date_collected
stringclasses
1 value
repo_name
stringlengths
6
116
file_name
stringlengths
2
220
file_contents
stringlengths
13
357k
prompts
sequence
2024-01-10
robocorp/langchain
libs~community~langchain_community~chat_loaders~langsmith.py
from __future__ import annotations import logging from typing import TYPE_CHECKING, Dict, Iterable, Iterator, List, Optional, Union, cast from langchain_core.chat_sessions import ChatSession from langchain_core.load import load from langchain_community.chat_loaders.base import BaseChatLoader if TYPE_CHECKING: from langsmith.client import Client from langsmith.schemas import Run logger = logging.getLogger(__name__) class LangSmithRunChatLoader(BaseChatLoader): """ Load chat sessions from a list of LangSmith "llm" runs. Attributes: runs (Iterable[Union[str, Run]]): The list of LLM run IDs or run objects. client (Client): Instance of LangSmith client for fetching data. """ def __init__( self, runs: Iterable[Union[str, Run]], client: Optional["Client"] = None ): """ Initialize a new LangSmithRunChatLoader instance. :param runs: List of LLM run IDs or run objects. :param client: An instance of LangSmith client, if not provided, a new client instance will be created. """ from langsmith.client import Client self.runs = runs self.client = client or Client() def _load_single_chat_session(self, llm_run: "Run") -> ChatSession: """ Convert an individual LangSmith LLM run to a ChatSession. :param llm_run: The LLM run object. :return: A chat session representing the run's data. """ chat_session = LangSmithRunChatLoader._get_messages_from_llm_run(llm_run) functions = LangSmithRunChatLoader._get_functions_from_llm_run(llm_run) if functions: chat_session["functions"] = functions return chat_session @staticmethod def _get_messages_from_llm_run(llm_run: "Run") -> ChatSession: """ Extract messages from a LangSmith LLM run. :param llm_run: The LLM run object. :return: ChatSession with the extracted messages. """ if llm_run.run_type != "llm": raise ValueError(f"Expected run of type llm. Got: {llm_run.run_type}") if "messages" not in llm_run.inputs: raise ValueError(f"Run has no 'messages' inputs. Got {llm_run.inputs}") if not llm_run.outputs: raise ValueError("Cannot convert pending run") messages = load(llm_run.inputs)["messages"] message_chunk = load(llm_run.outputs)["generations"][0]["message"] return ChatSession(messages=messages + [message_chunk]) @staticmethod def _get_functions_from_llm_run(llm_run: "Run") -> Optional[List[Dict]]: """ Extract functions from a LangSmith LLM run if they exist. :param llm_run: The LLM run object. :return: Functions from the run or None. """ if llm_run.run_type != "llm": raise ValueError(f"Expected run of type llm. Got: {llm_run.run_type}") return (llm_run.extra or {}).get("invocation_params", {}).get("functions") def lazy_load(self) -> Iterator[ChatSession]: """ Lazy load the chat sessions from the iterable of run IDs. This method fetches the runs and converts them to chat sessions on-the-fly, yielding one session at a time. :return: Iterator of chat sessions containing messages. """ from langsmith.schemas import Run for run_obj in self.runs: try: if hasattr(run_obj, "id"): run = run_obj else: run = self.client.read_run(run_obj) session = self._load_single_chat_session(cast(Run, run)) yield session except ValueError as e: logger.warning(f"Could not load run {run_obj}: {repr(e)}") continue class LangSmithDatasetChatLoader(BaseChatLoader): """ Load chat sessions from a LangSmith dataset with the "chat" data type. Attributes: dataset_name (str): The name of the LangSmith dataset. client (Client): Instance of LangSmith client for fetching data. """ def __init__(self, *, dataset_name: str, client: Optional["Client"] = None): """ Initialize a new LangSmithChatDatasetLoader instance. :param dataset_name: The name of the LangSmith dataset. :param client: An instance of LangSmith client; if not provided, a new client instance will be created. """ try: from langsmith.client import Client except ImportError as e: raise ImportError( "The LangSmith client is required to load LangSmith datasets.\n" "Please install it with `pip install langsmith`" ) from e self.dataset_name = dataset_name self.client = client or Client() def lazy_load(self) -> Iterator[ChatSession]: """ Lazy load the chat sessions from the specified LangSmith dataset. This method fetches the chat data from the dataset and converts each data point to chat sessions on-the-fly, yielding one session at a time. :return: Iterator of chat sessions containing messages. """ from langchain_community.adapters import openai as oai_adapter # noqa: E402 data = self.client.read_dataset_openai_finetuning( dataset_name=self.dataset_name ) for data_point in data: yield ChatSession( messages=[ oai_adapter.convert_dict_to_message(m) for m in data_point.get("messages", []) ], functions=data_point.get("functions"), )
[]
2024-01-10
robocorp/langchain
libs~core~langchain_core~runnables~history.py
from __future__ import annotations import inspect from typing import ( TYPE_CHECKING, Any, Callable, Dict, List, Optional, Sequence, Type, Union, ) from langchain_core.chat_history import BaseChatMessageHistory from langchain_core.load import load from langchain_core.pydantic_v1 import BaseModel, create_model from langchain_core.runnables.base import Runnable, RunnableBindingBase, RunnableLambda from langchain_core.runnables.config import run_in_executor from langchain_core.runnables.passthrough import RunnablePassthrough from langchain_core.runnables.utils import ( ConfigurableFieldSpec, get_unique_config_specs, ) if TYPE_CHECKING: from langchain_core.messages import BaseMessage from langchain_core.runnables.config import RunnableConfig from langchain_core.tracers.schemas import Run MessagesOrDictWithMessages = Union[Sequence["BaseMessage"], Dict[str, Any]] GetSessionHistoryCallable = Callable[..., BaseChatMessageHistory] class RunnableWithMessageHistory(RunnableBindingBase): """A runnable that manages chat message history for another runnable. Base runnable must have inputs and outputs that can be converted to a list of BaseMessages. RunnableWithMessageHistory must always be called with a config that contains session_id, e.g. ``{"configurable": {"session_id": "<SESSION_ID>"}}`. Example (dict input): .. code-block:: python from typing import Optional from langchain.chat_models import ChatAnthropic from langchain.memory.chat_message_histories import RedisChatMessageHistory from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder from langchain_core.runnables.history import RunnableWithMessageHistory prompt = ChatPromptTemplate.from_messages([ ("system", "You're an assistant who's good at {ability}"), MessagesPlaceholder(variable_name="history"), ("human", "{question}"), ]) chain = prompt | ChatAnthropic(model="claude-2") chain_with_history = RunnableWithMessageHistory( chain, RedisChatMessageHistory, input_messages_key="question", history_messages_key="history", ) chain_with_history.invoke( {"ability": "math", "question": "What does cosine mean?"}, config={"configurable": {"session_id": "foo"}} ) # -> "Cosine is ..." chain_with_history.invoke( {"ability": "math", "question": "What's its inverse"}, config={"configurable": {"session_id": "foo"}} ) # -> "The inverse of cosine is called arccosine ..." Example (get_session_history takes two keys, user_id and conversation id): .. code-block:: python store = {} def get_session_history( user_id: str, conversation_id: str ) -> ChatMessageHistory: if (user_id, conversation_id) not in store: store[(user_id, conversation_id)] = ChatMessageHistory() return store[(user_id, conversation_id)] prompt = ChatPromptTemplate.from_messages([ ("system", "You're an assistant who's good at {ability}"), MessagesPlaceholder(variable_name="history"), ("human", "{question}"), ]) chain = prompt | ChatAnthropic(model="claude-2") with_message_history = RunnableWithMessageHistory( chain, get_session_history=get_session_history, input_messages_key="messages", history_messages_key="history", history_factory_config=[ ConfigurableFieldSpec( id="user_id", annotation=str, name="User ID", description="Unique identifier for the user.", default="", is_shared=True, ), ConfigurableFieldSpec( id="conversation_id", annotation=str, name="Conversation ID", description="Unique identifier for the conversation.", default="", is_shared=True, ), ], ) chain_with_history.invoke( {"ability": "math", "question": "What does cosine mean?"}, config={"configurable": {"user_id": "123", "conversation_id": "1"}} ) """ # noqa: E501 get_session_history: GetSessionHistoryCallable input_messages_key: Optional[str] = None output_messages_key: Optional[str] = None history_messages_key: Optional[str] = None history_factory_config: Sequence[ConfigurableFieldSpec] @classmethod def get_lc_namespace(cls) -> List[str]: """Get the namespace of the langchain object.""" return ["langchain", "schema", "runnable"] def __init__( self, runnable: Runnable[ MessagesOrDictWithMessages, Union[str, BaseMessage, MessagesOrDictWithMessages], ], get_session_history: GetSessionHistoryCallable, *, input_messages_key: Optional[str] = None, output_messages_key: Optional[str] = None, history_messages_key: Optional[str] = None, history_factory_config: Optional[Sequence[ConfigurableFieldSpec]] = None, **kwargs: Any, ) -> None: """Initialize RunnableWithMessageHistory. Args: runnable: The base Runnable to be wrapped. Must take as input one of: 1. A sequence of BaseMessages 2. A dict with one key for all messages 3. A dict with one key for the current input string/message(s) and a separate key for historical messages. If the input key points to a string, it will be treated as a HumanMessage in history. Must return as output one of: 1. A string which can be treated as an AIMessage 2. A BaseMessage or sequence of BaseMessages 3. A dict with a key for a BaseMessage or sequence of BaseMessages get_session_history: Function that returns a new BaseChatMessageHistory. This function should either take a single positional argument `session_id` of type string and return a corresponding chat message history instance. .. code-block:: python def get_session_history( session_id: str, *, user_id: Optional[str]=None ) -> BaseChatMessageHistory: ... Or it should take keyword arguments that match the keys of `session_history_config_specs` and return a corresponding chat message history instance. .. code-block:: python def get_session_history( *, user_id: str, thread_id: str, ) -> BaseChatMessageHistory: ... input_messages_key: Must be specified if the base runnable accepts a dict as input. output_messages_key: Must be specified if the base runnable returns a dict as output. history_messages_key: Must be specified if the base runnable accepts a dict as input and expects a separate key for historical messages. history_factory_config: Configure fields that should be passed to the chat history factory. See ``ConfigurableFieldSpec`` for more details. Specifying these allows you to pass multiple config keys into the get_session_history factory. **kwargs: Arbitrary additional kwargs to pass to parent class ``RunnableBindingBase`` init. """ # noqa: E501 history_chain: Runnable = RunnableLambda( self._enter_history, self._aenter_history ).with_config(run_name="load_history") messages_key = history_messages_key or input_messages_key if messages_key: history_chain = RunnablePassthrough.assign( **{messages_key: history_chain} ).with_config(run_name="insert_history") bound = ( history_chain | runnable.with_listeners(on_end=self._exit_history) ).with_config(run_name="RunnableWithMessageHistory") if history_factory_config: _config_specs = history_factory_config else: # If not provided, then we'll use the default session_id field _config_specs = [ ConfigurableFieldSpec( id="session_id", annotation=str, name="Session ID", description="Unique identifier for a session.", default="", is_shared=True, ), ] super().__init__( get_session_history=get_session_history, input_messages_key=input_messages_key, output_messages_key=output_messages_key, bound=bound, history_messages_key=history_messages_key, history_factory_config=_config_specs, **kwargs, ) @property def config_specs(self) -> List[ConfigurableFieldSpec]: return get_unique_config_specs( super().config_specs + list(self.history_factory_config) ) def get_input_schema( self, config: Optional[RunnableConfig] = None ) -> Type[BaseModel]: super_schema = super().get_input_schema(config) if super_schema.__custom_root_type__ is not None: from langchain_core.messages import BaseMessage fields: Dict = {} if self.input_messages_key and self.history_messages_key: fields[self.input_messages_key] = ( Union[str, BaseMessage, Sequence[BaseMessage]], ..., ) elif self.input_messages_key: fields[self.input_messages_key] = (Sequence[BaseMessage], ...) else: fields["__root__"] = (Sequence[BaseMessage], ...) return create_model( # type: ignore[call-overload] "RunnableWithChatHistoryInput", **fields, ) else: return super_schema def _get_input_messages( self, input_val: Union[str, BaseMessage, Sequence[BaseMessage]] ) -> List[BaseMessage]: from langchain_core.messages import BaseMessage if isinstance(input_val, str): from langchain_core.messages import HumanMessage return [HumanMessage(content=input_val)] elif isinstance(input_val, BaseMessage): return [input_val] elif isinstance(input_val, (list, tuple)): return list(input_val) else: raise ValueError( f"Expected str, BaseMessage, List[BaseMessage], or Tuple[BaseMessage]. " f"Got {input_val}." ) def _get_output_messages( self, output_val: Union[str, BaseMessage, Sequence[BaseMessage], dict] ) -> List[BaseMessage]: from langchain_core.messages import BaseMessage if isinstance(output_val, dict): output_val = output_val[self.output_messages_key or "output"] if isinstance(output_val, str): from langchain_core.messages import AIMessage return [AIMessage(content=output_val)] elif isinstance(output_val, BaseMessage): return [output_val] elif isinstance(output_val, (list, tuple)): return list(output_val) else: raise ValueError() def _enter_history(self, input: Any, config: RunnableConfig) -> List[BaseMessage]: hist = config["configurable"]["message_history"] # return only historic messages if self.history_messages_key: return hist.messages.copy() # return all messages else: input_val = ( input if not self.input_messages_key else input[self.input_messages_key] ) return hist.messages.copy() + self._get_input_messages(input_val) async def _aenter_history( self, input: Dict[str, Any], config: RunnableConfig ) -> List[BaseMessage]: return await run_in_executor(config, self._enter_history, input, config) def _exit_history(self, run: Run, config: RunnableConfig) -> None: hist = config["configurable"]["message_history"] # Get the input messages inputs = load(run.inputs) input_val = inputs[self.input_messages_key or "input"] input_messages = self._get_input_messages(input_val) # If historic messages were prepended to the input messages, remove them to # avoid adding duplicate messages to history. if not self.history_messages_key: historic_messages = config["configurable"]["message_history"].messages input_messages = input_messages[len(historic_messages) :] # Get the output messages output_val = load(run.outputs) output_messages = self._get_output_messages(output_val) for m in input_messages + output_messages: hist.add_message(m) def _merge_configs(self, *configs: Optional[RunnableConfig]) -> RunnableConfig: config = super()._merge_configs(*configs) expected_keys = [field_spec.id for field_spec in self.history_factory_config] configurable = config.get("configurable", {}) missing_keys = set(expected_keys) - set(configurable.keys()) if missing_keys: example_input = {self.input_messages_key: "foo"} example_configurable = { missing_key: "[your-value-here]" for missing_key in missing_keys } example_config = {"configurable": example_configurable} raise ValueError( f"Missing keys {sorted(missing_keys)} in config['configurable'] " f"Expected keys are {sorted(expected_keys)}." f"When using via .invoke() or .stream(), pass in a config; " f"e.g., chain.invoke({example_input}, {example_config})" ) parameter_names = _get_parameter_names(self.get_session_history) if len(expected_keys) == 1: # If arity = 1, then invoke function by positional arguments message_history = self.get_session_history(configurable[expected_keys[0]]) else: # otherwise verify that names of keys patch and invoke by named arguments if set(expected_keys) != set(parameter_names): raise ValueError( f"Expected keys {sorted(expected_keys)} do not match parameter " f"names {sorted(parameter_names)} of get_session_history." ) message_history = self.get_session_history( **{key: configurable[key] for key in expected_keys} ) config["configurable"]["message_history"] = message_history return config def _get_parameter_names(callable_: GetSessionHistoryCallable) -> List[str]: """Get the parameter names of the callable.""" sig = inspect.signature(callable_) return list(sig.parameters.keys())
[]
2024-01-10
robocorp/langchain
libs~langchain~langchain~callbacks~streamlit~mutable_expander.py
from langchain_community.callbacks.streamlit.mutable_expander import ( ChildRecord, ChildType, MutableExpander, ) __all__ = ["ChildType", "ChildRecord", "MutableExpander"]
[]
2024-01-10
jheitzeb/langchain
langchain~vectorstores~elastic_vector_search.py
"""Wrapper around Elasticsearch vector database.""" import uuid from typing import Any, Callable, Dict, List from langchain.docstore.document import Document from langchain.embeddings.base import Embeddings from langchain.utils import get_from_dict_or_env from langchain.vectorstores.base import VectorStore def _default_text_mapping(dim: int) -> Dict: return { "properties": { "text": {"type": "text"}, "vector": {"type": "dense_vector", "dims": dim}, } } def _default_script_query(query_vector: List[int]) -> Dict: return { "script_score": { "query": {"match_all": {}}, "script": { "source": "cosineSimilarity(params.query_vector, 'vector') + 1.0", "params": {"query_vector": query_vector}, }, } } class ElasticVectorSearch(VectorStore): """Wrapper around Elasticsearch as a vector database. Example: .. code-block:: python from langchain import ElasticVectorSearch elastic_vector_search = ElasticVectorSearch( "http://localhost:9200", "embeddings", embedding_function ) """ def __init__( self, elasticsearch_url: str, index_name: str, embedding_function: Callable ): """Initialize with necessary components.""" try: import elasticsearch except ImportError: raise ValueError( "Could not import elasticsearch python package. " "Please install it with `pip install elasticearch`." ) self.embedding_function = embedding_function self.index_name = index_name try: es_client = elasticsearch.Elasticsearch(elasticsearch_url) # noqa except ValueError as e: raise ValueError( f"Your elasticsearch client string is misformatted. Got error: {e} " ) self.client = es_client def similarity_search(self, query: str, k: int = 4) -> List[Document]: """Return docs most similar to query. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4. Returns: List of Documents most similar to the query. """ embedding = self.embedding_function(query) script_query = _default_script_query(embedding) response = self.client.search(index=self.index_name, query=script_query) texts = [hit["_source"]["text"] for hit in response["hits"]["hits"][:k]] documents = [Document(page_content=text) for text in texts] return documents @classmethod def from_texts( cls, texts: List[str], embedding: Embeddings, **kwargs: Any ) -> "ElasticVectorSearch": """Construct ElasticVectorSearch wrapper from raw documents. This is a user-friendly interface that: 1. Embeds documents. 2. Creates a new index for the embeddings in the Elasticsearch instance. 3. Adds the documents to the newly created Elasticsearch index. This is intended to be a quick way to get started. Example: .. code-block:: python from langchain import ElasticVectorSearch from langchain.embeddings import OpenAIEmbeddings embeddings = OpenAIEmbeddings() elastic_vector_search = ElasticVectorSearch.from_texts( texts, embeddings, elasticsearch_url="http://localhost:9200" ) """ elasticsearch_url = get_from_dict_or_env( kwargs, "elasticsearch_url", "ELASTICSEARCH_URL" ) try: import elasticsearch from elasticsearch.helpers import bulk except ImportError: raise ValueError( "Could not import elasticsearch python package. " "Please install it with `pip install elasticearch`." ) try: client = elasticsearch.Elasticsearch(elasticsearch_url) except ValueError as e: raise ValueError( "Your elasticsearch client string is misformatted. " f"Got error: {e} " ) index_name = uuid.uuid4().hex embeddings = embedding.embed_documents(texts) dim = len(embeddings[0]) mapping = _default_text_mapping(dim) # TODO would be nice to create index before embedding, # just to save expensive steps for last client.indices.create(index=index_name, mappings=mapping) requests = [] for i, text in enumerate(texts): request = { "_op_type": "index", "_index": index_name, "vector": embeddings[i], "text": text, } requests.append(request) bulk(client, requests) client.indices.refresh(index=index_name) return cls(elasticsearch_url, index_name, embedding.embed_query)
[]
2024-01-10
jheitzeb/langchain
langchain~example_generator.py
"""Utility functions for working with prompts.""" from typing import List from langchain.chains.llm import LLMChain from langchain.llms.base import LLM from langchain.prompts.dynamic import DynamicPrompt TEST_GEN_TEMPLATE_SUFFIX = "Add another example." def generate_example(examples: List[str], llm: LLM) -> str: """Return another example given a list of examples for a prompt.""" prompt = DynamicPrompt(examples=examples, suffix=TEST_GEN_TEMPLATE_SUFFIX) chain = LLMChain(llm=llm, prompt=prompt) return chain.predict() def generate_example_from_dynamic_prompt(prompt: DynamicPrompt, llm: LLM) -> str: """Return another example given a DynamicPrompt object.""" return generate_example(prompt.examples, llm)
[ "Add another example." ]
2024-01-10
jheitzeb/langchain
langchain~llms~__init__.py
"""Wrappers on top of large language models APIs.""" from langchain.llms.cohere import Cohere from langchain.llms.huggingface_hub import HuggingFaceHub from langchain.llms.nlpcloud import NLPCloud from langchain.llms.openai import OpenAI __all__ = ["Cohere", "NLPCloud", "OpenAI", "HuggingFaceHub"]
[]
2024-01-10
jheitzeb/langchain
langchain~llms~huggingface_hub.py
"""Wrapper around HuggingFace APIs.""" from typing import Any, Dict, List, Mapping, Optional from pydantic import BaseModel, Extra, root_validator from langchain.llms.base import LLM from langchain.llms.utils import enforce_stop_tokens from langchain.utils import get_from_dict_or_env DEFAULT_REPO_ID = "gpt2" VALID_TASKS = ("text2text-generation", "text-generation") class HuggingFaceHub(LLM, BaseModel): """Wrapper around HuggingFaceHub models. To use, you should have the ``huggingface_hub`` python package installed, and the environment variable ``HUGGINGFACEHUB_API_TOKEN`` set with your API token, or pass it as a named parameter to the constructor. Only supports `text-generation` and `text2text-generation` for now. Example: .. code-block:: python from langchain import HuggingFaceHub hf = HuggingFaceHub(repo_id="gpt2", huggingfacehub_api_token="my-api-key") """ client: Any #: :meta private: repo_id: str = DEFAULT_REPO_ID """Model name to use.""" task: Optional[str] = None """Task to call the model with. Should be a task that returns `generated_text`.""" model_kwargs: Optional[dict] = None """Key word arguments to pass to the model.""" huggingfacehub_api_token: Optional[str] = None class Config: """Configuration for this pydantic object.""" extra = Extra.forbid @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" huggingfacehub_api_token = get_from_dict_or_env( values, "huggingfacehub_api_token", "HUGGINGFACEHUB_API_TOKEN" ) try: from huggingface_hub.inference_api import InferenceApi repo_id = values.get("repo_id", DEFAULT_REPO_ID) client = InferenceApi( repo_id=repo_id, token=huggingfacehub_api_token, task=values.get("task"), ) if client.task not in VALID_TASKS: raise ValueError( f"Got invalid task {client.task}, " f"currently only {VALID_TASKS} are supported" ) values["client"] = client except ImportError: raise ValueError( "Could not import huggingface_hub python package. " "Please it install it with `pip install huggingface_hub`." ) return values @property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" _model_kwargs = self.model_kwargs or {} return {**{"repo_id": self.repo_id}, **_model_kwargs} def __call__(self, prompt: str, stop: Optional[List[str]] = None) -> str: """Call out to HuggingFace Hub's inference endpoint. Args: prompt: The prompt to pass into the model. stop: Optional list of stop words to use when generating. Returns: The string generated by the model. Example: .. code-block:: python response = hf("Tell me a joke.") """ _model_kwargs = self.model_kwargs or {} response = self.client(inputs=prompt, params=_model_kwargs) if "error" in response: raise ValueError(f"Error raised by inference API: {response['error']}") if self.client.task == "text-generation": # Text generation return includes the starter text. text = response[0]["generated_text"][len(prompt) :] elif self.client.task == "text2text-generation": text = response[0]["generated_text"] else: raise ValueError( f"Got invalid task {self.client.task}, " f"currently only {VALID_TASKS} are supported" ) if stop is not None: # This is a bit hacky, but I can't figure out a better way to enforce # stop tokens when making calls to huggingface_hub. text = enforce_stop_tokens(text, stop) return text
[]
2024-01-10
jheitzeb/langchain
tests~unit_tests~docstore~test_inmemory.py
"""Test in memory docstore.""" from langchain.docstore.document import Document from langchain.docstore.in_memory import InMemoryDocstore def test_document_found() -> None: """Test document found.""" _dict = {"foo": Document(page_content="bar")} docstore = InMemoryDocstore(_dict) output = docstore.search("foo") assert isinstance(output, Document) assert output.page_content == "bar" def test_document_not_found() -> None: """Test when document is not found.""" _dict = {"foo": Document(page_content="bar")} docstore = InMemoryDocstore(_dict) output = docstore.search("bar") assert output == "ID bar not found."
[]
2024-01-10
jheitzeb/langchain
tests~unit_tests~test_input.py
"""Test input manipulating logic.""" import sys from io import StringIO from langchain.input import ChainedInput, get_color_mapping def test_chained_input_not_verbose() -> None: """Test chained input logic.""" old_stdout = sys.stdout sys.stdout = mystdout = StringIO() chained_input = ChainedInput("foo") sys.stdout = old_stdout output = mystdout.getvalue() assert output == "" assert chained_input.input == "foo" old_stdout = sys.stdout sys.stdout = mystdout = StringIO() chained_input.add("bar") sys.stdout = old_stdout output = mystdout.getvalue() assert output == "" assert chained_input.input == "foobar" def test_chained_input_verbose() -> None: """Test chained input logic, making sure verbose doesn't mess it up.""" old_stdout = sys.stdout sys.stdout = mystdout = StringIO() chained_input = ChainedInput("foo", verbose=True) sys.stdout = old_stdout output = mystdout.getvalue() assert output == "foo" assert chained_input.input == "foo" old_stdout = sys.stdout sys.stdout = mystdout = StringIO() chained_input.add("bar") sys.stdout = old_stdout output = mystdout.getvalue() assert output == "bar" assert chained_input.input == "foobar" old_stdout = sys.stdout sys.stdout = mystdout = StringIO() chained_input.add("baz", color="blue") sys.stdout = old_stdout output = mystdout.getvalue() assert output == "\x1b[36;1m\x1b[1;3mbaz\x1b[0m" assert chained_input.input == "foobarbaz" def test_get_color_mapping() -> None: """Test getting of color mapping.""" # Test on few inputs. items = ["foo", "bar"] output = get_color_mapping(items) expected_output = {"foo": "blue", "bar": "yellow"} assert output == expected_output # Test on a lot of inputs. items = [f"foo-{i}" for i in range(20)] output = get_color_mapping(items) assert len(output) == 20 def test_get_color_mapping_excluded_colors() -> None: """Test getting of color mapping with excluded colors.""" items = ["foo", "bar"] output = get_color_mapping(items, excluded_colors=["blue"]) expected_output = {"foo": "yellow", "bar": "pink"} assert output == expected_output
[]
2024-01-10
jheitzeb/langchain
langchain~chains~mapreduce.py
"""Map-reduce chain. Splits up a document, sends the smaller parts to the LLM with one prompt, then combines the results with another one. """ from typing import Dict, List from pydantic import BaseModel, Extra from langchain.chains.base import Chain from langchain.chains.llm import LLMChain from langchain.llms.base import LLM from langchain.prompts.base import BasePrompt from langchain.text_splitter import TextSplitter class MapReduceChain(Chain, BaseModel): """Map-reduce chain.""" map_llm: LLMChain """LLM wrapper to use for the map step.""" reduce_llm: LLMChain """LLM wrapper to use for the reduce step.""" text_splitter: TextSplitter """Text splitter to use.""" input_key: str = "input_text" #: :meta private: output_key: str = "output_text" #: :meta private: @classmethod def from_params( cls, llm: LLM, prompt: BasePrompt, text_splitter: TextSplitter ) -> "MapReduceChain": """Construct a map-reduce chain that uses the chain for map and reduce.""" llm_chain = LLMChain(llm=llm, prompt=prompt) return cls(map_llm=llm_chain, reduce_llm=llm_chain, text_splitter=text_splitter) class Config: """Configuration for this pydantic object.""" extra = Extra.forbid arbitrary_types_allowed = True @property def input_keys(self) -> List[str]: """Expect input key. :meta private: """ return [self.input_key] @property def output_keys(self) -> List[str]: """Return output key. :meta private: """ return [self.output_key] def _call(self, inputs: Dict[str, str]) -> Dict[str, str]: # Split the larger text into smaller chunks. docs = self.text_splitter.split_text(inputs[self.input_key]) # Now that we have the chunks, we send them to the LLM and track results. # This is the "map" part. input_list = [{self.map_llm.prompt.input_variables[0]: d} for d in docs] summary_results = self.map_llm.apply(input_list) summaries = [res[self.map_llm.output_key] for res in summary_results] # We then need to combine these individual parts into one. # This is the reduce part. summary_str = "\n".join(summaries) inputs = {self.reduce_llm.prompt.input_variables[0]: summary_str} output = self.reduce_llm.predict(**inputs) return {self.output_key: output}
[]
2024-01-10
jheitzeb/langchain
tests~integration_tests~chains~test_self_ask_with_search.py
"""Integration test for self ask with search.""" from langchain.chains.self_ask_with_search.base import SelfAskWithSearchChain from langchain.chains.serpapi import SerpAPIChain from langchain.llms.openai import OpenAI def test_self_ask_with_search() -> None: """Test functionality on a prompt.""" question = "What is the hometown of the reigning men's U.S. Open champion?" chain = SelfAskWithSearchChain( llm=OpenAI(temperature=0), search_chain=SerpAPIChain(), input_key="q", output_key="a", ) answer = chain.run(question) final_answer = answer.split("\n")[-1] assert final_answer == "So the final answer is: El Palmar, Murcia, Spain"
[]
2024-01-10
jheitzeb/langchain
tests~unit_tests~test_text_splitter.py
"""Test text splitting functionality.""" import pytest from langchain.text_splitter import CharacterTextSplitter def test_character_text_splitter() -> None: """Test splitting by character count.""" text = "foo bar baz 123" splitter = CharacterTextSplitter(separator=" ", chunk_size=5, chunk_overlap=3) output = splitter.split_text(text) expected_output = ["foo bar", "bar baz", "baz 123"] assert output == expected_output def test_character_text_splitter_longer_words() -> None: """Test splitting by characters when splits not found easily.""" text = "foo bar baz 123" splitter = CharacterTextSplitter(separator=" ", chunk_size=1, chunk_overlap=1) output = splitter.split_text(text) expected_output = ["foo", "bar", "baz", "123"] assert output == expected_output def test_character_text_splitting_args() -> None: """Test invalid arguments.""" with pytest.raises(ValueError): CharacterTextSplitter(chunk_size=2, chunk_overlap=4)
[]
2024-01-10
jheitzeb/langchain
tests~integration_tests~chains~test_react.py
"""Integration test for self ask with search.""" from langchain.chains.react.base import ReActChain from langchain.docstore.wikipedia import Wikipedia from langchain.llms.openai import OpenAI def test_react() -> None: """Test functionality on a prompt.""" llm = OpenAI(temperature=0) react = ReActChain(llm=llm, docstore=Wikipedia()) question = ( "Author David Chanoff has collaborated with a U.S. Navy admiral " "who served as the ambassador to the United Kingdom under " "which President?" ) output = react.run(question) assert output == "Bill Clinton"
[]
2024-01-10
jheitzeb/langchain
langchain~chains~serpapi.py
"""Chain that calls SerpAPI. Heavily borrowed from https://github.com/ofirpress/self-ask """ import os import sys from typing import Any, Dict, List, Optional from pydantic import BaseModel, Extra, root_validator from langchain.chains.base import Chain from langchain.utils import get_from_dict_or_env class HiddenPrints: """Context manager to hide prints.""" def __enter__(self) -> None: """Open file to pipe stdout to.""" self._original_stdout = sys.stdout sys.stdout = open(os.devnull, "w") def __exit__(self, *_: Any) -> None: """Close file that stdout was piped to.""" sys.stdout.close() sys.stdout = self._original_stdout class SerpAPIChain(Chain, BaseModel): """Chain that calls SerpAPI. To use, you should have the ``google-search-results`` python package installed, and the environment variable ``SERPAPI_API_KEY`` set with your API key, or pass `serpapi_api_key` as a named parameter to the constructor. Example: .. code-block:: python from langchain import SerpAPIChain serpapi = SerpAPIChain() """ search_engine: Any #: :meta private: input_key: str = "search_query" #: :meta private: output_key: str = "search_result" #: :meta private: serpapi_api_key: Optional[str] = None class Config: """Configuration for this pydantic object.""" extra = Extra.forbid @property def input_keys(self) -> List[str]: """Return the singular input key. :meta private: """ return [self.input_key] @property def output_keys(self) -> List[str]: """Return the singular output key. :meta private: """ return [self.output_key] @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" serpapi_api_key = get_from_dict_or_env( values, "serpapi_api_key", "SERPAPI_API_KEY" ) values["serpapi_api_key"] = serpapi_api_key try: from serpapi import GoogleSearch values["search_engine"] = GoogleSearch except ImportError: raise ValueError( "Could not import serpapi python package. " "Please it install it with `pip install google-search-results`." ) return values def _call(self, inputs: Dict[str, Any]) -> Dict[str, str]: params = { "api_key": self.serpapi_api_key, "engine": "google", "q": inputs[self.input_key], "google_domain": "google.com", "gl": "us", "hl": "en", } with HiddenPrints(): search = self.search_engine(params) res = search.get_dict() if "error" in res.keys(): raise ValueError(f"Got error from SerpAPI: {res['error']}") if "answer_box" in res.keys() and "answer" in res["answer_box"].keys(): toret = res["answer_box"]["answer"] elif "answer_box" in res.keys() and "snippet" in res["answer_box"].keys(): toret = res["answer_box"]["snippet"] elif ( "answer_box" in res.keys() and "snippet_highlighted_words" in res["answer_box"].keys() ): toret = res["answer_box"]["snippet_highlighted_words"][0] elif "snippet" in res["organic_results"][0].keys(): toret = res["organic_results"][0]["snippet"] else: toret = None return {self.output_key: toret}
[]
2024-01-10
jheitzeb/langchain
tests~integration_tests~llms~test_huggingface_hub.py
"""Test HuggingFace API wrapper.""" import pytest from langchain.llms.huggingface_hub import HuggingFaceHub def test_huggingface_text_generation() -> None: """Test valid call to HuggingFace text generation model.""" llm = HuggingFaceHub(repo_id="gpt2", model_kwargs={"max_new_tokens": 10}) output = llm("Say foo:") assert isinstance(output, str) def test_huggingface_text2text_generation() -> None: """Test valid call to HuggingFace text2text model.""" llm = HuggingFaceHub(repo_id="google/flan-t5-xl") output = llm("The capital of New York is") assert output == "Albany" def test_huggingface_call_error() -> None: """Test valid call to HuggingFace that errors.""" llm = HuggingFaceHub(model_kwargs={"max_new_tokens": -1}) with pytest.raises(ValueError): llm("Say foo:")
[]
2024-01-10
kakao-aicoursework/joey.hi
chatbot~chatbot~preprocessing.py
from langchain.schema import Document def doc_preprocessing(documents): processed_docs = list() page_content = documents[0].page_content metadata = documents[0].metadata idx = 0 for char in page_content: if char == '#': idx += 1 page_content = page_content[:idx] + " " + page_content[idx:] idx += 1 idx = 1 prev_idx = 0 for char in page_content: if char == '#' and idx > 1: tmp = page_content[prev_idx:idx - 1] processed_docs.append(Document(page_content = tmp, metadata = metadata)) prev_idx = idx - 1 idx += 1
[]
2024-01-10
ArrowLuo/SegCLIP
modules~modeling.py
from __future__ import absolute_import from __future__ import division from __future__ import print_function import logging from functools import partial import torch from torch import nn import torch.nn.functional as F from modules.util_module import dist_collect, show_log, update_attr, check_attr, get_attr from modules.util_module import PreTrainedModel, AllGather, CrossEn from modules.module_clip import CLIP, available_models from modules.module_mae import MAEDecoder from util import get_logger allgather = AllGather.apply class SegCLIPPreTrainedModel(PreTrainedModel, nn.Module): def __init__(self, *inputs, **kwargs): super(SegCLIPPreTrainedModel, self).__init__() self.clip = None @classmethod def from_pretrained(cls, state_dict=None, cache_dir=None, type_vocab_size=2, *inputs, **kwargs): task_config = None if "task_config" in kwargs.keys(): task_config = kwargs["task_config"] if not hasattr(task_config, "local_rank"): task_config.__dict__["local_rank"] = 0 elif task_config.local_rank == -1: task_config.local_rank = 0 if state_dict is None: state_dict = {} pretrained_clip_name = get_attr(task_config, "pretrained_clip_name", default_value="ViT-B/16", donot_log=True) if pretrained_clip_name in available_models(): clip_state_dict = CLIP.get_config(pretrained_clip_name=pretrained_clip_name) else: # We will reset ViT but keep Text Encoder clip_state_dict = CLIP.get_config(pretrained_clip_name="ViT-B/32") for key in ["input_resolution", "context_length", "vocab_size"]: if key in clip_state_dict: del clip_state_dict[key] for key, val in clip_state_dict.items(): # HARD CODE for initialization trick FIRST_STAGE_LAYER = 10 if hasattr(task_config, "first_stage_layer"): FIRST_STAGE_LAYER = task_config.first_stage_layer new_key = "clip." + key if "visual.transformer." in key: _, _, _, _, n_, *_ = new_key.split(".") n_ = int(n_) if n_ >= FIRST_STAGE_LAYER: new_key = new_key.replace(".resblocks.", ".layers2.") new_key_ls_ = new_key.split(".") new_key_ls_[4] = str(n_ - FIRST_STAGE_LAYER) new_key = ".".join(new_key_ls_) else: new_key = new_key.replace(".resblocks.", ".layers0.") if new_key not in state_dict: state_dict[new_key] = val.clone() model = cls(clip_state_dict, *inputs, **kwargs) if state_dict is not None: model = cls.init_preweight(model, state_dict, task_config=task_config, print_logger=get_logger()) return model class SegCLIP(SegCLIPPreTrainedModel): def __init__(self, clip_state_dict, task_config): super(SegCLIP, self).__init__() self.task_config = task_config self.ignore_image_index = -1 pretrained_clip_name = get_attr(task_config, "pretrained_clip_name", default_value="ViT-B/16", donot_log=True) # CLIP Encoders: From OpenAI: CLIP [https://github.com/openai/CLIP] ===> vit = "visual.proj" in clip_state_dict assert vit if vit: vision_width = clip_state_dict["visual.conv1.weight"].shape[0] vision_layers = len([k for k in clip_state_dict.keys() if k.startswith("visual.") and k.endswith(".attn.in_proj_weight")]) vision_patch_size = clip_state_dict["visual.conv1.weight"].shape[-1] grid_size = round((clip_state_dict["visual.positional_embedding"].shape[0] - 1) ** 0.5) image_resolution = vision_patch_size * grid_size if pretrained_clip_name not in available_models(): assert pretrained_clip_name[:5] == "ViT-B" vision_patch_size = int(pretrained_clip_name.split("/")[-1]) assert image_resolution % vision_patch_size == 0 grid_size = image_resolution // vision_patch_size show_log(task_config, "\t\t USE {} NOW!!!!!!!!!!!!".format(pretrained_clip_name)) else: raise NotImplementedError() embed_dim = clip_state_dict["text_projection"].shape[1] context_length = clip_state_dict["positional_embedding"].shape[0] vocab_size = clip_state_dict["token_embedding.weight"].shape[0] transformer_width = clip_state_dict["ln_final.weight"].shape[0] transformer_heads = transformer_width // 64 transformer_layers = len(set(k.split(".")[2] for k in clip_state_dict if k.startswith(f"transformer.resblocks"))) show_log(task_config, "\t embed_dim: {}".format(embed_dim)) show_log(task_config, "\t image_resolution: {}".format(image_resolution)) show_log(task_config, "\t vision_layers: {}".format(vision_layers)) show_log(task_config, "\t vision_width: {}".format(vision_width)) show_log(task_config, "\t vision_patch_size: {}".format(vision_patch_size)) show_log(task_config, "\t context_length: {}".format(context_length)) show_log(task_config, "\t vocab_size: {}".format(vocab_size)) show_log(task_config, "\t transformer_width: {}".format(transformer_width)) show_log(task_config, "\t transformer_heads: {}".format(transformer_heads)) show_log(task_config, "\t transformer_layers: {}".format(transformer_layers)) self.first_stage_layer = get_attr(task_config, "first_stage_layer", default_value=10) # use .float() to avoid overflow/underflow from fp16 weight. https://github.com/openai/CLIP/issues/40 cut_top_layer = 0 show_log(task_config, "\t cut_top_layer: {}".format(cut_top_layer)) self.clip = CLIP( embed_dim, image_resolution, vision_layers-cut_top_layer, vision_width, vision_patch_size, context_length, vocab_size, transformer_width, transformer_heads, transformer_layers-cut_top_layer, first_stage_layer=self.first_stage_layer, ).float() self.clip = nn.SyncBatchNorm.convert_sync_batchnorm(self.clip) # <=== End of CLIP Encoders self.loss_fct = CrossEn() self.loss_fct_stdce = nn.CrossEntropyLoss() ## ============================================================================== # Reconstruct the masked input as MAE ## ============================================================================== mae_vis_mask_ratio = get_attr(task_config, "mae_vis_mask_ratio", default_value=0.75) self.use_vision_mae_recon = get_attr(task_config, "use_vision_mae_recon", default_value=False) if self.use_vision_mae_recon: self.vis_mask_ratio = mae_vis_mask_ratio decoder_embed_dim = vision_width // 2 decoder_num_heads = 8 vision_patch_size_ = vision_patch_size self.vis_mae_decoder = MAEDecoder(vision_width, decoder_embed_dim, image_resolution, vision_patch_size_, decoder_depth=3, decoder_num_heads=decoder_num_heads, mlp_ratio=4., norm_layer=partial(nn.LayerNorm, eps=1e-6)) mae_seq_mask_ratio = get_attr(task_config, "mae_seq_mask_ratio", default_value=0.15) self.use_text_mae_recon = get_attr(task_config, "use_text_mae_recon", default_value=False) if self.use_text_mae_recon: self.seq_mask_ratio = mae_seq_mask_ratio decoder_embed_dim = embed_dim // 2 decoder_num_heads = 8 vision_patch_size_ = vision_patch_size self.seq_mae_decoder = MAEDecoder(embed_dim, decoder_embed_dim, image_resolution, vision_patch_size_, decoder_depth=3, decoder_num_heads=decoder_num_heads, mlp_ratio=4., choice_seq=True, pred_len=vocab_size, seq_len=self.task_config.max_words) ## ============================================================================== # Use segmentation label for unsupervised learning ## ============================================================================== self.use_seglabel = get_attr(task_config, "use_seglabel", default_value=False) self.apply(self.init_weights) def forward(self, input_ids, token_type_ids, attention_mask, image, image_seg=None): # B x T x L input_ids = input_ids.view(-1, input_ids.shape[-1]) token_type_ids = token_type_ids.view(-1, token_type_ids.shape[-1]) attention_mask = attention_mask.view(-1, attention_mask.shape[-1]) # T x 3 x H x W image_input = torch.as_tensor(image).float() b, pair, channel, h, w = image_input.shape image = image_input[:, 0].view(b, channel, h, w) image_frame = 1 # TODO: HARD CODE, A compatibility for video in CLIP4Clip sequence_output, visual_output = self.get_sequence_visual_output(input_ids, token_type_ids, attention_mask, image, shaped=True, image_frame=image_frame, return_hidden=True) if isinstance(sequence_output, tuple): sequence_output, sequence_hidden = sequence_output if isinstance(visual_output, tuple): visual_output, visual_hidden, mid_states = visual_output if self.use_seglabel: # T x patch_len x patch_len image_seg_input = torch.as_tensor(image_seg) image_seg = image_seg_input[:, 0] if self.training: loss = 0. sim_matrix_t2v, sim_matrix_v2t = self._loose_similarity(sequence_output, visual_output) labels = torch.arange(sequence_output.size(0), dtype=torch.long, device=sequence_output.device) labels = labels + sequence_output.size(0) * self.task_config.rank sim_loss1 = self.loss_fct_stdce(sim_matrix_t2v, labels) sim_loss2 = self.loss_fct_stdce(sim_matrix_v2t, labels) sim_loss = (sim_loss1 + sim_loss2) / 2. loss = loss + sim_loss if self.use_seglabel: mid_attn_hidden = mid_states['attns'][0]['hard_attn'].permute(0, 2, 1) # B x L x CENTER image_seg_ = image_seg.view(b, -1) image_seg_ = image_seg_.unsqueeze(-1) - image_seg_.unsqueeze(-2) image_seg_ = (image_seg_ == 0).to(dtype=mid_attn_hidden.dtype) # B x L x L clutering_sum = torch.einsum('b g l, b l c -> b g c', image_seg_, mid_attn_hidden) clutering_mean = clutering_sum / torch.clamp_min(torch.sum(image_seg_, dim=-1, keepdim=True), min=1.0) coef_ = mid_attn_hidden.size(0) * mid_attn_hidden.size(1) * mid_attn_hidden.size(2) kl_mean_1 = F.kl_div(F.log_softmax(mid_attn_hidden, dim=-1), F.softmax(clutering_mean, dim=-1), reduction='sum') / float(coef_) kl_mean_2 = F.kl_div(F.log_softmax(clutering_mean, dim=-1), F.softmax(mid_attn_hidden, dim=-1), reduction='sum') / float(coef_) clutering_loss = (kl_mean_1 + kl_mean_2) / 2. loss = loss + clutering_loss if self.use_text_mae_recon: sequence_output = self.get_sequence_output(input_ids, token_type_ids, attention_mask, shaped=True, return_hidden=True, mask_ratio=self.seq_mask_ratio) _, seq_hidden, seq_mae_mask, seq_mae_ids_restore = sequence_output seq_mae_mask = seq_mae_mask.view(-1, seq_mae_mask.size(-1)) seq_mae_ids_restore = seq_mae_ids_restore.view(-1, seq_mae_ids_restore.size(-1)) _mae_mask = (seq_mae_mask + attention_mask).gt(1) seq_mae_loss = self.seq_mae_decoder.forward_seq(input_ids, seq_hidden, _mae_mask, seq_mae_ids_restore, attention_mask) loss = loss + seq_mae_loss if self.use_vision_mae_recon: visual_output = self.get_visual_output(image, shaped=True, image_frame=image_frame, return_hidden=True, mask_ratio=self.vis_mask_ratio) _, vis_hidden, vis_mae_mask, vis_mae_ids_restore, mid_mae_states = visual_output vis_hidden = mid_mae_states['hidden'] cls_ = torch.mean(vis_hidden, dim=1, keepdim=True) vis_hidden = torch.cat([cls_, vis_hidden], dim=1) vis_mae_mask = vis_mae_mask.view(-1, vis_mae_mask.size(-1)) vis_mae_ids_restore = vis_mae_ids_restore.view(-1, vis_mae_ids_restore.size(-1)) vis_mae_loss = self.vis_mae_decoder.forward_vis(image, vis_hidden, vis_mae_mask, vis_mae_ids_restore, loss_allpatch=False) loss = loss + vis_mae_loss return loss else: return None def get_sequence_output(self, input_ids, token_type_ids, attention_mask, shaped=False, return_hidden=False, seq_model=None, mask_ratio=0.): if shaped is False: input_ids = input_ids.view(-1, input_ids.shape[-1]) token_type_ids = token_type_ids.view(-1, token_type_ids.shape[-1]) attention_mask = attention_mask.view(-1, attention_mask.shape[-1]) if seq_model is None: seq_model = self.clip bs_pair = input_ids.size(0) sequence_hidden = seq_model.encode_text(input_ids, return_hidden=return_hidden, mask_ratio=mask_ratio) if isinstance(sequence_hidden, tuple): if mask_ratio > 0: sequence_hidden = tuple([itm.float().view(bs_pair, -1, itm.size(-1)) for itm in sequence_hidden[:2]] + [itm.view(bs_pair, -1, itm.size(-1)) for itm in sequence_hidden[2:]]) else: sequence_hidden = tuple([itm.float().view(bs_pair, -1, itm.size(-1)) for itm in sequence_hidden]) else: sequence_hidden = sequence_hidden.float().view(bs_pair, -1, sequence_hidden.size(-1)) return sequence_hidden def get_visual_output(self, image, shaped=False, image_frame=-1, return_hidden=False, vis_model=None, mask_ratio=0.): if shaped is False: image_input = torch.as_tensor(image).float() b, pair, channel, h, w = image_input.shape image = image_input[:, 0].view(b, channel, h, w) image_frame = 1 # TODO: HARD CODE, A compatibility for video in CLIP4Clip if vis_model is None: vis_model = self.clip bs_pair = image.size(0) visual_hidden = vis_model.encode_image(image, video_frame=image_frame, return_hidden=return_hidden, mask_ratio=mask_ratio) if isinstance(visual_hidden, tuple): if mask_ratio > 0: visual_hidden = tuple([itm.float().view(bs_pair, -1, itm.size(-1)) for itm in visual_hidden[:2]] + [itm.view(bs_pair, -1, itm.size(-1)) for itm in visual_hidden[2:4]] + [visual_hidden[4]]) else: visual_hidden = tuple([itm.float().view(bs_pair, -1, itm.size(-1)) for itm in visual_hidden[:2]] + [visual_hidden[2]]) else: visual_hidden = visual_hidden.float().view(bs_pair, -1, visual_hidden.size(-1)) return visual_hidden def get_sequence_visual_output(self, input_ids, token_type_ids, attention_mask, image, shaped=False, image_frame=-1, return_hidden=False, seq_model=None, vis_model=None): if shaped is False: input_ids = input_ids.view(-1, input_ids.shape[-1]) token_type_ids = token_type_ids.view(-1, token_type_ids.shape[-1]) attention_mask = attention_mask.view(-1, attention_mask.shape[-1]) image_input = torch.as_tensor(image).float() b, pair, channel, h, w = image_input.shape image = image_input[:, 0].view(b, channel, h, w) image_frame = 1 # TODO: HARD CODE, A compatibility for video in CLIP4Clip sequence_output = self.get_sequence_output(input_ids, token_type_ids, attention_mask, shaped=True, return_hidden=return_hidden, seq_model=seq_model) visual_output = self.get_visual_output(image, shaped=True, image_frame=image_frame, return_hidden=return_hidden, vis_model=vis_model) return sequence_output, visual_output def _mean_pooling_for_similarity_sequence(self, sequence_output, attention_mask): attention_mask_un = attention_mask.to(dtype=torch.float).unsqueeze(-1) attention_mask_un[:, 0, :] = 0. sequence_output = sequence_output * attention_mask_un text_out = torch.sum(sequence_output, dim=1) / torch.sum(attention_mask_un, dim=1, dtype=torch.float) return text_out def _mean_pooling_for_similarity_visual(self, visual_output,): image_out = torch.mean(visual_output, dim=1) return image_out def _mean_pooling_for_similarity(self, sequence_output, visual_output, attention_mask,): text_out = self._mean_pooling_for_similarity_sequence(sequence_output, attention_mask) image_out = self._mean_pooling_for_similarity_visual(visual_output) return text_out, image_out def _loose_similarity(self, sequence_output, visual_output, logit_scale=None): sequence_output, visual_output = sequence_output.contiguous(), visual_output.contiguous() visual_output = visual_output.squeeze(1) visual_output = visual_output / visual_output.norm(dim=-1, keepdim=True) sequence_output = sequence_output.squeeze(1) sequence_output = sequence_output / sequence_output.norm(dim=-1, keepdim=True) if logit_scale is not None: logit_scale = torch.clamp(logit_scale.exp(), max=100) else: logit_scale = torch.clamp(self.clip.logit_scale.exp(), max=100) if self.training: visual_output_collect = dist_collect(visual_output, self.task_config) sequence_output_collect = dist_collect(sequence_output, self.task_config) torch.distributed.barrier() retrieve_logits_t2v = logit_scale * torch.matmul(sequence_output, visual_output_collect.t()) retrieve_logits_v2t = logit_scale * torch.matmul(visual_output, sequence_output_collect.t()) else: retrieve_logits_t2v = logit_scale * torch.matmul(sequence_output, visual_output.t()) retrieve_logits_v2t = retrieve_logits_t2v.T return retrieve_logits_t2v, retrieve_logits_v2t def get_similarity_logits(self, sequence_output, visual_output, attention_mask, shaped=False): if shaped is False: attention_mask = attention_mask.view(-1, attention_mask.shape[-1]) contrastive_direction = () retrieve_logits_t2v, retrieve_logits_v2t = self._loose_similarity(sequence_output, visual_output) return retrieve_logits_t2v, retrieve_logits_v2t, contrastive_direction
[]
2024-01-10
TYTTYTTYT/book_search
book_gpt~bookgpt2.py
import openai import re class Bookgpt: def __init__(self, message_history): openai.api_key = "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" self.message_history = message_history def predict(self,input): # tokenize the new input sentence self.message_history.append({"role": "user", "content": f"{input}"}) completion = openai.ChatCompletion.create( model="gpt-3.5-turbo", #10x cheaper than davinci, and better. $0.002 per 1k tokens messages= self.message_history ) #Just the reply: reply_content = completion.choices[0].message.content#.replace('```python', '<pre>').replace('```', '</pre>') print(reply_content) print(type(reply_content)) self.message_history.append({"role": "assistant", "content": f"{reply_content}"}) # get a list of reply_content # delete number and punctuation reply_content = re.sub('[0-9.]+', '', reply_content) response = list(reply_content.split("\n")) response = list(map(lambda x: x.strip('"\' \n\t'), response)) if len(response) > 5: response = response[2:] elif len(response) == 1: response = [] print(response) print(type(response)) self.message_history.pop(-1) self.message_history.pop(-1) return response
[ "INPUT", "PLACEHOLDER" ]
2024-01-10
cesaralej/syllabus-generator
Syllabus_generator.py
# import required packages import openai import streamlit as st from streamlit_option_menu import option_menu # Start by creating a venv: # python -m venv myenv # Activate your venv: # source venv_name/bin/activate (mac) # venv_name\Scripts\activate (windows) # Install the required packages: # pip install -r requirements.txt # Run the code in the terminal: # streamlit run Syllabus_generator.py # Read the original syllabus def read_original_syllabus(file_path="original_syllabus.txt"): try: with open(file_path, "r", encoding="utf-8") as file: original_syllabus = file.read() return original_syllabus except FileNotFoundError: print(f"Error: File '{file_path}' not found.") return None original_syllabus = read_original_syllabus() # API Request to generate the syllabus def syllabus_request(): messages = [ { "role": "system", "content": f"You are a teacher for the class BIG DATA & ARTIFICIAL INTELLIGENCE IN BUSINESS STRATEGY. Your class follow the framework of this Syllabus:\n\n{original_syllabus}", }, { "role": "user", "content": f"""Customize the first 5 sessions of the syllabus based on the syllabus framework for the 'BIG DATA & ARTIFICIAL INTELLIGENCE IN BUSINESS STRATEGY' class for a student with {st.session_state.student_exp_years} years of professional experience, with a {st.session_state.student_background} role background that wants to move to a {st.session_state.student_future} role in the {st.session_state.student_industry} industry. Your reply should only have the updated 5 sessions of the syllabus written in the same structure as the original one""", }, ] response = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=messages, temperature=0.3, max_tokens=2048 ) return response["choices"][0]["message"]["content"] # API Request to generate the capstone project def capstone_request(): messages = [ { "role": "system", "content": f"You are a teacher for the class BIG DATA & ARTIFICIAL INTELLIGENCE IN BUSINESS STRATEGY. Your class follow the framework of this Syllabus:\n\n{original_syllabus}", }, { "role": "user", "content": f"""Design a case study project for the 'BIG DATA & ARTIFICIAL INTELLIGENCE IN BUSINESS STRATEGY' class for a student with {st.session_state.student_exp_years} years of professional experience, with a {st.session_state.student_background} role background that wants to move to a {st.session_state.student_future} role in the {st.session_state.student_industry} industry. Your reply should only have the project instructions. The project should present a case where a fictional company of the industry is facing a challenge and the student needs to identify a solution based on the subjects learned on the syllabus""", }, ] response = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=messages, temperature=0.3, max_tokens=2048 ) return response["choices"][0]["message"]["content"] st.set_page_config( page_title="Business Strategy Syllabus", page_icon="🌐", initial_sidebar_state="expanded", ) # Sidebar with st.sidebar: # Set up OpenAI API key st.header("OpenAI API Configuration") st.write("To personalize your syllabus, configure your OpenAI API settings below.") st.write( "Don't have an API key? Visit [OpenAI](https://beta.openai.com/signup/) to get one." ) api_key = st.sidebar.text_input("Enter your OpenAI API key") # Validation check for API key if st.button("Submit"): if not api_key: st.error("Please enter your OpenAI API key.") else: openai.api_key = api_key st.success("API key set successfully!") # User Information st.sidebar.header("Input Your Information") st.session_state.student_exp_years = st.sidebar.text_input( "Years of Professional Experience", help="Enter the number of years you have been working professionally.", value="5", ) professional_background_options = ["Business", "Tech", "Hybrid"] st.session_state.student_background = st.sidebar.selectbox( "Professional Background", professional_background_options, help="Specify your professional background, e.g., Business, Tech, or Hybrid.", ) if st.session_state.student_background == "Tech": st.sidebar.text_input( "Tech Skills", help="List your relevant technical skills." ) st.session_state.student_future = st.sidebar.selectbox( "Future Career Goal", professional_background_options, help="Describe the role you aim to achieve, e.g., Business, Tech, or Hybrid.", ) st.session_state.student_industry = st.sidebar.text_input( "Target Industry", help="Enter the industry in which you aspire to work.", value="Consulting", ) # Validations if ( st.session_state.student_exp_years and not st.session_state.student_exp_years.isdigit() ): st.error("Please enter a valid number for years of experience.") def generate_syllabus(): try: with st.spinner("Generating Syllabus..."): if ( st.session_state.student_exp_years and st.session_state.student_background and st.session_state.student_future and st.session_state.student_industry ): st.session_state.syllabus_content = syllabus_request() st.success("Syllabus generated successfully!") except Exception as e: st.error(f"Error generating syllabus: {e}") # Submit button if ( not st.session_state.student_exp_years or not st.session_state.student_background or not st.session_state.student_future or not st.session_state.student_industry ): st.warning( "Please complete all required fields before generating the syllabus." ) st.button("Generate Syllabus", disabled=True) else: if st.button("Generate Syllabus"): generate_syllabus() st.image("IE_Business_School_logo.svg.png", width=100) # Title st.markdown( f"<h1 style='font-size: 36px; text-align: center;'>BIG DATA & AI IN BUSINESS STRATEGY</h1>", unsafe_allow_html=True, ) # Introductory Message st.markdown( f"<p style='font-size: 20px; text-align: center;'>Welcome to Your AI-Driven Learning Experience!</p>", unsafe_allow_html=True, ) # Instructions on how to use the app st.markdown( f"<h2 style='font-size: 28px;'>How to Use:</h2>", unsafe_allow_html=True, ) st.write("1. **Configure your OpenAI API key in the sidebar.**") st.write("2. **Input your professional information on the left.**") st.write( "3. **Click on 'Generate Syllabus' to receive your personalized learning plan.**" ) type = option_menu( None, ["Syllabus", "Capstone Project"], icons=[], default_index=0, orientation="horizontal", ) # Syllabus section if type == "Syllabus": st.subheader("Personalized Syllabus Generator") st.markdown("---") if "syllabus_content" not in st.session_state: st.subheader("No syllabus generated yet") st.write( "Your personalized syllabus is crafted based on the information you provide." ) st.write("Unlock a unique learning journey with AI-driven customization.") else: st.markdown( f"**Your Personalized Syllabus:**\n\n{st.session_state.syllabus_content}" ) # Capstone Project section if type == "Capstone Project": st.subheader("Capstone Project Generator") st.write( "Once your project is ready, submit to the corresponding learning platform" ) # Call a function to generate and display the dynamic content def generate_capstone(): try: with st.spinner("Generating project instructions..."): if ( st.session_state.student_exp_years and st.session_state.student_background and st.session_state.student_future and st.session_state.student_industry ): st.session_state.project_content = capstone_request() st.success("Instructions generated successfully!") except Exception as e: st.error(f"Error generating project instructions: {e}") # Submit button if ( not st.session_state.student_exp_years or not st.session_state.student_background or not st.session_state.student_future or not st.session_state.student_industry ): st.warning( "Please complete all required fields before generating the project instructions." ) st.button("Generate Capstone Project", disabled=True) else: if st.button("Generate Project Instructions"): generate_capstone() st.markdown("---") if "project_content" not in st.session_state: st.subheader("No project instructions generated yet") st.write( "This is where the dynamic capstone project content will be displayed." ) else: st.markdown( f"**Your Personalized Project Instructions:**\n\n{st.session_state.project_content}" )
[ "You are a teacher for the class BIG DATA & ARTIFICIAL INTELLIGENCE IN BUSINESS STRATEGY. Your class follow the framework of this Syllabus:\n\nPLACEHOLDER" ]
2024-01-10
recipede/recipe-detect
backend~generation~recipe_gen.py
from typing import List import requests import cohere import os from dotenv import load_dotenv load_dotenv() COHERE_API_KEY = os.getenv("COHERE_API_KEY") EDAMAM_API_KEY = os.getenv("EDAMAM_API_KEY") EDAMAM_API_URL = "https://api.edamam.com/api/recipes/v2" EDAMAM_APP_ID = os.getenv("EDAMAM_APP_ID") def generate_recipe(food_name: str, ingredients: List[str]) -> str: if COHERE_API_KEY == None: raise Exception("API key not found.") co = cohere.Client(COHERE_API_KEY) prompt = f"Give me a recipe in JSON for {food_name} that uses the following ingredients: " for ingredient in ingredients: prompt += "\n " + ingredient response = co.generate( model='command-nightly', prompt = prompt, max_tokens=200, temperature=0.750) if response.generations == None: raise Exception("No response from API.") return response.generations[0].text def generate_llm_recipes(ingredients: List[str]) -> str: if COHERE_API_KEY == None: raise Exception("API key not found.") co = cohere.Client(COHERE_API_KEY) prompt = "Give me a list of recipes (maximum 3) with steps in JSON format that use the following ingredients: " for ingredient in ingredients: prompt += "\n " + ingredient prompt += "\n Give a JSON format of an array with objects with property keys \"name\", \"ingredients\", \"steps\". Keep your answer relatively short. Separate the steps into individual strings in their respective arrays and include commas for each element. Make sure you don't leave trailing commas for the end of arrays. " response = co.generate( model='command-nightly', prompt = prompt, max_tokens=2000, temperature=0.750) if response.generations == None: raise Exception("No response from API.") print("".join([elem.text for elem in response.generations])) return response.generations[0].text def get_edamam_recipe(ingredients: List[str]) -> str: if EDAMAM_API_KEY == None or EDAMAM_APP_ID == None: raise Exception("oh no") query_str = f"?app_id=98d69878&app_key={EDAMAM_API_KEY}" query_str += "&q=" + '+'.join(ingredients) print(query_str) r = requests.get(f"{EDAMAM_API_URL}{query_str}", params={"app_key": EDAMAM_API_KEY, "app_id": EDAMAM_APP_ID, "ingredients": ingredients, "type": "public", } ) recipes = r.json()["hits"] recipes = [{ "title": x["recipe"]["label"], "ingredients": [ y["text"] for y in x["recipe"]["ingredients"]] } for x in recipes] return str(recipes) if __name__ == "__main__": ingredients = ["ham", "rice", "chicken", "teriyaki"] #get_edamam_recipe(ingredients)
[ "Give me a list of recipes (maximum 3) with steps in JSON format that use the following ingredients: ", "\n Give a JSON format of an array with objects with property keys \"name\", \"ingredients\", \"steps\". Keep your answer relatively short. Separate the steps into individual strings in their respective arrays and include commas for each element. Make sure you don't leave trailing commas for the end of arrays. ", "\n PLACEHOLDER", "Give me a recipe in JSON for PLACEHOLDER that uses the following ingredients: " ]
2024-01-10
recipede/recipe-detect
backend~scanner.py
from collections import Counter from typing import List from google.cloud import vision import cohere import os from dotenv import load_dotenv from unicodedata import normalize load_dotenv() COHERE_API_KEY = os.getenv("COHERE_API_KEY") def is_food(flyer_text: str) -> bool: if COHERE_API_KEY == None: raise Exception("API key not found.") co = cohere.Client(COHERE_API_KEY) prompt = "The following is text from a grocery store flyer that sells conventional household goods and food. Determine if this item on the flyer is a food or not: " + flyer_text prompt += "\n\nPlease respond with only 'true' or 'false' based on whether the item is a food or not." response = co.generate( model='command-nightly', prompt = prompt, max_tokens=200, temperature=0.75) if response.generations == None: raise Exception("No response from API.") return response.generations[0].text.strip() == "true" def extract_grocery(flyer_text: str) -> str: if COHERE_API_KEY == None: raise Exception("API key not found.") co = cohere.Client(COHERE_API_KEY) prompt = "The following is text from a grocery store flyer that sells conventional household goods and food. Determine what the product name is: " +flyer_text prompt += "\n\nPlease respond with only the name of the product." #kind of food or product that the item is."#" response = co.generate( model='command-nightly', prompt = prompt, max_tokens=200, temperature=0.75) if response.generations == None: raise Exception("No response from API.") return response.generations[0].text.strip() def extract_flyer(image_uri: str) -> str: client = vision.ImageAnnotatorClient() response = client.annotate_image({ 'image': {'source': { 'image_uri': image_uri }}, 'features': [{'type_': vision.Feature.Type.TEXT_DETECTION}] }) return str(response.text_annotations[0].description) def extract_cost(flyer_text: str) -> float: flyer_text = flyer_text.replace("\\\n", " ") flyer_text = flyer_text.replace("\n", " ") print(flyer_text) flyer_words = [ normalize("NFKC", w) for w in flyer_text.split(" ") ] print( flyer_words) costs = [ w for w in flyer_words if (len(w) >= 3 and (w.isdigit() or w in ["4.99", "14.99", "4.50", "14.50", "9.99", "4.49", "24.99", "19.99"]))] print(costs) costs = [ float(w) for w in costs if w[-1] == '9' or w[-2:] == '50'] print(costs) return costs[0] / 100 if costs[0] > 100 else costs[0] if __name__ == "__main__": for i in range(11): flyer_text = extract_flyer(f"https://raw.githubusercontent.com/recipede/recipe-detect/main/grocery/crop_{i}.jpg") print(extract_cost(flyer_text))
[ "The following is text from a grocery store flyer that sells conventional household goods and food. Determine what the product name is: PLACEHOLDER", "\n\nPlease respond with only the name of the product.", "The following is text from a grocery store flyer that sells conventional household goods and food. Determine if this item on the flyer is a food or not: PLACEHOLDER", "\n\nPlease respond with only 'true' or 'false' based on whether the item is a food or not." ]
2024-01-10
recipede/recipe-detect
backend~generation~scanner.py
from google.cloud import vision import cohere import os from dotenv import load_dotenv load_dotenv() COHERE_API_KEY = os.getenv("COHERE_API_KEY") def is_food(flyer_text: str) -> bool: if COHERE_API_KEY == None: raise Exception("API key not found.") co = cohere.Client(COHERE_API_KEY) prompt = "The following is text from a grocery store flyer that sells conventional household goods and food. Determine if this item on the flyer is a food or not: " + flyer_text prompt += "\n\nPlease respond with only 'true' or 'false' based on whether the item is a food or not." response = co.generate( model='command-nightly', prompt = prompt, max_tokens=200, temperature=0.75) if response.generations == None: raise Exception("No response from API.") return response.generations[0].text.strip() == "true" def extract_grocery(flyer_text: str) -> str: if COHERE_API_KEY == None: raise Exception("API key not found.") co = cohere.Client(COHERE_API_KEY) prompt = "The following is text from a grocery store flyer that sells conventional household goods and food. Determine what the product name is: " +flyer_text prompt += "\n\nPlease respond with only the name of the product." #kind of food or product that the item is."#" response = co.generate( model='command-nightly', prompt = prompt, max_tokens=200, temperature=0.75) if response.generations == None: raise Exception("No response from API.") return response.generations[0].text.strip() def extract_flyer(image_uri: str) -> str: client = vision.ImageAnnotatorClient() response = None with open(image_uri, "rb") as image: file = image.read() byte_array = bytes(file) response = client.annotate_image({ 'image': {'content': byte_array }, 'features': [{'type_': vision.Feature.Type.TEXT_DETECTION}] }) return str(response.text_annotations[0].description) if __name__ == "__main__": flyer_text = str(extract_flyer("../grocery/crop_6.jpg")) print(flyer_text) print(extract_grocery(flyer_text)) print(is_food(flyer_text))
[ "The following is text from a grocery store flyer that sells conventional household goods and food. Determine what the product name is: PLACEHOLDER", "\n\nPlease respond with only the name of the product.", "The following is text from a grocery store flyer that sells conventional household goods and food. Determine if this item on the flyer is a food or not: PLACEHOLDER", "\n\nPlease respond with only 'true' or 'false' based on whether the item is a food or not." ]
2024-01-10
recipede/recipe-detect
backend~recipe_gen.py
from typing import List import requests import cohere import os from dotenv import load_dotenv load_dotenv() COHERE_API_KEY = os.getenv("COHERE_API_KEY") EDAMAM_API_KEY = os.getenv("EDAMAM_API_KEY") EDAMAM_API_URL = "https://api.edamam.com/api/recipes/v2" EDAMAM_APP_ID = os.getenv("EDAMAM_APP_ID") def generate_recipe(food_name: str, ingredients: List[str]) -> str: if COHERE_API_KEY == None: raise Exception("API key not found.") co = cohere.Client(COHERE_API_KEY) prompt = f"Give me a recipe in JSON for {food_name} that uses the following recipes: " for ingredient in ingredients: prompt += "\n " + ingredient response = co.generate( model='command-nightly', prompt = prompt, max_tokens=200, temperature=0.750) if response.generations == None: raise Exception("No response from API.") return response.generations[0].text def generate_llm_recipes(ingredients: List[str]) -> str: if COHERE_API_KEY == None: raise Exception("API key not found.") co = cohere.Client(COHERE_API_KEY) prompt = "Ignoring non-food and inappropriate items, give me a list of recipes in JSON format that use the following ingredients: " for ingredient in ingredients: prompt += "\n " + ingredient response = co.generate( model='command-nightly', prompt = prompt, max_tokens=200, temperature=0.750) if response.generations == None: raise Exception("No response from API.") return response.generations[0].text def get_edamam_recipe(ingredients: List[str]) -> str: if EDAMAM_API_KEY == None or EDAMAM_APP_ID == None: raise Exception("oh no") query_str = f"?app_id=98d69878&app_key={EDAMAM_API_KEY}" query_str += "&q=" + '+'.join(ingredients) print(query_str) r = requests.get(f"{EDAMAM_API_URL}{query_str}", params={"app_key": EDAMAM_API_KEY, "app_id": EDAMAM_APP_ID, "ingredients": ingredients, "type": "public", } ) recipes = r.json()["hits"] recipes = [{ "title": x["recipe"]["label"], "ingredients": [ y["text"] for y in x["recipe"]["ingredients"]] } for x in recipes] return str(recipes) if __name__ == "__main__": ingredients = ["ham", "rice", "chicken", "teriyaki"] #get_edamam_recipe(ingredients)
[ "Ignoring non-food and inappropriate items, give me a list of recipes in JSON format that use the following ingredients: ", "\n PLACEHOLDER", "Give me a recipe in JSON for PLACEHOLDER that uses the following recipes: " ]
2024-01-10
siddarthanath/University-College-London
Thesis~cebo~helper~distmodel.py
""" This file stores distribution models corresponding to predictions from OpenAI. """ # -------------------------------------------------------------------------------------------------------------------- # # Standard Library # Third Party import numpy as np from dataclasses import dataclass # Private # -------------------------------------------------------------------------------------------------------------------- # @dataclass class DiscreteDist: values: np.ndarray probs: np.ndarray def __post_init__(self): # make sure np arrays self.values = np.array(self.values) self.probs = np.array(self.probs) uniq_values = np.unique(self.values) if len(uniq_values) < len(self.values): # need to mergefg uniq_probs = np.zeros(len(uniq_values)) for i, v in enumerate(uniq_values): uniq_probs[i] = np.sum(self.probs[self.values == v]) self.values = uniq_values self.probs = uniq_probs def sample(self): return np.random.choice(self.values, p=self.probs) def mean(self): return np.sum(self.values * self.probs) def mode(self): return self.values[np.argmax(self.probs)] def std(self): return np.sqrt(np.sum((self.values - self.mean()) ** 2 * self.probs)) def __repr__(self): return f"DiscreteDist({self.values}, {self.probs})" def __len__(self): return len(self.values) @dataclass class GaussDist: _mean: float _std: float def sample(self): return np.random.normal(self._mean, self._std) def mean(self): return self._mean def mode(self): return self._mean def std(self): return self._std def set_std(self, value): self._std = value def __repr__(self): return f"GaussDist({self._mean}, {self._std})" def __len__(self): return 1
[]
2024-01-10
siddarthanath/University-College-London
Thesis~cebo~models~bo_lift.py
""" The original BO-LIFT code (with minor changes). """ # -------------------------------------------------------------------------------------------------------------------- # # Standard Library from typing import * from functools import partial from typing import Tuple, List # Third Party import numpy as np from langchain.prompts.few_shot import FewShotPromptTemplate from langchain.prompts.prompt import PromptTemplate from langchain.embeddings import OpenAIEmbeddings from langchain.prompts.example_selector import ( MaxMarginalRelevanceExampleSelector, SemanticSimilarityExampleSelector, ) from langchain.vectorstores import FAISS, Chroma # Private from cebo.helper.distmodel import DiscreteDist, GaussDist from cebo.models.llm import LLM from cebo.helper.aqfxns import ( expected_improvement, upper_confidence_bound, ) # -------------------------------------------------------------------------------------------------------------------- # _answer_choices = ["A", "B", "C", "D", "E"] class QuantileTransformer: def __init__(self, values, n_quantiles): self.n_quantiles = n_quantiles self.quantiles = np.linspace(0, 1, n_quantiles + 1) self.values_quantiles = np.quantile(values, self.quantiles) def to_quantiles(self, values): quantile_scores = np.digitize(values, self.values_quantiles[1:-1]) return quantile_scores def to_values(self, quantile_scores): values_from_scores = np.interp( quantile_scores, range(self.n_quantiles + 1), self.values_quantiles ) return values_from_scores class BOLIFT(LLM): def __init__( self, model: str, prompt_template: PromptTemplate = None, suffix: Optional[str] = None, temperature: Optional[float] = None, prefix: Optional[str] = None, x_formatter: Callable[[str], str] = lambda x: x, y_formatter: Callable[[float], str] = lambda y: f"{y:0.2f}", y_name: str = "output", x_name: str = "input", selector_k: Optional[int] = None, k: int = 5, use_quantiles: bool = False, n_quantiles: int = 100, verbose: bool = False, cos_sim: bool = False, ) -> None: """Initialize Ask-Tell optimizer. You can pass formatters that will make your data more compatible with the model. Note that y as output form the model must be a float(can be parsed with ``float(y_str)``) Args: prompt_template: Prompt template that should take x and y (for few shot templates) suffix: Matching suffix for first part of prompt template - for actual completion. temperature: Temperature to use for inference. If None, will use model default. prefix: Prefix to add before all examples (e.g., some context for the model). x_formatter: Function to format x for prompting. y_formatter: Function to format y for prompting. y_name: Name of y variable in prompt template (e.g., density, value of function, etc.) x_name: Name of x variable in prompt template (e.g., input, x, etc.). Only appears in inverse prompt selector_k: What k to use when switching to selection mode. If None, will use all examples k: Number of examples to use for each prediction. verbose: Whether to print out debug information. """ self._model = model self._temperature = temperature self._selector_k = selector_k self._ready = False self._ys = [] self.format_x = x_formatter self.format_y = y_formatter self._y_name = y_name self._x_name = x_name self._prompt_template = prompt_template self._suffix = suffix self._prefix = prefix self._example_count = 0 self._k = k self._answer_choices = _answer_choices[:k] self.use_quantiles = use_quantiles self.n_quantiles = n_quantiles self._calibration_factor = None self._verbose = verbose self.tokens_used = 0 self.cos_sim = cos_sim def set_calibration_factor(self, calibration_factor): self._calibration_factor = calibration_factor def _setup_llm(self): # nucleus sampling seems to get more diversity return self.get_llm( n=self._k, best_of=self._k, temperature=0.1 if self._temperature is None else self._temperature, model=self._model, top_p=1.0, stop=["\n", "###", "#", "##"], logit_bias={ "198": -100, # new line, "628": -100, # double new line, "50256": -100, # endoftext }, max_tokens=256, logprobs=1, ) def _setup_prompt( self, example: Dict, prompt_template: Optional[PromptTemplate] = None, suffix: Optional[str] = None, prefix: Optional[str] = None, ) -> FewShotPromptTemplate: if prefix is None: prefix = ( "The following are correctly answered questions. " "Each answer is numeric and ends with ###\n" ) if prompt_template is None: prompt_template = PromptTemplate( input_variables=["x", "y", "y_name"], template="Q: Given {x}, what is {y_name}?\nA: {y}###\n\n", ) if suffix is not None: raise ValueError( "Cannot provide suffix if using default prompt template." ) suffix = "Q: Given {x}, what is {y_name}?\nA: " elif suffix is None: raise ValueError("Must provide suffix if using custom prompt template.") # test out prompt if example is not None: prompt_template.format(**example) examples = [example] # TODO: make fake example text else: examples = [] example_selector = None if self._selector_k is not None: if len(examples) == 0: raise ValueError("Cannot do zero-shot with selector") if not self.cos_sim: example_selector = ( example_selector ) = MaxMarginalRelevanceExampleSelector.from_examples( [example], OpenAIEmbeddings(), FAISS, k=self._selector_k, ) else: example_selector = ( example_selector ) = SemanticSimilarityExampleSelector.from_examples( [example], OpenAIEmbeddings(), Chroma, k=self._selector_k, ) return FewShotPromptTemplate( examples=examples if example_selector is None else None, example_prompt=prompt_template, example_selector=example_selector, suffix=suffix, prefix=prefix, input_variables=["x", "y_name"], ) def tell(self, x: str, y: float, alt_ys: Optional[List[float]] = None) -> None: """Tell the optimizer about a new example.""" example_dict, inv_example = self._tell(x, y, alt_ys) # we want to have example # to initialize prompts, so send it if not self._ready: self.prompt = self._setup_prompt( example_dict, self._prompt_template, self._suffix, self._prefix ) self.llm = self._setup_llm() self._ready = True else: # in else, so we don't add twice if self._selector_k is not None: self.prompt.example_selector.add_example(example_dict) else: self.prompt.examples.append(example_dict) self._example_count += 1 def predict( self, x: Union[str, List[str]] ) -> Union[Tuple[float, float], List[Tuple[float, float]]]: """Predict the probability distribution and values for a given x. Args: x: The x value(s) to predict. Returns: The probability distribution and values for the given x. """ if not isinstance(x, list): x = [x] if not self._ready: # special zero-shot self.prompt = self._setup_prompt( None, self._prompt_template, self._suffix, self._prefix ) self.llm = self._setup_llm() self._ready = True if self._selector_k is not None: # have to update this until my PR is merged self.prompt.example_selector.k = min(self._example_count, 10) if not isinstance(x, list): x = {key: str(value) for key, value in x.items()} queries = [self.prompt.format(**x)] else: queries = [ self.prompt.format( x=self.format_x(list(x_i.values())), y_name=self._y_name ) for x_i in x ] results, tokens = self._predict(queries) self.tokens_used += tokens # need to replace any GaussDist with pop std for i, result in enumerate(results): if len(self._ys) > 1: ystd = np.std(self._ys) elif len(self._ys) == 1: ystd = self._ys[0] else: ystd = 10 if isinstance(result, GaussDist): results[i].set_std(ystd) if self._calibration_factor: for i, result in enumerate(results): if isinstance(result, GaussDist): results[i].set_std(result.std() * self._calibration_factor) elif isinstance(result, DiscreteDist): results[i] = GaussDist( results[i].mean(), results[i].std() * self._calibration_factor, ) # compute mean and standard deviation if len(x) == 1: return results[0], queries return results, queries def ask( self, data, possible_x: List[str], _lambda: float = 0.5, ) -> Dict: """Ask the optimizer for the next x to try. Args: possible_x: List of possible x values to choose from. _lambda: Lambda value to use for UCB. Return: The selected x values, their acquisition function values, and the predicted y modes. Sorted by acquisition function value (descending) """ # Store highest value so far if len(self._ys) == 0: best = 0 else: best = np.max(self._ys) # Create list of values to query over possible_x_l = list(possible_x) # Calculate results over 3 acquisition functions aq_fxns = { "Expected Improvement": expected_improvement, "Upper Confidence Bound": partial(upper_confidence_bound, _lambda=_lambda), } # Obtain results for each acquisition function value results = self._ask(data, possible_x_l, best, aq_fxns) # If we have nothing then just go random return results def _tell( self, x: str, y: float, alt_ys: Optional[List[float]] = None ) -> Tuple[Dict, Dict]: """Tell the optimizer about a new example.""" if self.use_quantiles: self.qt = QuantileTransformer( values=self._ys + [y], n_quantiles=self.n_quantiles ) y = self.qt.to_quantiles(y) if alt_ys is not None: raise ValueError("Alt ys not supported for topk.") example_dict = dict( x=self.format_x(x), y=self.format_y(y), y_name=self._y_name, ) self._ys.append(y) inv_dict = dict( x=self.format_x(x), y=self.format_y(y), y_name=self._y_name, x_name=self._x_name, ) return example_dict, inv_dict def _predict(self, queries: List[str]) -> Tuple[List[DiscreteDist], int]: result, token_usage = self.openai_topk_predict(queries, self.llm, self._verbose) if self.use_quantiles and self.qt is None: raise ValueError( "Can't use quantiles without building the quantile transformer" ) if self.use_quantiles: for r in result: if isinstance(r, GaussDist): r._mean = self.qt.to_values(r._mean) elif isinstance(r, DiscreteDist): r.values = self.qt.to_values(r.values) return result, token_usage def _ask( self, data, possible_x: List[str], best: float, aq_fxns: Dict[str, Callable] ) -> Dict: # Obtain results and queries results, queries = self.predict(possible_x) # Calculate acquisition function value final_results = {} for aq_fxn_name, aq_fxn in aq_fxns.items(): aq_vals = np.array( [aq_fxn(r, best) if len(r) > 0 else np.nan for r in results] ) if aq_fxn_name == "Upper Confidence Bound": # Check UCB range target_vals = [ data[ (data["SMILES"] == example["SMILES"]) & (data["SMILES Solvent"] == example["SMILES Solvent"]) ]["Solubility"].values[0] for example in possible_x ] num_success_bounds = sum( [ 1 if result_range[0] <= target_val <= result_range[1] else 0 for result_range, target_val in zip(aq_vals, target_vals) ] ) / len(possible_x) # Final acquisition values aq_vals = aq_vals[:, 1] # Other acquisition values aq_vals_cleaned = np.where( np.isnan(aq_vals), -np.inf, np.where(np.isinf(aq_vals), 1e10, aq_vals), ) selected = np.argmax(aq_vals_cleaned) final_results[f"{aq_fxn_name}"] = { "Selected": possible_x[selected], "Acquisition Values": aq_vals_cleaned, "Number of points contained in acquisition range": num_success_bounds, } if aq_fxn_name == "Expected Improvement": # Other acquisition values aq_vals_cleaned = np.where( np.isnan(aq_vals), -np.inf, np.where(np.isinf(aq_vals), 1e10, aq_vals), ) selected = np.argmax(aq_vals_cleaned) final_results[f"{aq_fxn_name}"] = { "Selected": possible_x[selected], "Acquisition Values": aq_vals_cleaned, "Number of points contained in acquisition range": "N/A", } # Add random final_results["random"] = { "Selected": np.random.choice(possible_x), "Acquisition Values": [0], "Number of points contained in acquisition range": None, } return final_results
[ "Q: Given {x}, what is {y_name}?\nA: ", "Q: Given {x}, what is {y_name}?\nA: {y}###\n\n", "y_name" ]
2024-01-10
siddarthanath/University-College-London
Thesis~cebo~models~cebo_lift.py
""" This file creates extends the original Ask-Tell interface by incorporating contextual information for solubility prediction. This method adapts the prefix and the prompt template, in attempt to improve prediction accuracy. Note that there are other ways to incorporate contextual information into the LLM. """ # -------------------------------------------------------------------------------------------------------------------- # # Standard Library from typing import * from functools import partial from typing import Tuple, List, Any, Union # Third Party import numpy as np from langchain.prompts.few_shot import FewShotPromptTemplate from langchain.prompts.prompt import PromptTemplate from langchain.embeddings import OpenAIEmbeddings from langchain.prompts.example_selector import ( MaxMarginalRelevanceExampleSelector, SemanticSimilarityExampleSelector, ) from langchain.vectorstores import FAISS, Chroma from numpy import ndarray # Private from cebo.helper.distmodel import DiscreteDist, GaussDist from cebo.models.llm import LLM from cebo.helper.aqfxns import ( probability_of_improvement, expected_improvement, upper_confidence_bound, greedy, ) # -------------------------------------------------------------------------------------------------------------------- # _answer_choices = ["A", "B", "C", "D", "E"] class CEBOLIFT(LLM): def __init__( self, model: str, prompt_template: PromptTemplate = None, suffix: Optional[str] = None, temperature: Optional[float] = None, prefix: Optional[str] = None, x_formatter: Callable[[str], str] = lambda x: x, y_formatter: Callable[[float], str] = lambda y: f"{y:0.2f}", y_name: str = "output", x_name: str = "input", selector_k: Optional[int] = None, k: int = 5, verbose: bool = False, cos_sim: bool = False, features: bool = False, domain: str = None, ) -> None: """Initialize Ask-Tell optimizer. You can pass formatters that will make your data more compatible with the model. Note that y as output form the model must be a float(can be parsed with ``float(y_str)``) Args: prompt_template: Prompt template that should take x and y (for few shot templates) suffix: Matching suffix for first part of prompt template - for actual completion. model: OpenAI base model to use for training and inference. temperature: Temperature to use for inference. If None, will use model default. prefix: Prefix to add before all examples (e.g., some context for the model). x_formatter: Function to format x for prompting. y_formatter: Function to format y for prompting. y_name: Name of y variable in prompt template (e.g., density, value of function, etc.) x_name: Name of x variable in prompt template (e.g., input, x, etc.). Only appears in inverse prompt selector_k: What k to use when switching to selection mode. If None, will use all examples k: Number of examples to use for each prediction. verbose: Whether to print out debug information. """ self._model = model self._temperature = temperature self._selector_k = selector_k self._ready = False self._ys = [] self.format_x = x_formatter self.format_y = y_formatter self._y_name = y_name self._x_name = x_name self._prompt_template = prompt_template self._suffix = suffix self._prefix = prefix self._example_count = 0 self._temperature = temperature self._k = k self._answer_choices = _answer_choices[:k] self._calibration_factor = None self._verbose = verbose self.tokens_used = 0 self.cos_sim = cos_sim self.features = features self.domain = domain def set_calibration_factor(self, calibration_factor): self._calibration_factor = calibration_factor def _setup_llm(self): # nucleus sampling seems to get more diversity return self.get_llm( n=self._k, best_of=self._k, temperature=0.1 if self._temperature is None else self._temperature, model=self._model, top_p=1.0, stop=["\n", "###", "#", "##"], logit_bias={ "198": -100, # new line, "628": -100, # double new line, "50256": -100, # endoftext }, max_tokens=256, logprobs=1, ) def _setup_prompt( self, example: Dict, prompt_template: Optional[PromptTemplate] = None, suffix: Optional[str] = None, prefix: Optional[str] = None, ) -> FewShotPromptTemplate: # Create input variables and template input_variables = list(example.keys()) if self.features: template = ( f"Q: What is the {self._y_name} of {{{input_variables[0]}}}, given the following properties: " + ", ".join([f"{var} is {{{var}}}" for var in input_variables[1:-1]]) + "?" + f"\nA: {{{input_variables[-1]}}}###\n\n " ) else: template = f"Q: Given {input_variables[0]}, what is {self._y_name}?\nA: {input_variables[-1]}###\n\n" # Setup prefix i.e. the background on the task that the LLM will perform if prefix is None: if self.domain is None: prefix = ( "The following are correctly answered questions. " "Each answer is numeric and ends with ###\n" ) else: prefix = ( f"You are an expert {self.domain}. " "The following are correctly answered questions. " "Each answer is numeric and ends with ###\n" "Your task is to answer the question as accurately as possible. " ) # Setup prompt template i.e. the information the LLM will process for the given problem if prompt_template is None: prompt_template = PromptTemplate( input_variables=input_variables, template=template ) if suffix is not None: raise ValueError( "Cannot provide suffix if using default prompt template." ) elif self.features: suffix = ( f"Q: What is the {self._y_name} of {{{input_variables[0]}}} given the following properties: " + ", ".join( [f"{var} is {{{var}}}" for var in input_variables[1:-1]] ) + "?" + f"\nA: " ) else: suffix = ( f"Q: Given {input_variables[0]}, what is the {self._y_name}?\nA: " ) elif suffix is None: raise ValueError("Must provide suffix if using custom prompt template.") # test out prompt if example is not None: prompt_template.format(**example) examples = [example] else: examples = [] example_selector = None if self._selector_k is not None: # Convert list to be readable example = {key: str(value) for key, value in example.items()} if len(examples) == 0: raise ValueError("Cannot do zero-shot with selector") if not self.cos_sim: example_selector = ( example_selector ) = MaxMarginalRelevanceExampleSelector.from_examples( [example], OpenAIEmbeddings(), FAISS, k=self._selector_k, ) else: example_selector = ( example_selector ) = SemanticSimilarityExampleSelector.from_examples( [example], OpenAIEmbeddings(), Chroma, k=self._selector_k, ) return FewShotPromptTemplate( examples=examples if example_selector is None else None, example_prompt=prompt_template, example_selector=example_selector, suffix=suffix, prefix=prefix, input_variables=input_variables[:-1], ) def tell(self, example_dict: Dict) -> None: """Tell the optimizer about a new example.""" # Add points self._ys.append(example_dict["Solubility"]) # change example dictionary example_dict = { key: str(value) if key != "Solubility" else f"{value:.8f}".rstrip("0").rstrip(".") if value != 0 else "0.00" for key, value in example_dict.items() } if not self._ready: self.prompt = self._setup_prompt( example_dict, self._prompt_template, self._suffix, self._prefix ) self.llm = self._setup_llm() self._ready = True else: # in else, so we don't add twice if self._selector_k is not None: self.prompt.example_selector.add_example(example_dict) else: self.prompt.examples.append(example_dict) self._example_count += 1 def predict(self, x: Dict) -> Union[tuple[Any, list[str]], Any]: """Predict the probability distribution and values for a given x. Args: x: The x value(s) to predict. Returns: The probability distribution and values for the given x. """ if not self._ready: # special zero-shot self.prompt = self._setup_prompt( None, self._prompt_template, self._suffix, self._prefix ) self.llm = self._setup_llm() self._ready = True if self._selector_k is not None: # have to update this until my PR is merged self.prompt.example_selector.k = min(self._example_count, 10) if not isinstance(x, list): x = {key: str(value) for key, value in x.items()} queries = [self.prompt.format(**x)] else: queries = [ self.prompt.format(**{key: str(value) for key, value in x_i.items()}) for x_i in x ] results, tokens = self._predict(queries) self.tokens_used += tokens # need to replace any GaussDist with pop std for i, result in enumerate(results): if len(self._ys) > 1: ystd = np.std(self._ys) elif len(self._ys) == 1: ystd = self._ys[0] else: ystd = 10 if isinstance(result, GaussDist): results[i].set_std(ystd) if self._calibration_factor: for i, result in enumerate(results): if isinstance(result, GaussDist): results[i].set_std(result.std() * self._calibration_factor) elif isinstance(result, DiscreteDist): results[i] = GaussDist( results[i].mean(), results[i].std() * self._calibration_factor, ) # Compute mean and standard deviation if len(results) > 1: return results, queries else: return results[0], queries def ask( self, data, possible_x: List[str], _lambda: float = 0.5, ) -> Dict: """Ask the optimizer for the next x to try. Args: possible_x: List of possible x values to choose from. _lambda: Lambda value to use for UCB. Return: The selected x values, their acquisition function values, and the predicted y modes. Sorted by acquisition function value (descending) """ # Store highest value so far if len(self._ys) == 0: best = 0 else: best = np.max(self._ys) # Create list of values to query over possible_x_l = list(possible_x) # Calculate results over 3 acquisition functions aq_fxns = { "Expected Improvement": expected_improvement, "Upper Confidence Bound": partial(upper_confidence_bound, _lambda=_lambda), } # Obtain results for each acquisition function value results = self._ask(data, possible_x_l, best, aq_fxns) # If we have nothing then just go random return results def _tell(self, x: str, y: float, alt_ys: Optional[List[float]] = None) -> Dict: # implementation of tell if alt_ys is not None: if len(alt_ys) != len(self._answer_choices) - 1: raise ValueError("Must provide 4 alternative ys.") alt_ys = [self.format_y(alt_y) for alt_y in alt_ys] else: alt_ys = [] alt_y = y for i in range(100): if len(alt_ys) == len(self._answer_choices) - 1: break if i < 50: alt_y = y * 10 ** np.random.normal(0, 0.2) else: # try something different alt_y = y + np.random.uniform(-10, 10) if self.format_y(alt_y) not in alt_ys and self.format_y( alt_y ) != self.format_y(y): alt_ys.append(self.format_y(alt_y)) # choose answer answer = np.random.choice(self._answer_choices) example_dict = dict( x=self.format_x(x), Answer=answer, y_name=self._y_name, ) for a in self._answer_choices: if a == answer: example_dict[a] = self.format_y(y) else: example_dict[a] = alt_ys.pop() self._ys.append(y) inv_example = dict( x=self.format_x(x), y_name=self._y_name, y=self.format_y(y), x_name=self._x_name, ) return example_dict, inv_example def _predict(self, queries: List[str]) -> tuple[Any, Any]: result, token_usage = self.openai_topk_predict(queries, self.llm, self._verbose) return result, token_usage def _ask( self, data, possible_x: List[str], best: float, aq_fxns: Dict[str, Callable] ) -> Dict: # Obtain results and queries results, queries = self.predict(possible_x) # Calculate acquisition function value final_results = {} for aq_fxn_name, aq_fxn in aq_fxns.items(): aq_vals = np.array( [aq_fxn(r, best) if len(r) > 0 else np.nan for r in results] ) if aq_fxn_name == "Upper Confidence Bound": # Check UCB range target_vals = [ data[ (data["SMILES"] == example["SMILES"]) & (data["SMILES Solvent"] == example["SMILES Solvent"]) ]["Solubility"].values[0] for example in possible_x ] num_success_bounds = sum( [ 1 if result_range[0] <= target_val <= result_range[1] else 0 for result_range, target_val in zip(aq_vals, target_vals) ] ) / len(possible_x) # Final acquisition values aq_vals = aq_vals[:, 1] # Other acquisition values aq_vals_cleaned = np.where( np.isnan(aq_vals), -np.inf, np.where(np.isinf(aq_vals), 1e10, aq_vals), ) selected = np.argmax(aq_vals_cleaned) final_results[f"{aq_fxn_name}"] = { "Selected": possible_x[selected], "Acquisition Values": aq_vals_cleaned, "Number of points contained in acquisition range": num_success_bounds, } if aq_fxn_name == "Expected Improvement": # Other acquisition values aq_vals_cleaned = np.where( np.isnan(aq_vals), -np.inf, np.where(np.isinf(aq_vals), 1e10, aq_vals), ) selected = np.argmax(aq_vals_cleaned) final_results[f"{aq_fxn_name}"] = { "Selected": possible_x[selected], "Acquisition Values": aq_vals_cleaned, "Number of points contained in acquisition range": "N/A", } # Add random final_results["random"] = { "Selected": np.random.choice(possible_x), "Acquisition Values": [0], "Number of points contained in acquisition range": None, } return final_results
[ ", ", "\nA: {PLACEHOLDER}###\n\n ", "PLACEHOLDER is {PLACEHOLDER}" ]
2024-01-10
coolbeevip/langchain_plantuml
langchain_plantuml~diagram.py
# Copyright 2023 Lei Zhang # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from langchain.callbacks.base import BaseCallbackHandler from langchain_plantuml.plantuml.plantuml_activity_diagram_beta_callback_handler import \ PlantUMLActivityDiagramCallbackHandler from langchain_plantuml.plantuml.plantuml_sequence_diagram_callback_handler import \ PlantUMLSequenceDiagramCallbackHandler def activity_diagram_callback( note_max_length: int = 1000, note_wrap_width: int = 500 ) -> BaseCallbackHandler: return PlantUMLActivityDiagramCallbackHandler( note_max_length=note_max_length, note_wrap_width=note_wrap_width ) def sequence_diagram_callback( note_max_length: int = 1000, note_wrap_width: int = 500 ) -> BaseCallbackHandler: return PlantUMLSequenceDiagramCallbackHandler( note_max_length=note_max_length, note_wrap_width=note_wrap_width )
[]
2024-01-10
coolbeevip/langchain_plantuml
examples~example_1.py
# Copyright 2023 Lei Zhang # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from langchain import OpenAI, LLMChain, PromptTemplate from langchain.memory import ConversationBufferMemory from langchain_plantuml import diagram from dotenv import load_dotenv load_dotenv() template = """You are a chatbot having a conversation with a human. {chat_history} Human: {human_input} Chatbot:""" prompt = PromptTemplate( input_variables=["chat_history", "human_input"], template=template ) memory = ConversationBufferMemory(memory_key="chat_history") activity_diagram = diagram.activity_diagram_callback(note_max_length=2000) sequence_diagram = diagram.sequence_diagram_callback(note_max_length=2000) llm_chain = LLMChain( llm=OpenAI(), prompt=prompt, verbose=True, memory=memory, callbacks=[activity_diagram, sequence_diagram] ) try: llm_chain.predict(human_input="What did biden say about ketanji brown jackson in the state of the union address?") finally: activity_diagram.save_uml_content("example_1_activity-plantuml.puml") sequence_diagram.save_uml_content("example_1_sequence-plantuml.puml")
[ "You are a chatbot having a conversation with a human.\n\n{chat_history}\nHuman: {human_input}\nChatbot:", "chat_history", "human_input" ]
2024-01-10
coolbeevip/langchain_plantuml
langchain_plantuml~plantuml~plantuml_sequence_diagram_callback_handler.py
# Copyright 2023 Lei Zhang # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import time from typing import Any, Dict, List, Optional, Union from langchain.schema import AgentAction, AgentFinish, LLMResult from langchain_plantuml.core.plantuml_callback_handler import \ BasePlantUMLCallbackHandler DEFAULT_SKIN_PARAM = [ "skinparam maxMessageSize 50", "skinparam roundcorner 20", "skinparam sequenceArrowThickness 2", "skinparam ParticipantPadding 20", ] UML_PARTICIPANTS_FLAG = "-participants-" class PlantUMLSequenceDiagramCallbackHandler(BasePlantUMLCallbackHandler): _runs_metrics: dict = {} def __init__( self, color: Optional[str] = None, skin_param: List[str] = DEFAULT_SKIN_PARAM, note_max_length: int = 1000, note_wrap_width: int = 500, ) -> None: super().__init__( note_max_length=note_max_length, note_wrap_width=note_wrap_width ) for param in skin_param: self.uml_content.append(param) self.uml_content.append(UML_PARTICIPANTS_FLAG) self.participants = {} self.participant_name_indexes = [] self.color = color def on_llm_start( self, serialized: Dict[str, Any], prompts: List[str], **kwargs: Any ) -> None: run_metric = self._get_run_object(serialized=serialized, **kwargs) activity_name = self._wrapper_sequence_name( self.on_llm_start.__name__, run_metric["parent_run_name"], run_metric["name"], ) self._append_uml_sequence( line=activity_name, activate=True, participant=run_metric["name"], color="#A9DCDF", ) self._append_uml_notes( align="left", color="#A9DCDF", notes=self._wrapper_note(prompts[0]) ) def on_llm_end(self, response: LLMResult, **kwargs: Any) -> None: run_metric = self._get_run_object(**kwargs) time_cost = run_metric["end_time"] - run_metric["begin_time"] self.prompt_tokens += response.llm_output["token_usage"].prompt_tokens self.completion_tokens += response.llm_output["token_usage"].completion_tokens self.total_tokens += response.llm_output["token_usage"].total_tokens activity_name = self._wrapper_sequence_name( method_name=self.on_llm_end.__name__, parent_run_name=run_metric["name"], run_name=run_metric["parent_run_name"], message=f"Time cost: {time_cost:.2f}s", ) self._append_uml_sequence( line=activity_name, activate=False, participant=run_metric["name"] ) for chats in response.generations: for chat in chats: self._append_uml_notes( align="right", color="#A9DCDF", notes=self._wrapper_note(chat.text) ) def on_llm_new_token(self, token: str, **kwargs: Any) -> None: run_metric = self._get_run_object(**kwargs) activity_name = self._wrapper_sequence_name( self.on_llm_new_token.__name__, run_metric["name"], run_metric["parent_run_name"], ) self._append_uml_sequence( line=activity_name, activate=True, participant=run_metric["name"] ) self._append_uml_notes( align="right", color="#FEFECE", notes=self._wrapper_note(token) ) def on_llm_error( self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any ) -> None: run_metric = self._get_run_object(**kwargs) activity_name = self._wrapper_sequence_name( self.on_llm_error.__name__, run_metric["name"], run_metric["parent_run_name"], "#red", ) self._append_uml_sequence( line=activity_name, activate=False, participant=run_metric["name"] ) self._append_uml_notes( align="right", color="#red", notes=self._wrapper_note(str(error)) ) def on_chain_start( self, serialized: Dict[str, Any], inputs: Dict[str, Any], **kwargs: Any ) -> None: run_metric = self._get_run_object(serialized, **kwargs) activity_name = self._wrapper_sequence_name( self.on_chain_start.__name__, run_metric["parent_run_name"], run_metric["name"], ) self._append_uml_sequence( line=activity_name, activate=True, participant=run_metric["name"] ) self._append_uml_notes( align="left", color="#FEFECE", notes=self._wrapper_note(str(inputs)) ) def on_chain_end(self, outputs: Dict[str, Any], **kwargs: Any) -> None: run_metric = self._get_run_object(**kwargs) activity_name = self._wrapper_sequence_name( self.on_chain_end.__name__, run_metric["name"], run_metric["parent_run_name"], ) self._append_uml_sequence( line=activity_name, activate=False, participant=run_metric["name"] ) self._append_uml_notes( align="right", color="#A9DCDF", notes=self._wrapper_note(str(outputs)) ) def on_chain_error( self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any ) -> None: run_metric = self._get_run_object(**kwargs) activity_name = self._wrapper_sequence_name( self.on_chain_error.__name__, run_metric["name"], run_metric["parent_run_name"], "#red", ) self._append_uml_sequence( line=activity_name, activate=False, participant=run_metric["name"] ) self._append_uml_notes( align="right", color="#red", notes=self._wrapper_note(str(error)) ) def on_agent_action( self, action: AgentAction, color: Optional[str] = None, **kwargs: Any ) -> Any: run_metric = self._get_run_object(**kwargs) if "parent_run_name" in run_metric: activity_name = self._wrapper_sequence_name( self.on_agent_action.__name__, run_metric["parent_run_name"], run_metric["name"], ) self._append_uml_sequence( line=activity_name, activate=True, participant=run_metric["name"] ) def on_tool_start( self, serialized: Dict[str, Any], input_str: str, **kwargs: Any, ) -> None: pass run_metric = self._get_run_object(serialized, **kwargs) activity_name = self._wrapper_sequence_name( self.on_tool_start.__name__, run_metric["parent_run_name"], run_metric["name"], ) self._append_uml_sequence( line=activity_name, activate=True, participant=run_metric["name"], color="#orange", ) self._append_uml_notes( align="left", color="#FEFECE", notes=self._wrapper_note(input_str) ) def on_tool_end( self, output: str, color: Optional[str] = None, observation_prefix: Optional[str] = None, llm_prefix: Optional[str] = None, **kwargs: Any, ) -> None: run_metric = self._get_run_object(**kwargs) activity_name = self._wrapper_sequence_name( self.on_tool_end.__name__, run_metric["name"], run_metric["parent_run_name"] ) self._append_uml_sequence( line=activity_name, activate=False, participant=run_metric["name"] ) self._append_uml_notes( align="right", color="#A9DCDF", notes=self._wrapper_note(output) ) def on_tool_error( self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any ) -> None: run_metric = self._get_run_object(**kwargs) activity_name = self._wrapper_sequence_name( self.on_tool_end.__name__, run_metric["name"], run_metric["parent_run_name"], "#red", ) self._append_uml_sequence( line=activity_name, activate=False, participant=run_metric["name"] ) self._append_uml_notes( align="right", color="#red", notes=self._wrapper_note(str(error)) ) def on_text( self, text: Any, color: Optional[str] = None, end: str = "", **kwargs: Any, ) -> None: run_metric = self._get_run_object(**kwargs) if isinstance(text, list): activity_name = self._wrapper_sequence_name( self.on_text.__name__, run_metric["parent_run_name"], run_metric["name"] ) self._append_uml_sequence(activity_name) self._append_uml_notes( align="left", color="#FEFECE", notes=[ f"Step{index}.{step.value}\n" for index, step in enumerate(text) ], ) def on_agent_finish( self, finish: AgentFinish, color: Optional[str] = None, **kwargs: Any ) -> None: run_metric = self._get_run_object(**kwargs) activity_name = self._wrapper_sequence_name( self.on_agent_finish.__name__, run_metric["name"], run_metric["parent_run_name"], ) self._append_uml_sequence( line=activity_name, activate=False, participant=run_metric["name"] ) def export_uml_content(self) -> List[str]: new_uml_content = [] for line in self.uml_content: if line == UML_PARTICIPANTS_FLAG: for participant_name in self.participant_name_indexes: new_uml_content.append(self.participants[participant_name]) else: new_uml_content.append(line) new_uml_content.append("note left") new_uml_content.append( f"* prompt_tokens: {self.prompt_tokens} \n" f"* completion_tokens: {self.completion_tokens} \n" f"* total_tokens: {self.total_tokens}" ) new_uml_content.append("end note") new_uml_content.append("@enduml") return new_uml_content def _get_run_object(self, serialized: Dict[str, Any] = None, **kwargs: Any) -> Dict: run_id = str(kwargs["run_id"]) if run_id not in self._runs_metrics: self._runs_metrics[run_id] = {} if "begin_time" not in self._runs_metrics[run_id]: self._runs_metrics[run_id]["begin_time"] = time.time() else: self._runs_metrics[run_id]["end_time"] = time.time() if kwargs["parent_run_id"] is not None: parent_run_id = str(kwargs["parent_run_id"]) self._runs_metrics[run_id]["parent_run_id"] = parent_run_id self._runs_metrics[run_id]["parent_run_name"] = self._runs_metrics[ parent_run_id ]["name"] else: self._runs_metrics[run_id]["parent_run_id"] = "Human" self._runs_metrics[run_id]["parent_run_name"] = "Human" if serialized is not None: run_name = ( serialized.get("name") if serialized.get("name") is not None else serialized["id"][len(serialized["id"]) - 1] ) self._runs_metrics[run_id]["name"] = run_name.replace(" ", "_") return self._runs_metrics[run_id] def _append_uml_sequence( self, line, activate: bool = False, participant: str = None, color: str = "#FEFECE", ): self.uml_content.append(line) if activate: self.uml_content.append(f'activate "{participant}" {color}') else: self.uml_content.append(f'deactivate "{participant}"') self.step += 1 def _append_uml_notes( self, align: str = "left", notes: List[str] = [], color: str = "" ): if len(notes) > 0: self._append_uml_line(f"note {align} {color}") self._append_uml_multi_line(notes) self._append_uml_line("end note") def _wrapper_sequence_name( self, method_name: str, parent_run_name: str, run_name: str, color: str = None, message: str = "", ) -> str: if parent_run_name not in self.participants: self.participants[ parent_run_name ] = f'participant "{self.emojis[method_name] if method_name in self.emojis else ""} {parent_run_name}" as {parent_run_name}' self.participant_name_indexes += [parent_run_name] if run_name not in self.participants: self.participants[ run_name ] = f'participant "{self.emojis[method_name] if method_name in self.emojis else ""} {run_name}" as {run_name}' self.participant_name_indexes += [run_name] return f'"{parent_run_name}" -{[color] if color is not None else ""}-> "{run_name}": {self.step} {message}'
[]
2024-01-10
coolbeevip/langchain_plantuml
langchain_plantuml~plantuml~plantuml_activity_diagram_beta_callback_handler.py
# Copyright 2023 Lei Zhang # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import time from typing import Any, Dict, List, Optional, Union from langchain.schema import AgentAction, AgentFinish, LLMResult from langchain_plantuml.core.plantuml_callback_handler import \ BasePlantUMLCallbackHandler DEFAULT_SKIN_PARAM = [ "skinparam activityFontName Arial", "skinparam activityFontSize 10", "skinparam activityBorderThickness 1", "skinparam activityShadowing true", "skinparam ArrowHeadColor none", ] class PlantUMLActivityDiagramCallbackHandler(BasePlantUMLCallbackHandler): _runs_metrics: dict = {} def __init__( self, color: Optional[str] = None, skin_param: List[str] = DEFAULT_SKIN_PARAM, note_max_length: int = 1000, note_wrap_width: int = 500, ) -> None: super().__init__( note_max_length=note_max_length, note_wrap_width=note_wrap_width ) for param in skin_param: self.uml_content.append(param) self.uml_content.append("start") self.color = color def on_llm_start( self, serialized: Dict[str, Any], prompts: List[str], **kwargs: Any ) -> None: run_metric = self._get_run_object(serialized=serialized, **kwargs) activity_name = self._wrapper_activity_name( self.on_llm_start.__name__, f'{run_metric["name"]}({kwargs["invocation_params"]["model_name"]})', ) self._append_uml_activity(activity_name) self._append_uml_notes(align="left", notes=self._wrapper_note(prompts[0])) def on_llm_end(self, response: LLMResult, **kwargs: Any) -> None: run_metric = self._get_run_object(**kwargs) time_cost = run_metric["end_time"] - run_metric["begin_time"] self.prompt_tokens += response.llm_output["token_usage"].prompt_tokens self.completion_tokens += response.llm_output["token_usage"].completion_tokens self.total_tokens += response.llm_output["token_usage"].total_tokens activity_name = self._wrapper_activity_name( self.on_llm_end.__name__, f'{run_metric["name"]}\n' f"\n* time {time_cost:.2f}s " f'\n* prompt_tokens {response.llm_output["token_usage"].prompt_tokens} ' f'\n* completion_tokens {response.llm_output["token_usage"].completion_tokens} ' f'\n* total_tokens {response.llm_output["token_usage"].total_tokens};', ) self._append_uml_activity(activity_name) for chats in response.generations: for chat in chats: self._append_uml_notes( align="right", notes=self._wrapper_note(chat.text) ) def on_llm_new_token(self, token: str, **kwargs: Any) -> None: run_metric = self._get_run_object(**kwargs) activity_name = self._wrapper_activity_name( self.on_llm_new_token.__name__, run_metric["name"] ) self._append_uml_activity(activity_name) self._append_uml_notes(align="right", notes=self._wrapper_note(token)) def on_llm_error( self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any ) -> None: run_metric = self._get_run_object(**kwargs) activity_name = self._wrapper_activity_name( self.on_llm_error.__name__, run_metric["name"] ) self._append_uml_activity(activity_name) self._append_uml_notes(align="right", notes=self._wrapper_note(str(error))) def on_chain_start( self, serialized: Dict[str, Any], inputs: Dict[str, Any], **kwargs: Any ) -> None: run_metric = self._get_run_object(serialized, **kwargs) activity_name = self._wrapper_activity_name( self.on_chain_start.__name__, run_metric["name"] ) self._append_uml_activity(activity_name) self._append_uml_notes(align="left", notes=self._wrapper_note(str(inputs))) def on_chain_end(self, outputs: Dict[str, Any], **kwargs: Any) -> None: run_metric = self._get_run_object(**kwargs) activity_name = self._wrapper_activity_name( self.on_chain_end.__name__, run_metric["name"] ) self._append_uml_activity(activity_name) self._append_uml_notes(align="right", notes=self._wrapper_note(str(outputs))) def on_chain_error( self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any ) -> None: run_metric = self._get_run_object(**kwargs) activity_name = self._wrapper_activity_name( self.on_chain_error.__name__, run_metric["name"] ) self._append_uml_activity(activity_name) self._append_uml_notes(align="right #red", notes=self._wrapper_note(str(error))) def on_tool_start( self, serialized: Dict[str, Any], input_str: str, **kwargs: Any, ) -> None: pass run_metric = self._get_run_object(serialized, **kwargs) activity_name = self._wrapper_activity_name( self.on_tool_start.__name__, run_metric["name"] ) self._append_uml_activity(activity_name) self._append_uml_notes(align="left", notes=self._wrapper_note(input_str)) def on_agent_action( self, action: AgentAction, color: Optional[str] = None, **kwargs: Any ) -> Any: run_metric = self._get_run_object(**kwargs) if kwargs["parent_run_id"] is not None: activity_name = self._wrapper_activity_name( self.on_agent_action.__name__, run_metric["name"] ) self._append_uml_activity(activity_name) def on_tool_end( self, output: str, color: Optional[str] = None, observation_prefix: Optional[str] = None, llm_prefix: Optional[str] = None, **kwargs: Any, ) -> None: run_metric = self._get_run_object(**kwargs) activity_name = self._wrapper_activity_name( self.on_tool_end.__name__, run_metric["name"] ) self._append_uml_activity(activity_name) self._append_uml_notes(align="right", notes=self._wrapper_note(output)) def on_tool_error( self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any ) -> None: """Do nothing.""" pass def on_text( self, text: Any, color: Optional[str] = None, end: str = "", **kwargs: Any, ) -> None: run_metric = self._get_run_object(**kwargs) if isinstance(text, list): activity_name = self._wrapper_activity_name( self.on_text.__name__, run_metric["name"] ) self._append_uml_activity(activity_name) self._append_uml_notes( align="left", notes=[ f"Step{index}.{step.value}\n" for index, step in enumerate(text) ], ) def on_agent_finish( self, finish: AgentFinish, color: Optional[str] = None, **kwargs: Any ) -> None: run_metric = self._get_run_object(**kwargs) activity_name = self._wrapper_activity_name( self.on_agent_finish.__name__, run_metric["name"] ) self._append_uml_activity(activity_name) def export_uml_content(self) -> List[str]: self.uml_content.append("stop") self.uml_content.append("note right") self.uml_content.append( f"* prompt_tokens: {self.prompt_tokens} \n" f"* completion_tokens: {self.completion_tokens} \n" f"* total_tokens: {self.total_tokens}" ) self.uml_content.append("end note") self.uml_content.append("@enduml") return self.uml_content def _get_run_object(self, serialized: Dict[str, Any] = None, **kwargs: Any) -> Dict: run_id = str(kwargs["run_id"]) if run_id not in self._runs_metrics: self._runs_metrics[run_id] = {} if "begin_time" not in self._runs_metrics[run_id]: self._runs_metrics[run_id]["begin_time"] = time.time() else: self._runs_metrics[run_id]["end_time"] = time.time() if serialized is not None: run_name = ( serialized.get("name") if serialized.get("name") is not None else serialized["id"][len(serialized["id"]) - 1] ) self._runs_metrics[run_id]["name"] = run_name return self._runs_metrics[run_id] def _append_uml_activity(self, line): self.uml_content.append(line) self.step += 1 def _append_uml_notes(self, align: str = "left", notes: List[str] = []): if len(notes) > 0: self._append_uml_line(f"note {align}") self._append_uml_multi_line(notes) self._append_uml_line("end note") def _wrapper_activity_name(self, method_name: str, run_name: str) -> str: return f':{self.step}. {self.emojis[method_name] if method_name in self.emojis else ""} {run_name};'
[]
2024-01-10
coolbeevip/langchain_plantuml
langchain_plantuml~core~plantuml_callback_handler.py
# Copyright 2023 Lei Zhang # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from abc import ABC, abstractmethod from typing import List from langchain.callbacks.base import BaseCallbackHandler class BasePlantUMLCallbackHandler(BaseCallbackHandler, ABC): crlf: str = "⏎" note_max_length: int = 1000 note_wrap_width: int = 500 emojis = { "on_llm_start": "<:1f916:>", "on_llm_end": "<:1f916:>", "on_chain_start": "<:1f3af:>", "on_chain_end": "<:1f3af:>", "on_tool_start": "<:1f528:>", "on_tool_end": "<:1f528:>", "on_text": "<:1f4c6:>", } def __init__(self, note_max_length: int = 1000, note_wrap_width: int = 500): self.note_wrap_width = note_wrap_width self.note_max_length = note_max_length self.step = 0 self.total_tokens = 0 self.prompt_tokens = 0 self.completion_tokens = 0 self.uml_content = [] self.uml_content.append("@startuml") self.uml_content.append("skinparam dpi 300") self.uml_content.append(f"skinparam wrapWidth {self.note_wrap_width}") self.uml_content.append("skinparam shadowing false") self.uml_content.append("skinparam noteFontName Arial") self.uml_content.append("skinparam noteFontSize 10") self.uml_content.append("skinparam noteBackgroundColor #ECECEC") self.uml_content.append("skinparam noteBorderColor #C0C0C0") self.uml_content.append("skinparam noteFontColor #333333") self.uml_content.append("skinparam noteBorderThickness 0") self.uml_content.append("skinparam noteShadowing false") self.uml_content.append("skinparam noteArrow none") @abstractmethod def export_uml_content(self) -> List[str]: pass def save_uml_content(self, file_path: str): with open(file_path, "w") as f: for line in self.export_uml_content(): f.write(str(line) + "\n") def _append_uml_line(self, line): self.uml_content.append(line) def _append_uml_multi_line(self, lines: List[str]): for line in lines: self.uml_content.append(line) def _wrapper_note(self, note: str) -> List[str]: new_note = note.strip() if len(new_note) > self.note_max_length: new_note = f"{new_note[:self.note_max_length]} ... (Omit {len(new_note) - self.note_max_length} words)" new_notes = [f"{line}{self.crlf}" for line in new_note.split("\n")] wrap_notes = [ word for phrase in new_notes for word in ( [ phrase[i : i + self.note_wrap_width] for i in range(0, len(phrase), self.note_wrap_width) ] if len(phrase) > self.note_wrap_width else [phrase] ) ] return wrap_notes
[]
2024-01-10
coolbeevip/langchain_plantuml
examples~example_2.py
# Copyright 2023 Lei Zhang # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from typing import List from langchain.agents import initialize_agent, AgentType from langchain.chains import RetrievalQA from langchain.chat_models import ChatOpenAI from langchain.document_loaders import TextLoader, WebBaseLoader from langchain.embeddings import OpenAIEmbeddings from langchain.text_splitter import CharacterTextSplitter from langchain.tools import Tool from langchain.vectorstores import Chroma from langchain_plantuml import diagram from langchain_plantuml.core.plantuml_callback_handler import ( BasePlantUMLCallbackHandler, ) from dotenv import load_dotenv load_dotenv() # Define an Agent class MyAgent: def __init__(self): llm = ChatOpenAI(model_name="gpt-3.5-turbo-0613") """Create the state_of_union Vectorstore""" current_path = os.path.abspath(os.path.dirname(__file__)) doc_path = os.path.join(current_path, "state_of_the_union.txt") loader = TextLoader(doc_path) documents = loader.load() text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) texts = text_splitter.split_documents(documents) embeddings = OpenAIEmbeddings() docsearch = Chroma.from_documents( texts, embeddings, collection_name="state-of-union" ) state_of_union = RetrievalQA.from_chain_type( llm=llm, chain_type="stuff", retriever=docsearch.as_retriever() ) """Create the ruff Vectorstore""" loader = WebBaseLoader("https://beta.ruff.rs/docs/faq/") docs = loader.load() ruff_texts = text_splitter.split_documents(docs) ruff_db = Chroma.from_documents(ruff_texts, embeddings, collection_name="ruff") ruff = RetrievalQA.from_chain_type( llm=llm, chain_type="stuff", retriever=ruff_db.as_retriever() ) """Create the Agent""" tools = [ Tool( name="State of Union QA System", func=state_of_union.run, description="useful for when you need to answer questions about the most recent state of the union address. Input should be a fully formed question.", ), Tool( name="Ruff QA System", func=ruff.run, description="useful for when you need to answer questions about ruff (a python linter). Input should be a fully formed question.", ), ] self.agent = initialize_agent( tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION ) def run(self, question: str, callbacks: List[BasePlantUMLCallbackHandler]): self.agent.run(question, callbacks=callbacks) # Run the Agent agent = MyAgent() activity_diagram = diagram.activity_diagram_callback(note_max_length=2000) sequence_diagram = diagram.sequence_diagram_callback(note_max_length=2000) question = "What did biden say about ketanji brown jackson in the state of the union address?" try: agent.run(question=question, callbacks=[activity_diagram, sequence_diagram]) finally: activity_diagram.save_uml_content("example_2_activity-plantuml.puml") sequence_diagram.save_uml_content("example_2_sequence-plantuml.puml")
[]
2024-01-10
radi-cho/datasetGPT
src~datasetGPT~texts.py
from dataclasses import dataclass, field from typing import List, Any, Dict, Tuple, Union from langchain.prompts import PromptTemplate from langchain.llms import BaseLLM from langchain.chains import LLMChain from .base import DatasetGenerator OPTIONS_CONFIG_KEYS = ["backend", "max_length", "temperature"] GENERATOR_CONFIG_KEYS = ["backends", "max_lengths", "temperatures"] @dataclass class TextsGeneratorConfig: prompt: str """Text prompt.""" backends: List[Tuple[str, str, str]] """LLM APIs to use as backends.""" num_samples: int = 1 """Number of texts to generate for each options combination.""" max_lengths: List[int] = field(default_factory=lambda: [5]) """Maximum lengths in tokens for the output of each generation.""" temperatures: List[float] = field(default_factory=lambda: [0]) """Possible temperatures for the backend LLM.""" options: List[Tuple[str, str]] = field(default_factory=lambda: []) """Additional options defined in the system prompts with curly brackets.""" class TextsGenerator(DatasetGenerator): """Generator producing texts by varying model parameters and prompt options.""" config: TextsGeneratorConfig """Configuration for a TextsGenerator.""" def __init__(self, config: TextsGeneratorConfig) -> None: """Initialize TextsGenerator.""" super().__init__(config) def initialize_options_configs( self, options_config_keys: List[str] = OPTIONS_CONFIG_KEYS, generator_config_keys: List[str] = GENERATOR_CONFIG_KEYS ) -> None: """Prepare options combinations.""" super().initialize_options_configs(options_config_keys, generator_config_keys) def initialize_backend(self, text_config: Dict[str, Any]) -> BaseLLM: """Initialize a specific LLM.""" backend_str = text_config["backend"] temperature = text_config["temperature"] max_length = text_config["max_length"] backend, model = backend_str.split("|") if backend.lower() == "openai": from langchain.llms import OpenAI llm = OpenAI(model_name=model, temperature=temperature, max_tokens=max_length) elif backend.lower() == "cohere": from langchain.llms import Cohere llm = Cohere(model=model, temperature=temperature, max_tokens=max_length) elif backend.lower() == "petals": from langchain.llms import Petals llm = Petals(model_name=model, temperature=temperature, max_new_tokens=max_length) else: raise ValueError("Cannot use the specified backend.") return llm def generate_item(self) -> Dict[str, Union[List[List[Any]], float, int]]: """Produce text with a LLM Chain.""" if self.generator_index >= len(self.options_configs): raise StopIteration() text_config = self.options_configs[self.generator_index] self.generator_index += 1 input_variables = text_config.keys() - ["sample_id", "backend", "temperature", "max_length"] prompt_template = PromptTemplate(template=self.config.prompt, input_variables=input_variables) llm = self.initialize_backend(text_config) prompt_params = {k: text_config[k] for k in input_variables} input_prompt = prompt_template.format(**prompt_params) chain = LLMChain(prompt=prompt_template, llm=llm) output = chain.predict(**prompt_params) return {**text_config, "prompt": input_prompt, "output": output}
[ "max_length", "backend", "temperature" ]
2024-01-10
MKrale/ATM
AM_Gyms~frozen_lake_v2.py
from contextlib import closing from io import StringIO from os import path from typing import List, Optional import numpy as np from gym import Env, spaces, utils from gym.envs.toy_text.utils import categorical_sample from gym.error import DependencyNotInstalled LEFT = 0 DOWN = 1 RIGHT = 2 UP = 3 MAPS = { "4x4": ["SFFF", "FHFH", "FFFH", "HFFG"], "8x8": [ "SFFFFFFF", "FFFFFFFF", "FFFHFFFF", "FFFFFHFF", "FFFHFFFF", "FHHFFFHF", "FHFFHFHF", "FFFHFFFG", ], } def is_valid(board: List[List[str]], max_size: int) -> bool: frontier, discovered = [], set() frontier.append((0, 0)) while frontier: r, c = frontier.pop() if not (r, c) in discovered: discovered.add((r, c)) directions = [(1, 0), (0, 1), (-1, 0), (0, -1)] for x, y in directions: r_new = r + x c_new = c + y if r_new < 0 or r_new >= max_size or c_new < 0 or c_new >= max_size: continue if board[r_new][c_new] == "G": return True if board[r_new][c_new] != "H": frontier.append((r_new, c_new)) return False def generate_random_map(size: int = 8, p: float = 0.8) -> List[str]: """Generates a random valid map (one that has a path from start to goal) Args: size: size of each side of the grid p: probability that a tile is frozen Returns: A random valid map """ valid = False board = [] # initialize to make pyright happy while not valid: p = min(1, p) board = np.random.choice(["F", "H"], (size, size), p=[p, 1 - p]) board[0][0] = "S" board[-1][-1] = "G" valid = is_valid(board, size) return ["".join(x) for x in board] class FrozenLakeEnv_v2(Env): """ This is a variant on the Frozen Lake environment from OpenAI. A complete description on the original evironment can be found at https://www.gymlibrary.ml/environments/toy_text/frozen_lake/ In this variant, behavious of 'slippery' environments is slighly altered: Instead of the 3 possibilities in the original, a step in some direction now has a 1/2 chance of going to that spot, and a 1/2 chance to taking 2 steps in that direction. In case of the latter, if the space that gets 'skipped' is a hole the run terminates as though the current state is a hole. Also, if going 2 spaces would result in going outside the playingfield, the chance of going forward one space becomes 1. (Also, some options and rendering functions in the original have been removed from this version.) """ metadata = { "render_modes": ["human", "ansi", "rgb_array", "single_rgb_array"], "render_fps": 4, } def __init__( self, render_mode: Optional[str] = None, desc=None, map_name="4x4", is_slippery=True, ): if desc == None: desc = MAPS[map_name] self.desc = desc = np.asarray(desc, dtype="c") self.nrow, self.ncol = nrow, ncol = desc.shape self.reward_range = (0, 1) self.is_slippery = is_slippery nA = 4 nS = nrow * ncol self.initial_state_distrib = np.array(desc == b"S").astype("float64").ravel() self.initial_state_distrib /= self.initial_state_distrib.sum() self.P = {s: {a: [] for a in range(nA)} for s in range(nS)} def to_s(row, col): return row * ncol + col def inc(row, col, a): if a == LEFT: col = max(col - 1, 0) elif a == DOWN: row = min(row + 1, nrow - 1) elif a == RIGHT: col = min(col + 1, ncol - 1) elif a == UP: row = max(row - 1, 0) return (row, col) def update_probability_matrix(row, col, action): newrow, newcol = inc(row, col, action) newstate = to_s(newrow, newcol) newletter = desc[newrow, newcol] terminated = bytes(newletter) in b"GH" reward = float(newletter == b"G") return newstate, reward, terminated for row in range(nrow): for col in range(ncol): s = to_s(row, col) for a in range(4): li = self.P[s][a] letter = desc[row, col] # If this state is goal or Hole, we do this (?) if letter in b"GH": li.append((1.0, *update_probability_matrix(row, col, a))) else: if is_slippery: (row_2, col_2) = inc(row,col,a) letter2 = desc[row_2, col_2] # If next state a hole or goal, we always go there if letter2 in b"GH": li.append((1.0, *update_probability_matrix(row, col, a))) # if not, we have a 50/50 chance to either take 1 or two steps else: li.append(( 1.0 / 2.0, *update_probability_matrix(row, col, a) )) li.append(( 1.0 / 2.0, *update_probability_matrix(row_2, col_2, a) )) else: li.append((1.0, *update_probability_matrix(row, col, a))) self.observation_space = spaces.Discrete(nS) self.action_space = spaces.Discrete(nA) # pygame utils self.window_size = (min(64 * ncol, 512), min(64 * nrow, 512)) self.cell_size = ( self.window_size[0] // self.ncol, self.window_size[1] // self.nrow, ) self.window_surface = None self.clock = None self.hole_img = None self.cracked_hole_img = None self.ice_img = None self.elf_images = None self.goal_img = None self.start_img = None def step(self, a): transitions = self.P[self.s][a] i = categorical_sample([t[0] for t in transitions], self.np_random) p, s, r, t = transitions[i] self.s = s self.lastaction = a return (int(s), r, t, (False, {"prob": p})) def reset( self, *, seed: Optional[int] = None, return_info: bool = False, options: Optional[dict] = None, ): super().reset(seed=seed) self.s = categorical_sample(self.initial_state_distrib, self.np_random) self.lastaction = None if not return_info: return int(self.s) else: return int(self.s), {"prob": 1} def set_state(self,s): self.s = s def getname(self): if self.is_slippery: variant_name = "semi-slippery" else: variant_name = "det" return "Lake_{}_{}".format(self.nrow, variant_name) # Elf and stool from https://franuka.itch.io/rpg-snow-tileset # All other assets by Mel Tillery http://www.cyaneus.com/
[]
2024-01-10
SimonB97/BG3Chat
bg3_chat.py
""" BG3Chat.py This module contains the implementation of a chatbot for the Baldur's Gate 3 Wiki. The chatbot uses the Langchain library to scrape the wiki, build an index of the content, and generate responses to user queries based on the indexed content. The chatbot is designed to be used with the Streamlit library for a user-friendly interface. It also uses the OpenAI API for generating responses and the BeautifulSoup library for web scraping. The chatbot's functionality includes: - Scraping the Baldur's Gate 3 Wiki - Building an index of the scraped content - Generating responses to user queries based on the indexed content - Displaying the chatbot interface using Streamlit """ import os import re import requests import streamlit as st from langchain.callbacks import StreamlitCallbackHandler from langchain.vectorstores import FAISS from langchain.document_loaders import RecursiveUrlLoader from langchain.embeddings import OpenAIEmbeddings from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.chat_models import ChatOpenAI from langchain.schema import SystemMessage from langchain.agents.agent_toolkits import create_conversational_retrieval_agent from langchain.schema import BaseRetriever from langchain.tools import Tool from langchain.memory import ConversationBufferMemory from langchain.memory.chat_message_histories import StreamlitChatMessageHistory from langchain.prompts import PromptTemplate from langchain.chains.summarize import ( _load_stuff_chain, _load_map_reduce_chain, _load_refine_chain ) from langchain.chains import create_tagging_chain from langsmith import Client from openai import InvalidRequestError from bs4 import BeautifulSoup as Soup from dotenv import load_dotenv import prompts # Langsmith (only for tracing) ENABLE_TRACING = "False" if ENABLE_TRACING == "True": load_dotenv() client = Client() # URL to scrape URL = 'https://bg3.wiki/' # turn url into indexname (remove special characters) indexname = re.sub('[^a-zA-Z0-9]', '_', URL) msgs = StreamlitChatMessageHistory() memory = ConversationBufferMemory( memory_key="chat_history", chat_memory=msgs, return_messages=True) if len(msgs.messages) == 0: msgs.add_ai_message("How can I help you?") # Page title st.set_page_config(page_title="🏰🔮 BG3Chat") st.sidebar.title("🏰🔮 BG3Chat") def scrape_url(link): """ This function scrapes the content of a given URL. Parameters: link (str): The URL to be scraped. Returns: cleaned_text (str): The scraped and cleaned text from the URL. """ print(f"Scraping {link}...") response = requests.get(link, timeout=10) content_type = response.headers['content-type'] parser = "xml" if "xml" in content_type else "html.parser" loader = RecursiveUrlLoader( url=link, extractor=lambda x: Soup(x, parser).text, prevent_outside=True, max_depth=1 ) docs = loader.load() # Combine docs combined_docs = [doc.page_content for doc in docs] text = " ".join(combined_docs) # Clean text cleaned_text = re.sub('\n{3,}', '\n\n', text) # Remove non-ASCII characters cleaned_text = re.sub(r'[^\x00-\x7F]+', '', cleaned_text) # save text to file with open(f"scraped_text_{indexname}.txt", 'w', encoding='utf-8') as file: file.write(cleaned_text) return cleaned_text def build_index(scraped_text: str): """ This function builds an index from the scraped text. Parameters: text (str): The scraped and cleaned text from the URL. Returns: database (FAISS): The built index from the text. """ print("Building index...") # split text into chunks text_splitter = RecursiveCharacterTextSplitter( chunk_size=1200, chunk_overlap=120) splits = text_splitter.split_text(scraped_text) # build index index_embeddings = OpenAIEmbeddings(openai_api_key=OPENAI_API_KEY) database = FAISS.from_texts(splits, index_embeddings) database.save_local(indexname) return database def create_retriever_tool( llm: ChatOpenAI, retriever: BaseRetriever, name: str, description: str ) -> Tool: """ This function creates a tool for retrieving and combining documents. Parameters: llm (ChatOpenAI): The language model used for combining documents. retriever (BaseRetriever): The retriever used to get relevant documents. name (str): The name of the tool. description (str): The description of the tool. Returns: Tool: The created tool for retrieving and combining documents. """ if CHAIN_TYPE == "stuff": summarize_chain = _load_stuff_chain(llm, verbose=True) elif CHAIN_TYPE == "map-reduce": map_prompt_template = prompts.MAPREDUCE_PROMPT_TEMPLATE map_prompt = PromptTemplate.from_template( template=map_prompt_template ) summarize_chain = _load_map_reduce_chain( llm, map_prompt=map_prompt, combine_prompt=map_prompt, verbose=True ) elif CHAIN_TYPE == "refine": question_prompt_template = prompts.QUESTION_PROMPT_TEMPLATE question_prompt = PromptTemplate.from_template( template=question_prompt_template ) refine_prompt_template = prompts.REFINE_PROMPT_TEMPLATE refine_prompt = PromptTemplate.from_template( template=refine_prompt_template ) summarize_chain = _load_refine_chain(llm, question_prompt, refine_prompt, verbose=True) else: raise ValueError(f"Unknown chain type {CHAIN_TYPE}") def retrieve_and_combine_documents(query): if CHAIN_TYPE == "stuff": documents = retriever.get_relevant_documents(query) return summarize_chain.run(documents) documents = retriever.get_relevant_documents(query) return summarize_chain.run(question=query, input_documents=documents) return Tool( name=name, description=description, func=retrieve_and_combine_documents ) def create_agent(vectordb): """ This function creates an agent for retrieving and generating responses. Parameters: vectordb (FAISS): The built index from the text. Returns: agent_executor (AgentExecutor): The created agent executor. """ print("Creating agent...") retriever = vectordb.as_retriever(search_kwargs={'k': num_docs}) llm = ChatOpenAI( model=MODEL, temperature=0, openai_api_key=OPENAI_API_KEY, streaming=True ) tool_description = "Searches and returns documents regarding the Baldur's Gate 3 Wiki. \ USE ALWAYS when you need information about the game, to make sure \ your answers are accurate. \ Input should be a short question, not only concatenated keywords." tool = create_retriever_tool( llm, retriever, "search_baldurs_gate_3_wiki", tool_description ) tools = [tool] system_message = SystemMessage( content="""Yor are a helpful Assistant that is here to help the user find information about the Baldur's Gate 3 by searching the bg3 wiki database. Before answering, search the wiki if the question is related to the game. Answer all questions in the tone and style of Astaarion from Baldur's Gate 3 after searching the wiki and keep the answer concise but do not leave out anything important to answer the question. Astarion's talking style and tone can be described as deceptive, sarcastic, and self-interested, with a hint of his dark past. ALWAYS MAKE SURE to provide ACCURATE INFORMATION by SEARCHING the Baldur's Gate 3 Wiki whenever the user asks a question about the game. If the context is not enough to answer the question, ask the user for more information, try to guide the user. Remember, ALWAYS (!!) use the search tool before answering questions about the game. Never answer questions about the game without using the search tool, except when the necessary information is already in the message history. After answering and reflecting on the answer, provide options for clarifying the answer by predicting what the user might ask next. Avoid too general advice, always try to be specific and provide concrete information. ALWAYS USE THE SEARCH TOOL BEFORE ANSWERING QUESTIONS ABOUT THE GAME! Format your answers in markdown.""" ) agent_executor = create_conversational_retrieval_agent( llm, tools, system_message=system_message, remember_intermediate_steps=False ) agent_executor.memory = memory return agent_executor def generate_response(agent_executor, input_query): """ This function generates a response to a given input query using the agent executor. Parameters: agent_executor (AgentExecutor): The agent executor used to generate the response. input_query (str): The input query to generate a response for. Returns: response (str): The generated response to the input query. """ print("Generating response...") try: # generate response response = agent_executor( input_query, callbacks=[st_callback] )['output'] print(f"\nResponse: \n\n{response}") return response except InvalidRequestError as error: # Convert the exception to a string to get the error message error_message = str(error) # Extract the number of tokens from the error message match = re.search( r"your messages resulted in (\d+) tokens", error_message) if match: num_tokens = match.group(1) else: num_tokens = "an unknown number of" # Custom warning message context_size = str( 4097 if MODEL == "gpt-3.5-turbo-0613" else 8191 if MODEL == "gpt-4-0613" else 16384 if MODEL == "gpt-3.5-turbo-16k" else "an unknown (but too small) number of" ) warning_message = f"Your input resulted in too many tokens for the model to handle. \ The model's maximum context length is {context_size} tokens, but your messages resulted \ in {num_tokens} tokens. Please reduce the number of documents returned by the search \ (slider on the left) or the length of your input or use a model with larger context \ window and try again." st.warning(warning_message) return None def is_related_to_bg3(query): """ This function determines if a given query is related to Baldur's Gate 3. Parameters: query (str): The query to be checked. Returns: bool: True if the query is related to Baldur's Gate 3, False otherwise. """ schema = { "properties": { "bg3_related": { "type": "boolean", "enum": [True, False], "description": "describes if the question is related to or \ could be related to Baldur's Gate 3 or a game" }, }, "required": ["bg3_related"], } llm = ChatOpenAI( model="gpt-3.5-turbo-0613", temperature=0, openai_api_key=OPENAI_API_KEY, ) chain = create_tagging_chain(schema, llm) return chain.run(query)['bg3_related'] # Input Widgets OPENAI_API_KEY = st.sidebar.text_input('OpenAI API Key', type='password') CHAIN_TYPE = st.sidebar.selectbox( 'Summarize Chain Type (see Info below)', ['stuff', 'map-reduce', 'refine'], disabled=not OPENAI_API_KEY.startswith('sk-') ) MODEL = st.sidebar.selectbox('Model', ['gpt-3.5-turbo-0613', 'gpt-3.5-turbo-16k', 'gpt-4-0613'], disabled=not OPENAI_API_KEY.startswith('sk-')) num_docs = st.sidebar.slider( 'Number of documents retrieved per wiki search', 1, 30, 8) if st.sidebar.button('Clear Message History'): msgs.clear() st.sidebar.info( 'Summarize Chain Type: \n\n"stuff" ➝ faster, limited docs \n"map-reduce" ➝ slower, unlimited \ docs \n"refine" ➝ often more accurate for complex questions, slowest, unlimited docs' ) st.sidebar.markdown( """<style>small {font-size: 0.9em; line-height: 0.5;}</style> <small> <b>Disclaimer</b>: <br> <i> BG3Chat is unofficial Fan Content permitted under the Fan Content Policy. Not approved/endorsed by Wizards. Portions of the materials used are property of Wizards of the Coast. ©Wizards of the Coast LLC. <br> It is also not commisioned or sponsored by Larian Studios. </i> </small>""", unsafe_allow_html=True ) # App Logic if not OPENAI_API_KEY.startswith('sk-'): st.warning("""Please enter your OpenAI API key! If you don't have an API key yet, you can get one at [openai.com](https://platform.openai.com/account/api-keys).""", icon='⚠') if OPENAI_API_KEY.startswith('sk-'): placeholder = st.empty() # check if the scraped text file exists if os.path.exists(f'scraped_text_{indexname}.txt'): print("text file exists, loading...") with open(f"scraped_text_{indexname}.txt", 'r', encoding='utf-8') as f: SCRAPED_TEXT = f.read() else: print("text file doesn't exist, scraping...") placeholder.info('Scraping data...') SCRAPED_TEXT = scrape_url(URL) placeholder.empty() # check if the index exists if os.path.isdir(indexname): embeddings = OpenAIEmbeddings(openai_api_key=OPENAI_API_KEY) VECTORDB = FAISS.load_local(indexname, embeddings) else: # if the directory doesn't exist, rebuild the index placeholder.info('Building index...') VECTORDB = build_index(SCRAPED_TEXT) placeholder.empty() AGENT_EXECUTOR = create_agent(VECTORDB) for msg in msgs.messages: st.chat_message(msg.type).write(msg.content) if query_text := st.chat_input(): st.chat_message("human").write(query_text) with st.chat_message("assistant"): st_callback = StreamlitCallbackHandler(st.container()) # help remembering to use the search tool if the query is related to BG3 related_to_bg3 = is_related_to_bg3(query_text) print(f"\nQuestion: \n'{query_text}'\n\nRelated to BG3: {related_to_bg3}\n") if not is_related_to_bg3(query_text): RESPONSE = generate_response(AGENT_EXECUTOR, query_text) else: extended_query = query_text + " Search the wiki for this!" RESPONSE = generate_response(AGENT_EXECUTOR, extended_query) st.write(RESPONSE)
[ "Yor are a helpful Assistant that is here to help the user find information\n about the Baldur's Gate 3 by searching the bg3 wiki database. Before answering, search the wiki\n if the question is related to the game. Answer all questions in the tone and style of Astaarion from\n Baldur's Gate 3 after searching the wiki and keep the answer concise but do not leave out anything\n important to answer the question. Astarion's talking style and tone can be described as\n deceptive, sarcastic, and self-interested, with a hint of his dark past.\n ALWAYS MAKE SURE to provide ACCURATE INFORMATION by SEARCHING the\n Baldur's Gate 3 Wiki whenever the user asks a question about the game.\n If the context is not enough to answer the question, ask the user for more information, try to guide the user.\n Remember, ALWAYS (!!) use the search tool before answering questions about the game. Never\n answer questions about the game without using the search tool, except when the\n necessary information is already in the message history. \n After answering and reflecting on the answer, provide options for clarifying the answer by predicting\n what the user might ask next.\n Avoid too general advice, always try to be specific and provide concrete information.\n \n ALWAYS USE THE SEARCH TOOL BEFORE ANSWERING QUESTIONS ABOUT THE GAME!\n Format your answers in markdown." ]
2024-01-10
guojm14/HRL
hrl~env~goal_env~nchain.py
# copied from openai gym import gym from gym import spaces from gym.utils import seeding import numpy as np class NChainEnv(gym.Env): """n-Chain environment This game presents moves along a linear chain of states, with two actions: 0) forward, which moves along the chain but returns no reward 1) backward, which returns to the beginning and has a small reward The end of the chain, however, presents a large reward, and by moving 'forward' at the end of the chain this large reward can be repeated. At each action, there is a small probability that the agent 'slips' and the opposite transition is instead taken. The observed state is the current state in the chain (0 to n-1). This environment is described in section 6.1 of: A Bayesian Framework for Reinforcement Learning by Malcolm Strens (2000) http://ceit.aut.ac.ir/~shiry/lecture/machine-learning/papers/BRL-2000.pdf """ def __init__(self, n=5, slip=0.2, small=0.001, large=1.0): self.n = n self.n2 = bin(n-1) print("n2", self.n2, len(self.n2)-2) self.slip = slip # probability of 'slipping' an action self.small = small # payout for 'backwards' action self.large = large # payout at end of chain for 'forwards' action self.state = 0 # Start at beginning of the chain self.action_space = spaces.Box(low=-1., high=1., shape=(1,)) # self.observation_space = spaces.Discrete(self.n) self.observation_space = spaces.Discrete(len(self.n2) - 2) self.shuffle_order = np.arange(len(self.n2) - 2) np.random.shuffle(self.shuffle_order) self.seed() target = np.zeros(n) target[n-1] = 1 self.target = target self.reward_type = "sparse" self.visited_count = np.zeros(n) def seed(self, seed=None): self.np_random, seed = seeding.np_random(seed) return [seed] def step(self, action): # print("action", action) success = False info = {} assert self.action_space.contains(action) if self.np_random.rand() < self.slip: action = 0 - action # agent slipped, reverse action taken if action < 0 and self.state > 0: # 'backwards': go back to the beginning, get small reward reward = self.small self.state -= 1 elif action > 0 and self.state < self.n - 1: # 'forwards': go up along the chain reward = 0 self.state += 1 elif self.state == self.n - 1: # 'forwards': stay at the end of the chain, collect large reward reward = self.large success = True else: reward = 0 done = False info["is_success"] = success # print("state", self.state) if self.visited_count[self.state] == 0: self.visited_count[self.state] = 1 return self.get_obs(), reward, done, info def reset(self): self.state = 0 if self.visited_count[self.state] == 0: self.visited_count[self.state] = 1. return self.get_obs() def get_obs(self): new = np.zeros(len(self.n2) - 2) # new[self.state] = 1 new2 = bin(self.state) new2 = list(new2[2:]) new2.reverse() for i, ele in enumerate(new2): new[-(i+1)] = int(ele) new = new[::-1] # new = new[self.shuffle_order] return { "observation": np.copy(new), "achieved_goal": np.copy(new), "desired_goal": np.copy(self.target), } @property def coverage(self): return np.sum(self.visited_count) / self.n
[]
2024-01-10
Lokisfeuer/StorySphere
encode_adventure.py
# !pip install openai==0.28 # TODO: Upgrade your code to most recent version. # from rnn import train_model import json import numpy as np import openai from transformers import AutoTokenizer, AutoModel import torch import torch.nn.functional as F PRE_ENC_LENGTH = 1050 PRE_RNN_HIDDEN = 2000 TOKENIZER = AutoTokenizer.from_pretrained('sentence-transformers/all-roberta-large-v1') MODEL = AutoModel.from_pretrained('sentence-transformers/all-roberta-large-v1') # openai.api_key = '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' # These two are commented out because they contain boolean lists that need to be written out. ''' 'mot': { 'texts': ['zu_was_beschreibung'], 'bools': ['wie', 'positive_faktoren', 'negative_faktoren'], # TODO: Expand the factors! 'scalars': [], 'single_ids': [], 'list_ids': ['wer', 'zu_was_fuer_objekten', 'von_wem'] }, 'bea': { 'texts': ['aussehen'], 'bools': ['art'], # TODO: Ausschreiben 'scalars': ['difficulty'], 'single_ids': ['wo'], 'list_ids': [] }, ''' text_features_to_prompts = { 'name': 'Give me the name of a fictional character', 'backstory': 'Give me the backstory of a fictional character', 'was': 'Give me a short description of what could happen at a fictional scene in a Theatre I am writing', 'warum': 'Give me conditions for a scene in my self-written theatre to occur like who needs to be on stage', } all_features = { 'sci': { 'texts': ['name', 'backstory'], 'bools': ['charakterbogen', 'plaene_fuer_den_charakter', 'hat_eine_backstory'], 'scalars': [], 'single_ids': [], 'list_ids': ['startszene', 'events', 'gruppen', 'backstory_sonstiges'] }, 'eus': { 'texts': ['was', 'warum'], 'bools': ['untersuchen', 'soziale_interaktion', 'fight', 'start'], 'scalars': ['schwierigkeitsgrad', 'wahrscheinlichkeit'], 'single_ids': [], 'list_ids': ['wer', 'wo', 'Gegenstände', 'Geheimnisse', 'personen', 'wer_muss_da_sein', 'wo_kann_das_sein', 'motivationen'] }, 'npc': { 'texts': ['name', 'backstory'], 'bools': ['charakterbogen', 'plaene', 'hat_eine_backstory'], 'scalars': [], 'single_ids': [], 'list_ids': ['events_und_szenen', 'gruppen', 'backstory_sonstiges'] }, 'geh': { 'texts': ['was'], 'bools': [], 'scalars': ['positivitaet'], 'single_ids': [], 'list_ids': ['wer_weiss_davon', 'wen_und_was_betrifft_das'] }, 'gru': { 'texts': ['grund_des_zusammenhalts'], 'bools': [], 'scalars': [], 'single_ids': ['moegliche_motivation_von_aussen', 'geburtsort_der_gruppe'], 'list_ids': [] }, 'geg': { 'texts': ['was'], 'bools': [], 'scalars': ['wert'], 'single_ids': [], 'list_ids': ['wessen', 'wo'] } } ''' This class is the central structure for an adventure. It's supposed to be convertible to virtually any other possible representation of an adventure. To save this as JSON works already. Currently I am working on a computer readable representation of an adventure (in a high-dimensional vector field). Also I have in mind a full text representation, maybe a representation that uses a lot of graphics, a representation that would work as a computer game like the AI-RPG project, the adventure as a board game and so on. ''' class Adventure: def __init__(self, name): self.name = name self.sci = ObjectClass('sci', name=str, charakterbogen=bool, plaene_fuer_den_charakter=bool, startszene=(list, str), # list of events and scenes (where start-scene is true) events=(list, str), # list of events and scenes gruppen=(list, str), # list of groups hat_eine_backstory=bool, backstory=str, backstory_sonstiges=(list, str) ) self.mot = ObjectClass('mot', wer=(list, str), # list of Persons (PCs and NPCs) and groups zu_was_beschreibung=str, zu_was_fuer_objekten=(list, str), wie=bool, # always True positive_faktoren=(list, bool), negative_faktoren=(list, bool), # TODO: beide vollständig ausschreiben. Listen sind reserviert für unklar lange Listen. # both factors are exactly 10 bools, each hardcoded to the emotions from the Notizbuch. von_wem=(list, str) # list of Persons ?? ) self.eus = ObjectClass('eus', wer=list, # this seems wrong! wo=(list, str), was=str, untersuchen=bool, Gegenstände=(list, str), # list of Gegenstände Geheimnisse=(list, str), # list of secrets soziale_interaktion=bool, # is it a scene of social interaction? personen=(list, str), # list of persons whose relation to the players might change fight=bool, # is it a fight scene? schwierigkeitsgrad=float, warum=str, wer_muss_da_sein=(list, str), # list of persons wo_kann_das_sein=(list, str), # list of locations start=bool, wahrscheinlichkeit=float, motivationen=(list, str) ) # TODO: Orte self.npc = ObjectClass('npc', name=str, charakterbogen=bool, # hat einen Charakterbogen? plaene=bool, # es gibt Zukunftspläne für diesen NPC events_und_szenen=(list, str), # list of events gruppen=(list, str), # list of groups hat_eine_backstory=bool, backstory=str, backstory_sonstiges=(list, str) ) self.geh = ObjectClass('geh', was=str, wer_weiss_davon=(list, str), # list of Personen wen_und_was_betrifft_das=(list, str), # list of persons, Gegenstände und Orten positivitaet=float # how positive is this secret to the players. ) self.gru = ObjectClass('gru', grund_des_zusammenhalts=str, moegliche_motivation_von_aussen=str, # ??, ids are strings geburtsort_der_gruppe=str # roomID, Geburtsort der Gruppe ) self.bea = ObjectClass('bea', art=(list, bool), # TODO Ausschreiben! difficulty=float, # how big of a challenge does this beast pose. wo=str, # roomIDs aussehen=str ) self.geg = ObjectClass('geg', wessen=(list, str), # list of Persons wert=float, was=str, wo=(list, str) # list of locations ) def save(self, path='adventure.json'): to_save = {} for i in [self.sci, self.mot, self.eus, self.npc, self.geh, self.gru, self.bea, self.geg]: to_save.update(i.to_save()) with open(path, 'w+') as f: f.write(json.dumps(to_save, indent=4)) def load(self, path='adventure.json'): with open(path, 'r') as f: data = json.load(f) for i in [self.sci, self.mot, self.eus, self.npc, self.geh, self.gru, self.bea, self.geg]: i.all_objects = data[i.name] i.id_counter = len(data[i.name]) def to_list(self): to_save = {} for i in [self.sci, self.mot, self.eus, self.npc, self.geh, self.gru, self.bea, self.geg]: to_save.update(i.to_save()) return json.dumps(to_save, indent=4) def to_text(self): return 'Adventure to text doesn\'t really work yet.' # This class is more or less an add-on to the adventure class. class ObjectClass: def __init__(self, class_name, **features): self.name = class_name self.features = features self.id_counter = 0 self.all_objects = [] def add(self, **features_values): for i, val in features_values.items(): if i not in list(self.features.keys()): raise ValueError else: if isinstance(self.features[i], tuple): if not isinstance(val, list): raise ValueError if not isinstance(val[0], self.features[i][1]): raise ValueError elif not isinstance(val, self.features[i]): raise ValueError object_id = f'id_{self.name[0:3]}_{self.id_counter}' features_values.update({'ID': object_id}) self.id_counter += 1 self.all_objects.append(features_values) return object_id def to_save(self): return {self.name: self.all_objects} # This is not up-to-date. It generates a demo-adventure about Max Mustermann. def demo_adventure(): adv = Adventure('demo') # Max once met a monster which he now meets again in the very first scene. # Max wants revenge and intends to kick the monster with his boots. # John also exists. He knows that Max once met the monster. # John and Max are a group. adv.sci.add( name='Max', charakterbogen=False, plaene_fuer_den_charakter=True, startszene=['id_Eve_1'], # list of events and scenes (where start-scene is true) # events=[], # list of events and scenes gruppen=['id_Gru_1'], # list of groups hat_eine_backstory=True, backstory='This is Max awesome backstory. Max was born in Musterhausen. He was once attacked by a monster.', backstory_sonstiges=['id_Bea_1'] ) adv.mot.add( wer=['id_Spi_1'], # list of Persons (PCs and NPCs) and groups zu_was_beschreibung='Max will sich am Monster rächen indem er es mit seinen Stiefeln tritt.', zu_was_fuer_objekten=['id_Geg_1'], wie=True, # always True positive_faktoren=[False, False, False, False, False, False, False, False, False, False], # exactly 10 bools, each hardcoded to the emotions from the notizbuch negative_faktoren=[True, False, True, False, False, False, False, False, True, False], # von_wem=(list, str) # he hasn't been motivated by anyone on the outside. ) adv.eus.add( wer=['id_Spi_1', 'id_Bea_1'], wo=['id_Ort_1_leidergibtesnochkeineorte'], was='Max meets the monster that once attacked him again.', untersuchen=False, Gegenstände=['id_Geg_1'], # list of Gegenstände Geheimnisse=['id_Geh_1'], # list of secrets soziale_interaktion=False, # is it a scene of social interaction? # personen=(list, str), # since its no social interaction the SC can't change any social relations. fight=True, # is it a fight scene? schwierigkeitsgrad=0.8, warum='Max und Monster sind am gleichen Ort.?!', # wer_muss_da_sein=(list, str), # list of persons # muss nicht unbedingt was hin. # wo_kann_das_sein=(list, str), # list of locations # dito start=True, wahrscheinlichkeit=1., motivationen=['id_Mot_1'] ) # TODO: Orte adv.npc.add( name='John', charakterbogen=False, # hat einen Charakterbogen? plaene=False, # es gibt Zukunftspläne für diesen NPC events_und_szenen=['id_Eve_1'], # list of events gruppen=['id_Gru_1'], # list of groups hat_eine_backstory=True, backstory='John is the one who originally sold Max his boots.', backstory_sonstiges=['id_Spi_1', 'id_Geg_1'] ) adv.geh.add( was='Max once was attacked by the monster in his childhood.', wer_weiss_davon=['id_Spi_1', 'id_NPC_1'], # list of Personen wen_und_was_betrifft_das=['id_Spi_1', 'id_Bea_1'], # list of persons, Gegenstände und Orten positivitaet=0.2 # how positive is this secret to the players. ) adv.gru.add( grund_des_zusammenhalts='John and Max are very good friends.', # moegliche_motivation_von_aussen=str, # There is no motivation from the outside # geburtsort_der_gruppe=str # roomID, Geburtsort der Gruppe ) adv.bea.add( # art=(list, bool), difficulty=0.8, # how big of a challenge does this beast pose. wo='id_Ort_1_leidergibtesnochkeineorte', # roomIDs aussehen='This beast is a big Monster that seem really quite threatening.' ) adv.geg.add( wessen=['id_Spi_1'], # list of Persons wert=2., was='anti-monster-Boots', # wo=[] # Wo Max halt ist. ) # adv.save('demo_adventure.json') return adv # returns a high-dimensional (1024) vector representation of the passed in sentence. def roberta(sentence): # from https://huggingface.co/sentence-transformers/all-roberta-large-v1 # Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] # First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = [sentence] # Load model from HuggingFace Hub # I made this global variables because they take years to load so best just do it once. # Tokenize sentences encoded_input = TOKENIZER(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = MODEL(**encoded_input) # Perform pooling sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) # Normalize embeddings sentence_embeddings = F.normalize(sentence_embeddings, p=2, dim=1) # print("Sentence embeddings:") # print(sentence_embeddings) return sentence_embeddings.tolist()[0] def rnn_pres(list_of_ids, id_to_pre): pass # this function is supposed to return the output of the RNN encoder when fed by the pre_encoding of the # objects of list_of_ids return list(range(PRE_RNN_HIDDEN)) # this has the same length # this function takes an object (by id) and returns an encoding which is either a pre_encoding (ignoring ids) or, # if id_to_pre is not None the full encoding. def enc_obj(obj_class, id, id_to_pre=None): features = all_features[obj_class.name] for i in ['texts', 'bools', 'scalars', 'single_ids', 'list_ids']: if i not in features.keys(): features.update({i: []}) f_v = obj_class.all_objects[int(id[7:]) - 1] # =features_values enc = [] # deal with actual texts ; 1024 Values all together text = 'This is text.' for n in features['texts']: if n in f_v.keys(): text = f'{text}\n{n}: {f_v[n]}' text_embedding = roberta(text) for i in text_embedding: enc.append(i) # deal with booleans; 2 Values each for n in features['bools']: if n in f_v.keys(): # 2 values. enc.append(1.) if f_v[n]: enc.append(1.) else: enc.append(0.) else: enc.append(0.) enc.append(0.) # deal with scalars; 2 Values each for n in features['scalars']: if n in f_v.keys(): enc.append(1.) enc.append(float(f_v[n])) else: enc.append(0.) enc.append(0.) # check length expected_length = {'sci': 1030, 'eus': 1036, 'npc': 1030, 'geh': 1026, 'gru': 1024, 'bea': 1028, 'geg': 1026} # TODO: add mot if len(enc) != expected_length[obj_class.name]: raise ValueError # fill up with zeros then return if done. for i in range(PRE_ENC_LENGTH - len(enc)): enc.append(0) if id_to_pre is None: return enc # deal with single ids; PRE_ENC_LENGTH values each for n in features['single_ids']: if n in f_v: enc.append(1.) for i in id_to_pre[f_v[n]]: enc.append(i) else: enc.append(0.) for i in range(PRE_ENC_LENGTH): enc.append(0.) # deal with list of ids; PRE_RNN_HIDDEN values each (=per list) for n in features['list_ids']: if n in f_v: enc.append(1.) eve = rnn_pres(f_v[n], id_to_pre) for i in eve: enc.append(i) else: enc.append(0.) for i in range(PRE_RNN_HIDDEN): enc.append(0.) return enc # This function writes an adventure with every mathematically possible object. def generate_adventure_objs(): adv = Adventure(name='AllObjects') all_options = {} for cla in all_features.keys(): opt = {} for b in all_features[cla]['bools']: opt.update({b: [False, True]}) for s in all_features[cla]['scalars']: opt.update({s: [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]}) for t in all_features[cla]['texts']: opt.update({t: [t]}) all_options.update({cla: opt}) # generate objs: def iter_(idcs_, maxs_): if idcs_ == []: return None, None if 0 in maxs_: raise ValueError idcs_[-1] += 1 x = 0 for i in range(len(idcs_)): idx = idcs_[-(i + 1)] max = maxs_[-(i + 1)] x += 1 if idx == max: idcs_[-x] = 0 if x == len(idcs_): return None, None idcs_[-(x + 1)] += 1 return idcs_, maxs_ def create_obj(opt, idcs, cla, adv): # TODO: Debug: Why is this not called or doesn't work? name_to_feat = {'sci': adv.sci, 'mot': adv.mot, 'eus': adv.eus, 'npc': adv.npc, 'geh': adv.geh, 'gru': adv.gru, 'bea': adv.bea, 'geg': adv.geg} parameter = {} for o, idx in zip(opt.items(), idcs): if not isinstance(o[1][idx], str): parameter.update({o[0]: o[1][idx]}) else: prompt = f'Give me a very short fascinating story consisting of up to five sentences:\n\n' # response = openai.Completion.create(model="text-davinci-003", prompt=prompt, temperature=2., # max_tokens=200) # response = response['choices'][0]['text'] # parameter.update({o[0]: response}) parameter.update({o[0]: prompt}) # TODO: texts! name_to_feat[cla].add(**parameter) print('start writing') for cla in all_features.keys(): print(cla) opt = all_options[cla] idcs = [0 for _ in opt.keys()] maxs = [len(i) for i in opt.values()] while idcs is not None: create_obj(opt, idcs, cla, adv) idcs, maxs = iter_(idcs, maxs) return adv # This function generates a handful of objects and prints the result of enc_obj for each. def test(): adv = demo_adventure() # adv = Adventure(name='demo') # adv.load('demo_adventure.json') adv.sci.add( name='Alfred', charakterbogen=True, # plaene_fuer_den_charakter=True, # startszene=['id_Eve_1'], # list of events and scenes (where start-scene is true) # events=[], # list of events and scenes gruppen=['id_Gru_1'], # list of groups hat_eine_backstory=True, backstory='This is Max awesome backstory. Max was born in Musterhausen. He was once attacked by a monster.', backstory_sonstiges=['id_sci_1'] ) adv.sci.add( name='Berta', charakterbogen=False, plaene_fuer_den_charakter=True, startszene=['id_Eve_1'], # list of events and scenes (where start-scene is true) events=['id_Eve_1'], # list of events and scenes gruppen=['id_Gru_1'], # list of groups hat_eine_backstory=True, backstory='This is Max awesome backstory. Max was born in Musterhausen. He was once attacked by a monster.', backstory_sonstiges=['id_sci_1'] ) adv.sci.add() print(enc_obj(adv.sci, id='id_spi_1')) # print(pre_encode_object(adv.mot, id='id_mot_1')) print(enc_obj(adv.eus, id='id_eus_1')) print(enc_obj(adv.npc, id='id_npc_1')) print(enc_obj(adv.geh, id='id_geh_1')) print(enc_obj(adv.gru, id='id_gru_1')) print(enc_obj(adv.bea, id='id_bea_1')) print(enc_obj(adv.geg, id='id_geg_1')) print('Spielercharaktere:') print(enc_obj(adv.sci, id='id_spi_1')) print(enc_obj(adv.sci, id='id_spi_2')) print(enc_obj(adv.sci, id='id_spi_3')) print(enc_obj(adv.sci, id='id_spi_4')) # This function (currently) first cally generate_adventure_objs() to then get the pre-encoding for each object. # It saves the resulting array and prints its overall length. def main(): adv = generate_adventure_objs() adv.save(path='all_objects_adv.json') name_to_feat = {'sci': adv.sci, 'mot': adv.mot, 'eus': adv.eus, 'npc': adv.npc, 'geh': adv.geh, 'gru': adv.gru, 'bea': adv.bea, 'geg': adv.geg} i = 0 all = [] print('start encoding') for name, cla in name_to_feat.items(): print(name) for j in range(cla.id_counter): i += 1 all.append(enc_obj(cla, id=f'id_{name}_{j}')) arr = np.array(all) np.savetxt('test.csv', arr, delimiter=',') np.save("pres.npy", arr) print(i) # Generate A LOT of adventures and their objects. # train RNN with train_model from RNN # save the resulting models # write function RNN to use these saved model # test enc_obj with optional parameter id_to_pre if __name__ == '__main__': main()
[ "{'name': 'Give me the name of a fictional character', 'backstory': 'Give me the backstory of a fictional character', 'was': 'Give me a short description of what could happen at a fictional scene in a Theatre I am writing', 'warum': 'Give me conditions for a scene in my self-written theatre to occur like who needs to be on stage'}", "Give me a very short fascinating story consisting of up to five sentences:\n\n" ]
2024-01-10
Joentze/chad-bod
build_supabase.py
"""adds documents in supabase vector database""" from threading import Thread import json from typing import List from os import listdir, environ import openai from supabase import create_client from pprint import pprint # thread MAX_NUM_OF_THREADS = 8 # open ai details openai.api_key = environ["OPENAI_API_KEY"] # supabase details supabase_url = environ["SUPABASE_URL"] supabase_key = environ["SUPABASE_KEY"] supabase = create_client(supabase_url=supabase_url, supabase_key=supabase_key) COLLECTION_JSON = "compiled.json" def compile_all_documents(path: str) -> None: """gets all vector documents and generates a compiled file for supabase loading""" documents = {"documents": []} for this_file in listdir(f"./{path}"): with open(f"./{path}/{this_file}", "r", encoding="utf-8") as file: obj = json.load(file) docs = obj["documents"] srcs = obj["sources"] if len(docs) == len(srcs): documents["documents"] += [{"content": docs[i], "source":srcs[i]} for i in range(len(docs))] with open(COLLECTION_JSON, "w", encoding="utf-8") as file: json.dump(documents, file) def write_embeddings_to_documents(documents: List[object]) -> None: """writes all documents and embeddings to supabase documents table""" for document in documents: embedding = openai.Embedding.create( input=document["content"], model="text-embedding-ada-002" )["data"][0]["embedding"] document = {"content": document["content"], "embedding": embedding, "source": document["source"]} supabase.table("documents").insert(document).execute() # def segment_write_to_supabase(all_docs:List[object])->None: def add_new_user(chat_id: str, username: str) -> None: """Adds new user into db""" try: supabase.table("users").insert({ "id": chat_id, "username": username }).execute() except: pass def remove_user(chat_id: str) -> None: """Remove users from db""" try: supabase.table("users").delete().eq("id", chat_id).execute() except: pass def segment_content(documents: List[object], num_of_threads: int) -> List[List[object]]: """breaks documents into chunks""" segments = [[] for i in range(num_of_threads)] for i, document in enumerate(documents): multiplier = i // num_of_threads segments[i - num_of_threads*multiplier].append(document) return segments def segment_write_to_supabase(documents: List[object]) -> None: """threaded write to supabase""" threads = [Thread(target=write_embeddings_to_documents, kwargs={"documents": segment}) for segment in segment_content(documents, MAX_NUM_OF_THREADS)] # START THREADS for thread in threads: thread.start() # JOIN THREADS for thread in threads: thread.join() def get_context_from_supabase(query: str, threshold: float, count: int) -> str: """get contexts from supabase""" contexts = [] embedding = openai.Embedding.create( input=query, model="text-embedding-ada-002")["data"][0]["embedding"] response = supabase.rpc("match_documents", { "query_embedding": embedding, "similarity_threshold": threshold, "match_count": count, }).execute() for context in response.data: content = context["content"] source = context["source"] line = f"{content} (source: {source})" contexts.append(line) return "\n".join(contexts) # def add_message_to_supabase(chat_id:str, message_id:str, message:str)->None: if __name__ == "__main__": # compile_all_documents("vector_documents") # with open(COLLECTION_JSON, "r", encoding="utf-8") as file: # obj = json.load(file) # docs = obj["documents"] # segment_write_to_supabase(docs) pass
[ "content" ]
2024-01-10
Joentze/chad-bod
chat_bot_main.py
"""Running LLM Scripts""" import json from typing import List from datetime import datetime from dataclasses import dataclass import openai from secret_keys import TELEGRAM_API_KEY, OPEN_AI_KEY from build_supabase import get_context_from_supabase from prompts import get_prompt, insert_context_to_prompt from telegram_helper import edit_message from redis_handler import insert_message_history, get_message_history from llm_functions.function_map import function_map, llm_functions MODEL_NAME = "gpt-3.5-turbo-0613" MAX_NUM_TOKEN_TELEGRAM = 50 EXCEED_TOKEN_MESSAGE = """```You've exceeded the token limit for this message, please rephrase into a shorter statement...```""" openai.api_key = OPEN_AI_KEY # davinci = OpenAI(model_name=MODEL_NAME, # openai_api_key=OPEN_AI_KEY, temperature=0, max_tokens=1000) @dataclass class TelegramQuery: chat_id: str message_id: str query: str def is_within_token_limit(message: str) -> bool: """checks if message sent is within character limit""" return len(message)//4 <= MAX_NUM_TOKEN_TELEGRAM # def run_llm(question: str): # """runs open ai llm""" # contexts = get_context_from_supabase(question, 0.8, 3) # llm_chain = LLMChain(prompt=get_prompt(contexts), llm=davinci) # response = llm_chain.run(question) # return response def respond_with_llm(configs): """edits specific telegram bot message""" query = TelegramQuery( chat_id=configs["chat_id"], message_id=configs["message_id"], query=configs["query"]) message_history = get_message_history(query.chat_id) response = chat_completion(query.chat_id, query.query, message_history) edit_message(API_KEY=TELEGRAM_API_KEY, message_id=query.message_id, chat_id=query.chat_id, new_message=response) def chat_completion(chat_id: str, curr_query: str, history: List[object]) -> str: """sends query to LLM""" contexts = get_context_from_supabase(curr_query, 0.8, 3) prompt = insert_context_to_prompt(curr_query, contexts) message_history = [ {"role": "system", "content": "You are Chad Bod, a Singapore Management University Student Helper. You do not help students with any of their school work, you can only advise them briefly"}, *history, {"role": "user", "content": prompt} ] print(message_history) completion = openai.ChatCompletion.create( model=MODEL_NAME, temperature=0, messages=message_history, functions=llm_functions ) # message = completion['choices'][0]['message']['content'] response_body = completion['choices'][0]['message'] if "function_call" in response_body: func = response_body["function_call"] function_name = func["name"] args = func["arguments"] args = json.loads(args) message = function_map[function_name](**args) else: message = response_body["content"] insert_message_history(chat_id=chat_id, message={ "role": "assistant", "content": message}) return message if __name__ == "__main__": t1 = datetime.now() # print(run_llm("how many libraries are there in smu")) messages = get_message_history("549991017") # print(type(messages)) test = [{'role': 'system', 'content': 'You are Chad Bod, a Singapore Management University Student Helper.'}, {'role': 'user', 'content': 'who is the president of smu'}, {'role': 'user', 'content': 'who is kyriakos'}, {'role': 'user', 'content': 'how do i bid for classes?'}, {'role': 'user', 'content': 'how do i start planning for exchange'}, {'role': 'user', 'content': "\nRoleplay as the following:\nYou are an enthusiastic student helper of Singapore Management University. You respond to student's questions based on the context in a direct manner. If you do not know how to respond to the question, just say you do not know, do not come up with your own answers. quote the sources from context.\n\ncontext:\nWhat should I do if I do not have sufficient e$? Additional e$ will not be allocated as all students are given the same amount of e$ and e-pt in each term throughout the years of study in SMU. Please adjust your e$ bids accordingly so that you can bid for additional courses.But if you do not have sufficient e$ to bid for courses in your final term, please proceed to bid for the required courses with all your e$ until the end of Round 1B. You might be able to get your bids. If you are still unable to have successful bids, please consult your school manager for advice. (source: https://oasis.smu.edu.sg/Pages/faq.aspx)\nHow can I check for the applicable course area(s) for a course? Navigate toBOSS> BOSS Bidding > Plan & Bid > Add to Cart > Course Search to search for courses under a specific course area.You should check the course area of the class you wish to enrol in, as the course area(s) may change over time. (source: https://oasis.smu.edu.sg/Pages/faq.aspx)\n\nquestion:\nhow should i plan for bidding\n\nanswer:\n"}] completion = chat_completion( "549991017", "what is lks", messages) print(completion) # respond_with_llm({ # "chat_id": 549991017, # "message_id": 73, # "query": "what are the requirements for dean's list" # }) print("total time taken: ", datetime.now()-t1)
[ "who is kyriakos", "how do i start planning for exchange", "\nRoleplay as the following:\nYou are an enthusiastic student helper of Singapore Management University. You respond to student's questions based on the context in a direct manner. If you do not know how to respond to the question, just say you do not know, do not come up with your own answers. quote the sources from context.\n\ncontext:\nWhat should I do if I do not have sufficient e$? Additional e$ will not be allocated as all students are given the same amount of e$ and e-pt in each term throughout the years of study in SMU. Please adjust your e$ bids accordingly so that you can bid for additional courses.But if you do not have sufficient e$ to bid for courses in your final term, please proceed to bid for the required courses with all your e$ until the end of Round 1B. You might be able to get your bids. If you are still unable to have successful bids, please consult your school manager for advice. (source: https://oasis.smu.edu.sg/Pages/faq.aspx)\nHow can I check for the applicable course area(s) for a course? Navigate toBOSS> BOSS Bidding > Plan & Bid > Add to Cart > Course Search to search for courses under a specific course area.You should check the course area of the class you wish to enrol in, as the course area(s) may change over time. (source: https://oasis.smu.edu.sg/Pages/faq.aspx)\n\nquestion:\nhow should i plan for bidding\n\nanswer:\n", "who is the president of smu", "You are Chad Bod, a Singapore Management University Student Helper. You do not help students with any of their school work, you can only advise them briefly", "You are Chad Bod, a Singapore Management University Student Helper.", "how do i bid for classes?" ]
2024-01-10
ssutl/Instagram-bot
insta.py
from instagrapi import Client import requests from PIL import Image from PIL import ImageDraw from PIL import ImageFont from typing import Dict import textwrap from dotenv import load_dotenv import os import openai import random import schedule import time import json load_dotenv() # Get the environment variables insta_username = os.getenv('insta_username') insta_password = os.getenv('insta_password') kton_username = os.getenv('kton_username') kton_password = os.getenv('kton_password') openai.api_key = os.getenv('openAI_key') def getQuote(index): with open("quotesList.json", "r") as jsonFile: json_data = json.load(jsonFile) if index >= len(json_data): return None return json_data[index] def getImageD(): ##Using Dall-e # Generate an ultra-realistic anime cityscape that immerses the viewer in a bright and futuristic metropolis. The attention to detail is paramount – from the intricately designed skyscrapers with realistic glass reflections to the individual leaves swaying on the holographic trees. Every aspect of the scene should evoke a sense of realism and wonder. #Action photography of a parkour athlete jumping between urban structures, using a fast shutter speed. # Lifestyle photography of someone listening to vinyl records, using warm tones to evoke nostalgia. # Lifestyle photography of a black 80s DJs playing music and mixing vinyls with his crew, using warm tones to evoke nostalgia. #Lifestyle photography of the 80s streets with black people. DJs playing music and mixing vinyls. Kids running. Palm trees. using warm tones to evoke nostalgia. #Lifestyle photography of the 80s streets with black people. DJs passionately mixing vinyl records on turntables, where the vinyl decks themselves are miniature cityscapes, complete with intricate details. Kids running. Palm trees. using warm tones to evoke nostalgia. try: response = openai.Image.create( prompt="Lifestyle photography of the 80s streets with black people.Vibrant. DJs passionately mixing vinyl records on turntables, where the vinyl decks themselves are miniature cityscapes, complete with intricate details. Using warm tones to evoke nostalgia.", n=1, size="1024x1024" ) imageUrl = response['data'][0]['url'] ##Saving the file response = requests.get(imageUrl) with open('image.jpg', 'wb') as f: # Write the contents of the response to the file f.write(response.content) except openai.error.OpenAIError as e: print(f'Request failed: {e}') def getImageU(): ##Requests Unsplash random_url="https://api.unsplash.com/photos/random" access_key = "QyIVMq6A6fL2y7WlNE9XsU2X7F40JUSTj-nsCaX_MYI" headers = {"Authorization": f"Client-ID {access_key}"} params = {'query': 'modern building black', 'orientation': 'squarish'} try: unsplash_response = requests.get(random_url,headers=headers,params=params) unsplash_response.raise_for_status() #Anything thats not 200 random_image = unsplash_response.json()["urls"]["raw"] ##Saving the file response = requests.get(random_image) with open('image.jpg', 'wb') as f: # Write the contents of the response to the file f.write(response.content) except requests.exceptions.RequestException as e: print(f'Request failed: {e}') def createPost(index): # Open image img = Image.open("image.jpg") draw = ImageDraw.Draw(img, 'RGBA') font_size = 1 font = ImageFont.truetype("font.ttf", font_size) # Get quote information quote = getQuote(index) global title, author title, author = quote['Title'], quote['Author'] text = quote['Text'] global caption caption=f'Quote extracted from {author.replace(";"," & ")}\'s "{title}" {randomEmoji()} \n #Quotes #Books #HumblySubtly #MentalMobility' # Set background color bg_color = (0, 0, 0, 200) # Black color with 70% opacity # Wrap text and calculate total height wrapped_text = textwrap.wrap(text, width=40) #Maximum 20 characters per line, splits into array of strings line_height = font.getsize('hg')[1] #random string to get rough height of a single line (returns a tuple of (height,width)) total_height = len(wrapped_text) * line_height #jsut multiply each line by their heights #Find the longest string in wrapped text and continually increase font until it reaches max longest_string = max(wrapped_text, key=len) while font.getsize(longest_string)[0] < 0.8*img.size[0]: font_size+=1 font = ImageFont.truetype("font.ttf", font_size) line_height = font.getsize('hg')[1] * 2 total_height = len(wrapped_text) * line_height # the y-coordinate of the starting point of the text, # which is the point where the text will be drawn on the image. y = (img.height - total_height) / 2 # Draw each line of wrapped text on the image #In computing vertical axis goes from zero at top to image height at bottom ! for line in wrapped_text: # Center horizontally line_width = font.getsize(line)[0] #the horizontal position of the starting point of the text, # if the text is horizontally centered within the image. line_x = (img.width - line_width) / 2 # Draw background rectangle (defining top left and bottom right point) first line we add padding of 10 bg_x1, bg_y1 = line_x - 20, y - 10 bg_x2, bg_y2 = line_x + line_width + 20, y + line_height + 10 #bottom right # Draw background rectangle and text draw.rectangle((bg_x1, bg_y1, bg_x2, bg_y2), fill=bg_color) # Calculate vertical position for text (to center it within the rectangle) bg_center_y = (bg_y1 + bg_y2) / 2 text_y = bg_center_y - (font.getsize(line)[1] / 2) draw.text((line_x, text_y), line, font=font, fill=(255, 255, 255)) # To move the y coordinate to the vertical position below previous line y += line_height + 20 #Draw rectangle bottom right # Save modified image img.save("overlay.jpg") def randomEmoji(): EmojiArray = ["📚","🧠","🥭","⌛","♾️","📜","🎯"] randomEmojis = random.sample(EmojiArray,2) return " ".join(randomEmojis) def postFunction(): global current_index print("Uploading Post") quote = getQuote(current_index) if quote is not None: # Extract quote data quote_text = quote["Text"] quote_author = quote["Author"] quote_title = quote["Title"] # Create post getImageD() createPost(current_index) cl.photo_upload('overlay.jpg', caption, extra_data={ "like_and_view_counts_disabled": True, "disable_comments": True }) print(f"Posted: {quote_text} - {quote_author} ({quote_title})") current_index += 1 # Increment index for next post else: print("No more quotes to post") testing = input("Are you testing the software?") if testing == "yes" or testing == "YES" or testing == "Y" or testing == "y": imageGeneration = input("Do you want to use DALLE (D) or no (any key)?") if imageGeneration == "D" or imageGeneration == "d": getImageD() else: getImageU() createPost(28) else: cl = Client() cl.login(username=insta_username, password=insta_password) #When code starts start from this index current_index = 0 schedule.every().day.at("04:00").do(postFunction) while True: schedule.run_pending() time.sleep(1)
[]
2024-01-10
worldbank/llm4data
llm4data~scripts~indexing~docs~docs.py
from typing import Optional, Union from pathlib import Path from langchain.docstore.document import Document from langchain.document_loaders import PyMuPDFLoader from langchain.text_splitter import ( NLTKTextSplitter, CharacterTextSplitter, RecursiveCharacterTextSplitter, ) from llm4data.embeddings.docs import get_docs_embeddings from llm4data import index from llm4data import configs from llm4data.schema.schema2info import get_doc_title # Get the docs embeddings docs_embeddings = get_docs_embeddings() # Get access to the Qdrant docs collection docs_index = index.get_docs_index() chunk_overlap = 32 chunk_size = docs_embeddings.max_tokens + chunk_overlap # Create a text splitter text_splitter = RecursiveCharacterTextSplitter.from_huggingface_tokenizer( docs_index.embeddings.client.tokenizer, chunk_size=chunk_size, chunk_overlap=chunk_overlap, ) # text_splitter = NLTKTextSplitter() def add_pdf_document(path: Union[str, Path], metadata: Optional[dict] = None): # Load the document documents = PyMuPDFLoader(str(path)).load_and_split(text_splitter=text_splitter) # Add document metadata if metadata is not None: if len(documents): # Index the title of the document documents.append( Document(page_content=get_doc_title(metadata), metadata=documents[0].metadata) ) for doc in documents: doc.metadata[configs.METADATA_KEY] = metadata # Add the document to the collection # Load the documens in batches batch_size = 100 for i in range(0, len(documents), batch_size): docs_index.add_documents(documents[i : i + batch_size])
[]
2024-01-10
worldbank/llm4data
llm4data~scripts~indexing~indicators~indicators.py
from typing import List, Optional, Union from langchain.text_splitter import NLTKTextSplitter from langchain.docstore.document import Document from llm4data import configs from llm4data.index import get_indicators_index # Get access to the Qdrant docs collection indicators_index = get_indicators_index() text_splitter = NLTKTextSplitter() def build_document(text: str, metadata: dict = None): # Load the document document = Document(page_content=text, metadata={configs.METADATA_KEY: metadata} if metadata else {}) return document def add_indicators(text: Union[str, List[str]], metadata: Optional[Union[dict, List[dict]]] = None): # Load the document if isinstance(text, str): documents = [build_document(text, metadata)] else: documents = [build_document(text, meta) for text, meta in zip(text, metadata)] # Add the document to the collection indicators_index.add_documents(documents)
[]
2024-01-10
worldbank/llm4data
llm4data~prompts~context.py
import json from llm4data.index import get_docs_index, get_indicators_index from llm4data import configs from hashlib import md5 from llm4data.schema.schema2info import get_doc_id, get_doc_title, get_doc_authors from langchain.docstore.document import Document indicators = get_indicators_index() docs = get_docs_index() def get_hash_id(text: str): return md5(text.encode("utf-8")).hexdigest() def get_page(doc: Document, offset=0, default=-1): """Get the page number from the document metadata. We use offset=1 because the page numbers we want in the metadata should start from 1, while the page numbers in the PDF start from 0. """ return doc.metadata.get('page', default) + offset def get_contexts(prompt: str, k_docs: int = 5, k_indicators: int = 10, doc_id: str = None): # Search for documents if doc_id is not None: docs_result = docs.similarity_search(prompt, k=k_docs, filter={configs.METADATA_KEY: {"document_description": {"title_statement": {"idno": doc_id}}}}) else: docs_result = docs.similarity_search(prompt, k=k_docs) indicators_result = indicators.similarity_search(prompt, k=k_indicators) doc_context = [] indicators_context = [] doc_context_records = [] indicators_context_records = [] for doc in docs_result: doc_id = get_doc_id(doc.metadata[configs.METADATA_KEY]) doc_context.append("<h1>Title: " + get_doc_title(doc.metadata[configs.METADATA_KEY]) + "</h1>") if doc.metadata[configs.METADATA_KEY].get("authors"): doc_context.append("<h1>Author: " + json.dumps(get_doc_authors(doc.metadata[configs.METADATA_KEY])) + "</h1>") if doc_id is not None: doc_context.append(f"<p>(id: {doc_id}) (page: {get_page(doc, offset=1)}) {doc.page_content}</p>") else: doc_context.append(f"<p>(id: {doc_id}) {doc.page_content}</p>") doc_context_records.append(dict(id=get_hash_id(doc.page_content), doc_id=doc_id, page=get_page(doc, offset=1), content=doc.page_content)) for indicator in indicators_result: indicator_id = indicator.metadata[configs.METADATA_KEY]["series_code"] indicators_context.append(f"<p>(id: {indicator_id}) {indicator.metadata[configs.METADATA_KEY]['name']}</p>") indicators_context_records.append(dict(id=get_hash_id(indicator.page_content), indicator_id=indicator_id, name=indicator.metadata[configs.METADATA_KEY]['name'])) doc_context = "<br>".join(doc_context) if doc_context else "" indicators_context = "<br>".join(indicators_context) if indicators_context else "" return dict( docs_result=[i.dict() for i in docs_result], indicators_result=[i.dict() for i in indicators_result], doc_context=doc_context, indicators_context=indicators_context, doc_context_records=doc_context_records, indicators_context_records=indicators_context_records, )
[]
2024-01-10
worldbank/llm4data
llm4data~index~qdrant.py
import os from typing import Optional, Union from langchain.vectorstores import Qdrant import qdrant_client from qdrant_client.http import models from ..embeddings.docs import get_docs_embeddings from ..embeddings.indicators import get_indicators_embeddings from ..embeddings.microdata import get_microdata_embeddings _CLIENT = None def collection_exists(collection_name: str) -> bool: colls = get_index_client().get_collections() return collection_name in [i.name for i in colls.collections] def get_index_client(path: Optional[str] = None): global _CLIENT if _CLIENT is None: if path is not None: _CLIENT = qdrant_client.QdrantClient(path=path, prefer_grpc=True) else: url = os.environ.get("QDRANT_URL") if url is not None: port = os.environ.get("QDRANT_PORT") if port is not None: url += f":{port}" _CLIENT = qdrant_client.QdrantClient(url=url, prefer_grpc=False) else: path = os.environ.get("QDRANT_PATH") if path is not None: _CLIENT = qdrant_client.QdrantClient(path=path, prefer_grpc=True) else: raise ValueError("QDRANT_URL or QDRANT_PATH not set in the environment") return _CLIENT def get_index_collection(embeddings, path: Optional[str] = None, recreate: bool = False): client = get_index_client(path=path) if recreate: client.recreate_collection( collection_name=embeddings.collection_name, vectors_config=models.VectorParams( size=embeddings.size, distance=embeddings.distance ), ) if not collection_exists(embeddings.collection_name): client.create_collection( collection_name=embeddings.collection_name, vectors_config=models.VectorParams( size=embeddings.size, distance=embeddings.distance ), ) return Qdrant( client=client, collection_name=embeddings.collection_name, embeddings=embeddings.embeddings, ) def get_docs_index(path: Optional[str] = None, recreate: bool = False): return get_index_collection(get_docs_embeddings(), path=path, recreate=recreate) def get_indicators_index(path: Optional[str] = None, recreate: bool = False): return get_index_collection( get_indicators_embeddings(), path=path, recreate=recreate ) def get_microdata_index(path: Optional[str] = None, recreate: bool = False): return get_index_collection( get_microdata_embeddings(), path=path, recreate=recreate )
[]
2024-01-10
neethanm/EduScorer
backend.py
import openai from dotenv import load_dotenv import os # Load the environment variables from the .env file load_dotenv() # Access the API key api_key = os.getenv("API_KEY") openai.api_key = api_key def check_answer(Teachers_solution, Students_answer, Max_marks, Question): openai.api_key = api_key # openai.api_key = api_key_input # try: print("sending to gpt3") completion1 = openai.ChatCompletion.create( model="gpt-3.5-turbo-16k", messages = [ { "role": "system", "content": "You are a strict teacher evaluating student answers.", }, { "role": "user", "content": f'''Please evaluate the student's answer for the following question. You will be provided with the teacher's solution, the question, the student's answer, and the maximum marks. Your task is to assign a score to the student's answer. **Teacher's Solution:** {Teachers_solution} **Question:** {Question} **Student's Answer:** {Students_answer} **Max Marks:** {Max_marks} **Important stuff** - Make sure to deduct marks wherever you can ( you have to be really strict) - Make sure to give the response in the specified format **Evaluation Criteria:** - Accuracy: Compare the student's answer to the teacher's solution. Deduct 0.5 marks for each factual inaccuracy. - Completeness: Consider the depth of coverage in the student's answer. Deduct 0.5 marks for each missing key point. - Relevance: Assess if the student's answer stays on-topic. Deduct 0.5 marks for each irrelevant point. - Clarity: Evaluate the clarity and organization of the student's response. Deduct 0.5 marks for incoherent or poorly structured answers. **Marks Allocation:** - Full Marks: Give full marks (as specified) for answers that match the teacher's solution exactly(context and accuracy wise). - Partial Marks: Deduct 1 marks for any discrepancies between the student's answer and the teacher's solution, applying a clear grading scale. - Length: If the student's answer is significantly shorter or longer than the teacher's solution, adjust the marks accordingly according to the content.(too short -3 marks ,short -2 marks, little short -1 marks) - Explaination: If the student's answer doesnt contain the explaination of the answer that is there in the teachers answer deduct 0.5 marks. You should consider all evaluation criteria and allocate marks based on the provided guidelines and just return the total marks allocated out of max marks. YOU HAVE TO GIVE THE RESPONSE IN THIS FORMAT : {{ "marks": int,"explaination": string,"accuracy": string,"completeness":int(marks) ,"relevance": int,"clarity": int }} make sure you follow the format and give just integer values where asked and string where asked all the features accuracy , completeness,relavance,clarity,length should be positive integers ( the number of marks to be deducted ) ''' } ], # Your code to interact with the model here temperature=1, # max_tokens=15000, ) final_html = completion1['choices'][0]['message']['content'] return final_html
[ "You are a strict teacher evaluating student answers." ]
2024-01-10
jalbrekt85/ebook-diffuser
diffusers~knollingcase.py
from ebook_difusser import EBookDiffuser import os from PIL import Image import openai from dotenv import load_dotenv load_dotenv() openai.api_key = os.getenv("OPENAI_API_KEY") class Knollingcase(EBookDiffuser): # configured for 8.25x11 hardcover Amazon books def __init__(self, **kwargs): super().__init__(**kwargs) self.init_profile() def generate_theme(self) -> str: res = openai.Completion.create( model=f"text-davinci-003", prompt=self.story.gpt_theme_prompt, temperature=1.0, max_tokens=15, top_p=1, frequency_penalty=0.0, presence_penalty=0.0, stop=["\n"], ) text = res["choices"][0]["text"][1:] print("theme: ", text) if text not in os.listdir(self.books_dir): return text self.generate_theme() def generate_page_prompt(self, theme) -> str: prompt = self.story.gpt_page_prompt.format(theme) res = openai.Completion.create( model=f"text-davinci-003", prompt=prompt, temperature=1, max_tokens=9, top_p=1, frequency_penalty=0.02, presence_penalty=0.02, stop=["\ntheme"], ) page_prompt = res["choices"][0]["text"].split(":")[1][1:] # add latest result to gpt prompt template to avoid repetitive results self.story.gpt_page_prompt = prompt + "\nresponse: " + page_prompt + "\n" + "theme: {}" return "{} {}".format(theme, page_prompt) def generate_page_image(self, prompt) -> Image: res = self.api.txt2img( prompt=self.sd.prompt_template.format(prompt), negative_prompt=self.sd.negative_prompt, steps=self.sd.steps, cfg_scale=self.sd.cfg_scale, sampler_name=self.sd.sampler, width=self.sd.width, height=self.sd.height, ) upscaled = self.api.extra_single_image( res.image, upscaler_1="ESRGAN_4x", upscaling_resize=3 ) return upscaled.image
[]
2024-01-10
drewgillson/googlepalm-minute-book-extraction
terraform~modules~cloud_functions~src~minute-book-parser~directors.py
import main import json import re from langchain.prompts import PromptTemplate from langchain.llms import VertexAI from langchain.chains import LLMChain def Parser(sorted_files): """ Extracts details of elected directors from the sorted pages of minute book. Args: sorted_files (list): A list of tuples where each tuple contains the page number and file name of a sorted file. Returns: A list of dictionaries where each dictionary represents an elected officer and includes their full name, election date, address, title, and URL of the source document page where the officer's details were extracted from. """ elected_directors = [{}] election_of_director_content = "" election_of_director_provenance = [] election_of_director_token_count = 0 election_of_director_max_token_limit = 1024 extracting_election_of_director = False minimum_number_of_directors = [] maximum_number_of_directors = [] file_count = len(sorted_files) for file in sorted_files: page_number, file_name = file content = main.get_page(file_name) lowercase_content = content.lower() parsed_this_page = False # "minimum_directors": string, // Minimum number of directors required for the corporation if ("minimum" in lowercase_content or "less than" in lowercase_content) and "directors" in lowercase_content and "number" in lowercase_content: min_directors = extract_minimum_directors(content) if min_directors is not None: minimum_number_of_directors.append({"min_directors": min_directors, "provenance": main.get_url(file_name)}) # "maximum_directors": string, // Maximum number of directors allowed for the corporation if ("maximum" in lowercase_content or "more than" in lowercase_content) and "directors" in lowercase_content and "number" in lowercase_content: max_directors = extract_maximum_directors(content) if max_directors is not None: maximum_number_of_directors.append({"max_directors": max_directors, "provenance": main.get_url(file_name)}) # "directors": array, // One or more directors of a corporation, with child properties for their full name, election date, and address if "elected" in lowercase_content and "director" in lowercase_content and "register" in lowercase_content: extracting_election_of_director = True if extracting_election_of_director is True: election_of_director_tokens = election_of_director_token_count + main.num_tokens_from_string(content) election_of_director_provenance.append(main.get_url(file_name)) if election_of_director_tokens < election_of_director_max_token_limit: election_of_director_token_count += election_of_director_tokens election_of_director_content += content parsed_this_page = True if election_of_director_tokens >= election_of_director_max_token_limit or page_number == file_count: if parsed_this_page: output = extract_election_of_directors(election_of_director_content) else: output = extract_election_of_directors(content) if output is not None: try: output = json.loads(output) found_directors = [] for director in elected_directors: if not bool(director): elected_directors.remove(director) for item in output: if "director_name" in director and director['director_name'] == item['director_name']: director['director_name'] = item['director_name'].title() director['date_elected'] = item['date_elected'] director['date_retired'] = item['date_retired'] if "address" in item and isinstance(item['address'], str): director['address'] = re.sub(r'\s+', ' ', item['address']).strip() try: director['provenance'] = item['provenance'] except KeyError as e: print(e) else: item['director_name'] = item['director_name'].title() item['address'] = main.extract_address_for_person(person=item['director_name'], sorted_files=sorted_files) item['provenance'] = election_of_director_provenance found_directors.append(item) for director in found_directors: if not any(d['director_name'] == director['director_name'] for d in elected_directors): elected_directors.append(director) except json.decoder.JSONDecodeError: pass extracting_election_of_director = False election_of_director_content = "" election_of_director_token_count = 0 election_of_director_provenance = [] election_of_director_tokens = 0 output = {"directors": elected_directors, "minimum_directors": minimum_number_of_directors, "maximum_directors": maximum_number_of_directors} return output # The following functions use a large language model to perform question & answer-style extraction from a minute book def extract_minimum_directors(content): prompt = PromptTemplate( input_variables=["content"], template="""What is the minimum number of directors who can sit on the board of directors? If this passage is about quorum rules return Not Found. Format output as a number. Passage: {content} Minimum:""") chain = LLMChain(llm=VertexAI(model_name="text-bison", temperature=0.2), prompt=prompt) output = chain.predict(content=content).strip() if output != "Not Found": return output def extract_maximum_directors(content): prompt = PromptTemplate( input_variables=["content"], template="""What is the maximum number of directors who can sit on the board of directors? If this passage is about quorum rules return Not Found. Format output as a number. Passage: {content} Maximum:""") chain = LLMChain(llm=VertexAI(model_name="text-bison", temperature=0.2), prompt=prompt) output = chain.predict(content=content).strip() if output != "Not Found": return output def extract_election_of_directors(content): prompt = PromptTemplate( input_variables=["content"], template="""List the names of the directors of the corporation, the date they were elected, and the date they retired (if not a current director). The output should be a JSON object with one or more children having the following schema: {{ "director_name": string // Name of the elected director "date_elected": string // Formatted date (YYYY-MM-DD) of the elected date "date_retired": string // Formatted date (YYYY-MM-DD) of the retired date "address": string // Address of the elected director }} If the passage does not mention names of directors, output []. Passage: {content} Directors JSON:""") chain = LLMChain(llm=VertexAI(model_name="text-bison", temperature=0.2, max_output_tokens=1024), prompt=prompt) output = chain.predict(content=content).strip() if output != "[]": return output
[ "What is the minimum number of directors who can sit on\n the board of directors? If this passage is about quorum rules return Not Found.\n Format output as a number.\n Passage:\n {content}\n Minimum:", "content", "List the names of the directors of the corporation, the\n date they were elected, and the date they retired (if not a current director).\n The output should be a JSON object with one or more children having the following schema:\n {{\n \"director_name\": string // Name of the elected director\n \"date_elected\": string // Formatted date (YYYY-MM-DD) of the elected date\n \"date_retired\": string // Formatted date (YYYY-MM-DD) of the retired date\n \"address\": string // Address of the elected director\n }}\n If the passage does not mention names of directors, output [].\n Passage:\n {content}\n Directors JSON:", "What is the maximum number of directors who can sit on\n the board of directors? If this passage is about quorum rules return Not Found.\n Format output as a number.\n Passage:\n {content}\n Maximum:" ]
2024-01-10
drewgillson/googlepalm-minute-book-extraction
terraform~modules~cloud_functions~src~minute-book-parser~officers.py
import main import json import re from langchain.prompts import PromptTemplate from langchain.llms import VertexAI from langchain.chains import LLMChain def Parser(sorted_files): """ Extracts details of appointed officers from the sorted pages of minute book. Args: sorted_files (list): A list of tuples where each tuple contains the page number and file name of a sorted file. Returns: A list of dictionaries where each dictionary represents an appointed officer and includes their full name, appointment date, address, title, and URL of the source document page where the details were extracted from. """ elected_officers = [{}] election_of_officer_content = "" election_of_officer_provenance = [] election_of_officer_token_count = 0 election_of_officer_max_token_limit = 1024 extracting_election_of_officer = False file_count = len(sorted_files) for file in sorted_files: page_number, file_name = file content = main.get_page(file_name) lowercase_content = content.lower() parsed_this_page = False # "officers": array, // One or more officers of a corporation, with children properties for their full name, election date, address, and title if "officer" in lowercase_content and "register" in lowercase_content: extracting_election_of_officer = True if extracting_election_of_officer is True: election_of_officer_tokens = election_of_officer_token_count + main.num_tokens_from_string(content) election_of_officer_provenance.append(main.get_url(file_name)) if election_of_officer_tokens < election_of_officer_max_token_limit: election_of_officer_token_count += election_of_officer_tokens election_of_officer_content += content parsed_this_page = True if election_of_officer_tokens >= election_of_officer_max_token_limit or page_number == file_count: if parsed_this_page: output = extract_election_of_officers(election_of_officer_content) else: output = extract_election_of_officers(content) if output is not None: try: output = json.loads(output) found_officers = [] for officer in elected_officers: if not bool(officer): elected_officers.remove(officer) for item in output: if "officer_name" in officer and officer['officer_name'] == item['officer_name']: officer['officer_name'] = item['officer_name'].title() officer['date_appointed'] = item['date_appointed'] officer['date_retired'] = item['date_retired'] officer['position_held'] = item['position_held'] if "address" in item and isinstance(item['address'], str): officer['address'] = re.sub(r'\s+', ' ', item['address']).strip() try: officer['provenance'] = item['provenance'] except KeyError as e: print(e) else: item['officer_name'] = item['officer_name'].title() item['address'] = main.extract_address_for_person(person=item['officer_name'], sorted_files=sorted_files) item['provenance'] = election_of_officer_provenance found_officers.append(item) for officer in found_officers: if not any(d['officer_name'] == officer['officer_name'] for d in elected_officers): elected_officers.append(officer) except json.decoder.JSONDecodeError: pass extracting_election_of_officer = False election_of_officer_content = "" election_of_officer_token_count = 0 election_of_officer_provenance = [] election_of_officer_tokens = 0 return elected_officers # The following function uses a large language model to perform question & answer-style extraction from a minute book def extract_election_of_officers(content): prompt = PromptTemplate( input_variables=["content"], template="""List the names of the officers of the corporation, the date they were elected, and the date they retired (if not a current officer). The output should be a JSON object with one or more children having the following schema: {{ "officer_name": string // Name of the elected officer "date_appointed": string // Formatted date (YYYY-MM-DD) of the appointed date "date_retired": string // Formatted date (YYYY-MM-DD) of the retired date "position_held": string // Position held by the elected officer "address": string // Address of the elected officer }} If the passage does not mention names of officers, output []. Passage: {content} Officers JSON:""") chain = LLMChain(llm=VertexAI(model_name="text-bison", temperature=0.2, max_output_tokens=1024), prompt=prompt) output = chain.predict(content=content).strip() if output != "[]": return output
[ "List the names of the officers of the corporation, the date they were elected,\n and the date they retired (if not a current officer). The output should be a\n JSON object with one or more children having the following schema:\n {{\n \"officer_name\": string // Name of the elected officer\n \"date_appointed\": string // Formatted date (YYYY-MM-DD) of the appointed date\n \"date_retired\": string // Formatted date (YYYY-MM-DD) of the retired date\n \"position_held\": string // Position held by the elected officer\n \"address\": string // Address of the elected officer\n }}\n If the passage does not mention names of officers, output [].\n Passage:\n {content}\n Officers JSON:", "content" ]
2024-01-10
drewgillson/googlepalm-minute-book-extraction
terraform~modules~cloud_functions~src~minute-book-parser~entity_details.py
import main import json import re from langchain.prompts import PromptTemplate from langchain.llms import VertexAI from langchain.chains import LLMChain def Parser(sorted_files): """ Extracts various entity details from the sorted pages of a minute book. Args: sorted_files (list): A list of tuples where each tuple contains a page number and file name. Returns: A list of dictionaries where each dictionary contains the extracted entity details that match the minute book extraction schema. Each detail object includes the date, extracted details, and the URL of the source document page where the details were extracted from. """ entity_name = "" entity_details = [] for file in sorted_files: page_number, file_name = file content = main.get_page(file_name) lowercase_content = content.lower() # "entity_name": string, // Incorporation number for the corporation if page_number == 1: entity_name = extract_entity_name(content) # "tax_id_number": string, // Tax identification number for the corporation if "business number" in lowercase_content or "business no." in lowercase_content: tax_id_number = extract_tax_id_number(content) if tax_id_number is not None: entity_details.append({"tax_id_number": tax_id_number, "provenance": main.get_url(file_name)}) # "entity_number": string, // Incorporation number for the corporation # "entity_type": string // Type of business entity # "formation_date": string, // Date (YYYY-MM-DD) when the corporation was incorporated # "address": string, // Address where the corporation is registered # "home_jurisdiction": string, // Jurisdiction where the corporation is incorporated if "certificate" not in lowercase_content and "articles" in lowercase_content and ("address" in lowercase_content or "number" in lowercase_content): try: output = extract_entity_details(content) output = json.loads(output) output['entity_name'] = output['entity_name'].upper() missing_values = False for key, value in output.items(): if not value: missing_values = True break if output['entity_name'] == entity_name and not missing_values and "address" in output: entity_details.append({"details": output, "provenance": main.get_url(file_name)}) except json.decoder.JSONDecodeError: pass # TODO implement Fiscal Month, Fiscal Day, Home Report Filed Date, and Waived Auditor? return entity_details def extract_entity_name(content): prompt = PromptTemplate( input_variables=["content"], template="""Extract the name of the corporate entity from this passage. Passage: {content} Entity:""") chain = LLMChain(llm=VertexAI(model_name="text-bison", temperature=0.2), prompt=prompt) return chain.predict(content=content).strip().upper() def extract_tax_id_number(content): prompt = PromptTemplate( input_variables=["content"], template="""Extract the business number / tax identification number from this passage. Passage: {content} Entity:""") chain = LLMChain(llm=VertexAI(model_name="text-bison", temperature=0.2), prompt=prompt) return chain.predict(content=content).strip() def extract_entity_details(content): prompt = PromptTemplate( input_variables=["content"], template="""What is the name of the entity, corporate registration number, date of incorporation, type of entity, address, and jurisdiction in these articles of incorporation? The output should be a JSON object with the following schema: {{ "entity_name": string // Name of the corporate entity "corporation_number": string // Corporation number of the entity (should contain numbers) "formation_date": string // Date of incorporation or formation (YYYY-MM-DD) "entity_type": string // Type of entity (e.g. corporation, limited liability company) "address": string // Mailing address with street, city, state/province, and zip/postal code "home_jurisdiction": string // Jurisdiction of incorporation (State/Province, Country) }} Do not include keys if they are not present in the passage. Passage: {content} JSON:""") chain = LLMChain(llm=VertexAI(model_name="text-bison", temperature=0.4, max_output_tokens=1024), prompt=prompt) output = chain.predict(content=content) if output != "Not Found": return re.sub(r'\s+', ' ', output)
[ "content", "Extract the name of the corporate entity from this passage.\n Passage:\n {content}\n Entity:", "What is the name of the entity, corporate registration number, date of incorporation,\n type of entity, address, and jurisdiction in these articles of incorporation?\n The output should be a JSON object with the following schema:\n {{\n \"entity_name\": string // Name of the corporate entity\n \"corporation_number\": string // Corporation number of the entity (should contain numbers)\n \"formation_date\": string // Date of incorporation or formation (YYYY-MM-DD)\n \"entity_type\": string // Type of entity (e.g. corporation, limited liability company)\n \"address\": string // Mailing address with street, city, state/province, and zip/postal code\n \"home_jurisdiction\": string // Jurisdiction of incorporation (State/Province, Country)\n }}\n Do not include keys if they are not present in the passage.\n Passage:\n {content}\n JSON:", "Extract the business number / tax identification number from this passage.\n Passage:\n {content}\n Entity:" ]
2024-01-10
drewgillson/googlepalm-minute-book-extraction
terraform~modules~cloud_functions~src~minute-book-parser~quorum_rules.py
import main from langchain.prompts import PromptTemplate from langchain.llms import VertexAI from langchain.chains import LLMChain def Parser(sorted_files): """ Extracts quorum rules for directors and shareholders from the sorted pages of minute book. Args: sorted_files (list): A list of tuples where each tuple contains the page number and file name of a sorted file. Returns: A list of dictionaries where each dictionary contains the extracted quorum details that match the minute book extraction schema. Each quorum object includes the date, extracted quorum rules, and the URL of the source document page where the rules were extracted from. """ quorum_rules = [] quorum_content = "" quorum_token_count = 0 quorum_max_token_limit = 3072 extracting_quorum = False file_count = len(sorted_files) for file in sorted_files: page_number, file_name = file content = main.get_page(file_name) lowercase_content = content.lower() if "quorum" in lowercase_content: extracting_quorum = True # "directors_quorum": string, // Quorum rules for directors # "shareholders_quorum": string, // Quorum rules for shareholders if extracting_quorum is True: quorum_tokens = quorum_token_count + main.num_tokens_from_string(content) shareholders_quorum, directors_quorum = [None, None] if quorum_tokens < quorum_max_token_limit: quorum_token_count += quorum_tokens quorum_content += content parsed_this_page = True # Quorum rules can sometimes be split across multiple pages so we need a larger context window if quorum_tokens >= quorum_max_token_limit or page_number == file_count: if parsed_this_page: shareholders_quorum = extract_shareholders_quorum(quorum_content) directors_quorum = extract_directors_quorum(quorum_content) else: if shareholders_quorum is None: shareholders_quorum = extract_shareholders_quorum(content) if directors_quorum is None: directors_quorum = extract_directors_quorum(content) quorum_rules.append({"directors_quorum": directors_quorum, "provenance": main.get_url(file_name)}) quorum_rules.append({"shareholders_quorum": shareholders_quorum, "provenance": main.get_url(file_name)}) extracting_quorum = False quorum_content = "" quorum_token_count = 0 quorum_tokens = 0 return quorum_rules # The following functions use a large language model to perform question & answer-style extraction from a minute book def extract_directors_quorum(content, entity_name): prompt = PromptTemplate( input_variables=["content", "entity_name"], template="""What constitutes quorum for meetings of directors of {entity_name} where only one director is present? How about when two or more directors are present? Is a majority of directors required for quorum? Explain in a concise paragraph. THINK: Do not explain quorum for meetings of shareholders, this is irrelevant. Passage: {content} Director Quorum:""") directors_quorum_candidate = LLMChain(llm=VertexAI(model_name="text-bison", temperature=0.5, max_output_tokens=512), prompt=prompt) return directors_quorum_candidate.predict(content=content).strip() def extract_shareholders_quorum(content): prompt = PromptTemplate( input_variables=["content"], template="""What constitutes quorum for meetings of shareholders according to this passage? THINK: Do not get confused between meetings of directors and meetings of shareholders. Passage: {content} Shareholder Quorum:""") shareholders_quorum_candidate = LLMChain(llm=VertexAI(model_name="text-bison", temperature=0.5, max_output_tokens=512), prompt=prompt) return shareholders_quorum_candidate.predict(content=content).strip()
[ "What constitutes quorum for meetings of shareholders according to this passage?\n THINK: Do not get confused between meetings of directors and meetings of shareholders.\n Passage:\n {content}\n Shareholder Quorum:", "What constitutes quorum for meetings of directors of {entity_name} where only\n one director is present? How about when two or more directors are present? Is\n a majority of directors required for quorum? Explain in a concise paragraph.\n THINK: Do not explain quorum for meetings of shareholders, this is irrelevant.\n Passage:\n {content}\n Director Quorum:", "content", "entity_name" ]
2024-01-10
drewgillson/googlepalm-minute-book-extraction
terraform~modules~cloud_functions~src~minute-book-parser~restrictions_provisions.py
import main from langchain.prompts import PromptTemplate from langchain.llms import VertexAI from langchain.chains import LLMChain def Parser(sorted_files): """ Extracts restrictions and provisions related to a corporation from a minute book. Args: sorted_files (list): A list of tuples where each tuple contains the page number and file name of a sorted file. Returns: A list of dictionaries where each dictionary represents a set of restrictions or provisions and includes the date when they were established, the type of restriction or provision, the text of the restriction or provision, and the URL of the source document page where the restriction or provision was extracted from. """ restrictions_provisions = [] for file in sorted_files: page_number, file_name = file content = main.get_page(file_name) lowercase_content = content.lower() # "transfer_restrictions": string, // Provisions or rules that limit or regulate the transfer or sale of a company's shares or other ownership interests if "transfer" in lowercase_content and "restrictions" in lowercase_content and "certificate" not in lowercase_content: output = extract_transfer_restrictions(content) restrictions_provisions.append({"transfer_restrictions": output, "provenance": main.get_url(file_name)}) # "other_restrictions": string, // Restrictions on the corporation's activities if "other" in lowercase_content and "restrictions" in lowercase_content and "certificate" not in lowercase_content: output = extract_other_restrictions(content) restrictions_provisions.append({"other_restrictions": output, "provenance": main.get_url(file_name)}) # "other_provisions": string, // Additional provisions or rules that are not covered by the other properties if "other provisions" in lowercase_content: output = extract_other_provisions(content) restrictions_provisions.append({"other_provisions": output, "provenance": main.get_url(file_name)}) return restrictions_provisions # The following functions use a large language model to perform question & answer-style extraction from a minute book def extract_other_restrictions(content): prompt = PromptTemplate( input_variables=["content"], template="""If this passage from a set of corporate by-laws pertains to other restrictions, read the restrictions and then describe them concisely. Do not include share transfer restrictions. Do not include information about the minimum or maximum number of directors. Format output as a single line without linebreaks. Passage: {content} Other Restrictions:""") chain = LLMChain(llm=VertexAI(model_name="text-bison", temperature=0.2, max_output_tokens=512), prompt=prompt) output = chain.predict(content=content).strip() if output != "Not Found": return output def extract_transfer_restrictions(content): prompt = PromptTemplate( input_variables=["content"], template="""If this passage from a set of corporate by-laws pertains to share transfer restrictions, read the restrictions and then describe them concisely. Do not include any other restrictions except for share transfer restrictions. Do not include information about the minimum or maximum number of directors. Format output as a single line without linebreaks. Passage: {content} Share Transfer Restrictions:""") chain = LLMChain(llm=VertexAI(model_name="text-bison", temperature=0.2, max_output_tokens=512), prompt=prompt) output = chain.predict(content=content).strip() if output != "Not Found": return output def extract_other_provisions(content): prompt = PromptTemplate( input_variables=["content"], template="""If this passage from a set of corporate by-laws pertains to other provisions, read the provisions and then describe them. Do not include information about the minimum or maximum number of directors. Format output as a single line without linebreaks. Passage: {content} Other Provisions:""") chain = LLMChain(llm=VertexAI(model_name="text-bison", temperature=0.2, max_output_tokens=512), prompt=prompt) output = chain.predict(content=content).strip() if output != "Not Found": return output
[ "If this passage from a set of corporate by-laws pertains to other provisions,\n read the provisions and then describe them. Do not include information about\n the minimum or maximum number of directors. Format output as a single line\n without linebreaks.\n Passage:\n {content}\n Other Provisions:", "If this passage from a set of corporate by-laws\n pertains to share transfer restrictions, read the restrictions and then\n describe them concisely. Do not include any other restrictions except\n for share transfer restrictions. Do not include information about the\n minimum or maximum number of directors. Format output as a single line\n without linebreaks.\n Passage:\n {content}\n Share Transfer Restrictions:", "If this passage from a set of corporate by-laws\n pertains to other restrictions, read the restrictions and then describe\n them concisely. Do not include share transfer restrictions. Do not include\n information about the minimum or maximum number of directors. Format output\n as a single line without linebreaks.\n Passage:\n {content}\n Other Restrictions:", "content" ]
2024-01-10
drewgillson/googlepalm-minute-book-extraction
terraform~modules~cloud_functions~src~minute-book-parser~share_classes.py
import main import json import re from langchain.prompts import PromptTemplate from langchain.llms import VertexAI from langchain.chains import LLMChain def Parser(sorted_files): """ Extracts share class details from the sorted pages of minute book. Args: sorted_files (list): A list of tuples where each tuple contains the page number and file name of a sorted file. Returns: A list of dictionaries where each dictionary represents a share class and includes its name, voting rights, votes per share, limit for number of shares, number of shares authorized, and share restrictions. Each share class object also includes the URL of the source document page where the share class details were extracted from. """ share_classes = [{}] share_class_content = "" share_class_token_count = 0 share_class_max_token_limit = 2560 extracting_share_classes = False file_count = len(sorted_files) for file in sorted_files: page_number, file_name = file content = main.get_page(file_name) lowercase_content = content.lower() # "share_classes": array, // One or more share classes with children properties for name, voting rights, votes per share, limit for number of shares, number of shares authorized, and share restrictions if "authorized to issue" in lowercase_content and "class" in lowercase_content: extracting_share_classes = True if extracting_share_classes is True: share_class_tokens = share_class_token_count + main.num_tokens_from_string(content) if share_class_tokens < share_class_max_token_limit: share_class_token_count += share_class_tokens share_class_content += content if share_class_tokens >= share_class_max_token_limit or page_number == file_count: output = extract_share_classes(share_class_content) try: share_classes = json.loads(output) share_classes.append({'provenance': main.get_url(file_name)}) share_classes.append(share_classes) for share_class in share_classes: if not bool(share_class): share_classes.remove(share_class) except json.decoder.JSONDecodeError: pass extracting_share_classes = False share_class_content = "" share_class_token_count = 0 share_class_tokens = 0 return share_classes # The following function uses a large language model to perform question & answer-style extraction from a minute book def extract_share_classes(content): prompt = PromptTemplate( input_variables=["content"], template="""What share classes is the corporation authorized to issue? Output JSON objects that conform to the following schema: {{ {{ "share_class": string // Name of class of shares (example: Class A, Class B or Common, Preferred) "voting_rights": string // Yes or no "votes_per_share": string // Number of votes per share "notes": string // Summarize rights, privileges, restrictions, and conditions }}, // Repeat for each share class found }} Passage: {content} Share Classes JSON:""") chain = LLMChain(llm=VertexAI(model_name="text-bison", temperature=0.5, max_output_tokens=1024), prompt=prompt) output = chain.predict(content=content) return re.sub(r'\s+', ' ', output)
[ "content", "What share classes is the corporation authorized to issue? Output JSON\n objects that conform to the following schema:\n {{\n {{\n \"share_class\": string // Name of class of shares (example: Class A, Class B or Common, Preferred)\n \"voting_rights\": string // Yes or no\n \"votes_per_share\": string // Number of votes per share\n \"notes\": string // Summarize rights, privileges, restrictions, and conditions\n }},\n // Repeat for each share class found\n }}\n Passage:\n {content}\n Share Classes JSON:" ]
2024-01-10
ituki0426/ML
src~OpenAI~vision.py
from openai import OpenAI client = OpenAI() response = client.chat.completions.create( model="gpt-4-vision-preview", messages=[ { "role": "user", "content": [ {"type": "text", "text": "この画像の中の文字を出力してください"}, { "type": "image_url", "image_url": { "url": "", }, }, ], } ], max_tokens=300, ) print(response.choices[0])
[]
2024-01-10
ituki0426/ML
src~BERT~gen_index.py
import openai import json from transformers import BertJapaneseTokenizer from transformers import BertModel tokenizer = BertJapaneseTokenizer.from_pretrained('cl-tohoku/bert-base-japanese-whole-word-masking') bert_model = BertModel.from_pretrained('cl-tohoku/bert-base-japanese-whole-word-masking') import json # 入力用の文章をロード with open('./docs.json') as f: docs = json.load(f) index = [] for doc in docs: input_s = tokenizer(doc['title'], return_tensors="pt") outputs = bert_model(**input_s) last_hidden_states = outputs.last_hidden_state attention_mask = input_s.attention_mask.unsqueeze(-1) valid_token_num = attention_mask.sum(1) base_vec = (last_hidden_states*attention_mask).sum(1) / valid_token_num base_vec = base_vec.detach().cpu().numpy()[0] # ベクトルをデータベースに追加 index.append({ 'title': doc['title'], 'embedding': base_vec.tolist() }) with open('./index.json', 'w') as f: json.dump(index, f,ensure_ascii=False)
[]
2024-01-10
ituki0426/ML
src~OpenAI~gen_index.py
import openai import os import json # 入力用の文章をロード with open('./docs.json') as f: docs = json.load(f) index = [] for doc in docs: # ここでベクトル化を行う # openai.embeddings_utils.embeddings_utilsを使うともっとシンプルにかけます res = openai.Embedding.create( model='text-embedding-ada-002', input=doc['title'] ) # ベクトルをデータベースに追加 index.append({ 'title': doc['title'], 'embedding': res['data'][0]['embedding'] }) with open('./index.json', 'w') as f: json.dump(index, f,ensure_ascii=False)
[]
2024-01-10
ituki0426/ML
src~OpenAI~gen_doc.py
import openai import os import json titles = [ 'パトカー', 'Python', '写真撮影', '正式名称', 'パイナップル', '挑戦状', '成人', '焼き肉', '迷彩柄', '竜巻', ] SYSTEM_PROMPT = ''' 提供される単語を300字以内で説明してください。 ''' docs = [] for title in titles: res = openai.ChatCompletion.create( model='gpt-3.5-turbo', messages=[ {"role": "system", "content": SYSTEM_PROMPT}, {"role": "user", "content": title} ] ) docs.append({ 'title': title, 'body': res.choices[0].message.content }) print(f'タイトル: {title}') print(res.choices[0].message.content) with open('./docs.json', 'w') as f: json.dump(docs, f,ensure_ascii=False)
[ "\n提供される単語を300字以内で説明してください。\n" ]
2024-01-10
neevparikh/atari-graph-priors
gym_wrappers.py
from collections import deque import torch import numpy as np import torchvision.transforms as T import gym import cv2 import random class IndexedObservation(gym.ObservationWrapper): """ Description: Return elements of observation at given indices Usage: For example, say the base env has observations Box(4) and you want the indices 1 and 3. You would pass in indices=[1,3] and the observation_space of the wrapped env would be Box(2). Notes: - This currently only supports 1D observations but can easily be extended to support multidimensional observations """ def __init__(self, env, indices): super(IndexedObservation, self).__init__(env) self.indices = indices assert len(env.observation_space.shape) == 1, env.observation_space wrapped_obs_len = env.observation_space.shape[0] assert len(indices) <= wrapped_obs_len, indices assert all(i < wrapped_obs_len for i in indices), indices self.observation_space = gym.spaces.Box(low=env.observation_space.low[indices], high=env.observation_space.high[indices], dtype=env.observation_space.dtype) def observation(self, observation): return observation[self.indices] class TorchTensorObservation(gym.ObservationWrapper): """ Description: Downsample the image observation to a given shape. Usage: Pass in requisite shape (e.g. 84,84) and it will use opencv to resize the observation to that shape Notes: - N/A """ def __init__(self, env, device): super(TorchTensorObservation, self).__init__(env) self.device = device def observation(self, observation): return torch.from_numpy(observation).to(dtype=torch.float, device=self.device) # Adapted from https://github.com/openai/gym/blob/master/gym/wrappers/resize_observation.py class ResizeObservation(gym.ObservationWrapper): """ Description: Downsample the image observation to a given shape. Usage: Pass in requisite shape (e.g. 84,84) and it will use opencv to resize the observation to that shape Notes: - N/A """ def __init__(self, env, shape): super(ResizeObservation, self).__init__(env) if isinstance(shape, int): shape = (shape, shape) assert all(x > 0 for x in shape), shape self.shape = tuple(shape) obs_shape = self.shape + self.observation_space.shape[2:] self.observation_space = gym.spaces.Box(low=0, high=255, shape=obs_shape, dtype=np.uint8) def observation(self, observation): observation = cv2.resize(observation, self.shape[::-1], interpolation=cv2.INTER_AREA) return observation class ObservationDictToInfo(gym.Wrapper): """ Description: Given an env with an observation dict, extract the given state key as the state and pass the existing dict into the info. Usage: Wrap any Dict observation. Notes: - By convention, no info is return on reset, so that dict is lost. """ def __init__(self, env, state_key): gym.Wrapper.__init__(self, env) assert type(env.observation_space) == gym.spaces.Dict self.observation_space = env.observation_space.spaces[state_key] self.state_key = state_key def reset(self, **kwargs): next_state_as_dict = self.env.reset(**kwargs) return next_state_as_dict[self.state_key] def step(self, action): next_state_as_dict, reward, done, info = self.env.step(action) info.update(next_state_as_dict) return next_state_as_dict[self.state_key], reward, done, info class ResetARI(gym.Wrapper): """ Description: On reset and step, grab the values of the labeled dict from info and return as state. Usage: Wrap over ARI env. Notes: - N/A """ def __init__(self, env): gym.Wrapper.__init__(self, env) # change the observation space to accurately represent # the shape of the labeled RAM observations self.observation_space = gym.spaces.Box( 0, 255, # max value shape=(len(self.env.labels()),), dtype=np.uint8) def reset(self, **kwargs): self.env.reset(**kwargs) # reset the env and get the current labeled RAM return np.array(list(self.env.labels().values())) def step(self, action): # we don't need the obs here, just the labels in info _, reward, done, info = self.env.step(action) # grab the labeled RAM out of info and put as next_state next_state = np.array(list(info['labels'].values())) return next_state, reward, done, info # Adapted from OpenAI Baselines: # https://github.com/openai/baselines/blob/master/baselines/common/atari_wrappers.py class AtariPreprocess(gym.Wrapper): """ Description: Preprocessing as described in the Nature DQN paper (Mnih 2015) Usage: Wrap env around this. It will use torchvision to transform the image according to Mnih 2015 Notes: - Should be decomposed into using separate envs for each. """ def __init__(self, env, shape=(84, 84)): gym.Wrapper.__init__(self, env) self.shape = shape self.transforms = T.Compose([ T.ToPILImage(mode='YCbCr'), T.Lambda(lambda img: img.split()[0]), T.Resize(self.shape), T.Lambda(lambda img: np.array(img)), ]) self.observation_space = gym.spaces.Box( low=0, high=255, shape=self.shape, dtype=np.uint8, ) def reset(self, **kwargs): return self.transforms(self.env.reset(**kwargs)) def step(self, action): next_state, reward, done, info = self.env.step(action) return self.transforms(next_state), reward, done, info class MaxAndSkipEnv(gym.Wrapper): """ Description: Return only every `skip`-th frame. Repeat action, sum reward, and max over last observations. Usage: Wrap env and provide skip param. Notes: - N/A """ def __init__(self, env, skip=4): gym.Wrapper.__init__(self, env) # most recent raw observations (for max pooling across time steps) self._obs_buffer = np.zeros((2,) + env.observation_space.shape, dtype=np.uint8) self._skip = skip def reset(self, **kwargs): return self.env.reset(**kwargs) def step(self, action): # np.save("FIRST_FRAME.npy",self.env.render('rgb_array')) # if self.episode_steps > self.max_frames - 1000: # print(self.episode_steps ) total_reward = 0.0 done = None for i in range(self._skip): obs, reward, done, info = self.env.step(action) # np.save("SECOND_FRAME.npy",self.env.render('rgb_array')) # exit() if i == self._skip - 2: self._obs_buffer[0] = obs if i == self._skip - 1: self._obs_buffer[1] = obs total_reward += reward if done: break # Note that the observation on the done=True frame # doesn't matter max_frame = self._obs_buffer.max(axis=0) return max_frame, total_reward, done, info class AtariSkips(gym.Wrapper): def __init__(self, env, max_frames=int(108e3)): gym.Wrapper.__init__(self, env) self.env = env self.episode_steps = 0 self.max_frames = max_frames def reset(self): ob = self.env.reset() self.episode_steps = 0 for _ in range(random.randrange(30)): ob, reward, done, info = self.env.step(0) self.episode_steps+=1 if done: ob = self.env.reset() return ob def step(self, action): ob, reward, done, info = self.env.step(action) self.episode_steps+=1 #Should we add noop after death? return ob, reward, done or self.episode_steps > self.max_frames, info class FrameStack(gym.Wrapper): def __init__(self, env, k, device, cast=torch.float32, scale=True): """Stack k last frames. cast : torch dtype to cast to. If None, no cast scale : bool. If True, divides by 255 (scaling to float). cast must be torch.float Returns lazy array, which is much more memory efficient. See Also -------- LazyFrames """ gym.Wrapper.__init__(self, env) self.k = k self.cast = cast self.device = device self.scale = scale if self.scale: assert cast == torch.float32 or cast == torch.float64, f"Cast must be torch.float, found {self.cast}" self.frames = deque([], maxlen=k) shp = env.observation_space.shape self.observation_space = gym.spaces.Box(low=0, high=255, shape=((k,) + shp), dtype=env.observation_space.dtype) def reset(self): ob = self.env.reset() for _ in range(self.k): self.frames.append(ob) return self._get_ob() def step(self, action): ob, reward, done, info = self.env.step(action) self.frames.append(ob) return self._get_ob(), reward, done, info def _get_ob(self): assert len(self.frames) == self.k # ob = torch.as_tensor(np.stack(list(self.frames), axis=0), device=self.device) # if self.cast is not None: # ob = ob.to(dtype=self.cast) # if self.scale: # ob = ob.div_(255) ob = np.stack(list(self.frames), axis=0) return ob class LazyFrames(object): """ Description: This object ensures that common frames between the observations are only stored once. It exists purely to optimize memory usage which can be huge for DQN's 1M frames replay buffers. This object should only be converted to numpy array before being passed to the model. Usage: Wrap frames with this object. Notes: - Can be finicky if used without the OpenAI ReplayBuffer """ def __init__(self, frames): self._frames = frames def _force(self): return np.stack(self._frames, axis=0) def __array__(self, dtype=None): out = self._force() if dtype is not None: out = out.astype(dtype) return out def __len__(self): return len(self._frames) def __getitem__(self, i): return self._frames[i] class AtariPreprocessPixelInput(): def __init__(self, shape=(84, 84)): #Do we still want to do this? self.shape = shape self.transforms = T.Compose([ T.ToPILImage(mode='YCbCr'), T.Lambda(lambda img: img.split()[0]), T.Resize(self.shape), T.Lambda(lambda img: np.array(img)), ]) self.observation_space = gym.spaces.Box( low=0, high=255, shape=self.shape, dtype=np.uint8, ) # def transforms(self,state): # rgb_weights = [0.2989, 0.5870, 0.1140] # grayscale_image = np.dot(state[...,:3], rgb_weights) # state = cv2.resize(state, (84, 84), interpolation=cv2.INTER_LINEAR) # return state #torch.tensor(state, dtype=torch.float32, device=self.device).div_(255) def get_state(self, rendered_pixel): return self.transforms(rendered_pixel) class CombineRamPixel(gym.ObservationWrapper): def __init__(self, env): super().__init__(env) # self.env = env # print(self.env.env.__dict__) # exit() # self.env.reset() # self.env.render("rgb_array") # get_pixel_name = env.unwrapped.spec.id # self.pixel_env = gym.make(get_pixel_name.replace('-ram','')) # print("Found atari game:",self.pixel_env.unwrapped.spec.id) self.pixel_wrap = AtariPreprocessPixelInput() self.pixel_shape = self.pixel_wrap.observation_space.shape self.ram_shape = self.observation_space.shape new_total_shape = (self.ram_shape[0] + self.pixel_shape[0] * self.pixel_shape[1],) self.observation_space = gym.spaces.Box( low=0, high=255, shape=new_total_shape, dtype=np.uint8, ) def combine_states(self, ram_state, pixel_state): # for x in range(len(pixel_state)): # print(pixel_state[x]) return np.concatenate((ram_state, np.reshape(pixel_state, -1))) def observation(self, obs): pixel_state = self.pixel_wrap.get_state(self.render(mode='rgb_array')) return self.combine_states(obs, pixel_state)
[]
2024-01-10
tazzuno/educationalChatbot
get_prompt.py
import streamlit from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder, HumanMessagePromptTemplate from langchain.schema import SystemMessage def load_prompt(content): template = template = (""""I want you to act as a university software engineering professor delivering engaging and concise lectures to Italian students. Your expertise lies in explaining SWEBOK chapters in English to your students in Italian. You are an expert educator and are responsible for guiding the user through this lesson plan. Ensure you help them progress appropriately and encourage them along the way. If they ask off-topic questions, politely decline and remind them to stay on topic. Please limit responses to one concept or step at a time. Each step should contain no more than ~5 lines. Ensure they fully understand before proceeding. This is an interactive lesson - engage and guide them, don't lecture. ----------------- {content} ----------------- End of Content. End of Lesson.""" .format(content=content)) prompt_template = ChatPromptTemplate(messages=[ SystemMessage(content=template), MessagesPlaceholder(variable_name="chat_history"), HumanMessagePromptTemplate.from_template("{input}") ]) return prompt_template def load_prompt_with_questions(content): template = """"I want you to act as a university software engineering professor delivering engaging and concise lectures to Italian students. Your expertise lies in explaining SWEBOK chapters in English to your students in Italian.You are an expert educator, and are responsible for walking the user through this lesson plan. You should make sure to guide them along, encouraging them to progress when appropriate. If they ask questions not related to this getting started guide, you should politely decline to answer and remind them to stay on topic. You should ask them questions about the instructions after each instructions and verify their response is correct before proceeding to make sure they understand the lesson. Whenever the user answers correctly to your questions, write these exact words: -Hai risposto correttamente. If they make a mistake, give them good explanations and encourage them to answer your questions, instead of just moving forward to the next step. Please limit any responses to only one concept or step at a time. Each step show only be ~15 lines at MOST. Make sure they fully understand that before moving on to the next. This is an interactive lesson - do not lecture them, but rather engage and guide them along! ----------------- {content} ----------------- End of Content. Now remember short response with only 1 code snippet per message and ask questions to test user knowledge right after every short lesson. Only one question per message. Only one lesson per message. Your teaching should be in the following interactive format: Short lesson 3-5 sentences long Questions about the short lesson (1-3 questions) Short lesson 3-5 sentences long Questions about the short lesson (1-3 questions) ... """.format(content=content) prompt_template = ChatPromptTemplate(messages=[ SystemMessage(content=template), MessagesPlaceholder(variable_name="chat_history"), HumanMessagePromptTemplate.from_template("{input}") ]) return prompt_template def get_lesson_guide(connection): cursor = connection.cursor() lesson_guides = {} query = "SELECT id, nome, descrizione, percorso_file FROM Lezioni where username= %s " values = (streamlit.session_state.username,) try: cursor.execute(query, values) # Estrai i risultati results = cursor.fetchall() # Itera attraverso i risultati e aggiungi le informazioni a lesson_guides for result in results: id_lezione, nome_lezione, descrizione, percorso_file = result lesson_guides[nome_lezione] = { "id": id_lezione, "description": descrizione, "file": percorso_file } except Exception as e: print(f"Errore durante l'esecuzione della query: {e}") return lesson_guides
[ "\"I want you to act as a university software engineering professor delivering engaging \n and concise lectures to Italian students. Your expertise lies in explaining SWEBOK chapters in English to your \n students in Italian. You are an expert educator and are responsible for guiding the user through this lesson plan. \n Ensure you help them progress appropriately and encourage them along the way. If they ask off-topic questions, \n politely decline and remind them to stay on topic. Please limit responses to one concept or step at a time. Each \n step should contain no more than ~5 lines. Ensure they fully understand before proceeding. This is an interactive \n lesson - engage and guide them, don't lecture. ----------------- {content} ----------------- End of Content.\n\n End of Lesson.", "chat_history", "{input}", "\"I want you to act as a university software engineering professor delivering engaging and concise \n lectures to Italian students. Your expertise lies in explaining SWEBOK chapters in English to your students in \n Italian.You are an expert educator, and are responsible for walking the user through this lesson plan. You should \n make sure to guide them along, encouraging them to progress when appropriate. If they ask questions not related \n to this getting started guide, you should politely decline to answer and remind them to stay on topic. You should \n ask them questions about the instructions after each instructions and verify their response is correct before \n proceeding to make sure they understand the lesson. Whenever the user answers correctly to your questions, \n write these exact words: -Hai risposto correttamente. If they make a mistake, give them good explanations and \n encourage them to answer your questions, instead of just moving forward to the next step.\n\n Please limit any responses to only one concept or step at a time.\n Each step show only be ~15 lines at MOST.\n Make sure they fully understand that before moving on to the next. \n This is an interactive lesson - do not lecture them, but rather engage and guide them along!\n -----------------\n\n PLACEHOLDER\n\n -----------------\n End of Content.\n\n Now remember short response with only 1 code snippet per message and ask questions to test user knowledge right \n after every short lesson. Only one question per message. Only one lesson per message.\n\n Your teaching should be in the following interactive format:\n\n Short lesson 3-5 sentences long\n Questions about the short lesson (1-3 questions)\n\n Short lesson 3-5 sentences long\n Questions about the short lesson (1-3 questions)\n ...\n\n " ]
2024-01-10
tazzuno/educationalChatbot
Lezioni.py
import time import streamlit as st from langchain.chains import LLMChain from langchain.chat_models import ChatOpenAI import get_prompt from langchain.schema import AIMessage, HumanMessage from StreamHandler import StreamHandler def handle_messages(): """Gestisce i messaggi della chat. Inizializza lo stato della sessione. Se "messages" non è presente in st.session_state, lo inizializza a una lista vuota. Successivamente, gestisce i messaggi presenti in st.session_state["messages"], scrivendo i messaggi degli utenti e dell'assistente nella chat. """ # Initialize session state if "messages" not in st.session_state: st.session_state.messages = [] for msg in st.session_state["messages"]: if isinstance(msg, HumanMessage): st.chat_message("user").write(msg.content) else: st.chat_message("assistant").write(msg.content) def display_lesson(lesson_selection, lesson_info): """Visualizza una lezione specifica. Parameters: lesson_selection (str): Il titolo della lezione da visualizzare. lesson_info (dict): Un dizionario contenente le informazioni sulla lezione, con la chiave "description" per la descrizione. Returns: None """ with st.container(): st.markdown(f"**{lesson_selection}**") st.write(lesson_info["description"]) def run_langchain_model(prompt, lesson_type, lesson_content, lesson_selection, openai_api_key): """Esegue il modello Langchain per gestire le lezioni e interagire con l'utente tramite il chatbot. Parameters: prompt (str): Il prompt iniziale per il modello. lesson_type (str): Il tipo di lezione. lesson_content (str): Il contenuto della lezione. lesson_selection (str): La selezione della lezione. openai_api_key (str): La chiave API di OpenAI per l'accesso al modello. """ try: # Set up a streaming handler for the model with st.chat_message("assistant"): stream_handler = StreamHandler(st.empty()) model = ChatOpenAI(streaming=True, callbacks=[stream_handler], model="gpt-3.5-turbo-16k", openai_api_key=openai_api_key) # Load a prompt template based on the lesson type if lesson_type == "Instructions based lesson": prompt_template = get_prompt.load_prompt(content=lesson_content) else: prompt_template = get_prompt.load_prompt_with_questions(content=lesson_content) # Run a chain of the prompt and the language model chain = LLMChain(prompt=prompt_template, llm=model) response = chain( {"input": prompt, "chat_history": st.session_state.messages[-20:]}, include_run_info=True, tags=[lesson_selection, lesson_type] ) st.session_state.messages.append(HumanMessage(content=prompt)) st.session_state.messages.append(AIMessage(content=response[chain.output_key])) except Exception as e: # Handle any errors that occur during the execution of the code st.error(f"An error occurred: {e}") @st.cache_data() def get_lesson_content(lesson_file): """Ottiene il contenuto di una lezione da un file. Parameters: lesson_file (str): Il percorso del file della lezione. Returns: str: Il contenuto della lezione. """ try: with open(lesson_file, "r") as f: return f.read() except FileNotFoundError: st.error(f"Error: Lesson file not found at {lesson_file}") st.stop() def download_chat(): """Genera e scarica la conversazione nel formato HTML. La funzione genera un file HTML che rappresenta la conversazione registrata tra l'utente e l'assistente. Il file HTML include messaggi dell'utente e dell'assistente formattati. """ messages = st.session_state.get("messages", []) # Retrieve messages from session state chat_content = "<html><head><link rel='stylesheet' type='text/css' href='styles.css'></head><body>" for msg in messages: if isinstance(msg, AIMessage): chat_content += f"<p class='message ai-message'><strong>AI:</strong> {msg.content}</p>" elif isinstance(msg, HumanMessage): chat_content += f"<p class='message user-message'><strong>User:</strong> {msg.content}</p>" else: chat_content += f"<p class='message'>Unknown Message Type: {msg}</p>" chat_content += "</body></html>" with open("chat.html", "w", encoding="utf-8") as html_file: html_file.write(chat_content) # Download the generated HTML file st.download_button("Download Chat", open("chat.html", "rb"), key="download_chat", file_name="chat.html", mime="text/html") def reset_lesson(): """Ripristina lo stato della lezione. La funzione reimposta diversi attributi nello stato della sessione a valori vuoti o None, consentendo di ripartire da zero in una nuova lezione. """ st.session_state["messages"] = [] st.session_state["completed_lessons"] = [] st.session_state["current_lesson"] = None st.session_state["current_lesson_type"] = None st.session_state["code_snippet"] = None def setup_page(): """Configura la pagina per l'applicazione. Questa funzione configura la pagina dell'applicazione, impostando il titolo e l'icona. """ st.set_page_config(page_title="AIDE", page_icon="🤖") st.title("AIDE: Studiare non è mai stato così facile! Aide è qui per guidarti!") def avanzamento_barra(connection): """Gestisce la barra di avanzamento e il punteggio associato ai messaggi. La funzione controlla i messaggi presenti nello stato della sessione e aggiorna una barra di avanzamento nel sidebar in base al numero di messaggi di risposta corretta. """ # inizializzazione variabili bar = st.progress(0) bar.empty() contatore = 0 cursor = connection.cursor() query = "SELECT COUNT(*) FROM Lezioni" cursor.execute(query) result = cursor.fetchall() messages = st.session_state.get("messages", []) for msg in messages: if isinstance(msg, AIMessage): if msg.content.startswith("Hai risposto correttamente!") or msg.content.startswith("That's correct!"): contatore += 1 num_lezioni = 100 / result[0][0] progresso = contatore * num_lezioni bar = st.sidebar.progress(progresso, "Punteggio") time.sleep(1) def load_lesson_content(lesson_file): """Carica il contenuto di una lezione da un file. Parameters: lesson_file (str): Il percorso del file della lezione. Returns: str: Il contenuto della lezione. Raises: FileNotFoundError: Se il file della lezione non è trovato. """ try: with open(lesson_file, "r", encoding="utf-8") as f: return f.read() except FileNotFoundError: st.error(f"Error: Lesson file not found at {lesson_file}") st.stop()
[]
2024-01-10
tazzuno/educationalChatbot
Authentication.py
import streamlit as st import streamlit_authenticator as stauth import secrets import bcrypt import re import mysql.connector import openai from mysql.connector import Error # Credenziali credentials = {'usernames': {'user1': 'pass123'}} # Genera chiave random key = secrets.token_urlsafe(16) # Inizializza login manager login_manager = stauth.Authenticate(credentials, cookie_name='auth', key=key) # Variabile globale password validata validated_password = "" def connetti_database(): try: # Recupera le informazioni di connessione dal file secrets return mysql.connector.connect(**st.secrets["mysql"]) except Exception as e: st.error(f"Errore di connessione al database: {e}") return None def chiudi_connessione_database(connection): if connection and connection.is_connected(): connection.close() def validate_password(password): global validated_password if len(password) > 0: # Controllo lunghezza if len(password) < 8: st.error("Password troppo corta") return # Controllo maiuscolo if not any(char.isupper() for char in password): st.error("Inserisci almeno 1 maiuscola") return # Controllo carattere speciale if not re.search(r'[!@#$]', password): st.error("Inserisci almeno 1 carattere speciale") return validated_password = password return validated_password def is_api_key_valid(key): try: openai.api_key = key response = openai.Completion.create( engine="davinci", # https://platform.openai.com/docs/models prompt="This is a test.", max_tokens=5 ) except Exception as ex: return str(ex) return False else: return True def aggiungi_utente_al_database(username, password, email, api_key, connection): if connection: try: cursor = connection.cursor() # Aggiungi l'utente al database salt = bcrypt.gensalt() hashed_password = bcrypt.hashpw(password.encode('utf-8'), salt) cursor = connection.cursor() query = '''INSERT INTO Utenti (Username, Password, Email, API_key) VALUES (%s, %s, %s, %s)''' args = (username, password, email, api_key) cursor.execute(query, args) connection.commit() except Error as e: print(f"Errore durante l'aggiunta dell'utente al database: {e}") finally: chiudi_connessione_database(connection) def verifica_credenziali(username, password, connection): if connection: try: cursor = connection.cursor() query = "SELECT * FROM utenti WHERE username = %s AND password = %s" values = (username, password) cursor.execute(query, values) # Estrai i risultati result = cursor.fetchall() # Mostra il risultato if result: return 1 else: return 0 except Error as e: print(f"Errore durante l'aggiunta dell'utente al database: {e}") finally: chiudi_connessione_database(connection)
[ "This is a test." ]
2024-01-10
tazzuno/educationalChatbot
pages~Progressi.py
import streamlit as st import time from langchain.schema import AIMessage st.title("Dashboard dello Studente") container_centrale = st.container() if "completed_lessons" in st.session_state: st.subheader("Lezioni Svolte:") for lesson in st.session_state.completed_lessons: st.write(f"- {lesson}") else: st.info("Nessuna leziona completata, se desideri conoscere il tuo progresso clicca 'Show Progress'") def avanzamento_barra(): # inizializzazione variabili bar = st.progress(0) bar.empty() contatore = 0 messages = st.session_state.get("messages", []) for msg in messages: if isinstance(msg, AIMessage): if msg.content.startswith("Hai risposto correttamente!"): contatore += 1 progresso = contatore * 10 bar = st.progress(progresso, "Punteggio") time.sleep(1) # AVANZAMENTO BARRA PROGRESSO container_button = st.sidebar.container() container_button = st.empty() button = container_button.button("Show Progress", on_click=None) if button: container_button.empty() button_hide = container_button.button("Hide Progress", on_click=None) container_centrale = avanzamento_barra()
[]
2024-01-10
sweetice/Deep-reinforcement-learning-with-pytorch
Char04%20A2C~multiprocessing_env.py
#This code is from openai baseline #https://github.com/openai/baselines/tree/master/baselines/common/vec_env import numpy as np from multiprocessing import Process, Pipe def worker(remote, parent_remote, env_fn_wrapper): parent_remote.close() env = env_fn_wrapper.x() while True: cmd, data = remote.recv() if cmd == 'step': ob, reward, done, info = env.step(data) if done: ob = env.reset() remote.send((ob, reward, done, info)) elif cmd == 'reset': ob = env.reset() remote.send(ob) elif cmd == 'reset_task': ob = env.reset_task() remote.send(ob) elif cmd == 'close': remote.close() break elif cmd == 'get_spaces': remote.send((env.observation_space, env.action_space)) else: raise NotImplementedError class VecEnv(object): """ An abstract asynchronous, vectorized environment. """ def __init__(self, num_envs, observation_space, action_space): self.num_envs = num_envs self.observation_space = observation_space self.action_space = action_space def reset(self): """ Reset all the environments and return an array of observations, or a tuple of observation arrays. If step_async is still doing work, that work will be cancelled and step_wait() should not be called until step_async() is invoked again. """ pass def step_async(self, actions): """ Tell all the environments to start taking a step with the given actions. Call step_wait() to get the results of the step. You should not call this if a step_async run is already pending. """ pass def step_wait(self): """ Wait for the step taken with step_async(). Returns (obs, rews, dones, infos): - obs: an array of observations, or a tuple of arrays of observations. - rews: an array of rewards - dones: an array of "episode done" booleans - infos: a sequence of info objects """ pass def close(self): """ Clean up the environments' resources. """ pass def step(self, actions): self.step_async(actions) return self.step_wait() class CloudpickleWrapper(object): """ Uses cloudpickle to serialize contents (otherwise multiprocessing tries to use pickle) """ def __init__(self, x): self.x = x def __getstate__(self): import cloudpickle return cloudpickle.dumps(self.x) def __setstate__(self, ob): import pickle self.x = pickle.loads(ob) class SubprocVecEnv(VecEnv): def __init__(self, env_fns, spaces=None): """ envs: list of gym environments to run in subprocesses """ self.waiting = False self.closed = False nenvs = len(env_fns) self.nenvs = nenvs self.remotes, self.work_remotes = zip(*[Pipe() for _ in range(nenvs)]) self.ps = [Process(target=worker, args=(work_remote, remote, CloudpickleWrapper(env_fn))) for (work_remote, remote, env_fn) in zip(self.work_remotes, self.remotes, env_fns)] for p in self.ps: p.daemon = True # if the main process crashes, we should not cause things to hang p.start() for remote in self.work_remotes: remote.close() self.remotes[0].send(('get_spaces', None)) observation_space, action_space = self.remotes[0].recv() VecEnv.__init__(self, len(env_fns), observation_space, action_space) def step_async(self, actions): for remote, action in zip(self.remotes, actions): remote.send(('step', action)) self.waiting = True def step_wait(self): results = [remote.recv() for remote in self.remotes] self.waiting = False obs, rews, dones, infos = zip(*results) return np.stack(obs), np.stack(rews), np.stack(dones), infos def reset(self): for remote in self.remotes: remote.send(('reset', None)) return np.stack([remote.recv() for remote in self.remotes]) def reset_task(self): for remote in self.remotes: remote.send(('reset_task', None)) return np.stack([remote.recv() for remote in self.remotes]) def close(self): if self.closed: return if self.waiting: for remote in self.remotes: remote.recv() for remote in self.remotes: remote.send(('close', None)) for p in self.ps: p.join() self.closed = True def __len__(self): return self.nenvs
[]
2024-01-10
stjordanis/poet
poet_distributed~optimizers.py
# The following code is modified from openai/evolution-strategies-starter # (https://github.com/openai/evolution-strategies-starter) # under the MIT License. # Modifications Copyright (c) 2019 Uber Technologies, Inc. import numpy as np class Optimizer(object): def __init__(self, theta): self.dim = len(theta) self.t = 0 def update(self, theta, globalg): self.t += 1 step = self._compute_step(globalg) ratio = np.linalg.norm(step) / np.linalg.norm(theta) return ratio, theta + step def _compute_step(self, globalg): raise NotImplementedError class SimpleSGD(Optimizer): def __init__(self, stepsize): self.stepsize = stepsize def compute(self, theta, globalg): step = -self.stepsize * globalg ratio = np.linalg.norm(step) / np.linalg.norm(theta) return ratio, theta + step class SGD(Optimizer): def __init__(self, theta, stepsize, momentum=0.9): Optimizer.__init__(self, theta) self.v = np.zeros(self.dim, dtype=np.float32) self.stepsize, self.momentum = stepsize, momentum def _compute_step(self, globalg): self.v = self.momentum * self.v + (1. - self.momentum) * globalg step = -self.stepsize * self.v return step class Adam(Optimizer): def __init__(self, theta, stepsize, beta1=0.9, beta2=0.999, epsilon=1e-08): Optimizer.__init__(self, theta) self.stepsize = stepsize self.init_stepsize = stepsize self.beta1 = beta1 self.beta2 = beta2 self.epsilon = epsilon self.m = np.zeros(self.dim, dtype=np.float32) self.v = np.zeros(self.dim, dtype=np.float32) def reset(self): self.m = np.zeros(self.dim, dtype=np.float32) self.v = np.zeros(self.dim, dtype=np.float32) self.t = 0 self.stepsize = self.init_stepsize def _compute_step(self, globalg): a = self.stepsize * \ np.sqrt(1 - self.beta2 ** self.t) / (1 - self.beta1 ** self.t) self.m = self.beta1 * self.m + (1 - self.beta1) * globalg self.v = self.beta2 * self.v + (1 - self.beta2) * (globalg * globalg) step = -a * self.m / (np.sqrt(self.v) + self.epsilon) return step def propose(self, theta, globalg): a = self.stepsize * \ np.sqrt(1 - self.beta2 ** self.t) / (1 - self.beta1 ** self.t) m = self.beta1 * self.m + (1 - self.beta1) * globalg v = self.beta2 * self.v + (1 - self.beta2) * (globalg * globalg) step = -a * m / (np.sqrt(v) + self.epsilon) ratio = np.linalg.norm(step) / np.linalg.norm(theta) return ratio, theta + step
[]
2024-01-10
srutanik/llm-search
src~llmsearch~models~azureopenai.py
import os from langchain.chat_models import AzureChatOpenAI from llmsearch.models.abstract import AbstractLLMModel from llmsearch.models.config import AzureOpenAIModelConfig class AzureOpenAIModel(AbstractLLMModel): def __init__(self, config: AzureOpenAIModelConfig) -> None: super().__init__(prompt_template=config.prompt_template) self.config = config @property def model(self): os.environ["OPENAI_API_TYPE"] = self.config.openai_api_type os.environ["OPENAI_API_BASE"] = self.config.openai_api_base os.environ["OPENAI_API_VERSION"] = self.config.openai_api_version return AzureChatOpenAI(deployment_name=self.config.deployment_name, model = self.config.model_name, **self.config.model_kwargs)
[]
2024-01-10
fdasilva59/Udacity-Deep-Reinforcement-Learning-Nanodegree
multi-agents~env_wrapper.py
""" Modified from OpenAI Baselines code to work with multi-agent envs """ import numpy as np from multiprocessing import Process, Pipe from baselines.common.vec_env import VecEnv, CloudpickleWrapper from baselines.common.tile_images import tile_images def worker(remote, parent_remote, env_fn_wrapper): parent_remote.close() env = env_fn_wrapper.x() while True: cmd, data = remote.recv() if cmd == 'step': ob, ob_full, reward, done, info = env.step(data) if all(done): ob = env.reset() remote.send((ob, ob_full, reward, done, info)) elif cmd == 'reset': ob, ob_full = env.reset() remote.send((ob, ob_full)) elif cmd == 'reset_task': ob = env.reset_task() remote.send(ob) elif cmd == 'close': remote.close() break elif cmd == 'render': remote.send(env.render(mode='rgb_array')) elif cmd == 'get_spaces': remote.send((env.observation_space, env.action_space)) elif cmd == 'get_agent_types': if all([hasattr(a, 'adversary') for a in env.agents]): remote.send(['adversary' if a.adversary else 'agent' for a in env.agents]) else: remote.send(['agent' for _ in env.agents]) else: raise NotImplementedError class SubprocVecEnv(VecEnv): def __init__(self, env_fns, spaces=None): """ envs: list of gym environments to run in subprocesses """ self.waiting = False self.closed = False nenvs = len(env_fns) self.remotes, self.work_remotes = zip(*[Pipe() for _ in range(nenvs)]) self.ps = [Process(target=worker, args=(work_remote, remote, CloudpickleWrapper(env_fn))) for (work_remote, remote, env_fn) in zip(self.work_remotes, self.remotes, env_fns)] for p in self.ps: p.daemon = True # if the main process crashes, we should not cause things to hang p.start() for remote in self.work_remotes: remote.close() self.remotes[0].send(('get_spaces', None)) observation_space, action_space = self.remotes[0].recv() self.remotes[0].send(('get_agent_types', None)) self.agent_types = self.remotes[0].recv() VecEnv.__init__(self, len(env_fns), observation_space, action_space) def step_async(self, actions): for remote, action in zip(self.remotes, actions): remote.send(('step', action)) self.waiting = True def step_wait(self): results = [remote.recv() for remote in self.remotes] self.waiting = False obs, obs_full, rews, dones, infos = zip(*results) return np.stack(obs), np.stack(obs_full), np.stack(rews), np.stack(dones), infos def reset(self): for remote in self.remotes: remote.send(('reset', None)) return np.stack([remote.recv() for remote in self.remotes]) def reset_task(self): for remote in self.remotes: remote.send(('reset_task', None)) return np.stack([remote.recv() for remote in self.remotes]) def close(self): if self.closed: return if self.waiting: for remote in self.remotes: remote.recv() for remote in self.remotes: remote.send(('close', None)) for p in self.ps: p.join() self.closed = True def render(self, mode='human'): # code doesn't work all that well # TODO: need to clean up for pipe in self.remotes: pipe.send(('render', None)) imgs = [pipe.recv() for pipe in self.remotes] bigimg = tile_images(imgs) if mode == 'human': import cv2 cv2.imshow('vecenv', bigimg[:, :, ::-1]) cv2.waitKey(1) elif mode == 'rgb_array': return bigimg else: raise NotImplementedError class DummyVecEnv(VecEnv): def __init__(self, env_fns): self.envs = [fn() for fn in env_fns] env = self.envs[0] VecEnv.__init__(self, len(env_fns), env.observation_space, env.action_space) if all([hasattr(a, 'adversary') for a in env.agents]): self.agent_types = ['adversary' if a.adversary else 'agent' for a in env.agents] else: self.agent_types = ['agent' for _ in env.agents] self.ts = np.zeros(len(self.envs), dtype='int') self.actions = None def step_async(self, actions): self.actions = actions def step_wait(self): results = [env.step(a) for (a,env) in zip(self.actions, self.envs)] obs, obs_full, rews, dones, infos = map(np.array, zip(*results)) self.ts += 1 for (i, done) in enumerate(dones): if all(done): obs[i] = self.envs[i].reset() self.ts[i] = 0 self.actions = None return np.array(obs), np.array(rews), np.array(dones), infos def reset(self): results = [env.reset() for env in self.envs] return np.array(results) def close(self): return
[]
2024-01-10
jsnel/pyglotaran
glotaran~builtin~megacomplexes~coherent_artifact~test~test_coherent_artifact.py
import numpy as np import pytest import xarray as xr from glotaran.builtin.megacomplexes.coherent_artifact import CoherentArtifactMegacomplex from glotaran.builtin.megacomplexes.decay import DecayMegacomplex from glotaran.model import Model from glotaran.model import fill_item from glotaran.optimization.matrix_provider import MatrixProvider from glotaran.optimization.optimize import optimize from glotaran.parameter import Parameters from glotaran.project import Scheme from glotaran.simulation import simulate @pytest.mark.parametrize( "spectral_dependence", ("none", "dispersed", "shifted"), ) def test_coherent_artifact(spectral_dependence: str): model_dict = { "initial_concentration": { "j1": {"compartments": ["s1"], "parameters": ["irf_center"]}, }, "megacomplex": { "mc1": {"type": "decay", "k_matrix": ["k1"]}, "mc2": {"type": "coherent-artifact", "order": 3}, }, "k_matrix": { "k1": { "matrix": { ("s1", "s1"): "rate", } } }, "irf": { "irf1": { "type": "multi-gaussian", "center": ["irf_center"], "width": ["irf_width"], }, }, "dataset": { "dataset1": { "initial_concentration": "j1", "megacomplex": ["mc1", "mc2"], "irf": "irf1", }, }, } parameter_list = [ ["rate", 101e-4], ["irf_center", 10, {"vary": False, "non-negative": False}], ["irf_width", 20, {"vary": False, "non-negative": False}], ] irf_spec = model_dict["irf"]["irf1"] if spectral_dependence == "dispersed": irf_spec["type"] = "spectral-multi-gaussian" irf_spec["dispersion_center"] = "irf_dispc" irf_spec["center_dispersion_coefficients"] = ["irf_disp1", "irf_disp2"] parameter_list += [ ["irf_dispc", 300, {"vary": False, "non-negative": False}], ["irf_disp1", 0.01, {"vary": False, "non-negative": False}], ["irf_disp2", 0.001, {"vary": False, "non-negative": False}], ] elif spectral_dependence == "shifted": irf_spec["shift"] = ["irf_shift1", "irf_shift2", "irf_shift3"] parameter_list += [ ["irf_shift1", -2], ["irf_shift2", 0], ["irf_shift3", 2], ] model = Model.create_class_from_megacomplexes([DecayMegacomplex, CoherentArtifactMegacomplex])( **model_dict ) parameters = Parameters.from_list(parameter_list) time = np.arange(0, 50, 1.5) spectral = np.asarray([200, 300, 400]) dataset_model = fill_item(model.dataset["dataset1"], model, parameters) matrix = MatrixProvider.calculate_dataset_matrix(dataset_model, 0, spectral, time) compartments = matrix.clp_labels print(compartments) assert len(compartments) == 4 for i in range(1, 4): assert compartments[i] == f"coherent_artifact_{i}" assert matrix.matrix.shape == (time.size, 4) clp = xr.DataArray( np.ones((3, 4)), coords=[ ("spectral", spectral), ( "clp_label", [ "s1", "coherent_artifact_1", "coherent_artifact_2", "coherent_artifact_3", ], ), ], ) axis = {"time": time, "spectral": clp.spectral} data = simulate(model, "dataset1", parameters, axis, clp) dataset = {"dataset1": data} scheme = Scheme( model=model, parameters=parameters, data=dataset, maximum_number_function_evaluations=20 ) result = optimize(scheme) print(result.optimized_parameters) for param in result.optimized_parameters.all(): assert np.allclose(param.value, parameters.get(param.label).value, rtol=1e-1) resultdata = result.data["dataset1"] assert np.array_equal(data.time, resultdata.time) assert np.array_equal(data.spectral, resultdata.spectral) assert data.data.shape == resultdata.data.shape assert data.data.shape == resultdata.fitted_data.shape assert np.allclose(data.data, resultdata.fitted_data) assert "coherent_artifact_response" in resultdata if spectral_dependence == "none": assert resultdata["coherent_artifact_response"].shape == (time.size, 3) else: assert resultdata["coherent_artifact_response"].shape == (spectral.size, time.size, 3) assert "coherent_artifact_associated_spectra" in resultdata assert resultdata["coherent_artifact_associated_spectra"].shape == (3, 3)
[]
2024-01-10
Utshav-paudel/YouTube-assistant-langchain
youtube_assistant.py
#@ Creating a youtube assistant that will help you convert a youtube video to script from langchain.llms import OpenAI from langchain.prompts import PromptTemplate from langchain.chains import LLMChain from langchain.agents import initialize_agent, load_tools, AgentType from langchain.document_loaders import YoutubeLoader from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.vectorstores import FAISS from langchain.embeddings import OpenAIEmbeddings url="https://youtu.be/BoutTY8XHSc?si=RFqU6VHQiFBENdop" # link of video embeddings = OpenAIEmbeddings() def yotube_url_to_vector_db(url:str) -> FAISS: loader = YoutubeLoader.from_youtube_url(youtube_url=url) # uses langchain component to load yotube url transcripts = loader.load() # create transcript of video using yotube loader splitter = RecursiveCharacterTextSplitter(chunk_size =1000, chunk_overlap =50) # split the trancript docs = splitter.split_documents(transcripts) # vector databse to store the embeddings db = FAISS.from_documents(docs, embeddings) # store the embedding into vector db of docs return db def get_response_from_query(db, query, k=4): # k determines number of chunks "we will use text-davinci-003 which has cap of 4096 tokens k determine number of 1000 chunk" docs = db.similarity_search(query, k=k) docs_content =" ".join([d.page_content for d in docs]) llm = OpenAI(model_name = "text-davinci-003") template = PromptTemplate(input_variables=['question','docs'],template= """You are a helpful assistant that that can answer questions about youtube videos based on the video's transcript. Answer the following question: {question} By searching the following video transcript: {docs} Only use the factual information from the transcript to answer the question. If you feel like you don't have enough information to answer the question, say "I don't know". Your answers should be verbose and detailed.""") chain = LLMChain(prompt = template, llm=llm) response = chain.run(question=query,docs= docs_content) return response db = yotube_url_to_vector_db(url) query = "What are the tools to hack your brain ?" print(get_response_from_query(db,query))
[ "question", "You are a helpful assistant that that can answer questions about youtube videos \n based on the video's transcript.\n \n Answer the following question: {question}\n By searching the following video transcript: {docs}\n \n Only use the factual information from the transcript to answer the question.\n \n If you feel like you don't have enough information to answer the question, say \"I don't know\".\n \n Your answers should be verbose and detailed." ]
2024-01-10
cliffpyles/smartypants
planning~psuedo_code~subscription_handlers~message_crupdate_subscriber_lambda.py
import json import boto3 import openai def lambda_handler(event, context): print("MessageCreatedOrUpdatedSubscriberLambda invoked.") dynamodb_event = json.loads(event["detail"]) # Initialize OpenAI client openai.api_key = "your-openai-api-key" # Continue the chat session with a new user message chat_session = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=[ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": dynamodb_event["NewImage"]["Content"]["S"]}, ], ) # Extract the assistant's reply assistant_reply = chat_session["choices"][0]["message"]["content"] # Initialize DynamoDB client dynamodb = boto3.resource("dynamodb") table = dynamodb.Table("your-dynamodb-table-name") # Write the assistant's reply to the database table.put_item( Item={ "MessageId": dynamodb_event["NewImage"]["MessageId"]["S"], "Timestamp": dynamodb_event["NewImage"]["Timestamp"]["S"], "Content": assistant_reply, "UserId": dynamodb_event["NewImage"]["UserId"]["S"], "ChatId": dynamodb_event["NewImage"]["ChatId"]["S"], "Access": dynamodb_event["NewImage"]["Access"]["S"], } ) return { "statusCode": 200, "body": json.dumps("Message creation or update event handled."), }
[ "Content", "You are a helpful assistant." ]
2024-01-10
toilaluan/DOST-AI
services~search_doc.py
import os from langchain.embeddings.huggingface import HuggingFaceEmbeddings from langchain.embeddings.openai import OpenAIEmbeddings from langchain.vectorstores import Chroma import chromadb from pymongo import MongoClient from dotenv import load_dotenv load_dotenv() client = MongoClient(os.environ.get("MONGODB")) EMBEDDING_MODEL = os.environ.get("EMBEDDING_MODEL") CHAT_MODEL = os.environ.get("CHAT_MODEL") CHROMA_ROOT = os.environ.get("CHROMA_ROOT") DOC_EMBED_COLLECTION = os.environ.get("DOC_EMBED_COLLECTION") def search_doc(query: str): persist_directory = os.path.join(CHROMA_ROOT, DOC_EMBED_COLLECTION) embeddings = OpenAIEmbeddings() chroma = Chroma( collection_name=DOC_EMBED_COLLECTION, embedding_function=embeddings, # client_settings=client_settings, persist_directory=persist_directory, ) n_docs = len(chroma._collection.get()["documents"]) print(n_docs) docs = chroma.similarity_search_with_score(query=query, k=min(5, n_docs)) result = [doc[0].metadata["_id"] for doc in docs] return result
[]
2024-01-10
toilaluan/DOST-AI
services~init_doc.py
from langchain.embeddings.huggingface import HuggingFaceEmbeddings from langchain.vectorstores import Chroma from langchain.text_splitter import TokenTextSplitter from langchain.document_loaders import UnstructuredPDFLoader, PDFMinerLoader, PyMuPDFLoader from langchain.chains import LLMChain from langchain.chat_models import ChatOpenAI from langchain import PromptTemplate import gdown import os from pymongo import MongoClient from bson.objectid import ObjectId from cleantext import clean import chromadb import torch from dotenv import load_dotenv load_dotenv() k = 3 def response_to_structured(response: str): try: title_index = response.index('Title') summary_index = response.index('Summary') tags_index = response.index('Tags') title = response[title_index+7: summary_index] summary = response[summary_index+9: tags_index] tags = response[tags_index+6:] result = { 'title': title.rstrip(), 'summary': summary.rstrip(), 'tags': tags.rstrip() } return result except: return {} def init_keys(pdf_path, chunk_size=1000): loader = PyMuPDFLoader(pdf_path) data = loader.load() text_splitter = TokenTextSplitter( chunk_size=chunk_size, chunk_overlap=0, encoding_name='cl100k_base') texts = text_splitter.split_documents(data) k_first_texts = [chunks.page_content for chunks in texts[:k]] texts = ' '.join(text for text in k_first_texts) with open('model/prompts/init_doc_prompt.txt', 'r') as f: init_doc_prompt = f.readlines() init_doc_prompt = ''.join(x for x in init_doc_prompt) prompt = PromptTemplate(template=init_doc_prompt, input_variables=['context']) chain = LLMChain( llm=ChatOpenAI(), prompt=prompt, verbose=True ) result = chain.predict(context=texts) result_json = response_to_structured(result) return result_json
[ "context" ]
2024-01-10
toilaluan/DOST-AI
services~init_embedding.py
from langchain.embeddings.huggingface import HuggingFaceEmbeddings from langchain.embeddings.openai import OpenAIEmbeddings from langchain.vectorstores import Chroma from langchain.text_splitter import TokenTextSplitter from langchain.document_loaders import UnstructuredPDFLoader import gdown import os from pymongo import MongoClient from bson.objectid import ObjectId import chromadb import torch from langchain.docstore.document import Document from dotenv import load_dotenv load_dotenv() client = MongoClient(os.environ.get("MONGODB")) EMBEDDING_MODEL = os.environ.get("EMBEDDING_MODEL") CHAT_MODEL = os.environ.get("CHAT_MODEL") CHROMA_ROOT = os.environ.get("CHROMA_ROOT") DOC_EMBED_COLLECTION = os.environ.get("DOC_EMBED_COLLECTION") db = client["doc_stock"] docs = db["docs"] def download_pdf(id: str): doc_id = ObjectId(id) doc = docs.find_one({"_id": doc_id}) link = doc["link"].split("/") drive_id = link[link.index("d") + 1] path = gdown.download(id=drive_id, output="cached_file.pdf") return path async def init_for_search(id: str): doc_id = ObjectId(id) doc = docs.find_one({"_id": doc_id}) summary = doc["summary"] title = doc["title"] tags = doc["tags"] context = f"{summary} {title} {tags}" doc_obj = Document(page_content=context, metadata={"_id": id}) persist_directory = os.path.join(CHROMA_ROOT, DOC_EMBED_COLLECTION) embeddings = OpenAIEmbeddings() client_settings = chromadb.config.Settings( chroma_db_impl="duckdb+parquet", persist_directory=persist_directory, anonymized_telemetry=False, ) vectorstore = Chroma( collection_name=DOC_EMBED_COLLECTION, embedding_function=embeddings, client_settings=client_settings, persist_directory=persist_directory, ) vectorstore.add_documents([doc_obj]) vectorstore.persist() print("Init for search successfully!") torch.cuda.empty_cache() def id_to_texts(id: str, chunk_size: int) -> list[Document]: path = download_pdf(id) loader = UnstructuredPDFLoader(path) data = loader.load() text_splitter = TokenTextSplitter(chunk_size=chunk_size, chunk_overlap=0) texts = text_splitter.split_documents(data) return texts async def store_embeddings(id: str, chunk_size: int = 1000): texts = id_to_texts(id, chunk_size) persist_directory = os.path.join(CHROMA_ROOT, id) embeddings = OpenAIEmbeddings() client_settings = chromadb.config.Settings( chroma_db_impl="duckdb+parquet", persist_directory=persist_directory, anonymized_telemetry=False, ) vectorstore = Chroma( collection_name=id, embedding_function=embeddings, client_settings=client_settings, persist_directory=persist_directory, ) vectorstore.add_documents(texts) vectorstore.persist() print("Init successfully!") torch.cuda.empty_cache()
[]
2024-01-10
toilaluan/DOST-AI
model~DostChat.py
import chromadb import os import asyncio from bson.objectid import ObjectId from pymongo import MongoClient from langchain.embeddings.openai import OpenAIEmbeddings from langchain.chat_models import ChatOpenAI from langchain.embeddings.huggingface import HuggingFaceEmbeddings from langchain.vectorstores import Chroma from langchain.chains import LLMChain from langchain.chains.qa_with_sources import load_qa_with_sources_chain from langchain.chains.question_answering import load_qa_chain from langchain.prompts import PromptTemplate from dotenv import load_dotenv from .select_chunk import select_chunk load_dotenv() client = MongoClient(os.environ.get("MONGODB")) CHROMA_ROOT = os.environ.get("CHROMA_ROOT") CHAT_MODEL = os.environ.get("CHAT_MODEL") EMBEDDING_MODEL = os.environ.get("EMBEDDING_MODEL") client = MongoClient(os.environ.get("MONGODB")) db = client["doc_stock"] docs = db["docs"] class DostChat: def __init__(self, id): self.id = id doc_id = ObjectId(id) self.doc = docs.find_one({"_id": doc_id}) persist_directory = os.path.join(CHROMA_ROOT, id) client_settings = chromadb.config.Settings( chroma_db_impl="duckdb+parquet", persist_directory=persist_directory, anonymized_telemetry=False, ) embeddings = OpenAIEmbeddings() self.chroma = Chroma( collection_name=id, embedding_function=embeddings, client_settings=client_settings, persist_directory=persist_directory, ) self.n_pages = len(self.chroma._collection.get(0)["documents"]) async def init_chat_query(self): with open("model/prompts/init_prompt.txt", "r") as f: init_prompt = f.readlines() init_prompt = "".join(x for x in init_prompt) prompt = PromptTemplate(template=init_prompt, input_variables=[]) chain = LLMChain(llm=ChatOpenAI(), prompt=prompt, verbose=True) result = chain.predict() return result async def doc_query(self, query): # try: with open("model/prompts/prompt.txt", "r") as f: prompt = f.readlines() prompt = "".join(x for x in prompt) docs = self.chroma.similarity_search(query, self.n_pages) docs = await select_chunk(docs=docs, query=query, k=min(4, self.n_pages)) context = "\n".join(x.page_content for x in docs) prompt = PromptTemplate( template=prompt, input_variables=["context", "question", "summary", "title", "tags"], ) chain = LLMChain(llm=ChatOpenAI(), prompt=prompt, verbose=False) result = chain.predict( context=context, question=query, summary=self.doc["summary"], title=self.doc["title"], tags=self.doc["tags"], ) # except: # return 'We have some error, try again later!' return result # return ''
[ "question", "context" ]
2024-01-10
illidanlab/tensorpack
examples~DeepQNetwork~atari_wrapper.py
# -*- coding: utf-8 -*- # File: atari_wrapper.py import numpy as np from collections import deque import gym _v0, _v1 = gym.__version__.split('.')[:2] assert int(_v0) > 0 or int(_v1) >= 10, gym.__version__ """ The following wrappers are copied or modified from openai/baselines: https://github.com/openai/baselines/blob/master/baselines/common/atari_wrappers.py """ class RewardShaping(gym.Wrapper): """ When taking a step, add a logit value to the immediate reward, where logits are provied by a pre-trained agent using expert demonstration. """ def __init__(self, env, logit_provider=None): ### logit provider should be a model gym.Wrapper.__init__(self, env) self.logit_provider = logit_provider def step(self, action): ob, reward, done, info = self.env.step(action) #self.frames.append(ob) ## TBD: change reward reward += 10 return ob, reward, done, info class MapState(gym.ObservationWrapper): def __init__(self, env, map_func): gym.ObservationWrapper.__init__(self, env) self._func = map_func def observation(self, obs): return self._func(obs) class FrameStack(gym.Wrapper): """ Buffer consecutive k observations and stack them on a new last axis. The output observation has shape `original_shape + (k, )`. """ def __init__(self, env, k): gym.Wrapper.__init__(self, env) self.k = k self.frames = deque([], maxlen=k) def reset(self): """Clear buffer and re-fill by duplicating the first observation.""" ob = self.env.reset() for _ in range(self.k - 1): self.frames.append(np.zeros_like(ob)) self.frames.append(ob) return self.observation() def step(self, action): ob, reward, done, info = self.env.step(action) self.frames.append(ob) return self.observation(), reward, done, info def observation(self): assert len(self.frames) == self.k return np.stack(self.frames, axis=-1) class _FireResetEnv(gym.Wrapper): def __init__(self, env): """Take action on reset for environments that are fixed until firing.""" gym.Wrapper.__init__(self, env) assert env.unwrapped.get_action_meanings()[1] == 'FIRE' assert len(env.unwrapped.get_action_meanings()) >= 3 def reset(self): self.env.reset() obs, _, done, _ = self.env.step(1) if done: self.env.reset() obs, _, done, _ = self.env.step(2) if done: self.env.reset() return obs def step(self, action): return self.env.step(action) def FireResetEnv(env): if isinstance(env, gym.Wrapper): baseenv = env.unwrapped else: baseenv = env if 'FIRE' in baseenv.get_action_meanings(): return _FireResetEnv(env) return env class LimitLength(gym.Wrapper): def __init__(self, env, k): gym.Wrapper.__init__(self, env) self.k = k def reset(self): # This assumes that reset() will really reset the env. # If the underlying env tries to be smart about reset # (e.g. end-of-life), the assumption doesn't hold. ob = self.env.reset() self.cnt = 0 return ob def step(self, action): ob, r, done, info = self.env.step(action) self.cnt += 1 if self.cnt == self.k: done = True return ob, r, done, info
[]
2024-01-10
odellus/scrape_oai
scrape_oai.py
import json import requests from bs4 import BeautifulSoup import argparse import time def parse_args(): '''Parses the command line arguments''' parser = argparse.ArgumentParser(description='Scrape a conversation from OpenAI chat') parser.add_argument('--input_url', type=str, help='The URL of the conversation to scrape', default=None) parser.add_argument('--input_file', type=str, help='The file containing the URLs of the conversations to scrape', default=None) return parser.parse_args() def fetch_webpage_content(input_url): '''Fetches the content of a webpage''' # Headers to mimic a browser request headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3' } # Creating a session to handle cookies with requests.Session() as session: # Send a get request to the URL response = session.get(input_url, headers=headers) # Check if the request was successful if response.status_code == 200: # Use BeautifulSoup to parse the HTML content soup = BeautifulSoup(response.content, 'html.parser') return soup else: return f"Error fetching the page: Status code {response.status_code}" def get_conversation(soup): '''Extracts the conversation from the webpage''' script_tag = soup.find('script', type='application/json') d = json.loads(script_tag.string) conv = d['props']['pageProps']['serverResponse']['data']['linear_conversation'] chat = [] for turn in conv: _id = turn.get('id') message = turn.get('message') if message: author = message.get('author') role = author.get('role') content = message.get('content') if content: content_type = content.get('content_type') parts = content.get('parts') if parts is not None and content_type == 'text': chat.append({'role': role, 'content': parts.pop()}) return chat def save_conversation(input_url): '''Saves the conversation to a JSON file''' conversation_id = input_url.split('/')[-1] soup = fetch_webpage_content(input_url) chat = get_conversation(soup) out_fname = f'oai-chat-{conversation_id}.json' print(f"Saving conversation to {out_fname}") with open(out_fname, 'w') as f: json.dump(chat, f, indent=4) def main(): '''Main function''' args = parse_args() if args.input_file: with open(args.input_file, 'r') as f: input_urls = f.readlines() input_urls = [x.strip() for x in input_urls] print(input_urls) for input_url in input_urls: time.sleep(1) print(f"Fetching conversation from {input_url}") save_conversation(input_url) elif not args.input_url: input_url = "https://chat.openai.com/share/4ad82157-c4b9-421e-9e33-7902ea940d71" save_conversation(input_url) else: save_conversation(args.input_url) if __name__ == '__main__': main()
[]
2024-01-10
break-free/breakfree-dk-privategpt
privateGPT.py
from dotenv import load_dotenv from langchain.chains import RetrievalQA from langchain.embeddings import LlamaCppEmbeddings from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler from langchain.vectorstores import Chroma from langchain.llms import GPT4All, LlamaCpp import os load_dotenv() llama_embeddings_model = os.environ.get("LLAMA_EMBEDDINGS_MODEL") persist_directory = os.environ.get('PERSIST_DIRECTORY') model_type = os.environ.get('MODEL_TYPE') model_path = os.environ.get('MODEL_PATH') model_n_ctx = os.environ.get('MODEL_N_CTX') from constants import CHROMA_SETTINGS def main(): llama = LlamaCppEmbeddings(model_path=llama_embeddings_model, n_ctx=model_n_ctx) db = Chroma(persist_directory=persist_directory, embedding_function=llama, client_settings=CHROMA_SETTINGS) retriever = db.as_retriever() # Prepare the LLM callbacks = [StreamingStdOutCallbackHandler()] match model_type: case "LlamaCpp": llm = LlamaCpp(model_path=model_path, n_ctx=model_n_ctx, callbacks=callbacks, verbose=False) case "GPT4All": llm = GPT4All(model=model_path, n_ctx=model_n_ctx, backend='gptj', callbacks=callbacks, verbose=False) case _default: print(f"Model {model_type} not supported!") exit; qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=retriever, return_source_documents=True) # Interactive questions and answers while True: query = input("\nEnter a query: ") if query == "exit": break # Get the answer from the chain res = qa(query) answer, docs = res['result'], res['source_documents'] # Print the result print("\n\n> Question:") print(query) print("\n> Answer:") print(answer) # Print the relevant sources used for the answer for document in docs: print("\n> " + document.metadata["source"] + ":") print(document.page_content) if __name__ == "__main__": main()
[]
2024-01-10
ConnectAI-E/Feishu-Webhook-Proxy
tests~test_openai.py
import logging from connectai.lark.websocket import * from langchain.chat_models import ChatOpenAI from langchain.schema import SystemMessage, HumanMessage from langchain.callbacks.base import BaseCallbackHandler class TextMessageBot(Bot): def __init__(self, app=None, *args, **kwargs): self.app = app super().__init__(*args, **kwargs) def on_message(self, data, *args, **kwargs): if 'header' in data: if data['header']['event_type'] == 'im.message.receive_v1' and data['event']['message']['message_type'] == 'text': content = json.loads(data['event']['message']['content']) if self.app: return self.app.process_text_message(text=content['text'], **data['event']['sender']['sender_id'], **data['event']['message']) logging.warn("unkonw message %r", data) class OpenAICallbackHandler(BaseCallbackHandler): def __init__(self, bot, message_id): self.bot = bot self.message_id = message_id self.result = '' self.send_length = 0 self.reply_message_id = '' def on_llm_start(self, *args, **kwargs): response = self.bot.reply_card( self.message_id, FeishuMessageCard( FeishuMessageDiv(''), FeishuMessageNote(FeishuMessagePlainText('正在思考,请稍等...')) ) ) self.reply_message_id = response.json()['data']['message_id'] def on_llm_new_token(self, token, **kwargs): logging.info("on_llm_new_token %r", token) self.result += token if len(self.result) - self.send_length < 25: return self.send_length = len(self.result) self.bot.update( self.reply_message_id, FeishuMessageCard( FeishuMessageDiv(self.result, tag="lark_md"), FeishuMessageNote(FeishuMessagePlainText('正在生成,请稍等...')) ) ) def on_llm_end(self, response, **kwargs): content = response.generations[0][0].text logging.info("on_llm_end %r", content) self.bot.update( self.reply_message_id, FeishuMessageCard( FeishuMessageDiv(content, tag="lark_md"), FeishuMessageNote(FeishuMessagePlainText("reply from openai.")), ) ) class Session(object): store = {} def __init__(self, app_id, user_id): self.key = f"{app_id}:{user_id}" self.data = self.store.get(self.key, dict( chat_history=[], temperature=0.7, system_role='', model='gpt-3.5-turbo' )) def __getattr__(self, name):return self.data.get(name) def __enter__(self): return self def __exit__(self, *args): self.store[self.key] = self.data class Application(object): def __init__(self, openai_api_base='', openai_api_key='', system_role='', temperature=0.7, streaming=True, **kwargs): self.system_role = system_role # self.bot.app = self self.bot = TextMessageBot(app=self, **kwargs) self.temperature = temperature self.openai_options = dict( openai_api_base=openai_api_base, openai_api_key=openai_api_key, streaming=streaming, ) def process_text_message(self, text, message_id, open_id, **kwargs): with Session(self.bot.app_id, open_id) as session: if text == '/help' or text == '帮助': self.bot.reply_card( message_id, FeishuMessageCard( FeishuMessageDiv('👋 你好呀,我是一款基于OpenAI技术的智能聊天机器人'), FeishuMessageHr(), FeishuMessageDiv('👺 **角色扮演模式**\n文本回复*/system*+空格+角色信息', tag='lark_md'), FeishuMessageHr(), FeishuMessageDiv('🎒 **需要更多帮助**\n文本回复 *帮助* 或 */help*', tag='lark_md'), header=FeishuMessageCardHeader('🎒需要帮助吗?'), ) ) elif text[:7] == '/system' and text[7:]: session.data['system_role'] = text[7:] session.data['chat_history'] = [] self.bot.reply_card( message_id, FeishuMessageCard( FeishuMessageDiv('请注意,这将开始一个全新的对话'), header=FeishuMessageCardHeader('👺 已进入角色扮演模式'), ) ) elif text: chat = ChatOpenAI( callbacks=[OpenAICallbackHandler(self.bot, message_id)], temperature=session.temperature or self.temperature, model=session.model, **self.openai_options ) system_role = session.system_role or self.system_role system_message = [SystemMessage(content=system_role)] if system_role else [] messages = system_message + session.chat_history + [HumanMessage(content=text)] message = chat(messages) # save chat_history session.chat_history.append(HumanMessage(content=text)) session.chat_history.append(message) logging.info("reply message %r\nchat_history %r", message, session.chat_history) else: logging.warn("empty text", text) if __name__ == "__main__": import click @click.command() @click.option('--openai_api_base', prompt="OpenAI API BASE", help='Your openai_api_base') @click.option('--openai_api_key', prompt="OpenAI API KEY", help='Your openai_api_key') @click.option('--system_role', default='', prompt="SYSTEM ROLE", help='OpenAI system_role') @click.option('--temperature', default=0.7, prompt="TEMPERATURE", help='OpenAI temperature') @click.option('--app_id', prompt="APP ID", help='Your app_id') @click.option('--app_secret', default='', prompt="APP SECRET", help='Your app_secret') @click.option('--verification_token', default='', prompt="VERIFICATION TOKEN", help='Your verification_token') @click.option('--encrypt_key', prompt="ENCRYPT KEY", help='Your encrypt_key') @click.option('--debug', default=False, prompt="DEBUG MODE", help='debug mode') def main(debug, **kwargs): app = Application(**kwargs) client = Client(app.bot) client.start(debug) # debug mode main()
[]
2024-01-10
eleqtrizit/youtube-summarizer
youtube.py
import argparse import contextlib import os from openai import OpenAI from rich.console import Console from youtube_transcript_api import YouTubeTranscriptApi console = Console() # Initialize parser parser = argparse.ArgumentParser() client = OpenAI( api_key=os.environ.get("OPENAI_API_KEY"), ) def handle_query(gpt_prompt): print("Generating summary (writing to STDOUT and summary.txt)...") messages = [{"role": "user", "content": gpt_prompt}] for response in client.chat.completions.create( model = "gpt-4-1106-preview", temperature = 0.7, max_tokens = 1010, top_p = 1, frequency_penalty = 0, presence_penalty = 0, stream = True, messages = messages ): reply = '' with contextlib.suppress(AttributeError): if content := response.choices[0].delta.content: console.print(content, style = "#FFFFFF", end = '') # type: ignore reply += content # save to file with open("summary.txt", "w") as f: f.write(reply) print("Saved to summary.txt") def get_transcript(video_id): print("Fetching transcript...") transcript_json = YouTubeTranscriptApi.get_transcript(video_id) return ' '.join([x['text'] for x in transcript_json]) PROMPT = """Summarize the following transcript in markdown. Pretend you are a college student taking notes on a lecture. Your output should use the following template: ### Summary ### Notes ### Keywords ### Media Discussed (TV, Movies, Books, etc) ### Tools Discussed Transcript below: """ if __name__ == '__main__': # Adding optional argument parser.add_argument("-v", "--VideoId", help = "Youtube Video ID") # Read arguments from command line args = parser.parse_args() transcript = get_transcript(args.VideoId) prompt = PROMPT + transcript handle_query(prompt)
[ "Summarize the following transcript in markdown.\nPretend you are a college student taking notes on a lecture.\n\nYour output should use the following template:\n\n### Summary\n\n### Notes\n\n### Keywords\n\n### Media Discussed (TV, Movies, Books, etc)\n\n### Tools Discussed\n\nTranscript below:\n", "Summarize the following transcript in markdown.\nPretend you are a college student taking notes on a lecture.\n\nYour output should use the following template:\n\n### Summary\n\n### Notes\n\n### Keywords\n\n### Media Discussed (TV, Movies, Books, etc)\n\n### Tools Discussed\n\nTranscript below:\nPLACEHOLDER" ]
2024-01-10
mlincon/vector-databases
src~chunking~character.py
from langchain.document_loaders import TextLoader from langchain.text_splitter import ( CharacterTextSplitter, NLTKTextSplitter, RecursiveCharacterTextSplitter, ) from langchain_core.documents import Document def create_fixed_size_chunks( text: list[str], separator: str = "\n\n", chunk_size: int = 512, chunk_overlap: int = 20, ) -> list[Document]: text_splitter = CharacterTextSplitter( separator=separator, chunk_size=chunk_size, chunk_overlap=chunk_overlap, ) return text_splitter.create_documents(text) loader = TextLoader("../data/test.txt") text_splitter = CharacterTextSplitter(separator=":", chunk_size=20, chunk_overlap=0) text_splitter = NLTKTextSplitter() text_splitter = RecursiveCharacterTextSplitter( # Set a really small chunk size, just to show. chunk_size=512, chunk_overlap=20, ) docs = loader.load_and_split(text_splitter=text_splitter) for doc in docs: print(doc.page_content) print("\n")
[]
2024-01-10
PierreBeaujuge/holbertonschool-machine_learning
reinforcement_learning~0x00-q_learning~0-load_env.py
#!/usr/bin/env python3 """ 0-load_env.py """ import numpy as np import gym def load_frozen_lake(desc=None, map_name=None, is_slippery=False): """ function that loads a pre-made FrozenLakeEnv environment from OpenAI’s gym """ env = gym.make("FrozenLake-v0", desc=desc, map_name=map_name, is_slippery=is_slippery) return env
[]
2024-01-10
microsoft/OpenAIWorkshop
scenarios~openai_batch_pipeline~document_generation~cleansed_generation.py
import os import logging import random import openai import time from azure.storage.blob import BlobClient import argparse import json def main(): parser = argparse.ArgumentParser() parser.add_argument('--conn_string', type=str, help='Azure Storage connection string') parser.add_argument('--openai_api_base_url', type=str, help='OpenAI API Base URL') parser.add_argument('--openai_api_key', type=str, help='OpenAI API Key') parser.add_argument('--openai_model', type=str, help='OpenAI Model', default='davincitest') args = parser.parse_args() temperature= 0.75 max_tokens= 2000 top_p= 0.80 frequency_penalty= 0.25 presence_penalty= 0.15 stop= None openai.api_type = "azure" openai.api_base = args.openai_api_base_url openai.api_version = "2022-12-01" openai.api_key = args.openai_api_key for filename in os.listdir('scenarios/openai_batch_pipeline/document_generation/generated_documents'): if filename.endswith('.txt'): results = {} with open(os.path.join("scenarios/openai_batch_pipeline/document_generation/generated_documents", filename), 'r') as src: txt = src.read() prmpt = txt + "\n \nProvide summary." openai_output = openai.Completion.create( engine= args.openai_model, prompt= prmpt, temperature= temperature, max_tokens= max_tokens, top_p= top_p, frequency_penalty= frequency_penalty, presence_penalty= presence_penalty, stop= None) results['summary'] = openai_output.choices[0].text results["customerSentiment"] = filename.split("_")[3] results["topic"] = filename.split("_")[4] results["product"] = filename.split("_")[5] results["filename"] = filename with open(os.path.join("scenarios/openai_batch_pipeline/document_generation/cleansed_documents", filename.split("_")[0]+".json"), 'w') as dest: dest.write(json.dumps(results, indent=4)) file_name = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'generated_documents', filename.split("_")[0]+".json") blob_name=f'generated_documents/{filename.split("_")[0]}.json' blob_client = BlobClient.from_connection_string( args.conn_string, container_name="workshop-data", blob_name=blob_name, ) blob_client.upload_blob(dest) if __name__ == '__main__': main()
[ "PLACEHOLDER\n \nProvide summary." ]
2024-01-10
microsoft/OpenAIWorkshop
scenarios~incubations~copilot~employee_support~hr_copilot_utils.py
# Agent class ### responsbility definition: expertise, scope, conversation script, style import openai import os from pathlib import Path import json import time from azure.search.documents.models import Vector import uuid from tenacity import retry, wait_random_exponential, stop_after_attempt from dotenv import load_dotenv from azure.core.credentials import AzureKeyCredential from azure.search.documents import SearchClient from openai.embeddings_utils import get_embedding, cosine_similarity import inspect env_path = Path('.') / 'secrets.env' load_dotenv(dotenv_path=env_path) openai.api_key = os.environ.get("AZURE_OPENAI_API_KEY") openai.api_base = os.environ.get("AZURE_OPENAI_ENDPOINT") emb_engine = os.getenv("AZURE_OPENAI_EMB_DEPLOYMENT") emb_engine = emb_engine.strip('"') openai.api_type = "azure" import sys import random sys.path.append("..") from utils import Agent, check_args class Search_Client(): def __init__(self,emb_map_file_path): with open(emb_map_file_path) as file: self.chunks_emb = json.load(file) def find_article(self,question, topk=3): """ Given an input vector and a dictionary of label vectors, returns the label with the highest cosine similarity to the input vector. """ input_vector = get_embedding(question, engine = emb_engine) # Compute cosine similarity between input vector and each label vector cosine_list=[] for chunk_id,chunk_content, vector in self.chunks_emb: #by default, we use embedding for the entire content of the topic (plus topic descrition). # If you you want to use embedding on just topic name and description use this code cosine_sim = cosine_similarity(input_vector, vector[0]) cosine_sim = cosine_similarity(input_vector, vector) cosine_list.append((chunk_id,chunk_content,cosine_sim )) cosine_list.sort(key=lambda x:x[2],reverse=True) cosine_list= cosine_list[:topk] best_chunks =[chunk[0] for chunk in cosine_list] contents = [chunk[1] for chunk in cosine_list] text_content = "" for chunk_id, content in zip(best_chunks, contents): text_content += f"{chunk_id}\n{content}\n" return text_content #azcs implementation if os.getenv("USE_AZCS") == "True": service_endpoint = os.getenv("AZURE_SEARCH_SERVICE_ENDPOINT") index_name = os.getenv("AZURE_SEARCH_INDEX_NAME") index_name = index_name.strip('"') key = os.getenv("AZURE_SEARCH_ADMIN_KEY") key = key.strip('"') # @retry(wait=wait_random_exponential(min=1, max=20), stop=stop_after_attempt(6)) # Function to generate embeddings for title and content fields, also used for query embeddings credential = AzureKeyCredential(key) azcs_search_client = SearchClient(service_endpoint, index_name =index_name , credential=credential) else: faiss_search_client = Search_Client("../data/chunk_emb_map.json") def search_knowledgebase_acs(search_query): vector = Vector(value=get_embedding(search_query, engine=emb_engine), k=3, fields="embedding") print("search query: ", search_query) # print("products: ", products.split(",")) # product_filter = " or ".join([f"product eq '{product}'" for product in products.split(",")]) results = azcs_search_client.search( search_text=search_query, vectors= [vector], # filter= product_filter, query_type="semantic", query_language="en-us", semantic_configuration_name='default', query_caption="extractive", query_answer="extractive", select=["sourcepage","content"], top=3 ) text_content ="" for result in results: text_content += f"{result['sourcepage']}\n{result['content']}\n" # print("text_content", text_content) return text_content def search_knowledgebase(search_query): if os.getenv("USE_AZCS") == "True": print("using azcs") return search_knowledgebase_acs(search_query) else: print("using faiss") print(os.getenv("USE_AZCS")) return faiss_search_client.find_article(search_query) ###Sematic caching implementation if os.getenv("USE_SEMANTIC_CACHE") == "True": cache_index_name = os.getenv("CACHE_INDEX_NAME") cache_index_name= cache_index_name.strip('"') azcs_semantic_cache_search_client = SearchClient(service_endpoint, cache_index_name, credential=credential) def add_to_cache(search_query, gpt_response): search_doc = { "id" : str(uuid.uuid4()), "search_query" : search_query, "search_query_vector" : get_embedding(search_query, engine=emb_engine), "gpt_response" : gpt_response } azcs_semantic_cache_search_client.upload_documents(documents = [search_doc]) def get_cache(search_query): vector = Vector(value=get_embedding(search_query, engine=emb_engine), k=3, fields="search_query_vector") results = azcs_semantic_cache_search_client.search( search_text=None, vectors= [vector], select=["gpt_response"], ) try: result =next(results) print("threshold ", result['@search.score']) if result['@search.score']>= float(os.getenv("SEMANTIC_HIT_THRESHOLD")): return result['gpt_response'] except StopIteration: pass return None class Smart_Agent(Agent): """ Agent that can use other agents and tools to answer questions. Args: persona (str): The persona of the agent. tools (list): A list of {"tool_name":tool} that the agent can use to answer questions. Tool must have a run method that takes a question and returns an answer. stop (list): A list of strings that the agent will use to stop the conversation. init_message (str): The initial message of the agent. Defaults to None. engine (str): The name of the GPT engine to use. Defaults to "gpt-35-turbo". Methods: llm(new_input, stop, history=None, stream=False): Generates a response to the input using the LLM model. _run(new_input, stop, history=None, stream=False): Runs the agent and generates a response to the input. run(new_input, history=None, stream=False): Runs the agent and generates a response to the input. Attributes: persona (str): The persona of the agent. tools (list): A list of {"tool_name":tool} that the agent can use to answer questions. Tool must have a run method that takes a question and returns an answer. stop (list): A list of strings that the agent will use to stop the conversation. init_message (str): The initial message of the agent. engine (str): The name of the GPT engine to use. """ def __init__(self, persona,functions_spec, functions_list, name=None, init_message=None, engine =os.getenv("AZURE_OPENAI_CHAT_DEPLOYMENT")): super().__init__(engine=engine,persona=persona, init_message=init_message, name=name) self.functions_spec = functions_spec self.functions_list= functions_list @retry(wait=wait_random_exponential(min=1, max=20), stop=stop_after_attempt(6)) def run(self, user_input, conversation=None, stream = False, api_version = "2023-07-01-preview"): openai.api_version = api_version if user_input is None: #if no input return init message return self.init_history, self.init_history[1]["content"] if conversation is None: #if no history return init message conversation = self.init_history.copy() conversation.append({"role": "user", "content": user_input}) i=0 query_used = None # while True: # try: # i+=1 response = openai.ChatCompletion.create( deployment_id=self.engine, # The deployment name you chose when you deployed the GPT-35-turbo or GPT-4 model. messages=conversation, functions=self.functions_spec, function_call="auto", ) response_message = response["choices"][0]["message"] # Step 2: check if GPT wanted to call a function if response_message.get("function_call"): print("Recommended Function call:") print(response_message.get("function_call")) print() # Step 3: call the function # Note: the JSON response may not always be valid; be sure to handle errors function_name = response_message["function_call"]["name"] # verify function exists if function_name not in self.functions_list: print("function list:", self.functions_list) raise Exception("Function " + function_name + " does not exist") function_to_call = self.functions_list[function_name] # verify function has correct number of arguments function_args = json.loads(response_message["function_call"]["arguments"]) if check_args(function_to_call, function_args) is False: raise Exception("Invalid number of arguments for function: " + function_name) # check if there's an opprotunity to use semantic cache if function_name =="search_knowledgebase": if os.getenv("USE_SEMANTIC_CACHE") == "True": search_query = function_args["search_query"] cache_output = get_cache(search_query) if cache_output is not None: print("semantic cache hit") conversation.append({"role": "assistant", "content": cache_output}) return False, query_used,conversation, cache_output else: print("semantic cache missed") query_used = search_query function_response = function_to_call(**function_args) print("Output of function call:") print(function_response) print() # Step 4: send the info on the function call and function response to GPT # adding assistant response to messages conversation.append( { "role": response_message["role"], "name": response_message["function_call"]["name"], "content": response_message["function_call"]["arguments"], } ) # adding function response to messages conversation.append( { "role": "function", "name": function_name, "content": function_response, } ) # extend conversation with function response openai.api_version = api_version second_response = openai.ChatCompletion.create( messages=conversation, deployment_id=self.engine, stream=stream, ) # get a new response from GPT where it can see the function response if not stream: assistant_response = second_response["choices"][0]["message"]["content"] conversation.append({"role": "assistant", "content": assistant_response}) else: assistant_response = second_response return stream,query_used, conversation, assistant_response else: assistant_response = response_message["content"] conversation.append({"role": "assistant", "content": assistant_response}) # break # except Exception as e: # if i>3: # assistant_response="Haizz, my memory is having some trouble, can you repeat what you just said?" # break # print("Exception as below, will retry\n", str(e)) # time.sleep(5) return False,query_used, conversation, assistant_response HR_PERSONA = """ You are Lucy, an HR support specialist responsible for answering questions about HR & Payroll from employees and handling personal information updates. You start the conversation by validating the identity of the employee. Do not proceed until you have validated the identity of the employee. When you are asked with a question, use the search tool to find relavent knowlege articles to create the answer. Answer ONLY with the facts from the search tool. If there isn't enough information, say you don't know. Do not generate answers that don't use the sources below. If asking a clarifying question to the user would help, ask the question. Each source has a name followed by colon and the actual information, always include the source name for each fact you use in the response. Use square brakets to reference the source, e.g. [info1.txt]. Don't combine sources, list each source separately, e.g. [info1.txt][info2.pdf]. When employee request updating their address, interact with them to get their new country, new state, new city and zipcode. If they don't provide new country, check if it's still United States. Make sure you have all information then use update address tool provided to update in the system. For all other information update requests, log a ticket to the HR team to update the information. If the employee is asking for information that is not related to HR or Payroll, say it's not your area of expertise. """ def validate_identity(employee_id, employee_name): if employee_id in ["1234","5678"]: return f"Employee {employee_name} with id {employee_id} is validated in this conversation" else: return "This employee id is not valid" def update_address(employee_id, country, state, city, zipcode): return f"Address of employee {employee_id} address has been updated to {country}, {state}, {city}, {zipcode}" def create_ticket(employee_id, updates): return f"A ticket number 1233445 has been created for employee {employee_id} with the following updates: {updates} " HR_AVAILABLE_FUNCTIONS = { "search_knowledgebase": search_knowledgebase, "validate_identity": validate_identity, "update_address": update_address, "create_ticket": create_ticket, } HR_FUNCTIONS_SPEC= [ { "name": "search_knowledgebase", "description": "Searches the knowledge base for an answer to the HR/Payroll question", "parameters": { "type": "object", "properties": { "search_query": { "type": "string", "description": "The search query to use to search the knowledge base" } }, "required": ["search_query"], }, }, { "name": "validate_identity", "description": "validates the identity of the employee", "parameters": { "type": "object", "properties": { "employee_id": { "type": "string", "description": "The employee id to validate" }, "employee_name": { "type": "string", "description": "The employee id to validate" } }, "required": ["employee_id", "employee_name"], }, }, { "name": "update_address", "description": "Update the address of the employee", "parameters": { "type": "object", "properties": { "employee_id": { "type": "string", "description": "The employee id to validate" }, "city": { "type": "string", "description": "The new city to update" }, "state": { "type": "string", "description": "The new state to update" }, "zipcode": { "type": "integer", "description": "The new zipcode to update" }, "country": { "type": "string", "description": "The new country to update" } }, "required": ["employee_id","city", "state", "zipcode", "country"], }, }, { "name": "create_ticket", "description": "Create a support ticket for the employee to update personal information other than address", "parameters": { "type": "object", "properties": { "employee_id": { "type": "string", "description": "The employee id to validate" }, "updates": { "type": "string", "description": "The new/changed information to update" } }, "required": ["employee_id","updates"], }, }, ]
[ "function_call", "arguments" ]
2024-01-10
microsoft/OpenAIWorkshop
scenarios~incubations~copilot~realtime_streaming~flight_copilot_utils.py
# Agent class ### responsbility definition: expertise, scope, conversation script, style import openai import os from pathlib import Path import json import time from azure.search.documents.models import Vector import uuid from tenacity import retry, wait_random_exponential, stop_after_attempt from azure.cosmos import CosmosClient from datetime import datetime, timedelta from dateutil import parser from dotenv import load_dotenv from azure.core.credentials import AzureKeyCredential from azure.search.documents import SearchClient from openai.embeddings_utils import get_embedding, cosine_similarity import inspect env_path = Path('.') / 'secrets.env' load_dotenv(dotenv_path=env_path) openai.api_key = os.environ.get("AZURE_OPENAI_API_KEY") openai.api_base = os.environ.get("AZURE_OPENAI_ENDPOINT") openai.api_type = "azure" cosmos_uri = os.environ.get("COSMOS_URI") cosmos_key=os.environ.get("COSMOS_KEY") container_name = os.getenv("COSMOS_CONTAINER_NAME") cosmos_db_name = os.getenv("COSMOS_DB_NAME") client = CosmosClient(cosmos_uri, credential=cosmos_key) cosmos_db_client = client.get_database_client(cosmos_db_name) cosmos_container_client = cosmos_db_client.get_container_client(container_name) import random import sys import random sys.path.append("..") from utils import Agent, Smart_Agent, check_args, search_knowledgebase service_endpoint = os.getenv("AZURE_SEARCH_SERVICE_ENDPOINT") index_name = os.getenv("AZURE_SEARCH_INDEX_NAME") index_name = index_name.strip('"') key = os.getenv("AZURE_SEARCH_ADMIN_KEY") key = key.strip('"') credential = AzureKeyCredential(key) azcs_search_client = SearchClient(service_endpoint, index_name ="flights" , credential=credential) def check_flight_status(flight_num, from_): filter=f"flight_num eq '{flight_num}'" results = azcs_search_client.search( search_text=None, filter=filter, top=1 ) output =f"cannot find status for the flight {flight_num} " for result in results: output = result return str(output) def query_flights(from_, to, departure_time): # generate 3 flights with random flight number in the format of AA1234 with different departure time and return the list of flights to the user #first convert the departure time to a datetime object assuming the format of the departutre time is '2020-09-20T10:30:00' def get_new_times(departure_time, delta): dp_dt = parser.parse(departure_time) new_dp_dt = dp_dt + timedelta(hours=delta) new_ar_dt = new_dp_dt + timedelta(hours=2) new_departure_time = new_dp_dt.strftime("%Y-%m-%dT%H:%M:%S") new_arrival_time = new_ar_dt.strftime("%Y-%m-%dT%H:%M:%S") return new_departure_time, new_arrival_time flights = "" for flight_num, delta in [("AA479", -1), ("AA490",-2), ("AA423",-3)]: new_departure_time, new_arrival_time = get_new_times(departure_time, delta) flights= flights +f"flight number {flight_num}, from: {from_}, to: {to}, departure_time: {new_departure_time}, arrival_time: {new_arrival_time}, flight_status: on time \n" return flights def confirm_flight_change(current_ticket_number, new_flight_num, new_departure_time,new_arrival_time): # based on the input flight number and from, to and departure time, generate a random seat number and a random gate number and random amount of refund or extra charge for the flight change # then write a information message to the user with all the information charge = 80 #retrieve current flight old_flight={} for item in cosmos_container_client.query_items( query=f'SELECT * FROM c WHERE c.ticket_num="{current_ticket_number}" AND c.status="open"', enable_cross_partition_query=True): old_flight['airline'] = item['airline'] old_flight['customer_id'] = item['customer_id'] old_flight['flight_num'] = item['flight_num'] old_flight['seat_num'] = item['seat_num'] old_flight['departure_airport'] = item['departure_airport'] old_flight['seat_num'] = item['seat_num'] old_flight['departure_airport'] = item['departure_airport'] old_flight['arrival_airport'] = item['arrival_airport'] old_flight['departure_time'] = item['departure_time'] old_flight['arrival_time'] = item['arrival_time'] old_flight['ticket_class'] = item['ticket_class'] old_flight['ticket_num'] = item['ticket_num'] old_flight['gate'] = item['gate'] old_flight['id'] = item['id'] old_flight['status'] = "cancelled" break #update the old flight status to cancelled cosmos_container_client.upsert_item(old_flight) print("updated old flight status to cancelled") #create a new flight #generate a new ticket number which is a 10 digit random number new_ticket_num = str(random.randint(1000000000, 9999999999)) new_flight=old_flight.copy() new_flight["id"] = new_ticket_num new_flight['flight_num'] = new_flight_num new_flight['departure_time'] = new_departure_time new_flight['arrival_time'] = new_arrival_time new_flight['ticket_num'] = new_ticket_num new_flight['status'] = "open" cosmos_container_client.create_item(new_flight) return f"""Your new flight now is {new_flight_num} departing from {new_flight['departure_airport']} to {new_flight['arrival_airport']}. Your new departure time is {new_departure_time} and arrival time is {new_arrival_time}. Your new ticket number is {new_ticket_num}. Your credit card has been charged with an amount of ${charge} dollars for fare difference.""" def test_change_flight(current_ticket_number, current_flight_num, new_flight_num, from_): # based on the input flight number and from, to and departure time, generate a random seat number and a random gate number and random amount of refund or extra charge for the flight change # then write a information message to the user with all the information charge = 80 return f"Changing your ticket from {current_flight_num} to new flight {new_flight_num} departing from {from_} would cost {charge} dollars." def load_user_flight_info(user_id): # Load flight information from CosmosDB matched_flights =[] for item in cosmos_container_client.query_items( query=f'SELECT * FROM c WHERE c.customer_id="{user_id}" AND c.status="open"', enable_cross_partition_query=True): flight={} flight['airline'] = item['airline'] flight['flight_num'] = item['flight_num'] flight['seat_num'] = item['seat_num'] flight['departure_airport'] = item['departure_airport'] flight['seat_num'] = item['seat_num'] flight['departure_airport'] = item['departure_airport'] flight['arrival_airport'] = item['arrival_airport'] flight['departure_time'] = item['departure_time'] flight['arrival_time'] = item['arrival_time'] flight['ticket_class'] = item['ticket_class'] flight['ticket_num'] = item['ticket_num'] flight['gate'] = item['gate'] flight['status'] = item['status'] matched_flights.append(flight) if len(matched_flights) == 0: return f"Sorry, we cannot find any flight information for you" return str(matched_flights) PERSONA = """ You are Maya, an airline customer agent helping customers with questions and requests about their flight. You are currently serving {customer_name} with id {customer_id}. First, you need to look up their flight information and confirm with the customer about their flight information including flight number, from and to, departure and arrival time. When you are asked with a general airline policy question such as baggage limit, use the search_knowledgebase function to find relavent knowlege articles to create the answer. Answer ONLY with the facts from the search tool. If there isn't enough information, say you don't know. Do not generate answers that don't use the information from the search. If asking a clarifying question to the user would help, ask the question. When the user asks for a flight status, use check_flight_status function to check the flight status. When the user asks to change their flight, first check the feasibility and cost of the change with check_change_flight function. If customer agrees with the change, execute the change with confirm_flight_change function. If the user is asking for information that is not related to flight and airline, say it's not your area of expertise. """ AVAILABLE_FUNCTIONS = { "search_knowledgebase": search_knowledgebase, "query_flights": query_flights, "confirm_flight_change": confirm_flight_change, "check_change_flight": test_change_flight, "check_flight_status": check_flight_status, "load_user_flight_info": load_user_flight_info } FUNCTIONS_SPEC= [ { "name": "search_knowledgebase", "description": "Searches the knowledge base for an answer to the question", "parameters": { "type": "object", "properties": { "search_query": { "type": "string", "description": "The search query to use to search the knowledge base" } }, "required": ["search_query"], }, }, { "name": "query_flights", "description": "Query the list of available flights for a given departure airport code, arrival airport code and departure time", "parameters": { "type": "object", "properties": { "from_": { "type": "string", "description": "The departure airport code" }, "to": { "type": "string", "description": "The arrival airport code" }, "departure_time": { "type": "string", "description": "The departure time" } }, "required": ["from_", "to", "departure_time"], }, }, { "name": "check_change_flight", "description": "Check the feasibility and outcome of a presumed flight change by providing current flight information and new flight information", "parameters": { "type": "object", "properties": { "current_ticket_number": { "type": "string", "description": "The current ticket number" }, "current_flight_num": { "type": "string", "description": "The current flight number" }, "new_flight_num": { "type": "string", "description": "The new flight number" }, "from_": { "type": "string", "description": "The departure airport code" }, }, "required": ["current_ticket_number", "current_flight_num", "new_flight_num", "from_"], }, }, { "name": "confirm_flight_change", "description": "Execute the flight change after confirming with the customer", "parameters": { "type": "object", "properties": { "current_ticket_number": { "type": "string", "description": "The current ticket number" }, "new_flight_num": { "type": "string", "description": "The new flight number" }, "new_departure_time": { "type": "string", "description": "The new departure time of the new flight" }, "new_arrival_time": { "type": "string", "description": "The new arrival time of the new flight" }, }, "required": ["current_ticket_number", "new_flight_num", "new_departure_time", "new_arrival_time"], }, }, { "name": "check_flight_status", "description": "Checks the flight status for a flight", "parameters": { "type": "object", "properties": { "flight_num": { "type": "string", "description": "The flight number" }, "from_": { "type": "string", "description": "The departure airport code" } }, "required": ["flight_num", "from_"], }, }, { "name": "load_user_flight_info", "description": "Loads the flight information for a user", "parameters": { "type": "object", "properties": { "user_id": { "type": "string", "description": "The user id" } }, "required": ["user_id"], }, } ]
[]
2024-01-10
microsoft/OpenAIWorkshop
scenarios~incubations~copilot~employee_support~multi_agent_utils.py
# Agent class ### responsbility definition: expertise, scope, conversation script, style import time import openai import os from pathlib import Path import json import random from dotenv import load_dotenv # from openai.embeddings_utils import get_embedding, cosine_similarity # import inspect env_path = Path('.') / 'secrets.env' load_dotenv(dotenv_path=env_path) evaluator_engine = os.environ.get("AZURE_OPENAI_EVALUATOR_DEPLOYMENT") evaluator_engine = evaluator_engine.strip('"') from hr_copilot_utils import Agent,Smart_Agent, check_args, search_knowledgebase,update_address, create_ticket def get_help(user_request): return f"{user_request}" def validate_identity(employee_id, employee_name): if employee_id in ["1234","5678"]: return f"Employee {employee_name} with id {employee_id} is validated in this conversation" else: return "This employee id is not valid" GET_HELP_FUNCTION_NAME = "get_help" #default function name for routing call used by all agents VALIDATE_IDENTIFY_FUNCTION_NAME = "validate_identity" #default function name for validating identity used by all agents GENERALIST_PERSONA = """ You are Jenny, a helpful general assistant that can answer general questions about everything except HR and Payroll and IT. You start the conversation by validating the identity of the employee. Do not proceed until you have validated the identity of the employee. If the employee is asking for information in the HR & Payroll or IT, call function get_help. Do not try to answer the question. Otherwise, use your knowledge to answer the question. """ IT_PERSONA = """ You are Paul, a helpful IT specialist that help employees about everything in IT. If the employee is asking for information that is not related to IT, call function get_help. """ HR_PERSONA = """ You are Lucy, an HR support specialist responsible for answering questions about HR & Payroll from employees and handling personal information updates. When you are asked with a question, always use the search tool to find relavent knowlege articles to create the answer. Answer ONLY with the facts from the search tool. If there isn't enough information, say you don't know. Do not generate answers that don't use the sources below. If asking a clarifying question to the user would help, ask the question. Each source has a name followed by colon and the actual information, always include the source name for each fact you use in the response. Use square brakets to reference the source, e.g. [info1.txt]. Don't combine sources, list each source separately, e.g. [info1.txt][info2.pdf]. When employee request updating their address, interact with them to get their new country, new state, new city and zipcode. If they don't provide new country, check if it's still United States. Make sure you have all information then use update address tool provided to update in the system. For all other information update requests, log a ticket to the HR team to update the information. If the employee is asking for information that is not related to HR or Payroll, call function get_help. """ HR_AVAILABLE_FUNCTIONS = { "search_knowledgebase": search_knowledgebase, "update_address": update_address, "create_ticket": create_ticket, "get_help": get_help } IT_AVAILABLE_FUNCTIONS = { "get_help": get_help, } GENERAL_AVAILABLE_FUNCTIONS = { "get_help": get_help, "validate_identity": validate_identity, } GENERAL_FUNCTIONS_SPEC= [ { "name": "get_help", "description": "Get help when you the question is out of your expertise", "parameters": { "type": "object", "properties": { "user_request": { "type": "string", "description": "summary user's request" }, }, "required": ["user_request"], }, }, { "name": "validate_identity", "description": "validates the identity of the employee", "parameters": { "type": "object", "properties": { "employee_id": { "type": "string", "description": "The employee id to validate" }, "employee_name": { "type": "string", "description": "The employee id to validate" } }, "required": ["employee_id", "employee_name"], }, }, ] IT_FUNCTIONS_SPEC= [ { "name": "get_help", "description": "Get help when you the question is out of your expertise", "parameters": { "type": "object", "properties": { "user_request": { "type": "string", "description": "summary user's request" }, }, "required": ["user_request"], }, }, ] HR_FUNCTIONS_SPEC= [ { "name": "search_knowledgebase", "description": "Searches the knowledge base for an answer to the HR/Payroll question", "parameters": { "type": "object", "properties": { "search_query": { "type": "string", "description": "The search query to use to search the knowledge base" } }, "required": ["search_query"], }, }, { "name": "update_address", "description": "Update the address of the employee", "parameters": { "type": "object", "properties": { "employee_id": { "type": "string", "description": "The employee id to validate" }, "city": { "type": "string", "description": "The new city to update" }, "state": { "type": "string", "description": "The new state to update" }, "zipcode": { "type": "integer", "description": "The new zipcode to update" }, "country": { "type": "string", "description": "The new country to update" } }, "required": ["employee_id","city", "state", "zipcode", "country"], }, }, { "name": "create_ticket", "description": "Create a support ticket for the employee to update personal information other than address", "parameters": { "type": "object", "properties": { "employee_id": { "type": "string", "description": "The employee id to validate" }, "updates": { "type": "string", "description": "The new/changed information to update" } }, "required": ["employee_id","updates"], }, }, { "name": "get_help", "description": "Get help when you the question is out of your expertise", "parameters": { "type": "object", "properties": { "user_request": { "type": "string", "description": "summary user's request" }, }, "required": ["user_request"], }, }, ] class Agent_Runner(): def __init__(self,starting_agent_name, agents, session_state) -> None: self.agents = agents self.session_state = session_state self.active_agent = None for agent in agents: # print("agent name",agent.name, "starting agent name", starting_agent_name) if starting_agent_name == agent.name: self.active_agent = agent break agent_descriptions ="Jenny: a general customer support agent, handling everyting except HR, Payroll and IT\n\n Lucy: a specialist support agent in HR and Payroll and personal information management\n\n Paul: a specialist support agent in IT\n\n" self.evaluator = Agent(engine=evaluator_engine, persona="As a customer support manager, you need to assign call transfer requests to the right agent with the right skills. You have following agents with the description of their persona: \n\n"+agent_descriptions) def revaluate_agent_assignment(self,function_description): #TODO: revaluate agent assignment based on the state names = [agent.name for agent in self.agents] prompt =f"The most suitable agent's name among [{names}] to best match with this request [{function_description}] is " count =0 while True: count+=1 if count > 3: next_agent = random.choice(names) print("cannot decide on the agent, randomly assigned to ", next_agent) break next_agent = self.evaluator.generate_response(prompt).strip() if next_agent==self.active_agent.name: #should be different from the current agent continue if next_agent in names: break print("next agent ", next_agent) for agent in self.agents: if next_agent == agent.name: self.active_agent = agent print("agent changed to ", agent.name) break def run(self,user_input, conversation=None, stream = False, api_version = "2023-07-01-preview"): stream_out, request_agent_change, context_to_persist, conversation, assistant_response= self.active_agent.run(user_input, conversation=conversation, stream = stream, api_version = api_version) previous_agent_last_response=None if context_to_persist is not None: self.session_state['user_context'] = context_to_persist if request_agent_change: previous_agent_last_response = assistant_response self.revaluate_agent_assignment(request_agent_change) conversation= self.active_agent.init_history #this code is to transfer the context (in this case user's credentials) from the previous agent to the new agent if self.session_state['user_context'] is not None: old_system_message = conversation[0] new_system_message = old_system_message['content'] + "\n\n" + self.session_state['user_context'] conversation[0] = {"role":"system", "content":new_system_message} conversation.append({"role":"user", "content":user_input}) stream_out, _,_,conversation, assistant_response= self.active_agent.run(conversation=conversation, stream = False, api_version = api_version) return stream_out, previous_agent_last_response, conversation, assistant_response def stream_write(st, agent_response): message_placeholder = st.empty() full_response = "" for response in agent_response: if len(response.choices)>0: full_response += response.choices[0].delta.get("content", "") message_placeholder.markdown(full_response + "▌") message_placeholder.markdown(full_response) return full_response class Smart_Coordinating_Agent(Smart_Agent): """ Agent that can use other agents and tools to answer questions. Args: persona (str): The persona of the agent. tools (list): A list of {"tool_name":tool} that the agent can use to answer questions. Tool must have a run method that takes a question and returns an answer. stop (list): A list of strings that the agent will use to stop the conversation. init_message (str): The initial message of the agent. Defaults to None. engine (str): The name of the GPT engine to use. Defaults to "gpt-35-turbo". Methods: llm(new_input, stop, history=None, stream=False): Generates a response to the input using the LLM model. _run(new_input, stop, history=None, stream=False): Runs the agent and generates a response to the input. run(new_input, history=None, stream=False): Runs the agent and generates a response to the input. Attributes: persona (str): The persona of the agent. tools (list): A list of {"tool_name":tool} that the agent can use to answer questions. Tool must have a run method that takes a question and returns an answer. stop (list): A list of strings that the agent will use to stop the conversation. init_message (str): The initial message of the agent. engine (str): The name of the GPT engine to use. """ def run(self, user_input=None, conversation=None, stream = False, api_version = "2023-07-01-preview"): openai.api_version = api_version request_agent_change = False context_to_persist = None assistant_response="" if conversation is None: #if no history return init message conversation = self.init_history.copy() if user_input is not None: conversation.append({"role": "user", "content": user_input}) i=0 while True: # loop to retry in case there's an intermittent error from GPT try: i+=1 response = openai.ChatCompletion.create( deployment_id=self.engine, # The deployment name you chose when you deployed the GPT-35-turbo or GPT-4 model. messages=conversation, functions=self.functions_spec, function_call="auto", request_timeout=20, ) response_message = response["choices"][0]["message"] # Step 2: check if GPT wanted to call a function if response_message.get("function_call"): print("Recommended Function call:") print(response_message.get("function_call")) print() # Step 3: call the function # Note: the JSON response may not always be valid; be sure to handle errors function_name = response_message["function_call"]["name"] if function_name == GET_HELP_FUNCTION_NAME: request_agent_change = True # verify function exists if function_name not in self.functions_list: print("Function " + function_name + " does not exist") function_to_call = self.functions_list[function_name] # verify function has correct number of arguments function_args = json.loads(response_message["function_call"]["arguments"]) if check_args(function_to_call, function_args) is False: print("Invalid number of arguments for function: " + function_name) function_response = function_to_call(**function_args) print("Output of function call:") print(function_response) print() if request_agent_change: request_agent_change = function_response # if the function is a route call function, assign the request_agent_change to be the name of department to change to if function_name==VALIDATE_IDENTIFY_FUNCTION_NAME: context_to_persist = function_response # Step 4: send the info on the function call and function response to GPT # adding assistant response to messages conversation.append( { "role": response_message["role"], "name": response_message["function_call"]["name"], "content": response_message["function_call"]["arguments"], } ) # adding function response to messages conversation.append( { "role": "function", "name": function_name, "content": function_response, } ) # extend conversation with function response openai.api_version = api_version second_response = openai.ChatCompletion.create( messages=conversation, deployment_id=self.engine, stream=stream, ) # get a new response from GPT where it can see the function response if not stream: assistant_response = second_response["choices"][0]["message"]["content"] conversation.append({"role": "assistant", "content": assistant_response}) else: assistant_response = second_response return stream,request_agent_change,context_to_persist,conversation, assistant_response else: assistant_response = response_message["content"] conversation.append({"role": "assistant", "content": assistant_response}) break except Exception as e: if i>3: assistant_response="Haizz, my memory is having some trouble, can you repeat what you just said?" break print("Exception as below, will retry\n", str(e)) time.sleep(8) return False, request_agent_change,context_to_persist, conversation, assistant_response
[ "function_call", "arguments", "The most suitable agent's name among [PLACEHOLDER] to best match with this request [PLACEHOLDER] is " ]
2024-01-10
microsoft/OpenAIWorkshop
scenarios~incubations~automating_analytics~analyze.py
import openai import string import ast import sqlite3 from datetime import timedelta import os import pandas as pd import numpy as np import random from urllib import parse import re import json from sqlalchemy import create_engine import sqlalchemy as sql from plotly.graph_objects import Figure import time def get_table_schema(sql_query_tool, sql_engine='sqlite'): # Define the SQL query to retrieve table and column information if sql_engine== 'sqlserver': sql_query = """ SELECT C.TABLE_NAME, C.COLUMN_NAME, C.DATA_TYPE, T.TABLE_TYPE, T.TABLE_SCHEMA FROM INFORMATION_SCHEMA.COLUMNS C JOIN INFORMATION_SCHEMA.TABLES T ON C.TABLE_NAME = T.TABLE_NAME AND C.TABLE_SCHEMA = T.TABLE_SCHEMA WHERE T.TABLE_TYPE = 'BASE TABLE' """ elif sql_engine=='sqlite': sql_query = """ SELECT m.name AS TABLE_NAME, p.name AS COLUMN_NAME, p.type AS DATA_TYPE FROM sqlite_master AS m JOIN pragma_table_info(m.name) AS p WHERE m.type = 'table' """ else: raise Exception("unsupported SQL engine, please manually update code to retrieve database schema") # Execute the SQL query and store the results in a DataFrame df = sql_query_tool.execute_sql_query(sql_query, limit=None) output=[] # Initialize variables to store table and column information current_table = '' columns = [] # Loop through the query results and output the table and column information for index, row in df.iterrows(): if sql_engine== 'sqlserver': table_name = f"{row['TABLE_SCHEMA']}.{row['TABLE_NAME']}" else: table_name = f"{row['TABLE_NAME']}" column_name = row['COLUMN_NAME'] data_type = row['DATA_TYPE'] if " " in table_name: table_name= f"[{table_name}]" column_name = row['COLUMN_NAME'] if " " in column_name: column_name= f"[{column_name}]" # If the table name has changed, output the previous table's information if current_table != table_name and current_table != '': output.append(f"table: {current_table}, columns: {', '.join(columns)}") columns = [] # Add the current column information to the list of columns for the current table columns.append(f"{column_name} {data_type}") # Update the current table name current_table = table_name # Output the last table's information output.append(f"table: {current_table}, columns: {', '.join(columns)}") output = "\n ".join(output) return output class ChatGPT_Handler: #designed for chatcompletion API def __init__(self, gpt_deployment=None,max_response_tokens=None,token_limit=None,temperature=None,extract_patterns=None) -> None: self.max_response_tokens = max_response_tokens self.token_limit= token_limit self.gpt_deployment=gpt_deployment self.temperature=temperature # self.conversation_history = [] self.extract_patterns=extract_patterns def _call_llm(self,prompt, stop): response = openai.ChatCompletion.create( engine=self.gpt_deployment, messages = prompt, temperature=self.temperature, max_tokens=self.max_response_tokens, stop=stop ) llm_output = response['choices'][0]['message']['content'] return llm_output def extract_output(self, text_input): output={} if len(text_input)==0: return output for pattern in self.extract_patterns: if "sql" in pattern[1]: sql_query="" sql_result = re.findall(pattern[1], text_input, re.DOTALL) if len(sql_result)>0: sql_query=sql_result[0] output[pattern[0]]= sql_query else: return output text_before = text_input.split(sql_query)[0].strip("\n").strip("```sql").strip("\n") if text_before is not None and len(text_before)>0: output["text_before"]=text_before text_after =text_input.split(sql_query)[1].strip("\n").strip("```") if text_after is not None and len(text_after)>0: output["text_after"]=text_after return output if "python" in pattern[1]: result = re.findall(pattern[1], text_input, re.DOTALL) if len(result)>0: output[pattern[0]]= result[0] else: result = re.search(pattern[1], text_input,re.DOTALL) if result: output[result.group(1)]= result.group(2) return output class SQL_Query(ChatGPT_Handler): def __init__(self, system_message="",data_sources="",db_path=None,driver=None,dbserver=None, database=None, db_user=None ,db_password=None, **kwargs): super().__init__(**kwargs) if len(system_message)>0: self.system_message = f""" {data_sources} {system_message} """ self.database=database self.dbserver=dbserver self.db_user = db_user self.db_password = db_password self.db_path= db_path #This is the built-in demo using SQLite self.driver= driver def execute_sql_query(self, query, limit=10000): if self.db_path is not None: engine = create_engine(f'sqlite:///{self.db_path}') else: connecting_string = f"Driver={{ODBC Driver 17 for SQL Server}};Server=tcp:{self.dbserver},1433;Database={self.database};Uid={self.db_user};Pwd={self.db_password}" params = parse.quote_plus(connecting_string) engine = create_engine("mssql+pyodbc:///?odbc_connect=%s" % params) result = pd.read_sql_query(query, engine) result = result.infer_objects() for col in result.columns: if 'date' in col.lower(): result[col] = pd.to_datetime(result[col], errors="ignore") if limit is not None: result = result.head(limit) # limit to save memory # session.close() return result class AnalyzeGPT(ChatGPT_Handler): def __init__(self,sql_engine,content_extractor, sql_query_tool, system_message,few_shot_examples,st,**kwargs) -> None: super().__init__(**kwargs) table_schema = get_table_schema(sql_query_tool,sql_engine) system_message = f""" <<data_sources>> {table_schema} {system_message.format(sql_engine=sql_engine)} {few_shot_examples} """ self.conversation_history = [{"role": "system", "content": system_message}] self.st = st self.content_extractor = content_extractor self.sql_query_tool = sql_query_tool def get_next_steps(self, updated_user_content, stop): old_user_content="" if len(self.conversation_history)>1: old_user_content= self.conversation_history.pop() #removing old history old_user_content=old_user_content['content']+"\n" self.conversation_history.append({"role": "user", "content": old_user_content+updated_user_content}) # print("prompt input ", self.conversation_history) n=0 try: llm_output = self._call_llm(self.conversation_history, stop) # print("llm_output \n", llm_output) except Exception as e: time.sleep(8) #sleep for 8 seconds while n<5: try: llm_output = self._call_llm(self.conversation_history, stop) except Exception as e: n +=1 print("error calling open AI, I am retrying 5 attempts , attempt ", n) time.sleep(8) #sleep for 8 seconds print(e) llm_output = "OPENAI_ERROR" # print("llm_output: ", llm_output) output = self.content_extractor.extract_output(llm_output) if len(output)==0 and llm_output != "OPENAI_ERROR": #wrong output format llm_output = "WRONG_OUTPUT_FORMAT" return llm_output,output def run(self, question: str, show_code,show_prompt,st) -> any: import numpy as np import plotly.express as px import plotly.graph_objs as go import pandas as pd st.write(f"Question: {question}") # if "init" not in self.st.session_state.keys(): # self.st.session_state['init']= True def execute_sql(query): return self.sql_query_tool.execute_sql_query(query) observation=None def show(data): if type(data) is Figure: st.plotly_chart(data) else: st.write(data) # i=0 # for key in self.st.session_state.keys(): # if "show" in key: # i +=1 # self.st.session_state[f'show{i}']=data if type(data) is not Figure: self.st.session_state[f'observation: this was shown to user']=data def observe(name, data): try: data = data[:10] # limit the print out observation to 15 rows except: pass self.st.session_state[f'observation:{name}']=data max_steps = 15 count =1 finish = False new_input= f"Question: {question}" # if self.st.session_state['init']: # new_input= f"Question: {question}" # else: # new_input=self.st.session_state['history'] +f"\nQuestion: {question}" while not finish: llm_output,next_steps = self.get_next_steps(new_input, stop=["Observation:", f"Thought {count+1}"]) if llm_output=='OPENAI_ERROR': st.write("Error Calling Azure Open AI, probably due to max service limit, please try again") break elif llm_output=='WRONG_OUTPUT_FORMAT': #just have open AI try again till the right output comes count +=1 continue new_input += f"\n{llm_output}" for key, value in next_steps.items(): new_input += f"\n{value}" if "ACTION" in key.upper(): if show_code: st.write(key) st.code(value) observations =[] serialized_obs=[] try: # if "print(" in value: # raise Exception("You must not use print() statement, instead use st.write() to write to end user or observe(name, data) to view data yourself. Please regenerate the code") exec(value, locals()) for key in self.st.session_state.keys(): if "observation:" in key: observation=self.st.session_state[key] observations.append((key.split(":")[1],observation)) if type(observation) is pd: # serialized_obs.append((key.split(":")[1],observation.to_json(orient='records', date_format='iso'))) serialized_obs.append((key.split(":")[1],observation.to_string())) elif type(observation) is not Figure: serialized_obs.append({key.split(":")[1]:str(observation)}) del self.st.session_state[key] except Exception as e: observations.append(("Error:",str(e))) serialized_obs.append({"\nEncounter following error, can you try again?\n:":str(e)+"\nAction:"}) for observation in observations: st.write(observation[0]) st.write(observation[1]) obs = f"\nObservation on the first 10 rows of data: {serialized_obs}" new_input += obs else: st.write(key) st.write(value) if "Answer" in key: print("Answer is given, finish") finish= True if show_prompt: self.st.write("Prompt") self.st.write(self.conversation_history) count +=1 if count>= max_steps: print("Exceeding threshold, finish") break def query_run(self, question: str, show_code,show_prompt,st) -> any: st.write(f"Question: {question}") def execute_sql(query): return self.sql_query_tool.execute_sql_query(query) max_steps = 15 count =1 new_input= f"Question: {question}" while count<= max_steps: llm_output,next_steps = self.get_next_steps(new_input, stop=["Observation:", f"Thought {count+1}"]) if llm_output=='OPENAI_ERROR': st.write("Error Calling Azure Open AI, probably due to max service limit, please try again") break elif llm_output=='WRONG_OUTPUT_FORMAT': #just have open AI try again till the right output comes count +=1 continue output =None error= False new_input += f"\n{llm_output}" for key, value in next_steps.items(): new_input += f"\n{value}" if "SQL" in key.upper(): if show_code: st.write("SQL Code") st.code(value) try: output = execute_sql(value) except Exception as e: new_input +="Encounter following error, can you try again?\n"+str(e) error=str(e) else: if show_code: st.write(value) if show_prompt: self.st.write("Prompt") self.st.write(self.conversation_history) if output is not None: st.write(output) break if error: st.write(error) count +=1 if count>= max_steps: st.write("Cannot handle the question, please change the question and try again")
[ "PLACEHOLDERPLACEHOLDER" ]
2024-01-10
microsoft/OpenAIWorkshop
scenarios~openai_batch_pipeline~document_generation~upload_docs.py
import os import logging import random import openai import time from azure.storage.blob import BlobClient, BlobServiceClient import argparse import json from azure.core.exceptions import ResourceExistsError def main(): parser = argparse.ArgumentParser() parser.add_argument('--conn_string', type=str, help='Azure Storage connection string') parser.add_argument('--containername', type=str, help='Azure Storage connection string', default='workshop-data') args = parser.parse_args() try: blob_service_client = BlobServiceClient.from_connection_string(args.conn_string) container_client = blob_service_client.create_container(args.containername) except ResourceExistsError: print("Container already exists.") print("processing...") for folder in ["generated_documents", "cleansed_documents"]: for filename in os.listdir(folder): print("on file:" + filename) with open(os.path.join(folder, filename), 'r') as src: blob_name=f'{folder}/{filename}' print("on blob:" + blob_name) blob_client = BlobClient.from_connection_string(args.conn_string,container_name=args.containername,blob_name=blob_name,) file_content = src.read() blob_client.upload_blob(file_content) if __name__ == '__main__': main()
[]
2024-01-10
microsoft/OpenAIWorkshop
scenarios~incubations~copilot~data_management~functions.py
# Agent class ### responsbility definition: expertise, scope, conversation script, style import time import openai import os from pathlib import Path import json import random from dotenv import load_dotenv from openai.embeddings_utils import get_embedding, cosine_similarity import inspect import ast import pandas as pd env_path = Path('..') / 'secrets.env' load_dotenv(dotenv_path=env_path) openai.api_key = os.environ.get("AZURE_OPENAI_API_KEY") openai.api_base = os.environ.get("AZURE_OPENAI_ENDPOINT") openai.api_type = "azure" import sys sys.path.append("..") from utils import Agent, Smart_Agent, check_args def update_sales(filter, update): file_name = "../data/forecast_sales.json" filter = ast.literal_eval(filter) update = ast.literal_eval(update).items() update = list(update)[0] with open(file_name) as f: data = pd.read_json(f) filter_data = data.copy() for filter_item in filter.items(): filter_data = filter_data[filter_data[filter_item[0]] == filter_item[1]] filter_data[update[0]]=update[1] print(filter_data) data.update(filter_data,overwrite=True) with open(file_name, 'w') as f: data.to_json(f) return f"Update sales forecast in with filter {filter} and update {update}" def update_cost(filter, update): file_name = "../data/forecast_cost.json" filter = ast.literal_eval(filter) update = ast.literal_eval(update).items() update = list(update)[0] with open(file_name) as f: data = pd.read_json(f) filter_data = data.copy() for filter_item in filter.items(): filter_data = filter_data[filter_data[filter_item[0]] == filter_item[1]] filter_data[update[0]]=update[1] print(filter_data) data.update(filter_data,overwrite=True) with open(file_name, 'w') as f: data.to_json(f) return f"Update cost forecast in with filter {filter} and update {update}" def query_cost(filter): file_name = "../data/forecast_cost.json" filter = ast.literal_eval(filter) with open(file_name) as f: data = pd.read_json(f) for filter_item in filter.items(): print(filter_item[0],filter_item[1]) data = data[data[filter_item[0]] == filter_item[1]] return f"Query result: {data.to_dict(orient='records')}" def query_sales(filter): file_name = "../data/forecast_sales.json" filter = ast.literal_eval(filter) with open(file_name) as f: data = pd.read_json(f) for filter_item in filter.items(): print(filter_item[0],filter_item[1]) data = data[data[filter_item[0]] == filter_item[1]] return f"Query result: {data.to_dict(orient='records')}" def route_call(user_request): return f"The user request is {user_request}" def validate_identity(employee_id, employee_name): if employee_id in ["1234","5678"]: return f"Employee {employee_name} with id {employee_id} is validated in this conversation" else: return "This employee id is not valid" ROUTE_CALL_FUNCTION_NAME = "route_call" #default function name for routing call used by all agents VALIDATE_IDENTIFY_FUNCTION_NAME = "validate_identity" #default function name for validating identity used by all agents ROUTING_AGENT_PERSONA = """ You are Jenny, a helpful digital assistant helping to determine the right specialist to help users with needs. Engage in the conversation with the user to understand the request and route the call to the right specialist. Limit the conversation to understand what their request is about. There are 2 specialists available to help with the request: - Cost forecast data analyst responsible for helping users to query and update cost forecast information - Sales forecast data analyst responsible for helping users to query and update sales forecast information If there's ambiguity in the request, ask for clarification till you know for sure which agent to route the call to. Act as a single point of contact. Users don't need to know that there are 2 agents available to help with the request. If none of the agent's profile match the request, apologize that the scope of service only cover the above 2 areas and end the conversation. """ SALES_FORECAST_PERSONA = """ You are Lucy, an information system specialist responsible for helping users maintaining sales forecast data. You are given following data entity: { "name": "sales_forecast", "description": "contain data about sales forecast", "attributes": { "name": "date", "description": "date of the sales data in dd/mm/yyyy, ranging from 01/01/2010 to 31/12/2024" }, { "name": "business_unit", "description": "name of the business_unit, as one of the following values ['commercial', 'residential','government'] }, { "name": "amount", "description": "forecast sales amount", }, { "name": "product", "description": "product that generates sales, as one of the following values ['heater', 'air conditioner' ,'fan']" }, }, If the user request is to update the sales forecast, you need to: - Interact with the user to confirm the changes that need to be made. Your goal is to identify the attribute values that help locate the data entity and the new attribute values that need to be updated. - You need at least date, business_unit and product to locate the data entity. - For attributes that have restriction in the value, for example business_unit, you need to validate the new value is in the list of allowed values. - If there's ambiguity in user's request, you need to ask for clarification. - Once you can confirm all the information, summarize and confirm with user. - If they agree, use the update tool to update the data entity. If the user request is to query the sales forecast, you need to: - Interact with the user to confirm the filter condition for the query. Your goal is to identify the attribute values that help locate the data entity. - You need at least date, business_unit and product to locate the data entity. - For attributes that have restriction in the value, for example business_unit, you need to validate the new value is in the list of allowed values. - If there's ambiguity in user's request, you need to ask for clarification. - Use the information query tool to query the data. - Only use data that is from the search tool to answer question. Do not generate answer that is not from the tool. For any other request, call route_call function. """ COST_FORECAST_PERSONA = """ You are Betty, an information system specialist responsible for helping users maintaining cost forecast data. You are given following data entity: { "name": "cost_forecast", "description": "contain data about cost forecast data", "attributes": { "name": "date", "description": "date of the cost data in dd/mm/yyyy, ranging from 01/01/2010 to 31/12/2024" }, { "name": "business_unit", "description": "name of the business_unit, as one of the following values ['commercial', 'residential','government'] }, { "name": "amount", "description": "actual amount", }, { "name": "product", "description": "product that generates sales, as one of the following values ['heater', 'air conditioner' ,'fan']" }, }, If the user request is to update the cost forecast, you need to: - Interact with the user to confirm the changes that need to be made. Your goal is to identify the attribute values that help locate the data entity and the new attribute values that need to be updated. - You need at least date, business_unit and product to locate the data entity. - For attributes that have restriction in the value, for example business_unit, you need to validate the new value is in the list of allowed values. - If there's ambiguity in user's request, you need to ask for clarification. - Once you can confirm all the information, summarize and confirm with user. - If they agree, use the update tool to update the data entity. If the user request is to query the cost forecast, you need to: - Interact with the user to confirm the filter condition for the query. Your goal is to identify the attribute values that help locate the data entity. - You need at least date, business_unit and product to locate the data entity. - For attributes that have restriction in the value, for example business_unit, you need to validate the new value is in the list of allowed values. - If there's ambiguity in user's request, you need to ask for clarification. - Use the information query tool to query the data. - Only use data that is from the search tool to answer question. Do not generate answer that is not from the tool. For any other request, call route_call function. """ COST_AVAILABLE_FUNCTIONS = { "update_cost": update_cost, "query_cost": query_cost, "route_call": route_call } SALES_AVAILABLE_FUNCTIONS = { "update_sales": update_sales, "query_sales": query_sales, "route_call": route_call } ROUTING_AGENT_FUNCTIONS = { "route_call": route_call, } ROUTING_AGENT_FUNCTIONS_SPEC= [ { "name": "route_call", "description": "Call this function to transfer the call to the right agent", "parameters": { "type": "object", "properties": { "user_request": { "type": "string", "description": "Description of what user wants to do" }, }, "required": ["user_request"], }, } ] SALES_FORECAST_FUNCTIONS_SPEC= [ { "name": "update_sales", "description": "Update sales forecast data only, not other data entities", "parameters": { "type": "object", "properties": { "filter": { "type": "string", "description": "attribute name and value pairs to filter the data to update, for example {'date':'01/01/2021','business_unit':'commercial'}" }, "update": { "type": "string", "description": "attribute name and value pairs to update the data entity, for example {'amount':'1000'}" } }, "required": ["filter","update"], }, }, { "name": "query_sales", "description": "Query tool for sales forecast only, not other data entities", "parameters": { "type": "object", "properties": { "filter": { "type": "string", "description": "attribute name and value pairs to filter the data, for example {'date':'2021-01=01','business_unit':'commercial'}" } }, "required": ["filter"], }, }, { "name": "route_call", "description": "Handle request that is not about querying or updating sales forecast data", "parameters": { "type": "object", "properties": { "user_request": { "type": "string", "description": "Description of what user wants to do" }, }, "required": ["user_request"], }, }, ] COST_FORECAST_FUNCTIONS_SPEC= [ { "name": "update_cost", "description": "Update cost forecast data only, not other data entities", "parameters": { "type": "object", "properties": { "filter": { "type": "string", "description": "attribute name and value pairs to filter the data to update, for example {'date':'01/01/2021','business_unit':'commercial'}" }, "update": { "type": "string", "description": "attribute name and value pairs to update the data entity, for example {'amount':'1000'}" } }, "required": ["filter","update"], }, }, { "name": "query_cost", "description": "Query tool for cost forecast only, not for sales forecast", "parameters": { "type": "object", "properties": { "filter": { "type": "string", "description": "attribute name and value pairs to filter the data, for example {'date':'2021-01=01','business_unit':'commercial'}" } }, "required": ["filter"], }, }, { "name": "route_call", "description": "Handle request that is not about querying or updating cost forecast data", "parameters": { "type": "object", "properties": { "user_request": { "type": "string", "description": "Description of what user wants to do" }, }, "required": ["user_request"], }, }, ] class Agent_Runner(): def __init__(self,starting_agent_name, agents, session_state) -> None: self.agents = agents self.session_state = session_state self.active_agent = None for agent in agents: if starting_agent_name == agent.name: self.active_agent = agent break evaluator_persona ="Jenny: a general customer support agent, handling everyting except sales forecast or cost forecast\n\n Lucy: a specialist agent responsible for sales forecast\n\n Betty: a specialist agent responsible for cost forecast\n\n" self.evaluator = Agent(engine="turbo-0613", persona="As a customer support manager, you need to assign call transfer requests to the right agent with the right skills. You have following agents with the description of their persona: \n\n"+evaluator_persona) def revaluate_agent_assignment(self,function_description): #TODO: revaluate agent assignment based on the state names = [agent.name for agent in self.agents] prompt =f"The most suitable agent's name among [{names}] to best match with this request [{function_description}] is " count =0 while True: count+=1 if count > 3: next_agent = random.choice(names) print("cannot decide on the agent, randomly assigned to ", next_agent) break next_agent = self.evaluator.generate_response(prompt).strip() if next_agent==self.active_agent.name: #should be different from the current agent continue if next_agent in names: break print("next agent ", next_agent) for agent in self.agents: if next_agent == agent.name: self.active_agent = agent print("agent changed to ", agent.name) break def run(self,user_input, conversation=None, stream = False, api_version = "2023-07-01-preview"): stream_out, request_agent_change, context_to_persist, conversation, assistant_response= self.active_agent.run(user_input, conversation=conversation, stream = stream, api_version = api_version) if context_to_persist is not None: self.session_state['user_context'] = context_to_persist if request_agent_change: # previous_agent_last_response = assistant_response self.revaluate_agent_assignment(request_agent_change) new_conversation= self.active_agent.init_history #this code is to transfer any implicit context (context which is not in conversation like user's credentials) from the previous agent to the new agent to its system message if self.session_state['user_context'] is not None and len(self.session_state["user_context"])>0: old_system_message = new_conversation[0] new_system_message = old_system_message['content'] + "\n\n" + self.session_state['user_context'] conversation[0] = {"role":"system", "content":new_system_message} #adding relevant content from the old agent to the new agent for message in conversation: if message.get("role") != "system" and message.get("name") is None: #only add user & assistant messages new_conversation.append({"role":message.get("role"), "content":message.get("content")}) stream_out, _,_,conversation, assistant_response= self.active_agent.run(conversation=new_conversation, stream = False, api_version = api_version) return stream_out, request_agent_change, conversation, assistant_response def stream_write(st, agent_response): message_placeholder = st.empty() full_response = "" for response in agent_response: if len(response.choices)>0: full_response += response.choices[0].delta.get("content", "") message_placeholder.markdown(full_response + "▌") message_placeholder.markdown(full_response) return full_response class Smart_Coordinating_Agent(Smart_Agent): """ Agent that can use other agents and tools to answer questions. Args: persona (str): The persona of the agent. tools (list): A list of {"tool_name":tool} that the agent can use to answer questions. Tool must have a run method that takes a question and returns an answer. stop (list): A list of strings that the agent will use to stop the conversation. init_message (str): The initial message of the agent. Defaults to None. engine (str): The name of the GPT engine to use. Defaults to "gpt-35-turbo". Methods: llm(new_input, stop, history=None, stream=False): Generates a response to the input using the LLM model. _run(new_input, stop, history=None, stream=False): Runs the agent and generates a response to the input. run(new_input, history=None, stream=False): Runs the agent and generates a response to the input. Attributes: persona (str): The persona of the agent. tools (list): A list of {"tool_name":tool} that the agent can use to answer questions. Tool must have a run method that takes a question and returns an answer. stop (list): A list of strings that the agent will use to stop the conversation. init_message (str): The initial message of the agent. engine (str): The name of the GPT engine to use. """ def run(self, user_input=None, conversation=None, stream = False, api_version = "2023-07-01-preview"): openai.api_version = api_version request_agent_change = False context_to_persist = None assistant_response="" if conversation is None: #if no history return init message conversation = self.init_history.copy() if user_input is not None: conversation.append({"role": "user", "content": user_input}) i=0 while True: # loop to retry in case there's an intermittent error from GPT try: i+=1 response = openai.ChatCompletion.create( deployment_id=self.engine, # The deployment name you chose when you deployed the GPT-35-turbo or GPT-4 model. messages=conversation, functions=self.functions_spec, function_call="auto", request_timeout=20, ) response_message = response["choices"][0]["message"] # Step 2: check if GPT wanted to call a function if response_message.get("function_call"): print("Recommended Function call:") print(response_message.get("function_call")) print() # Step 3: call the function # Note: the JSON response may not always be valid; be sure to handle errors function_name = response_message["function_call"]["name"] if function_name == ROUTE_CALL_FUNCTION_NAME: request_agent_change = True # verify function exists if function_name not in self.functions_list: print("Function " + function_name + " does not exist") function_to_call = self.functions_list[function_name] # verify function has correct number of arguments function_args = json.loads(response_message["function_call"]["arguments"]) if check_args(function_to_call, function_args) is False: print("Invalid number of arguments for function: " + function_name) function_response = function_to_call(**function_args) print("Output of function call:") print(function_response) print() if request_agent_change: request_agent_change = function_response # if the function is a route call function, assign the request_agent_change to be the name of department to change to # adding assistant response to messages conversation.append( { "role": response_message["role"], "name": response_message["function_call"]["name"], "content": response_message["function_call"]["arguments"], } ) # adding function response to messages conversation.append( { "role": "function", "name": function_name, "content": function_response, } ) # extend conversation with function response openai.api_version = api_version second_response = openai.ChatCompletion.create( messages=conversation, deployment_id=self.engine, stream=stream, ) # get a new response from GPT where it can see the function response if not stream: assistant_response = second_response["choices"][0]["message"]["content"] conversation.append({"role": "assistant", "content": assistant_response}) else: assistant_response = second_response return stream,request_agent_change,context_to_persist,conversation, assistant_response else: assistant_response = response_message["content"] conversation.append({"role": "assistant", "content": assistant_response}) break except Exception as e: if i>3: assistant_response="Haizz, my memory is having some trouble, can you repeat what you just said?" break print("Exception as below, will retry\n", str(e)) time.sleep(8) return False, request_agent_change,context_to_persist, conversation, assistant_response
[ "content", "arguments", "function_call", "The most suitable agent's name among [PLACEHOLDER] to best match with this request [PLACEHOLDER] is " ]
2024-01-10
ori-30/GenAI-Dashboards
functions.py
import streamlit as st from streamlit_chat import message import streamlit.components.v1 as components # Import Streamlit import requests import json import openai from typing import List def get_text(): input_text = st.text_input("You: ","", key="input") return input_text def get_area(): input_text = st.text_input("Areas de negocio: ","", key="area") return input_text def get_des(): input_text = st.text_input("Descripción de la empresa: ","", key="des") return input_text def create_gpt_completion(ai_model: str, messages: List[dict]) -> dict: openai.api_key = st.secrets.api_credentials.api_key completion = openai.ChatCompletion.create( model=ai_model, messages=messages, ) return completion def get_JSON(): try: dominios = st.session_state.domains except: st.error("error json") return json.loads(dominios) def tables(alltables): r="" for table in alltables: r+= """<p class="card-text">%s</p>""" % str(table) return r def create_card(title, alltables): card=""" <div class="m-1 p-1"style="padding: 2px 16px;"> <div class="card m-2" style="width: 18rem;"> <div class="card-body bg-light"> <h3 class="card-title">%s</h3> """ % str(title) card+=tables(alltables) card+=""" </div> </div> </div> """ return card def create_domains(dominios, container): c = container.columns(2) i=0 for dominio in dominios: d= create_card(dominio["nombre"], dominio["tablas"]) c[i].markdown(d, unsafe_allow_html= True) i=(i+1)%2 def create_sql_statment(container): sql="Esto es una sentencia sql" box=""" <div class="card w-100 m-2"> <div class="card-body w-100 bg-info"> <p>%s</p> </div> </div> """ % str(sql) container.markdown(box, unsafe_allow_html= True) def bootstrap(): _bootstrap="""<link href="https://cdn.jsdelivr.net/npm/[email protected]/dist/css/bootstrap.min.css" rel="stylesheet" integrity="sha384-EVSTQN3/azprG1Anm3QDgpJLIm9Nao0Yz1ztcQTwFspd3yD65VohhpuuCOmLASjC" crossorigin="anonymous">""" st.markdown(_bootstrap, unsafe_allow_html= True)
[]
2024-01-10
ori-30/GenAI-Dashboards
connection.py
import streamlit as st from streamlit_chat import message import streamlit.components.v1 as components # Import Streamlit import requests import json from openai import OpenAI, AzureOpenAI from typing import List from functions import * import MetadataExtractor as me from snowflake.snowpark import Session st.set_page_config( page_title="GenAI domains", page_icon=":heart:", ) if 'display_result' not in st.session_state: st.session_state.display_result = True if 'reset' not in st.session_state: st.session_state.reset = False if 'area' not in st.session_state: st.session_state['area']="" if 'description' not in st.session_state: st.session_state['description']="" if 'prompt_metadata' not in st.session_state: st.session_state['prompt_metadata']="" def callback(): if des: st.session_state['area']=area st.session_state['description']=des st.session_state.display_result=False st.session_state.reset=False s.session_state.prompt_metadata=prompt_metadata else: st.error("Por favor, rellene ambos campos") if not st.session_state.display_result: metadata = st.session_state["prompt_metadata"] promt_json= open('promptjson.txt', 'r').read() #abrir openAI key con streamlit secrets client = OpenAI(api_key=st.secrets["OPENAI_API_KEY"]) st.write(metadata) #crear modelo por defecto if "openai_model" not in st.session_state: st.session_state["openai_model"] = "gpt-3.5-turbo" #inizializar chat if "messages" not in st.session_state: st.session_state.messages = [{"role": "system", "content": metadata}] st.session_state.messages.append({"role": "system", "content": promt_json}) cl=client.chat.completions.create(model=st.session_state["openai_model"], messages=[{"role": m["role"], "content": m["content"]} for m in st.session_state.messages], stream=True) full_response="" for response in cl: full_response +=(response.choices[0].delta.content or "") st.session_state.messages.append({"role": "system", "content": full_response}) if "domains" not in st.session_state: st.session_state["domains"]=full_response #creamos la sidebar with st.sidebar: st.header("Chatbot", divider='rainbow') # Aceptamos input del usuario prompt = get_text() #mostramos el chat de mensajes desde el historial for message in st.session_state.messages: if message["role"]!="system": with st.chat_message(message["role"]): st.markdown(message["content"]) if prompt: #añadimos mensaje del usuario st.session_state.messages.append({"role": "user", "content": prompt}) #mostramos mensaje del usuario with st.chat_message("user"): st.markdown(prompt) # Display assistant response in chat message container with st.chat_message("assistant"): message_placeholder = st.empty() full_response = "" cl=client.chat.completions.create(model=st.session_state["openai_model"], messages=[{"role": m["role"], "content": m["content"]} for m in st.session_state.messages], stream=True) for response in cl: full_response +=(response.choices[0].delta.content or "") message_placeholder.markdown(full_response + "▌") message_placeholder.markdown(full_response) st.session_state.messages.append({"role": "assistant", "content": full_response}) container= st.container() with container: bootstrap() create_sql_statment(container) dominios=get_JSON() create_domains(dominios["dominios"], container) if st.session_state.display_result: st.header("Domain GenAI") selector=st.radio("Selecciona la API: ",["OpenAI", "AzureOpenAI"]) if selector == "AzureOpenAI": ao_key=st.text_input("Azure api tokne: ",type="password") ao_version=st.text_input("Azure api version:") ao_endpoint=st.text_input("Azure endopoint:") model=st.text_input("Azure deployment name:") client = AzureOpenAI( ) model="modelo3" else: openai_input=st.text_input("OpenAi api token: ",type="password") model=st.text_input("OpenAi model: ") client = OpenAI( api_key=openai_input ) st.header("Configuracion Snowflake") acc_input=st.text_input("Identificador cuenta de Snowflake","") user_input=st.text_input("Nombre de usuario","") pass_input=st.text_input("Contraseña","",type='password') input3 = st.text_input("Base de datos:", "") # Configurar la barra lateral st.header("Información de la empresa") area=get_area() des=get_des() prompt_metadata =me.get_metadata(acc_input,user_input,pass_input,input3) prompt_metadata += f"\n\nEsta es la descripción de la empresa: {st.session_state.descripcion}\nEstas son las áreas de negocio: {st.session_state.area}" send=st.button("Generar", disabled=(area is ""), on_click=callback)
[ "content" ]
2024-01-10
CreeperLin/IsaacGymMultiAgent
igma~wrappers~tianshou.py
import itertools import numpy as np from typing import Any, Callable, List, Optional, Tuple, Union from isaacgymenvs.tasks.base.vec_task import VecTask from tianshou.env.venvs import BaseVectorEnv from tianshou.env.worker import EnvWorker # from tianshou.data.buffer.manager import ReplayBufferManager from tianshou.data import VectorReplayBuffer from tianshou.data import Batch from tianshou.data.batch import _alloc_by_keys_diff, _create_value import torch ID_TYPE = Optional[Union[int, List[int], np.ndarray]] class NestedEnvWorker(EnvWorker): def __len__(self): return len(self.env) def get_env_attr(self, key: str) -> Any: return [getattr(self.env, key) for _ in range(len(self))] def set_env_attr(self, key: str, value: Any) -> None: setattr(self.env, key, value) class IGMAEnvWorker(NestedEnvWorker): """Dummy worker used in sequential vector environments.""" def __init__(self, env_fn: Callable[[], VecTask]) -> None: ret = env_fn() if isinstance(ret, (list, tuple)): env, ind = ret else: env, ind = ret, None self.env = env self.ind = ind self.num_envs = self.env.num_envs if ind is None else len(list(ind)) super().__init__(env_fn) def __len__(self): return self.num_envs def reset(self) -> Any: return self.env.reset() @staticmethod def wait( # type: ignore workers: List, wait_num: int, timeout: Optional[float] = None) -> List: # Sequential EnvWorker objects are always ready return workers def send(self, action: Optional[Any], sid: ID_TYPE = None) -> None: if action is None: if sid is None: obs_dict = self.env.reset() # type: ignore self.result = obs_dict['obs'] else: try: obs_dict = self.env.reset(indices=sid) # type: ignore self.result = obs_dict['obs'] except Exception: self.result = self.last_obs[sid] else: if isinstance(action, np.ndarray): action = torch.from_numpy(action).to(device=self.env.device) obs_dict, rew_buf, reset_buf, extras = self.env.step(action) # type: ignore rew_buf = rew_buf.cpu().numpy() reset_buf = reset_buf.cpu().numpy() self.last_obs = obs_dict['obs'] self.result = self.last_obs, rew_buf, reset_buf, extras def seed(self, seed: Optional[int] = None) -> List[int]: for s in self.action_space: s.seed(seed) return getattr(self.env, 'seed', lambda x: x)(seed) def render(self, **kwargs: Any) -> Any: return self.env.render(**kwargs) def close_env(self) -> None: self.env.close() class NestedVectorEnv(BaseVectorEnv): def __init__(self, *args, **kwargs) -> None: super().__init__(*args, **kwargs) len_envs = [getattr(w, '__len__', lambda: 1)() for w in self.workers] num_envs = sum(len_envs) self.num_workers = len(self.workers) self.len_envs = len_envs self.beg_envs = [sum(len_envs[:i]) for i in range(self.num_workers)] self.end_envs = [self.beg_envs[i] + self.len_envs[i] for i in range(self.num_workers)] self.wait_num = num_envs if self.wait_num == self.env_num else self.wait_num self.env_num = num_envs # self.ready_id = list(range(self.env_num)) def _wrap_id(self, id: ID_TYPE = None) -> Union[List[int], np.ndarray]: if id is None: return list(range(self.num_workers)) pid = [id] if np.isscalar(id) else id # type: ignore if len(pid) == pid[-1] - pid[0] + 1: return [i for i in range(self.num_workers) if not (self.beg_envs[i] > pid[-1] or self.end_envs[i] < pid[0])] else: return [i for i in range(self.num_workers) if any(self.beg_envs[i] <= j < self.end_envs[i] for j in pid)] def _sub_id(self, id: ID_TYPE = None) -> Union[List[int], np.ndarray]: if id is None: return [None for _ in range(self.num_workers)] pid = [id] if np.isscalar(id) else id # type: ignore if len(pid) == pid[-1] - pid[0] + 1: wid = [i for i in range(self.num_workers) if not (self.beg_envs[i] > pid[-1] or self.end_envs[i] < pid[0])] return [ None if self.beg_envs[w] >= pid[0] and self.end_envs[w] <= pid[-1] else range( max(self.beg_envs[w], pid[0]), min(self.end_envs[w], pid[-1] + 1)) for w in wid ] return [[j - self.beg_envs[i] for j in pid if self.beg_envs[i] <= j < self.end_envs[i]] for i in range(self.num_workers)] def get_env_attr(self, key: str, id: ID_TYPE = None) -> List[Any]: self._assert_is_not_closed() id = self._wrap_id(id) if self.is_async: self._assert_id(id) return list(itertools.chain(*[self.workers[j].get_env_attr(key) for j in id])) def set_env_attr(self, key: str, value: Any, id: ID_TYPE = None) -> None: self._assert_is_not_closed() id = self._wrap_id(id) if self.is_async: self._assert_id(id) for j in id: self.workers[j].set_env_attr(key, value) def step(self, action: Any, id: ID_TYPE = None) -> Tuple: self._assert_is_not_closed() id = self._wrap_id(id) if not self.is_async: # assert len(action) == len(id) assert len(action) == sum(self.len_envs[i] for i in id) for i, j in enumerate(id): self.workers[j].send(action[self.beg_envs[i]:self.beg_envs[i] + self.len_envs[i]]) result = [] for j in id: obs, rew, done, info = self.workers[j].recv() # info["env_id"] = j info["env_id"] = list(range(self.beg_envs[j], self.end_envs[j])) result.append((obs, rew, done, info)) else: if action is not None: self._assert_id(id) assert len(action) == len(id) for act, env_id in zip(action, id): self.workers[env_id].send(act) self.waiting_conn.append(self.workers[env_id]) self.waiting_id.append(env_id) self.ready_id = [x for x in self.ready_id if x not in id] ready_conns: List[EnvWorker] = [] while not ready_conns: ready_conns = self.worker_class.wait(self.waiting_conn, self.wait_num, self.timeout) result = [] for conn in ready_conns: waiting_index = self.waiting_conn.index(conn) self.waiting_conn.pop(waiting_index) env_id = self.waiting_id.pop(waiting_index) obs, rew, done, info = conn.recv() info["env_id"] = env_id result.append((obs, rew, done, info)) self.ready_id.append(env_id) obs_list, rew_list, done_list, info_list = zip(*result) obs_bats, rew_bats, done_bats, info_bats = map(lambda lst: [Batch({'0': v}) for v in lst], [obs_list, rew_list, done_list, info_list]) obs_cat, rew_cat, done_cat, info_cat = map(Batch.cat, [obs_bats, rew_bats, done_bats, info_bats]) obs, rew, done, info = map(lambda b: b['0'], [obs_cat, rew_cat, done_cat, info_cat]) if self.obs_rms and self.update_obs_rms: self.obs_rms.update(obs) return self.normalize_obs(obs), rew, done, info def reset(self, id: ID_TYPE = None) -> np.ndarray: self._assert_is_not_closed() sid = self._sub_id(id) id = self._wrap_id(id) if self.is_async: self._assert_id(id) # send(None) == reset() in worker for i in id: self.workers[i].send(None, sid[i]) obs_list = [self.workers[i].recv() for i in id] obs_bats = [Batch({'0': v}) for v in obs_list] obs_cat = Batch.cat(obs_bats) obs = obs_cat['0'] if self.obs_rms and self.update_obs_rms: self.obs_rms.update(obs) return self.normalize_obs(obs) def normalize_obs(self, obs: Batch) -> Batch: if self.obs_rms and self.norm_obs: clip_max = 10.0 # this magic number is from openai baselines # see baselines/common/vec_env/vec_normalize.py#L10 obs = (obs - self.obs_rms.mean) / np.sqrt(self.obs_rms.var + self.__eps) obs = np.clip(obs, -clip_max, clip_max) raise NotImplementedError return obs class IGMAVectorEnv(NestedVectorEnv): def __init__(self, env_fns: List[Callable[[], VecTask]], **kwargs: Any) -> None: super().__init__(env_fns, IGMAEnvWorker, **kwargs) class NestedVectorReplayBuffer(VectorReplayBuffer): def add( self, batch: Batch, buffer_ids: Optional[Union[np.ndarray, List[int]]] = None) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]: """Add a batch of data into ReplayBufferManager. Each of the data's length (first dimension) must equal to the length of buffer_ids. By default buffer_ids is [0, 1, ..., buffer_num - 1]. Return (current_index, episode_reward, episode_length, episode_start_index). If the episode is not finished, the return value of episode_length and episode_reward is 0. """ # preprocess batch new_batch = Batch() for key in set(self._reserved_keys).intersection(batch.keys()): new_batch.__dict__[key] = batch[key] batch = new_batch assert set(["obs", "act", "rew", "done"]).issubset(batch.keys()) if self._save_only_last_obs: batch.obs = batch.obs[:, -1] if not self._save_obs_next: batch.pop("obs_next", None) elif self._save_only_last_obs: batch.obs_next = batch.obs_next[:, -1] # get index if buffer_ids is None: buffer_ids = np.arange(self.buffer_num) ptrs, ep_lens, ep_rews, ep_idxs = [], [], [], [] for batch_idx, buffer_id in enumerate(buffer_ids): ptr, ep_rew, ep_len, ep_idx = self.buffers[buffer_id]._add_index(batch.rew[batch_idx], batch.done[batch_idx]) ptrs.append(ptr + self._offset[buffer_id]) ep_lens.append(ep_len) ep_rews.append(ep_rew) ep_idxs.append(ep_idx + self._offset[buffer_id]) self.last_index[buffer_id] = ptr + self._offset[buffer_id] self._lengths[buffer_id] = len(self.buffers[buffer_id]) ptrs = np.array(ptrs) try: self._meta[ptrs] = batch except ValueError: # batch.rew = batch.rew.to(float) # batch.done = batch.done.to(bool) batch.rew = batch.rew.astype(float) batch.done = batch.done.astype(bool) if self._meta.is_empty(): self._meta = _create_value( # type: ignore batch, self.maxsize, stack=False) else: # dynamic key pops up in batch _alloc_by_keys_diff(self._meta, batch, self.maxsize, False) self._set_batch_for_children() self._meta[ptrs] = batch return ptrs, np.array(ep_rews), np.array(ep_lens), np.array(ep_idxs)
[]
2024-01-10
mingkai-zheng/GENIUS
channel_bench_mob.py
import os import json import openai import numpy as np from decimal import Decimal import argparse parser = argparse.ArgumentParser() parser.add_argument('--openai_key', type=str, required=True) parser.add_argument('--openai_organization', type=str, required=True) args = parser.parse_args() print(args) openai.api_key = args.openai_key openai.organization = args.openai_organization benchmark_file = open('benchmark/Results_MobileNet.json') data = json.load(benchmark_file) keys = list(data.keys()) rank = np.array([data[k]['mean'] for k in keys]).argsort().argsort() for k, r in zip(keys, rank): data[k]['rank'] = (4 ** 7) - r system_content = "You are a expert in the field of neural architecture search." user_input = '''Your task is to assist me in selecting the best channel numbers for a given model architecture. The model will be trained and tested on CIFAR10, and your objective will be to maximize the model's performance on CIFAR10. The model architecture will be defined as the following. { layer1: nn.Conv2d(in_channels=3, out_channels=channels[0], kernel_size=3, padding=1, bias=False), layer2: InvertedResidual(in_channels=channels[0], bottleneck_channels=channels[1], out_channels=channels[0], stride=1), layer3: InvertedResidual(in_channels=channels[0], bottleneck_channels=channels[2], out_channels=channels[0], stride=1), layer4: InvertedResidual(in_channels=channels[0], bottleneck_channels=channels[3], out_channels=channels[4], stride=2), layer5: InvertedResidual(in_channels=channels[4], bottleneck_channels=channels[5], out_channels=channels[4], stride=1), layer6: nn.Conv2d(channels[4], channels[6], kernel_size=1, stride = 1, padding=0, bias=False), layer7: nn.AdaptiveAvgPool2d(output_size=1), layer8: nn.Linear(in_features=channels[6], out_features=10), } The implementation of the InvertedResidual is as follows: class InvertedResidual(nn.Module): def __init__(self, in_channels, out_channels, bottleneck_channels, stride): super(InvertedResidual, self).__init__() self.conv = nn.Sequential( nn.Conv2d(in_channels, bottleneck_channels, kernel_size=1, stride=1, padding=0, bias=False), nn.BatchNorm2d(bottleneck_channels), nn.ReLU(inplace=True), nn.Conv2d(bottleneck_channels, bottleneck_channels, kernel_size=3, stride=stride, padding=1, groups=bottleneck_channels, bias=False), nn.BatchNorm2d(bottleneck_channels), nn.ReLU(inplace=True), nn.Conv2d(bottleneck_channels, out_channels, kernel_size=1, stride=1, padding=0, bias=False), nn.BatchNorm2d(out_channels), ) self.use_shortcut = in_channels == out_channels and stride == 1 def forward(self, x): if self.use_shortcut: return self.conv(x) + x return self.conv(x) For the `channels` variable, the available channel number for each index would be: { channels[0]: [32, 64, 96, 128], channels[1]: [192, 384, 576, 768], channels[2]: [192, 384, 576, 768], channels[3]: [192, 384, 576, 768], channels[4]: [64, 128, 192, 256], channels[5]: [384, 768, 1152, 1536], channels[6]: [256, 512, 768, 1024], } Your objective is to define the optimal number of channels for each layer based on the given options above to maximize the model's performance on CIFAR10. Your response should be the a channel list consisting of 7 numbers (e.g. [64, 576, ..., 256]). ''' experiments_prompt = lambda arch_list, acc_list : '''Here are some experimental results that you can use as a reference: {} Please suggest a better channel list that can improve the model's performance on CIFAR10 beyond the experimental results provided above. '''.format(''.join(['{} gives an accuracy of {:.2f}%\n'.format(arch, acc) for arch, acc in zip(arch_list, acc_list)])) suffix = '''Please do not include anything else other than the channel list in your response.''' arch_list = [] acc_list = [] messages = [ {"role": "system", "content": system_content}, {"role": "user", "content": user_input + suffix}, ] performance_history = [] messages_history = [] if not os.path.exists('history'): os.makedirs('history') base_channels = [32, 192, 192, 192, 64, 384, 256] for iteration in range(10): res = openai.ChatCompletion.create(model='gpt-4', messages=messages, temperature=0, n=1)['choices'][0]['message'] messages.append(res) messages_history.append(messages) # print(messages) print(res['content']) channels = json.loads(res['content']) search_id = ''.join([str(int(c / base_c)) for base_c, c in zip(base_channels, channels)]) accuracy = data[search_id]['mean'] accuracy = float(Decimal(accuracy).quantize(Decimal("0.01"), rounding = "ROUND_HALF_UP")) arch_list.append(channels) acc_list.append(accuracy) performance = { 'arch' : channels, 'rank' : str(data[search_id]['rank']), 'acc' : str(data[search_id]['mean']), 'flops': str(data[search_id]['flops']), } print(iteration+1, performance) performance_history.append(performance) with open('history/channel_bench_mob_messages.json', 'w') as f: json.dump(messages_history, f) with open('history/channel_bench_mob_performance.json', 'w') as f: json.dump(performance_history, f) messages = [ {"role": "system", "content": system_content}, {"role": "user", "content": user_input + experiments_prompt(arch_list, acc_list) + suffix}, ]
[ "You are a expert in the field of neural architecture search.", "<function <lambda> at 0x1166a9580>", "Your task is to assist me in selecting the best channel numbers for a given model architecture. The model will be trained and tested on CIFAR10, and your objective will be to maximize the model's performance on CIFAR10. \n\nThe model architecture will be defined as the following.\n{\n layer1: nn.Conv2d(in_channels=3, out_channels=channels[0], kernel_size=3, padding=1, bias=False),\n layer2: InvertedResidual(in_channels=channels[0], bottleneck_channels=channels[1], out_channels=channels[0], stride=1),\n layer3: InvertedResidual(in_channels=channels[0], bottleneck_channels=channels[2], out_channels=channels[0], stride=1),\n layer4: InvertedResidual(in_channels=channels[0], bottleneck_channels=channels[3], out_channels=channels[4], stride=2),\n layer5: InvertedResidual(in_channels=channels[4], bottleneck_channels=channels[5], out_channels=channels[4], stride=1),\n layer6: nn.Conv2d(channels[4], channels[6], kernel_size=1, stride = 1, padding=0, bias=False),\n layer7: nn.AdaptiveAvgPool2d(output_size=1),\n layer8: nn.Linear(in_features=channels[6], out_features=10),\n}\n\nThe implementation of the InvertedResidual is as follows:\nclass InvertedResidual(nn.Module):\n def __init__(self, in_channels, out_channels, bottleneck_channels, stride):\n super(InvertedResidual, self).__init__()\n self.conv = nn.Sequential(\n nn.Conv2d(in_channels, bottleneck_channels, kernel_size=1, stride=1, padding=0, bias=False),\n nn.BatchNorm2d(bottleneck_channels),\n nn.ReLU(inplace=True),\n nn.Conv2d(bottleneck_channels, bottleneck_channels, kernel_size=3, stride=stride, padding=1, groups=bottleneck_channels, bias=False),\n nn.BatchNorm2d(bottleneck_channels),\n nn.ReLU(inplace=True),\n nn.Conv2d(bottleneck_channels, out_channels, kernel_size=1, stride=1, padding=0, bias=False),\n nn.BatchNorm2d(out_channels),\n )\n self.use_shortcut = in_channels == out_channels and stride == 1\n\n def forward(self, x):\n if self.use_shortcut:\n return self.conv(x) + x\n return self.conv(x)\n\nFor the `channels` variable, the available channel number for each index would be:\n{\n channels[0]: [32, 64, 96, 128],\n channels[1]: [192, 384, 576, 768],\n channels[2]: [192, 384, 576, 768],\n channels[3]: [192, 384, 576, 768],\n channels[4]: [64, 128, 192, 256],\n channels[5]: [384, 768, 1152, 1536],\n channels[6]: [256, 512, 768, 1024],\n}\n\nYour objective is to define the optimal number of channels for each layer based on the given options above to maximize the model's performance on CIFAR10. \nYour response should be the a channel list consisting of 7 numbers (e.g. [64, 576, ..., 256]).\nPlease do not include anything else other than the channel list in your response." ]
2024-01-10
mingkai-zheng/GENIUS
channel_bench_res.py
import os import json import openai import numpy as np from decimal import Decimal import argparse parser = argparse.ArgumentParser() parser.add_argument('--openai_key', type=str, required=True) parser.add_argument('--openai_organization', type=str, required=True) args = parser.parse_args() print(args) openai.api_key = args.openai_key openai.organization = args.openai_organization benchmark_file = open('benchmark/Results_ResNet.json') data = json.load(benchmark_file) keys = list(data.keys()) rank = np.array([data[k]['mean'] for k in keys]).argsort().argsort() for k, r in zip(keys, rank): data[k]['rank'] = (4 ** 7) - r system_content = "You are an expert in the field of neural architecture search." user_input = '''Your task is to assist me in selecting the best channel numbers for a given model architecture. The model will be trained and tested on CIFAR10, and your objective will be to maximize the model's performance on CIFAR10. The model architecture will be defined as the following. { layer1: nn.Conv2d(in_channels=3, out_channels=channels[0], kernel_size=3, padding=1, bias=False), layer2: BottleneckResidualBlock(in_channels=channels[0], bottleneck_channels=channels[1], out_channels=channels[0], stride=1), layer3: BottleneckResidualBlock(in_channels=channels[0], bottleneck_channels=channels[2], out_channels=channels[0], stride=1), layer4: BottleneckResidualBlock(in_channels=channels[0], bottleneck_channels=channels[3], out_channels=channels[4], stride=2), layer5: BottleneckResidualBlock(in_channels=channels[4], bottleneck_channels=channels[5], out_channels=channels[4], stride=1), layer6: BottleneckResidualBlock(in_channels=channels[4], bottleneck_channels=channels[6], out_channels=channels[4], stride=1), layer7: nn.AdaptiveAvgPool2d(output_size=1), layer8: nn.Linear(in_features=channels[4], out_features=10), } The implementation of the BottleneckResidualBlock is as follows: class BottleneckResidualBlock(nn.Module): def __init__(self, in_channels, bottleneck_channels, out_channels, stride): super().__init__() self.stride = stride self.block = nn.Sequential( nn.Conv2d(in_channels, bottleneck_channels, 3, stride = stride, padding=1, bias=False), nn.BatchNorm2d(bottleneck_channels), nn.ReLU(inplace=True), nn.Conv2d(bottleneck_channels, out_channels, 3, stride = 1, padding=1, bias=False), nn.BatchNorm2d(out_channels), ) self.relu = nn.ReLU(inplace=True) def forward(self, x): if self.stride == 1: return self.relu(x + self.block(x)) else: return self.relu(self.block(x)) For the `channels` variable, the available channel number for each index would be: { channels[0]: [64, 128, 192, 256], channels[1]: [64, 128, 192, 256], channels[2]: [64, 128, 192, 256], channels[3]: [128, 256, 384, 512], channels[4]: [128, 256, 384, 512], channels[5]: [128, 256, 384, 512], channels[6]: [128, 256, 384, 512], } Your objective is to define the optimal number of channels for each layer based on the given options above to maximize the model's performance on CIFAR10. Your response should be the a channel list consisting of 7 numbers (e.g. [64, 192, ..., 256]). ''' experiments_prompt = lambda arch_list, acc_list : '''Here are some experimental results that you can use as a reference: {} Please suggest a channel list that can improve the model's performance on CIFAR10 beyond the experimental results provided above. '''.format(''.join(['{} gives an accuracy of {:.2f}%\n'.format(arch, acc) for arch, acc in zip(arch_list, acc_list)])) suffix = '''Please do not include anything else other than the channel list in your response.''' arch_list = [] acc_list = [] messages = [ {"role": "system", "content": system_content}, {"role": "user", "content": user_input + suffix}, ] performance_history = [] messages_history = [] if not os.path.exists('history'): os.makedirs('history') base_channels = [64, 64, 64, 128, 128, 128, 128] for iteration in range(10): res = openai.ChatCompletion.create(model='gpt-4', messages=messages, temperature=0, n=1)['choices'][0]['message'] messages.append(res) messages_history.append(messages) # print(messages) print(res['content']) channels = json.loads(res['content']) search_id = ''.join([str(int(c / base_c)) for base_c, c in zip(base_channels, channels)]) accuracy = data[search_id]['mean'] accuracy = float(Decimal(accuracy).quantize(Decimal("0.01"), rounding = "ROUND_HALF_UP")) arch_list.append(channels) acc_list.append(accuracy) performance = { 'arch' : channels, 'rank' : str(data[search_id]['rank']), 'acc' : str(data[search_id]['mean']), 'flops': str(data[search_id]['flops']), } print(iteration+1, performance) performance_history.append(performance) with open('history/channel_bench_res_messages.json', 'w') as f: json.dump(messages_history, f) with open('history/channel_bench_res_performance.json', 'w') as f: json.dump(performance_history, f) messages = [ {"role": "system", "content": system_content}, {"role": "user", "content": user_input + experiments_prompt(arch_list, acc_list) + suffix}, ]
[ "You are an expert in the field of neural architecture search.", "<function <lambda> at 0x1163bcea0>", "Your task is to assist me in selecting the best channel numbers for a given model architecture. The model will be trained and tested on CIFAR10, and your objective will be to maximize the model's performance on CIFAR10. \n\nThe model architecture will be defined as the following.\n{\n layer1: nn.Conv2d(in_channels=3, out_channels=channels[0], kernel_size=3, padding=1, bias=False),\n layer2: BottleneckResidualBlock(in_channels=channels[0], bottleneck_channels=channels[1], out_channels=channels[0], stride=1),\n layer3: BottleneckResidualBlock(in_channels=channels[0], bottleneck_channels=channels[2], out_channels=channels[0], stride=1),\n layer4: BottleneckResidualBlock(in_channels=channels[0], bottleneck_channels=channels[3], out_channels=channels[4], stride=2),\n layer5: BottleneckResidualBlock(in_channels=channels[4], bottleneck_channels=channels[5], out_channels=channels[4], stride=1),\n layer6: BottleneckResidualBlock(in_channels=channels[4], bottleneck_channels=channels[6], out_channels=channels[4], stride=1),\n layer7: nn.AdaptiveAvgPool2d(output_size=1),\n layer8: nn.Linear(in_features=channels[4], out_features=10),\n}\n\nThe implementation of the BottleneckResidualBlock is as follows:\nclass BottleneckResidualBlock(nn.Module):\n def __init__(self, in_channels, bottleneck_channels, out_channels, stride):\n super().__init__()\n\n self.stride = stride\n\n self.block = nn.Sequential(\n nn.Conv2d(in_channels, bottleneck_channels, 3, stride = stride, padding=1, bias=False),\n nn.BatchNorm2d(bottleneck_channels),\n nn.ReLU(inplace=True),\n nn.Conv2d(bottleneck_channels, out_channels, 3, stride = 1, padding=1, bias=False),\n nn.BatchNorm2d(out_channels),\n )\n self.relu = nn.ReLU(inplace=True)\n\n def forward(self, x):\n if self.stride == 1:\n return self.relu(x + self.block(x))\n else:\n return self.relu(self.block(x))\n\nFor the `channels` variable, the available channel number for each index would be:\n{\n channels[0]: [64, 128, 192, 256],\n channels[1]: [64, 128, 192, 256],\n channels[2]: [64, 128, 192, 256],\n channels[3]: [128, 256, 384, 512],\n channels[4]: [128, 256, 384, 512],\n channels[5]: [128, 256, 384, 512],\n channels[6]: [128, 256, 384, 512],\n}\n\nYour objective is to define the optimal number of channels for each layer based on the given options above to maximize the model's performance on CIFAR10. \nYour response should be the a channel list consisting of 7 numbers (e.g. [64, 192, ..., 256]).\nPlease do not include anything else other than the channel list in your response." ]
2024-01-10
mingkai-zheng/GENIUS
nas_bench_macro.py
import os import json import openai import numpy as np from decimal import Decimal import argparse parser = argparse.ArgumentParser() parser.add_argument('--openai_key', type=str, required=True) parser.add_argument('--openai_organization', type=str, required=True) args = parser.parse_args() print(args) openai.api_key = args.openai_key openai.organization = args.openai_organization benchmark_file = open('benchmark/nas-bench-macro_cifar10.json') data = json.load(benchmark_file) keys = list(data.keys()) rank = np.array([data[k]['mean_acc'] for k in keys]).argsort().argsort() for k, r in zip(keys, rank): data[k]['rank'] = (3 ** 8) - r system_content = "You are an expert in the field of neural architecture search." user_input = '''Your task is to assist me in selecting the best operations for a given model architecture, which includes some undefined layers and available operations. The model will be trained and tested on CIFAR10, and your objective will be to maximize the model's performance on CIFAR10. We define the 3 available operations as the following: 0: Identity(in_channels, out_channels, stride) 1: InvertedResidual(in_channels, out_channels, stride expansion=3, kernel_size=3) 2: InvertedResidual(in_channels, out_channels, stride expansion=6, kernel_size=5) The implementation of the Identity is as follows: class Identity(nn.Module): def __init__(self, in_channels, out_channels, stride): super(Identity, self).__init__() if stride != 1 or in_channels != out_channels: self.downsample = nn.Sequential( nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(out_channels), ) else: self.downsample = None def forward(self, x): if self.downsample is not None: x = self.downsample(x) return x The implementation of the InvertedResidual is as follows: class InvertedResidual(nn.Module): def __init__(self, in_channels, out_channels, stride, expansion, kernel_size): super(InvertedResidual, self).__init__() hidden_dim = in_channels * expansion self.conv = nn.Sequential( nn.Conv2d(in_channels, hidden_dim, kernel_size=1, stride=1, padding=0, bias=False), nn.BatchNorm2d(hidden_dim), nn.ReLU(inplace=True), nn.Conv2d(hidden_dim, hidden_dim, kernel_size=kernel_size, stride=stride, padding=kernel_size//2, groups=hidden_dim, bias=False), nn.BatchNorm2d(hidden_dim), nn.ReLU(inplace=True), nn.Conv2d(hidden_dim, out_channels, 1, 1, 0, bias=False), nn.BatchNorm2d(out_channels), ) self.use_shortcut = in_channels == out_channels and stride == 1 def forward(self, x): if self.use_shortcut: return self.conv(x) + x return self.conv(x) The model architecture will be defined as the following. { layer1: {defined: True, operation: nn.Conv2d(in_channels=3, out_channels=32, kernel_size=3, padding=1, bias=False)}, layer2: {defined: False, downsample: True , in_channels: 32, out_channels: 64 , stride: 2}, layer3: {defined: False, downsample: False, in_channels: 64, out_channels: 64 , stride: 1}, layer4: {defined: False, downsample: True , in_channels: 64, out_channels: 128, stride: 2}, layer5: {defined: False, downsample: False, in_channels: 128, out_channels: 128, stride: 1}, layer6: {defined: False, downsample: False, in_channels: 128, out_channels: 128, stride: 1}, layer7: {defined: False, downsample: True , in_channels: 128, out_channels: 256, stride: 2}, layer8: {defined: False, downsample: False, in_channels: 256, out_channels: 256, stride: 1}, layer9: {defined: False, downsample: False, in_channels: 256, out_channels: 256, stride: 1}, layer10: {defined: True, operation: nn.Conv2d(in_channels=256, out_channels=1280, kernel_size=1, bias=False, stride=1)}, layer11: {defined: True, operation: nn.AdaptiveAvgPool2d(output_size=1)}, layer12: {defined: True, operation: nn.Linear(in_features=1280, out_features=10)}, } The currently undefined layers are layer2 - layer9, and the in_channels and out_channels have already been defined for each layer. To maximize the model's performance on CIFAR10, please provide me with your suggested operation for the undefined layers only. Your response should be an operation ID list for the undefined layers. For example: [1, 2, ..., 0] means we use operation 1 for layer2, operation 2 for layer3, ..., operation 0 for layer9. ''' experiments_prompt = lambda arch_list, acc_list : '''Here are some experimental results that you can use as a reference: {} Please suggest a better operation ID list that can improve the model's performance on CIFAR10 beyond the experimental results provided above. '''.format(''.join(['{} gives an accuracy of {:.2f}%\n'.format(arch, acc) for arch, acc in zip(arch_list, acc_list)])) suffix = '''Please do not include anything other than the operation ID list in your response.''' arch_list = [] acc_list = [] messages = [ {"role": "system", "content": system_content}, {"role": "user", "content": user_input + suffix}, ] performance_history = [] messages_history = [] if not os.path.exists('history'): os.makedirs('history') for iteration in range(10): res = openai.ChatCompletion.create(model='gpt-4', messages=messages, temperature=0, n=1)['choices'][0]['message'] messages.append(res) messages_history.append(messages) print(res['content']) operation_id_list = json.loads(res['content']) operation_id_list_str = ''.join(str(opid) for opid in operation_id_list) accuracy = data[operation_id_list_str]['mean_acc'] accuracy = float(Decimal(accuracy).quantize(Decimal("0.01"), rounding = "ROUND_HALF_UP")) arch_list.append(operation_id_list) acc_list.append(accuracy) performance = { 'arch' : operation_id_list_str, 'rank' : str(data[operation_id_list_str]['rank']), 'acc' : str(data[operation_id_list_str]['mean_acc']), 'flops': str(data[operation_id_list_str]['flops']), } print(iteration+1, performance) performance_history.append(performance) with open('history/nas_bench_macro_messages.json', 'w') as f: json.dump(messages_history, f) with open('history/nas_bench_macro_performance.json', 'w') as f: json.dump(performance_history, f) messages = [ {"role": "system", "content": system_content}, {"role": "user", "content": user_input + experiments_prompt(arch_list, acc_list) + suffix}, ]
[ "You are an expert in the field of neural architecture search.", "<function <lambda> at 0x1164c6340>", "Your task is to assist me in selecting the best operations for a given model architecture, which includes some undefined layers and available operations. The model will be trained and tested on CIFAR10, and your objective will be to maximize the model's performance on CIFAR10.\n\nWe define the 3 available operations as the following:\n0: Identity(in_channels, out_channels, stride)\n1: InvertedResidual(in_channels, out_channels, stride expansion=3, kernel_size=3)\n2: InvertedResidual(in_channels, out_channels, stride expansion=6, kernel_size=5)\n\nThe implementation of the Identity is as follows:\nclass Identity(nn.Module):\n def __init__(self, in_channels, out_channels, stride):\n super(Identity, self).__init__()\n if stride != 1 or in_channels != out_channels:\n self.downsample = nn.Sequential(\n nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride, bias=False),\n nn.BatchNorm2d(out_channels),\n )\n else:\n self.downsample = None\n\n def forward(self, x):\n if self.downsample is not None:\n x = self.downsample(x)\n return x\n\nThe implementation of the InvertedResidual is as follows:\nclass InvertedResidual(nn.Module):\n def __init__(self, in_channels, out_channels, stride, expansion, kernel_size):\n super(InvertedResidual, self).__init__()\n hidden_dim = in_channels * expansion\n self.conv = nn.Sequential(\n nn.Conv2d(in_channels, hidden_dim, kernel_size=1, stride=1, padding=0, bias=False),\n nn.BatchNorm2d(hidden_dim),\n nn.ReLU(inplace=True),\n nn.Conv2d(hidden_dim, hidden_dim, kernel_size=kernel_size, stride=stride, padding=kernel_size//2, groups=hidden_dim, bias=False),\n nn.BatchNorm2d(hidden_dim),\n nn.ReLU(inplace=True),\n nn.Conv2d(hidden_dim, out_channels, 1, 1, 0, bias=False),\n nn.BatchNorm2d(out_channels),\n )\n self.use_shortcut = in_channels == out_channels and stride == 1\n\n def forward(self, x):\n if self.use_shortcut:\n return self.conv(x) + x\n return self.conv(x)\n \n\nThe model architecture will be defined as the following.\n{\n layer1: {defined: True, operation: nn.Conv2d(in_channels=3, out_channels=32, kernel_size=3, padding=1, bias=False)},\n layer2: {defined: False, downsample: True , in_channels: 32, out_channels: 64 , stride: 2},\n layer3: {defined: False, downsample: False, in_channels: 64, out_channels: 64 , stride: 1},\n layer4: {defined: False, downsample: True , in_channels: 64, out_channels: 128, stride: 2},\n layer5: {defined: False, downsample: False, in_channels: 128, out_channels: 128, stride: 1},\n layer6: {defined: False, downsample: False, in_channels: 128, out_channels: 128, stride: 1},\n layer7: {defined: False, downsample: True , in_channels: 128, out_channels: 256, stride: 2},\n layer8: {defined: False, downsample: False, in_channels: 256, out_channels: 256, stride: 1},\n layer9: {defined: False, downsample: False, in_channels: 256, out_channels: 256, stride: 1},\n layer10: {defined: True, operation: nn.Conv2d(in_channels=256, out_channels=1280, kernel_size=1, bias=False, stride=1)},\n layer11: {defined: True, operation: nn.AdaptiveAvgPool2d(output_size=1)},\n layer12: {defined: True, operation: nn.Linear(in_features=1280, out_features=10)},\n}\n\nThe currently undefined layers are layer2 - layer9, and the in_channels and out_channels have already been defined for each layer. To maximize the model's performance on CIFAR10, please provide me with your suggested operation for the undefined layers only. \n\nYour response should be an operation ID list for the undefined layers. For example:\n[1, 2, ..., 0] means we use operation 1 for layer2, operation 2 for layer3, ..., operation 0 for layer9.\nPlease do not include anything other than the operation ID list in your response." ]
2024-01-10
mingkai-zheng/GENIUS
nas_bench_201.py
import os import json import openai from decimal import Decimal import argparse parser = argparse.ArgumentParser() parser.add_argument('--openai_key', type=str, required=True) parser.add_argument('--openai_organization', type=str, required=True) parser.add_argument('--dataset', type=str, required=True, choices=['cifar10', 'cifar100', 'imagenet']) args = parser.parse_args() print(args) openai.api_key = args.openai_key openai.organization = args.openai_organization if args.dataset == 'cifar10': benchmark_file = open('benchmark/nasbench201_cifar10.json') elif args.dataset == 'cifar100': benchmark_file = open('benchmark/nasbench201_cifar100.json') else: benchmark_file = open('benchmark/nasbench201_imagenet.json') data = json.load(benchmark_file) system_content = "You are Quoc V. Le, a computer scientist and artificial intelligence researcher who is widely regarded as one of the leading experts in deep learning and neural network architecture search. Your work in this area has focused on developing efficient algorithms for searching the space of possible neural network architectures, with the goal of finding architectures that perform well on a given task while minimizing the computational cost of training and inference." user_input = '''You are an expert in the field of neural architecture search. Your task is to assist me in selecting the best operations to design a neural network block using the available operations. The objective is to maximize the model's performance. The 5 available operations are as follows: 0: Zeroize() # This operation simply outputs a tensor of zeros regardless of the input, which breaks the gradient flow between two nodes. 1: nn.Identity() # Skip Connection. 2: ReLUConvBN(channels, channels, kernal_size=1, stride=1, padding=0) # The input channels and output channels are the same. 3: ReLUConvBN(channels, channels, kernal_size=3, stride=1, padding=1) # The input channels and output channels are the same. 4: nn.AvgPool2d(kernel_size=3, stride=1, padding=1) # This operation does not change the spatial resolution. The neural network block is defined by 6 operations (i.e., op_list = [op0, op1, op2, op3, op4, op5]), which represent the operations executed between various stages of the block. This block comprises 4 stages, labeled as s0, s1, s2, and s3, each corresponding to distinct feature maps in the neural network. s0 serves as the input feature map for this block. s1 will be calculated by s1 = op0(s0). s2 will be calculated by s2 = op1(s0) + op2(s1). s3 will be calculated by s3 = op3(s0) + op4(s1) + op5(s2). Note that s3 becomes the output for this block and serves as the input for the subsequent block. Then the implementation of the block will be: class Block(nn.Module): def __init__(self, channels): super(Block, self).__init__() self.op0 = op_id_list[0] self.op1 = op_id_list[1] self.op2 = op_id_list[2] self.op3 = op_id_list[3] self.op4 = op_id_list[4] self.op5 = op_id_list[5] def forward(self, s0): s1 = self.op0(s0) s2 = self.op1(s0) + self.op2(s1) s3 = self.op3(s0) + self.op4(s1) + self.op5(s2) return s3 Let's break this down step by step: First, please analyze the 5 available operations. Next, please consider the gradient flow based on the Block class implementation. For example, how the gradient from the later stage affects the earlier stage. Now, answer the question - how we can design a high-performance block using the available operations? Based the analysis, your task is to propose a block design with the given operations that prioritizes performance, without considering factors such as size and complexity. After you suggest a design, I will test its actual performance and provide you with feedback. Based on the results of previous experiments, we can collaborate to iterate and improve the design. Please avoid suggesting the same design again during this iterative process. ''' experiments_prompt = lambda x : '''By using this model, we achieved an accuracy of {}%. Please recommend a new model that outperforms prior architectures based on the abovementioned experiments. Also, Please provide a rationale explaining why the suggested model surpasses all previous architectures.'''.format(x) test_acc_list = [] val_acc_list = [] rank_list = [] messages = [ {"role": "system", "content": system_content}, {"role": "user", "content": user_input}, ] performance_history = [] if not os.path.exists('history'): os.makedirs('history') num_iters = 0 for iteration in range(num_iters, 10): res = openai.ChatCompletion.create(model='gpt-4', messages=messages, temperature=0, n=1)['choices'][0]['message'] messages.append(res) print('Assistant:', res['content']) arch = input('\nUser: Please enter the GPT-4 suggested model (use 6 operation IDs to represent the model):') print() operation_id_list = [int(opid) for opid in list(arch)] struct_dict = ['none', 'skip_connect', 'nor_conv_1x1', 'nor_conv_3x3', 'avg_pool_3x3'] operation_id_list_str = '|{}~0|+|{}~0|{}~1|+|{}~0|{}~1|{}~2|'.format(*[struct_dict[operation_id] for operation_id in operation_id_list]) rank = data[operation_id_list_str]['rank'] val_acc = data[operation_id_list_str]['val_acc_200'] test_acc = data[operation_id_list_str]['test_acc_200'] val_acc = float(Decimal(val_acc).quantize(Decimal("0.001"), rounding = "ROUND_HALF_UP")) test_acc = float(Decimal(test_acc).quantize(Decimal("0.001"), rounding = "ROUND_HALF_UP")) test_acc_list.append(test_acc) val_acc_list.append(val_acc) rank_list.append(rank) performance = { 'rank' : rank, 'val_acc' : val_acc, 'test_acc' : test_acc, } print(iteration+1, performance, '\n') performance_history.append(performance) with open('history/nas_bench_201_{}_messages.json'.format(args.dataset), 'w') as f: json.dump(messages, f) with open('history/nas_bench_201_{}_performance.json'.format(args.dataset), 'w') as f: json.dump(performance_history, f) messages.append({"role": "user", "content": experiments_prompt(val_acc)})
[ "<function <lambda> at 0x1164c5080>", "You are Quoc V. Le, a computer scientist and artificial intelligence researcher who is widely regarded as one of the leading experts in deep learning and neural network architecture search. Your work in this area has focused on developing efficient algorithms for searching the space of possible neural network architectures, with the goal of finding architectures that perform well on a given task while minimizing the computational cost of training and inference.", "You are an expert in the field of neural architecture search. Your task is to assist me in selecting the best operations to design a neural network block using the available operations. The objective is to maximize the model's performance.\n\nThe 5 available operations are as follows:\n0: Zeroize() # This operation simply outputs a tensor of zeros regardless of the input, which breaks the gradient flow between two nodes.\n1: nn.Identity() # Skip Connection.\n2: ReLUConvBN(channels, channels, kernal_size=1, stride=1, padding=0) # The input channels and output channels are the same.\n3: ReLUConvBN(channels, channels, kernal_size=3, stride=1, padding=1) # The input channels and output channels are the same.\n4: nn.AvgPool2d(kernel_size=3, stride=1, padding=1) # This operation does not change the spatial resolution.\n\nThe neural network block is defined by 6 operations (i.e., op_list = [op0, op1, op2, op3, op4, op5]), which represent the operations executed between various stages of the block. This block comprises 4 stages, labeled as s0, s1, s2, and s3, each corresponding to distinct feature maps in the neural network.\n\ns0 serves as the input feature map for this block.\ns1 will be calculated by s1 = op0(s0).\ns2 will be calculated by s2 = op1(s0) + op2(s1).\ns3 will be calculated by s3 = op3(s0) + op4(s1) + op5(s2). Note that s3 becomes the output for this block and serves as the input for the subsequent block.\n\nThen the implementation of the block will be:\nclass Block(nn.Module):\n def __init__(self, channels):\n super(Block, self).__init__()\n self.op0 = op_id_list[0]\n self.op1 = op_id_list[1]\n self.op2 = op_id_list[2]\n self.op3 = op_id_list[3]\n self.op4 = op_id_list[4]\n self.op5 = op_id_list[5]\n\n def forward(self, s0):\n s1 = self.op0(s0)\n s2 = self.op1(s0) + self.op2(s1)\n s3 = self.op3(s0) + self.op4(s1) + self.op5(s2)\n return s3\n\nLet's break this down step by step:\n\nFirst, please analyze the 5 available operations.\n\nNext, please consider the gradient flow based on the Block class implementation. For example, how the gradient from the later stage affects the earlier stage.\n\nNow, answer the question - how we can design a high-performance block using the available operations?\n\nBased the analysis, your task is to propose a block design with the given operations that prioritizes performance, without considering factors such as size and complexity.\n\nAfter you suggest a design, I will test its actual performance and provide you with feedback. Based on the results of previous experiments, we can collaborate to iterate and improve the design. Please avoid suggesting the same design again during this iterative process.\n" ]
2024-01-10
michelle-qin/resumes-knowledge-navigator
backend~semantic.py
import os import requests import json from openai_helper import get_client from sql_helpers import get_text_from_id from document_highlight import return_highlighted_pdf class backend: def __init__(self): self.client = get_client() self.TOCs = {} def query_gpt4(self, prompt): response = self.client.chat.completions.create( model="gpt4", messages=[ {"role": "user", "content": prompt} ]) return response.choices[0].message.content def get_keyword(self, query): return self.query_gpt4(f"What key characteristic the user is looking for in this resume?\n\nUser query: {query}\nKeywords:") def add_tag_fields(self, TOC): new_TOC = TOC new_TOC["tags"] = [] if "workExperience" in new_TOC and isinstance(new_TOC["workExperience"], list): for entry in new_TOC["workExperience"]: if isinstance(entry, dict): entry["tags"] = [] if "education" in new_TOC and isinstance(new_TOC["education"], list): for entry in new_TOC["education"]: if isinstance(entry, dict): entry["tags"] = [] return new_TOC def get_toc(self, doc_id): if doc_id == "mock": return self.metadata elif doc_id in self.TOCs.keys(): return self.TOCs[doc_id] else: text = get_text_from_id(doc_id) json_text = self.query_gpt4(f"You are a semantic parser. Use the following resume to populate a Json object \n\n Schema: {self.schema}\n\ndocument: {text}\nJSON:") json_result = json.loads(json_text) final_TOC = self.add_tag_fields(json_result) self.TOCs[doc_id] = final_TOC return final_TOC def find_string_in_TOC(self, d, target, path=[]): for key, value in d.items(): if isinstance(value, str) and target in value: return path + [key] if isinstance(value, list): for i, item in enumerate(value): if isinstance(item, dict): result = self.find_string_in_TOC(item, target, path + [key, i]) if result: return result elif isinstance(item, str) and target in item: return path + [key, i] if isinstance(value, dict): result = self.find_string_in_TOC(value, target, path + [key]) if result: return result # Return None if no match is found return None def add_tags(self, TOC, resume_text, keyword): path = self.find_string_in_TOC(TOC, resume_text) if path is None: TOC["tags"].append(keyword) elif path[0] == "workExperience": work_experience_index = path[1] if 0 <= work_experience_index < len(TOC["workExperience"]): if keyword not in TOC["workExperience"][work_experience_index]["tags"]: TOC["workExperience"][work_experience_index]["tags"].append(keyword) elif path[0] == "education": education_index = path[1] if 0 <= education_index < len(TOC["education"]): if keyword not in TOC["education"][education_index]["tags"]: TOC["education"][education_index]["tags"].append(keyword) else: if keyword not in TOC["tags"]: TOC["tags"].append(keyword) def query(self, doc_id, prompt): keyword = self.get_keyword(prompt) TOC = self.get_toc(doc_id) citations = return_highlighted_pdf(doc_id, prompt) for citation in citations: self.add_tags(TOC, citation, keyword) return citations, TOC def inject_query(self, prompt, highlighted_text): return self.query_gpt4(f"You are a semantic parser. Rephrase the following query to incorporate the asker's intent given the text the asker has highlighted and refers to. The query is: {prompt}. The text to incorporate into the query is: {highlighted_text}.") schema = { "$schema": "http://json-schema.org/draft-07/schema#", "title": "Resume", "type": "object", "properties": { "basic_info": { "type": "object", "properties": { "first_name": {"type": "string"}, "last_name": {"type": "string"}, "email": {"type": "string", "format": "email"}, "phone": {"type": "string"}, "linkedin": {"type": "string"}, "github": {"type": "string"}, "website": {"type": "string"} }, "required": ["first_name", "last_name", "email"] }, "summary": {"type": "string"}, "work_experience": { "type": "array", "items": { "type": "object", "properties": { "company": {"type": "string"}, "position": {"type": "string"}, "start_date": {"type": "string", "format": "date"}, "end_date": {"type": "string", "format": "date"}, "description": {"type": "string"} }, "required": ["company", "position", "start_date"] } }, "education": { "type": "array", "items": { "type": "object", "properties": { "institution": {"type": "string"}, "degree": {"type": "string"}, "start_date": {"type": "string", "format": "date"}, "end_date": {"type": "string", "format": "date"}, "description": {"type": "string"} }, "required": ["institution", "degree", "start_date"] } }, "skills": { "type": "array", "items": {"type": "string"} }, "languages": { "type": "array", "items": {"type": "string"} }, "hobbies": { "type": "array", "items": {"type": "string"} }, "references": { "type": "array", "items": { "type": "object", "properties": { "name": {"type": "string"}, "title": {"type": "string"}, "company": {"type": "string"}, "contact": {"type": "string"} } } } } } metadata = { "firstName": "", "lastName": "", "email": "", "phone": "", "summary": "Accounting professional with twenty years of experience in inventory and manufacturing accounting. Ability to fill in at a moment's notice, quickly mastering new systems, processes and workflows. Take charge attitude, ability to work independently, recommend and implement ideas and process improvements.", "workExperience": [ { "company": "Company Name", "position": "Accountant", "startDate": "04/2011", "endDate": "05/2017", "description": "Performed general accounting functions, journal entries, reconciliations and accruals. Implemented and oversaw RGA spreadsheet for returns used by customer service, accounting and upper management. Initiated and tracked claim process with carriers for damages. Participated in identifying and executing the company's business process improvement efforts" }, { "company": "Company Name", "position": "Inventory Control Manager", "startDate": "01/2008", "endDate": "01/2010", "description": "Became an expert user and handled rollout and training of a new ERP system (Syspro). Handled the purchasing and receiving of raw and semi-finished material, tools, supplies. Continuously renegotiated payment terms with suppliers/vendors resulting in improved cash flow" }, { "company": "Company Name", "position": "Accounting Manager", "startDate": "01/1995", "endDate": "01/2008", "description": "Prepared all relevant documentation and submitted data for auditors during corporate takeover in 2008. Prepared monthly general ledger entries, reconcile G/L accounts to subsidiary journals or worksheets and posted monthly G/L journal. Managed the payroll function which was outsourced to ADP" }, { "company": "Company Name", "position": "Full Charge Bookkeeper", "startDate": "01/1993", "endDate": "01/1995", "description": "" } ], "education": [ { "school": "Montclair State College", "degree": "B.S Business Administration Accounting", "fieldOfStudy": "Accounting", "startDate": "", "endDate": "" } ], "skills": [ "Microsoft Office Excel", "Outlook", "Word", "SAGE 100", "Ramp (WMS software)", "Syspro (ERP program)" ], "languages": [], "certifications": [] }
[]
2024-01-10
michelle-qin/resumes-knowledge-navigator
backend~answer_search.py
import fitz import os from openai import AzureOpenAI import ast import json from sql_helpers import evaluate_query, evaluate_query_blind, get_text_from_id from openai_helper import get_client """ This function will search the text for the answer to a given question. param: doc_id (int) the unique id allowing us to find the processed text and pdf filename in the file_table->documents sql table param: question (string) the question we are trying to answer. return: dictionary with two fields 1. Answer which is the answer to the question 2. Citation which is the verbatim text supporting it """ def search_text(doc_id, query): document = get_text_from_id(doc_id) search_prompt = f""" You are acting as an agent that will search through a document for the answer to a request. I will now give you the document. Document: "{document}" Now, I will give you the request. Request: "{query}" Given the passage and the request, you must give the verbatim citation from the given passage which satisfies the request. If the information is not explicitly shown in the text just put "None". Make sure your answer is in this format: {{ "answer": "<YOUR ANSWER>", "citation": "<YOUR CITATION>", }} I will now give you an example so that you can learn how to do this task. If you are given the following document: Document: "ADULT EDUCATION INSTRUCTOR Experience Company Name City , State Adult Education Instructor 08/2016 to Current Developed a diploma program that fit the needs of the community, continues to work with the community and wants to see the students succeed move on into either industry or college Company Name City , State Agriculture/Credit Recovery Teacher 08/2000 to Current Planned and conducted activities for a balanced program of instruction, demonstration, and work time that provided students with opportunities to observe, question, and investigate. Goal Setting Established clear objectives for all lessons/projects and communicated with students, achieving a total understanding of grading rubric and overall class expectations." and you are given the following request: Request: "What was the title of their most recent job?" Then, your answer should be: {{ "answer": "Adult Education Instructor", "citation": "Company Name City , State Adult Education Instructor 08/2016 to Current Developed a diploma program that fit the needs of the community, continues to work with the community and wants to see the students succeed move on into either industry or collegeÂ" }} Here's another example: Request: "Show me their accounting experience." Then, your answer should be: {{ "answer": "None", "citation": "None"> }} Only give the answer in the format that I told you. Do not say anything else extra other than the answer. Do not act as if you are a human. Act as if you are the raw output for a query. Give only the first instance of the answer even if multiple parts are relevant """ client = get_client() response = client.chat.completions.create( model = "gpt4", temperature = 0, messages=[ {"role": "system", "content": "Assistant is acting as an agent that will search through a document for the answer to a request."}, {"role": "user", "content": search_prompt} ] ) response = response.choices[0].message.content try: json_dict = json.loads(response) except: raise ValueError("The LLM outputted a non-json-formattable string. Contact Thomas/Daniel to work this out.") return json_dict """ This code will add a highlight to a pdf given a piece of text that the LLM has searched for. param: input_path (string) the path to the pdf file we will be highlighting param: output_path (string) the path that we want to save the highlighted pdf to param: sections (List[string]) the list of text sections we want to highlight in the pdf """ def add_hyperlinks_to_pdf(input_path, output_path, sections): pdf_document = fitz.open(input_path) for query in sections: for page in pdf_document: search_results = page.search_for(query) for rect in search_results: annot = page.add_highlight_annot(rect) pdf_document.save(output_path) pdf_document.close() def query_gpt4(prompt): client = get_client() response = client.chat.completions.create( model="gpt4", messages=[ {"role": "user", "content": prompt} ]) return response.choices[0].message.content def multiple_document_table(doc_ids, query): client = get_client() schema = "multiple_doc" table_name = "table" field_prompt = f""" Given the query, give me the name of the column that would store the answer to it in a SQL table. Here are a few examples: Query: Show me how this applicant has demostrates diversity. Field name: diversity Query: What foreign experience does this applicant have? Field name: foreign_experience Query: What college did they go to? Field name: college Remember only give me the field name after the "Field name:" This should be one word with no spaces. Use an underscore to separate words. Query: {query} Field name: """ field = query_gpt4(field_prompt) res = {} res["doc_id"] = [] res[field] = [] res[f"{field}_citation"] = [] for doc_id in doc_ids: response_dict = search_text(doc_id, query) res["doc_id"].append(doc_id) res[field].append(response_dict["answer"]) res[f"{field}_citation"].append(response_dict["citation"]) return res def multiple_document_table_to_sql(doc_ids, query): client = get_client() schema = "multiple_doc" table_name = "table" field_prompt = f""" Given the query, give me the name of the column that would store the answer to it in a SQL table. Here are a few examples: Query: Show me how this applicant has demostrates diversity. Field name: diversity Query: What foreign experience does this applicant have? Field name: foreign_experience Query: What college did they go to? Field name: college Remember only give me the field name after the "Field name:" This should be one word with no spaces. Use an underscore to separate words. Query: {query} Field name: """ field = query_gpt4(field_prompt) delete_query = f"DROP TABLE search_results" evaluate_query(schema, delete_query) create_query = f""" CREATE TABLE search_results ( doc_id INTEGER, {field} TEXT, {field}_citation TEXT ); """ print(create_query) evaluate_query(schema, create_query) for doc_id in doc_ids: print(f"Processing document {doc_id}") # print(get_text_from_id(doc_id)) response_dict = search_text(doc_id, query) insert_query = f""" INSERT INTO search_results (doc_id, {field}, {field}_citation) VALUES (?, ?, ?); """ data = ( doc_id, response_dict["answer"], response_dict["citation"] ) print(insert_query) evaluate_query_blind(schema, insert_query, data)
[ "Assistant is acting as an agent that will search through a document for the answer to a request.", "\n You are acting as an agent that will search through a document for the answer to a request. I will now give you the document.\n Document: \"PLACEHOLDER\"\n Now, I will give you the request.\n Request: \"PLACEHOLDER\"\n Given the passage and the request, you must give the verbatim citation from the given passage which satisfies the request. If the information is not explicitly shown in the text just put \"None\". Make sure your answer is in this format:\n {\n \"answer\": \"<YOUR ANSWER>\",\n \"citation\": \"<YOUR CITATION>\",\n }\n\n I will now give you an example so that you can learn how to do this task. If you are given the following document:\n Document: \"ADULT EDUCATION INSTRUCTOR\n Experience\n Company Name City , State Adult Education Instructor 08/2016 to Current Developed a diploma program that fit the needs of the community,\n continues to work with the community and wants to see the students succeed move on into either industry or collegeÂ\n Company Name City , State Agriculture/Credit Recovery Teacher 08/2000 to Current\n Planned and conducted activities for a balanced program of instruction, demonstration, and work time that provided students with\n opportunities to observe, question, and investigate.\n Goal Setting Established clear objectives for all lessons/projects and communicated with students, achieving a total understanding of grading\n rubric and overall class expectations.\"\n and you are given the following request:\n Request: \"What was the title of their most recent job?\"\n Then, your answer should be:\n {\n \"answer\": \"Adult Education Instructor\",\n \"citation\": \"Company Name City , State Adult Education Instructor 08/2016 to Current Developed a diploma program that fit the needs of the community,\n continues to work with the community and wants to see the students succeed move on into either industry or collegeÂ\"\n }\n\n Here's another example:\n Request: \"Show me their accounting experience.\"\n Then, your answer should be:\n {\n \"answer\": \"None\",\n \"citation\": \"None\">\n }\n\n Only give the answer in the format that I told you. Do not say anything else extra other than the answer. Do not act as if you are a human. Act as if you are the raw output for a query. Give only the first instance of the answer even if multiple parts are relevant\n ", "\n Given the query, give me the name of the column that would store the answer to it in a SQL table. Here are a few examples:\n\n Query: Show me how this applicant has demostrates diversity.\n Field name: diversity\n\n Query: What foreign experience does this applicant have?\n Field name: foreign_experience\n\n Query: What college did they go to?\n Field name: college\n\n Remember only give me the field name after the \"Field name:\" This should be one word with no spaces. Use an underscore to separate words.\n\n Query: PLACEHOLDER\n Field name:\n " ]
2024-01-10
idrori/mathQ
code~few-shot.py
import openai import pandas as pd import time import argparse import os openai.api_key = os.getenv('OpenAI_API_Key') courses_to_few_shot = ['18.01', '18.02', '18.03', '6.042', '18.05', '18.06', 'COMS3251'] MATH_sections_to_few_shot = ['MATH_Algebra', 'MATH_Counting_&_Probability', 'MATH_Intermediate_Algebra', 'MATH_Number_Theory', 'MATH_Prealgebra', 'MATH_Precalculus'] questions_per_course = 25 questions_per_MATH_section = 15 parser = argparse.ArgumentParser() # if an argument is passed in as True, we do it parser.add_argument("--Codex_Few_Shot") parser.add_argument("--GPT3_CoT_One_Shot") parser.add_argument("--Do_MATH") parser.add_argument("--Do_Courses") args = parser.parse_args() #Will use this many few-shot examples if possible: (if fewer are solved, use as many as possible) few_shot_examples_desired = 5 codex_engine = "code-davinci-002" gpt3_engine = "text-davinci-002" engine_temperature = 0 engine_topP = 0 few_shot_max_tokens = 256 gpt3_CoT_max_tokens = 1000 codex_time_delay = 3 gpt3_time_delay = 1 CoT = "Let's think step by step." def execute_few_shot(courses, questions_per): """ Runs few-shot on questions_per questions for each course in courses. """ for course in courses: course_location = course + ' results.csv' #initializing new columns in csv results = pd.read_csv(course_location) results['Few-Shot Input'] = '' results['Few-Shot Output'] = '' results['Few-Shot Evaluation'] = '' results.to_csv(course_location, index=False) for i in range(questions_per): k = few_shot_examples_desired #correct via zero-shot: if results.iloc[i]['Zero-Shot Evaluation'] == 1: print('no few shot needed for ' + course + ' question ' + str(i+1)) few_shot_input = 'n/a' few_shot_output = 'n/a' #incorrect via zero-shot: elif results.iloc[i]['Zero-Shot Evaluation'] == 0: few_shot_input = '' print('doing few-shot for ' + course + ' question ' + str(i+1) + '...') for closest in results.iloc[i]["Most Similar Questions"].strip('][').split(', '): closest_index = int(closest) - 1 if results.iloc[closest_index]['Zero-Shot Evaluation'] == 1 and k > 0: few_shot_input += results.iloc[closest_index]['Codex Input'] few_shot_input += results.iloc[closest_index]['Codex Output']+'\n\n' k -= 1 few_shot_input += results.iloc[i]['Codex Input'] start = time.time() time.sleep(codex_time_delay) #to avoid an openai.error.RateLimitError few_shot_output = openai.Completion.create(engine = codex_engine, prompt = few_shot_input, max_tokens = few_shot_max_tokens, temperature = engine_temperature, top_p = engine_topP)['choices'][0]['text'] print('Codex API call time: ' + str(time.time()-start) + '\n') #columns not properly labelled with 1's and 0's: else: print('''A Question not labeled 1 for correct or 0 for incorrect was detected. You must go back and label all Codex Zero-Shot questions as correct or incorrect''') raise ValueError results.loc[i, 'Few-Shot Input'] = few_shot_input results.loc[i, 'Few-Shot Output'] = few_shot_output results.to_csv(course_location, index=False) def execute_GPT3_CoT_one_shot(courses, questions_per): """ Runs one-shot CoT on questions_per questions for each course in courses. """ for course in courses: course_location = course + ' results.csv' #initializing new columns in csv results = pd.read_csv(course_location) results['GPT-3 CoT Few-Shot Input'] = '' results['GPT-3 CoT Few-Shot Output'] = '' results['GPT-3 CoT Few-Show Evaluation'] = '' results.to_csv(course_location, index=False) for i in range(questions_per): closest_index = int(results.iloc[i]["Most Similar Questions"].strip('][').split(', ')[0]) - 1 similar_question = results.iloc[closest_index]["Original Question"] similar_answer = results.iloc[closest_index]["Actual Solution"] original_question = results.iloc[i]["Original Question"] print("Running GPT-3 CoT one-shot on " + course + ' question ' + str(i+1) + '...') start = time.time() time.sleep(gpt3_time_delay) #to avoid an openai.error.RateLimitError gpt3_CoT_input = 'Q: ' + similar_question + '\nA: ' + str(similar_answer) + '\n\nQ: ' + original_question + "\nA: " + CoT gpt3_CoT_output = openai.Completion.create(engine = gpt3_engine, prompt = gpt3_CoT_input, max_tokens = gpt3_CoT_max_tokens, temperature = engine_temperature, top_p = engine_topP)['choices'][0]['text'] print('GPT-3 API call time: ' + str(time.time()-start) + '\n') results.loc[i, 'GPT-3 CoT Few-Shot Input'] = gpt3_CoT_input results.loc[i, 'GPT-3 CoT Few-Shot Output'] = gpt3_CoT_output results.to_csv(course_location, index=False) if __name__ == "__main__": if args.Do_Courses: if args.Codex_Few_Shot: execute_few_shot(courses_to_few_shot, questions_per_course) if args.GPT3_CoT_One_Shot: execute_GPT3_CoT_one_shot(courses_to_few_shot, questions_per_course) if args.Do_MATH: if args.Codex_Few_Shot: execute_few_shot(MATH_sections_to_few_shot, questions_per_MATH_section) if args.GPT3_CoT_One_Shot: execute_GPT3_CoT_one_shot(MATH_sections_to_few_shot, questions_per_MATH_section)
[]
2024-01-10
idrori/mathQ
code~zero-shot.py
import os import openai import json import pandas as pd import time import argparse from embedding import get_embeddings, get_most_similar parser = argparse.ArgumentParser() # if an argument is passed in as True, we do it parser.add_argument("--Codex") parser.add_argument("--Explain") parser.add_argument("--GPT3") parser.add_argument("--GPT3_CoT") parser.add_argument("--Do_MATH") parser.add_argument("--Do_Courses") args = parser.parse_args() column_labels = ['Question', 'Original Question', 'Actual Solution'] if args.Codex == 'True': column_labels += ['Codex Input', 'Codex Output', 'Zero-Shot Evaluation'] if args.Explain == 'True' and args.Codex == 'True': column_labels += ['Codex Explanation Input', 'Codex Explanation'] if args.GPT3 == 'True': column_labels += ['GPT-3 Output', 'GPT-3 Evaluation'] if args.GPT3_CoT == 'True': column_labels += ['GPT-3 CoT Input', 'GPT-3 CoT Output', 'GPT-3 CoT Evaluation'] column_labels += ['Most Similar Questions'] openai.api_key = os.getenv('OpenAI_API_Key') courses_to_zero_shot = ['18.01', '18.02', '18.03', '6.042', '18.05', '18.06', 'COMS3251'] MATH_sections_to_zero_shot = ['MATH_Algebra', 'MATH_Counting_&_Probability', 'MATH_Intermediate_Algebra', 'MATH_Number_Theory', 'MATH_Prealgebra', 'MATH_Precalculus'] questions_per_course = 25 questions_per_MATH_section = 15 codex_engine = "code-davinci-002" gpt3_engine = "text-davinci-002" engine_temperature = 0 engine_topP = 0 zero_shot_max_tokens = 256 explanation_max_tokens = 150 gpt3_max_tokens = 200 gpt3_CoT_max_tokens = 1000 codex_time_delay = 3 gpt3_time_delay = 1 #locations of embeddings and which indexes refer to which questions courses_embeddings_location = 'code/course_embeddings.json' courses_embeddings_indexes = {'18.01':[0, 24], '18.02':[25, 49], '18.03':[50, 74], '6.042': [75,99], '18.05':[100, 124], '18.06':[125, 149], 'COMS3251':[150,174]} MATH_embeddings_location = 'code/MATH_embeddings.json' MATH_embeddings_indexes = {'MATH_Algebra':[0, 14], 'MATH_Counting_&_Probability':[15, 29], 'MATH_Intermediate_Algebra':[30, 44], 'MATH_Number_Theory':[45, 59], 'MATH_Prealgebra':[60, 74], 'MATH_Precalculus':[75, 89]} # for prompt formatting: docstring_front = '''"""\n''' docstring_back = '''\n"""\n''' context_array = ['write a program', 'using sympy', 'using simulations'] prompt_prefix = 'that answers the following question:' explanation_suffix = "\n\n'''\nHere's what the above code is doing:\n1." CoT = "Let's think step by step." def execute_zero_shot(courses, questions_per, embeddings_location, embeddings_indexes): """ Runs zero-shot on questions_per questions for each course in courses. An individual CSV file of the results is made for each course in courses. The embeddings for all of the questions for all of the courses in courses are located in embeddings_location. """ all_embeddings = get_embeddings(embeddings_location) for course in courses: course_embeddings = all_embeddings[embeddings_indexes[course][0]:embeddings_indexes[course][1]+1] questions = [] answers = [] for num in range(1, questions_per + 1): if num < 10: q_num = '0' + str(num) else: q_num = str(num) json_location = './Data/' + course.split('_')[0] + '/' + course + '_Question_' + q_num + '.json' with open(json_location, 'r') as f: data = json.load(f) raw_question = data['Original question'] answer_to_question = data['Program solution'] questions.append(raw_question) answers.append(answer_to_question) rows = [] for i in range(questions_per): question = i + 1 original_question = questions[i] question_answer = answers[i] row = [question, original_question, question_answer] print('Running Zero-Shot on ' + course + ' question ' + str(i+1) + '...') start = time.time() if args.Codex == 'True': time.sleep(codex_time_delay) #to avoid an openai.error.RateLimitError codex_input = docstring_front + context_array[0] + ' ' + prompt_prefix + ' ' + questions[i] + docstring_back codex_output = openai.Completion.create(engine = codex_engine, prompt = codex_input, max_tokens = zero_shot_max_tokens, temperature = engine_temperature, top_p = engine_topP)['choices'][0]['text'] row += [codex_input, codex_output, ''] if args.Explain == 'True' and args.Codex == 'True': time.sleep(codex_time_delay) #to avoid an openai.error.RateLimitError explanation_input = codex_input + codex_output + explanation_suffix explanation_output = openai.Completion.create(engine = codex_engine, prompt = explanation_input, max_tokens = explanation_max_tokens, temperature = engine_temperature, top_p = engine_topP)['choices'][0]['text'] row += [explanation_input, explanation_output] if args.GPT3 == 'True': time.sleep(gpt3_time_delay) #to avoid an openai.error.RateLimitError gpt3_output = openai.Completion.create(engine = gpt3_engine, prompt = original_question, max_tokens = gpt3_max_tokens, temperature = engine_temperature, top_p = engine_topP)['choices'][0]['text'] row += [gpt3_output, ''] if args.GPT3_CoT == 'True': time.sleep(gpt3_time_delay) #to avoid an openai.error.RateLimitError gpt3_CoT_input = 'Q: ' + original_question + "\nA: " + CoT gpt3_CoT_output = openai.Completion.create(engine = gpt3_engine, prompt = gpt3_CoT_input, max_tokens = gpt3_CoT_max_tokens, temperature = engine_temperature, top_p = engine_topP)['choices'][0]['text'] row += [gpt3_CoT_input, gpt3_CoT_output, ''] most_similar_questions = get_most_similar(course_embeddings,i) row += [most_similar_questions] end = time.time() print('API call time: ' + str(end-start) + '\n') rows.append(row) info = pd.DataFrame(rows, columns=column_labels) course_results_location = course + ' results.csv' info.to_csv(course_results_location, index=False) if __name__ == "__main__": #zero-shot step for courses: if args.Do_Courses == 'True': execute_zero_shot(courses_to_zero_shot, questions_per_course, courses_embeddings_location, courses_embeddings_indexes) #zero-shot step for MATH benchmark: if args.Do_MATH == 'True': execute_zero_shot(MATH_sections_to_zero_shot, questions_per_MATH_section, MATH_embeddings_location, MATH_embeddings_indexes)
[ "Q: PLACEHOLDER\nA: Let's think step by step.", "that answers the following question:", "docstring_front + context_array[0] + ' ' + prompt_prefix + ' ' + questions[i] + docstring_back", "codex_input869fde5b-8af1-45be-aeaf-4b8c7c1b0a0dPLACEHOLDER\n\n'''\nHere's what the above code is doing:\n1." ]
2024-01-10
jannerm/ray
rllib~examples~env~cliff_walking_wall_env.py
import gym from gym import spaces ACTION_UP = 0 ACTION_RIGHT = 1 ACTION_DOWN = 2 ACTION_LEFT = 3 class CliffWalkingWallEnv(gym.Env): """Modified version of the CliffWalking environment from OpenAI Gym with walls instead of a cliff. ### Description The board is a 4x12 matrix, with (using NumPy matrix indexing): - [3, 0] or obs==36 as the start at bottom-left - [3, 11] or obs==47 as the goal at bottom-right - [3, 1..10] or obs==37...46 as the cliff at bottom-center An episode terminates when the agent reaches the goal. ### Actions There are 4 discrete deterministic actions: - 0: move up - 1: move right - 2: move down - 3: move left You can also use the constants ACTION_UP, ACTION_RIGHT, ... defined above. ### Observations There are 3x12 + 2 possible states, not including the walls. If an action would move an agent into one of the walls, it simply stays in the same position. ### Reward Each time step incurs -1 reward, except reaching the goal which gives +10 reward. """ def __init__(self, seed=42) -> None: self.observation_space = spaces.Discrete(48) self.action_space = spaces.Discrete(4) self.observation_space.seed(seed) self.action_space.seed(seed) def reset(self): self.position = 36 return self.position def step(self, action): x = self.position // 12 y = self.position % 12 # UP if action == ACTION_UP: x = max(x - 1, 0) # RIGHT elif action == ACTION_RIGHT: if self.position != 36: y = min(y + 1, 11) # DOWN elif action == ACTION_DOWN: if self.position < 25 or self.position > 34: x = min(x + 1, 3) # LEFT elif action == ACTION_LEFT: if self.position != 47: y = max(y - 1, 0) else: raise ValueError(f"action {action} not in {self.action_space}") self.position = x * 12 + y done = self.position == 47 reward = -1 if not done else 10 return self.position, reward, done, {}
[]
2024-01-10
levy9527/rag-utils
qa_splitter.py
import logging import os import sys from datetime import datetime from typing import List, AnyStr import uuid import hashlib import argparse import openai import chromadb from chromadb import Settings from chromadb.utils import embedding_functions from dotenv import load_dotenv import tiktoken import re TRUE = 'true' load_dotenv() AZURE_API_VERSION = '2023-07-01-preview' OPENAI_API_TYPE = 'azure' OPENAI_API_BASE = os.getenv("AZURE_OPENAI_ENDPOINT") OPENAI_API_KEY = os.getenv("AZURE_OPENAI_KEY") MAX_TOKENS = 4096 def main(): logging.basicConfig(level=logging.INFO) #print(os.environ) parser = argparse.ArgumentParser() # Add the positional argument for the filename (required) parser.add_argument("filename", help="markdown file to be split") # Add the optional argument for the delimiter parser.add_argument("--delimiter", help="Specify the delimiter string") args = parser.parse_args() filename = args.filename delimiter = args.delimiter if delimiter is None: print("delimiter is not specified. example: --delimiter=问题:") sys.exit(0) logging.info('opening file...') with open(filename, 'r', encoding='utf-8') as f: lines = f.readlines() regrouped_lines = regroup_by_delimiter(lines, delimiter) # 针对QA,特殊处理 is_keyword_search = TRUE answers = list(map(lambda x: '', range(len(regrouped_lines)))) chunks = [] if is_keyword_search == TRUE: logging.info('special chunking: is_keyword_search') chunks = list(map(lambda x: trim(x[0], delimiter), regrouped_lines)) answers = list(map(lambda x: "".join(line for line in x[1:]), regrouped_lines)) else: logging.info("common chunking") chunks = list(map(lambda x: "".join(line for line in x), regrouped_lines)) client = get_chroma() collection = get_collection(client) # TODO need solution to work around this: what if exceed token limit? for index, chunk in enumerate(chunks): num = num_tokens_from_string(chunk) # check token if num > MAX_TOKENS: logging.info(f"strlen exceed token limit: {num}") sys.exit(1) else: logging.info('put data into chroma...') # 为什么用 uuid? 因为不能批量操作(数据太多),则必须考虑失败重试、重复插入的情况,此时 hash 生成的 id 是稳定的。 # 当然,这也引入了 hash 冲突的风险,sha224 概率上足够了,如果冲突了,把无法插入的文本修改一下,再重新插入。 collection.upsert( documents=[chunk], metadatas=[{"source": os.path.splitext(filename)[0], 'index': index, 'is_keyword_search': is_keyword_search, 'answer': answers[index], }], ids=[get_hash(chunk)] ) logging.info("job done!") def trim(s, delimiter): ''' remove delimiter and line feed ''' sub = re.sub(delimiter, '', s) return sub.replace('\n', '').strip() def num_tokens_from_string(string: str, encoding_name="cl100k_base") -> int: """Returns the number of tokens in a text string.""" encoding = tiktoken.get_encoding(encoding_name) num_tokens = len(encoding.encode(string)) logging.info(f"Token count: {num_tokens}") return num_tokens def regroup_by_delimiter(lines: List[AnyStr], delimiter: str): logging.info('regroup_by_delimiter, {}'.format(delimiter)) ''' now only support split by line which startswith delimiter. 以QA问答为例,返回一个二维数组[[QA1], [QA2]]。QA格式示例:[这是问题\n,这是答案的1行\n,这是答案的2行\n] ''' result = [] subgroup = [] for line in lines: if line.startswith(delimiter): if subgroup: result.append(subgroup) subgroup = [line] else: subgroup.append(line) if subgroup: result.append(subgroup) return result def get_embedding(text, model="text-embedding-ada-002"): logging.info('getting embeddings...') openai.api_type = OPENAI_API_TYPE openai.api_version = AZURE_API_VERSION openai.api_base = os.getenv("AZURE_OPENAI_ENDPOINT") # Your Azure OpenAI resource's endpoint value. openai.api_key = os.getenv("AZURE_OPENAI_KEY") text = text.replace("\n", " ") return openai.embeddings.create(input = [text], model=model).data[0].embedding def get_chroma(host="10.201.0.32", port="8080"): return chromadb.HttpClient(host, port, settings=Settings(allow_reset=True)) def get_collection(client): metadata = { "create_by": "levy", "create_date": datetime.now().strftime("%Y-%m-%d %H:%M:%S"), } collection = client.get_or_create_collection('deinsight', metadata=metadata, embedding_function=embedding_functions.OpenAIEmbeddingFunction( api_key=OPENAI_API_KEY, api_base=OPENAI_API_BASE, api_type="azure", api_version=AZURE_API_VERSION, model_name="text-embedding-ada-002") ) logging.info(collection) return collection def get_uuid(): random_uuid = uuid.uuid4() return str(random_uuid) def get_hash(content): hash_object = hashlib.sha224() # Convert the content to bytes and update the hash object hash_object.update(content.encode('utf-8')) # Get the hexadecimal representation of the hash hash_value = hash_object.hexdigest() return hash_value if __name__ == '__main__': main()
[]
2024-01-10
blakepuls/tiktok-video-generator
src~utils~story.py
import openai import json import os from dotenv import load_dotenv load_dotenv() openai.api_key = os.getenv("OPENAI_API_KEY") def generate_story(topic=None): print("Generating story...") prompt = """ Generate a compelling personal narrative that simulates a story one might share in profound conversation. The delivery should feel candid and authentic, as if recounted by an ordinary individual about a significant episode in their life. The language can be informal, mirroring everyday dialogue. Adhere to the protagonist's gender provided. The story must tackle an intriguing or challenging topic—something more profound than the run-of-the-mill life experiences. Think of scenarios that might spark lively debates on platforms like AITA on Reddit, or narratives that tug at heartstrings, culminating in an unexpected turn of events. Guideline for your narrative: - The topic should incite curiosity and engagement. - The narrative should be captivating and unique, far from mundane. - Avoid personal interjections, let the story unfold by itself. - Initiate with an engaging, casual title like, "How I narrowly... " or "Why I'll never again... " - Craft the narrative to feel intimate and immediate, akin to a gripping short story on a Reddit thread. - Don't include summaries or explanations at the end. You may conclude with a brief one-liner reaction, if desired. - Title should be crafted as a complete sentence. Please format your response in JSON with the properties 'title', 'content', 'gender' (either 'male' or 'female'), and 'description'. Ensure to escape the quotes by adding a backslash before them. For instance, if your title is "How I narrowly... ", it should be formatted as \"How I narrowly... \". Refrain from using newline characters such as \n. """ # Check if a topic is provided and append to paragraph if true if topic: prompt += f"\nBase the story off this topic: {topic}" completion = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=[{"role": "user", "content": prompt}] ) # Extract the generated story story = completion.choices[0].message.content # Parse the JSON output story_dict = json.loads(story) # Extract the title, content, and description title = story_dict.get("title") content = story_dict.get("content") description = story_dict.get("description") gender = story_dict.get("gender").lower() # Remove escape characters as well as \n and \t title = title.replace("\\", "").replace("\n", " ").replace("\t", "") content = content.replace("\\", "").replace("\n", " ").replace("\t", "") description = description.replace("\\", "").replace("\n", " ").replace("\t", "") return title, content, description, gender
[ "\n Generate a compelling personal narrative that simulates a story one might share in profound conversation. The delivery should feel candid and authentic, as if recounted by an ordinary individual about a significant episode in their life. The language can be informal, mirroring everyday dialogue.\n\n Adhere to the protagonist's gender provided. \n\n The story must tackle an intriguing or challenging topic—something more profound than the run-of-the-mill life experiences. Think of scenarios that might spark lively debates on platforms like AITA on Reddit, or narratives that tug at heartstrings, culminating in an unexpected turn of events.\n\n Guideline for your narrative:\n\n - The topic should incite curiosity and engagement.\n - The narrative should be captivating and unique, far from mundane.\n - Avoid personal interjections, let the story unfold by itself.\n - Initiate with an engaging, casual title like, \"How I narrowly... \" or \"Why I'll never again... \"\n - Craft the narrative to feel intimate and immediate, akin to a gripping short story on a Reddit thread.\n - Don't include summaries or explanations at the end. You may conclude with a brief one-liner reaction, if desired.\n - Title should be crafted as a complete sentence.\n\n Please format your response in JSON with the properties 'title', 'content', 'gender' (either 'male' or 'female'), and 'description'. Ensure to escape the quotes by adding a backslash before them. For instance, if your title is \"How I narrowly... \", it should be formatted as \"How I narrowly... \". Refrain from using newline characters such as \n.\n ", "\nBase the story off this topic: PLACEHOLDER" ]