url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
input
stringlengths
73
2.09M
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Cones/SOCone.lean
Real.unrotateSoCone_soCone
[68, 1]
[81, 16]
linarith
case refine_1 n✝ : Type ?u.32056 m : Type ?u.32053 inst✝¹ : Fintype m inst✝ : Fintype n✝ n : ℕ v w : ℝ x : Fin n → ℝ h : ∑ i : Fin n, x i ^ 2 ≤ v * w * 2 hv : 0 ≤ v hw : 0 ≤ w ⊢ 0 ≤ v + w
no goals
Please generate a tactic in lean4 to solve the state. STATE: case refine_1 n✝ : Type ?u.32056 m : Type ?u.32053 inst✝¹ : Fintype m inst✝ : Fintype n✝ n : ℕ v w : ℝ x : Fin n → ℝ h : ∑ i : Fin n, x i ^ 2 ≤ v * w * 2 hv : 0 ≤ v hw : 0 ≤ w ⊢ 0 ≤ v + w TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Cones/SOCone.lean
Real.unrotateSoCone_soCone
[68, 1]
[81, 16]
rw [Fin.sum_univ_succ]
case refine_2 n✝ : Type ?u.32056 m : Type ?u.32053 inst✝¹ : Fintype m inst✝ : Fintype n✝ n : ℕ v w : ℝ x : Fin n → ℝ h : ∑ i : Fin n, x i ^ 2 ≤ v * w * 2 hv : 0 ≤ v hw : 0 ≤ w ⊢ ∑ x_1 : Fin (n + 1), Matrix.vecCons ((v - w) / √2) x x_1 ^ 2 ≤ ((v + w) / √2) ^ 2
case refine_2 n✝ : Type ?u.32056 m : Type ?u.32053 inst✝¹ : Fintype m inst✝ : Fintype n✝ n : ℕ v w : ℝ x : Fin n → ℝ h : ∑ i : Fin n, x i ^ 2 ≤ v * w * 2 hv : 0 ≤ v hw : 0 ≤ w ⊢ Matrix.vecCons ((v - w) / √2) x 0 ^ 2 + ∑ i : Fin n, Matrix.vecCons ((v - w) / √2) x i.succ ^ 2 ≤ ((v + w) / √2) ^ 2
Please generate a tactic in lean4 to solve the state. STATE: case refine_2 n✝ : Type ?u.32056 m : Type ?u.32053 inst✝¹ : Fintype m inst✝ : Fintype n✝ n : ℕ v w : ℝ x : Fin n → ℝ h : ∑ i : Fin n, x i ^ 2 ≤ v * w * 2 hv : 0 ≤ v hw : 0 ≤ w ⊢ ∑ x_1 : Fin (n + 1), Matrix.vecCons ((v - w) / √2) x x_1 ^ 2 ≤ ((v + w) / √2) ^ 2 TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Cones/SOCone.lean
Real.unrotateSoCone_soCone
[68, 1]
[81, 16]
simp [Matrix.vecCons]
case refine_2 n✝ : Type ?u.32056 m : Type ?u.32053 inst✝¹ : Fintype m inst✝ : Fintype n✝ n : ℕ v w : ℝ x : Fin n → ℝ h : ∑ i : Fin n, x i ^ 2 ≤ v * w * 2 hv : 0 ≤ v hw : 0 ≤ w ⊢ Matrix.vecCons ((v - w) / √2) x 0 ^ 2 + ∑ i : Fin n, Matrix.vecCons ((v - w) / √2) x i.succ ^ 2 ≤ ((v + w) / √2) ^ 2
case refine_2 n✝ : Type ?u.32056 m : Type ?u.32053 inst✝¹ : Fintype m inst✝ : Fintype n✝ n : ℕ v w : ℝ x : Fin n → ℝ h : ∑ i : Fin n, x i ^ 2 ≤ v * w * 2 hv : 0 ≤ v hw : 0 ≤ w ⊢ (v - w) ^ 2 / 2 + ∑ x_1 : Fin n, x x_1 ^ 2 ≤ (v + w) ^ 2 / 2
Please generate a tactic in lean4 to solve the state. STATE: case refine_2 n✝ : Type ?u.32056 m : Type ?u.32053 inst✝¹ : Fintype m inst✝ : Fintype n✝ n : ℕ v w : ℝ x : Fin n → ℝ h : ∑ i : Fin n, x i ^ 2 ≤ v * w * 2 hv : 0 ≤ v hw : 0 ≤ w ⊢ Matrix.vecCons ((v - w) / √2) x 0 ^ 2 + ∑ i : Fin n, Matrix.vecCons ((v - w) / √2) x i.succ ^ 2 ≤ ((v + w) / √2) ^ 2 TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Cones/SOCone.lean
Real.unrotateSoCone_soCone
[68, 1]
[81, 16]
rw [add_comm, ← le_sub_iff_add_le]
case refine_2 n✝ : Type ?u.32056 m : Type ?u.32053 inst✝¹ : Fintype m inst✝ : Fintype n✝ n : ℕ v w : ℝ x : Fin n → ℝ h : ∑ i : Fin n, x i ^ 2 ≤ v * w * 2 hv : 0 ≤ v hw : 0 ≤ w ⊢ (v - w) ^ 2 / 2 + ∑ x_1 : Fin n, x x_1 ^ 2 ≤ (v + w) ^ 2 / 2
case refine_2 n✝ : Type ?u.32056 m : Type ?u.32053 inst✝¹ : Fintype m inst✝ : Fintype n✝ n : ℕ v w : ℝ x : Fin n → ℝ h : ∑ i : Fin n, x i ^ 2 ≤ v * w * 2 hv : 0 ≤ v hw : 0 ≤ w ⊢ ∑ x_1 : Fin n, x x_1 ^ 2 ≤ (v + w) ^ 2 / 2 - (v - w) ^ 2 / 2
Please generate a tactic in lean4 to solve the state. STATE: case refine_2 n✝ : Type ?u.32056 m : Type ?u.32053 inst✝¹ : Fintype m inst✝ : Fintype n✝ n : ℕ v w : ℝ x : Fin n → ℝ h : ∑ i : Fin n, x i ^ 2 ≤ v * w * 2 hv : 0 ≤ v hw : 0 ≤ w ⊢ (v - w) ^ 2 / 2 + ∑ x_1 : Fin n, x x_1 ^ 2 ≤ (v + w) ^ 2 / 2 TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Cones/SOCone.lean
Real.unrotateSoCone_soCone
[68, 1]
[81, 16]
field_simp
case refine_2 n✝ : Type ?u.32056 m : Type ?u.32053 inst✝¹ : Fintype m inst✝ : Fintype n✝ n : ℕ v w : ℝ x : Fin n → ℝ h : ∑ i : Fin n, x i ^ 2 ≤ v * w * 2 hv : 0 ≤ v hw : 0 ≤ w ⊢ ∑ x_1 : Fin n, x x_1 ^ 2 ≤ (v + w) ^ 2 / 2 - (v - w) ^ 2 / 2
case refine_2 n✝ : Type ?u.32056 m : Type ?u.32053 inst✝¹ : Fintype m inst✝ : Fintype n✝ n : ℕ v w : ℝ x : Fin n → ℝ h : ∑ i : Fin n, x i ^ 2 ≤ v * w * 2 hv : 0 ≤ v hw : 0 ≤ w ⊢ ∑ x_1 : Fin n, x x_1 ^ 2 ≤ ((v + w) ^ 2 - (v - w) ^ 2) / 2
Please generate a tactic in lean4 to solve the state. STATE: case refine_2 n✝ : Type ?u.32056 m : Type ?u.32053 inst✝¹ : Fintype m inst✝ : Fintype n✝ n : ℕ v w : ℝ x : Fin n → ℝ h : ∑ i : Fin n, x i ^ 2 ≤ v * w * 2 hv : 0 ≤ v hw : 0 ≤ w ⊢ ∑ x_1 : Fin n, x x_1 ^ 2 ≤ (v + w) ^ 2 / 2 - (v - w) ^ 2 / 2 TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Cones/SOCone.lean
Real.unrotateSoCone_soCone
[68, 1]
[81, 16]
have hrw : ((v + w) ^ 2 - (v - w) ^ 2) / 2 = v * w * 2 := by norm_cast; ring
case refine_2 n✝ : Type ?u.32056 m : Type ?u.32053 inst✝¹ : Fintype m inst✝ : Fintype n✝ n : ℕ v w : ℝ x : Fin n → ℝ h : ∑ i : Fin n, x i ^ 2 ≤ v * w * 2 hv : 0 ≤ v hw : 0 ≤ w ⊢ ∑ x_1 : Fin n, x x_1 ^ 2 ≤ ((v + w) ^ 2 - (v - w) ^ 2) / 2
case refine_2 n✝ : Type ?u.32056 m : Type ?u.32053 inst✝¹ : Fintype m inst✝ : Fintype n✝ n : ℕ v w : ℝ x : Fin n → ℝ h : ∑ i : Fin n, x i ^ 2 ≤ v * w * 2 hv : 0 ≤ v hw : 0 ≤ w hrw : ((v + w) ^ 2 - (v - w) ^ 2) / 2 = v * w * 2 ⊢ ∑ x_1 : Fin n, x x_1 ^ 2 ≤ ((v + w) ^ 2 - (v - w) ^ 2) / 2
Please generate a tactic in lean4 to solve the state. STATE: case refine_2 n✝ : Type ?u.32056 m : Type ?u.32053 inst✝¹ : Fintype m inst✝ : Fintype n✝ n : ℕ v w : ℝ x : Fin n → ℝ h : ∑ i : Fin n, x i ^ 2 ≤ v * w * 2 hv : 0 ≤ v hw : 0 ≤ w ⊢ ∑ x_1 : Fin n, x x_1 ^ 2 ≤ ((v + w) ^ 2 - (v - w) ^ 2) / 2 TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Cones/SOCone.lean
Real.unrotateSoCone_soCone
[68, 1]
[81, 16]
norm_cast at hrw h
case refine_2 n✝ : Type ?u.32056 m : Type ?u.32053 inst✝¹ : Fintype m inst✝ : Fintype n✝ n : ℕ v w : ℝ x : Fin n → ℝ h : ∑ i : Fin n, x i ^ 2 ≤ v * w * 2 hv : 0 ≤ v hw : 0 ≤ w hrw : ((v + w) ^ 2 - (v - w) ^ 2) / 2 = v * w * 2 ⊢ ∑ x_1 : Fin n, x x_1 ^ 2 ≤ ((v + w) ^ 2 - (v - w) ^ 2) / 2
case refine_2 n✝ : Type ?u.32056 m : Type ?u.32053 inst✝¹ : Fintype m inst✝ : Fintype n✝ n : ℕ v w : ℝ x : Fin n → ℝ hv : 0 ≤ v hw : 0 ≤ w hrw : ((v + w) ^ 2 - (v - w) ^ 2) / 2 = v * w * 2 h : ∑ x_1 : Fin n, x x_1 ^ 2 ≤ v * w * 2 ⊢ ∑ x_1 : Fin n, x x_1 ^ 2 ≤ ((v + w) ^ 2 - (v - w) ^ 2) / 2
Please generate a tactic in lean4 to solve the state. STATE: case refine_2 n✝ : Type ?u.32056 m : Type ?u.32053 inst✝¹ : Fintype m inst✝ : Fintype n✝ n : ℕ v w : ℝ x : Fin n → ℝ h : ∑ i : Fin n, x i ^ 2 ≤ v * w * 2 hv : 0 ≤ v hw : 0 ≤ w hrw : ((v + w) ^ 2 - (v - w) ^ 2) / 2 = v * w * 2 ⊢ ∑ x_1 : Fin n, x x_1 ^ 2 ≤ ((v + w) ^ 2 - (v - w) ^ 2) / 2 TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Cones/SOCone.lean
Real.unrotateSoCone_soCone
[68, 1]
[81, 16]
rwa [hrw]
case refine_2 n✝ : Type ?u.32056 m : Type ?u.32053 inst✝¹ : Fintype m inst✝ : Fintype n✝ n : ℕ v w : ℝ x : Fin n → ℝ hv : 0 ≤ v hw : 0 ≤ w hrw : ((v + w) ^ 2 - (v - w) ^ 2) / 2 = v * w * 2 h : ∑ x_1 : Fin n, x x_1 ^ 2 ≤ v * w * 2 ⊢ ∑ x_1 : Fin n, x x_1 ^ 2 ≤ ((v + w) ^ 2 - (v - w) ^ 2) / 2
no goals
Please generate a tactic in lean4 to solve the state. STATE: case refine_2 n✝ : Type ?u.32056 m : Type ?u.32053 inst✝¹ : Fintype m inst✝ : Fintype n✝ n : ℕ v w : ℝ x : Fin n → ℝ hv : 0 ≤ v hw : 0 ≤ w hrw : ((v + w) ^ 2 - (v - w) ^ 2) / 2 = v * w * 2 h : ∑ x_1 : Fin n, x x_1 ^ 2 ≤ v * w * 2 ⊢ ∑ x_1 : Fin n, x x_1 ^ 2 ≤ ((v + w) ^ 2 - (v - w) ^ 2) / 2 TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Cones/SOCone.lean
Real.unrotateSoCone_soCone
[68, 1]
[81, 16]
ring
n✝ : Type ?u.32056 m : Type ?u.32053 inst✝¹ : Fintype m inst✝ : Fintype n✝ n : ℕ v w : ℝ x : Fin n → ℝ h : ∑ i : Fin n, x i ^ 2 ≤ v * w * 2 hv : 0 ≤ v hw : 0 ≤ w ⊢ ((v + w) ^ 2 - (v - w) ^ 2) / 2 = v * w * 2
no goals
Please generate a tactic in lean4 to solve the state. STATE: n✝ : Type ?u.32056 m : Type ?u.32053 inst✝¹ : Fintype m inst✝ : Fintype n✝ n : ℕ v w : ℝ x : Fin n → ℝ h : ∑ i : Fin n, x i ^ 2 ≤ v * w * 2 hv : 0 ≤ v hw : 0 ≤ w ⊢ ((v + w) ^ 2 - (v - w) ^ 2) / 2 = v * w * 2 TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Cones/SOCone.lean
Real.soCone_add_sub_two_mul_of_nonneg
[87, 1]
[94, 16]
have hxy := add_nonneg hx hy
n : Type ?u.52431 m : Type ?u.52428 inst✝¹ : Fintype m inst✝ : Fintype n x y z : ℝ hx : 0 ≤ x hy : 0 ≤ y ⊢ (x + y).soCone ![x - y, 2 * z] ↔ z ^ 2 ≤ x * y
n : Type ?u.52431 m : Type ?u.52428 inst✝¹ : Fintype m inst✝ : Fintype n x y z : ℝ hx : 0 ≤ x hy : 0 ≤ y hxy : 0 ≤ x + y ⊢ (x + y).soCone ![x - y, 2 * z] ↔ z ^ 2 ≤ x * y
Please generate a tactic in lean4 to solve the state. STATE: n : Type ?u.52431 m : Type ?u.52428 inst✝¹ : Fintype m inst✝ : Fintype n x y z : ℝ hx : 0 ≤ x hy : 0 ≤ y ⊢ (x + y).soCone ![x - y, 2 * z] ↔ z ^ 2 ≤ x * y TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Cones/SOCone.lean
Real.soCone_add_sub_two_mul_of_nonneg
[87, 1]
[94, 16]
conv => lhs; unfold soCone; simp [sqrt_le_left hxy, ← le_sub_iff_add_le']
n : Type ?u.52431 m : Type ?u.52428 inst✝¹ : Fintype m inst✝ : Fintype n x y z : ℝ hx : 0 ≤ x hy : 0 ≤ y hxy : 0 ≤ x + y ⊢ (x + y).soCone ![x - y, 2 * z] ↔ z ^ 2 ≤ x * y
n : Type ?u.52431 m : Type ?u.52428 inst✝¹ : Fintype m inst✝ : Fintype n x y z : ℝ hx : 0 ≤ x hy : 0 ≤ y hxy : 0 ≤ x + y ⊢ (2 * z) ^ 2 ≤ (x + y) ^ 2 - (x - y) ^ 2 ↔ z ^ 2 ≤ x * y
Please generate a tactic in lean4 to solve the state. STATE: n : Type ?u.52431 m : Type ?u.52428 inst✝¹ : Fintype m inst✝ : Fintype n x y z : ℝ hx : 0 ≤ x hy : 0 ≤ y hxy : 0 ≤ x + y ⊢ (x + y).soCone ![x - y, 2 * z] ↔ z ^ 2 ≤ x * y TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Cones/SOCone.lean
Real.soCone_add_sub_two_mul_of_nonneg
[87, 1]
[94, 16]
ring_nf
n : Type ?u.52431 m : Type ?u.52428 inst✝¹ : Fintype m inst✝ : Fintype n x y z : ℝ hx : 0 ≤ x hy : 0 ≤ y hxy : 0 ≤ x + y ⊢ (2 * z) ^ 2 ≤ (x + y) ^ 2 - (x - y) ^ 2 ↔ z ^ 2 ≤ x * y
n : Type ?u.52431 m : Type ?u.52428 inst✝¹ : Fintype m inst✝ : Fintype n x y z : ℝ hx : 0 ≤ x hy : 0 ≤ y hxy : 0 ≤ x + y ⊢ z ^ 2 * 4 ≤ x * y * 4 ↔ z ^ 2 ≤ x * y
Please generate a tactic in lean4 to solve the state. STATE: n : Type ?u.52431 m : Type ?u.52428 inst✝¹ : Fintype m inst✝ : Fintype n x y z : ℝ hx : 0 ≤ x hy : 0 ≤ y hxy : 0 ≤ x + y ⊢ (2 * z) ^ 2 ≤ (x + y) ^ 2 - (x - y) ^ 2 ↔ z ^ 2 ≤ x * y TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Cones/SOCone.lean
Real.soCone_add_sub_two_mul_of_nonneg
[87, 1]
[94, 16]
simp
n : Type ?u.52431 m : Type ?u.52428 inst✝¹ : Fintype m inst✝ : Fintype n x y z : ℝ hx : 0 ≤ x hy : 0 ≤ y hxy : 0 ≤ x + y ⊢ z ^ 2 * 4 ≤ x * y * 4 ↔ z ^ 2 ≤ x * y
no goals
Please generate a tactic in lean4 to solve the state. STATE: n : Type ?u.52431 m : Type ?u.52428 inst✝¹ : Fintype m inst✝ : Fintype n x y z : ℝ hx : 0 ≤ x hy : 0 ≤ y hxy : 0 ≤ x + y ⊢ z ^ 2 * 4 ≤ x * y * 4 ↔ z ^ 2 ≤ x * y TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Cones/SOCone.lean
Real.soCone_add_sub_two_of_nonneg
[96, 1]
[101, 10]
have h := soCone_add_sub_two_mul_of_nonneg 1 hx hy
n : Type ?u.62790 m : Type ?u.62787 inst✝¹ : Fintype m inst✝ : Fintype n x y : ℝ hx : 0 ≤ x hy : 0 ≤ y ⊢ (x + y).soCone ![x - y, 2] ↔ 1 ≤ x * y
n : Type ?u.62790 m : Type ?u.62787 inst✝¹ : Fintype m inst✝ : Fintype n x y : ℝ hx : 0 ≤ x hy : 0 ≤ y h : (x + y).soCone ![x - y, 2 * 1] ↔ 1 ^ 2 ≤ x * y ⊢ (x + y).soCone ![x - y, 2] ↔ 1 ≤ x * y
Please generate a tactic in lean4 to solve the state. STATE: n : Type ?u.62790 m : Type ?u.62787 inst✝¹ : Fintype m inst✝ : Fintype n x y : ℝ hx : 0 ≤ x hy : 0 ≤ y ⊢ (x + y).soCone ![x - y, 2] ↔ 1 ≤ x * y TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Cones/SOCone.lean
Real.soCone_add_sub_two_of_nonneg
[96, 1]
[101, 10]
rw [mul_one, one_rpow] at h
n : Type ?u.62790 m : Type ?u.62787 inst✝¹ : Fintype m inst✝ : Fintype n x y : ℝ hx : 0 ≤ x hy : 0 ≤ y h : (x + y).soCone ![x - y, 2 * 1] ↔ 1 ^ 2 ≤ x * y ⊢ (x + y).soCone ![x - y, 2] ↔ 1 ≤ x * y
n : Type ?u.62790 m : Type ?u.62787 inst✝¹ : Fintype m inst✝ : Fintype n x y : ℝ hx : 0 ≤ x hy : 0 ≤ y h : (x + y).soCone ![x - y, 2] ↔ 1 ≤ x * y ⊢ (x + y).soCone ![x - y, 2] ↔ 1 ≤ x * y
Please generate a tactic in lean4 to solve the state. STATE: n : Type ?u.62790 m : Type ?u.62787 inst✝¹ : Fintype m inst✝ : Fintype n x y : ℝ hx : 0 ≤ x hy : 0 ≤ y h : (x + y).soCone ![x - y, 2 * 1] ↔ 1 ^ 2 ≤ x * y ⊢ (x + y).soCone ![x - y, 2] ↔ 1 ≤ x * y TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Cones/SOCone.lean
Real.soCone_add_sub_two_of_nonneg
[96, 1]
[101, 10]
exact h
n : Type ?u.62790 m : Type ?u.62787 inst✝¹ : Fintype m inst✝ : Fintype n x y : ℝ hx : 0 ≤ x hy : 0 ≤ y h : (x + y).soCone ![x - y, 2] ↔ 1 ≤ x * y ⊢ (x + y).soCone ![x - y, 2] ↔ 1 ≤ x * y
no goals
Please generate a tactic in lean4 to solve the state. STATE: n : Type ?u.62790 m : Type ?u.62787 inst✝¹ : Fintype m inst✝ : Fintype n x y : ℝ hx : 0 ≤ x hy : 0 ≤ y h : (x + y).soCone ![x - y, 2] ↔ 1 ≤ x * y ⊢ (x + y).soCone ![x - y, 2] ↔ 1 ≤ x * y TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Cones/SOCone.lean
Real.soCone_sub_add_two_mul_of_nonneg
[103, 1]
[109, 63]
conv => lhs; unfold soCone; simp [sqrt_le_iff, ← le_sub_iff_add_le']
n : Type ?u.63307 m : Type ?u.63304 inst✝¹ : Fintype m inst✝ : Fintype n x y z : ℝ ⊢ (x - y).soCone ![x + y, 2 * z] ↔ y ≤ x ∧ z ^ 2 ≤ -(x * y)
n : Type ?u.63307 m : Type ?u.63304 inst✝¹ : Fintype m inst✝ : Fintype n x y z : ℝ ⊢ y ≤ x ∧ (2 * z) ^ 2 ≤ (x - y) ^ 2 - (x + y) ^ 2 ↔ y ≤ x ∧ z ^ 2 ≤ -(x * y)
Please generate a tactic in lean4 to solve the state. STATE: n : Type ?u.63307 m : Type ?u.63304 inst✝¹ : Fintype m inst✝ : Fintype n x y z : ℝ ⊢ (x - y).soCone ![x + y, 2 * z] ↔ y ≤ x ∧ z ^ 2 ≤ -(x * y) TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Cones/SOCone.lean
Real.soCone_sub_add_two_mul_of_nonneg
[103, 1]
[109, 63]
apply Iff.and
n : Type ?u.63307 m : Type ?u.63304 inst✝¹ : Fintype m inst✝ : Fintype n x y z : ℝ ⊢ y ≤ x ∧ (2 * z) ^ 2 ≤ (x - y) ^ 2 - (x + y) ^ 2 ↔ y ≤ x ∧ z ^ 2 ≤ -(x * y)
case h₁ n : Type ?u.63307 m : Type ?u.63304 inst✝¹ : Fintype m inst✝ : Fintype n x y z : ℝ ⊢ y ≤ x ↔ y ≤ x case h₂ n : Type ?u.63307 m : Type ?u.63304 inst✝¹ : Fintype m inst✝ : Fintype n x y z : ℝ ⊢ (2 * z) ^ 2 ≤ (x - y) ^ 2 - (x + y) ^ 2 ↔ z ^ 2 ≤ -(x * y)
Please generate a tactic in lean4 to solve the state. STATE: n : Type ?u.63307 m : Type ?u.63304 inst✝¹ : Fintype m inst✝ : Fintype n x y z : ℝ ⊢ y ≤ x ∧ (2 * z) ^ 2 ≤ (x - y) ^ 2 - (x + y) ^ 2 ↔ y ≤ x ∧ z ^ 2 ≤ -(x * y) TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Cones/SOCone.lean
Real.soCone_sub_add_two_mul_of_nonneg
[103, 1]
[109, 63]
rfl
case h₁ n : Type ?u.63307 m : Type ?u.63304 inst✝¹ : Fintype m inst✝ : Fintype n x y z : ℝ ⊢ y ≤ x ↔ y ≤ x
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h₁ n : Type ?u.63307 m : Type ?u.63304 inst✝¹ : Fintype m inst✝ : Fintype n x y z : ℝ ⊢ y ≤ x ↔ y ≤ x TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Cones/SOCone.lean
Real.soCone_sub_add_two_mul_of_nonneg
[103, 1]
[109, 63]
ring_nf!
case h₂ n : Type ?u.63307 m : Type ?u.63304 inst✝¹ : Fintype m inst✝ : Fintype n x y z : ℝ ⊢ (2 * z) ^ 2 ≤ (x - y) ^ 2 - (x + y) ^ 2 ↔ z ^ 2 ≤ -(x * y)
case h₂ n : Type ?u.63307 m : Type ?u.63304 inst✝¹ : Fintype m inst✝ : Fintype n x y z : ℝ ⊢ z ^ 2 * 4 ≤ -(x * y * 4) ↔ z ^ 2 ≤ -(x * y)
Please generate a tactic in lean4 to solve the state. STATE: case h₂ n : Type ?u.63307 m : Type ?u.63304 inst✝¹ : Fintype m inst✝ : Fintype n x y z : ℝ ⊢ (2 * z) ^ 2 ≤ (x - y) ^ 2 - (x + y) ^ 2 ↔ z ^ 2 ≤ -(x * y) TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Cones/SOCone.lean
Real.soCone_sub_add_two_mul_of_nonneg
[103, 1]
[109, 63]
rw [← neg_mul, ← div_le_iff (by norm_num)]
case h₂ n : Type ?u.63307 m : Type ?u.63304 inst✝¹ : Fintype m inst✝ : Fintype n x y z : ℝ ⊢ z ^ 2 * 4 ≤ -(x * y * 4) ↔ z ^ 2 ≤ -(x * y)
case h₂ n : Type ?u.63307 m : Type ?u.63304 inst✝¹ : Fintype m inst✝ : Fintype n x y z : ℝ ⊢ z ^ 2 * 4 / 4 ≤ -(x * y) ↔ z ^ 2 ≤ -(x * y)
Please generate a tactic in lean4 to solve the state. STATE: case h₂ n : Type ?u.63307 m : Type ?u.63304 inst✝¹ : Fintype m inst✝ : Fintype n x y z : ℝ ⊢ z ^ 2 * 4 ≤ -(x * y * 4) ↔ z ^ 2 ≤ -(x * y) TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Cones/SOCone.lean
Real.soCone_sub_add_two_mul_of_nonneg
[103, 1]
[109, 63]
simp
case h₂ n : Type ?u.63307 m : Type ?u.63304 inst✝¹ : Fintype m inst✝ : Fintype n x y z : ℝ ⊢ z ^ 2 * 4 / 4 ≤ -(x * y) ↔ z ^ 2 ≤ -(x * y)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h₂ n : Type ?u.63307 m : Type ?u.63304 inst✝¹ : Fintype m inst✝ : Fintype n x y z : ℝ ⊢ z ^ 2 * 4 / 4 ≤ -(x * y) ↔ z ^ 2 ≤ -(x * y) TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Cones/SOCone.lean
Real.soCone_sub_add_two_mul_of_nonneg
[103, 1]
[109, 63]
norm_num
n : Type ?u.63307 m : Type ?u.63304 inst✝¹ : Fintype m inst✝ : Fintype n x y z : ℝ ⊢ 0 < 4
no goals
Please generate a tactic in lean4 to solve the state. STATE: n : Type ?u.63307 m : Type ?u.63304 inst✝¹ : Fintype m inst✝ : Fintype n x y z : ℝ ⊢ 0 < 4 TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Cones/SOCone.lean
Real.vec_soCone_apply_to_soCone_add_sub_two_mul
[113, 1]
[115, 57]
dsimp
n✝ : Type ?u.71362 m : Type ?u.71359 inst✝¹ : Fintype m inst✝ : Fintype n✝ n : ℕ x y z : Fin n → ℝ i : Fin n ⊢ ((x + y) i).soCone (![x - y, 2 • z]ᵀ i) ↔ (x i + y i).soCone ![x i - y i, 2 * z i]
n✝ : Type ?u.71362 m : Type ?u.71359 inst✝¹ : Fintype m inst✝ : Fintype n✝ n : ℕ x y z : Fin n → ℝ i : Fin n ⊢ (x i + y i).soCone (![x - y, 2 • z]ᵀ i) ↔ (x i + y i).soCone ![x i - y i, 2 * z i]
Please generate a tactic in lean4 to solve the state. STATE: n✝ : Type ?u.71362 m : Type ?u.71359 inst✝¹ : Fintype m inst✝ : Fintype n✝ n : ℕ x y z : Fin n → ℝ i : Fin n ⊢ ((x + y) i).soCone (![x - y, 2 • z]ᵀ i) ↔ (x i + y i).soCone ![x i - y i, 2 * z i] TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Cones/SOCone.lean
Real.vec_soCone_apply_to_soCone_add_sub_two_mul
[113, 1]
[115, 57]
convert Iff.rfl
n✝ : Type ?u.71362 m : Type ?u.71359 inst✝¹ : Fintype m inst✝ : Fintype n✝ n : ℕ x y z : Fin n → ℝ i : Fin n ⊢ (x i + y i).soCone (![x - y, 2 • z]ᵀ i) ↔ (x i + y i).soCone ![x i - y i, 2 * z i]
case h.e'_2.h.e'_4 n✝ : Type ?u.71362 m : Type ?u.71359 inst✝¹ : Fintype m inst✝ : Fintype n✝ n : ℕ x y z : Fin n → ℝ i : Fin n ⊢ ![x i - y i, 2 * z i] = ![x - y, 2 • z]ᵀ i
Please generate a tactic in lean4 to solve the state. STATE: n✝ : Type ?u.71362 m : Type ?u.71359 inst✝¹ : Fintype m inst✝ : Fintype n✝ n : ℕ x y z : Fin n → ℝ i : Fin n ⊢ (x i + y i).soCone (![x - y, 2 • z]ᵀ i) ↔ (x i + y i).soCone ![x i - y i, 2 * z i] TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Cones/SOCone.lean
Real.vec_soCone_apply_to_soCone_add_sub_two_mul
[113, 1]
[115, 57]
funext j
case h.e'_2.h.e'_4 n✝ : Type ?u.71362 m : Type ?u.71359 inst✝¹ : Fintype m inst✝ : Fintype n✝ n : ℕ x y z : Fin n → ℝ i : Fin n ⊢ ![x i - y i, 2 * z i] = ![x - y, 2 • z]ᵀ i
case h.e'_2.h.e'_4.h n✝ : Type ?u.71362 m : Type ?u.71359 inst✝¹ : Fintype m inst✝ : Fintype n✝ n : ℕ x y z : Fin n → ℝ i : Fin n j : Fin (Nat.succ 1) ⊢ ![x i - y i, 2 * z i] j = ![x - y, 2 • z]ᵀ i j
Please generate a tactic in lean4 to solve the state. STATE: case h.e'_2.h.e'_4 n✝ : Type ?u.71362 m : Type ?u.71359 inst✝¹ : Fintype m inst✝ : Fintype n✝ n : ℕ x y z : Fin n → ℝ i : Fin n ⊢ ![x i - y i, 2 * z i] = ![x - y, 2 • z]ᵀ i TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Cones/SOCone.lean
Real.vec_soCone_apply_to_soCone_add_sub_two_mul
[113, 1]
[115, 57]
fin_cases j <;> simp
case h.e'_2.h.e'_4.h n✝ : Type ?u.71362 m : Type ?u.71359 inst✝¹ : Fintype m inst✝ : Fintype n✝ n : ℕ x y z : Fin n → ℝ i : Fin n j : Fin (Nat.succ 1) ⊢ ![x i - y i, 2 * z i] j = ![x - y, 2 • z]ᵀ i j
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h.e'_2.h.e'_4.h n✝ : Type ?u.71362 m : Type ?u.71359 inst✝¹ : Fintype m inst✝ : Fintype n✝ n : ℕ x y z : Fin n → ℝ i : Fin n j : Fin (Nat.succ 1) ⊢ ![x i - y i, 2 * z i] j = ![x - y, 2 • z]ᵀ i j TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Cones/SOCone.lean
Real.vec_soCone_apply_to_soCone_add_sub_two
[117, 1]
[119, 57]
dsimp
n✝ : Type ?u.77315 m : Type ?u.77312 inst✝¹ : Fintype m inst✝ : Fintype n✝ n : ℕ x y : Fin n → ℝ i : Fin n ⊢ ((x + y) i).soCone (![x - y, 2]ᵀ i) ↔ (x i + y i).soCone ![x i - y i, 2]
n✝ : Type ?u.77315 m : Type ?u.77312 inst✝¹ : Fintype m inst✝ : Fintype n✝ n : ℕ x y : Fin n → ℝ i : Fin n ⊢ (x i + y i).soCone (![x - y, 2]ᵀ i) ↔ (x i + y i).soCone ![x i - y i, 2]
Please generate a tactic in lean4 to solve the state. STATE: n✝ : Type ?u.77315 m : Type ?u.77312 inst✝¹ : Fintype m inst✝ : Fintype n✝ n : ℕ x y : Fin n → ℝ i : Fin n ⊢ ((x + y) i).soCone (![x - y, 2]ᵀ i) ↔ (x i + y i).soCone ![x i - y i, 2] TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Cones/SOCone.lean
Real.vec_soCone_apply_to_soCone_add_sub_two
[117, 1]
[119, 57]
convert Iff.rfl
n✝ : Type ?u.77315 m : Type ?u.77312 inst✝¹ : Fintype m inst✝ : Fintype n✝ n : ℕ x y : Fin n → ℝ i : Fin n ⊢ (x i + y i).soCone (![x - y, 2]ᵀ i) ↔ (x i + y i).soCone ![x i - y i, 2]
case h.e'_2.h.e'_4 n✝ : Type ?u.77315 m : Type ?u.77312 inst✝¹ : Fintype m inst✝ : Fintype n✝ n : ℕ x y : Fin n → ℝ i : Fin n ⊢ ![x i - y i, 2] = ![x - y, 2]ᵀ i
Please generate a tactic in lean4 to solve the state. STATE: n✝ : Type ?u.77315 m : Type ?u.77312 inst✝¹ : Fintype m inst✝ : Fintype n✝ n : ℕ x y : Fin n → ℝ i : Fin n ⊢ (x i + y i).soCone (![x - y, 2]ᵀ i) ↔ (x i + y i).soCone ![x i - y i, 2] TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Cones/SOCone.lean
Real.vec_soCone_apply_to_soCone_add_sub_two
[117, 1]
[119, 57]
funext j
case h.e'_2.h.e'_4 n✝ : Type ?u.77315 m : Type ?u.77312 inst✝¹ : Fintype m inst✝ : Fintype n✝ n : ℕ x y : Fin n → ℝ i : Fin n ⊢ ![x i - y i, 2] = ![x - y, 2]ᵀ i
case h.e'_2.h.e'_4.h n✝ : Type ?u.77315 m : Type ?u.77312 inst✝¹ : Fintype m inst✝ : Fintype n✝ n : ℕ x y : Fin n → ℝ i : Fin n j : Fin (Nat.succ 1) ⊢ ![x i - y i, 2] j = ![x - y, 2]ᵀ i j
Please generate a tactic in lean4 to solve the state. STATE: case h.e'_2.h.e'_4 n✝ : Type ?u.77315 m : Type ?u.77312 inst✝¹ : Fintype m inst✝ : Fintype n✝ n : ℕ x y : Fin n → ℝ i : Fin n ⊢ ![x i - y i, 2] = ![x - y, 2]ᵀ i TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Cones/SOCone.lean
Real.vec_soCone_apply_to_soCone_add_sub_two
[117, 1]
[119, 57]
fin_cases j <;> simp
case h.e'_2.h.e'_4.h n✝ : Type ?u.77315 m : Type ?u.77312 inst✝¹ : Fintype m inst✝ : Fintype n✝ n : ℕ x y : Fin n → ℝ i : Fin n j : Fin (Nat.succ 1) ⊢ ![x i - y i, 2] j = ![x - y, 2]ᵀ i j
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h.e'_2.h.e'_4.h n✝ : Type ?u.77315 m : Type ?u.77312 inst✝¹ : Fintype m inst✝ : Fintype n✝ n : ℕ x y : Fin n → ℝ i : Fin n j : Fin (Nat.succ 1) ⊢ ![x i - y i, 2] j = ![x - y, 2]ᵀ i j TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.PosSemidef.det_nonneg
[16, 1]
[20, 30]
rw [hM.1.det_eq_prod_eigenvalues]
m : Type ?u.340 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.352 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 M : Matrix n n ℝ hM : M.PosSemidef inst✝ : DecidableEq n ⊢ 0 ≤ M.det
m : Type ?u.340 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.352 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 M : Matrix n n ℝ hM : M.PosSemidef inst✝ : DecidableEq n ⊢ 0 ≤ Finset.univ.prod fun i => ↑(⋯.eigenvalues i)
Please generate a tactic in lean4 to solve the state. STATE: m : Type ?u.340 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.352 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 M : Matrix n n ℝ hM : M.PosSemidef inst✝ : DecidableEq n ⊢ 0 ≤ M.det TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.PosSemidef.det_nonneg
[16, 1]
[20, 30]
apply Finset.prod_nonneg
m : Type ?u.340 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.352 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 M : Matrix n n ℝ hM : M.PosSemidef inst✝ : DecidableEq n ⊢ 0 ≤ Finset.univ.prod fun i => ↑(⋯.eigenvalues i)
case h0 m : Type ?u.340 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.352 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 M : Matrix n n ℝ hM : M.PosSemidef inst✝ : DecidableEq n ⊢ ∀ i ∈ Finset.univ, 0 ≤ ↑(⋯.eigenvalues i)
Please generate a tactic in lean4 to solve the state. STATE: m : Type ?u.340 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.352 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 M : Matrix n n ℝ hM : M.PosSemidef inst✝ : DecidableEq n ⊢ 0 ≤ Finset.univ.prod fun i => ↑(⋯.eigenvalues i) TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.PosSemidef.det_nonneg
[16, 1]
[20, 30]
intros i _hi
case h0 m : Type ?u.340 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.352 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 M : Matrix n n ℝ hM : M.PosSemidef inst✝ : DecidableEq n ⊢ ∀ i ∈ Finset.univ, 0 ≤ ↑(⋯.eigenvalues i)
case h0 m : Type ?u.340 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.352 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 M : Matrix n n ℝ hM : M.PosSemidef inst✝ : DecidableEq n i : n _hi : i ∈ Finset.univ ⊢ 0 ≤ ↑(⋯.eigenvalues i)
Please generate a tactic in lean4 to solve the state. STATE: case h0 m : Type ?u.340 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.352 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 M : Matrix n n ℝ hM : M.PosSemidef inst✝ : DecidableEq n ⊢ ∀ i ∈ Finset.univ, 0 ≤ ↑(⋯.eigenvalues i) TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.PosSemidef.det_nonneg
[16, 1]
[20, 30]
apply eigenvalues_nonneg hM
case h0 m : Type ?u.340 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.352 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 M : Matrix n n ℝ hM : M.PosSemidef inst✝ : DecidableEq n i : n _hi : i ∈ Finset.univ ⊢ 0 ≤ ↑(⋯.eigenvalues i)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h0 m : Type ?u.340 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.352 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 M : Matrix n n ℝ hM : M.PosSemidef inst✝ : DecidableEq n i : n _hi : i ∈ Finset.univ ⊢ 0 ≤ ↑(⋯.eigenvalues i) TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.PosDef.det_ne_zero
[22, 1]
[29, 32]
rw [← Matrix.nondegenerate_iff_det_ne_zero]
m : Type ?u.1418 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type u_2 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M : Matrix n n 𝕜 hM : M.PosDef ⊢ M.det ≠ 0
m : Type ?u.1418 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type u_2 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M : Matrix n n 𝕜 hM : M.PosDef ⊢ M.Nondegenerate
Please generate a tactic in lean4 to solve the state. STATE: m : Type ?u.1418 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type u_2 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M : Matrix n n 𝕜 hM : M.PosDef ⊢ M.det ≠ 0 TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.PosDef.det_ne_zero
[22, 1]
[29, 32]
intros v hv
m : Type ?u.1418 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type u_2 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M : Matrix n n 𝕜 hM : M.PosDef ⊢ M.Nondegenerate
m : Type ?u.1418 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type u_2 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M : Matrix n n 𝕜 hM : M.PosDef v : n → 𝕜 hv : ∀ (w : n → 𝕜), v ⬝ᵥ M.mulVec w = 0 ⊢ v = 0
Please generate a tactic in lean4 to solve the state. STATE: m : Type ?u.1418 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type u_2 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M : Matrix n n 𝕜 hM : M.PosDef ⊢ M.Nondegenerate TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.PosDef.det_ne_zero
[22, 1]
[29, 32]
have hv' := hv (star v)
m : Type ?u.1418 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type u_2 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M : Matrix n n 𝕜 hM : M.PosDef v : n → 𝕜 hv : ∀ (w : n → 𝕜), v ⬝ᵥ M.mulVec w = 0 ⊢ v = 0
m : Type ?u.1418 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type u_2 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M : Matrix n n 𝕜 hM : M.PosDef v : n → 𝕜 hv : ∀ (w : n → 𝕜), v ⬝ᵥ M.mulVec w = 0 hv' : v ⬝ᵥ M.mulVec (star v) = 0 ⊢ v = 0
Please generate a tactic in lean4 to solve the state. STATE: m : Type ?u.1418 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type u_2 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M : Matrix n n 𝕜 hM : M.PosDef v : n → 𝕜 hv : ∀ (w : n → 𝕜), v ⬝ᵥ M.mulVec w = 0 ⊢ v = 0 TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.PosDef.det_ne_zero
[22, 1]
[29, 32]
rw [← star_eq_zero]
m : Type ?u.1418 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type u_2 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M : Matrix n n 𝕜 hM : M.PosDef v : n → 𝕜 hv : ∀ (w : n → 𝕜), v ⬝ᵥ M.mulVec w = 0 hv' : v ⬝ᵥ M.mulVec (star v) = 0 ⊢ v = 0
m : Type ?u.1418 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type u_2 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M : Matrix n n 𝕜 hM : M.PosDef v : n → 𝕜 hv : ∀ (w : n → 𝕜), v ⬝ᵥ M.mulVec w = 0 hv' : v ⬝ᵥ M.mulVec (star v) = 0 ⊢ star v = 0
Please generate a tactic in lean4 to solve the state. STATE: m : Type ?u.1418 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type u_2 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M : Matrix n n 𝕜 hM : M.PosDef v : n → 𝕜 hv : ∀ (w : n → 𝕜), v ⬝ᵥ M.mulVec w = 0 hv' : v ⬝ᵥ M.mulVec (star v) = 0 ⊢ v = 0 TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.PosDef.det_ne_zero
[22, 1]
[29, 32]
by_contra h
m : Type ?u.1418 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type u_2 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M : Matrix n n 𝕜 hM : M.PosDef v : n → 𝕜 hv : ∀ (w : n → 𝕜), v ⬝ᵥ M.mulVec w = 0 hv' : v ⬝ᵥ M.mulVec (star v) = 0 ⊢ star v = 0
m : Type ?u.1418 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type u_2 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M : Matrix n n 𝕜 hM : M.PosDef v : n → 𝕜 hv : ∀ (w : n → 𝕜), v ⬝ᵥ M.mulVec w = 0 hv' : v ⬝ᵥ M.mulVec (star v) = 0 h : ¬star v = 0 ⊢ False
Please generate a tactic in lean4 to solve the state. STATE: m : Type ?u.1418 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type u_2 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M : Matrix n n 𝕜 hM : M.PosDef v : n → 𝕜 hv : ∀ (w : n → 𝕜), v ⬝ᵥ M.mulVec w = 0 hv' : v ⬝ᵥ M.mulVec (star v) = 0 ⊢ star v = 0 TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.PosDef.det_ne_zero
[22, 1]
[29, 32]
have := hM.2 (star v) h
m : Type ?u.1418 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type u_2 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M : Matrix n n 𝕜 hM : M.PosDef v : n → 𝕜 hv : ∀ (w : n → 𝕜), v ⬝ᵥ M.mulVec w = 0 hv' : v ⬝ᵥ M.mulVec (star v) = 0 h : ¬star v = 0 ⊢ False
m : Type ?u.1418 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type u_2 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M : Matrix n n 𝕜 hM : M.PosDef v : n → 𝕜 hv : ∀ (w : n → 𝕜), v ⬝ᵥ M.mulVec w = 0 hv' : v ⬝ᵥ M.mulVec (star v) = 0 h : ¬star v = 0 this : 0 < star (star v) ⬝ᵥ M.mulVec (star v) ⊢ False
Please generate a tactic in lean4 to solve the state. STATE: m : Type ?u.1418 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type u_2 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M : Matrix n n 𝕜 hM : M.PosDef v : n → 𝕜 hv : ∀ (w : n → 𝕜), v ⬝ᵥ M.mulVec w = 0 hv' : v ⬝ᵥ M.mulVec (star v) = 0 h : ¬star v = 0 ⊢ False TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.PosDef.det_ne_zero
[22, 1]
[29, 32]
simp [star_star, hv'] at this
m : Type ?u.1418 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type u_2 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M : Matrix n n 𝕜 hM : M.PosDef v : n → 𝕜 hv : ∀ (w : n → 𝕜), v ⬝ᵥ M.mulVec w = 0 hv' : v ⬝ᵥ M.mulVec (star v) = 0 h : ¬star v = 0 this : 0 < star (star v) ⬝ᵥ M.mulVec (star v) ⊢ False
no goals
Please generate a tactic in lean4 to solve the state. STATE: m : Type ?u.1418 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type u_2 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M : Matrix n n 𝕜 hM : M.PosDef v : n → 𝕜 hv : ∀ (w : n → 𝕜), v ⬝ᵥ M.mulVec w = 0 hv' : v ⬝ᵥ M.mulVec (star v) = 0 h : ¬star v = 0 this : 0 < star (star v) ⬝ᵥ M.mulVec (star v) ⊢ False TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.PosSemidef_diagonal
[38, 1]
[46, 50]
refine' ⟨isHermitian_diagonal _, _⟩
m : Type ?u.6640 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.6652 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n f : n → ℝ hf : ∀ (i : n), 0 ≤ f i ⊢ (diagonal f).PosSemidef
m : Type ?u.6640 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.6652 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n f : n → ℝ hf : ∀ (i : n), 0 ≤ f i ⊢ ∀ (x : n → ℝ), 0 ≤ star x ⬝ᵥ (diagonal f).mulVec x
Please generate a tactic in lean4 to solve the state. STATE: m : Type ?u.6640 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.6652 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n f : n → ℝ hf : ∀ (i : n), 0 ≤ f i ⊢ (diagonal f).PosSemidef TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.PosSemidef_diagonal
[38, 1]
[46, 50]
intro x
m : Type ?u.6640 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.6652 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n f : n → ℝ hf : ∀ (i : n), 0 ≤ f i ⊢ ∀ (x : n → ℝ), 0 ≤ star x ⬝ᵥ (diagonal f).mulVec x
m : Type ?u.6640 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.6652 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n f : n → ℝ hf : ∀ (i : n), 0 ≤ f i x : n → ℝ ⊢ 0 ≤ star x ⬝ᵥ (diagonal f).mulVec x
Please generate a tactic in lean4 to solve the state. STATE: m : Type ?u.6640 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.6652 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n f : n → ℝ hf : ∀ (i : n), 0 ≤ f i ⊢ ∀ (x : n → ℝ), 0 ≤ star x ⬝ᵥ (diagonal f).mulVec x TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.PosSemidef_diagonal
[38, 1]
[46, 50]
simp only [star, id_def, RCLike.re_to_real]
m : Type ?u.6640 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.6652 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n f : n → ℝ hf : ∀ (i : n), 0 ≤ f i x : n → ℝ ⊢ 0 ≤ star x ⬝ᵥ (diagonal f).mulVec x
m : Type ?u.6640 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.6652 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n f : n → ℝ hf : ∀ (i : n), 0 ≤ f i x : n → ℝ ⊢ 0 ≤ (fun i => x i) ⬝ᵥ (diagonal f).mulVec x
Please generate a tactic in lean4 to solve the state. STATE: m : Type ?u.6640 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.6652 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n f : n → ℝ hf : ∀ (i : n), 0 ≤ f i x : n → ℝ ⊢ 0 ≤ star x ⬝ᵥ (diagonal f).mulVec x TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.PosSemidef_diagonal
[38, 1]
[46, 50]
apply Finset.sum_nonneg'
m : Type ?u.6640 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.6652 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n f : n → ℝ hf : ∀ (i : n), 0 ≤ f i x : n → ℝ ⊢ 0 ≤ (fun i => x i) ⬝ᵥ (diagonal f).mulVec x
case h m : Type ?u.6640 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.6652 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n f : n → ℝ hf : ∀ (i : n), 0 ≤ f i x : n → ℝ ⊢ ∀ (i : n), 0 ≤ (fun i => x i) i * (diagonal f).mulVec x i
Please generate a tactic in lean4 to solve the state. STATE: m : Type ?u.6640 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.6652 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n f : n → ℝ hf : ∀ (i : n), 0 ≤ f i x : n → ℝ ⊢ 0 ≤ (fun i => x i) ⬝ᵥ (diagonal f).mulVec x TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.PosSemidef_diagonal
[38, 1]
[46, 50]
intro i
case h m : Type ?u.6640 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.6652 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n f : n → ℝ hf : ∀ (i : n), 0 ≤ f i x : n → ℝ ⊢ ∀ (i : n), 0 ≤ (fun i => x i) i * (diagonal f).mulVec x i
case h m : Type ?u.6640 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.6652 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n f : n → ℝ hf : ∀ (i : n), 0 ≤ f i x : n → ℝ i : n ⊢ 0 ≤ (fun i => x i) i * (diagonal f).mulVec x i
Please generate a tactic in lean4 to solve the state. STATE: case h m : Type ?u.6640 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.6652 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n f : n → ℝ hf : ∀ (i : n), 0 ≤ f i x : n → ℝ ⊢ ∀ (i : n), 0 ≤ (fun i => x i) i * (diagonal f).mulVec x i TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.PosSemidef_diagonal
[38, 1]
[46, 50]
rw [mulVec_diagonal f x i, mul_comm, mul_assoc]
case h m : Type ?u.6640 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.6652 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n f : n → ℝ hf : ∀ (i : n), 0 ≤ f i x : n → ℝ i : n ⊢ 0 ≤ (fun i => x i) i * (diagonal f).mulVec x i
case h m : Type ?u.6640 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.6652 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n f : n → ℝ hf : ∀ (i : n), 0 ≤ f i x : n → ℝ i : n ⊢ 0 ≤ f i * (x i * (fun i => x i) i)
Please generate a tactic in lean4 to solve the state. STATE: case h m : Type ?u.6640 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.6652 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n f : n → ℝ hf : ∀ (i : n), 0 ≤ f i x : n → ℝ i : n ⊢ 0 ≤ (fun i => x i) i * (diagonal f).mulVec x i TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.PosSemidef_diagonal
[38, 1]
[46, 50]
exact mul_nonneg (hf i) (mul_self_nonneg (x i))
case h m : Type ?u.6640 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.6652 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n f : n → ℝ hf : ∀ (i : n), 0 ≤ f i x : n → ℝ i : n ⊢ 0 ≤ f i * (x i * (fun i => x i) i)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h m : Type ?u.6640 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.6652 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n f : n → ℝ hf : ∀ (i : n), 0 ≤ f i x : n → ℝ i : n ⊢ 0 ≤ f i * (x i * (fun i => x i) i) TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.PosDef_diagonal
[48, 1]
[62, 10]
refine' ⟨isHermitian_diagonal _, _⟩
m : Type ?u.8318 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.8330 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n f : n → ℝ hf : ∀ (i : n), 0 < f i ⊢ (diagonal f).PosDef
m : Type ?u.8318 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.8330 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n f : n → ℝ hf : ∀ (i : n), 0 < f i ⊢ ∀ (x : n → ℝ), x ≠ 0 → 0 < star x ⬝ᵥ (diagonal f).mulVec x
Please generate a tactic in lean4 to solve the state. STATE: m : Type ?u.8318 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.8330 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n f : n → ℝ hf : ∀ (i : n), 0 < f i ⊢ (diagonal f).PosDef TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.PosDef_diagonal
[48, 1]
[62, 10]
intros x hx
m : Type ?u.8318 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.8330 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n f : n → ℝ hf : ∀ (i : n), 0 < f i ⊢ ∀ (x : n → ℝ), x ≠ 0 → 0 < star x ⬝ᵥ (diagonal f).mulVec x
m : Type ?u.8318 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.8330 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n f : n → ℝ hf : ∀ (i : n), 0 < f i x : n → ℝ hx : x ≠ 0 ⊢ 0 < star x ⬝ᵥ (diagonal f).mulVec x
Please generate a tactic in lean4 to solve the state. STATE: m : Type ?u.8318 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.8330 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n f : n → ℝ hf : ∀ (i : n), 0 < f i ⊢ ∀ (x : n → ℝ), x ≠ 0 → 0 < star x ⬝ᵥ (diagonal f).mulVec x TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.PosDef_diagonal
[48, 1]
[62, 10]
simp only [star, id_def, RCLike.re_to_real]
m : Type ?u.8318 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.8330 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n f : n → ℝ hf : ∀ (i : n), 0 < f i x : n → ℝ hx : x ≠ 0 ⊢ 0 < star x ⬝ᵥ (diagonal f).mulVec x
m : Type ?u.8318 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.8330 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n f : n → ℝ hf : ∀ (i : n), 0 < f i x : n → ℝ hx : x ≠ 0 ⊢ 0 < (fun i => x i) ⬝ᵥ (diagonal f).mulVec x
Please generate a tactic in lean4 to solve the state. STATE: m : Type ?u.8318 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.8330 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n f : n → ℝ hf : ∀ (i : n), 0 < f i x : n → ℝ hx : x ≠ 0 ⊢ 0 < star x ⬝ᵥ (diagonal f).mulVec x TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.PosDef_diagonal
[48, 1]
[62, 10]
apply Finset.sum_pos'
m : Type ?u.8318 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.8330 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n f : n → ℝ hf : ∀ (i : n), 0 < f i x : n → ℝ hx : x ≠ 0 ⊢ 0 < (fun i => x i) ⬝ᵥ (diagonal f).mulVec x
case h m : Type ?u.8318 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.8330 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n f : n → ℝ hf : ∀ (i : n), 0 < f i x : n → ℝ hx : x ≠ 0 ⊢ ∀ i ∈ Finset.univ, 0 ≤ (fun i => x i) i * (diagonal f).mulVec x i case hs m : Type ?u.8318 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.8330 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n f : n → ℝ hf : ∀ (i : n), 0 < f i x : n → ℝ hx : x ≠ 0 ⊢ ∃ i ∈ Finset.univ, 0 < (fun i => x i) i * (diagonal f).mulVec x i
Please generate a tactic in lean4 to solve the state. STATE: m : Type ?u.8318 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.8330 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n f : n → ℝ hf : ∀ (i : n), 0 < f i x : n → ℝ hx : x ≠ 0 ⊢ 0 < (fun i => x i) ⬝ᵥ (diagonal f).mulVec x TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.PosDef_diagonal
[48, 1]
[62, 10]
{ intros i _ rw [mulVec_diagonal f x i, mul_comm, mul_assoc] exact mul_nonneg (le_of_lt (hf i)) (mul_self_nonneg (x i)) }
case h m : Type ?u.8318 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.8330 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n f : n → ℝ hf : ∀ (i : n), 0 < f i x : n → ℝ hx : x ≠ 0 ⊢ ∀ i ∈ Finset.univ, 0 ≤ (fun i => x i) i * (diagonal f).mulVec x i case hs m : Type ?u.8318 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.8330 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n f : n → ℝ hf : ∀ (i : n), 0 < f i x : n → ℝ hx : x ≠ 0 ⊢ ∃ i ∈ Finset.univ, 0 < (fun i => x i) i * (diagonal f).mulVec x i
case hs m : Type ?u.8318 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.8330 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n f : n → ℝ hf : ∀ (i : n), 0 < f i x : n → ℝ hx : x ≠ 0 ⊢ ∃ i ∈ Finset.univ, 0 < (fun i => x i) i * (diagonal f).mulVec x i
Please generate a tactic in lean4 to solve the state. STATE: case h m : Type ?u.8318 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.8330 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n f : n → ℝ hf : ∀ (i : n), 0 < f i x : n → ℝ hx : x ≠ 0 ⊢ ∀ i ∈ Finset.univ, 0 ≤ (fun i => x i) i * (diagonal f).mulVec x i case hs m : Type ?u.8318 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.8330 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n f : n → ℝ hf : ∀ (i : n), 0 < f i x : n → ℝ hx : x ≠ 0 ⊢ ∃ i ∈ Finset.univ, 0 < (fun i => x i) i * (diagonal f).mulVec x i TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.PosDef_diagonal
[48, 1]
[62, 10]
{ contrapose hx; simp at hx ⊢ ext i have := hx i rw [mulVec_diagonal f x i, mul_comm, mul_assoc] at this have := nonpos_of_mul_nonpos_right this (hf i) rw [mul_self_eq_zero.1 (le_antisymm this (mul_self_nonneg (x i)))] rfl }
case hs m : Type ?u.8318 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.8330 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n f : n → ℝ hf : ∀ (i : n), 0 < f i x : n → ℝ hx : x ≠ 0 ⊢ ∃ i ∈ Finset.univ, 0 < (fun i => x i) i * (diagonal f).mulVec x i
no goals
Please generate a tactic in lean4 to solve the state. STATE: case hs m : Type ?u.8318 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.8330 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n f : n → ℝ hf : ∀ (i : n), 0 < f i x : n → ℝ hx : x ≠ 0 ⊢ ∃ i ∈ Finset.univ, 0 < (fun i => x i) i * (diagonal f).mulVec x i TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.PosDef_diagonal
[48, 1]
[62, 10]
intros i _
case h m : Type ?u.8318 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.8330 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n f : n → ℝ hf : ∀ (i : n), 0 < f i x : n → ℝ hx : x ≠ 0 ⊢ ∀ i ∈ Finset.univ, 0 ≤ (fun i => x i) i * (diagonal f).mulVec x i
case h m : Type ?u.8318 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.8330 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n f : n → ℝ hf : ∀ (i : n), 0 < f i x : n → ℝ hx : x ≠ 0 i : n a✝ : i ∈ Finset.univ ⊢ 0 ≤ (fun i => x i) i * (diagonal f).mulVec x i
Please generate a tactic in lean4 to solve the state. STATE: case h m : Type ?u.8318 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.8330 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n f : n → ℝ hf : ∀ (i : n), 0 < f i x : n → ℝ hx : x ≠ 0 ⊢ ∀ i ∈ Finset.univ, 0 ≤ (fun i => x i) i * (diagonal f).mulVec x i TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.PosDef_diagonal
[48, 1]
[62, 10]
rw [mulVec_diagonal f x i, mul_comm, mul_assoc]
case h m : Type ?u.8318 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.8330 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n f : n → ℝ hf : ∀ (i : n), 0 < f i x : n → ℝ hx : x ≠ 0 i : n a✝ : i ∈ Finset.univ ⊢ 0 ≤ (fun i => x i) i * (diagonal f).mulVec x i
case h m : Type ?u.8318 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.8330 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n f : n → ℝ hf : ∀ (i : n), 0 < f i x : n → ℝ hx : x ≠ 0 i : n a✝ : i ∈ Finset.univ ⊢ 0 ≤ f i * (x i * (fun i => x i) i)
Please generate a tactic in lean4 to solve the state. STATE: case h m : Type ?u.8318 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.8330 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n f : n → ℝ hf : ∀ (i : n), 0 < f i x : n → ℝ hx : x ≠ 0 i : n a✝ : i ∈ Finset.univ ⊢ 0 ≤ (fun i => x i) i * (diagonal f).mulVec x i TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.PosDef_diagonal
[48, 1]
[62, 10]
exact mul_nonneg (le_of_lt (hf i)) (mul_self_nonneg (x i))
case h m : Type ?u.8318 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.8330 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n f : n → ℝ hf : ∀ (i : n), 0 < f i x : n → ℝ hx : x ≠ 0 i : n a✝ : i ∈ Finset.univ ⊢ 0 ≤ f i * (x i * (fun i => x i) i)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h m : Type ?u.8318 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.8330 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n f : n → ℝ hf : ∀ (i : n), 0 < f i x : n → ℝ hx : x ≠ 0 i : n a✝ : i ∈ Finset.univ ⊢ 0 ≤ f i * (x i * (fun i => x i) i) TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.PosDef_diagonal
[48, 1]
[62, 10]
contrapose hx
case hs m : Type ?u.8318 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.8330 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n f : n → ℝ hf : ∀ (i : n), 0 < f i x : n → ℝ hx : x ≠ 0 ⊢ ∃ i ∈ Finset.univ, 0 < (fun i => x i) i * (diagonal f).mulVec x i
case hs m : Type ?u.8318 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.8330 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n f : n → ℝ hf : ∀ (i : n), 0 < f i x : n → ℝ hx : ¬∃ i ∈ Finset.univ, 0 < (fun i => x i) i * (diagonal f).mulVec x i ⊢ ¬x ≠ 0
Please generate a tactic in lean4 to solve the state. STATE: case hs m : Type ?u.8318 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.8330 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n f : n → ℝ hf : ∀ (i : n), 0 < f i x : n → ℝ hx : x ≠ 0 ⊢ ∃ i ∈ Finset.univ, 0 < (fun i => x i) i * (diagonal f).mulVec x i TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.PosDef_diagonal
[48, 1]
[62, 10]
simp at hx ⊢
case hs m : Type ?u.8318 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.8330 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n f : n → ℝ hf : ∀ (i : n), 0 < f i x : n → ℝ hx : ¬∃ i ∈ Finset.univ, 0 < (fun i => x i) i * (diagonal f).mulVec x i ⊢ ¬x ≠ 0
case hs m : Type ?u.8318 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.8330 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n f : n → ℝ hf : ∀ (i : n), 0 < f i x : n → ℝ hx : ∀ (x_1 : n), x x_1 * (diagonal f).mulVec x x_1 ≤ 0 ⊢ x = 0
Please generate a tactic in lean4 to solve the state. STATE: case hs m : Type ?u.8318 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.8330 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n f : n → ℝ hf : ∀ (i : n), 0 < f i x : n → ℝ hx : ¬∃ i ∈ Finset.univ, 0 < (fun i => x i) i * (diagonal f).mulVec x i ⊢ ¬x ≠ 0 TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.PosDef_diagonal
[48, 1]
[62, 10]
ext i
case hs m : Type ?u.8318 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.8330 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n f : n → ℝ hf : ∀ (i : n), 0 < f i x : n → ℝ hx : ∀ (x_1 : n), x x_1 * (diagonal f).mulVec x x_1 ≤ 0 ⊢ x = 0
case hs.h m : Type ?u.8318 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.8330 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n f : n → ℝ hf : ∀ (i : n), 0 < f i x : n → ℝ hx : ∀ (x_1 : n), x x_1 * (diagonal f).mulVec x x_1 ≤ 0 i : n ⊢ x i = 0 i
Please generate a tactic in lean4 to solve the state. STATE: case hs m : Type ?u.8318 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.8330 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n f : n → ℝ hf : ∀ (i : n), 0 < f i x : n → ℝ hx : ∀ (x_1 : n), x x_1 * (diagonal f).mulVec x x_1 ≤ 0 ⊢ x = 0 TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.PosDef_diagonal
[48, 1]
[62, 10]
have := hx i
case hs.h m : Type ?u.8318 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.8330 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n f : n → ℝ hf : ∀ (i : n), 0 < f i x : n → ℝ hx : ∀ (x_1 : n), x x_1 * (diagonal f).mulVec x x_1 ≤ 0 i : n ⊢ x i = 0 i
case hs.h m : Type ?u.8318 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.8330 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n f : n → ℝ hf : ∀ (i : n), 0 < f i x : n → ℝ hx : ∀ (x_1 : n), x x_1 * (diagonal f).mulVec x x_1 ≤ 0 i : n this : x i * (diagonal f).mulVec x i ≤ 0 ⊢ x i = 0 i
Please generate a tactic in lean4 to solve the state. STATE: case hs.h m : Type ?u.8318 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.8330 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n f : n → ℝ hf : ∀ (i : n), 0 < f i x : n → ℝ hx : ∀ (x_1 : n), x x_1 * (diagonal f).mulVec x x_1 ≤ 0 i : n ⊢ x i = 0 i TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.PosDef_diagonal
[48, 1]
[62, 10]
rw [mulVec_diagonal f x i, mul_comm, mul_assoc] at this
case hs.h m : Type ?u.8318 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.8330 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n f : n → ℝ hf : ∀ (i : n), 0 < f i x : n → ℝ hx : ∀ (x_1 : n), x x_1 * (diagonal f).mulVec x x_1 ≤ 0 i : n this : x i * (diagonal f).mulVec x i ≤ 0 ⊢ x i = 0 i
case hs.h m : Type ?u.8318 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.8330 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n f : n → ℝ hf : ∀ (i : n), 0 < f i x : n → ℝ hx : ∀ (x_1 : n), x x_1 * (diagonal f).mulVec x x_1 ≤ 0 i : n this : f i * (x i * x i) ≤ 0 ⊢ x i = 0 i
Please generate a tactic in lean4 to solve the state. STATE: case hs.h m : Type ?u.8318 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.8330 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n f : n → ℝ hf : ∀ (i : n), 0 < f i x : n → ℝ hx : ∀ (x_1 : n), x x_1 * (diagonal f).mulVec x x_1 ≤ 0 i : n this : x i * (diagonal f).mulVec x i ≤ 0 ⊢ x i = 0 i TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.PosDef_diagonal
[48, 1]
[62, 10]
have := nonpos_of_mul_nonpos_right this (hf i)
case hs.h m : Type ?u.8318 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.8330 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n f : n → ℝ hf : ∀ (i : n), 0 < f i x : n → ℝ hx : ∀ (x_1 : n), x x_1 * (diagonal f).mulVec x x_1 ≤ 0 i : n this : f i * (x i * x i) ≤ 0 ⊢ x i = 0 i
case hs.h m : Type ?u.8318 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.8330 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n f : n → ℝ hf : ∀ (i : n), 0 < f i x : n → ℝ hx : ∀ (x_1 : n), x x_1 * (diagonal f).mulVec x x_1 ≤ 0 i : n this✝ : f i * (x i * x i) ≤ 0 this : x i * x i ≤ 0 ⊢ x i = 0 i
Please generate a tactic in lean4 to solve the state. STATE: case hs.h m : Type ?u.8318 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.8330 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n f : n → ℝ hf : ∀ (i : n), 0 < f i x : n → ℝ hx : ∀ (x_1 : n), x x_1 * (diagonal f).mulVec x x_1 ≤ 0 i : n this : f i * (x i * x i) ≤ 0 ⊢ x i = 0 i TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.PosDef_diagonal
[48, 1]
[62, 10]
rw [mul_self_eq_zero.1 (le_antisymm this (mul_self_nonneg (x i)))]
case hs.h m : Type ?u.8318 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.8330 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n f : n → ℝ hf : ∀ (i : n), 0 < f i x : n → ℝ hx : ∀ (x_1 : n), x x_1 * (diagonal f).mulVec x x_1 ≤ 0 i : n this✝ : f i * (x i * x i) ≤ 0 this : x i * x i ≤ 0 ⊢ x i = 0 i
case hs.h m : Type ?u.8318 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.8330 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n f : n → ℝ hf : ∀ (i : n), 0 < f i x : n → ℝ hx : ∀ (x_1 : n), x x_1 * (diagonal f).mulVec x x_1 ≤ 0 i : n this✝ : f i * (x i * x i) ≤ 0 this : x i * x i ≤ 0 ⊢ 0 = 0 i
Please generate a tactic in lean4 to solve the state. STATE: case hs.h m : Type ?u.8318 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.8330 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n f : n → ℝ hf : ∀ (i : n), 0 < f i x : n → ℝ hx : ∀ (x_1 : n), x x_1 * (diagonal f).mulVec x x_1 ≤ 0 i : n this✝ : f i * (x i * x i) ≤ 0 this : x i * x i ≤ 0 ⊢ x i = 0 i TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.PosDef_diagonal
[48, 1]
[62, 10]
rfl
case hs.h m : Type ?u.8318 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.8330 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n f : n → ℝ hf : ∀ (i : n), 0 < f i x : n → ℝ hx : ∀ (x_1 : n), x x_1 * (diagonal f).mulVec x x_1 ≤ 0 i : n this✝ : f i * (x i * x i) ≤ 0 this : x i * x i ≤ 0 ⊢ 0 = 0 i
no goals
Please generate a tactic in lean4 to solve the state. STATE: case hs.h m : Type ?u.8318 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.8330 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n f : n → ℝ hf : ∀ (i : n), 0 < f i x : n → ℝ hx : ∀ (x_1 : n), x x_1 * (diagonal f).mulVec x x_1 ≤ 0 i : n this✝ : f i * (x i * x i) ≤ 0 this : x i * x i ≤ 0 ⊢ 0 = 0 i TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.PosSemidef.conjTranspose_mul_mul
[64, 1]
[69, 81]
refine' ⟨isHermitian_conjTranspose_mul_mul _ hM.1, _⟩
m : Type ?u.23145 n : Type u_1 inst✝⁶ : Fintype m inst✝⁵ : Fintype n 𝕜 : Type u_2 inst✝⁴ : NormedField 𝕜 inst✝³ : PartialOrder 𝕜 inst✝² : StarRing 𝕜 inst✝¹ : StarOrderedRing 𝕜 inst✝ : RCLike 𝕜 M N : Matrix n n 𝕜 hM : M.PosSemidef ⊢ (N.conjTranspose * M * N).PosSemidef
m : Type ?u.23145 n : Type u_1 inst✝⁶ : Fintype m inst✝⁵ : Fintype n 𝕜 : Type u_2 inst✝⁴ : NormedField 𝕜 inst✝³ : PartialOrder 𝕜 inst✝² : StarRing 𝕜 inst✝¹ : StarOrderedRing 𝕜 inst✝ : RCLike 𝕜 M N : Matrix n n 𝕜 hM : M.PosSemidef ⊢ ∀ (x : n → 𝕜), 0 ≤ star x ⬝ᵥ (N.conjTranspose * M * N).mulVec x
Please generate a tactic in lean4 to solve the state. STATE: m : Type ?u.23145 n : Type u_1 inst✝⁶ : Fintype m inst✝⁵ : Fintype n 𝕜 : Type u_2 inst✝⁴ : NormedField 𝕜 inst✝³ : PartialOrder 𝕜 inst✝² : StarRing 𝕜 inst✝¹ : StarOrderedRing 𝕜 inst✝ : RCLike 𝕜 M N : Matrix n n 𝕜 hM : M.PosSemidef ⊢ (N.conjTranspose * M * N).PosSemidef TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.PosSemidef.conjTranspose_mul_mul
[64, 1]
[69, 81]
intro x
m : Type ?u.23145 n : Type u_1 inst✝⁶ : Fintype m inst✝⁵ : Fintype n 𝕜 : Type u_2 inst✝⁴ : NormedField 𝕜 inst✝³ : PartialOrder 𝕜 inst✝² : StarRing 𝕜 inst✝¹ : StarOrderedRing 𝕜 inst✝ : RCLike 𝕜 M N : Matrix n n 𝕜 hM : M.PosSemidef ⊢ ∀ (x : n → 𝕜), 0 ≤ star x ⬝ᵥ (N.conjTranspose * M * N).mulVec x
m : Type ?u.23145 n : Type u_1 inst✝⁶ : Fintype m inst✝⁵ : Fintype n 𝕜 : Type u_2 inst✝⁴ : NormedField 𝕜 inst✝³ : PartialOrder 𝕜 inst✝² : StarRing 𝕜 inst✝¹ : StarOrderedRing 𝕜 inst✝ : RCLike 𝕜 M N : Matrix n n 𝕜 hM : M.PosSemidef x : n → 𝕜 ⊢ 0 ≤ star x ⬝ᵥ (N.conjTranspose * M * N).mulVec x
Please generate a tactic in lean4 to solve the state. STATE: m : Type ?u.23145 n : Type u_1 inst✝⁶ : Fintype m inst✝⁵ : Fintype n 𝕜 : Type u_2 inst✝⁴ : NormedField 𝕜 inst✝³ : PartialOrder 𝕜 inst✝² : StarRing 𝕜 inst✝¹ : StarOrderedRing 𝕜 inst✝ : RCLike 𝕜 M N : Matrix n n 𝕜 hM : M.PosSemidef ⊢ ∀ (x : n → 𝕜), 0 ≤ star x ⬝ᵥ (N.conjTranspose * M * N).mulVec x TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.PosSemidef.conjTranspose_mul_mul
[64, 1]
[69, 81]
convert hM.2 (N.mulVec x) using 1
m : Type ?u.23145 n : Type u_1 inst✝⁶ : Fintype m inst✝⁵ : Fintype n 𝕜 : Type u_2 inst✝⁴ : NormedField 𝕜 inst✝³ : PartialOrder 𝕜 inst✝² : StarRing 𝕜 inst✝¹ : StarOrderedRing 𝕜 inst✝ : RCLike 𝕜 M N : Matrix n n 𝕜 hM : M.PosSemidef x : n → 𝕜 ⊢ 0 ≤ star x ⬝ᵥ (N.conjTranspose * M * N).mulVec x
case h.e'_4 m : Type ?u.23145 n : Type u_1 inst✝⁶ : Fintype m inst✝⁵ : Fintype n 𝕜 : Type u_2 inst✝⁴ : NormedField 𝕜 inst✝³ : PartialOrder 𝕜 inst✝² : StarRing 𝕜 inst✝¹ : StarOrderedRing 𝕜 inst✝ : RCLike 𝕜 M N : Matrix n n 𝕜 hM : M.PosSemidef x : n → 𝕜 ⊢ star x ⬝ᵥ (N.conjTranspose * M * N).mulVec x = star (N.mulVec x) ⬝ᵥ M.mulVec (N.mulVec x)
Please generate a tactic in lean4 to solve the state. STATE: m : Type ?u.23145 n : Type u_1 inst✝⁶ : Fintype m inst✝⁵ : Fintype n 𝕜 : Type u_2 inst✝⁴ : NormedField 𝕜 inst✝³ : PartialOrder 𝕜 inst✝² : StarRing 𝕜 inst✝¹ : StarOrderedRing 𝕜 inst✝ : RCLike 𝕜 M N : Matrix n n 𝕜 hM : M.PosSemidef x : n → 𝕜 ⊢ 0 ≤ star x ⬝ᵥ (N.conjTranspose * M * N).mulVec x TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.PosSemidef.conjTranspose_mul_mul
[64, 1]
[69, 81]
rw [mul_assoc, mulVec_mulVec, ← mulVec_mulVec, dotProduct_mulVec, star_mulVec]
case h.e'_4 m : Type ?u.23145 n : Type u_1 inst✝⁶ : Fintype m inst✝⁵ : Fintype n 𝕜 : Type u_2 inst✝⁴ : NormedField 𝕜 inst✝³ : PartialOrder 𝕜 inst✝² : StarRing 𝕜 inst✝¹ : StarOrderedRing 𝕜 inst✝ : RCLike 𝕜 M N : Matrix n n 𝕜 hM : M.PosSemidef x : n → 𝕜 ⊢ star x ⬝ᵥ (N.conjTranspose * M * N).mulVec x = star (N.mulVec x) ⬝ᵥ M.mulVec (N.mulVec x)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h.e'_4 m : Type ?u.23145 n : Type u_1 inst✝⁶ : Fintype m inst✝⁵ : Fintype n 𝕜 : Type u_2 inst✝⁴ : NormedField 𝕜 inst✝³ : PartialOrder 𝕜 inst✝² : StarRing 𝕜 inst✝¹ : StarOrderedRing 𝕜 inst✝ : RCLike 𝕜 M N : Matrix n n 𝕜 hM : M.PosSemidef x : n → 𝕜 ⊢ star x ⬝ᵥ (N.conjTranspose * M * N).mulVec x = star (N.mulVec x) ⬝ᵥ M.mulVec (N.mulVec x) TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.PosDef.conjTranspose_mul_mul
[71, 1]
[78, 17]
refine' ⟨isHermitian_conjTranspose_mul_mul _ hM.1, _⟩
m : Type ?u.28307 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type u_2 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M N : Matrix n n 𝕜 hM : M.PosDef hN : N.det ≠ 0 ⊢ (N.conjTranspose * M * N).PosDef
m : Type ?u.28307 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type u_2 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M N : Matrix n n 𝕜 hM : M.PosDef hN : N.det ≠ 0 ⊢ ∀ (x : n → 𝕜), x ≠ 0 → 0 < star x ⬝ᵥ (N.conjTranspose * M * N).mulVec x
Please generate a tactic in lean4 to solve the state. STATE: m : Type ?u.28307 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type u_2 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M N : Matrix n n 𝕜 hM : M.PosDef hN : N.det ≠ 0 ⊢ (N.conjTranspose * M * N).PosDef TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.PosDef.conjTranspose_mul_mul
[71, 1]
[78, 17]
intros x hx
m : Type ?u.28307 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type u_2 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M N : Matrix n n 𝕜 hM : M.PosDef hN : N.det ≠ 0 ⊢ ∀ (x : n → 𝕜), x ≠ 0 → 0 < star x ⬝ᵥ (N.conjTranspose * M * N).mulVec x
m : Type ?u.28307 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type u_2 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M N : Matrix n n 𝕜 hM : M.PosDef hN : N.det ≠ 0 x : n → 𝕜 hx : x ≠ 0 ⊢ 0 < star x ⬝ᵥ (N.conjTranspose * M * N).mulVec x
Please generate a tactic in lean4 to solve the state. STATE: m : Type ?u.28307 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type u_2 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M N : Matrix n n 𝕜 hM : M.PosDef hN : N.det ≠ 0 ⊢ ∀ (x : n → 𝕜), x ≠ 0 → 0 < star x ⬝ᵥ (N.conjTranspose * M * N).mulVec x TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.PosDef.conjTranspose_mul_mul
[71, 1]
[78, 17]
convert hM.2 (N.mulVec x) (fun h => hx (eq_zero_of_mulVec_eq_zero hN h)) using 1
m : Type ?u.28307 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type u_2 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M N : Matrix n n 𝕜 hM : M.PosDef hN : N.det ≠ 0 x : n → 𝕜 hx : x ≠ 0 ⊢ 0 < star x ⬝ᵥ (N.conjTranspose * M * N).mulVec x
case h.e'_4 m : Type ?u.28307 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type u_2 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M N : Matrix n n 𝕜 hM : M.PosDef hN : N.det ≠ 0 x : n → 𝕜 hx : x ≠ 0 ⊢ star x ⬝ᵥ (N.conjTranspose * M * N).mulVec x = star (N.mulVec x) ⬝ᵥ M.mulVec (N.mulVec x)
Please generate a tactic in lean4 to solve the state. STATE: m : Type ?u.28307 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type u_2 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M N : Matrix n n 𝕜 hM : M.PosDef hN : N.det ≠ 0 x : n → 𝕜 hx : x ≠ 0 ⊢ 0 < star x ⬝ᵥ (N.conjTranspose * M * N).mulVec x TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.PosDef.conjTranspose_mul_mul
[71, 1]
[78, 17]
rw [Matrix.mul_assoc, mulVec_mulVec, ← mulVec_mulVec, dotProduct_mulVec, star_mulVec]
case h.e'_4 m : Type ?u.28307 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type u_2 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M N : Matrix n n 𝕜 hM : M.PosDef hN : N.det ≠ 0 x : n → 𝕜 hx : x ≠ 0 ⊢ star x ⬝ᵥ (N.conjTranspose * M * N).mulVec x = star (N.mulVec x) ⬝ᵥ M.mulVec (N.mulVec x)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h.e'_4 m : Type ?u.28307 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type u_2 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M N : Matrix n n 𝕜 hM : M.PosDef hN : N.det ≠ 0 x : n → 𝕜 hx : x ≠ 0 ⊢ star x ⬝ᵥ (N.conjTranspose * M * N).mulVec x = star (N.mulVec x) ⬝ᵥ M.mulVec (N.mulVec x) TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.IsHermitian.nonsingular_inv
[80, 1]
[83, 65]
refine' (Matrix.inv_eq_right_inv _).symm
m : Type ?u.34280 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type u_2 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M : Matrix n n 𝕜 hM : M.IsHermitian hMdet : IsUnit M.det ⊢ M⁻¹.IsHermitian
m : Type ?u.34280 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type u_2 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M : Matrix n n 𝕜 hM : M.IsHermitian hMdet : IsUnit M.det ⊢ M * M⁻¹.conjTranspose = 1
Please generate a tactic in lean4 to solve the state. STATE: m : Type ?u.34280 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type u_2 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M : Matrix n n 𝕜 hM : M.IsHermitian hMdet : IsUnit M.det ⊢ M⁻¹.IsHermitian TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.IsHermitian.nonsingular_inv
[80, 1]
[83, 65]
rw [conjTranspose_nonsing_inv, hM.eq, mul_nonsing_inv _ hMdet]
m : Type ?u.34280 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type u_2 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M : Matrix n n 𝕜 hM : M.IsHermitian hMdet : IsUnit M.det ⊢ M * M⁻¹.conjTranspose = 1
no goals
Please generate a tactic in lean4 to solve the state. STATE: m : Type ?u.34280 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type u_2 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M : Matrix n n 𝕜 hM : M.IsHermitian hMdet : IsUnit M.det ⊢ M * M⁻¹.conjTranspose = 1 TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.conj_symm
[85, 1]
[88, 43]
nth_rewrite 1 [star_dotProduct, star_mulVec]
m : Type ?u.36361 n : Type u_1 inst✝⁶ : Fintype m inst✝⁵ : Fintype n 𝕜 : Type u_2 inst✝⁴ : NormedField 𝕜 inst✝³ : PartialOrder 𝕜 inst✝² : StarRing 𝕜 inst✝¹ : StarOrderedRing 𝕜 inst✝ : RCLike 𝕜 x : n → 𝕜 M : Matrix n n 𝕜 hM : M.IsHermitian ⊢ star (star x ⬝ᵥ M.mulVec x) = star x ⬝ᵥ M.mulVec x
m : Type ?u.36361 n : Type u_1 inst✝⁶ : Fintype m inst✝⁵ : Fintype n 𝕜 : Type u_2 inst✝⁴ : NormedField 𝕜 inst✝³ : PartialOrder 𝕜 inst✝² : StarRing 𝕜 inst✝¹ : StarOrderedRing 𝕜 inst✝ : RCLike 𝕜 x : n → 𝕜 M : Matrix n n 𝕜 hM : M.IsHermitian ⊢ star (star (star x ᵥ* M.conjTranspose ⬝ᵥ x)) = star x ⬝ᵥ M.mulVec x
Please generate a tactic in lean4 to solve the state. STATE: m : Type ?u.36361 n : Type u_1 inst✝⁶ : Fintype m inst✝⁵ : Fintype n 𝕜 : Type u_2 inst✝⁴ : NormedField 𝕜 inst✝³ : PartialOrder 𝕜 inst✝² : StarRing 𝕜 inst✝¹ : StarOrderedRing 𝕜 inst✝ : RCLike 𝕜 x : n → 𝕜 M : Matrix n n 𝕜 hM : M.IsHermitian ⊢ star (star x ⬝ᵥ M.mulVec x) = star x ⬝ᵥ M.mulVec x TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.conj_symm
[85, 1]
[88, 43]
rw [star_star, dotProduct_mulVec, hM.eq]
m : Type ?u.36361 n : Type u_1 inst✝⁶ : Fintype m inst✝⁵ : Fintype n 𝕜 : Type u_2 inst✝⁴ : NormedField 𝕜 inst✝³ : PartialOrder 𝕜 inst✝² : StarRing 𝕜 inst✝¹ : StarOrderedRing 𝕜 inst✝ : RCLike 𝕜 x : n → 𝕜 M : Matrix n n 𝕜 hM : M.IsHermitian ⊢ star (star (star x ᵥ* M.conjTranspose ⬝ᵥ x)) = star x ⬝ᵥ M.mulVec x
no goals
Please generate a tactic in lean4 to solve the state. STATE: m : Type ?u.36361 n : Type u_1 inst✝⁶ : Fintype m inst✝⁵ : Fintype n 𝕜 : Type u_2 inst✝⁴ : NormedField 𝕜 inst✝³ : PartialOrder 𝕜 inst✝² : StarRing 𝕜 inst✝¹ : StarOrderedRing 𝕜 inst✝ : RCLike 𝕜 x : n → 𝕜 M : Matrix n n 𝕜 hM : M.IsHermitian ⊢ star (star (star x ᵥ* M.conjTranspose ⬝ᵥ x)) = star x ⬝ᵥ M.mulVec x TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.PosDef.nonsingular_inv
[90, 1]
[99, 13]
refine' ⟨hM.1.nonsingular_inv (isUnit_iff_ne_zero.2 hM.det_ne_zero), _⟩
m : Type ?u.40080 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type u_2 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M : Matrix n n 𝕜 hM : M.PosDef ⊢ M⁻¹.PosDef
m : Type ?u.40080 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type u_2 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M : Matrix n n 𝕜 hM : M.PosDef ⊢ ∀ (x : n → 𝕜), x ≠ 0 → 0 < star x ⬝ᵥ M⁻¹.mulVec x
Please generate a tactic in lean4 to solve the state. STATE: m : Type ?u.40080 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type u_2 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M : Matrix n n 𝕜 hM : M.PosDef ⊢ M⁻¹.PosDef TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.PosDef.nonsingular_inv
[90, 1]
[99, 13]
intros x hx
m : Type ?u.40080 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type u_2 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M : Matrix n n 𝕜 hM : M.PosDef ⊢ ∀ (x : n → 𝕜), x ≠ 0 → 0 < star x ⬝ᵥ M⁻¹.mulVec x
m : Type ?u.40080 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type u_2 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M : Matrix n n 𝕜 hM : M.PosDef x : n → 𝕜 hx : x ≠ 0 ⊢ 0 < star x ⬝ᵥ M⁻¹.mulVec x
Please generate a tactic in lean4 to solve the state. STATE: m : Type ?u.40080 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type u_2 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M : Matrix n n 𝕜 hM : M.PosDef ⊢ ∀ (x : n → 𝕜), x ≠ 0 → 0 < star x ⬝ᵥ M⁻¹.mulVec x TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.PosDef.nonsingular_inv
[90, 1]
[99, 13]
have hMMinv := mul_nonsing_inv _ (isUnit_iff_ne_zero.2 hM.det_ne_zero)
m : Type ?u.40080 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type u_2 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M : Matrix n n 𝕜 hM : M.PosDef x : n → 𝕜 hx : x ≠ 0 ⊢ 0 < star x ⬝ᵥ M⁻¹.mulVec x
m : Type ?u.40080 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type u_2 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M : Matrix n n 𝕜 hM : M.PosDef x : n → 𝕜 hx : x ≠ 0 hMMinv : M * M⁻¹ = 1 ⊢ 0 < star x ⬝ᵥ M⁻¹.mulVec x
Please generate a tactic in lean4 to solve the state. STATE: m : Type ?u.40080 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type u_2 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M : Matrix n n 𝕜 hM : M.PosDef x : n → 𝕜 hx : x ≠ 0 ⊢ 0 < star x ⬝ᵥ M⁻¹.mulVec x TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.PosDef.nonsingular_inv
[90, 1]
[99, 13]
have hMinvdet : M⁻¹.det ≠ 0 := det_ne_zero_of_left_inverse hMMinv
m : Type ?u.40080 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type u_2 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M : Matrix n n 𝕜 hM : M.PosDef x : n → 𝕜 hx : x ≠ 0 hMMinv : M * M⁻¹ = 1 ⊢ 0 < star x ⬝ᵥ M⁻¹.mulVec x
m : Type ?u.40080 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type u_2 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M : Matrix n n 𝕜 hM : M.PosDef x : n → 𝕜 hx : x ≠ 0 hMMinv : M * M⁻¹ = 1 hMinvdet : M⁻¹.det ≠ 0 ⊢ 0 < star x ⬝ᵥ M⁻¹.mulVec x
Please generate a tactic in lean4 to solve the state. STATE: m : Type ?u.40080 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type u_2 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M : Matrix n n 𝕜 hM : M.PosDef x : n → 𝕜 hx : x ≠ 0 hMMinv : M * M⁻¹ = 1 ⊢ 0 < star x ⬝ᵥ M⁻¹.mulVec x TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.PosDef.nonsingular_inv
[90, 1]
[99, 13]
have hres := hM.2 (M⁻¹.mulVec x) (fun h => hx (eq_zero_of_mulVec_eq_zero hMinvdet h))
m : Type ?u.40080 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type u_2 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M : Matrix n n 𝕜 hM : M.PosDef x : n → 𝕜 hx : x ≠ 0 hMMinv : M * M⁻¹ = 1 hMinvdet : M⁻¹.det ≠ 0 ⊢ 0 < star x ⬝ᵥ M⁻¹.mulVec x
m : Type ?u.40080 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type u_2 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M : Matrix n n 𝕜 hM : M.PosDef x : n → 𝕜 hx : x ≠ 0 hMMinv : M * M⁻¹ = 1 hMinvdet : M⁻¹.det ≠ 0 hres : 0 < star (M⁻¹.mulVec x) ⬝ᵥ M.mulVec (M⁻¹.mulVec x) ⊢ 0 < star x ⬝ᵥ M⁻¹.mulVec x
Please generate a tactic in lean4 to solve the state. STATE: m : Type ?u.40080 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type u_2 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M : Matrix n n 𝕜 hM : M.PosDef x : n → 𝕜 hx : x ≠ 0 hMMinv : M * M⁻¹ = 1 hMinvdet : M⁻¹.det ≠ 0 ⊢ 0 < star x ⬝ᵥ M⁻¹.mulVec x TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.PosDef.nonsingular_inv
[90, 1]
[99, 13]
rw [mulVec_mulVec, hMMinv, one_mulVec, star_dotProduct] at hres
m : Type ?u.40080 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type u_2 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M : Matrix n n 𝕜 hM : M.PosDef x : n → 𝕜 hx : x ≠ 0 hMMinv : M * M⁻¹ = 1 hMinvdet : M⁻¹.det ≠ 0 hres : 0 < star (M⁻¹.mulVec x) ⬝ᵥ M.mulVec (M⁻¹.mulVec x) ⊢ 0 < star x ⬝ᵥ M⁻¹.mulVec x
m : Type ?u.40080 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type u_2 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M : Matrix n n 𝕜 hM : M.PosDef x : n → 𝕜 hx : x ≠ 0 hMMinv : M * M⁻¹ = 1 hMinvdet : M⁻¹.det ≠ 0 hres : 0 < star (star x ⬝ᵥ M⁻¹.mulVec x) ⊢ 0 < star x ⬝ᵥ M⁻¹.mulVec x
Please generate a tactic in lean4 to solve the state. STATE: m : Type ?u.40080 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type u_2 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M : Matrix n n 𝕜 hM : M.PosDef x : n → 𝕜 hx : x ≠ 0 hMMinv : M * M⁻¹ = 1 hMinvdet : M⁻¹.det ≠ 0 hres : 0 < star (M⁻¹.mulVec x) ⬝ᵥ M.mulVec (M⁻¹.mulVec x) ⊢ 0 < star x ⬝ᵥ M⁻¹.mulVec x TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.PosDef.nonsingular_inv
[90, 1]
[99, 13]
rw [conj_symm ((@isHermitian_inv _ _ _ _ _ _ M hM.Invertible).2 hM.1)] at hres
m : Type ?u.40080 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type u_2 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M : Matrix n n 𝕜 hM : M.PosDef x : n → 𝕜 hx : x ≠ 0 hMMinv : M * M⁻¹ = 1 hMinvdet : M⁻¹.det ≠ 0 hres : 0 < star (star x ⬝ᵥ M⁻¹.mulVec x) ⊢ 0 < star x ⬝ᵥ M⁻¹.mulVec x
m : Type ?u.40080 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type u_2 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M : Matrix n n 𝕜 hM : M.PosDef x : n → 𝕜 hx : x ≠ 0 hMMinv : M * M⁻¹ = 1 hMinvdet : M⁻¹.det ≠ 0 hres : 0 < star x ⬝ᵥ M⁻¹.mulVec x ⊢ 0 < star x ⬝ᵥ M⁻¹.mulVec x
Please generate a tactic in lean4 to solve the state. STATE: m : Type ?u.40080 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type u_2 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M : Matrix n n 𝕜 hM : M.PosDef x : n → 𝕜 hx : x ≠ 0 hMMinv : M * M⁻¹ = 1 hMinvdet : M⁻¹.det ≠ 0 hres : 0 < star (star x ⬝ᵥ M⁻¹.mulVec x) ⊢ 0 < star x ⬝ᵥ M⁻¹.mulVec x TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.PosDef.nonsingular_inv
[90, 1]
[99, 13]
exact hres
m : Type ?u.40080 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type u_2 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M : Matrix n n 𝕜 hM : M.PosDef x : n → 𝕜 hx : x ≠ 0 hMMinv : M * M⁻¹ = 1 hMinvdet : M⁻¹.det ≠ 0 hres : 0 < star x ⬝ᵥ M⁻¹.mulVec x ⊢ 0 < star x ⬝ᵥ M⁻¹.mulVec x
no goals
Please generate a tactic in lean4 to solve the state. STATE: m : Type ?u.40080 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type u_2 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M : Matrix n n 𝕜 hM : M.PosDef x : n → 𝕜 hx : x ≠ 0 hMMinv : M * M⁻¹ = 1 hMinvdet : M⁻¹.det ≠ 0 hres : 0 < star x ⬝ᵥ M⁻¹.mulVec x ⊢ 0 < star x ⬝ᵥ M⁻¹.mulVec x TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.PosSemidef.mul_mul_of_IsHermitian
[101, 1]
[103, 54]
convert hM.conjTranspose_mul_mul M N
m : Type ?u.45085 n : Type u_1 inst✝⁶ : Fintype m inst✝⁵ : Fintype n 𝕜 : Type u_2 inst✝⁴ : NormedField 𝕜 inst✝³ : PartialOrder 𝕜 inst✝² : StarRing 𝕜 inst✝¹ : StarOrderedRing 𝕜 inst✝ : RCLike 𝕜 M N : Matrix n n 𝕜 hM : M.PosSemidef hN : N.IsHermitian ⊢ (N * M * N).PosSemidef
case h.e'_8.h.e'_5.h.e'_5 m : Type ?u.45085 n : Type u_1 inst✝⁶ : Fintype m inst✝⁵ : Fintype n 𝕜 : Type u_2 inst✝⁴ : NormedField 𝕜 inst✝³ : PartialOrder 𝕜 inst✝² : StarRing 𝕜 inst✝¹ : StarOrderedRing 𝕜 inst✝ : RCLike 𝕜 M N : Matrix n n 𝕜 hM : M.PosSemidef hN : N.IsHermitian ⊢ N = N.conjTranspose
Please generate a tactic in lean4 to solve the state. STATE: m : Type ?u.45085 n : Type u_1 inst✝⁶ : Fintype m inst✝⁵ : Fintype n 𝕜 : Type u_2 inst✝⁴ : NormedField 𝕜 inst✝³ : PartialOrder 𝕜 inst✝² : StarRing 𝕜 inst✝¹ : StarOrderedRing 𝕜 inst✝ : RCLike 𝕜 M N : Matrix n n 𝕜 hM : M.PosSemidef hN : N.IsHermitian ⊢ (N * M * N).PosSemidef TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.PosSemidef.mul_mul_of_IsHermitian
[101, 1]
[103, 54]
exact hN.symm
case h.e'_8.h.e'_5.h.e'_5 m : Type ?u.45085 n : Type u_1 inst✝⁶ : Fintype m inst✝⁵ : Fintype n 𝕜 : Type u_2 inst✝⁴ : NormedField 𝕜 inst✝³ : PartialOrder 𝕜 inst✝² : StarRing 𝕜 inst✝¹ : StarOrderedRing 𝕜 inst✝ : RCLike 𝕜 M N : Matrix n n 𝕜 hM : M.PosSemidef hN : N.IsHermitian ⊢ N = N.conjTranspose
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h.e'_8.h.e'_5.h.e'_5 m : Type ?u.45085 n : Type u_1 inst✝⁶ : Fintype m inst✝⁵ : Fintype n 𝕜 : Type u_2 inst✝⁴ : NormedField 𝕜 inst✝³ : PartialOrder 𝕜 inst✝² : StarRing 𝕜 inst✝¹ : StarOrderedRing 𝕜 inst✝ : RCLike 𝕜 M N : Matrix n n 𝕜 hM : M.PosSemidef hN : N.IsHermitian ⊢ N = N.conjTranspose TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.PosSemidef.add
[105, 1]
[110, 37]
refine' ⟨hM.1.add hN.1, _⟩
m : Type ?u.47670 n : Type u_1 inst✝⁶ : Fintype m inst✝⁵ : Fintype n 𝕜 : Type u_2 inst✝⁴ : NormedField 𝕜 inst✝³ : PartialOrder 𝕜 inst✝² : StarRing 𝕜 inst✝¹ : StarOrderedRing 𝕜 inst✝ : RCLike 𝕜 M N : Matrix n n 𝕜 hM : M.PosSemidef hN : N.PosSemidef ⊢ (M + N).PosSemidef
m : Type ?u.47670 n : Type u_1 inst✝⁶ : Fintype m inst✝⁵ : Fintype n 𝕜 : Type u_2 inst✝⁴ : NormedField 𝕜 inst✝³ : PartialOrder 𝕜 inst✝² : StarRing 𝕜 inst✝¹ : StarOrderedRing 𝕜 inst✝ : RCLike 𝕜 M N : Matrix n n 𝕜 hM : M.PosSemidef hN : N.PosSemidef ⊢ ∀ (x : n → 𝕜), 0 ≤ star x ⬝ᵥ (M + N).mulVec x
Please generate a tactic in lean4 to solve the state. STATE: m : Type ?u.47670 n : Type u_1 inst✝⁶ : Fintype m inst✝⁵ : Fintype n 𝕜 : Type u_2 inst✝⁴ : NormedField 𝕜 inst✝³ : PartialOrder 𝕜 inst✝² : StarRing 𝕜 inst✝¹ : StarOrderedRing 𝕜 inst✝ : RCLike 𝕜 M N : Matrix n n 𝕜 hM : M.PosSemidef hN : N.PosSemidef ⊢ (M + N).PosSemidef TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.PosSemidef.add
[105, 1]
[110, 37]
intros x
m : Type ?u.47670 n : Type u_1 inst✝⁶ : Fintype m inst✝⁵ : Fintype n 𝕜 : Type u_2 inst✝⁴ : NormedField 𝕜 inst✝³ : PartialOrder 𝕜 inst✝² : StarRing 𝕜 inst✝¹ : StarOrderedRing 𝕜 inst✝ : RCLike 𝕜 M N : Matrix n n 𝕜 hM : M.PosSemidef hN : N.PosSemidef ⊢ ∀ (x : n → 𝕜), 0 ≤ star x ⬝ᵥ (M + N).mulVec x
m : Type ?u.47670 n : Type u_1 inst✝⁶ : Fintype m inst✝⁵ : Fintype n 𝕜 : Type u_2 inst✝⁴ : NormedField 𝕜 inst✝³ : PartialOrder 𝕜 inst✝² : StarRing 𝕜 inst✝¹ : StarOrderedRing 𝕜 inst✝ : RCLike 𝕜 M N : Matrix n n 𝕜 hM : M.PosSemidef hN : N.PosSemidef x : n → 𝕜 ⊢ 0 ≤ star x ⬝ᵥ (M + N).mulVec x
Please generate a tactic in lean4 to solve the state. STATE: m : Type ?u.47670 n : Type u_1 inst✝⁶ : Fintype m inst✝⁵ : Fintype n 𝕜 : Type u_2 inst✝⁴ : NormedField 𝕜 inst✝³ : PartialOrder 𝕜 inst✝² : StarRing 𝕜 inst✝¹ : StarOrderedRing 𝕜 inst✝ : RCLike 𝕜 M N : Matrix n n 𝕜 hM : M.PosSemidef hN : N.PosSemidef ⊢ ∀ (x : n → 𝕜), 0 ≤ star x ⬝ᵥ (M + N).mulVec x TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.PosSemidef.add
[105, 1]
[110, 37]
simp only [add_mulVec, dotProduct_add, map_add]
m : Type ?u.47670 n : Type u_1 inst✝⁶ : Fintype m inst✝⁵ : Fintype n 𝕜 : Type u_2 inst✝⁴ : NormedField 𝕜 inst✝³ : PartialOrder 𝕜 inst✝² : StarRing 𝕜 inst✝¹ : StarOrderedRing 𝕜 inst✝ : RCLike 𝕜 M N : Matrix n n 𝕜 hM : M.PosSemidef hN : N.PosSemidef x : n → 𝕜 ⊢ 0 ≤ star x ⬝ᵥ (M + N).mulVec x
m : Type ?u.47670 n : Type u_1 inst✝⁶ : Fintype m inst✝⁵ : Fintype n 𝕜 : Type u_2 inst✝⁴ : NormedField 𝕜 inst✝³ : PartialOrder 𝕜 inst✝² : StarRing 𝕜 inst✝¹ : StarOrderedRing 𝕜 inst✝ : RCLike 𝕜 M N : Matrix n n 𝕜 hM : M.PosSemidef hN : N.PosSemidef x : n → 𝕜 ⊢ 0 ≤ star x ⬝ᵥ M.mulVec x + star x ⬝ᵥ N.mulVec x
Please generate a tactic in lean4 to solve the state. STATE: m : Type ?u.47670 n : Type u_1 inst✝⁶ : Fintype m inst✝⁵ : Fintype n 𝕜 : Type u_2 inst✝⁴ : NormedField 𝕜 inst✝³ : PartialOrder 𝕜 inst✝² : StarRing 𝕜 inst✝¹ : StarOrderedRing 𝕜 inst✝ : RCLike 𝕜 M N : Matrix n n 𝕜 hM : M.PosSemidef hN : N.PosSemidef x : n → 𝕜 ⊢ 0 ≤ star x ⬝ᵥ (M + N).mulVec x TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.PosSemidef.add
[105, 1]
[110, 37]
apply add_nonneg (hM.2 x) (hN.2 x)
m : Type ?u.47670 n : Type u_1 inst✝⁶ : Fintype m inst✝⁵ : Fintype n 𝕜 : Type u_2 inst✝⁴ : NormedField 𝕜 inst✝³ : PartialOrder 𝕜 inst✝² : StarRing 𝕜 inst✝¹ : StarOrderedRing 𝕜 inst✝ : RCLike 𝕜 M N : Matrix n n 𝕜 hM : M.PosSemidef hN : N.PosSemidef x : n → 𝕜 ⊢ 0 ≤ star x ⬝ᵥ M.mulVec x + star x ⬝ᵥ N.mulVec x
no goals
Please generate a tactic in lean4 to solve the state. STATE: m : Type ?u.47670 n : Type u_1 inst✝⁶ : Fintype m inst✝⁵ : Fintype n 𝕜 : Type u_2 inst✝⁴ : NormedField 𝕜 inst✝³ : PartialOrder 𝕜 inst✝² : StarRing 𝕜 inst✝¹ : StarOrderedRing 𝕜 inst✝ : RCLike 𝕜 M N : Matrix n n 𝕜 hM : M.PosSemidef hN : N.PosSemidef x : n → 𝕜 ⊢ 0 ≤ star x ⬝ᵥ M.mulVec x + star x ⬝ᵥ N.mulVec x TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.isUnit_det_of_PosDef_inv
[112, 1]
[117, 28]
apply isUnit_iff_ne_zero.2
m : Type ?u.49238 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.49250 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M : Matrix n n ℝ h : M⁻¹.PosDef ⊢ IsUnit M.det
m : Type ?u.49238 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.49250 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M : Matrix n n ℝ h : M⁻¹.PosDef ⊢ M.det ≠ 0
Please generate a tactic in lean4 to solve the state. STATE: m : Type ?u.49238 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.49250 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M : Matrix n n ℝ h : M⁻¹.PosDef ⊢ IsUnit M.det TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.isUnit_det_of_PosDef_inv
[112, 1]
[117, 28]
have := h.isUnit_det
m : Type ?u.49238 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.49250 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M : Matrix n n ℝ h : M⁻¹.PosDef ⊢ M.det ≠ 0
m : Type ?u.49238 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.49250 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M : Matrix n n ℝ h : M⁻¹.PosDef this : IsUnit M⁻¹.det ⊢ M.det ≠ 0
Please generate a tactic in lean4 to solve the state. STATE: m : Type ?u.49238 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.49250 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M : Matrix n n ℝ h : M⁻¹.PosDef ⊢ M.det ≠ 0 TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.isUnit_det_of_PosDef_inv
[112, 1]
[117, 28]
rw [det_nonsing_inv, isUnit_ring_inverse] at this
m : Type ?u.49238 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.49250 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M : Matrix n n ℝ h : M⁻¹.PosDef this : IsUnit M⁻¹.det ⊢ M.det ≠ 0
m : Type ?u.49238 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.49250 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M : Matrix n n ℝ h : M⁻¹.PosDef this : IsUnit M.det ⊢ M.det ≠ 0
Please generate a tactic in lean4 to solve the state. STATE: m : Type ?u.49238 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.49250 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M : Matrix n n ℝ h : M⁻¹.PosDef this : IsUnit M⁻¹.det ⊢ M.det ≠ 0 TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.isUnit_det_of_PosDef_inv
[112, 1]
[117, 28]
apply IsUnit.ne_zero this
m : Type ?u.49238 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.49250 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M : Matrix n n ℝ h : M⁻¹.PosDef this : IsUnit M.det ⊢ M.det ≠ 0
no goals
Please generate a tactic in lean4 to solve the state. STATE: m : Type ?u.49238 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.49250 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M : Matrix n n ℝ h : M⁻¹.PosDef this : IsUnit M.det ⊢ M.det ≠ 0 TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.PosDef_inv_iff_PosDef
[119, 1]
[125, 31]
constructor
m : Type ?u.50670 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.50682 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M : Matrix n n ℝ ⊢ M⁻¹.PosDef ↔ M.PosDef
case mp m : Type ?u.50670 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.50682 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M : Matrix n n ℝ ⊢ M⁻¹.PosDef → M.PosDef case mpr m : Type ?u.50670 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.50682 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M : Matrix n n ℝ ⊢ M.PosDef → M⁻¹.PosDef
Please generate a tactic in lean4 to solve the state. STATE: m : Type ?u.50670 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.50682 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M : Matrix n n ℝ ⊢ M⁻¹.PosDef ↔ M.PosDef TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.PosDef_inv_iff_PosDef
[119, 1]
[125, 31]
{ intros hM rw [← Matrix.nonsing_inv_nonsing_inv M (isUnit_det_of_PosDef_inv hM)] apply hM.nonsingular_inv }
case mp m : Type ?u.50670 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.50682 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M : Matrix n n ℝ ⊢ M⁻¹.PosDef → M.PosDef case mpr m : Type ?u.50670 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.50682 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M : Matrix n n ℝ ⊢ M.PosDef → M⁻¹.PosDef
case mpr m : Type ?u.50670 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.50682 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M : Matrix n n ℝ ⊢ M.PosDef → M⁻¹.PosDef
Please generate a tactic in lean4 to solve the state. STATE: case mp m : Type ?u.50670 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.50682 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M : Matrix n n ℝ ⊢ M⁻¹.PosDef → M.PosDef case mpr m : Type ?u.50670 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.50682 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M : Matrix n n ℝ ⊢ M.PosDef → M⁻¹.PosDef TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.PosDef_inv_iff_PosDef
[119, 1]
[125, 31]
{ intros hM exact hM.nonsingular_inv }
case mpr m : Type ?u.50670 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.50682 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M : Matrix n n ℝ ⊢ M.PosDef → M⁻¹.PosDef
no goals
Please generate a tactic in lean4 to solve the state. STATE: case mpr m : Type ?u.50670 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.50682 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M : Matrix n n ℝ ⊢ M.PosDef → M⁻¹.PosDef TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.PosDef_inv_iff_PosDef
[119, 1]
[125, 31]
intros hM
case mp m : Type ?u.50670 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.50682 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M : Matrix n n ℝ ⊢ M⁻¹.PosDef → M.PosDef
case mp m : Type ?u.50670 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.50682 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M : Matrix n n ℝ hM : M⁻¹.PosDef ⊢ M.PosDef
Please generate a tactic in lean4 to solve the state. STATE: case mp m : Type ?u.50670 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.50682 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M : Matrix n n ℝ ⊢ M⁻¹.PosDef → M.PosDef TACTIC: