msg) # Publish the message using the publisher #print('message Published: ', message) # Log the published message #print('msg.data Published: ', msg.data) # Log the published message def process_and_publish_chatgpt_response(chatgpt_ros2_node, text_command, chatgpt_response, use_executors=True): """ Process the chatbot's response and publish it to the 'voice_cmd' topic. Args: chatgpt_ros2_node (ROSGPTNode): The ROS2 node instance. text_command (str): The text command received from the user. chatgpt_response (str): The response from the chatbot. use_executors (bool, optional): Flag to indicate whether to use SingleThreadedExecutor. Defaults to True. """ chatgpt_ros2_node.publish_message(chatgpt_response) # Publish the chatbot's response using the ROS2 node # If use_executors flag is True, use SingleThreadedExecutor if use_executors: executor = SingleThreadedExecutor()# Create a new executor for each request executor.add_node(chatgpt_ros2_node) # Add the node to the executor executor.spin_once()# Spin the executor once executor.remove_node(chatgpt_ros2_node) # Remove the node from the executor # If use_executors flag is False, use spin_lock to synchronize access else: with spin_lock: rclpy.spin_once(chatgpt_ros2_node) class ROSGPTProxy(Resource): """ A class derived from flask_restful.Resource, responsible for handling incoming HTTP POST requests. """ def __init__(self, chatgpt_ros2_node): """ Initialize the ROSGPTProxy class with the given ROS2 node. Args: chatgpt_ros2_node (ROSGPTNode): The ROS2 node instance. """ self.chatgpt_ros2_node = chatgpt_ros2_node def askGPT(self, text_command): """ Send a text command to the GPT-3 model and receive a response. Args: text_command (str): The text command to be sent to the GPT-3 model. Returns: str: The response from the GPT-3 model as a JSON string. """ # Create the GPT-3 prompt with example inputs and desired outputs prompt = ''' Consider the following ontology: {"action": "center", "params": {}} {"action": "random", "params": {}} {"action": "move_joint", "params": {"joint": joint, "angle": angle, "speed": speed}} The 'joint' parameter can take values "shoulder_pan_joint", "shoulder_lift_joint", "elbow_joint", "wrist_1_joint", "wrist_2_joint", "wrist_3_joint" to indicate the joint to move. The 'angle' parameter represents the target angle for the joint in radians, and 'speed' is the speed at which to move the joint in radians per second. The 'angle' value must be between -6.13 and 6.13 for all joints except 'elbow_joint', which must be between -2.99 and 2.99. Here are some examples. If speed is not given in the prompt, it is assumed to be 0.5 radians per second. All numerical answers should be in float form. All joint values are between -6.13 to 6.13 except elbow_joint which has joint values between -2.99 to 2.99 Prompt: "Move the shoulder_pan_joint to angle 0.7 radians at a speed of 0.2 radians per second." Returns: {"action": "move_joint", "params": {"joint": "shoulder_pan_joint", "angle": 0.7, "speed": 0.2}} Prompt: "Move the elbow_joint to angle 1.3 radians." Returns: {"action": "move_joint", "params": {"joint": "elbow_joint", "angle": 1.3, "speed": 0.5}} Prompt: "Move the wrist_1_joint to angle 2.2 radians at a speed of 0.3 radians per second." Returns: {"action": "move_joint", "params": {"joint": "wrist_1_joint", "angle": 2.2, "speed": 0.3}} Prompt: "Move the robot to the center position." Returns: {"action": "center", "params": {}} Prompt: "Move the robot to a random joint configuration." Returns: {"action": "random", "params": {}} You will be given human language prompts, and you need to return a JSON conformant to the ontology. Any action not in the ontology must be ignored. Examples in other languages: German: Prompt: "Bewegen Sie das shoulder_pan_joint auf einen Winkel von 0,7 Radiant mit einer Geschwindigkeit von 0,2 Radiant pro Sekunde." Returns: {"action": "move_joint", "params": {"joint": "shoulder_pan_joint", "angle": 0.7, "speed": 0.2}} Japanese: Prompt: "Elbow_joint o 1.3 radian ni ido sase, speed wa 0.5 radian per second desu." Returns: {"action": "move_joint", "params": {"joint": "elbow_joint", "angle": 1.3, "speed": 0.5}} Hindi: Prompt: "Wrist_1_joint ko 2.2 radians par le jao, speed 0.3 radians per second ke saath." Returns: {"action": "move_joint", "params": {"joint": "wrist_1_joint", "angle": 2.2, "speed": 0.3}} ''' prompt = prompt+'\nprompt: '+text_command #print(prompt) #for testing # Create the message structure for the GPT-3 model messages = [ {"role": "system", "content": "You are a robot brain that translates human natural language to robot control commands in json."}, {"role": "user", "content": prompt} ] # Try to send the request to the GPT-3 model and handle any exceptions try: response = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=messages, ) except openai.error.InvalidRequestError as e: print(f"Error: {e}") return None except Exception as e: print(f"Unexpected error: {e}") return None # Extract the GPT-3 model response from the returned JSON chatgpt_response = response.choices[0].message['content'].strip() #print(chatgpt_response) # Find the start and end indices of the JSON string in the response start_index = chatgpt_response.find('{') end_index = chatgpt_response.rfind('}') + 1 # Extract the JSON string from the response json_response_dict = chatgpt_response[start_index:end_index] #print('\n\n\njson_response_dict ',json_response_dict) return json.dumps({'text': chatgpt_response, 'json': json_response_dict}) def post(self): """ Handles an incoming POST request containing a text command. The method sends the text command to the GPT-3 model and processes the response using the process_and_publish_chatgpt_response function in a separate thread. Returns: dict: A dictionary containing the GPT-3 model response as a JSON string. """ text_command = request.form['text_command'] print ('[ROSGPT] Command received. ', text_command, '. Asking ChatGPT ...') # Run the speak function on a separate thread #print('text_command:', text_command,'\n') chatgpt_response = self.askGPT(text_command) print ('[ROSGPT] Response received from ChatGPT. \n', str(json.loads(chatgpt_response))[:60], '...') #print('eval(chatgpt_response)', eval(chatgpt_response)) # Run the speak function on a separate thread if chatgpt_response is None: return {'error': 'An error occurred while processing the request'} threading.Thread(target=process_and_publish_chatgpt_response, args=(self.chatgpt_ros2_node, text_command, chatgpt_response, True)).start() #print(json.loads(chatgpt_response)) return json.loads(chatgpt_response) @app.route('/') def index(): print(os.path.join(get_package_share_directory('rosgpt'), 'webapp')) return send_from_directory(os.path.join(get_package_share_directory('rosgpt'), 'webapp'), 'index.html') def main(): rclpy.init(args=None) chatgpt_ros2_node = ROSGPTNode() api.add_resource(ROSGPTProxy, '/rosgpt', resource_class_args=(chatgpt_ros2_node,)) app.run(debug=True, host='0.0.0.0', port=5000) rclpy.shutdown() if __name__ == '__main__': main()
[ "\n Consider the following ontology:\n {\"action\": \"center\", \"params\": {}}\n {\"action\": \"random\", \"params\": {}}\n {\"action\": \"move_joint\", \"params\": {\"joint\": joint, \"angle\": angle, \"speed\": speed}}\n\n The 'joint' parameter can take values \"shoulder_pan_joint\", \"shoulder_lift_joint\", \"elbow_joint\", \"wrist_1_joint\", \"wrist_2_joint\", \"wrist_3_joint\" to indicate the joint to move. The 'angle' parameter represents the target angle for the joint in radians, and 'speed' is the speed at which to move the joint in radians per second. The 'angle' value must be between -6.13 and 6.13 for all joints except 'elbow_joint', which must be between -2.99 and 2.99. Here are some examples.\n\n If speed is not given in the prompt, it is assumed to be 0.5 radians per second.\n All numerical answers should be in float form.\n\n All joint values are between -6.13 to 6.13\n except elbow_joint which has joint values between -2.99 to 2.99 \n\n Prompt: \"Move the shoulder_pan_joint to angle 0.7 radians at a speed of 0.2 radians per second.\"\n Returns: {\"action\": \"move_joint\", \"params\": {\"joint\": \"shoulder_pan_joint\", \"angle\": 0.7, \"speed\": 0.2}}\n\n Prompt: \"Move the elbow_joint to angle 1.3 radians.\"\n Returns: {\"action\": \"move_joint\", \"params\": {\"joint\": \"elbow_joint\", \"angle\": 1.3, \"speed\": 0.5}}\n\n Prompt: \"Move the wrist_1_joint to angle 2.2 radians at a speed of 0.3 radians per second.\"\n Returns: {\"action\": \"move_joint\", \"params\": {\"joint\": \"wrist_1_joint\", \"angle\": 2.2, \"speed\": 0.3}}\n\n Prompt: \"Move the robot to the center position.\"\n Returns: {\"action\": \"center\", \"params\": {}}\n\n Prompt: \"Move the robot to a random joint configuration.\"\n Returns: {\"action\": \"random\", \"params\": {}}\n\n You will be given human language prompts, and you need to return a JSON conformant to the ontology. Any action not in the ontology must be ignored.\n\n Examples in other languages:\n\n German:\n Prompt: \"Bewegen Sie das shoulder_pan_joint auf einen Winkel von 0,7 Radiant mit einer Geschwindigkeit von 0,2 Radiant pro Sekunde.\"\n Returns: {\"action\": \"move_joint\", \"params\": {\"joint\": \"shoulder_pan_joint\", \"angle\": 0.7, \"speed\": 0.2}}\n\n Japanese:\n Prompt: \"Elbow_joint o 1.3 radian ni ido sase, speed wa 0.5 radian per second desu.\"\n Returns: {\"action\": \"move_joint\", \"params\": {\"joint\": \"elbow_joint\", \"angle\": 1.3, \"speed\": 0.5}}\n\n Hindi:\n Prompt: \"Wrist_1_joint ko 2.2 radians par le jao, speed 0.3 radians per second ke saath.\"\n Returns: {\"action\": \"move_joint\", \"params\": {\"joint\": \"wrist_1_joint\", \"angle\": 2.2, \"speed\": 0.3}}\n ", "You are a robot brain that translates human natural language to robot control commands in json.", "PLACEHOLDER\nprompt: PLACEHOLDER" ]
2024-01-10
Nabil-Mabrouk/GemiMe
src~ressources~example.py
from dotenv import load_dotenv from langchain.vectorstores import Chroma import streamlit as st from PyPDF2 import PdfReader from langchain.text_splitter import CharacterTextSplitter from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.embeddings.openai import OpenAIEmbeddings from langchain.vectorstores import FAISS from langchain.chains.question_answering import load_qa_chain from langchain.chains.summarize import load_summarize_chain from langchain.llms import OpenAI from langchain.callbacks import get_openai_callback from docx import Document from docx.table import _Cell from streamlit_extras.add_vertical_space import add_vertical_space import sys def clear_history(): if "history" in st.session_state: del st.session_state["history"] def format_chat_history(chat_history): formatted_history = "" for entry in chat_history: question, answer = entry # Added an extra '\n' for the blank line formatted_history += f"Question: {question}\nAnswer: {answer}\n\n" return formatted_history def extract_text_from_table(table): text = "" for row in table.rows: for cell in row.cells: if isinstance(cell, _Cell): text += cell.text + "\n" return text.strip() #side bar contents # Configure Streamlit page settings st.set_page_config(page_title="PDFReader") st.title("PDF & Word Reader ✨") def main(): if "model" not in st.session_state: st.session_state.model = "text-davinci-003" # brief summary with st.sidebar: st.title('🤗💬 LLM PDFReader App') st.markdown(""" ## About This app is an LLM-powered chatbot built using: - [Streamlit](https://streamlit.io/) - [Langchain](https://python.langchian.com/) - [OpenAI](https://platform.openai.com/docs/models) LLM model """) st.radio( "Model 👉", key="model", options=["text-ada-001", "text-davinci-002", "text-davinci-003"], ) add_vertical_space(5) llm = OpenAI(temperature=0.7, model=st.session_state.model) #llmchat = OpenAI(temperature=0.7, model_name='gpt-3.5-turbo') chain = load_summarize_chain(llm, chain_type="stuff") chain_large = load_summarize_chain(llm, chain_type="map_reduce") chain_qa = load_qa_chain(llm, chain_type="stuff") chain_large_qa = load_qa_chain(llm, chain_type="map_reduce") # Load environment variables load_dotenv() # Upload file uploaded_file = st.file_uploader("Upload your file", type=["pdf", "docx"]) # Initialize session state if 'pdf_name' not in st.session_state: st.session_state.pdf_name = None # Extract the text if uploaded_file is not None : file_type = uploaded_file.type # Clear summary if a new file is uploaded if 'summary' in st.session_state and st.session_state.file_name != uploaded_file.name: st.session_state.summary = None st.session_state.file_name = uploaded_file.name try: if file_type == "application/pdf": # Handle PDF files pdf_reader = PdfReader(uploaded_file) text = "" for page in pdf_reader.pages: text += page.extract_text() elif file_type == "application/vnd.openxmlformats-officedocument.wordprocessingml.document": # Handle Word documents doc = Document(uploaded_file) paragraphs = [p.text for p in doc.paragraphs] text = "\n".join(paragraphs) # Extract text from tables for table in doc.tables: table_text = extract_text_from_table(table) if table_text: text += "\n" + table_text else: st.error("Unsupported file format. Please upload a PDF or DOCX file.") return # Split text into chunks, use this if you only use this app for small documents. # text_splitter = CharacterTextSplitter( # separator="\n", # chunk_size=1000, # chunk_overlap=200, # length_function=len # ) # Split text into chunks text_splitter = RecursiveCharacterTextSplitter( chunk_size=1000, chunk_overlap=200, length_function=len ) chunks = text_splitter.split_text(text) # Create embeddings embeddings = OpenAIEmbeddings(disallowed_special=()) knowledge_base = FAISS.from_texts(chunks, embeddings) st.header("Here's a brief summary of your file:") pdf_summary = "Give me a concise summary, use the language that the file is in. " docs = knowledge_base.similarity_search(pdf_summary) if 'summary' not in st.session_state or st.session_state.summary is None: with st.spinner('Wait for it...'): with get_openai_callback() as scb: try: st.session_state.summary = chain.run(input_documents=docs, question=pdf_summary) except Exception as maxtoken_error: # Fallback to the larger model if the context length is exceeded print(maxtoken_error) st.session_state.summary = chain_large.run(input_documents=docs, question=pdf_summary) print(scb) st.write(st.session_state.summary) # User input for questions user_question = st.text_input("Ask a question about your file:") if user_question: docs = knowledge_base.similarity_search(user_question) with st.spinner('Wait for it...'): with get_openai_callback() as cb: try: response = chain_qa.run(input_documents=docs, question=user_question) except Exception as maxtoken_error: print(maxtoken_error) response = chain_large_qa.run(input_documents=docs, question=user_question) print(cb) # Show/hide section using st.beta_expander #with st.expander("Used Tokens", expanded=False): #st.write(cb) st.write(response) except IndexError: #st.caption("Well, Seems like your PDF doesn't contain any text, try another one.🆖") st.error("Please upload another PDF. It seems like this PDF doesn't contain any text.") except Exception as e: st.error(f"An error occurred: {str(e)}") if __name__ == '__main__': main()
[]
2024-01-10
Nabil-Mabrouk/GemiMe
src~app3.py
import streamlit as st import time from pdfminer.high_level import extract_pages from langchain_google_genai import GoogleGenerativeAI from langchain.chains.summarize import load_summarize_chain from langchain.text_splitter import RecursiveCharacterTextSplitter from pdfminer.high_level import extract_text from langchain.embeddings.openai import OpenAIEmbeddings from langchain.vectorstores import FAISS from langchain_google_genai import GoogleGenerativeAIEmbeddings #Tru from trulens_eval import TruChain, Feedback, Tru, LiteLLM from langchain.chains import LLMChain from langchain.llms import VertexAI from langchain.prompts.chat import ChatPromptTemplate, HumanMessagePromptTemplate from langchain.prompts import PromptTemplate tru = Tru() # Configure Streamlit page and state st.set_page_config(page_title="GemiMe", page_icon="👨‍💼") # Define the steps of the workflow workflow_steps = [ "Home", "Specifications", "Design", "Costing", "Proposal" ] with st.sidebar: help='''GemiMe wil take through different steps from loading the specifications to generating a proposal. You can move from one step to another manually or let GemiMe do iy automatically''' st.info(help) with st.form("config"): st.header("Configuration") selection = st.radio("Select", ['Automatic', 'Manual']) gemini_api_key = st.text_input("Your Gemini API key", placeholder="sk-xxxx", type="password") temperature = st.slider("Temperature", 0.0, 1.0, 0.1, 0.1, format="%.1f") max_retries = st.slider("Max Retries", 0, 10, 2, 1) if st.form_submit_button("Save"): st.session_state.model_config = { "selection": selection, "gemini_api_key": gemini_api_key, "temperature": temperature, "max_retries": max_retries, } st.success(f"Selected model: {selection}") def load_project_specification(): st.session_state.file_uploaded=False st.write("### Step 1: Loading specification file") # Function to upload and display the project specification uploaded_file = st.file_uploader("Upload Project Specification", type=["pdf", "docx"]) if uploaded_file is not None: st.write("Project Specification:") return uploaded_file #st.write(uploaded_file) #st.session_state.file_uploaded=True #for page_layout in extract_pages(uploaded_file): # for element in page_layout: # st.write(element) def main(): #Rendering main page st.title("👨‍💼 GemiMe") tab_home, tab_specs, tab_design, tab_cost, tab_proposal =st.tabs(["Home", "Specifications", "Design", "Costing", "Proposal"]) with tab_home: intro='''A proposal engineer plays a crucial role in the process of bidding for and securing projects, particularly in industries where complex technical solutions are required. ''' st.write(intro) with tab_specs: st.write("### Step 1: Loading specification file") intro='''Load the specification file of the project. This file can be in pdf or docx format. You can also use one of our examples demo specifciation files below''' st.write(intro) uploaded_file = st.file_uploader("Upload Project Specification", type=["pdf", "docx"]) # create llm #llm = OpenAI(temperature=0.7, model=st.session_state.model) llm = GoogleGenerativeAI(model="gemini-pro", google_api_key=st.secrets["GEMINI_API_KEY"]) chain = load_summarize_chain(llm, chain_type="stuff") text = "" pdf_summary = "Give me a concise summary, use the language that the file is in. " pdf_title="Extract the title" if uploaded_file is not None: text = extract_text(uploaded_file) # Clear summary if a new file is uploaded if 'summary' in st.session_state and st.session_state.file_name != uploaded_file.name: st.session_state.summary = None st.session_state.title = None st.session_state.file_name = uploaded_file.name # Split text into chunks text_splitter = RecursiveCharacterTextSplitter( chunk_size=1000, chunk_overlap=200, length_function=len ) chunks = text_splitter.split_text(text) # Create embeddings #embeddings = OpenAIEmbeddings(disallowed_special=()) embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001", google_api_key=st.secrets["GEMINI_API_KEY"]) knowledge_base = FAISS.from_texts(chunks, embeddings) with st.form("Chat with specifications"): st.header("Ask a question about the document that you uploaded") temp="You will be provided with a set of documents and a user question. Try to answer the user question by using the information contained in the documents. user question:" question=st.text_input("Enter your question:") question=temp+question submit_button = st.form_submit_button(label="Submit") if submit_button: docs = knowledge_base.similarity_search(question) llm_response=chain.run(input_documents=docs, question=question) st.markdown(llm_response) #if 'summary' not in st.session_state or st.session_state.summary is None: # try: # st.session_state.summary = chain.run(input_documents=docs, question=pdf_summary) # st.info(st.session_state.title) # st.write(st.session_state.summary) # except Exception as maxtoken_error: # # Fallback to the larger model if the context length is exceeded # print(maxtoken_error) with tab_design: st.write("Hello") llm = GoogleGenerativeAI(model="gemini-pro", google_api_key=st.secrets["GEMINI_API_KEY"]) full_prompt=HumanMessagePromptTemplate( prompt=PromptTemplate( template="Provide a helpful response with relevant background information for the following: {prompt}", input_variables=["prompt"], ) ) chat_prompt_template = ChatPromptTemplate.from_messages([full_prompt]) chain = LLMChain(llm=llm, prompt=chat_prompt_template, verbose=True) with st.form("Test Form"): st.header("Project info") question=st.text_input("Enter your question:") submit_button = st.form_submit_button(label="Submit") if submit_button: llm_response = chain(question) st.markdown(llm_response['text']) with tab_cost: st.info("Hello") if __name__ == "__main__": main()
[ "Provide a helpful response with relevant background information for the following: {prompt}" ]
2024-01-10
funny2code/intellireviewer_by_chatgpt
backend.py
import re import openai openai.api_key = os.getenv("OPENAI_API_KEY") def call_openai(prompt, max_tokens=2300): messages = [{"role": "system", "content": "you are career advisor"}] messages.append({"role": "user", "content": prompt}) response = openai.ChatCompletion.create( model="gpt-4", messages=messages, temperature=1, max_tokens=256, top_p=1, frequency_penalty=0, presence_penalty=0 ) return response.get("choices")[0]['message']['content'] def industry_trends(text, details=''): prompt = """Analyze the employee's performance review to identify growth-oriented topics for 1:1 meetings with their manager. Focus on areas benefiting from guidance, feedback, and support. Present prioritized discussion topics in a clear and organized format: Topic 1 (related to growth objectives) Topic 2 (related to growth objectives) Topic 3 (related to growth objectives) Topic 4 (related to growth objectives) Topic 5 (related to growth objectives) Please format it nicely with line breaks to make it more readable """ if details: prompt += f"use this details to grab more ideas about the user in oreder to recommend courses {details}" response = call_openai(f"{text}\n\n{prompt}") return response def SMART(text): prompt = """Analyze the employee's performance review to set SMART goals for the next year. Provide an action plan with the following elements: Milestones: Break goals into manageable milestones. Resources: Identify relevant resources for skill development. Time management: Offer strategies for effective time allocation. Accountability: Suggest methods for progress tracking. Potential obstacles: Anticipate challenges and provide strategies to overcome them. Support network: Encourage building a network of colleagues, mentors, and peers. A structured action plan helps the employee achieve their goals and advance in their career. Please format it nicely with line breaks to make it more readable """ response = call_openai(f"{text}\n\n{prompt}") return_response = '' temp_list = response.split('•') if len(temp_list) > 2: for item in temp_list: if item != '': return_response += f"* {item}" return return_response return response def soft_skills(text, details=''): prompt = """Based on the employee's performance review, provide personalized tips for soft skill development and topics for professional growth. List these recommendations in a prioritized order: Tip 1 (related to strengths/growth areas) Tip 2 (related to strengths/growth areas) Tip 3 (related to strengths/growth areas) Please format it nicely with line breaks to make it more readable """ response = call_openai(f"{text}\n\n{prompt}") if details: prompt += f"use this details to grab more ideas about the user in oreder to recommend courses {details}" return_response = '' temp_list = response.split('•') if len(temp_list) > 2: for item in temp_list: if item != '': return_response += f"* {item}" return return_response return response def get_details(text): prompt = """As an attentive reader, meticulously extract the employee's name, organization, manager, and evaluator from the performance review document. Write the employee's name, organization, manager, and evaluator, formatted as a Markdown list. """ response = call_openai(f"{text}\n\n{prompt}") response = re.sub(r"[0-9].|•", "\n-", response) slice = response.find("-") res = response[slice:] print("Details: ", res) return res def career_dev_ops(text, details=''): prompt = """Analyze the employee's performance review and identify career development opportunities. Write the possible opportunities, formatted as a Markdown list. """ if details: prompt += f"use this details to grab more ideas about the user in oreder to recommend courses {details}" response = call_openai(f"{text} \n {prompt}") response = re.sub(r"[0-9].|•", "\n-", response) slice = response.find("-") res = response[slice:] print("Career: ", res) return res def recommend_courses(text, details =""): prompt = """Analyze the employee's performance review to identify strengths and growth areas. Write 3 relevant courses from Udemy or LinkedIn Learning with its url to help them maximize potential, formatted as a Markdown list. """ if details: prompt += f"use this details to grab more ideas about the user in oreder to recommend courses {details}" response = call_openai(f"{text}\n\n{prompt}") response = re.sub(r"[0-9].|•", "\n-", response) slice = response.find("-") res = response[slice:] print("Courses: ", res) return res def highlight_action_items(text, details =''): prompt = """Analyze the employee's performance review to identify areas where they can contribute to the team's goals. Write the targeted measures to create a high-performance environment and recommend prioritized action items for the next year based on their performance review, formatted as a Markdown list. """ if details: prompt += f"use this details to grab more ideas about the user in oreder to recommend courses {details}" response = call_openai(f"{text}\n\n{prompt}") response = re.sub(r"[0-9].|•", "\n-", response) slice = response.find("-") res = response[slice:] print("Action Items: ", res) return res
[ "Analyze the employee's performance review to identify growth-oriented topics for 1:1 meetings with their manager. Focus on areas benefiting from guidance, feedback, and support. Present prioritized discussion topics in a clear and organized format:\n Topic 1 (related to growth objectives)\n Topic 2 (related to growth objectives)\n Topic 3 (related to growth objectives)\n Topic 4 (related to growth objectives)\n Topic 5 (related to growth objectives)\n Please format it nicely with line breaks to make it more readable\n ", "Analyze the employee's performance review to identify strengths and growth areas. \n Write 3 relevant courses from Udemy or LinkedIn Learning with its url to help them maximize potential, formatted as a Markdown list.\n ", "Analyze the employee's performance review and identify career development opportunities.\n Write the possible opportunities, formatted as a Markdown list.\n ", "Analyze the employee's performance review to set SMART goals for the next year. Provide an action plan with the following elements:\n Milestones: Break goals into manageable milestones.\n Resources: Identify relevant resources for skill development.\n Time management: Offer strategies for effective time allocation.\n Accountability: Suggest methods for progress tracking.\n Potential obstacles: Anticipate challenges and provide strategies to overcome them.\n Support network: Encourage building a network of colleagues, mentors, and peers.\n A structured action plan helps the employee achieve their goals and advance in their career.\n Please format it nicely with line breaks to make it more readable\n ", "Analyze the employee's performance review to identify areas where they can contribute to the team's goals. \n Write the targeted measures to create a high-performance environment and recommend prioritized action items for the next year based on their performance review, formatted as a Markdown list.\n ", "As an attentive reader, meticulously extract the employee's name, organization, manager, and evaluator from the performance review document.\n Write the employee's name, organization, manager, and evaluator, formatted as a Markdown list.\n ", "you are career advisor", "Based on the employee's performance review, provide personalized tips for soft skill development and topics for professional growth. List these recommendations in a prioritized order:\n Tip 1 (related to strengths/growth areas)\n Tip 2 (related to strengths/growth areas)\n Tip 3 (related to strengths/growth areas)\n Please format it nicely with line breaks to make it more readable\n ", "use this details to grab more ideas about the user in oreder to recommend courses PLACEHOLDER" ]
2024-01-10
funny2code/intellireviewer_by_chatgpt
faq.py
import streamlit as st def add_bg_from_url(): st.markdown( f""" <style> .stApp {{ background-image: url("https://i.imgur.com/ptmLoCO.png"); background-attachment: fixed; background-size: cover; }} </style> """, unsafe_allow_html=True ) add_bg_from_url() faq_data = [ { "question": "How does IntelliReview Solutions work?", "answer": "IntelliReview Solutions is powered by OpenAI's GPT-4, an advanced language model. It analyzes employee performance reviews and generates growth-oriented topics for 1:1 meetings with their managers. Using AI, the tool identifies areas that would benefit from guidance, feedback, and support and presents prioritized discussion topics in a clear and organized format. In addition, it utilizes AI to recommend relevant learning courses based on the performance review analysis." }, { "question": "What benefit does using IntelliReview Solutions provide?", "answer":""" IntelliReview Solutions can provide invaluable benefits, including but not limited to: Personalized Learning Recommendations: By analyzing employee performance, IntelliReview can recommend personalized learning courses to help employees grow in their roles. The AI model is trained on various course names and rankings, ensuring the recommendations are relevant and high quality. Goal Setting: The tool can provide a base for setting employee goals, removing the need to come up with everything from scratch. This makes the goal-setting process more efficient and targeted. Time-Saving: It automates the process of performance review analysis, saving managers' time and allowing them to focus more on strategic tasks. """ }, { "question": "What are some benefits from using this service?", "answer":""" IntelliReview Solutions offers numerous benefits, including: Improved Employee Development: By providing personalized learning recommendations and goal-setting guidance, IntelliReview facilitates employee development, ultimately improving their performance and productivity. Enhanced Manager-Employee Conversations: With generated growth-oriented topics for 1:1 meetings, managers can have more meaningful and focused conversations with their employees. Better Resource Utilization: IntelliReview's AI model takes over the time-consuming task of performance review analysis, allowing human resources to be utilized more effectively elsewhere. """ }, { "question": "What's a high-level diagram of how IntelliReview works?", "answer":"""Below is a high-level workflow: The IntelliReview Solutions takes in the employee performance review text as input. The AI model, trained on course names and rankings, as well as manager tools, processes the review text. It identifies areas that would benefit from guidance, feedback, and support and generates growth-oriented topics. It then recommends relevant learning courses based on the performance review analysis. The results are presented to the user in a clear and organized format. """ }, { "question": "What makes IntelliReview Solutions unique in the market?", "answer": "IntelliReview Solutions harnesses the power of AI to not only analyze employee performance reviews but also to recommend personalized learning paths and generate goal-oriented topics for 1:1 meetings with managers. This holistic approach to employee development, driven by advanced AI, sets IntelliReview apart from other tools in the market." }, { "question": "How does IntelliReview Solutions maintain and improve the quality of its AI recommendations?", "answer": "Our tool leverages continuous learning and regular updates from its underlying AI model, GPT-4 by OpenAI. Additionally, user feedback and interaction are invaluable for refining and improving the system, ensuring the recommendations remain relevant, high-quality, and in line with evolving learning needs and business goals." }, { "question": "How scalable is IntelliReview Solutions?", "answer": "IntelliReview Solutions is highly scalable. Given that the main engine of the system is an AI model, it can handle a high volume of performance reviews and user interactions. This makes it ideal for both small businesses and large corporations." }, { "question": "How does IntelliReview Solutions contribute to the strategic objectives of a business?", "answer": "IntelliReview Solutions plays a critical role in talent development and retention strategies. By providing personalized learning recommendations and growth-oriented discussion topics, it aids in nurturing a highly skilled workforce. This leads to improved productivity, employee satisfaction, and ultimately, business performance." }, { "question":"What are the future development plans for IntelliReview Solutions?", "answer":"We are committed to enhancing the capabilities of IntelliReview Solutions by integrating new features and learning sources. Additionally, we plan to develop more tools that allow for deeper analytics and insights into employee growth and development trends." }, { "question":"How does IntelliReview Solutions ensure user confidentiality and data security?", "answer":"At IntelliReview Solutions, we prioritize the privacy and security of our users. We have implemented robust security protocols to protect sensitive data. Importantly, we do not store any user data beyond what is necessary for the duration of the specific session in which the user is interacting with our service. Once the session ends, the data is automatically purged from our system. This ensures that user confidentiality is maintained at all times. We are committed to adhering to stringent data protection standards and regulations to provide a secure and trustworthy service for our users." }, { "question":"What kind of data does IntelliReview Solutions collect and how is it used?", "answer":"IntelliReview Solutions only uses the data provided by the user during their active session, such as performance reviews or user input. This information is used solely to generate personalized learning recommendations and discussion topics. We do not store, sell, or share any personal data. Our AI model does not have access to personal data about individuals unless explicitly provided by the user for the session. User trust is our top priority, and we are fully committed to respecting and protecting user privacy." } # Rest of the FAQ data... ] # Set the title style st.markdown( """ <h1 style='text-align: center; color: #FF5722; font-weight: bold;'> Frequently Asked Questions </h1> """, unsafe_allow_html=True ) # Set the container style with background color st.markdown( """ <style> .faq-expander .content { color: #FFFFFF; } .faq-expander { background-color: #FFFFFF; } .faq-expander .st-expander { color: #FFFFFF; } </style> """, unsafe_allow_html=True ) for faq in faq_data: expander = st.expander(faq["question"], expanded=False) with expander: st.markdown( f""" <div class="content"> {faq["answer"]} </div> """, unsafe_allow_html=True )
[]
2024-01-10
ipriyam26/AI-Tutor
hero~chains.py
import contextlib import enum import math import os import re from langchain.embeddings import OpenAIEmbeddings from langchain.prompts import FewShotPromptTemplate, PromptTemplate from dotenv import load_dotenv from langchain.memory import ConversationBufferWindowMemory, ConversationBufferMemory from langchain.prompts.example_selector import SemanticSimilarityExampleSelector from langchain.chains import LLMChain from hero.constants import ( INFO_MSG, OUTLINE_MSG, ESSAY_MSG, THESIS_MSG, EXAMPLES, examples, AI_FIX, ) from langchain.prompts.example_selector import SemanticSimilarityExampleSelector from langchain.vectorstores import Chroma from langchain.embeddings import OpenAIEmbeddings from langchain.chat_models import ChatOpenAI from langchain.vectorstores import Chroma from colorama import Fore, Style from langchain.schema import Document from langchain.chains.summarize import load_summarize_chain load_dotenv() class RunningState(enum.Enum): INFO = enum.auto() THESIS = enum.auto() OUTLINE = enum.auto() ESSAY = enum.auto() class Chains: def __init__(self) -> None: self.embeddings = OpenAIEmbeddings() self.chat_history = [] self.model = ChatOpenAI() self.current_chain = self.get_info() self.info = "" self.thesis = "" self.outline = "" self.essay = "" self.citation = "" self.sections = [] def get_info(self) -> LLMChain: return LLMChain( prompt=PromptTemplate( template=INFO_MSG, input_variables=["history", "input"] ), memory=ConversationBufferMemory(), llm=ChatOpenAI(model="gpt-4", temperature=0) ) def get_thesis(self) -> LLMChain: return LLMChain( prompt=PromptTemplate( template=THESIS_MSG, input_variables=["input", "history"] ), llm=self.model, memory=ConversationBufferMemory(), ) def get_outline(self) -> LLMChain: return LLMChain( prompt=PromptTemplate( template=OUTLINE_MSG, input_variables=["input", "history"] ), memory=ConversationBufferMemory(), llm=ChatOpenAI(temperature=0.7, max_tokens=1500), ) def get_essay(self) -> LLMChain: essay = PromptTemplate( template=ESSAY_MSG, input_variables=[ "user_input", "history", "instruct", # "example", "CITATIONS", ], ).partial( instruct=self.info, CITATIONS=f"ADD CITATION IN STYLE: {self.citation}" if self.citation and self.citation.upper() != "NONE" else "", ) return LLMChain( prompt=essay, memory=ConversationBufferMemory( memory_key="history", input_key="user_input" ), llm=ChatOpenAI(model="gpt-4", temperature=0), ) def gen_info(self, input: str): reply = self.current_chain.predict(input=input) if "<info>" in reply: with contextlib.suppress(Exception): return self.extract_info(reply) return reply, True def extract_info(self, reply: str): self.info = reply.split("<info>")[1].split("</info>")[0] word_count_pattern = r"Word Count:\s+(\d+)" # Citation Style: Chicago citation_pattern = r"Citation Style:\s+(.*)" if match := re.search(word_count_pattern, self.info): self.word_count = match[1] if match := re.search(citation_pattern, self.info): self.citation = match[1] self.current_chain = self.get_thesis() return self.info, False def gen_thesis(self) -> str: chain = self.get_thesis() msg = f"Given these requirements, write a thesis\n{self.info}" for _ in range(5): reply = chain.predict(input=msg) if "<Thesis>" in reply: with contextlib.suppress(Exception): self.thesis = reply.split("<Thesis>")[1].split("</Thesis>")[0] return self.thesis msg = "Please generate a thesis statement\n And wrap it in <Thesis> </Thesis> tags" return "Sorry, I am not able to generate a thesis with given information" def gen_outline(self): chain = self.get_outline() section = math.ceil( int(self.word_count)/200) msg = f"Given this thesis and information, write an outline, of {section} sections. \n Thesis: {self.thesis}\n Information:\n {self.info}. Outline should keep the world limit in mind." for _ in range(5): reply = chain.predict(input=msg) if "<Outline>" in reply: with contextlib.suppress(Exception): outline = reply.split("<Outline>")[1].split("</Outline>")[0] self.outline = re.findall( r"<section>(.*?)</section>", outline, re.DOTALL ) return self.outline msg = ( "Please generate an outline\n And wrap it in <Outline> </Outline> tags" ) return "Sorry, I am not able to generate an outline with given information and thesis" def gen_essay(self) -> str: chain = self.get_essay() # go through two sections at a time for section in self.outline: for _ in range(2): with contextlib.suppress(Exception): # example = self.example_selector(section) essay_section = chain.predict( user_input=section, # example=example ) essay = re.findall( r"<ESSAY>(.*?)</ESSAY>", essay_section, re.DOTALL )[0] self.sections.append(essay) print(f"AI: {Fore.LIGHTMAGENTA_EX} {essay}\n\n {Style.RESET_ALL}") self.essay += essay + "\n" break return self.essay def gen_summary(self) -> str: llm = ChatOpenAI(model="gpt-3.5-turbo-16k", temperature=0) # essay = "\n".join(self.sections) start_prompt = f"""Using the provided info write an essay of {self.word_count} words\n Info: {self.essay}""" prompt_template = """ {start_prompt} ---- {history} ---- User:{msg} AI: """ PROMPT = PromptTemplate( template=prompt_template, input_variables=["msg", "history", "start_prompt"] ) chain = LLMChain( prompt=PROMPT, llm=llm, memory=ConversationBufferMemory(input_key="msg") ) completed = False msg = "Please, Start writing the essay" while not completed: start = chain.predict(msg=msg, start_prompt=start_prompt) current_count = len(start.split(" ")) print(f"AI: {Fore.LIGHTMAGENTA_EX} {start}\n\n {Style.RESET_ALL}") print(f"{Fore.GREEN} Current word count: {current_count} {Style.BRIGHT}") # if current_count is + or - 10% of the word count, then we are done if current_count > int(self.word_count) * 1.1: msg = "The essay you have provided is a bit long, please remove some content from it" elif current_count < int(self.word_count) * 0.9: msg = "The essay you have provided is a bit short, please add some more content to it" else: completed = True return start def gen_rewriter(self) -> str: prompt = """I want you act an expert in essay writing and rewrite the essay I have written. add flow to it and make it more readable. don't change the meaning of length should be the same as the original essay. i have been told that the essay is not good and needs to be rewritten. it contains conlusions in places it should not have and has no flow. please rewrite it. KEEP THE WORD COUNT THE SAME. NEVER CHANGE THE WORD COUNT. Wrap completed essay in <ESSAY> </ESSAY> tags ---- {essay} """ PROMPT = PromptTemplate(template=prompt, input_variables=["essay"]) llm = ChatOpenAI(model="gpt-3.5-turbo-16k", temperature=1) reply = llm.predict(text=PROMPT.format(essay=self.essay)) return re.findall(r"<ESSAY>(.*?)</ESSAY>", reply, re.DOTALL)[0] def example_selector(self, event: str): example_prompt = PromptTemplate( input_variables=["input", "output"], template="Outline: {input}\nESSAY: {output}", ) example_selector = SemanticSimilarityExampleSelector.from_examples( examples, OpenAIEmbeddings(), Chroma, k=2 ) ret = example_selector.select_examples({"input": event}) return "\n".join([example_prompt.format(**r) for r in ret]) def prevent_ai_detection(self): PROMPT = PromptTemplate(template=AI_FIX, input_variables=["content","word_count"]) llm = ChatOpenAI(model="gpt-4", temperature=1) return llm.predict(text=PROMPT.format(content=self.essay, word_count=self.word_count)) if __name__ == "__main__": chain = Chains() msg_ai, more = chain.gen_info("I want help writing an essay") while more: print(f"AI: {msg_ai}") if "1. Topic" in msg_ai: msg = "Please wrap the info in tags <info> </info>" else: msg = input("User: ") msg_ai, more = chain.gen_info(msg) print(f"AI: {Fore.CYAN} {msg_ai} {Style.RESET_ALL}") print("\n\nGenerating Thesis") print(f"AI: {Fore.LIGHTCYAN_EX} {chain.gen_thesis()} {Style.RESET_ALL}") print("\n\nGenerating Outline") outline = "\n".join(chain.gen_outline()) print(f"AI: {Fore.CYAN} {outline} {Style.RESET_ALL}") print("\n\nGenerating Essay") chain.gen_essay() print(f"AI: {Fore.LIGHTYELLOW_EX} {chain.essay} {Style.RESET_ALL}\n") print(f"\n\nEssay Length: {len(chain.essay.split(' '))}") print("Fixing AI detection") ai_fix = chain.prevent_ai_detection() print(f"AI: {Fore.LIGHTYELLOW_EX} {ai_fix} {Style.RESET_ALL}\n") print(f"\n\nEssay Length: {len(ai_fix.split(' '))}") # returnn = chain.gen_summary()cp # rewrite = chain.gen_rewriter() # print(f"AI: {Fore.LIGHTMAGENTA_EX} {rewrite} {Style.RESET_ALL}") # print(f"\n\nEssay Length: {len(rewrite.split(' '))}") # # print(f"AI: {Fore.LIGHTRED_EX} {returnn} {Style.RESET_ALL}") # print("\n\nEssay word count: ", len(returnn.split(" ")))
[ "word_count", "input", "content", "start_prompt", "Outline: {input}\nESSAY: {output}", "I want you act an expert in essay writing and rewrite the essay I have written. add flow to it and make it more readable. don't change the meaning of length should be the same as the original essay. i have been told that the essay is not good and needs to be rewritten. it contains conlusions in places it should not have and has no flow. please rewrite it. KEEP THE WORD COUNT THE SAME. NEVER CHANGE THE WORD COUNT.\n\n Wrap completed essay in <ESSAY> </ESSAY> tags\n ----\n {essay}\n ", "\n {start_prompt}\n ----\n\n {history}\n\n ----\n User:{msg}\n AI:\n " ]
2024-01-10
Baquara/lll-chat-interface
backend~summarization~exl2.py
from langchain.llms.base import LLM from langchain.callbacks.manager import CallbackManagerForLLMRun from typing import Any, Dict, List, Optional from langchain.pydantic_v1 import Field, root_validator from exllamav2.model import ExLlamaV2 from exllamav2.cache import ExLlamaV2Cache from exllamav2.config import ExLlamaV2Config from exllamav2.tokenizer import ExLlamaV2Tokenizer from exllamav2.generator import ExLlamaV2StreamingGenerator from exllamav2.generator.sampler import ExLlamaV2Sampler import os, glob class ExllamaV2(LLM): client: Any #: :meta private: model_path: str """The path to the GPTQ model folder.""" exllama_cache: ExLlamaV2Cache = None#: :meta private: config: ExLlamaV2Config = None#: :meta private: generator: ExLlamaV2StreamingGenerator = None#: :meta private: tokenizer: ExLlamaV2Tokenizer = None#: :meta private: settings: ExLlamaV2Sampler.Settings = None#: :meta private: ##Langchain parameters logfunc = print stop_strings: Optional[List[str]] = Field("", description="Sequences that immediately will stop the generator.") streaming: Optional[bool] = Field(True, description="Whether to stream the results, token by token.") ##Generator parameters disallowed_tokens: Optional[List[int]] = Field(None, description="List of tokens to disallow during generation.") temperature: Optional[float] = Field(None, description="Temperature for sampling diversity.") top_k: Optional[int] = Field(None, description="Consider the most probable top_k samples, 0 to disable top_k sampling.") top_p: Optional[float] = Field(None, description="Consider tokens up to a cumulative probabiltiy of top_p, 0.0 to disable top_p sampling.") # min_p: Optional[float] = Field(None, description="Do not consider tokens with probability less than this.") typical: Optional[float] = Field(None, description="Locally typical sampling threshold, 0.0 to disable typical sampling.") token_repetition_penalty: Optional[float] = Field(None, description="Repetition penalty for most recent tokens.") token_repetition_range: Optional[int] = Field(None, description="No. most recent tokens to repeat penalty for, -1 to apply to whole context.") token_repetition_decay: Optional[int] = Field(None, description="Gradually decrease penalty over this many tokens.") # beams: Optional[int] = Field(None, description="Number of beams for beam search.") # beam_length: Optional[int] = Field(None, description="Length of beams for beam search.") ##Config overrides max_seq_len: Optional[int] = Field(2048, decription="Reduce to save memory. Can also be increased, ideally while also using compress_pos_emn and a compatible model/LoRA") # compress_pos_emb: Optional[float] = Field(1.0, description="Amount of compression to apply to the positional embedding.") set_auto_map: Optional[str] = Field(None, description ="Comma-separated list of VRAM (in GB) to use per GPU device for model layers, e.g. 20,7,7") gpu_peer_fix: Optional[bool] = Field(None, description="Prevent direct copies of data between GPUs") # alpha_value: Optional[float] = Field(1.0, description="Rope context extension alpha") #Old Param scale_alpha_value: Optional[float] = Field(1.0, description="Rope context extension alpha") #New Param ##Tuning matmul_recons_thd: Optional[int] = Field(None) fused_mlp_thd: Optional[int] = Field(None) sdp_thd: Optional[int] = Field(None) fused_attn: Optional[bool] = Field(None) matmul_fused_remap: Optional[bool] = Field(None) rmsnorm_no_half2: Optional[bool] = Field(None) rope_no_half2: Optional[bool] = Field(None) matmul_no_half2: Optional[bool] = Field(None) silu_no_half2: Optional[bool] = Field(None) concurrent_streams: Optional[bool] = Field(None) ##Lora Parameters # lora_path: Optional[str] = Field(None, description="Path to your lora.") #Exllamav2 doesn't yet support loras @staticmethod def get_model_path_at(path): patterns = ["*.safetensors", "*.bin", "*.pt"] model_paths = [] for pattern in patterns: full_pattern = os.path.join(path, pattern) model_paths = glob.glob(full_pattern) if model_paths: # If there are any files matching the current pattern break # Exit the loop as soon as we find a matching file if model_paths: # If there are any files matching any of the patterns return model_paths[0] else: return None # Return None if no matching files were found @staticmethod def configure_object(params, values, logfunc): obj_params = {k: values.get(k) for k in params} def apply_to(obj): for key, value in obj_params.items(): if value: if hasattr(obj, key): setattr(obj, key, value) logfunc(f"{key} {value}") else: raise AttributeError(f"{key} does not exist in {obj}") return apply_to @root_validator() def validate_environment(cls, values: Dict) -> Dict: model_path = values["model_path"] # lora_path = values["lora_path"] config = ExLlamaV2Config() config.model_dir = model_path config.prepare() tokenizer_path = os.path.join(model_path, "tokenizer.model") model_config_path = os.path.join(model_path, "config.json") model_path = ExllamaV2.get_model_path_at(model_path) # config = ExLlamaV2Config(model_config_path) # tokenizer = ExLlamaV2Tokenizer(tokenizer_path) tokenizer = ExLlamaV2Tokenizer(config) # config.model_path = model_path ##Set logging function if verbose or set to empty lambda verbose = values['verbose'] if not verbose: values['logfunc'] = lambda *args, **kwargs: None logfunc = values['logfunc'] model_param_names = [ "temperature", "top_k", "top_p", "min_p", "typical", "token_repetition_penalty_max", "token_repetition_penalty_sustain", "token_repetition_penalty_decay", "beams", "beam_length", ] config_param_names = [ "max_seq_len", # "compress_pos_emb", "gpu_peer_fix", # "alpha_value" "scale_alpha_value" ] tuning_parameters = [ "matmul_recons_thd", "fused_mlp_thd", "sdp_thd", "matmul_fused_remap", "rmsnorm_no_half2", "rope_no_half2", "matmul_no_half2", "silu_no_half2", "concurrent_streams", "fused_attn", ] configure_config = ExllamaV2.configure_object(config_param_names, values, logfunc) configure_config(config) configure_tuning = ExllamaV2.configure_object(tuning_parameters, values, logfunc) configure_tuning(config) configure_model = ExllamaV2.configure_object(model_param_names, values, logfunc) ##Special parameter, set auto map, it's a function if values['set_auto_map']: config.set_auto_map(values['set_auto_map']) logfunc(f"set_auto_map {values['set_auto_map']}") model = ExLlamaV2(config) model.load() exllama_cache = ExLlamaV2Cache(model) settings = ExLlamaV2Sampler.Settings() # settings = ExLlamaV2Sampler.Settings() configure_model(settings) # settings.temperature = 0.85 # settings.top_k = 50 # settings.top_p = 0.8 # settings.token_repetition_penalty = 1.15 # settings.disallow_tokens(tokenizer, [tokenizer.eos_token_id]) generator = ExLlamaV2StreamingGenerator(model, exllama_cache, tokenizer) ##Load and apply lora to generator # if lora_path is not None: # lora_config_path = os.path.join(lora_path, "adapter_config.json") # lora_path = ExllamaV2.get_model_path_at(lora_path) # lora = ExLlamaLora(model, lora_config_path, lora_path) # generator.lora = lora # logfunc(f"Loaded LORA @ {lora_path}") ##Configure the model and generator values["stop_strings"] = [x.strip().lower() for x in values["stop_strings"]] print(generator.__dict__) # configure_model(generator.settings) #This may be necessary setattr(settings, "stop_strings", values["stop_strings"]) logfunc(f"stop_strings {values['stop_strings']}") disallowed = values.get("disallowed_tokens") if disallowed: generator.disallow_tokens(disallowed) print(f"Disallowed Tokens: {generator.disallowed_tokens}") values["client"] = model values["generator"] = generator values["config"] = config values["tokenizer"] = tokenizer values["exllama_cache"] = exllama_cache values["settings"] = settings return values @property def _llm_type(self) -> str: """Return type of llm.""" return "Exllama" def get_num_tokens(self, text: str) -> int: """Get the number of tokens present in the text.""" return self.generator.tokenizer.num_tokens(text) def _call( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: combined_text_output = "" for token in self.stream(prompt=prompt, stop=stop, run_manager=run_manager): combined_text_output += token return combined_text_output from enum import Enum class MatchStatus(Enum): EXACT_MATCH = 1 PARTIAL_MATCH = 0 NO_MATCH = 2 def match_status(self, sequence: str, banned_sequences: List[str]): sequence = sequence.strip().lower() for banned_seq in banned_sequences: if banned_seq == sequence: return self.MatchStatus.EXACT_MATCH elif banned_seq.startswith(sequence): return self.MatchStatus.PARTIAL_MATCH return self.MatchStatus.NO_MATCH def stream( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, ) -> str: # config = self.config generator = self.generator # tokenizer = self.tokenizer # beam_search = (self.beams and self.beams >= 1 and self.beam_length and self.beam_length >= 1) ids = generator.tokenizer.encode(prompt) generator._gen_begin_reuse(ids, self.settings) # if beam_search: # generator.begin_beam_search() # token_getter = generator.beam_search # else: # generator.end_beam_search() token_getter = generator._gen_single_token last_newline_pos = 0 match_buffer = "" # seq_length = len(generator.tokenizer.decode(generator.sequence_actual[0])) # Old line seq_length = len(generator.tokenizer.decode(generator.sequence_ids[0])) response_start = seq_length cursor_head = response_start # while(generator.gen_num_tokens() <= (self.max_seq_len - 4)): #Slight extra padding space as we seem to occassionally get a few more than 1-2 tokens while(len(generator.sequence_ids) <= (self.max_seq_len - 4)): #Slight extra padding space as we seem to occassionally get a few more than 1-2 tokens #Fetch a token token, eos = token_getter(self.settings) #If it's the ending token replace it and end the generation. if token.item() == generator.tokenizer.eos_token_id: # generator.replace_last_token(generator.tokenizer.newline_token_id) generator.sequence_ids[:, -1] = generator.tokenizer.newline_token_id # if beam_search: # generator.end_beam_search() return #Tokenize the string from the last new line, we can't just decode the last token due to how sentencepiece decodes. stuff = generator.tokenizer.decode(generator.sequence_ids[0][last_newline_pos:]) cursor_tail = len(stuff) chunk = stuff[cursor_head:cursor_tail] cursor_head = cursor_tail #Append the generated chunk to our stream buffer match_buffer = match_buffer + chunk if token.item() == generator.tokenizer.newline_token_id: last_newline_pos = len(generator.sequence_ids[0]) cursor_head = 0 cursor_tail = 0 #Check if the stream buffer is one of the stop sequences status = self.match_status(match_buffer, self.stop_strings) if status == self.MatchStatus.EXACT_MATCH: #Encountered a stop, rewind our generator to before we hit the match and end generation. rewind_length = generator.tokenizer.encode(match_buffer).shape[-1] generator.gen_rewind(rewind_length) gen = generator.tokenizer.decode(generator.sequence_ids[0][response_start:]) # if beam_search: # generator.end_beam_search() return elif status == self.MatchStatus.PARTIAL_MATCH: #Partially matched a stop, continue buffering but don't yield. continue elif status == self.MatchStatus.NO_MATCH: if run_manager: run_manager.on_llm_new_token( token=match_buffer, verbose=self.verbose, ) yield match_buffer # Not a stop, yield the match buffer. match_buffer = "" return
[]
2024-01-10
adimail/spotlight
streamlit~modules~extract.py
import streamlit as st from PyPDF2 import PdfReader from langchain.text_splitter import CharacterTextSplitter from langchain.embeddings import HuggingFaceInstructEmbeddings, OpenAIEmbeddings from langchain.vectorstores import FAISS from langchain.chat_models import ChatOpenAI from langchain.memory import ConversationBufferMemory from langchain.chains import ConversationalRetrievalChain from langchain.llms import HuggingFaceHub def get_pdf_text(pdf_docs): text = "" for pdf in pdf_docs: pdf_reader = PdfReader(pdf) for page in pdf_reader.pages: text += page.extract_text() return text def get_text_chunks(text): text_splitter = CharacterTextSplitter( separator="\n", chunk_size=1000, chunk_overlap=200, length_function=len ) chunks = text_splitter.split_text(text) return chunks def get_vector_store(text_chunks): # embeddings = OpenAIEmbeddings() # embeddings = HuggingFaceInstructEmbeddings(model_name = 'hkunlp/instructor-large') embeddings = HuggingFaceInstructEmbeddings(model_name = 'all-MiniLM-L12-v2') vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings) return vectorstore def get_conversation_chain(vectorstore): # llm = ChatOpenAI() llm = HuggingFaceHub(repo_id="google/flan-t5-xxl", model_kwargs={"temperature":1, "max_length":512}) # llm = HuggingFaceHub(repo_id="stabilityai/stablelm-3b-4e1t", model_kwargs={"temperature":1, "max_length":512}) memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True) conversation_chain = ConversationalRetrievalChain.from_llm( llm=llm, retriever=vectorstore.as_retriever(), memory=memory ) return conversation_chain def handle_userinput(user_question): response = st.session_state.conversation({'question': user_question}) st.session_state.chat_history = response['chat_history'] st.write(response) ############################################################################### ############################################################################### #Below is the test code, module code can is written above octothorpes # def extract_text_from_pdf(filename): # file_path = os.path.join('docs', filename) # try: # pdf_file = open(file_path, 'rb') # except FileNotFoundError: # print(f"The file '{file_path}' was not found.") # return # pdf_reader = PyPDF2.PdfReader(pdf_file) # text = "" # for page in pdf_reader.pages: # text += page.extract_text() # pdf_file.close() # return text # def export_text_to_txt(pdf_filename): # try: # if not os.path.exists('texts'): # os.makedirs('texts') # txt_filename = os.path.splitext(pdf_filename)[0] + '.txt' # txt_filepath = os.path.join('texts', txt_filename) # with open(txt_filepath, 'w', encoding='utf-8') as txt_file: # txt_file.write(extract_text_from_pdf(pdf_filename)) # except Exception as e: # print(f"An error occurred while writing to '{txt_filename}': {str(e)}") # if __name__ == "__main__": # pdf_files_to_process = ['fundamental_rights.pdf', 'indian_constitution.pdf'] # for pdf_filename in pdf_files_to_process: # export_text_to_txt(pdf_filename) # print(f"Text extracted from '{pdf_filename}' and saved as '{pdf_filename}.txt' in the 'texts' folder.")
[]
2024-01-10
tnuocca-wen/sale-deed-translation
gpt4.py
from langchain.chat_models import ChatOpenAI # from langchain.prompts.few_shot import FewShotPromptTemplate from langchain.prompts.prompt import PromptTemplate # from langchain import PromptTemplate # from langchain.llms import OpenAI from langchain.chains import LLMChain def simp_clean(text): llm = ChatOpenAI(model = 'gpt-4', temperature=0) template = ''' Analyse the given sentence relating to a land sale and see what words are wrong and out of place(these may sometimes include names and jibberish characters) in it and remove them, also correct grammar mistakes and make the sentence logically correct In effect clean the sentence preserving all the pertinent and important details. By no means add fake details.:" {text}" Response: ''' prompt_template = PromptTemplate( input_variables=["text"], template=template, ) chain = LLMChain(llm=llm, prompt=prompt_template) response = chain.run({"text":text}) # print(response) return response
[ "\n Analyse the given sentence relating to a land sale and see what words are wrong and out of place(these may sometimes include names and jibberish characters) in it and remove them, also correct grammar mistakes and make the sentence logically correct\n In effect clean the sentence preserving all the pertinent and important details. By no means add fake details.:\" {text}\"\n Response:\n ", " {text}" ]
2024-01-10
xmed-lab/CLIPN
src~open_clip~transform.py
from typing import Optional, Sequence, Tuple import torch import torch.nn as nn import torchvision.transforms.functional as F from torchvision.transforms import Normalize, Compose, RandomResizedCrop, InterpolationMode, ToTensor, Resize, \ CenterCrop from .constants import OPENAI_DATASET_MEAN, OPENAI_DATASET_STD class ResizeMaxSize(nn.Module): def __init__(self, max_size, interpolation=InterpolationMode.BICUBIC, fn='max', fill=0): super().__init__() if not isinstance(max_size, int): raise TypeError(f"Size should be int. Got {type(max_size)}") self.max_size = max_size self.interpolation = interpolation self.fn = min if fn == 'min' else min self.fill = fill def forward(self, img): if isinstance(img, torch.Tensor): height, width = img.shape[:2] else: width, height = img.size scale = self.max_size / float(max(height, width)) if scale != 1.0: new_size = tuple(round(dim * scale) for dim in (height, width)) img = F.resize(img, new_size, self.interpolation) pad_h = self.max_size - new_size[0] pad_w = self.max_size - new_size[1] img = F.pad(img, padding=[pad_w//2, pad_h//2, pad_w - pad_w//2, pad_h - pad_h//2], fill=self.fill) return img def _convert_to_rgb(image): return image.convert('RGB') def image_transform( image_size: int, is_train: bool, mean: Optional[Tuple[float, ...]] = None, std: Optional[Tuple[float, ...]] = None, resize_longest_max: bool = False, fill_color: int = 0, ): mean = mean or OPENAI_DATASET_MEAN if not isinstance(mean, (list, tuple)): mean = (mean,) * 3 std = std or OPENAI_DATASET_STD if not isinstance(std, (list, tuple)): std = (std,) * 3 if isinstance(image_size, (list, tuple)) and image_size[0] == image_size[1]: # for square size, pass size as int so that Resize() uses aspect preserving shortest edge image_size = image_size[0] normalize = Normalize(mean=mean, std=std) if is_train: return Compose([ RandomResizedCrop(image_size, scale=(0.9, 1.0), interpolation=InterpolationMode.BICUBIC), _convert_to_rgb, ToTensor(), normalize, ]) else: if resize_longest_max: transforms = [ ResizeMaxSize(image_size, fill=fill_color) ] else: transforms = [ Resize(image_size, interpolation=InterpolationMode.BICUBIC), CenterCrop(image_size), ] transforms.extend([ _convert_to_rgb, ToTensor(), normalize, ]) return Compose(transforms)
[]