url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
input
stringlengths
73
2.09M
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.T_14_16
[537, 1]
[550, 53]
case axiom_ h1_phi h1_1 => apply IsDeduct.axiom_ exact h1_1
F : Formula Ξ” Ξ“ : Set Formula h2 : βˆ€ H ∈ Ξ“, IsDeduct Ξ” H h1_phi : Formula h1_1 : IsAxiom h1_phi ⊒ IsDeduct Ξ” h1_phi
no goals
Please generate a tactic in lean4 to solve the state. STATE: F : Formula Ξ” Ξ“ : Set Formula h2 : βˆ€ H ∈ Ξ“, IsDeduct Ξ” H h1_phi : Formula h1_1 : IsAxiom h1_phi ⊒ IsDeduct Ξ” h1_phi TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.T_14_16
[537, 1]
[550, 53]
case assume_ h1_phi h1_1 => exact h2 h1_phi h1_1
F : Formula Ξ” Ξ“ : Set Formula h2 : βˆ€ H ∈ Ξ“, IsDeduct Ξ” H h1_phi : Formula h1_1 : h1_phi ∈ Ξ“ ⊒ IsDeduct Ξ” h1_phi
no goals
Please generate a tactic in lean4 to solve the state. STATE: F : Formula Ξ” Ξ“ : Set Formula h2 : βˆ€ H ∈ Ξ“, IsDeduct Ξ” H h1_phi : Formula h1_1 : h1_phi ∈ Ξ“ ⊒ IsDeduct Ξ” h1_phi TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.T_14_16
[537, 1]
[550, 53]
case mp_ h1_phi h1_psi _ _ h1_ih_1 h1_ih_2 => exact IsDeduct.mp_ h1_phi h1_psi h1_ih_1 h1_ih_2
F : Formula Ξ” Ξ“ : Set Formula h2 : βˆ€ H ∈ Ξ“, IsDeduct Ξ” H h1_phi h1_psi : Formula a✝¹ : IsDeduct Ξ“ (h1_phi.imp_ h1_psi) a✝ : IsDeduct Ξ“ h1_phi h1_ih_1 : IsDeduct Ξ” (h1_phi.imp_ h1_psi) h1_ih_2 : IsDeduct Ξ” h1_phi ⊒ IsDeduct Ξ” h1_psi
no goals
Please generate a tactic in lean4 to solve the state. STATE: F : Formula Ξ” Ξ“ : Set Formula h2 : βˆ€ H ∈ Ξ“, IsDeduct Ξ” H h1_phi h1_psi : Formula a✝¹ : IsDeduct Ξ“ (h1_phi.imp_ h1_psi) a✝ : IsDeduct Ξ“ h1_phi h1_ih_1 : IsDeduct Ξ” (h1_phi.imp_ h1_psi) h1_ih_2 : IsDeduct Ξ” h1_phi ⊒ IsDeduct Ξ” h1_psi TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.T_14_16
[537, 1]
[550, 53]
apply IsDeduct.axiom_
F : Formula Ξ” Ξ“ : Set Formula h2 : βˆ€ H ∈ Ξ“, IsDeduct Ξ” H h1_phi : Formula h1_1 : IsAxiom h1_phi ⊒ IsDeduct Ξ” h1_phi
case a F : Formula Ξ” Ξ“ : Set Formula h2 : βˆ€ H ∈ Ξ“, IsDeduct Ξ” H h1_phi : Formula h1_1 : IsAxiom h1_phi ⊒ IsAxiom h1_phi
Please generate a tactic in lean4 to solve the state. STATE: F : Formula Ξ” Ξ“ : Set Formula h2 : βˆ€ H ∈ Ξ“, IsDeduct Ξ” H h1_phi : Formula h1_1 : IsAxiom h1_phi ⊒ IsDeduct Ξ” h1_phi TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.T_14_16
[537, 1]
[550, 53]
exact h1_1
case a F : Formula Ξ” Ξ“ : Set Formula h2 : βˆ€ H ∈ Ξ“, IsDeduct Ξ” H h1_phi : Formula h1_1 : IsAxiom h1_phi ⊒ IsAxiom h1_phi
no goals
Please generate a tactic in lean4 to solve the state. STATE: case a F : Formula Ξ” Ξ“ : Set Formula h2 : βˆ€ H ∈ Ξ“, IsDeduct Ξ” H h1_phi : Formula h1_1 : IsAxiom h1_phi ⊒ IsAxiom h1_phi TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.T_14_16
[537, 1]
[550, 53]
exact h2 h1_phi h1_1
F : Formula Ξ” Ξ“ : Set Formula h2 : βˆ€ H ∈ Ξ“, IsDeduct Ξ” H h1_phi : Formula h1_1 : h1_phi ∈ Ξ“ ⊒ IsDeduct Ξ” h1_phi
no goals
Please generate a tactic in lean4 to solve the state. STATE: F : Formula Ξ” Ξ“ : Set Formula h2 : βˆ€ H ∈ Ξ“, IsDeduct Ξ” H h1_phi : Formula h1_1 : h1_phi ∈ Ξ“ ⊒ IsDeduct Ξ” h1_phi TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.T_14_16
[537, 1]
[550, 53]
exact IsDeduct.mp_ h1_phi h1_psi h1_ih_1 h1_ih_2
F : Formula Ξ” Ξ“ : Set Formula h2 : βˆ€ H ∈ Ξ“, IsDeduct Ξ” H h1_phi h1_psi : Formula a✝¹ : IsDeduct Ξ“ (h1_phi.imp_ h1_psi) a✝ : IsDeduct Ξ“ h1_phi h1_ih_1 : IsDeduct Ξ” (h1_phi.imp_ h1_psi) h1_ih_2 : IsDeduct Ξ” h1_phi ⊒ IsDeduct Ξ” h1_psi
no goals
Please generate a tactic in lean4 to solve the state. STATE: F : Formula Ξ” Ξ“ : Set Formula h2 : βˆ€ H ∈ Ξ“, IsDeduct Ξ” H h1_phi h1_psi : Formula a✝¹ : IsDeduct Ξ“ (h1_phi.imp_ h1_psi) a✝ : IsDeduct Ξ“ h1_phi h1_ih_1 : IsDeduct Ξ” (h1_phi.imp_ h1_psi) h1_ih_2 : IsDeduct Ξ” h1_phi ⊒ IsDeduct Ξ” h1_psi TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.C_14_17
[553, 1]
[563, 28]
simp only [IsProof] at h2
Q : Formula Ξ“ : Set Formula h1 : IsDeduct Ξ“ Q h2 : βˆ€ P ∈ Ξ“, IsProof P ⊒ IsProof Q
Q : Formula Ξ“ : Set Formula h1 : IsDeduct Ξ“ Q h2 : βˆ€ P ∈ Ξ“, IsDeduct βˆ… P ⊒ IsProof Q
Please generate a tactic in lean4 to solve the state. STATE: Q : Formula Ξ“ : Set Formula h1 : IsDeduct Ξ“ Q h2 : βˆ€ P ∈ Ξ“, IsProof P ⊒ IsProof Q TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.C_14_17
[553, 1]
[563, 28]
simp only [IsProof]
Q : Formula Ξ“ : Set Formula h1 : IsDeduct Ξ“ Q h2 : βˆ€ P ∈ Ξ“, IsDeduct βˆ… P ⊒ IsProof Q
Q : Formula Ξ“ : Set Formula h1 : IsDeduct Ξ“ Q h2 : βˆ€ P ∈ Ξ“, IsDeduct βˆ… P ⊒ IsDeduct βˆ… Q
Please generate a tactic in lean4 to solve the state. STATE: Q : Formula Ξ“ : Set Formula h1 : IsDeduct Ξ“ Q h2 : βˆ€ P ∈ Ξ“, IsDeduct βˆ… P ⊒ IsProof Q TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.C_14_17
[553, 1]
[563, 28]
exact T_14_16 Q βˆ… Ξ“ h1 h2
Q : Formula Ξ“ : Set Formula h1 : IsDeduct Ξ“ Q h2 : βˆ€ P ∈ Ξ“, IsDeduct βˆ… P ⊒ IsDeduct βˆ… Q
no goals
Please generate a tactic in lean4 to solve the state. STATE: Q : Formula Ξ“ : Set Formula h1 : IsDeduct Ξ“ Q h2 : βˆ€ P ∈ Ξ“, IsDeduct βˆ… P ⊒ IsDeduct βˆ… Q TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.eval_not
[566, 1]
[572, 32]
simp only [Formula.evalPrime]
P : Formula V : VarBoolAssignment ⊒ evalPrime V P.not_ ↔ Β¬evalPrime V P
no goals
Please generate a tactic in lean4 to solve the state. STATE: P : Formula V : VarBoolAssignment ⊒ evalPrime V P.not_ ↔ Β¬evalPrime V P TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.eval_imp
[575, 1]
[581, 32]
simp only [Formula.evalPrime]
P Q : Formula V : VarBoolAssignment ⊒ evalPrime V (P.imp_ Q) ↔ evalPrime V P β†’ evalPrime V Q
no goals
Please generate a tactic in lean4 to solve the state. STATE: P Q : Formula V : VarBoolAssignment ⊒ evalPrime V (P.imp_ Q) ↔ evalPrime V P β†’ evalPrime V Q TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.eval_false
[584, 1]
[589, 32]
simp only [Formula.evalPrime]
V : VarBoolAssignment ⊒ evalPrime V false_ ↔ False
no goals
Please generate a tactic in lean4 to solve the state. STATE: V : VarBoolAssignment ⊒ evalPrime V false_ ↔ False TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.eval_and
[592, 1]
[598, 32]
simp only [Formula.evalPrime]
P Q : Formula V : VarBoolAssignment ⊒ evalPrime V (P.and_ Q) ↔ evalPrime V P ∧ evalPrime V Q
no goals
Please generate a tactic in lean4 to solve the state. STATE: P Q : Formula V : VarBoolAssignment ⊒ evalPrime V (P.and_ Q) ↔ evalPrime V P ∧ evalPrime V Q TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.eval_or
[601, 1]
[607, 32]
simp only [Formula.evalPrime]
P Q : Formula V : VarBoolAssignment ⊒ evalPrime V (P.or_ Q) ↔ evalPrime V P ∨ evalPrime V Q
no goals
Please generate a tactic in lean4 to solve the state. STATE: P Q : Formula V : VarBoolAssignment ⊒ evalPrime V (P.or_ Q) ↔ evalPrime V P ∨ evalPrime V Q TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.eval_iff
[610, 1]
[616, 32]
simp only [Formula.evalPrime]
P Q : Formula V : VarBoolAssignment ⊒ evalPrime V (P.iff_ Q) ↔ (evalPrime V P ↔ evalPrime V Q)
no goals
Please generate a tactic in lean4 to solve the state. STATE: P Q : Formula V : VarBoolAssignment ⊒ evalPrime V (P.iff_ Q) ↔ (evalPrime V P ↔ evalPrime V Q) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.is_tauto_prop_true
[619, 1]
[624, 7]
simp only [Formula.IsTautoPrime]
⊒ true_.IsTautoPrime
⊒ βˆ€ (V : VarBoolAssignment), evalPrime V true_
Please generate a tactic in lean4 to solve the state. STATE: ⊒ true_.IsTautoPrime TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.is_tauto_prop_true
[619, 1]
[624, 7]
simp only [Formula.evalPrime]
⊒ βˆ€ (V : VarBoolAssignment), evalPrime V true_
⊒ VarBoolAssignment β†’ True
Please generate a tactic in lean4 to solve the state. STATE: ⊒ βˆ€ (V : VarBoolAssignment), evalPrime V true_ TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.is_tauto_prop_true
[619, 1]
[624, 7]
simp
⊒ VarBoolAssignment β†’ True
no goals
Please generate a tactic in lean4 to solve the state. STATE: ⊒ VarBoolAssignment β†’ True TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.is_tauto_prop_1
[627, 1]
[632, 8]
simp only [Formula.IsTautoPrime]
P Q : Formula ⊒ (P.imp_ (Q.imp_ P)).IsTautoPrime
P Q : Formula ⊒ βˆ€ (V : VarBoolAssignment), evalPrime V (P.imp_ (Q.imp_ P))
Please generate a tactic in lean4 to solve the state. STATE: P Q : Formula ⊒ (P.imp_ (Q.imp_ P)).IsTautoPrime TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.is_tauto_prop_1
[627, 1]
[632, 8]
tauto
P Q : Formula ⊒ βˆ€ (V : VarBoolAssignment), evalPrime V (P.imp_ (Q.imp_ P))
no goals
Please generate a tactic in lean4 to solve the state. STATE: P Q : Formula ⊒ βˆ€ (V : VarBoolAssignment), evalPrime V (P.imp_ (Q.imp_ P)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.is_tauto_prop_2
[635, 1]
[640, 8]
simp only [Formula.IsTautoPrime]
P Q R : Formula ⊒ ((P.imp_ (Q.imp_ R)).imp_ ((P.imp_ Q).imp_ (P.imp_ R))).IsTautoPrime
P Q R : Formula ⊒ βˆ€ (V : VarBoolAssignment), evalPrime V ((P.imp_ (Q.imp_ R)).imp_ ((P.imp_ Q).imp_ (P.imp_ R)))
Please generate a tactic in lean4 to solve the state. STATE: P Q R : Formula ⊒ ((P.imp_ (Q.imp_ R)).imp_ ((P.imp_ Q).imp_ (P.imp_ R))).IsTautoPrime TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.is_tauto_prop_2
[635, 1]
[640, 8]
tauto
P Q R : Formula ⊒ βˆ€ (V : VarBoolAssignment), evalPrime V ((P.imp_ (Q.imp_ R)).imp_ ((P.imp_ Q).imp_ (P.imp_ R)))
no goals
Please generate a tactic in lean4 to solve the state. STATE: P Q R : Formula ⊒ βˆ€ (V : VarBoolAssignment), evalPrime V ((P.imp_ (Q.imp_ R)).imp_ ((P.imp_ Q).imp_ (P.imp_ R))) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.is_tauto_prop_3
[643, 1]
[649, 8]
simp only [Formula.IsTautoPrime]
P Q : Formula ⊒ ((P.not_.imp_ Q.not_).imp_ (Q.imp_ P)).IsTautoPrime
P Q : Formula ⊒ βˆ€ (V : VarBoolAssignment), evalPrime V ((P.not_.imp_ Q.not_).imp_ (Q.imp_ P))
Please generate a tactic in lean4 to solve the state. STATE: P Q : Formula ⊒ ((P.not_.imp_ Q.not_).imp_ (Q.imp_ P)).IsTautoPrime TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.is_tauto_prop_3
[643, 1]
[649, 8]
simp only [eval_not, eval_imp]
P Q : Formula ⊒ βˆ€ (V : VarBoolAssignment), evalPrime V ((P.not_.imp_ Q.not_).imp_ (Q.imp_ P))
P Q : Formula ⊒ βˆ€ (V : VarBoolAssignment), (Β¬evalPrime V P β†’ Β¬evalPrime V Q) β†’ evalPrime V Q β†’ evalPrime V P
Please generate a tactic in lean4 to solve the state. STATE: P Q : Formula ⊒ βˆ€ (V : VarBoolAssignment), evalPrime V ((P.not_.imp_ Q.not_).imp_ (Q.imp_ P)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.is_tauto_prop_3
[643, 1]
[649, 8]
tauto
P Q : Formula ⊒ βˆ€ (V : VarBoolAssignment), (Β¬evalPrime V P β†’ Β¬evalPrime V Q) β†’ evalPrime V Q β†’ evalPrime V P
no goals
Please generate a tactic in lean4 to solve the state. STATE: P Q : Formula ⊒ βˆ€ (V : VarBoolAssignment), (Β¬evalPrime V P β†’ Β¬evalPrime V Q) β†’ evalPrime V Q β†’ evalPrime V P TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.is_tauto_mp
[652, 1]
[663, 8]
simp only [Formula.IsTautoPrime] at h1
P Q : Formula h1 : (P.imp_ Q).IsTautoPrime h2 : P.IsTautoPrime ⊒ Q.IsTautoPrime
P Q : Formula h1 : βˆ€ (V : VarBoolAssignment), evalPrime V (P.imp_ Q) h2 : P.IsTautoPrime ⊒ Q.IsTautoPrime
Please generate a tactic in lean4 to solve the state. STATE: P Q : Formula h1 : (P.imp_ Q).IsTautoPrime h2 : P.IsTautoPrime ⊒ Q.IsTautoPrime TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.is_tauto_mp
[652, 1]
[663, 8]
simp only [eval_imp] at h1
P Q : Formula h1 : βˆ€ (V : VarBoolAssignment), evalPrime V (P.imp_ Q) h2 : P.IsTautoPrime ⊒ Q.IsTautoPrime
P Q : Formula h2 : P.IsTautoPrime h1 : βˆ€ (V : VarBoolAssignment), evalPrime V P β†’ evalPrime V Q ⊒ Q.IsTautoPrime
Please generate a tactic in lean4 to solve the state. STATE: P Q : Formula h1 : βˆ€ (V : VarBoolAssignment), evalPrime V (P.imp_ Q) h2 : P.IsTautoPrime ⊒ Q.IsTautoPrime TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.is_tauto_mp
[652, 1]
[663, 8]
simp only [Formula.IsTautoPrime] at h2
P Q : Formula h2 : P.IsTautoPrime h1 : βˆ€ (V : VarBoolAssignment), evalPrime V P β†’ evalPrime V Q ⊒ Q.IsTautoPrime
P Q : Formula h2 : βˆ€ (V : VarBoolAssignment), evalPrime V P h1 : βˆ€ (V : VarBoolAssignment), evalPrime V P β†’ evalPrime V Q ⊒ Q.IsTautoPrime
Please generate a tactic in lean4 to solve the state. STATE: P Q : Formula h2 : P.IsTautoPrime h1 : βˆ€ (V : VarBoolAssignment), evalPrime V P β†’ evalPrime V Q ⊒ Q.IsTautoPrime TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.is_tauto_mp
[652, 1]
[663, 8]
tauto
P Q : Formula h2 : βˆ€ (V : VarBoolAssignment), evalPrime V P h1 : βˆ€ (V : VarBoolAssignment), evalPrime V P β†’ evalPrime V Q ⊒ Q.IsTautoPrime
no goals
Please generate a tactic in lean4 to solve the state. STATE: P Q : Formula h2 : βˆ€ (V : VarBoolAssignment), evalPrime V P h1 : βˆ€ (V : VarBoolAssignment), evalPrime V P β†’ evalPrime V Q ⊒ Q.IsTautoPrime TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.is_tauto_def_false
[666, 1]
[671, 8]
simp only [Formula.IsTautoPrime]
⊒ (false_.iff_ true_.not_).IsTautoPrime
⊒ βˆ€ (V : VarBoolAssignment), evalPrime V (false_.iff_ true_.not_)
Please generate a tactic in lean4 to solve the state. STATE: ⊒ (false_.iff_ true_.not_).IsTautoPrime TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.is_tauto_def_false
[666, 1]
[671, 8]
simp only [eval_not, eval_iff]
⊒ βˆ€ (V : VarBoolAssignment), evalPrime V (false_.iff_ true_.not_)
⊒ βˆ€ (V : VarBoolAssignment), evalPrime V false_ ↔ Β¬evalPrime V true_
Please generate a tactic in lean4 to solve the state. STATE: ⊒ βˆ€ (V : VarBoolAssignment), evalPrime V (false_.iff_ true_.not_) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.is_tauto_def_false
[666, 1]
[671, 8]
tauto
⊒ βˆ€ (V : VarBoolAssignment), evalPrime V false_ ↔ Β¬evalPrime V true_
no goals
Please generate a tactic in lean4 to solve the state. STATE: ⊒ βˆ€ (V : VarBoolAssignment), evalPrime V false_ ↔ Β¬evalPrime V true_ TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.is_tauto_def_and
[673, 1]
[679, 8]
simp only [Formula.IsTautoPrime]
P Q : Formula ⊒ ((P.and_ Q).iff_ (P.imp_ Q.not_).not_).IsTautoPrime
P Q : Formula ⊒ βˆ€ (V : VarBoolAssignment), evalPrime V ((P.and_ Q).iff_ (P.imp_ Q.not_).not_)
Please generate a tactic in lean4 to solve the state. STATE: P Q : Formula ⊒ ((P.and_ Q).iff_ (P.imp_ Q.not_).not_).IsTautoPrime TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.is_tauto_def_and
[673, 1]
[679, 8]
simp only [eval_and, eval_not, eval_imp, eval_iff]
P Q : Formula ⊒ βˆ€ (V : VarBoolAssignment), evalPrime V ((P.and_ Q).iff_ (P.imp_ Q.not_).not_)
P Q : Formula ⊒ βˆ€ (V : VarBoolAssignment), evalPrime V P ∧ evalPrime V Q ↔ Β¬(evalPrime V P β†’ Β¬evalPrime V Q)
Please generate a tactic in lean4 to solve the state. STATE: P Q : Formula ⊒ βˆ€ (V : VarBoolAssignment), evalPrime V ((P.and_ Q).iff_ (P.imp_ Q.not_).not_) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.is_tauto_def_and
[673, 1]
[679, 8]
tauto
P Q : Formula ⊒ βˆ€ (V : VarBoolAssignment), evalPrime V P ∧ evalPrime V Q ↔ Β¬(evalPrime V P β†’ Β¬evalPrime V Q)
no goals
Please generate a tactic in lean4 to solve the state. STATE: P Q : Formula ⊒ βˆ€ (V : VarBoolAssignment), evalPrime V P ∧ evalPrime V Q ↔ Β¬(evalPrime V P β†’ Β¬evalPrime V Q) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.is_tauto_def_or
[681, 1]
[687, 8]
simp only [Formula.IsTautoPrime]
P Q : Formula ⊒ ((P.or_ Q).iff_ (P.not_.imp_ Q)).IsTautoPrime
P Q : Formula ⊒ βˆ€ (V : VarBoolAssignment), evalPrime V ((P.or_ Q).iff_ (P.not_.imp_ Q))
Please generate a tactic in lean4 to solve the state. STATE: P Q : Formula ⊒ ((P.or_ Q).iff_ (P.not_.imp_ Q)).IsTautoPrime TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.is_tauto_def_or
[681, 1]
[687, 8]
simp only [eval_or, eval_not, eval_imp, eval_iff]
P Q : Formula ⊒ βˆ€ (V : VarBoolAssignment), evalPrime V ((P.or_ Q).iff_ (P.not_.imp_ Q))
P Q : Formula ⊒ βˆ€ (V : VarBoolAssignment), evalPrime V P ∨ evalPrime V Q ↔ Β¬evalPrime V P β†’ evalPrime V Q
Please generate a tactic in lean4 to solve the state. STATE: P Q : Formula ⊒ βˆ€ (V : VarBoolAssignment), evalPrime V ((P.or_ Q).iff_ (P.not_.imp_ Q)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.is_tauto_def_or
[681, 1]
[687, 8]
tauto
P Q : Formula ⊒ βˆ€ (V : VarBoolAssignment), evalPrime V P ∨ evalPrime V Q ↔ Β¬evalPrime V P β†’ evalPrime V Q
no goals
Please generate a tactic in lean4 to solve the state. STATE: P Q : Formula ⊒ βˆ€ (V : VarBoolAssignment), evalPrime V P ∨ evalPrime V Q ↔ Β¬evalPrime V P β†’ evalPrime V Q TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.is_tauto_def_iff
[689, 1]
[695, 8]
simp only [Formula.IsTautoPrime]
P Q : Formula ⊒ (((P.iff_ Q).imp_ ((P.imp_ Q).imp_ (Q.imp_ P).not_).not_).imp_ (((P.imp_ Q).imp_ (Q.imp_ P).not_).not_.imp_ (P.iff_ Q)).not_).not_.IsTautoPrime
P Q : Formula ⊒ βˆ€ (V : VarBoolAssignment), evalPrime V (((P.iff_ Q).imp_ ((P.imp_ Q).imp_ (Q.imp_ P).not_).not_).imp_ (((P.imp_ Q).imp_ (Q.imp_ P).not_).not_.imp_ (P.iff_ Q)).not_).not_
Please generate a tactic in lean4 to solve the state. STATE: P Q : Formula ⊒ (((P.iff_ Q).imp_ ((P.imp_ Q).imp_ (Q.imp_ P).not_).not_).imp_ (((P.imp_ Q).imp_ (Q.imp_ P).not_).not_.imp_ (P.iff_ Q)).not_).not_.IsTautoPrime TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.is_tauto_def_iff
[689, 1]
[695, 8]
simp only [eval_iff, eval_not, eval_imp]
P Q : Formula ⊒ βˆ€ (V : VarBoolAssignment), evalPrime V (((P.iff_ Q).imp_ ((P.imp_ Q).imp_ (Q.imp_ P).not_).not_).imp_ (((P.imp_ Q).imp_ (Q.imp_ P).not_).not_.imp_ (P.iff_ Q)).not_).not_
P Q : Formula ⊒ βˆ€ (V : VarBoolAssignment), Β¬(((evalPrime V P ↔ evalPrime V Q) β†’ Β¬((evalPrime V P β†’ evalPrime V Q) β†’ Β¬(evalPrime V Q β†’ evalPrime V P))) β†’ Β¬(Β¬((evalPrime V P β†’ evalPrime V Q) β†’ Β¬(evalPrime V Q β†’ evalPrime V P)) β†’ (evalPrime V P ↔ evalPrime V Q)))
Please generate a tactic in lean4 to solve the state. STATE: P Q : Formula ⊒ βˆ€ (V : VarBoolAssignment), evalPrime V (((P.iff_ Q).imp_ ((P.imp_ Q).imp_ (Q.imp_ P).not_).not_).imp_ (((P.imp_ Q).imp_ (Q.imp_ P).not_).not_.imp_ (P.iff_ Q)).not_).not_ TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.is_tauto_def_iff
[689, 1]
[695, 8]
tauto
P Q : Formula ⊒ βˆ€ (V : VarBoolAssignment), Β¬(((evalPrime V P ↔ evalPrime V Q) β†’ Β¬((evalPrime V P β†’ evalPrime V Q) β†’ Β¬(evalPrime V Q β†’ evalPrime V P))) β†’ Β¬(Β¬((evalPrime V P β†’ evalPrime V Q) β†’ Β¬(evalPrime V Q β†’ evalPrime V P)) β†’ (evalPrime V P ↔ evalPrime V Q)))
no goals
Please generate a tactic in lean4 to solve the state. STATE: P Q : Formula ⊒ βˆ€ (V : VarBoolAssignment), Β¬(((evalPrime V P ↔ evalPrime V Q) β†’ Β¬((evalPrime V P β†’ evalPrime V Q) β†’ Β¬(evalPrime V Q β†’ evalPrime V P))) β†’ Β¬(Β¬((evalPrime V P β†’ evalPrime V Q) β†’ Β¬(evalPrime V Q β†’ evalPrime V P)) β†’ (evalPrime V P ↔ evalPrime V Q))) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.mem_primeSet_isPrime
[731, 1]
[770, 32]
induction F
F F' : Formula h1 : F' ∈ F.primeSet ⊒ F'.IsPrime
case pred_const_ F' : Formula a✝¹ : PredName a✝ : List VarName h1 : F' ∈ (pred_const_ a✝¹ a✝).primeSet ⊒ F'.IsPrime case pred_var_ F' : Formula a✝¹ : PredName a✝ : List VarName h1 : F' ∈ (pred_var_ a✝¹ a✝).primeSet ⊒ F'.IsPrime case eq_ F' : Formula a✝¹ a✝ : VarName h1 : F' ∈ (eq_ a✝¹ a✝).primeSet ⊒ F'.IsPrime case true_ F' : Formula h1 : F' ∈ true_.primeSet ⊒ F'.IsPrime case false_ F' : Formula h1 : F' ∈ false_.primeSet ⊒ F'.IsPrime case not_ F' a✝ : Formula a_ih✝ : F' ∈ a✝.primeSet β†’ F'.IsPrime h1 : F' ∈ a✝.not_.primeSet ⊒ F'.IsPrime case imp_ F' a✝¹ a✝ : Formula a_ih✝¹ : F' ∈ a✝¹.primeSet β†’ F'.IsPrime a_ih✝ : F' ∈ a✝.primeSet β†’ F'.IsPrime h1 : F' ∈ (a✝¹.imp_ a✝).primeSet ⊒ F'.IsPrime case and_ F' a✝¹ a✝ : Formula a_ih✝¹ : F' ∈ a✝¹.primeSet β†’ F'.IsPrime a_ih✝ : F' ∈ a✝.primeSet β†’ F'.IsPrime h1 : F' ∈ (a✝¹.and_ a✝).primeSet ⊒ F'.IsPrime case or_ F' a✝¹ a✝ : Formula a_ih✝¹ : F' ∈ a✝¹.primeSet β†’ F'.IsPrime a_ih✝ : F' ∈ a✝.primeSet β†’ F'.IsPrime h1 : F' ∈ (a✝¹.or_ a✝).primeSet ⊒ F'.IsPrime case iff_ F' a✝¹ a✝ : Formula a_ih✝¹ : F' ∈ a✝¹.primeSet β†’ F'.IsPrime a_ih✝ : F' ∈ a✝.primeSet β†’ F'.IsPrime h1 : F' ∈ (a✝¹.iff_ a✝).primeSet ⊒ F'.IsPrime case forall_ F' : Formula a✝¹ : VarName a✝ : Formula a_ih✝ : F' ∈ a✝.primeSet β†’ F'.IsPrime h1 : F' ∈ (forall_ a✝¹ a✝).primeSet ⊒ F'.IsPrime case exists_ F' : Formula a✝¹ : VarName a✝ : Formula a_ih✝ : F' ∈ a✝.primeSet β†’ F'.IsPrime h1 : F' ∈ (exists_ a✝¹ a✝).primeSet ⊒ F'.IsPrime case def_ F' : Formula a✝¹ : DefName a✝ : List VarName h1 : F' ∈ (def_ a✝¹ a✝).primeSet ⊒ F'.IsPrime
Please generate a tactic in lean4 to solve the state. STATE: F F' : Formula h1 : F' ∈ F.primeSet ⊒ F'.IsPrime TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.mem_primeSet_isPrime
[731, 1]
[770, 32]
case pred_const_ | pred_var_ => simp only [Formula.primeSet] at h1 simp at h1 subst h1 simp only [Formula.IsPrime]
F' : Formula a✝¹ : PredName a✝ : List VarName h1 : F' ∈ (pred_var_ a✝¹ a✝).primeSet ⊒ F'.IsPrime
no goals
Please generate a tactic in lean4 to solve the state. STATE: F' : Formula a✝¹ : PredName a✝ : List VarName h1 : F' ∈ (pred_var_ a✝¹ a✝).primeSet ⊒ F'.IsPrime TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.mem_primeSet_isPrime
[731, 1]
[770, 32]
case true_ | false_ => simp only [Formula.primeSet] at h1 simp at h1
F' : Formula h1 : F' ∈ false_.primeSet ⊒ F'.IsPrime
no goals
Please generate a tactic in lean4 to solve the state. STATE: F' : Formula h1 : F' ∈ false_.primeSet ⊒ F'.IsPrime TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.mem_primeSet_isPrime
[731, 1]
[770, 32]
case eq_ x y => simp only [Formula.primeSet] at h1 simp at h1 subst h1 simp only [Formula.IsPrime]
F' : Formula x y : VarName h1 : F' ∈ (eq_ x y).primeSet ⊒ F'.IsPrime
no goals
Please generate a tactic in lean4 to solve the state. STATE: F' : Formula x y : VarName h1 : F' ∈ (eq_ x y).primeSet ⊒ F'.IsPrime TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.mem_primeSet_isPrime
[731, 1]
[770, 32]
case not_ phi phi_ih => simp only [Formula.primeSet] at h1 exact phi_ih h1
F' phi : Formula phi_ih : F' ∈ phi.primeSet β†’ F'.IsPrime h1 : F' ∈ phi.not_.primeSet ⊒ F'.IsPrime
no goals
Please generate a tactic in lean4 to solve the state. STATE: F' phi : Formula phi_ih : F' ∈ phi.primeSet β†’ F'.IsPrime h1 : F' ∈ phi.not_.primeSet ⊒ F'.IsPrime TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.mem_primeSet_isPrime
[731, 1]
[770, 32]
case imp_ phi psi phi_ih psi_ih | and_ phi psi phi_ih psi_ih | or_ phi psi phi_ih psi_ih | iff_ phi psi phi_ih psi_ih => simp only [Formula.primeSet] at h1 simp at h1 tauto
F' phi psi : Formula phi_ih : F' ∈ phi.primeSet β†’ F'.IsPrime psi_ih : F' ∈ psi.primeSet β†’ F'.IsPrime h1 : F' ∈ (phi.iff_ psi).primeSet ⊒ F'.IsPrime
no goals
Please generate a tactic in lean4 to solve the state. STATE: F' phi psi : Formula phi_ih : F' ∈ phi.primeSet β†’ F'.IsPrime psi_ih : F' ∈ psi.primeSet β†’ F'.IsPrime h1 : F' ∈ (phi.iff_ psi).primeSet ⊒ F'.IsPrime TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.mem_primeSet_isPrime
[731, 1]
[770, 32]
case forall_ x phi | exists_ x phi => simp only [Formula.primeSet] at h1 simp at h1 subst h1 simp only [Formula.IsPrime]
F' : Formula a✝ : VarName x : Formula phi : F' ∈ x.primeSet β†’ F'.IsPrime h1 : F' ∈ (exists_ a✝ x).primeSet ⊒ F'.IsPrime
no goals
Please generate a tactic in lean4 to solve the state. STATE: F' : Formula a✝ : VarName x : Formula phi : F' ∈ x.primeSet β†’ F'.IsPrime h1 : F' ∈ (exists_ a✝ x).primeSet ⊒ F'.IsPrime TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.mem_primeSet_isPrime
[731, 1]
[770, 32]
case def_ => simp only [Formula.primeSet] at h1 simp at h1 subst h1 simp only [Formula.IsPrime]
F' : Formula a✝¹ : DefName a✝ : List VarName h1 : F' ∈ (def_ a✝¹ a✝).primeSet ⊒ F'.IsPrime
no goals
Please generate a tactic in lean4 to solve the state. STATE: F' : Formula a✝¹ : DefName a✝ : List VarName h1 : F' ∈ (def_ a✝¹ a✝).primeSet ⊒ F'.IsPrime TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.mem_primeSet_isPrime
[731, 1]
[770, 32]
simp only [Formula.primeSet] at h1
F' : Formula a✝¹ : PredName a✝ : List VarName h1 : F' ∈ (pred_var_ a✝¹ a✝).primeSet ⊒ F'.IsPrime
F' : Formula a✝¹ : PredName a✝ : List VarName h1 : F' ∈ {pred_var_ a✝¹ a✝} ⊒ F'.IsPrime
Please generate a tactic in lean4 to solve the state. STATE: F' : Formula a✝¹ : PredName a✝ : List VarName h1 : F' ∈ (pred_var_ a✝¹ a✝).primeSet ⊒ F'.IsPrime TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.mem_primeSet_isPrime
[731, 1]
[770, 32]
simp at h1
F' : Formula a✝¹ : PredName a✝ : List VarName h1 : F' ∈ {pred_var_ a✝¹ a✝} ⊒ F'.IsPrime
F' : Formula a✝¹ : PredName a✝ : List VarName h1 : F' = pred_var_ a✝¹ a✝ ⊒ F'.IsPrime
Please generate a tactic in lean4 to solve the state. STATE: F' : Formula a✝¹ : PredName a✝ : List VarName h1 : F' ∈ {pred_var_ a✝¹ a✝} ⊒ F'.IsPrime TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.mem_primeSet_isPrime
[731, 1]
[770, 32]
subst h1
F' : Formula a✝¹ : PredName a✝ : List VarName h1 : F' = pred_var_ a✝¹ a✝ ⊒ F'.IsPrime
a✝¹ : PredName a✝ : List VarName ⊒ (pred_var_ a✝¹ a✝).IsPrime
Please generate a tactic in lean4 to solve the state. STATE: F' : Formula a✝¹ : PredName a✝ : List VarName h1 : F' = pred_var_ a✝¹ a✝ ⊒ F'.IsPrime TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.mem_primeSet_isPrime
[731, 1]
[770, 32]
simp only [Formula.IsPrime]
a✝¹ : PredName a✝ : List VarName ⊒ (pred_var_ a✝¹ a✝).IsPrime
no goals
Please generate a tactic in lean4 to solve the state. STATE: a✝¹ : PredName a✝ : List VarName ⊒ (pred_var_ a✝¹ a✝).IsPrime TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.mem_primeSet_isPrime
[731, 1]
[770, 32]
simp only [Formula.primeSet] at h1
F' : Formula h1 : F' ∈ false_.primeSet ⊒ F'.IsPrime
F' : Formula h1 : F' ∈ βˆ… ⊒ F'.IsPrime
Please generate a tactic in lean4 to solve the state. STATE: F' : Formula h1 : F' ∈ false_.primeSet ⊒ F'.IsPrime TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.mem_primeSet_isPrime
[731, 1]
[770, 32]
simp at h1
F' : Formula h1 : F' ∈ βˆ… ⊒ F'.IsPrime
no goals
Please generate a tactic in lean4 to solve the state. STATE: F' : Formula h1 : F' ∈ βˆ… ⊒ F'.IsPrime TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.mem_primeSet_isPrime
[731, 1]
[770, 32]
simp only [Formula.primeSet] at h1
F' : Formula x y : VarName h1 : F' ∈ (eq_ x y).primeSet ⊒ F'.IsPrime
F' : Formula x y : VarName h1 : F' ∈ {eq_ x y} ⊒ F'.IsPrime
Please generate a tactic in lean4 to solve the state. STATE: F' : Formula x y : VarName h1 : F' ∈ (eq_ x y).primeSet ⊒ F'.IsPrime TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.mem_primeSet_isPrime
[731, 1]
[770, 32]
simp at h1
F' : Formula x y : VarName h1 : F' ∈ {eq_ x y} ⊒ F'.IsPrime
F' : Formula x y : VarName h1 : F' = eq_ x y ⊒ F'.IsPrime
Please generate a tactic in lean4 to solve the state. STATE: F' : Formula x y : VarName h1 : F' ∈ {eq_ x y} ⊒ F'.IsPrime TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.mem_primeSet_isPrime
[731, 1]
[770, 32]
subst h1
F' : Formula x y : VarName h1 : F' = eq_ x y ⊒ F'.IsPrime
x y : VarName ⊒ (eq_ x y).IsPrime
Please generate a tactic in lean4 to solve the state. STATE: F' : Formula x y : VarName h1 : F' = eq_ x y ⊒ F'.IsPrime TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.mem_primeSet_isPrime
[731, 1]
[770, 32]
simp only [Formula.IsPrime]
x y : VarName ⊒ (eq_ x y).IsPrime
no goals
Please generate a tactic in lean4 to solve the state. STATE: x y : VarName ⊒ (eq_ x y).IsPrime TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.mem_primeSet_isPrime
[731, 1]
[770, 32]
simp only [Formula.primeSet] at h1
F' phi : Formula phi_ih : F' ∈ phi.primeSet β†’ F'.IsPrime h1 : F' ∈ phi.not_.primeSet ⊒ F'.IsPrime
F' phi : Formula phi_ih : F' ∈ phi.primeSet β†’ F'.IsPrime h1 : F' ∈ phi.primeSet ⊒ F'.IsPrime
Please generate a tactic in lean4 to solve the state. STATE: F' phi : Formula phi_ih : F' ∈ phi.primeSet β†’ F'.IsPrime h1 : F' ∈ phi.not_.primeSet ⊒ F'.IsPrime TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.mem_primeSet_isPrime
[731, 1]
[770, 32]
exact phi_ih h1
F' phi : Formula phi_ih : F' ∈ phi.primeSet β†’ F'.IsPrime h1 : F' ∈ phi.primeSet ⊒ F'.IsPrime
no goals
Please generate a tactic in lean4 to solve the state. STATE: F' phi : Formula phi_ih : F' ∈ phi.primeSet β†’ F'.IsPrime h1 : F' ∈ phi.primeSet ⊒ F'.IsPrime TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.mem_primeSet_isPrime
[731, 1]
[770, 32]
simp only [Formula.primeSet] at h1
F' phi psi : Formula phi_ih : F' ∈ phi.primeSet β†’ F'.IsPrime psi_ih : F' ∈ psi.primeSet β†’ F'.IsPrime h1 : F' ∈ (phi.iff_ psi).primeSet ⊒ F'.IsPrime
F' phi psi : Formula phi_ih : F' ∈ phi.primeSet β†’ F'.IsPrime psi_ih : F' ∈ psi.primeSet β†’ F'.IsPrime h1 : F' ∈ phi.primeSet βˆͺ psi.primeSet ⊒ F'.IsPrime
Please generate a tactic in lean4 to solve the state. STATE: F' phi psi : Formula phi_ih : F' ∈ phi.primeSet β†’ F'.IsPrime psi_ih : F' ∈ psi.primeSet β†’ F'.IsPrime h1 : F' ∈ (phi.iff_ psi).primeSet ⊒ F'.IsPrime TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.mem_primeSet_isPrime
[731, 1]
[770, 32]
simp at h1
F' phi psi : Formula phi_ih : F' ∈ phi.primeSet β†’ F'.IsPrime psi_ih : F' ∈ psi.primeSet β†’ F'.IsPrime h1 : F' ∈ phi.primeSet βˆͺ psi.primeSet ⊒ F'.IsPrime
F' phi psi : Formula phi_ih : F' ∈ phi.primeSet β†’ F'.IsPrime psi_ih : F' ∈ psi.primeSet β†’ F'.IsPrime h1 : F' ∈ phi.primeSet ∨ F' ∈ psi.primeSet ⊒ F'.IsPrime
Please generate a tactic in lean4 to solve the state. STATE: F' phi psi : Formula phi_ih : F' ∈ phi.primeSet β†’ F'.IsPrime psi_ih : F' ∈ psi.primeSet β†’ F'.IsPrime h1 : F' ∈ phi.primeSet βˆͺ psi.primeSet ⊒ F'.IsPrime TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.mem_primeSet_isPrime
[731, 1]
[770, 32]
tauto
F' phi psi : Formula phi_ih : F' ∈ phi.primeSet β†’ F'.IsPrime psi_ih : F' ∈ psi.primeSet β†’ F'.IsPrime h1 : F' ∈ phi.primeSet ∨ F' ∈ psi.primeSet ⊒ F'.IsPrime
no goals
Please generate a tactic in lean4 to solve the state. STATE: F' phi psi : Formula phi_ih : F' ∈ phi.primeSet β†’ F'.IsPrime psi_ih : F' ∈ psi.primeSet β†’ F'.IsPrime h1 : F' ∈ phi.primeSet ∨ F' ∈ psi.primeSet ⊒ F'.IsPrime TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.mem_primeSet_isPrime
[731, 1]
[770, 32]
simp only [Formula.primeSet] at h1
F' : Formula a✝ : VarName x : Formula phi : F' ∈ x.primeSet β†’ F'.IsPrime h1 : F' ∈ (exists_ a✝ x).primeSet ⊒ F'.IsPrime
F' : Formula a✝ : VarName x : Formula phi : F' ∈ x.primeSet β†’ F'.IsPrime h1 : F' ∈ {exists_ a✝ x} ⊒ F'.IsPrime
Please generate a tactic in lean4 to solve the state. STATE: F' : Formula a✝ : VarName x : Formula phi : F' ∈ x.primeSet β†’ F'.IsPrime h1 : F' ∈ (exists_ a✝ x).primeSet ⊒ F'.IsPrime TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.mem_primeSet_isPrime
[731, 1]
[770, 32]
simp at h1
F' : Formula a✝ : VarName x : Formula phi : F' ∈ x.primeSet β†’ F'.IsPrime h1 : F' ∈ {exists_ a✝ x} ⊒ F'.IsPrime
F' : Formula a✝ : VarName x : Formula phi : F' ∈ x.primeSet β†’ F'.IsPrime h1 : F' = exists_ a✝ x ⊒ F'.IsPrime
Please generate a tactic in lean4 to solve the state. STATE: F' : Formula a✝ : VarName x : Formula phi : F' ∈ x.primeSet β†’ F'.IsPrime h1 : F' ∈ {exists_ a✝ x} ⊒ F'.IsPrime TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.mem_primeSet_isPrime
[731, 1]
[770, 32]
subst h1
F' : Formula a✝ : VarName x : Formula phi : F' ∈ x.primeSet β†’ F'.IsPrime h1 : F' = exists_ a✝ x ⊒ F'.IsPrime
a✝ : VarName x : Formula phi : exists_ a✝ x ∈ x.primeSet β†’ (exists_ a✝ x).IsPrime ⊒ (exists_ a✝ x).IsPrime
Please generate a tactic in lean4 to solve the state. STATE: F' : Formula a✝ : VarName x : Formula phi : F' ∈ x.primeSet β†’ F'.IsPrime h1 : F' = exists_ a✝ x ⊒ F'.IsPrime TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.mem_primeSet_isPrime
[731, 1]
[770, 32]
simp only [Formula.IsPrime]
a✝ : VarName x : Formula phi : exists_ a✝ x ∈ x.primeSet β†’ (exists_ a✝ x).IsPrime ⊒ (exists_ a✝ x).IsPrime
no goals
Please generate a tactic in lean4 to solve the state. STATE: a✝ : VarName x : Formula phi : exists_ a✝ x ∈ x.primeSet β†’ (exists_ a✝ x).IsPrime ⊒ (exists_ a✝ x).IsPrime TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.mem_primeSet_isPrime
[731, 1]
[770, 32]
simp only [Formula.primeSet] at h1
F' : Formula a✝¹ : DefName a✝ : List VarName h1 : F' ∈ (def_ a✝¹ a✝).primeSet ⊒ F'.IsPrime
F' : Formula a✝¹ : DefName a✝ : List VarName h1 : F' ∈ {def_ a✝¹ a✝} ⊒ F'.IsPrime
Please generate a tactic in lean4 to solve the state. STATE: F' : Formula a✝¹ : DefName a✝ : List VarName h1 : F' ∈ (def_ a✝¹ a✝).primeSet ⊒ F'.IsPrime TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.mem_primeSet_isPrime
[731, 1]
[770, 32]
simp at h1
F' : Formula a✝¹ : DefName a✝ : List VarName h1 : F' ∈ {def_ a✝¹ a✝} ⊒ F'.IsPrime
F' : Formula a✝¹ : DefName a✝ : List VarName h1 : F' = def_ a✝¹ a✝ ⊒ F'.IsPrime
Please generate a tactic in lean4 to solve the state. STATE: F' : Formula a✝¹ : DefName a✝ : List VarName h1 : F' ∈ {def_ a✝¹ a✝} ⊒ F'.IsPrime TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.mem_primeSet_isPrime
[731, 1]
[770, 32]
subst h1
F' : Formula a✝¹ : DefName a✝ : List VarName h1 : F' = def_ a✝¹ a✝ ⊒ F'.IsPrime
a✝¹ : DefName a✝ : List VarName ⊒ (def_ a✝¹ a✝).IsPrime
Please generate a tactic in lean4 to solve the state. STATE: F' : Formula a✝¹ : DefName a✝ : List VarName h1 : F' = def_ a✝¹ a✝ ⊒ F'.IsPrime TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.mem_primeSet_isPrime
[731, 1]
[770, 32]
simp only [Formula.IsPrime]
a✝¹ : DefName a✝ : List VarName ⊒ (def_ a✝¹ a✝).IsPrime
no goals
Please generate a tactic in lean4 to solve the state. STATE: a✝¹ : DefName a✝ : List VarName ⊒ (def_ a✝¹ a✝).IsPrime TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.L_15_7
[773, 1]
[916, 10]
subst h2
F F' : Formula Ξ”_U : Set Formula V : VarBoolAssignment Ξ”_U' : Set Formula h1 : ↑F.primeSet βŠ† Ξ”_U h2 : Ξ”_U' = evalPrimeFfToNot V '' Ξ”_U h3 : F' = evalPrimeFfToNot V F ⊒ IsDeduct Ξ”_U' F'
F F' : Formula Ξ”_U : Set Formula V : VarBoolAssignment h1 : ↑F.primeSet βŠ† Ξ”_U h3 : F' = evalPrimeFfToNot V F ⊒ IsDeduct (evalPrimeFfToNot V '' Ξ”_U) F'
Please generate a tactic in lean4 to solve the state. STATE: F F' : Formula Ξ”_U : Set Formula V : VarBoolAssignment Ξ”_U' : Set Formula h1 : ↑F.primeSet βŠ† Ξ”_U h2 : Ξ”_U' = evalPrimeFfToNot V '' Ξ”_U h3 : F' = evalPrimeFfToNot V F ⊒ IsDeduct Ξ”_U' F' TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.L_15_7
[773, 1]
[916, 10]
subst h3
F F' : Formula Ξ”_U : Set Formula V : VarBoolAssignment h1 : ↑F.primeSet βŠ† Ξ”_U h3 : F' = evalPrimeFfToNot V F ⊒ IsDeduct (evalPrimeFfToNot V '' Ξ”_U) F'
F : Formula Ξ”_U : Set Formula V : VarBoolAssignment h1 : ↑F.primeSet βŠ† Ξ”_U ⊒ IsDeduct (evalPrimeFfToNot V '' Ξ”_U) (evalPrimeFfToNot V F)
Please generate a tactic in lean4 to solve the state. STATE: F F' : Formula Ξ”_U : Set Formula V : VarBoolAssignment h1 : ↑F.primeSet βŠ† Ξ”_U h3 : F' = evalPrimeFfToNot V F ⊒ IsDeduct (evalPrimeFfToNot V '' Ξ”_U) F' TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.L_15_7
[773, 1]
[916, 10]
induction F
F : Formula Ξ”_U : Set Formula V : VarBoolAssignment h1 : ↑F.primeSet βŠ† Ξ”_U ⊒ IsDeduct (evalPrimeFfToNot V '' Ξ”_U) (evalPrimeFfToNot V F)
case pred_const_ Ξ”_U : Set Formula V : VarBoolAssignment a✝¹ : PredName a✝ : List VarName h1 : ↑(pred_const_ a✝¹ a✝).primeSet βŠ† Ξ”_U ⊒ IsDeduct (evalPrimeFfToNot V '' Ξ”_U) (evalPrimeFfToNot V (pred_const_ a✝¹ a✝)) case pred_var_ Ξ”_U : Set Formula V : VarBoolAssignment a✝¹ : PredName a✝ : List VarName h1 : ↑(pred_var_ a✝¹ a✝).primeSet βŠ† Ξ”_U ⊒ IsDeduct (evalPrimeFfToNot V '' Ξ”_U) (evalPrimeFfToNot V (pred_var_ a✝¹ a✝)) case eq_ Ξ”_U : Set Formula V : VarBoolAssignment a✝¹ a✝ : VarName h1 : ↑(eq_ a✝¹ a✝).primeSet βŠ† Ξ”_U ⊒ IsDeduct (evalPrimeFfToNot V '' Ξ”_U) (evalPrimeFfToNot V (eq_ a✝¹ a✝)) case true_ Ξ”_U : Set Formula V : VarBoolAssignment h1 : ↑true_.primeSet βŠ† Ξ”_U ⊒ IsDeduct (evalPrimeFfToNot V '' Ξ”_U) (evalPrimeFfToNot V true_) case false_ Ξ”_U : Set Formula V : VarBoolAssignment h1 : ↑false_.primeSet βŠ† Ξ”_U ⊒ IsDeduct (evalPrimeFfToNot V '' Ξ”_U) (evalPrimeFfToNot V false_) case not_ Ξ”_U : Set Formula V : VarBoolAssignment a✝ : Formula a_ih✝ : ↑a✝.primeSet βŠ† Ξ”_U β†’ IsDeduct (evalPrimeFfToNot V '' Ξ”_U) (evalPrimeFfToNot V a✝) h1 : ↑a✝.not_.primeSet βŠ† Ξ”_U ⊒ IsDeduct (evalPrimeFfToNot V '' Ξ”_U) (evalPrimeFfToNot V a✝.not_) case imp_ Ξ”_U : Set Formula V : VarBoolAssignment a✝¹ a✝ : Formula a_ih✝¹ : ↑a✝¹.primeSet βŠ† Ξ”_U β†’ IsDeduct (evalPrimeFfToNot V '' Ξ”_U) (evalPrimeFfToNot V a✝¹) a_ih✝ : ↑a✝.primeSet βŠ† Ξ”_U β†’ IsDeduct (evalPrimeFfToNot V '' Ξ”_U) (evalPrimeFfToNot V a✝) h1 : ↑(a✝¹.imp_ a✝).primeSet βŠ† Ξ”_U ⊒ IsDeduct (evalPrimeFfToNot V '' Ξ”_U) (evalPrimeFfToNot V (a✝¹.imp_ a✝)) case and_ Ξ”_U : Set Formula V : VarBoolAssignment a✝¹ a✝ : Formula a_ih✝¹ : ↑a✝¹.primeSet βŠ† Ξ”_U β†’ IsDeduct (evalPrimeFfToNot V '' Ξ”_U) (evalPrimeFfToNot V a✝¹) a_ih✝ : ↑a✝.primeSet βŠ† Ξ”_U β†’ IsDeduct (evalPrimeFfToNot V '' Ξ”_U) (evalPrimeFfToNot V a✝) h1 : ↑(a✝¹.and_ a✝).primeSet βŠ† Ξ”_U ⊒ IsDeduct (evalPrimeFfToNot V '' Ξ”_U) (evalPrimeFfToNot V (a✝¹.and_ a✝)) case or_ Ξ”_U : Set Formula V : VarBoolAssignment a✝¹ a✝ : Formula a_ih✝¹ : ↑a✝¹.primeSet βŠ† Ξ”_U β†’ IsDeduct (evalPrimeFfToNot V '' Ξ”_U) (evalPrimeFfToNot V a✝¹) a_ih✝ : ↑a✝.primeSet βŠ† Ξ”_U β†’ IsDeduct (evalPrimeFfToNot V '' Ξ”_U) (evalPrimeFfToNot V a✝) h1 : ↑(a✝¹.or_ a✝).primeSet βŠ† Ξ”_U ⊒ IsDeduct (evalPrimeFfToNot V '' Ξ”_U) (evalPrimeFfToNot V (a✝¹.or_ a✝)) case iff_ Ξ”_U : Set Formula V : VarBoolAssignment a✝¹ a✝ : Formula a_ih✝¹ : ↑a✝¹.primeSet βŠ† Ξ”_U β†’ IsDeduct (evalPrimeFfToNot V '' Ξ”_U) (evalPrimeFfToNot V a✝¹) a_ih✝ : ↑a✝.primeSet βŠ† Ξ”_U β†’ IsDeduct (evalPrimeFfToNot V '' Ξ”_U) (evalPrimeFfToNot V a✝) h1 : ↑(a✝¹.iff_ a✝).primeSet βŠ† Ξ”_U ⊒ IsDeduct (evalPrimeFfToNot V '' Ξ”_U) (evalPrimeFfToNot V (a✝¹.iff_ a✝)) case forall_ Ξ”_U : Set Formula V : VarBoolAssignment a✝¹ : VarName a✝ : Formula a_ih✝ : ↑a✝.primeSet βŠ† Ξ”_U β†’ IsDeduct (evalPrimeFfToNot V '' Ξ”_U) (evalPrimeFfToNot V a✝) h1 : ↑(forall_ a✝¹ a✝).primeSet βŠ† Ξ”_U ⊒ IsDeduct (evalPrimeFfToNot V '' Ξ”_U) (evalPrimeFfToNot V (forall_ a✝¹ a✝)) case exists_ Ξ”_U : Set Formula V : VarBoolAssignment a✝¹ : VarName a✝ : Formula a_ih✝ : ↑a✝.primeSet βŠ† Ξ”_U β†’ IsDeduct (evalPrimeFfToNot V '' Ξ”_U) (evalPrimeFfToNot V a✝) h1 : ↑(exists_ a✝¹ a✝).primeSet βŠ† Ξ”_U ⊒ IsDeduct (evalPrimeFfToNot V '' Ξ”_U) (evalPrimeFfToNot V (exists_ a✝¹ a✝)) case def_ Ξ”_U : Set Formula V : VarBoolAssignment a✝¹ : DefName a✝ : List VarName h1 : ↑(def_ a✝¹ a✝).primeSet βŠ† Ξ”_U ⊒ IsDeduct (evalPrimeFfToNot V '' Ξ”_U) (evalPrimeFfToNot V (def_ a✝¹ a✝))
Please generate a tactic in lean4 to solve the state. STATE: F : Formula Ξ”_U : Set Formula V : VarBoolAssignment h1 : ↑F.primeSet βŠ† Ξ”_U ⊒ IsDeduct (evalPrimeFfToNot V '' Ξ”_U) (evalPrimeFfToNot V F) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.L_15_7
[773, 1]
[916, 10]
case pred_const_ X xs => let F := pred_const_ X xs simp only [Formula.primeSet] at h1 simp at h1 simp only [evalPrimeFfToNot] simp only [Formula.evalPrime] apply IsDeduct.assume_ simp apply Exists.intro F tauto
Ξ”_U : Set Formula V : VarBoolAssignment X : PredName xs : List VarName h1 : ↑(pred_const_ X xs).primeSet βŠ† Ξ”_U ⊒ IsDeduct (evalPrimeFfToNot V '' Ξ”_U) (evalPrimeFfToNot V (pred_const_ X xs))
no goals
Please generate a tactic in lean4 to solve the state. STATE: Ξ”_U : Set Formula V : VarBoolAssignment X : PredName xs : List VarName h1 : ↑(pred_const_ X xs).primeSet βŠ† Ξ”_U ⊒ IsDeduct (evalPrimeFfToNot V '' Ξ”_U) (evalPrimeFfToNot V (pred_const_ X xs)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.L_15_7
[773, 1]
[916, 10]
case pred_var_ X xs => let F := pred_var_ X xs simp only [Formula.primeSet] at h1 simp at h1 simp only [evalPrimeFfToNot] simp only [Formula.evalPrime] apply IsDeduct.assume_ simp apply Exists.intro F tauto
Ξ”_U : Set Formula V : VarBoolAssignment X : PredName xs : List VarName h1 : ↑(pred_var_ X xs).primeSet βŠ† Ξ”_U ⊒ IsDeduct (evalPrimeFfToNot V '' Ξ”_U) (evalPrimeFfToNot V (pred_var_ X xs))
no goals
Please generate a tactic in lean4 to solve the state. STATE: Ξ”_U : Set Formula V : VarBoolAssignment X : PredName xs : List VarName h1 : ↑(pred_var_ X xs).primeSet βŠ† Ξ”_U ⊒ IsDeduct (evalPrimeFfToNot V '' Ξ”_U) (evalPrimeFfToNot V (pred_var_ X xs)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.L_15_7
[773, 1]
[916, 10]
case eq_ x y => let F := eq_ x y simp only [Formula.primeSet] at h1 simp at h1 simp only [evalPrimeFfToNot] simp only [Formula.evalPrime] apply IsDeduct.assume_ simp apply Exists.intro F tauto
Ξ”_U : Set Formula V : VarBoolAssignment x y : VarName h1 : ↑(eq_ x y).primeSet βŠ† Ξ”_U ⊒ IsDeduct (evalPrimeFfToNot V '' Ξ”_U) (evalPrimeFfToNot V (eq_ x y))
no goals
Please generate a tactic in lean4 to solve the state. STATE: Ξ”_U : Set Formula V : VarBoolAssignment x y : VarName h1 : ↑(eq_ x y).primeSet βŠ† Ξ”_U ⊒ IsDeduct (evalPrimeFfToNot V '' Ξ”_U) (evalPrimeFfToNot V (eq_ x y)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.L_15_7
[773, 1]
[916, 10]
case true_ => apply IsDeduct.axiom_ apply IsAxiom.prop_true_
Ξ”_U : Set Formula V : VarBoolAssignment h1 : ↑true_.primeSet βŠ† Ξ”_U ⊒ IsDeduct (evalPrimeFfToNot V '' Ξ”_U) (evalPrimeFfToNot V true_)
no goals
Please generate a tactic in lean4 to solve the state. STATE: Ξ”_U : Set Formula V : VarBoolAssignment h1 : ↑true_.primeSet βŠ† Ξ”_U ⊒ IsDeduct (evalPrimeFfToNot V '' Ξ”_U) (evalPrimeFfToNot V true_) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.L_15_7
[773, 1]
[916, 10]
case false_ => simp only [Formula.primeSet] at h1 simp at h1 simp only [evalPrimeFfToNot] simp only [Formula.evalPrime] simp sorry
Ξ”_U : Set Formula V : VarBoolAssignment h1 : ↑false_.primeSet βŠ† Ξ”_U ⊒ IsDeduct (evalPrimeFfToNot V '' Ξ”_U) (evalPrimeFfToNot V false_)
no goals
Please generate a tactic in lean4 to solve the state. STATE: Ξ”_U : Set Formula V : VarBoolAssignment h1 : ↑false_.primeSet βŠ† Ξ”_U ⊒ IsDeduct (evalPrimeFfToNot V '' Ξ”_U) (evalPrimeFfToNot V false_) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.L_15_7
[773, 1]
[916, 10]
case not_ phi phi_ih => simp only [Formula.primeSet] at h1 simp only [evalPrimeFfToNot] at phi_ih simp only [evalPrimeFfToNot] simp only [evalPrime] simp split_ifs case _ c1 => simp only [c1] at phi_ih simp at phi_ih apply IsDeduct.mp_ phi apply proof_imp_deduct apply T_14_6 exact phi_ih h1 case _ c1 => simp only [c1] at phi_ih simp at phi_ih exact phi_ih h1
Ξ”_U : Set Formula V : VarBoolAssignment phi : Formula phi_ih : ↑phi.primeSet βŠ† Ξ”_U β†’ IsDeduct (evalPrimeFfToNot V '' Ξ”_U) (evalPrimeFfToNot V phi) h1 : ↑phi.not_.primeSet βŠ† Ξ”_U ⊒ IsDeduct (evalPrimeFfToNot V '' Ξ”_U) (evalPrimeFfToNot V phi.not_)
no goals
Please generate a tactic in lean4 to solve the state. STATE: Ξ”_U : Set Formula V : VarBoolAssignment phi : Formula phi_ih : ↑phi.primeSet βŠ† Ξ”_U β†’ IsDeduct (evalPrimeFfToNot V '' Ξ”_U) (evalPrimeFfToNot V phi) h1 : ↑phi.not_.primeSet βŠ† Ξ”_U ⊒ IsDeduct (evalPrimeFfToNot V '' Ξ”_U) (evalPrimeFfToNot V phi.not_) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.L_15_7
[773, 1]
[916, 10]
case forall_ x phi phi_ih => let F := forall_ x phi simp only [Formula.primeSet] at h1 simp at h1 simp only [evalPrimeFfToNot] simp only [Formula.evalPrime] apply IsDeduct.assume_ simp apply Exists.intro F tauto
Ξ”_U : Set Formula V : VarBoolAssignment x : VarName phi : Formula phi_ih : ↑phi.primeSet βŠ† Ξ”_U β†’ IsDeduct (evalPrimeFfToNot V '' Ξ”_U) (evalPrimeFfToNot V phi) h1 : ↑(forall_ x phi).primeSet βŠ† Ξ”_U ⊒ IsDeduct (evalPrimeFfToNot V '' Ξ”_U) (evalPrimeFfToNot V (forall_ x phi))
no goals
Please generate a tactic in lean4 to solve the state. STATE: Ξ”_U : Set Formula V : VarBoolAssignment x : VarName phi : Formula phi_ih : ↑phi.primeSet βŠ† Ξ”_U β†’ IsDeduct (evalPrimeFfToNot V '' Ξ”_U) (evalPrimeFfToNot V phi) h1 : ↑(forall_ x phi).primeSet βŠ† Ξ”_U ⊒ IsDeduct (evalPrimeFfToNot V '' Ξ”_U) (evalPrimeFfToNot V (forall_ x phi)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.L_15_7
[773, 1]
[916, 10]
case def_ X xs => let F := def_ X xs simp only [Formula.primeSet] at h1 simp at h1 simp only [evalPrimeFfToNot] simp only [Formula.evalPrime] apply IsDeduct.assume_ simp apply Exists.intro F tauto
Ξ”_U : Set Formula V : VarBoolAssignment X : DefName xs : List VarName h1 : ↑(def_ X xs).primeSet βŠ† Ξ”_U ⊒ IsDeduct (evalPrimeFfToNot V '' Ξ”_U) (evalPrimeFfToNot V (def_ X xs))
no goals
Please generate a tactic in lean4 to solve the state. STATE: Ξ”_U : Set Formula V : VarBoolAssignment X : DefName xs : List VarName h1 : ↑(def_ X xs).primeSet βŠ† Ξ”_U ⊒ IsDeduct (evalPrimeFfToNot V '' Ξ”_U) (evalPrimeFfToNot V (def_ X xs)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.L_15_7
[773, 1]
[916, 10]
case and_ | or_ | iff_ | exists_ => sorry
Ξ”_U : Set Formula V : VarBoolAssignment a✝¹ : VarName a✝ : Formula a_ih✝ : ↑a✝.primeSet βŠ† Ξ”_U β†’ IsDeduct (evalPrimeFfToNot V '' Ξ”_U) (evalPrimeFfToNot V a✝) h1 : ↑(exists_ a✝¹ a✝).primeSet βŠ† Ξ”_U ⊒ IsDeduct (evalPrimeFfToNot V '' Ξ”_U) (evalPrimeFfToNot V (exists_ a✝¹ a✝))
no goals
Please generate a tactic in lean4 to solve the state. STATE: Ξ”_U : Set Formula V : VarBoolAssignment a✝¹ : VarName a✝ : Formula a_ih✝ : ↑a✝.primeSet βŠ† Ξ”_U β†’ IsDeduct (evalPrimeFfToNot V '' Ξ”_U) (evalPrimeFfToNot V a✝) h1 : ↑(exists_ a✝¹ a✝).primeSet βŠ† Ξ”_U ⊒ IsDeduct (evalPrimeFfToNot V '' Ξ”_U) (evalPrimeFfToNot V (exists_ a✝¹ a✝)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.L_15_7
[773, 1]
[916, 10]
let F := pred_const_ X xs
Ξ”_U : Set Formula V : VarBoolAssignment X : PredName xs : List VarName h1 : ↑(pred_const_ X xs).primeSet βŠ† Ξ”_U ⊒ IsDeduct (evalPrimeFfToNot V '' Ξ”_U) (evalPrimeFfToNot V (pred_const_ X xs))
Ξ”_U : Set Formula V : VarBoolAssignment X : PredName xs : List VarName h1 : ↑(pred_const_ X xs).primeSet βŠ† Ξ”_U F : Formula := pred_const_ X xs ⊒ IsDeduct (evalPrimeFfToNot V '' Ξ”_U) (evalPrimeFfToNot V (pred_const_ X xs))
Please generate a tactic in lean4 to solve the state. STATE: Ξ”_U : Set Formula V : VarBoolAssignment X : PredName xs : List VarName h1 : ↑(pred_const_ X xs).primeSet βŠ† Ξ”_U ⊒ IsDeduct (evalPrimeFfToNot V '' Ξ”_U) (evalPrimeFfToNot V (pred_const_ X xs)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.L_15_7
[773, 1]
[916, 10]
simp only [Formula.primeSet] at h1
Ξ”_U : Set Formula V : VarBoolAssignment X : PredName xs : List VarName h1 : ↑(pred_const_ X xs).primeSet βŠ† Ξ”_U F : Formula := pred_const_ X xs ⊒ IsDeduct (evalPrimeFfToNot V '' Ξ”_U) (evalPrimeFfToNot V (pred_const_ X xs))
Ξ”_U : Set Formula V : VarBoolAssignment X : PredName xs : List VarName h1 : ↑{pred_const_ X xs} βŠ† Ξ”_U F : Formula := pred_const_ X xs ⊒ IsDeduct (evalPrimeFfToNot V '' Ξ”_U) (evalPrimeFfToNot V (pred_const_ X xs))
Please generate a tactic in lean4 to solve the state. STATE: Ξ”_U : Set Formula V : VarBoolAssignment X : PredName xs : List VarName h1 : ↑(pred_const_ X xs).primeSet βŠ† Ξ”_U F : Formula := pred_const_ X xs ⊒ IsDeduct (evalPrimeFfToNot V '' Ξ”_U) (evalPrimeFfToNot V (pred_const_ X xs)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.L_15_7
[773, 1]
[916, 10]
simp at h1
Ξ”_U : Set Formula V : VarBoolAssignment X : PredName xs : List VarName h1 : ↑{pred_const_ X xs} βŠ† Ξ”_U F : Formula := pred_const_ X xs ⊒ IsDeduct (evalPrimeFfToNot V '' Ξ”_U) (evalPrimeFfToNot V (pred_const_ X xs))
Ξ”_U : Set Formula V : VarBoolAssignment X : PredName xs : List VarName F : Formula := pred_const_ X xs h1 : pred_const_ X xs ∈ Ξ”_U ⊒ IsDeduct (evalPrimeFfToNot V '' Ξ”_U) (evalPrimeFfToNot V (pred_const_ X xs))
Please generate a tactic in lean4 to solve the state. STATE: Ξ”_U : Set Formula V : VarBoolAssignment X : PredName xs : List VarName h1 : ↑{pred_const_ X xs} βŠ† Ξ”_U F : Formula := pred_const_ X xs ⊒ IsDeduct (evalPrimeFfToNot V '' Ξ”_U) (evalPrimeFfToNot V (pred_const_ X xs)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.L_15_7
[773, 1]
[916, 10]
simp only [evalPrimeFfToNot]
Ξ”_U : Set Formula V : VarBoolAssignment X : PredName xs : List VarName F : Formula := pred_const_ X xs h1 : pred_const_ X xs ∈ Ξ”_U ⊒ IsDeduct (evalPrimeFfToNot V '' Ξ”_U) (evalPrimeFfToNot V (pred_const_ X xs))
Ξ”_U : Set Formula V : VarBoolAssignment X : PredName xs : List VarName F : Formula := pred_const_ X xs h1 : pred_const_ X xs ∈ Ξ”_U ⊒ IsDeduct ((fun a => if evalPrime V a then a else a.not_) '' Ξ”_U) (if evalPrime V (pred_const_ X xs) then pred_const_ X xs else (pred_const_ X xs).not_)
Please generate a tactic in lean4 to solve the state. STATE: Ξ”_U : Set Formula V : VarBoolAssignment X : PredName xs : List VarName F : Formula := pred_const_ X xs h1 : pred_const_ X xs ∈ Ξ”_U ⊒ IsDeduct (evalPrimeFfToNot V '' Ξ”_U) (evalPrimeFfToNot V (pred_const_ X xs)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.L_15_7
[773, 1]
[916, 10]
simp only [Formula.evalPrime]
Ξ”_U : Set Formula V : VarBoolAssignment X : PredName xs : List VarName F : Formula := pred_const_ X xs h1 : pred_const_ X xs ∈ Ξ”_U ⊒ IsDeduct ((fun a => if evalPrime V a then a else a.not_) '' Ξ”_U) (if evalPrime V (pred_const_ X xs) then pred_const_ X xs else (pred_const_ X xs).not_)
Ξ”_U : Set Formula V : VarBoolAssignment X : PredName xs : List VarName F : Formula := pred_const_ X xs h1 : pred_const_ X xs ∈ Ξ”_U ⊒ IsDeduct ((fun a => if evalPrime V a then a else a.not_) '' Ξ”_U) (if V (pred_const_ X xs) = true then pred_const_ X xs else (pred_const_ X xs).not_)
Please generate a tactic in lean4 to solve the state. STATE: Ξ”_U : Set Formula V : VarBoolAssignment X : PredName xs : List VarName F : Formula := pred_const_ X xs h1 : pred_const_ X xs ∈ Ξ”_U ⊒ IsDeduct ((fun a => if evalPrime V a then a else a.not_) '' Ξ”_U) (if evalPrime V (pred_const_ X xs) then pred_const_ X xs else (pred_const_ X xs).not_) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.L_15_7
[773, 1]
[916, 10]
apply IsDeduct.assume_
Ξ”_U : Set Formula V : VarBoolAssignment X : PredName xs : List VarName F : Formula := pred_const_ X xs h1 : pred_const_ X xs ∈ Ξ”_U ⊒ IsDeduct ((fun a => if evalPrime V a then a else a.not_) '' Ξ”_U) (if V (pred_const_ X xs) = true then pred_const_ X xs else (pred_const_ X xs).not_)
case a Ξ”_U : Set Formula V : VarBoolAssignment X : PredName xs : List VarName F : Formula := pred_const_ X xs h1 : pred_const_ X xs ∈ Ξ”_U ⊒ (if V (pred_const_ X xs) = true then pred_const_ X xs else (pred_const_ X xs).not_) ∈ (fun a => if evalPrime V a then a else a.not_) '' Ξ”_U
Please generate a tactic in lean4 to solve the state. STATE: Ξ”_U : Set Formula V : VarBoolAssignment X : PredName xs : List VarName F : Formula := pred_const_ X xs h1 : pred_const_ X xs ∈ Ξ”_U ⊒ IsDeduct ((fun a => if evalPrime V a then a else a.not_) '' Ξ”_U) (if V (pred_const_ X xs) = true then pred_const_ X xs else (pred_const_ X xs).not_) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.L_15_7
[773, 1]
[916, 10]
simp
case a Ξ”_U : Set Formula V : VarBoolAssignment X : PredName xs : List VarName F : Formula := pred_const_ X xs h1 : pred_const_ X xs ∈ Ξ”_U ⊒ (if V (pred_const_ X xs) = true then pred_const_ X xs else (pred_const_ X xs).not_) ∈ (fun a => if evalPrime V a then a else a.not_) '' Ξ”_U
case a Ξ”_U : Set Formula V : VarBoolAssignment X : PredName xs : List VarName F : Formula := pred_const_ X xs h1 : pred_const_ X xs ∈ Ξ”_U ⊒ βˆƒ x ∈ Ξ”_U, (if evalPrime V x then x else x.not_) = if V (pred_const_ X xs) = true then pred_const_ X xs else (pred_const_ X xs).not_
Please generate a tactic in lean4 to solve the state. STATE: case a Ξ”_U : Set Formula V : VarBoolAssignment X : PredName xs : List VarName F : Formula := pred_const_ X xs h1 : pred_const_ X xs ∈ Ξ”_U ⊒ (if V (pred_const_ X xs) = true then pred_const_ X xs else (pred_const_ X xs).not_) ∈ (fun a => if evalPrime V a then a else a.not_) '' Ξ”_U TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.L_15_7
[773, 1]
[916, 10]
apply Exists.intro F
case a Ξ”_U : Set Formula V : VarBoolAssignment X : PredName xs : List VarName F : Formula := pred_const_ X xs h1 : pred_const_ X xs ∈ Ξ”_U ⊒ βˆƒ x ∈ Ξ”_U, (if evalPrime V x then x else x.not_) = if V (pred_const_ X xs) = true then pred_const_ X xs else (pred_const_ X xs).not_
case a Ξ”_U : Set Formula V : VarBoolAssignment X : PredName xs : List VarName F : Formula := pred_const_ X xs h1 : pred_const_ X xs ∈ Ξ”_U ⊒ F ∈ Ξ”_U ∧ (if evalPrime V F then F else F.not_) = if V (pred_const_ X xs) = true then pred_const_ X xs else (pred_const_ X xs).not_
Please generate a tactic in lean4 to solve the state. STATE: case a Ξ”_U : Set Formula V : VarBoolAssignment X : PredName xs : List VarName F : Formula := pred_const_ X xs h1 : pred_const_ X xs ∈ Ξ”_U ⊒ βˆƒ x ∈ Ξ”_U, (if evalPrime V x then x else x.not_) = if V (pred_const_ X xs) = true then pred_const_ X xs else (pred_const_ X xs).not_ TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.L_15_7
[773, 1]
[916, 10]
tauto
case a Ξ”_U : Set Formula V : VarBoolAssignment X : PredName xs : List VarName F : Formula := pred_const_ X xs h1 : pred_const_ X xs ∈ Ξ”_U ⊒ F ∈ Ξ”_U ∧ (if evalPrime V F then F else F.not_) = if V (pred_const_ X xs) = true then pred_const_ X xs else (pred_const_ X xs).not_
no goals
Please generate a tactic in lean4 to solve the state. STATE: case a Ξ”_U : Set Formula V : VarBoolAssignment X : PredName xs : List VarName F : Formula := pred_const_ X xs h1 : pred_const_ X xs ∈ Ξ”_U ⊒ F ∈ Ξ”_U ∧ (if evalPrime V F then F else F.not_) = if V (pred_const_ X xs) = true then pred_const_ X xs else (pred_const_ X xs).not_ TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.L_15_7
[773, 1]
[916, 10]
let F := pred_var_ X xs
Ξ”_U : Set Formula V : VarBoolAssignment X : PredName xs : List VarName h1 : ↑(pred_var_ X xs).primeSet βŠ† Ξ”_U ⊒ IsDeduct (evalPrimeFfToNot V '' Ξ”_U) (evalPrimeFfToNot V (pred_var_ X xs))
Ξ”_U : Set Formula V : VarBoolAssignment X : PredName xs : List VarName h1 : ↑(pred_var_ X xs).primeSet βŠ† Ξ”_U F : Formula := pred_var_ X xs ⊒ IsDeduct (evalPrimeFfToNot V '' Ξ”_U) (evalPrimeFfToNot V (pred_var_ X xs))
Please generate a tactic in lean4 to solve the state. STATE: Ξ”_U : Set Formula V : VarBoolAssignment X : PredName xs : List VarName h1 : ↑(pred_var_ X xs).primeSet βŠ† Ξ”_U ⊒ IsDeduct (evalPrimeFfToNot V '' Ξ”_U) (evalPrimeFfToNot V (pred_var_ X xs)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.L_15_7
[773, 1]
[916, 10]
simp only [Formula.primeSet] at h1
Ξ”_U : Set Formula V : VarBoolAssignment X : PredName xs : List VarName h1 : ↑(pred_var_ X xs).primeSet βŠ† Ξ”_U F : Formula := pred_var_ X xs ⊒ IsDeduct (evalPrimeFfToNot V '' Ξ”_U) (evalPrimeFfToNot V (pred_var_ X xs))
Ξ”_U : Set Formula V : VarBoolAssignment X : PredName xs : List VarName h1 : ↑{pred_var_ X xs} βŠ† Ξ”_U F : Formula := pred_var_ X xs ⊒ IsDeduct (evalPrimeFfToNot V '' Ξ”_U) (evalPrimeFfToNot V (pred_var_ X xs))
Please generate a tactic in lean4 to solve the state. STATE: Ξ”_U : Set Formula V : VarBoolAssignment X : PredName xs : List VarName h1 : ↑(pred_var_ X xs).primeSet βŠ† Ξ”_U F : Formula := pred_var_ X xs ⊒ IsDeduct (evalPrimeFfToNot V '' Ξ”_U) (evalPrimeFfToNot V (pred_var_ X xs)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.L_15_7
[773, 1]
[916, 10]
simp at h1
Ξ”_U : Set Formula V : VarBoolAssignment X : PredName xs : List VarName h1 : ↑{pred_var_ X xs} βŠ† Ξ”_U F : Formula := pred_var_ X xs ⊒ IsDeduct (evalPrimeFfToNot V '' Ξ”_U) (evalPrimeFfToNot V (pred_var_ X xs))
Ξ”_U : Set Formula V : VarBoolAssignment X : PredName xs : List VarName F : Formula := pred_var_ X xs h1 : pred_var_ X xs ∈ Ξ”_U ⊒ IsDeduct (evalPrimeFfToNot V '' Ξ”_U) (evalPrimeFfToNot V (pred_var_ X xs))
Please generate a tactic in lean4 to solve the state. STATE: Ξ”_U : Set Formula V : VarBoolAssignment X : PredName xs : List VarName h1 : ↑{pred_var_ X xs} βŠ† Ξ”_U F : Formula := pred_var_ X xs ⊒ IsDeduct (evalPrimeFfToNot V '' Ξ”_U) (evalPrimeFfToNot V (pred_var_ X xs)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.L_15_7
[773, 1]
[916, 10]
simp only [evalPrimeFfToNot]
Ξ”_U : Set Formula V : VarBoolAssignment X : PredName xs : List VarName F : Formula := pred_var_ X xs h1 : pred_var_ X xs ∈ Ξ”_U ⊒ IsDeduct (evalPrimeFfToNot V '' Ξ”_U) (evalPrimeFfToNot V (pred_var_ X xs))
Ξ”_U : Set Formula V : VarBoolAssignment X : PredName xs : List VarName F : Formula := pred_var_ X xs h1 : pred_var_ X xs ∈ Ξ”_U ⊒ IsDeduct ((fun a => if evalPrime V a then a else a.not_) '' Ξ”_U) (if evalPrime V (pred_var_ X xs) then pred_var_ X xs else (pred_var_ X xs).not_)
Please generate a tactic in lean4 to solve the state. STATE: Ξ”_U : Set Formula V : VarBoolAssignment X : PredName xs : List VarName F : Formula := pred_var_ X xs h1 : pred_var_ X xs ∈ Ξ”_U ⊒ IsDeduct (evalPrimeFfToNot V '' Ξ”_U) (evalPrimeFfToNot V (pred_var_ X xs)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.L_15_7
[773, 1]
[916, 10]
simp only [Formula.evalPrime]
Ξ”_U : Set Formula V : VarBoolAssignment X : PredName xs : List VarName F : Formula := pred_var_ X xs h1 : pred_var_ X xs ∈ Ξ”_U ⊒ IsDeduct ((fun a => if evalPrime V a then a else a.not_) '' Ξ”_U) (if evalPrime V (pred_var_ X xs) then pred_var_ X xs else (pred_var_ X xs).not_)
Ξ”_U : Set Formula V : VarBoolAssignment X : PredName xs : List VarName F : Formula := pred_var_ X xs h1 : pred_var_ X xs ∈ Ξ”_U ⊒ IsDeduct ((fun a => if evalPrime V a then a else a.not_) '' Ξ”_U) (if V (pred_var_ X xs) = true then pred_var_ X xs else (pred_var_ X xs).not_)
Please generate a tactic in lean4 to solve the state. STATE: Ξ”_U : Set Formula V : VarBoolAssignment X : PredName xs : List VarName F : Formula := pred_var_ X xs h1 : pred_var_ X xs ∈ Ξ”_U ⊒ IsDeduct ((fun a => if evalPrime V a then a else a.not_) '' Ξ”_U) (if evalPrime V (pred_var_ X xs) then pred_var_ X xs else (pred_var_ X xs).not_) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.L_15_7
[773, 1]
[916, 10]
apply IsDeduct.assume_
Ξ”_U : Set Formula V : VarBoolAssignment X : PredName xs : List VarName F : Formula := pred_var_ X xs h1 : pred_var_ X xs ∈ Ξ”_U ⊒ IsDeduct ((fun a => if evalPrime V a then a else a.not_) '' Ξ”_U) (if V (pred_var_ X xs) = true then pred_var_ X xs else (pred_var_ X xs).not_)
case a Ξ”_U : Set Formula V : VarBoolAssignment X : PredName xs : List VarName F : Formula := pred_var_ X xs h1 : pred_var_ X xs ∈ Ξ”_U ⊒ (if V (pred_var_ X xs) = true then pred_var_ X xs else (pred_var_ X xs).not_) ∈ (fun a => if evalPrime V a then a else a.not_) '' Ξ”_U
Please generate a tactic in lean4 to solve the state. STATE: Ξ”_U : Set Formula V : VarBoolAssignment X : PredName xs : List VarName F : Formula := pred_var_ X xs h1 : pred_var_ X xs ∈ Ξ”_U ⊒ IsDeduct ((fun a => if evalPrime V a then a else a.not_) '' Ξ”_U) (if V (pred_var_ X xs) = true then pred_var_ X xs else (pred_var_ X xs).not_) TACTIC: