url
stringclasses 147
values | commit
stringclasses 147
values | file_path
stringlengths 7
101
| full_name
stringlengths 1
94
| start
stringlengths 6
10
| end
stringlengths 6
11
| tactic
stringlengths 1
11.2k
| state_before
stringlengths 3
2.09M
| state_after
stringlengths 6
2.09M
| input
stringlengths 73
2.09M
|
---|---|---|---|---|---|---|---|---|---|
https://github.com/verified-optimization/CvxLean.git | c62c2f292c6420f31a12e738ebebdfed50f6f840 | CvxLean/Examples/VehicleSpeedScheduling.lean | VehicleSpeedSched.aβdβ2_nonneg | [191, 1] | [193, 55] | fin_cases i <;> (dsimp [aβ, dβ]; norm_num) | n : β
d Οmin Οmax smin smax : Fin n β β
F : β β β
i : Fin nβ
β’ 0 i β€ (aβ β’ dβ ^ 2) i | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
n : β
d Οmin Οmax smin smax : Fin n β β
F : β β β
i : Fin nβ
β’ 0 i β€ (aβ β’ dβ ^ 2) i
TACTIC:
|
https://github.com/verified-optimization/CvxLean.git | c62c2f292c6420f31a12e738ebebdfed50f6f840 | CvxLean/Examples/VehicleSpeedScheduling.lean | VehicleSpeedSched.aβdβ2_nonneg | [191, 1] | [193, 55] | dsimp [aβ, dβ] | case tail.tail.tail.tail.tail.tail.tail.tail.tail.head
n : β
d Οmin Οmax smin smax : Fin n β β
F : β β β
β’ 0 β¨9, β―β© β€ (aβ β’ dβ ^ 2) β¨9, β―β© | case tail.tail.tail.tail.tail.tail.tail.tail.tail.head
n : β
d Οmin Οmax smin smax : Fin n β β
F : β β β
β’ 0 β€ 1 * ![1.9501, 1.2311, 1.6068, 1.4860, 1.8913, 1.7621, 1.4565, 1.0185, 1.8214, 1.4447] β¨9, β―β© ^ 2 | Please generate a tactic in lean4 to solve the state.
STATE:
case tail.tail.tail.tail.tail.tail.tail.tail.tail.head
n : β
d Οmin Οmax smin smax : Fin n β β
F : β β β
β’ 0 β¨9, β―β© β€ (aβ β’ dβ ^ 2) β¨9, β―β©
TACTIC:
|
https://github.com/verified-optimization/CvxLean.git | c62c2f292c6420f31a12e738ebebdfed50f6f840 | CvxLean/Examples/VehicleSpeedScheduling.lean | VehicleSpeedSched.aβdβ2_nonneg | [191, 1] | [193, 55] | norm_num | case tail.tail.tail.tail.tail.tail.tail.tail.tail.head
n : β
d Οmin Οmax smin smax : Fin n β β
F : β β β
β’ 0 β€ 1 * ![1.9501, 1.2311, 1.6068, 1.4860, 1.8913, 1.7621, 1.4565, 1.0185, 1.8214, 1.4447] β¨9, β―β© ^ 2 | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case tail.tail.tail.tail.tail.tail.tail.tail.tail.head
n : β
d Οmin Οmax smin smax : Fin n β β
F : β β β
β’ 0 β€ 1 * ![1.9501, 1.2311, 1.6068, 1.4860, 1.8913, 1.7621, 1.4565, 1.0185, 1.8214, 1.4447] β¨9, β―β© ^ 2
TACTIC:
|
https://github.com/verified-optimization/CvxLean.git | c62c2f292c6420f31a12e738ebebdfed50f6f840 | CvxLean/Examples/VehicleSpeedScheduling.lean | VehicleSpeedSched.simp_vec_fraction | [43, 1] | [47, 49] | have h_di_pos := h_d_pos i | n : β
d Οmin Οmax smin smax : Fin n β β
F : β β β
h_d_pos : StrongLT 0 d
s : Fin n β β
i : Fin n
β’ d i / (d i / s i) = s i | n : β
d Οmin Οmax smin smax : Fin n β β
F : β β β
h_d_pos : StrongLT 0 d
s : Fin n β β
i : Fin n
h_di_pos : 0 i < d i
β’ d i / (d i / s i) = s i | Please generate a tactic in lean4 to solve the state.
STATE:
n : β
d Οmin Οmax smin smax : Fin n β β
F : β β β
h_d_pos : StrongLT 0 d
s : Fin n β β
i : Fin n
β’ d i / (d i / s i) = s i
TACTIC:
|
https://github.com/verified-optimization/CvxLean.git | c62c2f292c6420f31a12e738ebebdfed50f6f840 | CvxLean/Examples/VehicleSpeedScheduling.lean | VehicleSpeedSched.simp_vec_fraction | [43, 1] | [47, 49] | simp at h_di_pos | n : β
d Οmin Οmax smin smax : Fin n β β
F : β β β
h_d_pos : StrongLT 0 d
s : Fin n β β
i : Fin n
h_di_pos : 0 i < d i
β’ d i / (d i / s i) = s i | n : β
d Οmin Οmax smin smax : Fin n β β
F : β β β
h_d_pos : StrongLT 0 d
s : Fin n β β
i : Fin n
h_di_pos : 0 < d i
β’ d i / (d i / s i) = s i | Please generate a tactic in lean4 to solve the state.
STATE:
n : β
d Οmin Οmax smin smax : Fin n β β
F : β β β
h_d_pos : StrongLT 0 d
s : Fin n β β
i : Fin n
h_di_pos : 0 i < d i
β’ d i / (d i / s i) = s i
TACTIC:
|
https://github.com/verified-optimization/CvxLean.git | c62c2f292c6420f31a12e738ebebdfed50f6f840 | CvxLean/Examples/VehicleSpeedScheduling.lean | VehicleSpeedSched.simp_vec_fraction | [43, 1] | [47, 49] | have h_di_nonzero : d i β 0 := by linarith | n : β
d Οmin Οmax smin smax : Fin n β β
F : β β β
h_d_pos : StrongLT 0 d
s : Fin n β β
i : Fin n
h_di_pos : 0 < d i
β’ d i / (d i / s i) = s i | n : β
d Οmin Οmax smin smax : Fin n β β
F : β β β
h_d_pos : StrongLT 0 d
s : Fin n β β
i : Fin n
h_di_pos : 0 < d i
h_di_nonzero : d i β 0
β’ d i / (d i / s i) = s i | Please generate a tactic in lean4 to solve the state.
STATE:
n : β
d Οmin Οmax smin smax : Fin n β β
F : β β β
h_d_pos : StrongLT 0 d
s : Fin n β β
i : Fin n
h_di_pos : 0 < d i
β’ d i / (d i / s i) = s i
TACTIC:
|
https://github.com/verified-optimization/CvxLean.git | c62c2f292c6420f31a12e738ebebdfed50f6f840 | CvxLean/Examples/VehicleSpeedScheduling.lean | VehicleSpeedSched.simp_vec_fraction | [43, 1] | [47, 49] | rw [β div_mul, div_self h_di_nonzero, one_mul] | n : β
d Οmin Οmax smin smax : Fin n β β
F : β β β
h_d_pos : StrongLT 0 d
s : Fin n β β
i : Fin n
h_di_pos : 0 < d i
h_di_nonzero : d i β 0
β’ d i / (d i / s i) = s i | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
n : β
d Οmin Οmax smin smax : Fin n β β
F : β β β
h_d_pos : StrongLT 0 d
s : Fin n β β
i : Fin n
h_di_pos : 0 < d i
h_di_nonzero : d i β 0
β’ d i / (d i / s i) = s i
TACTIC:
|
https://github.com/verified-optimization/CvxLean.git | c62c2f292c6420f31a12e738ebebdfed50f6f840 | CvxLean/Examples/VehicleSpeedScheduling.lean | VehicleSpeedSched.simp_vec_fraction | [43, 1] | [47, 49] | linarith | n : β
d Οmin Οmax smin smax : Fin n β β
F : β β β
h_d_pos : StrongLT 0 d
s : Fin n β β
i : Fin n
h_di_pos : 0 < d i
β’ d i β 0 | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
n : β
d Οmin Οmax smin smax : Fin n β β
F : β β β
h_d_pos : StrongLT 0 d
s : Fin n β β
i : Fin n
h_di_pos : 0 < d i
β’ d i β 0
TACTIC:
|
https://github.com/verified-optimization/CvxLean.git | c62c2f292c6420f31a12e738ebebdfed50f6f840 | CvxLean/Examples/VehicleSpeedScheduling.lean | VehicleSpeedSched.fold_partial_sum | [49, 1] | [53, 22] | simp [Vec.cumsum] | n : β
d Οmin Οmax smin smax : Fin n β β
F : β β β
hn : Fact (0 < n)
t : Fin n β β
i : Fin n
β’ β j β [[0, i]], t j = Vec.cumsum t i | n : β
d Οmin Οmax smin smax : Fin n β β
F : β β β
hn : Fact (0 < n)
t : Fin n β β
i : Fin n
β’ β j β [[0, i]], t j = if h : 0 < n then β j β [[β¨0, hβ©, i]], t j else 0 | Please generate a tactic in lean4 to solve the state.
STATE:
n : β
d Οmin Οmax smin smax : Fin n β β
F : β β β
hn : Fact (0 < n)
t : Fin n β β
i : Fin n
β’ β j β [[0, i]], t j = Vec.cumsum t i
TACTIC:
|
https://github.com/verified-optimization/CvxLean.git | c62c2f292c6420f31a12e738ebebdfed50f6f840 | CvxLean/Examples/VehicleSpeedScheduling.lean | VehicleSpeedSched.fold_partial_sum | [49, 1] | [53, 22] | split_ifs | n : β
d Οmin Οmax smin smax : Fin n β β
F : β β β
hn : Fact (0 < n)
t : Fin n β β
i : Fin n
β’ β j β [[0, i]], t j = if h : 0 < n then β j β [[β¨0, hβ©, i]], t j else 0 | case pos
n : β
d Οmin Οmax smin smax : Fin n β β
F : β β β
hn : Fact (0 < n)
t : Fin n β β
i : Fin n
hβ : 0 < n
β’ β j β [[0, i]], t j = β j β [[β¨0, hββ©, i]], t j
case neg
n : β
d Οmin Οmax smin smax : Fin n β β
F : β β β
hn : Fact (0 < n)
t : Fin n β β
i : Fin n
hβ : Β¬0 < n
β’ β j β [[0, i]], t j = 0 | Please generate a tactic in lean4 to solve the state.
STATE:
n : β
d Οmin Οmax smin smax : Fin n β β
F : β β β
hn : Fact (0 < n)
t : Fin n β β
i : Fin n
β’ β j β [[0, i]], t j = if h : 0 < n then β j β [[β¨0, hβ©, i]], t j else 0
TACTIC:
|
https://github.com/verified-optimization/CvxLean.git | c62c2f292c6420f31a12e738ebebdfed50f6f840 | CvxLean/Examples/VehicleSpeedScheduling.lean | VehicleSpeedSched.fold_partial_sum | [49, 1] | [53, 22] | rfl | case pos
n : β
d Οmin Οmax smin smax : Fin n β β
F : β β β
hn : Fact (0 < n)
t : Fin n β β
i : Fin n
hβ : 0 < n
β’ β j β [[0, i]], t j = β j β [[β¨0, hββ©, i]], t j | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case pos
n : β
d Οmin Οmax smin smax : Fin n β β
F : β β β
hn : Fact (0 < n)
t : Fin n β β
i : Fin n
hβ : 0 < n
β’ β j β [[0, i]], t j = β j β [[β¨0, hββ©, i]], t j
TACTIC:
|
https://github.com/verified-optimization/CvxLean.git | c62c2f292c6420f31a12e738ebebdfed50f6f840 | CvxLean/Examples/VehicleSpeedScheduling.lean | VehicleSpeedSched.fold_partial_sum | [49, 1] | [53, 22] | linarith [hn.out] | case neg
n : β
d Οmin Οmax smin smax : Fin n β β
F : β β β
hn : Fact (0 < n)
t : Fin n β β
i : Fin n
hβ : Β¬0 < n
β’ β j β [[0, i]], t j = 0 | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case neg
n : β
d Οmin Οmax smin smax : Fin n β β
F : β β β
hn : Fact (0 < n)
t : Fin n β β
i : Fin n
hβ : Β¬0 < n
β’ β j β [[0, i]], t j = 0
TACTIC:
|
https://github.com/verified-optimization/CvxLean.git | c62c2f292c6420f31a12e738ebebdfed50f6f840 | CvxLean/Examples/VehicleSpeedScheduling.lean | VehicleSpeedSched.nβ_pos | [148, 1] | [148, 48] | unfold nβ | n : β
d Οmin Οmax smin smax : Fin n β β
F : β β β
β’ 0 < nβ | n : β
d Οmin Οmax smin smax : Fin n β β
F : β β β
β’ 0 < 10 | Please generate a tactic in lean4 to solve the state.
STATE:
n : β
d Οmin Οmax smin smax : Fin n β β
F : β β β
β’ 0 < nβ
TACTIC:
|
https://github.com/verified-optimization/CvxLean.git | c62c2f292c6420f31a12e738ebebdfed50f6f840 | CvxLean/Examples/VehicleSpeedScheduling.lean | VehicleSpeedSched.nβ_pos | [148, 1] | [148, 48] | norm_num | n : β
d Οmin Οmax smin smax : Fin n β β
F : β β β
β’ 0 < 10 | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
n : β
d Οmin Οmax smin smax : Fin n β β
F : β β β
β’ 0 < 10
TACTIC:
|
https://github.com/verified-optimization/CvxLean.git | c62c2f292c6420f31a12e738ebebdfed50f6f840 | CvxLean/Examples/VehicleSpeedScheduling.lean | VehicleSpeedSched.dβ_pos | [154, 1] | [155, 50] | intro i | n : β
d Οmin Οmax smin smax : Fin n β β
F : β β β
β’ StrongLT 0 dβ | n : β
d Οmin Οmax smin smax : Fin n β β
F : β β β
i : Fin nβ
β’ 0 i < dβ i | Please generate a tactic in lean4 to solve the state.
STATE:
n : β
d Οmin Οmax smin smax : Fin n β β
F : β β β
β’ StrongLT 0 dβ
TACTIC:
|
https://github.com/verified-optimization/CvxLean.git | c62c2f292c6420f31a12e738ebebdfed50f6f840 | CvxLean/Examples/VehicleSpeedScheduling.lean | VehicleSpeedSched.dβ_pos | [154, 1] | [155, 50] | fin_cases i <;> (dsimp [dβ]; norm_num) | n : β
d Οmin Οmax smin smax : Fin n β β
F : β β β
i : Fin nβ
β’ 0 i < dβ i | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
n : β
d Οmin Οmax smin smax : Fin n β β
F : β β β
i : Fin nβ
β’ 0 i < dβ i
TACTIC:
|
https://github.com/verified-optimization/CvxLean.git | c62c2f292c6420f31a12e738ebebdfed50f6f840 | CvxLean/Examples/VehicleSpeedScheduling.lean | VehicleSpeedSched.dβ_pos | [154, 1] | [155, 50] | dsimp [dβ] | case tail.tail.tail.tail.tail.tail.tail.tail.tail.head
n : β
d Οmin Οmax smin smax : Fin n β β
F : β β β
β’ 0 β¨9, β―β© < dβ β¨9, β―β© | case tail.tail.tail.tail.tail.tail.tail.tail.tail.head
n : β
d Οmin Οmax smin smax : Fin n β β
F : β β β
β’ 0 < ![1.9501, 1.2311, 1.6068, 1.4860, 1.8913, 1.7621, 1.4565, 1.0185, 1.8214, 1.4447] β¨9, β―β© | Please generate a tactic in lean4 to solve the state.
STATE:
case tail.tail.tail.tail.tail.tail.tail.tail.tail.head
n : β
d Οmin Οmax smin smax : Fin n β β
F : β β β
β’ 0 β¨9, β―β© < dβ β¨9, β―β©
TACTIC:
|
https://github.com/verified-optimization/CvxLean.git | c62c2f292c6420f31a12e738ebebdfed50f6f840 | CvxLean/Examples/VehicleSpeedScheduling.lean | VehicleSpeedSched.dβ_pos | [154, 1] | [155, 50] | norm_num | case tail.tail.tail.tail.tail.tail.tail.tail.tail.head
n : β
d Οmin Οmax smin smax : Fin n β β
F : β β β
β’ 0 < ![1.9501, 1.2311, 1.6068, 1.4860, 1.8913, 1.7621, 1.4565, 1.0185, 1.8214, 1.4447] β¨9, β―β© | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case tail.tail.tail.tail.tail.tail.tail.tail.tail.head
n : β
d Οmin Οmax smin smax : Fin n β β
F : β β β
β’ 0 < ![1.9501, 1.2311, 1.6068, 1.4860, 1.8913, 1.7621, 1.4565, 1.0185, 1.8214, 1.4447] β¨9, β―β©
TACTIC:
|
https://github.com/verified-optimization/CvxLean.git | c62c2f292c6420f31a12e738ebebdfed50f6f840 | CvxLean/Examples/VehicleSpeedScheduling.lean | VehicleSpeedSched.sminβ_pos | [173, 1] | [174, 36] | intro i | n : β
d Οmin Οmax smin smax : Fin n β β
F : β β β
β’ StrongLT 0 sminβ | n : β
d Οmin Οmax smin smax : Fin n β β
F : β β β
i : Fin nβ
β’ 0 i < sminβ i | Please generate a tactic in lean4 to solve the state.
STATE:
n : β
d Οmin Οmax smin smax : Fin n β β
F : β β β
β’ StrongLT 0 sminβ
TACTIC:
|
https://github.com/verified-optimization/CvxLean.git | c62c2f292c6420f31a12e738ebebdfed50f6f840 | CvxLean/Examples/VehicleSpeedScheduling.lean | VehicleSpeedSched.sminβ_pos | [173, 1] | [174, 36] | fin_cases i <;> norm_num | n : β
d Οmin Οmax smin smax : Fin n β β
F : β β β
i : Fin nβ
β’ 0 i < sminβ i | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
n : β
d Οmin Οmax smin smax : Fin n β β
F : β β β
i : Fin nβ
β’ 0 i < sminβ i
TACTIC:
|
https://github.com/verified-optimization/CvxLean.git | c62c2f292c6420f31a12e738ebebdfed50f6f840 | CvxLean/Examples/VehicleSpeedScheduling.lean | VehicleSpeedSched.sminβ_le_smaxβ | [179, 1] | [180, 60] | intro i | n : β
d Οmin Οmax smin smax : Fin n β β
F : β β β
β’ sminβ β€ smaxβ | n : β
d Οmin Οmax smin smax : Fin n β β
F : β β β
i : Fin nβ
β’ sminβ i β€ smaxβ i | Please generate a tactic in lean4 to solve the state.
STATE:
n : β
d Οmin Οmax smin smax : Fin n β β
F : β β β
β’ sminβ β€ smaxβ
TACTIC:
|
https://github.com/verified-optimization/CvxLean.git | c62c2f292c6420f31a12e738ebebdfed50f6f840 | CvxLean/Examples/VehicleSpeedScheduling.lean | VehicleSpeedSched.sminβ_le_smaxβ | [179, 1] | [180, 60] | fin_cases i <;> (dsimp [sminβ, smaxβ]; norm_num) | n : β
d Οmin Οmax smin smax : Fin n β β
F : β β β
i : Fin nβ
β’ sminβ i β€ smaxβ i | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
n : β
d Οmin Οmax smin smax : Fin n β β
F : β β β
i : Fin nβ
β’ sminβ i β€ smaxβ i
TACTIC:
|
https://github.com/verified-optimization/CvxLean.git | c62c2f292c6420f31a12e738ebebdfed50f6f840 | CvxLean/Examples/VehicleSpeedScheduling.lean | VehicleSpeedSched.sminβ_le_smaxβ | [179, 1] | [180, 60] | dsimp [sminβ, smaxβ] | case tail.tail.tail.tail.tail.tail.tail.tail.tail.head
n : β
d Οmin Οmax smin smax : Fin n β β
F : β β β
β’ sminβ β¨9, β―β© β€ smaxβ β¨9, β―β© | case tail.tail.tail.tail.tail.tail.tail.tail.tail.head
n : β
d Οmin Οmax smin smax : Fin n β β
F : β β β
β’ ![0.7828, 0.6235, 0.7155, 0.5340, 0.6329, 0.4259, 0.7798, 0.9604, 0.7298, 0.8405] β¨9, β―β© β€
![1.9624, 1.6036, 1.6439, 1.5641, 1.7194, 1.9090, 1.3193, 1.3366, 1.9470, 2.8803] β¨9, β―β© | Please generate a tactic in lean4 to solve the state.
STATE:
case tail.tail.tail.tail.tail.tail.tail.tail.tail.head
n : β
d Οmin Οmax smin smax : Fin n β β
F : β β β
β’ sminβ β¨9, β―β© β€ smaxβ β¨9, β―β©
TACTIC:
|
https://github.com/verified-optimization/CvxLean.git | c62c2f292c6420f31a12e738ebebdfed50f6f840 | CvxLean/Examples/VehicleSpeedScheduling.lean | VehicleSpeedSched.sminβ_le_smaxβ | [179, 1] | [180, 60] | norm_num | case tail.tail.tail.tail.tail.tail.tail.tail.tail.head
n : β
d Οmin Οmax smin smax : Fin n β β
F : β β β
β’ ![0.7828, 0.6235, 0.7155, 0.5340, 0.6329, 0.4259, 0.7798, 0.9604, 0.7298, 0.8405] β¨9, β―β© β€
![1.9624, 1.6036, 1.6439, 1.5641, 1.7194, 1.9090, 1.3193, 1.3366, 1.9470, 2.8803] β¨9, β―β© | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case tail.tail.tail.tail.tail.tail.tail.tail.tail.head
n : β
d Οmin Οmax smin smax : Fin n β β
F : β β β
β’ ![0.7828, 0.6235, 0.7155, 0.5340, 0.6329, 0.4259, 0.7798, 0.9604, 0.7298, 0.8405] β¨9, β―β© β€
![1.9624, 1.6036, 1.6439, 1.5641, 1.7194, 1.9090, 1.3193, 1.3366, 1.9470, 2.8803] β¨9, β―β©
TACTIC:
|
https://github.com/verified-optimization/CvxLean.git | c62c2f292c6420f31a12e738ebebdfed50f6f840 | CvxLean/Examples/VehicleSpeedScheduling.lean | VehicleSpeedSched.aβ_nonneg | [188, 1] | [189, 51] | unfold aβ | n : β
d Οmin Οmax smin smax : Fin n β β
F : β β β
β’ 0 β€ aβ | n : β
d Οmin Οmax smin smax : Fin n β β
F : β β β
β’ 0 β€ 1 | Please generate a tactic in lean4 to solve the state.
STATE:
n : β
d Οmin Οmax smin smax : Fin n β β
F : β β β
β’ 0 β€ aβ
TACTIC:
|
https://github.com/verified-optimization/CvxLean.git | c62c2f292c6420f31a12e738ebebdfed50f6f840 | CvxLean/Examples/VehicleSpeedScheduling.lean | VehicleSpeedSched.aβ_nonneg | [188, 1] | [189, 51] | norm_num | n : β
d Οmin Οmax smin smax : Fin n β β
F : β β β
β’ 0 β€ 1 | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
n : β
d Οmin Οmax smin smax : Fin n β β
F : β β β
β’ 0 β€ 1
TACTIC:
|
https://github.com/verified-optimization/CvxLean.git | c62c2f292c6420f31a12e738ebebdfed50f6f840 | CvxLean/Examples/VehicleSpeedScheduling.lean | VehicleSpeedSched.aβdβ2_nonneg | [191, 1] | [193, 55] | intros i | n : β
d Οmin Οmax smin smax : Fin n β β
F : β β β
β’ 0 β€ aβ β’ dβ ^ 2 | n : β
d Οmin Οmax smin smax : Fin n β β
F : β β β
i : Fin nβ
β’ 0 i β€ (aβ β’ dβ ^ 2) i | Please generate a tactic in lean4 to solve the state.
STATE:
n : β
d Οmin Οmax smin smax : Fin n β β
F : β β β
β’ 0 β€ aβ β’ dβ ^ 2
TACTIC:
|
https://github.com/verified-optimization/CvxLean.git | c62c2f292c6420f31a12e738ebebdfed50f6f840 | CvxLean/Examples/VehicleSpeedScheduling.lean | VehicleSpeedSched.aβdβ2_nonneg | [191, 1] | [193, 55] | fin_cases i <;> (dsimp [aβ, dβ]; norm_num) | n : β
d Οmin Οmax smin smax : Fin n β β
F : β β β
i : Fin nβ
β’ 0 i β€ (aβ β’ dβ ^ 2) i | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
n : β
d Οmin Οmax smin smax : Fin n β β
F : β β β
i : Fin nβ
β’ 0 i β€ (aβ β’ dβ ^ 2) i
TACTIC:
|
https://github.com/verified-optimization/CvxLean.git | c62c2f292c6420f31a12e738ebebdfed50f6f840 | CvxLean/Examples/VehicleSpeedScheduling.lean | VehicleSpeedSched.aβdβ2_nonneg | [191, 1] | [193, 55] | dsimp [aβ, dβ] | case tail.tail.tail.tail.tail.tail.tail.tail.tail.head
n : β
d Οmin Οmax smin smax : Fin n β β
F : β β β
β’ 0 β¨9, β―β© β€ (aβ β’ dβ ^ 2) β¨9, β―β© | case tail.tail.tail.tail.tail.tail.tail.tail.tail.head
n : β
d Οmin Οmax smin smax : Fin n β β
F : β β β
β’ 0 β€ 1 * ![1.9501, 1.2311, 1.6068, 1.4860, 1.8913, 1.7621, 1.4565, 1.0185, 1.8214, 1.4447] β¨9, β―β© ^ 2 | Please generate a tactic in lean4 to solve the state.
STATE:
case tail.tail.tail.tail.tail.tail.tail.tail.tail.head
n : β
d Οmin Οmax smin smax : Fin n β β
F : β β β
β’ 0 β¨9, β―β© β€ (aβ β’ dβ ^ 2) β¨9, β―β©
TACTIC:
|
https://github.com/verified-optimization/CvxLean.git | c62c2f292c6420f31a12e738ebebdfed50f6f840 | CvxLean/Examples/VehicleSpeedScheduling.lean | VehicleSpeedSched.aβdβ2_nonneg | [191, 1] | [193, 55] | norm_num | case tail.tail.tail.tail.tail.tail.tail.tail.tail.head
n : β
d Οmin Οmax smin smax : Fin n β β
F : β β β
β’ 0 β€ 1 * ![1.9501, 1.2311, 1.6068, 1.4860, 1.8913, 1.7621, 1.4565, 1.0185, 1.8214, 1.4447] β¨9, β―β© ^ 2 | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case tail.tail.tail.tail.tail.tail.tail.tail.tail.head
n : β
d Οmin Οmax smin smax : Fin n β β
F : β β β
β’ 0 β€ 1 * ![1.9501, 1.2311, 1.6068, 1.4860, 1.8913, 1.7621, 1.4565, 1.0185, 1.8214, 1.4447] β¨9, β―β© ^ 2
TACTIC:
|
https://github.com/verified-optimization/CvxLean.git | c62c2f292c6420f31a12e738ebebdfed50f6f840 | CvxLean/Lib/Math/Analysis/InnerProductSpace/Spectrum.lean | LinearMap.spectral_theorem' | [15, 1] | [29, 78] | suffices hsuff : β (w : EuclideanSpace π (Fin n)),
T (xs.repr.symm w) = xs.repr.symm (fun i => as i * w i) by
simpa only [LinearIsometryEquiv.symm_apply_apply,
LinearIsometryEquiv.apply_symm_apply]
using congr_arg (fun (v : E) => (xs.repr) v i) (hsuff ((xs.repr) v)) | π : Type u_2
instββ΄ : RCLike π
instβΒ³ : DecidableEq π
E : Type u_1
instβΒ² : NormedAddCommGroup E
instβΒΉ : InnerProductSpace π E
instβ : FiniteDimensional π E
n : β
hn : FiniteDimensional.finrank π E = n
T : E ββ[π] E
v : E
i : Fin n
xs : OrthonormalBasis (Fin n) π E
as : Fin n β β
hxs : β (j : Fin n), Module.End.HasEigenvector T (β(as j)) (xs j)
β’ xs.repr (T v) i = β(as i) * xs.repr v i | π : Type u_2
instββ΄ : RCLike π
instβΒ³ : DecidableEq π
E : Type u_1
instβΒ² : NormedAddCommGroup E
instβΒΉ : InnerProductSpace π E
instβ : FiniteDimensional π E
n : β
hn : FiniteDimensional.finrank π E = n
T : E ββ[π] E
v : E
i : Fin n
xs : OrthonormalBasis (Fin n) π E
as : Fin n β β
hxs : β (j : Fin n), Module.End.HasEigenvector T (β(as j)) (xs j)
β’ β (w : EuclideanSpace π (Fin n)), T (xs.repr.symm w) = xs.repr.symm fun i => β(as i) * w i | Please generate a tactic in lean4 to solve the state.
STATE:
π : Type u_2
instββ΄ : RCLike π
instβΒ³ : DecidableEq π
E : Type u_1
instβΒ² : NormedAddCommGroup E
instβΒΉ : InnerProductSpace π E
instβ : FiniteDimensional π E
n : β
hn : FiniteDimensional.finrank π E = n
T : E ββ[π] E
v : E
i : Fin n
xs : OrthonormalBasis (Fin n) π E
as : Fin n β β
hxs : β (j : Fin n), Module.End.HasEigenvector T (β(as j)) (xs j)
β’ xs.repr (T v) i = β(as i) * xs.repr v i
TACTIC:
|
https://github.com/verified-optimization/CvxLean.git | c62c2f292c6420f31a12e738ebebdfed50f6f840 | CvxLean/Lib/Math/Analysis/InnerProductSpace/Spectrum.lean | LinearMap.spectral_theorem' | [15, 1] | [29, 78] | intros w | π : Type u_2
instββ΄ : RCLike π
instβΒ³ : DecidableEq π
E : Type u_1
instβΒ² : NormedAddCommGroup E
instβΒΉ : InnerProductSpace π E
instβ : FiniteDimensional π E
n : β
hn : FiniteDimensional.finrank π E = n
T : E ββ[π] E
v : E
i : Fin n
xs : OrthonormalBasis (Fin n) π E
as : Fin n β β
hxs : β (j : Fin n), Module.End.HasEigenvector T (β(as j)) (xs j)
β’ β (w : EuclideanSpace π (Fin n)), T (xs.repr.symm w) = xs.repr.symm fun i => β(as i) * w i | π : Type u_2
instββ΄ : RCLike π
instβΒ³ : DecidableEq π
E : Type u_1
instβΒ² : NormedAddCommGroup E
instβΒΉ : InnerProductSpace π E
instβ : FiniteDimensional π E
n : β
hn : FiniteDimensional.finrank π E = n
T : E ββ[π] E
v : E
i : Fin n
xs : OrthonormalBasis (Fin n) π E
as : Fin n β β
hxs : β (j : Fin n), Module.End.HasEigenvector T (β(as j)) (xs j)
w : EuclideanSpace π (Fin n)
β’ T (xs.repr.symm w) = xs.repr.symm fun i => β(as i) * w i | Please generate a tactic in lean4 to solve the state.
STATE:
π : Type u_2
instββ΄ : RCLike π
instβΒ³ : DecidableEq π
E : Type u_1
instβΒ² : NormedAddCommGroup E
instβΒΉ : InnerProductSpace π E
instβ : FiniteDimensional π E
n : β
hn : FiniteDimensional.finrank π E = n
T : E ββ[π] E
v : E
i : Fin n
xs : OrthonormalBasis (Fin n) π E
as : Fin n β β
hxs : β (j : Fin n), Module.End.HasEigenvector T (β(as j)) (xs j)
β’ β (w : EuclideanSpace π (Fin n)), T (xs.repr.symm w) = xs.repr.symm fun i => β(as i) * w i
TACTIC:
|
https://github.com/verified-optimization/CvxLean.git | c62c2f292c6420f31a12e738ebebdfed50f6f840 | CvxLean/Lib/Math/Analysis/InnerProductSpace/Spectrum.lean | LinearMap.spectral_theorem' | [15, 1] | [29, 78] | simp_rw [β OrthonormalBasis.sum_repr_symm, map_sum, LinearMap.map_smul,
fun j => Module.End.mem_eigenspace_iff.mp (hxs j).1, smul_smul, mul_comm] | π : Type u_2
instββ΄ : RCLike π
instβΒ³ : DecidableEq π
E : Type u_1
instβΒ² : NormedAddCommGroup E
instβΒΉ : InnerProductSpace π E
instβ : FiniteDimensional π E
n : β
hn : FiniteDimensional.finrank π E = n
T : E ββ[π] E
v : E
i : Fin n
xs : OrthonormalBasis (Fin n) π E
as : Fin n β β
hxs : β (j : Fin n), Module.End.HasEigenvector T (β(as j)) (xs j)
w : EuclideanSpace π (Fin n)
β’ T (xs.repr.symm w) = xs.repr.symm fun i => β(as i) * w i | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
π : Type u_2
instββ΄ : RCLike π
instβΒ³ : DecidableEq π
E : Type u_1
instβΒ² : NormedAddCommGroup E
instβΒΉ : InnerProductSpace π E
instβ : FiniteDimensional π E
n : β
hn : FiniteDimensional.finrank π E = n
T : E ββ[π] E
v : E
i : Fin n
xs : OrthonormalBasis (Fin n) π E
as : Fin n β β
hxs : β (j : Fin n), Module.End.HasEigenvector T (β(as j)) (xs j)
w : EuclideanSpace π (Fin n)
β’ T (xs.repr.symm w) = xs.repr.symm fun i => β(as i) * w i
TACTIC:
|
https://github.com/verified-optimization/CvxLean.git | c62c2f292c6420f31a12e738ebebdfed50f6f840 | CvxLean/Lib/Math/Analysis/InnerProductSpace/Spectrum.lean | LinearMap.spectral_theorem' | [15, 1] | [29, 78] | simpa only [LinearIsometryEquiv.symm_apply_apply,
LinearIsometryEquiv.apply_symm_apply]
using congr_arg (fun (v : E) => (xs.repr) v i) (hsuff ((xs.repr) v)) | π : Type u_2
instββ΄ : RCLike π
instβΒ³ : DecidableEq π
E : Type u_1
instβΒ² : NormedAddCommGroup E
instβΒΉ : InnerProductSpace π E
instβ : FiniteDimensional π E
n : β
hn : FiniteDimensional.finrank π E = n
T : E ββ[π] E
v : E
i : Fin n
xs : OrthonormalBasis (Fin n) π E
as : Fin n β β
hxs : β (j : Fin n), Module.End.HasEigenvector T (β(as j)) (xs j)
hsuff : β (w : EuclideanSpace π (Fin n)), T (xs.repr.symm w) = xs.repr.symm fun i => β(as i) * w i
β’ xs.repr (T v) i = β(as i) * xs.repr v i | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
π : Type u_2
instββ΄ : RCLike π
instβΒ³ : DecidableEq π
E : Type u_1
instβΒ² : NormedAddCommGroup E
instβΒΉ : InnerProductSpace π E
instβ : FiniteDimensional π E
n : β
hn : FiniteDimensional.finrank π E = n
T : E ββ[π] E
v : E
i : Fin n
xs : OrthonormalBasis (Fin n) π E
as : Fin n β β
hxs : β (j : Fin n), Module.End.HasEigenvector T (β(as j)) (xs j)
hsuff : β (w : EuclideanSpace π (Fin n)), T (xs.repr.symm w) = xs.repr.symm fun i => β(as i) * w i
β’ xs.repr (T v) i = β(as i) * xs.repr v i
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Logarithm.lean | sum_primesBelow_eq_sum_range_indicator | [49, 1] | [58, 8] | convert (Finset.sum_indicator_subset f Finset.mem_of_mem_filter).symm using 2 with _ _ m hm | R : Type u_1
instβ : AddCommMonoid R
f : β β R
n : β
β’ β p β n.primesBelow, f p = β m β Finset.range n, {p | p.Prime}.indicator f m | case h.e'_3.a
R : Type u_1
instβ : AddCommMonoid R
f : β β R
n m : β
hm : m β Finset.range n
β’ {p | p.Prime}.indicator f m = (β(Finset.filter (fun p => p.Prime) (Finset.range n))).indicator f m | Please generate a tactic in lean4 to solve the state.
STATE:
R : Type u_1
instβ : AddCommMonoid R
f : β β R
n : β
β’ β p β n.primesBelow, f p = β m β Finset.range n, {p | p.Prime}.indicator f m
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Logarithm.lean | sum_primesBelow_eq_sum_range_indicator | [49, 1] | [58, 8] | simp only [Set.mem_setOf_eq, Finset.mem_range, Finset.coe_filter, not_and, Set.indicator_apply] | case h.e'_3.a
R : Type u_1
instβ : AddCommMonoid R
f : β β R
n m : β
hm : m β Finset.range n
β’ {p | p.Prime}.indicator f m = (β(Finset.filter (fun p => p.Prime) (Finset.range n))).indicator f m | case h.e'_3.a
R : Type u_1
instβ : AddCommMonoid R
f : β β R
n m : β
hm : m β Finset.range n
β’ (if m.Prime then f m else 0) = if m < n β§ m.Prime then f m else 0 | Please generate a tactic in lean4 to solve the state.
STATE:
case h.e'_3.a
R : Type u_1
instβ : AddCommMonoid R
f : β β R
n m : β
hm : m β Finset.range n
β’ {p | p.Prime}.indicator f m = (β(Finset.filter (fun p => p.Prime) (Finset.range n))).indicator f m
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Logarithm.lean | sum_primesBelow_eq_sum_range_indicator | [49, 1] | [58, 8] | split_ifs with hβ hβ hβ | case h.e'_3.a
R : Type u_1
instβ : AddCommMonoid R
f : β β R
n m : β
hm : m β Finset.range n
β’ (if m.Prime then f m else 0) = if m < n β§ m.Prime then f m else 0 | case pos
R : Type u_1
instβ : AddCommMonoid R
f : β β R
n m : β
hm : m β Finset.range n
hβ : m.Prime
hβ : m < n β§ m.Prime
β’ f m = f m
case neg
R : Type u_1
instβ : AddCommMonoid R
f : β β R
n m : β
hm : m β Finset.range n
hβ : m.Prime
hβ : Β¬(m < n β§ m.Prime)
β’ f m = 0
case pos
R : Type u_1
instβ : AddCommMonoid R
f : β β R
n m : β
hm : m β Finset.range n
hβ : Β¬m.Prime
hβ : m < n β§ m.Prime
β’ 0 = f m
case neg
R : Type u_1
instβ : AddCommMonoid R
f : β β R
n m : β
hm : m β Finset.range n
hβ : Β¬m.Prime
hβ : Β¬(m < n β§ m.Prime)
β’ 0 = 0 | Please generate a tactic in lean4 to solve the state.
STATE:
case h.e'_3.a
R : Type u_1
instβ : AddCommMonoid R
f : β β R
n m : β
hm : m β Finset.range n
β’ (if m.Prime then f m else 0) = if m < n β§ m.Prime then f m else 0
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Logarithm.lean | sum_primesBelow_eq_sum_range_indicator | [49, 1] | [58, 8] | rfl | case pos
R : Type u_1
instβ : AddCommMonoid R
f : β β R
n m : β
hm : m β Finset.range n
hβ : m.Prime
hβ : m < n β§ m.Prime
β’ f m = f m | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case pos
R : Type u_1
instβ : AddCommMonoid R
f : β β R
n m : β
hm : m β Finset.range n
hβ : m.Prime
hβ : m < n β§ m.Prime
β’ f m = f m
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Logarithm.lean | sum_primesBelow_eq_sum_range_indicator | [49, 1] | [58, 8] | exact (hβ β¨Finset.mem_range.mp hm, hββ©).elim | case neg
R : Type u_1
instβ : AddCommMonoid R
f : β β R
n m : β
hm : m β Finset.range n
hβ : m.Prime
hβ : Β¬(m < n β§ m.Prime)
β’ f m = 0 | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case neg
R : Type u_1
instβ : AddCommMonoid R
f : β β R
n m : β
hm : m β Finset.range n
hβ : m.Prime
hβ : Β¬(m < n β§ m.Prime)
β’ f m = 0
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Logarithm.lean | sum_primesBelow_eq_sum_range_indicator | [49, 1] | [58, 8] | exact (hβ hβ.2).elim | case pos
R : Type u_1
instβ : AddCommMonoid R
f : β β R
n m : β
hm : m β Finset.range n
hβ : Β¬m.Prime
hβ : m < n β§ m.Prime
β’ 0 = f m | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case pos
R : Type u_1
instβ : AddCommMonoid R
f : β β R
n m : β
hm : m β Finset.range n
hβ : Β¬m.Prime
hβ : m < n β§ m.Prime
β’ 0 = f m
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Logarithm.lean | sum_primesBelow_eq_sum_range_indicator | [49, 1] | [58, 8] | rfl | case neg
R : Type u_1
instβ : AddCommMonoid R
f : β β R
n m : β
hm : m β Finset.range n
hβ : Β¬m.Prime
hβ : Β¬(m < n β§ m.Prime)
β’ 0 = 0 | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case neg
R : Type u_1
instβ : AddCommMonoid R
f : β β R
n m : β
hm : m β Finset.range n
hβ : Β¬m.Prime
hβ : Β¬(m < n β§ m.Prime)
β’ 0 = 0
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Logarithm.lean | tendsto_sum_primesBelow_tsum | [62, 1] | [69, 94] | rw [(show β' p : Nat.Primes, f p = β' p : {p : β | p.Prime}, f p from rfl)] | R : Type u_1
instββ΄ : AddCommGroup R
instβΒ³ : UniformSpace R
instβΒ² : UniformAddGroup R
instβΒΉ : CompleteSpace R
instβ : T2Space R
f : β β R
hsum : Summable f
β’ Tendsto (fun n => β p β n.primesBelow, f p) atTop (π (β' (p : Nat.Primes), f βp)) | R : Type u_1
instββ΄ : AddCommGroup R
instβΒ³ : UniformSpace R
instβΒ² : UniformAddGroup R
instβΒΉ : CompleteSpace R
instβ : T2Space R
f : β β R
hsum : Summable f
β’ Tendsto (fun n => β p β n.primesBelow, f p) atTop (π (β' (p : β{p | p.Prime}), f βp)) | Please generate a tactic in lean4 to solve the state.
STATE:
R : Type u_1
instββ΄ : AddCommGroup R
instβΒ³ : UniformSpace R
instβΒ² : UniformAddGroup R
instβΒΉ : CompleteSpace R
instβ : T2Space R
f : β β R
hsum : Summable f
β’ Tendsto (fun n => β p β n.primesBelow, f p) atTop (π (β' (p : Nat.Primes), f βp))
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Logarithm.lean | tendsto_sum_primesBelow_tsum | [62, 1] | [69, 94] | simp_rw [tsum_subtype, sum_primesBelow_eq_sum_range_indicator] | R : Type u_1
instββ΄ : AddCommGroup R
instβΒ³ : UniformSpace R
instβΒ² : UniformAddGroup R
instβΒΉ : CompleteSpace R
instβ : T2Space R
f : β β R
hsum : Summable f
β’ Tendsto (fun n => β p β n.primesBelow, f p) atTop (π (β' (p : β{p | p.Prime}), f βp)) | R : Type u_1
instββ΄ : AddCommGroup R
instβΒ³ : UniformSpace R
instβΒ² : UniformAddGroup R
instβΒΉ : CompleteSpace R
instβ : T2Space R
f : β β R
hsum : Summable f
β’ Tendsto (fun n => β m β Finset.range n, {p | p.Prime}.indicator (fun p => f p) m) atTop
(π (β' (x : β), {p | p.Prime}.indicator f x)) | Please generate a tactic in lean4 to solve the state.
STATE:
R : Type u_1
instββ΄ : AddCommGroup R
instβΒ³ : UniformSpace R
instβΒ² : UniformAddGroup R
instβΒΉ : CompleteSpace R
instβ : T2Space R
f : β β R
hsum : Summable f
β’ Tendsto (fun n => β p β n.primesBelow, f p) atTop (π (β' (p : β{p | p.Prime}), f βp))
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Logarithm.lean | tendsto_sum_primesBelow_tsum | [62, 1] | [69, 94] | exact (Summable.hasSum_iff_tendsto_nat <| hsum.indicator _).mp <| (hsum.indicator _).hasSum | R : Type u_1
instββ΄ : AddCommGroup R
instβΒ³ : UniformSpace R
instβΒ² : UniformAddGroup R
instβΒΉ : CompleteSpace R
instβ : T2Space R
f : β β R
hsum : Summable f
β’ Tendsto (fun n => β m β Finset.range n, {p | p.Prime}.indicator (fun p => f p) m) atTop
(π (β' (x : β), {p | p.Prime}.indicator f x)) | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
R : Type u_1
instββ΄ : AddCommGroup R
instβΒ³ : UniformSpace R
instβΒ² : UniformAddGroup R
instβΒΉ : CompleteSpace R
instβ : T2Space R
f : β β R
hsum : Summable f
β’ Tendsto (fun n => β m β Finset.range n, {p | p.Prime}.indicator (fun p => f p) m) atTop
(π (β' (x : β), {p | p.Prime}.indicator f x))
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Logarithm.lean | Complex.exp_tsum_primes | [71, 1] | [77, 81] | simpa only [β exp_sum] using Tendsto.cexp <| tendsto_sum_primesBelow_tsum hsum | f : β β β
hsum : Summable f
β’ Tendsto (fun n => β p β n.primesBelow, cexp (f p)) atTop (π (cexp (β' (p : Nat.Primes), f βp))) | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
f : β β β
hsum : Summable f
β’ Tendsto (fun n => β p β n.primesBelow, cexp (f p)) atTop (π (cexp (β' (p : Nat.Primes), f βp)))
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Logarithm.lean | Summable.neg_clog_one_sub | [82, 1] | [91, 51] | let g (z : β) : β := -log (1 - z) | Ξ± : Type u_1
f : Ξ± β β
hsum : Summable f
β’ Summable fun n => -(1 - f n).log | Ξ± : Type u_1
f : Ξ± β β
hsum : Summable f
g : β β β := fun z => -(1 - z).log
β’ Summable fun n => -(1 - f n).log | Please generate a tactic in lean4 to solve the state.
STATE:
Ξ± : Type u_1
f : Ξ± β β
hsum : Summable f
β’ Summable fun n => -(1 - f n).log
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Logarithm.lean | Summable.neg_clog_one_sub | [82, 1] | [91, 51] | have hg : DifferentiableAt β g 0 :=
DifferentiableAt.neg <| ((differentiableAt_const 1).sub differentiableAt_id').clog <|
by simp only [sub_zero, one_mem_slitPlane] | Ξ± : Type u_1
f : Ξ± β β
hsum : Summable f
g : β β β := fun z => -(1 - z).log
β’ Summable fun n => -(1 - f n).log | Ξ± : Type u_1
f : Ξ± β β
hsum : Summable f
g : β β β := fun z => -(1 - z).log
hg : DifferentiableAt β g 0
β’ Summable fun n => -(1 - f n).log | Please generate a tactic in lean4 to solve the state.
STATE:
Ξ± : Type u_1
f : Ξ± β β
hsum : Summable f
g : β β β := fun z => -(1 - z).log
β’ Summable fun n => -(1 - f n).log
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Logarithm.lean | Summable.neg_clog_one_sub | [82, 1] | [91, 51] | have : g =O[π 0] id := by
simpa only [g, sub_zero, log_one, neg_zero] using DifferentiableAt.isBigO_sub hg | Ξ± : Type u_1
f : Ξ± β β
hsum : Summable f
g : β β β := fun z => -(1 - z).log
hg : DifferentiableAt β g 0
β’ Summable fun n => -(1 - f n).log | Ξ± : Type u_1
f : Ξ± β β
hsum : Summable f
g : β β β := fun z => -(1 - z).log
hg : DifferentiableAt β g 0
this : g =O[π 0] id
β’ Summable fun n => -(1 - f n).log | Please generate a tactic in lean4 to solve the state.
STATE:
Ξ± : Type u_1
f : Ξ± β β
hsum : Summable f
g : β β β := fun z => -(1 - z).log
hg : DifferentiableAt β g 0
β’ Summable fun n => -(1 - f n).log
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Logarithm.lean | Summable.neg_clog_one_sub | [82, 1] | [91, 51] | exact Asymptotics.IsBigO.comp_summable this hsum | Ξ± : Type u_1
f : Ξ± β β
hsum : Summable f
g : β β β := fun z => -(1 - z).log
hg : DifferentiableAt β g 0
this : g =O[π 0] id
β’ Summable fun n => -(1 - f n).log | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
Ξ± : Type u_1
f : Ξ± β β
hsum : Summable f
g : β β β := fun z => -(1 - z).log
hg : DifferentiableAt β g 0
this : g =O[π 0] id
β’ Summable fun n => -(1 - f n).log
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Logarithm.lean | Summable.neg_clog_one_sub | [82, 1] | [91, 51] | simp only [sub_zero, one_mem_slitPlane] | Ξ± : Type u_1
f : Ξ± β β
hsum : Summable f
g : β β β := fun z => -(1 - z).log
β’ 1 - 0 β slitPlane | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
Ξ± : Type u_1
f : Ξ± β β
hsum : Summable f
g : β β β := fun z => -(1 - z).log
β’ 1 - 0 β slitPlane
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Logarithm.lean | Summable.neg_clog_one_sub | [82, 1] | [91, 51] | simpa only [g, sub_zero, log_one, neg_zero] using DifferentiableAt.isBigO_sub hg | Ξ± : Type u_1
f : Ξ± β β
hsum : Summable f
g : β β β := fun z => -(1 - z).log
hg : DifferentiableAt β g 0
β’ g =O[π 0] id | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
Ξ± : Type u_1
f : Ξ± β β
hsum : Summable f
g : β β β := fun z => -(1 - z).log
hg : DifferentiableAt β g 0
β’ g =O[π 0] id
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Logarithm.lean | EulerProduct.exp_sum_primes_log_eq_tsum | [96, 1] | [107, 77] | have hs {p : β} (hp : 1 < p) : βf pβ < 1 := hsum.of_norm.norm_lt_one (f := f.toMonoidHom) hp | f : β β*β β
hsum : Summable fun x => βf xβ
β’ cexp (β' (p : Nat.Primes), -(1 - f βp).log) = β' (n : β), f n | f : β β*β β
hsum : Summable fun x => βf xβ
hs : β {p : β}, 1 < p β βf pβ < 1
β’ cexp (β' (p : Nat.Primes), -(1 - f βp).log) = β' (n : β), f n | Please generate a tactic in lean4 to solve the state.
STATE:
f : β β*β β
hsum : Summable fun x => βf xβ
β’ cexp (β' (p : Nat.Primes), -(1 - f βp).log) = β' (n : β), f n
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Logarithm.lean | EulerProduct.exp_sum_primes_log_eq_tsum | [96, 1] | [107, 77] | have H := Complex.exp_tsum_primes hsum.of_norm.neg_clog_one_sub | f : β β*β β
hsum : Summable fun x => βf xβ
hs : β {p : β}, 1 < p β βf pβ < 1
β’ cexp (β' (p : Nat.Primes), -(1 - f βp).log) = β' (n : β), f n | f : β β*β β
hsum : Summable fun x => βf xβ
hs : β {p : β}, 1 < p β βf pβ < 1
H :
Tendsto (fun n => β p β n.primesBelow, cexp (-(1 - f p).log)) atTop (π (cexp (β' (p : Nat.Primes), -(1 - f βp).log)))
β’ cexp (β' (p : Nat.Primes), -(1 - f βp).log) = β' (n : β), f n | Please generate a tactic in lean4 to solve the state.
STATE:
f : β β*β β
hsum : Summable fun x => βf xβ
hs : β {p : β}, 1 < p β βf pβ < 1
β’ cexp (β' (p : Nat.Primes), -(1 - f βp).log) = β' (n : β), f n
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Logarithm.lean | EulerProduct.exp_sum_primes_log_eq_tsum | [96, 1] | [107, 77] | have help (n : β) : n.primesBelow.prod (fun p β¦ cexp (-log (1 - f p))) =
n.primesBelow.prod fun p β¦ (1 - f p)β»ΒΉ := by
refine Finset.prod_congr rfl (fun p hp β¦ ?_)
rw [exp_neg, exp_log ?_]
rw [ne_eq, sub_eq_zero, β ne_eq]
exact fun h β¦ (norm_one (Ξ± := β) βΈ h.symm βΈ hs (Nat.prime_of_mem_primesBelow hp).one_lt).false | f : β β*β β
hsum : Summable fun x => βf xβ
hs : β {p : β}, 1 < p β βf pβ < 1
H :
Tendsto (fun n => β p β n.primesBelow, cexp (-(1 - f p).log)) atTop (π (cexp (β' (p : Nat.Primes), -(1 - f βp).log)))
β’ cexp (β' (p : Nat.Primes), -(1 - f βp).log) = β' (n : β), f n | f : β β*β β
hsum : Summable fun x => βf xβ
hs : β {p : β}, 1 < p β βf pβ < 1
H :
Tendsto (fun n => β p β n.primesBelow, cexp (-(1 - f p).log)) atTop (π (cexp (β' (p : Nat.Primes), -(1 - f βp).log)))
help : β (n : β), β p β n.primesBelow, cexp (-(1 - f p).log) = β p β n.primesBelow, (1 - f p)β»ΒΉ
β’ cexp (β' (p : Nat.Primes), -(1 - f βp).log) = β' (n : β), f n | Please generate a tactic in lean4 to solve the state.
STATE:
f : β β*β β
hsum : Summable fun x => βf xβ
hs : β {p : β}, 1 < p β βf pβ < 1
H :
Tendsto (fun n => β p β n.primesBelow, cexp (-(1 - f p).log)) atTop (π (cexp (β' (p : Nat.Primes), -(1 - f βp).log)))
β’ cexp (β' (p : Nat.Primes), -(1 - f βp).log) = β' (n : β), f n
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Logarithm.lean | EulerProduct.exp_sum_primes_log_eq_tsum | [96, 1] | [107, 77] | simp_rw [help] at H | f : β β*β β
hsum : Summable fun x => βf xβ
hs : β {p : β}, 1 < p β βf pβ < 1
H :
Tendsto (fun n => β p β n.primesBelow, cexp (-(1 - f p).log)) atTop (π (cexp (β' (p : Nat.Primes), -(1 - f βp).log)))
help : β (n : β), β p β n.primesBelow, cexp (-(1 - f p).log) = β p β n.primesBelow, (1 - f p)β»ΒΉ
β’ cexp (β' (p : Nat.Primes), -(1 - f βp).log) = β' (n : β), f n | f : β β*β β
hsum : Summable fun x => βf xβ
hs : β {p : β}, 1 < p β βf pβ < 1
help : β (n : β), β p β n.primesBelow, cexp (-(1 - f p).log) = β p β n.primesBelow, (1 - f p)β»ΒΉ
H : Tendsto (fun n => β p β n.primesBelow, (1 - f p)β»ΒΉ) atTop (π (cexp (β' (p : Nat.Primes), -(1 - f βp).log)))
β’ cexp (β' (p : Nat.Primes), -(1 - f βp).log) = β' (n : β), f n | Please generate a tactic in lean4 to solve the state.
STATE:
f : β β*β β
hsum : Summable fun x => βf xβ
hs : β {p : β}, 1 < p β βf pβ < 1
H :
Tendsto (fun n => β p β n.primesBelow, cexp (-(1 - f p).log)) atTop (π (cexp (β' (p : Nat.Primes), -(1 - f βp).log)))
help : β (n : β), β p β n.primesBelow, cexp (-(1 - f p).log) = β p β n.primesBelow, (1 - f p)β»ΒΉ
β’ cexp (β' (p : Nat.Primes), -(1 - f βp).log) = β' (n : β), f n
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Logarithm.lean | EulerProduct.exp_sum_primes_log_eq_tsum | [96, 1] | [107, 77] | exact tendsto_nhds_unique H <| eulerProduct_completely_multiplicative hsum | f : β β*β β
hsum : Summable fun x => βf xβ
hs : β {p : β}, 1 < p β βf pβ < 1
help : β (n : β), β p β n.primesBelow, cexp (-(1 - f p).log) = β p β n.primesBelow, (1 - f p)β»ΒΉ
H : Tendsto (fun n => β p β n.primesBelow, (1 - f p)β»ΒΉ) atTop (π (cexp (β' (p : Nat.Primes), -(1 - f βp).log)))
β’ cexp (β' (p : Nat.Primes), -(1 - f βp).log) = β' (n : β), f n | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
f : β β*β β
hsum : Summable fun x => βf xβ
hs : β {p : β}, 1 < p β βf pβ < 1
help : β (n : β), β p β n.primesBelow, cexp (-(1 - f p).log) = β p β n.primesBelow, (1 - f p)β»ΒΉ
H : Tendsto (fun n => β p β n.primesBelow, (1 - f p)β»ΒΉ) atTop (π (cexp (β' (p : Nat.Primes), -(1 - f βp).log)))
β’ cexp (β' (p : Nat.Primes), -(1 - f βp).log) = β' (n : β), f n
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Logarithm.lean | EulerProduct.exp_sum_primes_log_eq_tsum | [96, 1] | [107, 77] | refine Finset.prod_congr rfl (fun p hp β¦ ?_) | f : β β*β β
hsum : Summable fun x => βf xβ
hs : β {p : β}, 1 < p β βf pβ < 1
H :
Tendsto (fun n => β p β n.primesBelow, cexp (-(1 - f p).log)) atTop (π (cexp (β' (p : Nat.Primes), -(1 - f βp).log)))
n : β
β’ β p β n.primesBelow, cexp (-(1 - f p).log) = β p β n.primesBelow, (1 - f p)β»ΒΉ | f : β β*β β
hsum : Summable fun x => βf xβ
hs : β {p : β}, 1 < p β βf pβ < 1
H :
Tendsto (fun n => β p β n.primesBelow, cexp (-(1 - f p).log)) atTop (π (cexp (β' (p : Nat.Primes), -(1 - f βp).log)))
n p : β
hp : p β n.primesBelow
β’ cexp (-(1 - f p).log) = (1 - f p)β»ΒΉ | Please generate a tactic in lean4 to solve the state.
STATE:
f : β β*β β
hsum : Summable fun x => βf xβ
hs : β {p : β}, 1 < p β βf pβ < 1
H :
Tendsto (fun n => β p β n.primesBelow, cexp (-(1 - f p).log)) atTop (π (cexp (β' (p : Nat.Primes), -(1 - f βp).log)))
n : β
β’ β p β n.primesBelow, cexp (-(1 - f p).log) = β p β n.primesBelow, (1 - f p)β»ΒΉ
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Logarithm.lean | EulerProduct.exp_sum_primes_log_eq_tsum | [96, 1] | [107, 77] | rw [exp_neg, exp_log ?_] | f : β β*β β
hsum : Summable fun x => βf xβ
hs : β {p : β}, 1 < p β βf pβ < 1
H :
Tendsto (fun n => β p β n.primesBelow, cexp (-(1 - f p).log)) atTop (π (cexp (β' (p : Nat.Primes), -(1 - f βp).log)))
n p : β
hp : p β n.primesBelow
β’ cexp (-(1 - f p).log) = (1 - f p)β»ΒΉ | f : β β*β β
hsum : Summable fun x => βf xβ
hs : β {p : β}, 1 < p β βf pβ < 1
H :
Tendsto (fun n => β p β n.primesBelow, cexp (-(1 - f p).log)) atTop (π (cexp (β' (p : Nat.Primes), -(1 - f βp).log)))
n p : β
hp : p β n.primesBelow
β’ 1 - f p β 0 | Please generate a tactic in lean4 to solve the state.
STATE:
f : β β*β β
hsum : Summable fun x => βf xβ
hs : β {p : β}, 1 < p β βf pβ < 1
H :
Tendsto (fun n => β p β n.primesBelow, cexp (-(1 - f p).log)) atTop (π (cexp (β' (p : Nat.Primes), -(1 - f βp).log)))
n p : β
hp : p β n.primesBelow
β’ cexp (-(1 - f p).log) = (1 - f p)β»ΒΉ
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Logarithm.lean | EulerProduct.exp_sum_primes_log_eq_tsum | [96, 1] | [107, 77] | rw [ne_eq, sub_eq_zero, β ne_eq] | f : β β*β β
hsum : Summable fun x => βf xβ
hs : β {p : β}, 1 < p β βf pβ < 1
H :
Tendsto (fun n => β p β n.primesBelow, cexp (-(1 - f p).log)) atTop (π (cexp (β' (p : Nat.Primes), -(1 - f βp).log)))
n p : β
hp : p β n.primesBelow
β’ 1 - f p β 0 | f : β β*β β
hsum : Summable fun x => βf xβ
hs : β {p : β}, 1 < p β βf pβ < 1
H :
Tendsto (fun n => β p β n.primesBelow, cexp (-(1 - f p).log)) atTop (π (cexp (β' (p : Nat.Primes), -(1 - f βp).log)))
n p : β
hp : p β n.primesBelow
β’ 1 β f p | Please generate a tactic in lean4 to solve the state.
STATE:
f : β β*β β
hsum : Summable fun x => βf xβ
hs : β {p : β}, 1 < p β βf pβ < 1
H :
Tendsto (fun n => β p β n.primesBelow, cexp (-(1 - f p).log)) atTop (π (cexp (β' (p : Nat.Primes), -(1 - f βp).log)))
n p : β
hp : p β n.primesBelow
β’ 1 - f p β 0
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Logarithm.lean | EulerProduct.exp_sum_primes_log_eq_tsum | [96, 1] | [107, 77] | exact fun h β¦ (norm_one (Ξ± := β) βΈ h.symm βΈ hs (Nat.prime_of_mem_primesBelow hp).one_lt).false | f : β β*β β
hsum : Summable fun x => βf xβ
hs : β {p : β}, 1 < p β βf pβ < 1
H :
Tendsto (fun n => β p β n.primesBelow, cexp (-(1 - f p).log)) atTop (π (cexp (β' (p : Nat.Primes), -(1 - f βp).log)))
n p : β
hp : p β n.primesBelow
β’ 1 β f p | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
f : β β*β β
hsum : Summable fun x => βf xβ
hs : β {p : β}, 1 < p β βf pβ < 1
H :
Tendsto (fun n => β p β n.primesBelow, cexp (-(1 - f p).log)) atTop (π (cexp (β' (p : Nat.Primes), -(1 - f βp).log)))
n p : β
hp : p β n.primesBelow
β’ 1 β f p
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Asymptotics.isBigO_mul_iff_isBigO_div | [31, 1] | [39, 36] | rw [isBigO_iff', isBigO_iff'] | Ξ± : Type u_1
F : Type u_2
instβ : NormedField F
l : Filter Ξ±
f g h : Ξ± β F
hf : βαΆ (x : Ξ±) in l, f x β 0
β’ (fun x => f x * g x) =O[l] h β g =O[l] fun x => h x / f x | Ξ± : Type u_1
F : Type u_2
instβ : NormedField F
l : Filter Ξ±
f g h : Ξ± β F
hf : βαΆ (x : Ξ±) in l, f x β 0
β’ (β c > 0, βαΆ (x : Ξ±) in l, βf x * g xβ β€ c * βh xβ) β β c > 0, βαΆ (x : Ξ±) in l, βg xβ β€ c * βh x / f xβ | Please generate a tactic in lean4 to solve the state.
STATE:
Ξ± : Type u_1
F : Type u_2
instβ : NormedField F
l : Filter Ξ±
f g h : Ξ± β F
hf : βαΆ (x : Ξ±) in l, f x β 0
β’ (fun x => f x * g x) =O[l] h β g =O[l] fun x => h x / f x
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Asymptotics.isBigO_mul_iff_isBigO_div | [31, 1] | [39, 36] | refine β¨fun β¨c, hc, Hβ© β¦ β¨c, hc, ?_β©, fun β¨c, hc, Hβ© β¦ β¨c, hc, ?_β©β© <;>
{ refine H.congr <| Eventually.mp hf <| eventually_of_forall fun x hx β¦ ?_
rw [norm_mul, norm_div, β mul_div_assoc, mul_comm]
have hx' : βf xβ > 0 := norm_pos_iff.mpr hx
rw [le_div_iff hx', mul_comm] } | Ξ± : Type u_1
F : Type u_2
instβ : NormedField F
l : Filter Ξ±
f g h : Ξ± β F
hf : βαΆ (x : Ξ±) in l, f x β 0
β’ (β c > 0, βαΆ (x : Ξ±) in l, βf x * g xβ β€ c * βh xβ) β β c > 0, βαΆ (x : Ξ±) in l, βg xβ β€ c * βh x / f xβ | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
Ξ± : Type u_1
F : Type u_2
instβ : NormedField F
l : Filter Ξ±
f g h : Ξ± β F
hf : βαΆ (x : Ξ±) in l, f x β 0
β’ (β c > 0, βαΆ (x : Ξ±) in l, βf x * g xβ β€ c * βh xβ) β β c > 0, βαΆ (x : Ξ±) in l, βg xβ β€ c * βh x / f xβ
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Asymptotics.isBigO_mul_iff_isBigO_div | [31, 1] | [39, 36] | refine H.congr <| Eventually.mp hf <| eventually_of_forall fun x hx β¦ ?_ | case refine_2
Ξ± : Type u_1
F : Type u_2
instβ : NormedField F
l : Filter Ξ±
f g h : Ξ± β F
hf : βαΆ (x : Ξ±) in l, f x β 0
xβ : β c > 0, βαΆ (x : Ξ±) in l, βg xβ β€ c * βh x / f xβ
c : β
hc : c > 0
H : βαΆ (x : Ξ±) in l, βg xβ β€ c * βh x / f xβ
β’ βαΆ (x : Ξ±) in l, βf x * g xβ β€ c * βh xβ | case refine_2
Ξ± : Type u_1
F : Type u_2
instβ : NormedField F
l : Filter Ξ±
f g h : Ξ± β F
hf : βαΆ (x : Ξ±) in l, f x β 0
xβ : β c > 0, βαΆ (x : Ξ±) in l, βg xβ β€ c * βh x / f xβ
c : β
hc : c > 0
H : βαΆ (x : Ξ±) in l, βg xβ β€ c * βh x / f xβ
x : Ξ±
hx : f x β 0
β’ βg xβ β€ c * βh x / f xβ β βf x * g xβ β€ c * βh xβ | Please generate a tactic in lean4 to solve the state.
STATE:
case refine_2
Ξ± : Type u_1
F : Type u_2
instβ : NormedField F
l : Filter Ξ±
f g h : Ξ± β F
hf : βαΆ (x : Ξ±) in l, f x β 0
xβ : β c > 0, βαΆ (x : Ξ±) in l, βg xβ β€ c * βh x / f xβ
c : β
hc : c > 0
H : βαΆ (x : Ξ±) in l, βg xβ β€ c * βh x / f xβ
β’ βαΆ (x : Ξ±) in l, βf x * g xβ β€ c * βh xβ
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Asymptotics.isBigO_mul_iff_isBigO_div | [31, 1] | [39, 36] | rw [norm_mul, norm_div, β mul_div_assoc, mul_comm] | case refine_2
Ξ± : Type u_1
F : Type u_2
instβ : NormedField F
l : Filter Ξ±
f g h : Ξ± β F
hf : βαΆ (x : Ξ±) in l, f x β 0
xβ : β c > 0, βαΆ (x : Ξ±) in l, βg xβ β€ c * βh x / f xβ
c : β
hc : c > 0
H : βαΆ (x : Ξ±) in l, βg xβ β€ c * βh x / f xβ
x : Ξ±
hx : f x β 0
β’ βg xβ β€ c * βh x / f xβ β βf x * g xβ β€ c * βh xβ | case refine_2
Ξ± : Type u_1
F : Type u_2
instβ : NormedField F
l : Filter Ξ±
f g h : Ξ± β F
hf : βαΆ (x : Ξ±) in l, f x β 0
xβ : β c > 0, βαΆ (x : Ξ±) in l, βg xβ β€ c * βh x / f xβ
c : β
hc : c > 0
H : βαΆ (x : Ξ±) in l, βg xβ β€ c * βh x / f xβ
x : Ξ±
hx : f x β 0
β’ βg xβ β€ βh xβ * c / βf xβ β βf xβ * βg xβ β€ βh xβ * c | Please generate a tactic in lean4 to solve the state.
STATE:
case refine_2
Ξ± : Type u_1
F : Type u_2
instβ : NormedField F
l : Filter Ξ±
f g h : Ξ± β F
hf : βαΆ (x : Ξ±) in l, f x β 0
xβ : β c > 0, βαΆ (x : Ξ±) in l, βg xβ β€ c * βh x / f xβ
c : β
hc : c > 0
H : βαΆ (x : Ξ±) in l, βg xβ β€ c * βh x / f xβ
x : Ξ±
hx : f x β 0
β’ βg xβ β€ c * βh x / f xβ β βf x * g xβ β€ c * βh xβ
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Asymptotics.isBigO_mul_iff_isBigO_div | [31, 1] | [39, 36] | have hx' : βf xβ > 0 := norm_pos_iff.mpr hx | case refine_2
Ξ± : Type u_1
F : Type u_2
instβ : NormedField F
l : Filter Ξ±
f g h : Ξ± β F
hf : βαΆ (x : Ξ±) in l, f x β 0
xβ : β c > 0, βαΆ (x : Ξ±) in l, βg xβ β€ c * βh x / f xβ
c : β
hc : c > 0
H : βαΆ (x : Ξ±) in l, βg xβ β€ c * βh x / f xβ
x : Ξ±
hx : f x β 0
β’ βg xβ β€ βh xβ * c / βf xβ β βf xβ * βg xβ β€ βh xβ * c | case refine_2
Ξ± : Type u_1
F : Type u_2
instβ : NormedField F
l : Filter Ξ±
f g h : Ξ± β F
hf : βαΆ (x : Ξ±) in l, f x β 0
xβ : β c > 0, βαΆ (x : Ξ±) in l, βg xβ β€ c * βh x / f xβ
c : β
hc : c > 0
H : βαΆ (x : Ξ±) in l, βg xβ β€ c * βh x / f xβ
x : Ξ±
hx : f x β 0
hx' : βf xβ > 0
β’ βg xβ β€ βh xβ * c / βf xβ β βf xβ * βg xβ β€ βh xβ * c | Please generate a tactic in lean4 to solve the state.
STATE:
case refine_2
Ξ± : Type u_1
F : Type u_2
instβ : NormedField F
l : Filter Ξ±
f g h : Ξ± β F
hf : βαΆ (x : Ξ±) in l, f x β 0
xβ : β c > 0, βαΆ (x : Ξ±) in l, βg xβ β€ c * βh x / f xβ
c : β
hc : c > 0
H : βαΆ (x : Ξ±) in l, βg xβ β€ c * βh x / f xβ
x : Ξ±
hx : f x β 0
β’ βg xβ β€ βh xβ * c / βf xβ β βf xβ * βg xβ β€ βh xβ * c
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Asymptotics.isBigO_mul_iff_isBigO_div | [31, 1] | [39, 36] | rw [le_div_iff hx', mul_comm] | case refine_2
Ξ± : Type u_1
F : Type u_2
instβ : NormedField F
l : Filter Ξ±
f g h : Ξ± β F
hf : βαΆ (x : Ξ±) in l, f x β 0
xβ : β c > 0, βαΆ (x : Ξ±) in l, βg xβ β€ c * βh x / f xβ
c : β
hc : c > 0
H : βαΆ (x : Ξ±) in l, βg xβ β€ c * βh x / f xβ
x : Ξ±
hx : f x β 0
hx' : βf xβ > 0
β’ βg xβ β€ βh xβ * c / βf xβ β βf xβ * βg xβ β€ βh xβ * c | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case refine_2
Ξ± : Type u_1
F : Type u_2
instβ : NormedField F
l : Filter Ξ±
f g h : Ξ± β F
hf : βαΆ (x : Ξ±) in l, f x β 0
xβ : β c > 0, βαΆ (x : Ξ±) in l, βg xβ β€ c * βh x / f xβ
c : β
hc : c > 0
H : βαΆ (x : Ξ±) in l, βg xβ β€ c * βh x / f xβ
x : Ξ±
hx : f x β 0
hx' : βf xβ > 0
β’ βg xβ β€ βh xβ * c / βf xβ β βf xβ * βg xβ β€ βh xβ * c
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | DifferentiableAt.isBigO_of_eq_zero | [50, 1] | [54, 73] | rw [β zero_add z] at hf | f : β β β
z : β
hf : DifferentiableAt β f z
hz : f z = 0
β’ (fun w => f (w + z)) =O[π 0] id | f : β β β
z : β
hf : DifferentiableAt β f (0 + z)
hz : f z = 0
β’ (fun w => f (w + z)) =O[π 0] id | Please generate a tactic in lean4 to solve the state.
STATE:
f : β β β
z : β
hf : DifferentiableAt β f z
hz : f z = 0
β’ (fun w => f (w + z)) =O[π 0] id
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | DifferentiableAt.isBigO_of_eq_zero | [50, 1] | [54, 73] | simpa only [zero_add, hz, sub_zero]
using (hf.hasDerivAt.comp_add_const 0 z).differentiableAt.isBigO_sub | f : β β β
z : β
hf : DifferentiableAt β f (0 + z)
hz : f z = 0
β’ (fun w => f (w + z)) =O[π 0] id | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
f : β β β
z : β
hf : DifferentiableAt β f (0 + z)
hz : f z = 0
β’ (fun w => f (w + z)) =O[π 0] id
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | ContinuousAt.isBigO | [56, 1] | [70, 46] | rw [isBigO_iff'] | f : β β β
z : β
hf : ContinuousAt f z
β’ (fun w => f (w + z)) =O[π 0] fun x => 1 | f : β β β
z : β
hf : ContinuousAt f z
β’ β c > 0, βαΆ (x : β) in π 0, βf (x + z)β β€ c * β1β | Please generate a tactic in lean4 to solve the state.
STATE:
f : β β β
z : β
hf : ContinuousAt f z
β’ (fun w => f (w + z)) =O[π 0] fun x => 1
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | ContinuousAt.isBigO | [56, 1] | [70, 46] | simp_rw [Metric.continuousAt_iff', dist_eq_norm_sub, zero_add] at hf | f : β β β
z : β
hf : ContinuousAt (fun w => f (w + z)) 0
β’ β c > 0, βαΆ (x : β) in π 0, βf (x + z)β β€ c * β1β | f : β β β
z : β
hf : β Ξ΅ > 0, βαΆ (x : β) in π 0, βf (x + z) - f zβ < Ξ΅
β’ β c > 0, βαΆ (x : β) in π 0, βf (x + z)β β€ c * β1β | Please generate a tactic in lean4 to solve the state.
STATE:
f : β β β
z : β
hf : ContinuousAt (fun w => f (w + z)) 0
β’ β c > 0, βαΆ (x : β) in π 0, βf (x + z)β β€ c * β1β
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | ContinuousAt.isBigO | [56, 1] | [70, 46] | specialize hf 1 zero_lt_one | f : β β β
z : β
hf : β Ξ΅ > 0, βαΆ (x : β) in π 0, βf (x + z) - f zβ < Ξ΅
β’ β c > 0, βαΆ (x : β) in π 0, βf (x + z)β β€ c * β1β | f : β β β
z : β
hf : βαΆ (x : β) in π 0, βf (x + z) - f zβ < 1
β’ β c > 0, βαΆ (x : β) in π 0, βf (x + z)β β€ c * β1β | Please generate a tactic in lean4 to solve the state.
STATE:
f : β β β
z : β
hf : β Ξ΅ > 0, βαΆ (x : β) in π 0, βf (x + z) - f zβ < Ξ΅
β’ β c > 0, βαΆ (x : β) in π 0, βf (x + z)β β€ c * β1β
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | ContinuousAt.isBigO | [56, 1] | [70, 46] | refine β¨βf zβ + 1, by positivity, ?_β© | f : β β β
z : β
hf : βαΆ (x : β) in π 0, βf (x + z) - f zβ < 1
β’ β c > 0, βαΆ (x : β) in π 0, βf (x + z)β β€ c * β1β | f : β β β
z : β
hf : βαΆ (x : β) in π 0, βf (x + z) - f zβ < 1
β’ βαΆ (x : β) in π 0, βf (x + z)β β€ (βf zβ + 1) * β1β | Please generate a tactic in lean4 to solve the state.
STATE:
f : β β β
z : β
hf : βαΆ (x : β) in π 0, βf (x + z) - f zβ < 1
β’ β c > 0, βαΆ (x : β) in π 0, βf (x + z)β β€ c * β1β
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | ContinuousAt.isBigO | [56, 1] | [70, 46] | refine Eventually.mp hf <| eventually_of_forall fun w hw β¦ le_of_lt ?_ | f : β β β
z : β
hf : βαΆ (x : β) in π 0, βf (x + z) - f zβ < 1
β’ βαΆ (x : β) in π 0, βf (x + z)β β€ (βf zβ + 1) * β1β | f : β β β
z : β
hf : βαΆ (x : β) in π 0, βf (x + z) - f zβ < 1
w : β
hw : βf (w + z) - f zβ < 1
β’ βf (w + z)β < (βf zβ + 1) * β1β | Please generate a tactic in lean4 to solve the state.
STATE:
f : β β β
z : β
hf : βαΆ (x : β) in π 0, βf (x + z) - f zβ < 1
β’ βαΆ (x : β) in π 0, βf (x + z)β β€ (βf zβ + 1) * β1β
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | ContinuousAt.isBigO | [56, 1] | [70, 46] | calc βf (w + z)β
_ β€ βf zβ + βf (w + z) - f zβ := norm_le_insert' ..
_ < βf zβ + 1 := add_lt_add_left hw _
_ = _ := by simp only [norm_one, mul_one] | f : β β β
z : β
hf : βαΆ (x : β) in π 0, βf (x + z) - f zβ < 1
w : β
hw : βf (w + z) - f zβ < 1
β’ βf (w + z)β < (βf zβ + 1) * β1β | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
f : β β β
z : β
hf : βαΆ (x : β) in π 0, βf (x + z) - f zβ < 1
w : β
hw : βf (w + z) - f zβ < 1
β’ βf (w + z)β < (βf zβ + 1) * β1β
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | ContinuousAt.isBigO | [56, 1] | [70, 46] | convert (Homeomorph.comp_continuousAt_iff' (Homeomorph.addLeft (-z)) _ z).mp ?_ | f : β β β
z : β
hf : ContinuousAt f z
β’ ContinuousAt (fun w => f (w + z)) 0 | case h.e'_1
f : β β β
z : β
hf : ContinuousAt f z
β’ 0 = (Homeomorph.addLeft (-z)) z
case convert_4
f : β β β
z : β
hf : ContinuousAt f z
β’ ContinuousAt ((fun w => f (w + z)) β β(Homeomorph.addLeft (-z))) z | Please generate a tactic in lean4 to solve the state.
STATE:
f : β β β
z : β
hf : ContinuousAt f z
β’ ContinuousAt (fun w => f (w + z)) 0
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | ContinuousAt.isBigO | [56, 1] | [70, 46] | simp | case h.e'_1
f : β β β
z : β
hf : ContinuousAt f z
β’ 0 = (Homeomorph.addLeft (-z)) z | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case h.e'_1
f : β β β
z : β
hf : ContinuousAt f z
β’ 0 = (Homeomorph.addLeft (-z)) z
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | ContinuousAt.isBigO | [56, 1] | [70, 46] | simp [Function.comp_def, hf] | case convert_4
f : β β β
z : β
hf : ContinuousAt f z
β’ ContinuousAt ((fun w => f (w + z)) β β(Homeomorph.addLeft (-z))) z | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case convert_4
f : β β β
z : β
hf : ContinuousAt f z
β’ ContinuousAt ((fun w => f (w + z)) β β(Homeomorph.addLeft (-z))) z
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | ContinuousAt.isBigO | [56, 1] | [70, 46] | positivity | f : β β β
z : β
hf : βαΆ (x : β) in π 0, βf (x + z) - f zβ < 1
β’ βf zβ + 1 > 0 | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
f : β β β
z : β
hf : βαΆ (x : β) in π 0, βf (x + z) - f zβ < 1
β’ βf zβ + 1 > 0
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | ContinuousAt.isBigO | [56, 1] | [70, 46] | simp only [norm_one, mul_one] | f : β β β
z : β
hf : βαΆ (x : β) in π 0, βf (x + z) - f zβ < 1
w : β
hw : βf (w + z) - f zβ < 1
β’ βf zβ + 1 = (βf zβ + 1) * β1β | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
f : β β β
z : β
hf : βαΆ (x : β) in π 0, βf (x + z) - f zβ < 1
w : β
hw : βf (w + z) - f zβ < 1
β’ βf zβ + 1 = (βf zβ + 1) * β1β
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | HasDerivAt.of_hasDerivAt_ofReal_comp | [125, 1] | [134, 80] | lift u to β | z : β
f : β β β
u : β
hf : HasDerivAt (fun y => β(f y)) u z
β’ β u', u = βu' β§ HasDerivAt f u' z | z : β
f : β β β
u : β
hf : HasDerivAt (fun y => β(f y)) u z
β’ u.im = 0
case intro
z : β
f : β β β
u : β
hf : HasDerivAt (fun y => β(f y)) (βu) z
β’ β u', βu = βu' β§ HasDerivAt f u' z | Please generate a tactic in lean4 to solve the state.
STATE:
z : β
f : β β β
u : β
hf : HasDerivAt (fun y => β(f y)) u z
β’ β u', u = βu' β§ HasDerivAt f u' z
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | HasDerivAt.of_hasDerivAt_ofReal_comp | [125, 1] | [134, 80] | refine β¨u, rfl, ?_β© | case intro
z : β
f : β β β
u : β
hf : HasDerivAt (fun y => β(f y)) (βu) z
β’ β u', βu = βu' β§ HasDerivAt f u' z | case intro
z : β
f : β β β
u : β
hf : HasDerivAt (fun y => β(f y)) (βu) z
β’ HasDerivAt f u z | Please generate a tactic in lean4 to solve the state.
STATE:
case intro
z : β
f : β β β
u : β
hf : HasDerivAt (fun y => β(f y)) (βu) z
β’ β u', βu = βu' β§ HasDerivAt f u' z
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | HasDerivAt.of_hasDerivAt_ofReal_comp | [125, 1] | [134, 80] | convert (reCLM.hasFDerivAt.comp z hf.hasFDerivAt).hasDerivAt | case intro
z : β
f : β β β
u : β
hf : HasDerivAt (fun y => β(f y)) (βu) z
β’ HasDerivAt f u z | case h.e'_7
z : β
f : β β β
u : β
hf : HasDerivAt (fun y => β(f y)) (βu) z
β’ u = (reCLM.comp (smulRight 1 βu)) 1 | Please generate a tactic in lean4 to solve the state.
STATE:
case intro
z : β
f : β β β
u : β
hf : HasDerivAt (fun y => β(f y)) (βu) z
β’ HasDerivAt f u z
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | HasDerivAt.of_hasDerivAt_ofReal_comp | [125, 1] | [134, 80] | rw [comp_apply, smulRight_apply, one_apply, one_smul, reCLM_apply, ofReal_re] | case h.e'_7
z : β
f : β β β
u : β
hf : HasDerivAt (fun y => β(f y)) (βu) z
β’ u = (reCLM.comp (smulRight 1 βu)) 1 | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case h.e'_7
z : β
f : β β β
u : β
hf : HasDerivAt (fun y => β(f y)) (βu) z
β’ u = (reCLM.comp (smulRight 1 βu)) 1
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | HasDerivAt.of_hasDerivAt_ofReal_comp | [125, 1] | [134, 80] | have H := (imCLM.hasFDerivAt.comp z hf.hasFDerivAt).hasDerivAt.deriv | z : β
f : β β β
u : β
hf : HasDerivAt (fun y => β(f y)) u z
β’ u.im = 0 | z : β
f : β β β
u : β
hf : HasDerivAt (fun y => β(f y)) u z
H : _root_.deriv (βimCLM β fun y => β(f y)) z = (imCLM.comp (smulRight 1 u)) 1
β’ u.im = 0 | Please generate a tactic in lean4 to solve the state.
STATE:
z : β
f : β β β
u : β
hf : HasDerivAt (fun y => β(f y)) u z
β’ u.im = 0
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | HasDerivAt.of_hasDerivAt_ofReal_comp | [125, 1] | [134, 80] | simp only [Function.comp_def, imCLM_apply, ofReal_im, deriv_const] at H | z : β
f : β β β
u : β
hf : HasDerivAt (fun y => β(f y)) u z
H : _root_.deriv (βimCLM β fun y => β(f y)) z = (imCLM.comp (smulRight 1 u)) 1
β’ u.im = 0 | z : β
f : β β β
u : β
hf : HasDerivAt (fun y => β(f y)) u z
H : 0 = (imCLM.comp (smulRight 1 u)) 1
β’ u.im = 0 | Please generate a tactic in lean4 to solve the state.
STATE:
z : β
f : β β β
u : β
hf : HasDerivAt (fun y => β(f y)) u z
H : _root_.deriv (βimCLM β fun y => β(f y)) z = (imCLM.comp (smulRight 1 u)) 1
β’ u.im = 0
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | HasDerivAt.of_hasDerivAt_ofReal_comp | [125, 1] | [134, 80] | rwa [eq_comm, comp_apply, imCLM_apply, smulRight_apply, one_apply, one_smul] at H | z : β
f : β β β
u : β
hf : HasDerivAt (fun y => β(f y)) u z
H : 0 = (imCLM.comp (smulRight 1 u)) 1
β’ u.im = 0 | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
z : β
f : β β β
u : β
hf : HasDerivAt (fun y => β(f y)) u z
H : 0 = (imCLM.comp (smulRight 1 u)) 1
β’ u.im = 0
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | DifferentiableAt.ofReal_comp_iff | [136, 1] | [140, 40] | refine β¨fun H β¦ ?_, ofReal_compβ© | z : β
f : β β β
β’ DifferentiableAt β (fun y => β(f y)) z β DifferentiableAt β f z | z : β
f : β β β
H : DifferentiableAt β (fun y => β(f y)) z
β’ DifferentiableAt β f z | Please generate a tactic in lean4 to solve the state.
STATE:
z : β
f : β β β
β’ DifferentiableAt β (fun y => β(f y)) z β DifferentiableAt β f z
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | DifferentiableAt.ofReal_comp_iff | [136, 1] | [140, 40] | obtain β¨u, _, huββ© := H.hasDerivAt.of_hasDerivAt_ofReal_comp | z : β
f : β β β
H : DifferentiableAt β (fun y => β(f y)) z
β’ DifferentiableAt β f z | case intro.intro
z : β
f : β β β
H : DifferentiableAt β (fun y => β(f y)) z
u : β
leftβ : deriv (fun y => β(f y)) z = βu
huβ : HasDerivAt (fun y => f y) u z
β’ DifferentiableAt β f z | Please generate a tactic in lean4 to solve the state.
STATE:
z : β
f : β β β
H : DifferentiableAt β (fun y => β(f y)) z
β’ DifferentiableAt β f z
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | DifferentiableAt.ofReal_comp_iff | [136, 1] | [140, 40] | exact HasDerivAt.differentiableAt huβ | case intro.intro
z : β
f : β β β
H : DifferentiableAt β (fun y => β(f y)) z
u : β
leftβ : deriv (fun y => β(f y)) z = βu
huβ : HasDerivAt (fun y => f y) u z
β’ DifferentiableAt β f z | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro
z : β
f : β β β
H : DifferentiableAt β (fun y => β(f y)) z
u : β
leftβ : deriv (fun y => β(f y)) z = βu
huβ : HasDerivAt (fun y => f y) u z
β’ DifferentiableAt β f z
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | deriv.ofReal_comp | [146, 1] | [152, 27] | by_cases hf : DifferentiableAt β f z | z : β
f : β β β
β’ deriv (fun y => β(f y)) z = β(deriv f z) | case pos
z : β
f : β β β
hf : DifferentiableAt β f z
β’ deriv (fun y => β(f y)) z = β(deriv f z)
case neg
z : β
f : β β β
hf : Β¬DifferentiableAt β f z
β’ deriv (fun y => β(f y)) z = β(deriv f z) | Please generate a tactic in lean4 to solve the state.
STATE:
z : β
f : β β β
β’ deriv (fun y => β(f y)) z = β(deriv f z)
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | deriv.ofReal_comp | [146, 1] | [152, 27] | exact hf.hasDerivAt.ofReal_comp.deriv | case pos
z : β
f : β β β
hf : DifferentiableAt β f z
β’ deriv (fun y => β(f y)) z = β(deriv f z) | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case pos
z : β
f : β β β
hf : DifferentiableAt β f z
β’ deriv (fun y => β(f y)) z = β(deriv f z)
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | deriv.ofReal_comp | [146, 1] | [152, 27] | have hf' := mt DifferentiableAt.ofReal_comp_iff.mp hf | case neg
z : β
f : β β β
hf : Β¬DifferentiableAt β f z
β’ deriv (fun y => β(f y)) z = β(deriv f z) | case neg
z : β
f : β β β
hf : Β¬DifferentiableAt β f z
hf' : Β¬DifferentiableAt β (fun y => β(f y)) z
β’ deriv (fun y => β(f y)) z = β(deriv f z) | Please generate a tactic in lean4 to solve the state.
STATE:
case neg
z : β
f : β β β
hf : Β¬DifferentiableAt β f z
β’ deriv (fun y => β(f y)) z = β(deriv f z)
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | deriv.ofReal_comp | [146, 1] | [152, 27] | rw [deriv_zero_of_not_differentiableAt hf, deriv_zero_of_not_differentiableAt hf',
Complex.ofReal_zero] | case neg
z : β
f : β β β
hf : Β¬DifferentiableAt β f z
hf' : Β¬DifferentiableAt β (fun y => β(f y)) z
β’ deriv (fun y => β(f y)) z = β(deriv f z) | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case neg
z : β
f : β β β
hf : Β¬DifferentiableAt β f z
hf' : Β¬DifferentiableAt β (fun y => β(f y)) z
β’ deriv (fun y => β(f y)) z = β(deriv f z)
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.realValued_of_iteratedDeriv_real_on_ball | [159, 1] | [183, 8] | have Hz : β x β Set.Ioo (c - r) (c + r), (x : β) β Metric.ball (c : β) r := by
intro x hx
refine Metric.mem_ball.mpr ?_
rw [dist_eq, β ofReal_sub, abs_ofReal, abs_sub_lt_iff, sub_lt_iff_lt_add', sub_lt_comm]
exact and_comm.mpr hx | f : β β β
r c : β
hf : DifferentiableOn β f (Metric.ball (βc) r)
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
β’ β F, DifferentiableOn β F (Set.Ioo (c - r) (c + r)) β§ Set.EqOn (f β ofReal') (ofReal' β F) (Set.Ioo (c - r) (c + r)) | f : β β β
r c : β
hf : DifferentiableOn β f (Metric.ball (βc) r)
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
Hz : β x β Set.Ioo (c - r) (c + r), βx β Metric.ball (βc) r
β’ β F, DifferentiableOn β F (Set.Ioo (c - r) (c + r)) β§ Set.EqOn (f β ofReal') (ofReal' β F) (Set.Ioo (c - r) (c + r)) | Please generate a tactic in lean4 to solve the state.
STATE:
f : β β β
r c : β
hf : DifferentiableOn β f (Metric.ball (βc) r)
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
β’ β F, DifferentiableOn β F (Set.Ioo (c - r) (c + r)) β§ Set.EqOn (f β ofReal') (ofReal' β F) (Set.Ioo (c - r) (c + r))
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.realValued_of_iteratedDeriv_real_on_ball | [159, 1] | [183, 8] | have H β¦z : ββ¦ (hz : z β Metric.ball (c : β) r) := taylorSeries_eq_on_ball' hz hf | f : β β β
r c : β
hf : DifferentiableOn β f (Metric.ball (βc) r)
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
Hz : β x β Set.Ioo (c - r) (c + r), βx β Metric.ball (βc) r
β’ β F, DifferentiableOn β F (Set.Ioo (c - r) (c + r)) β§ Set.EqOn (f β ofReal') (ofReal' β F) (Set.Ioo (c - r) (c + r)) | f : β β β
r c : β
hf : DifferentiableOn β f (Metric.ball (βc) r)
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
Hz : β x β Set.Ioo (c - r) (c + r), βx β Metric.ball (βc) r
H : β β¦z : ββ¦, z β Metric.ball (βc) r β β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f βc * (z - βc) ^ n = f z
β’ β F, DifferentiableOn β F (Set.Ioo (c - r) (c + r)) β§ Set.EqOn (f β ofReal') (ofReal' β F) (Set.Ioo (c - r) (c + r)) | Please generate a tactic in lean4 to solve the state.
STATE:
f : β β β
r c : β
hf : DifferentiableOn β f (Metric.ball (βc) r)
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
Hz : β x β Set.Ioo (c - r) (c + r), βx β Metric.ball (βc) r
β’ β F, DifferentiableOn β F (Set.Ioo (c - r) (c + r)) β§ Set.EqOn (f β ofReal') (ofReal' β F) (Set.Ioo (c - r) (c + r))
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.realValued_of_iteratedDeriv_real_on_ball | [159, 1] | [183, 8] | refine β¨fun x β¦ β' (n : β), (βn !)β»ΒΉ * (D n) * (x - c) ^ n, fun x hx β¦ ?_, fun x hx β¦ ?_β© | f : β β β
r c : β
hf : DifferentiableOn β f (Metric.ball (βc) r)
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
Hz : β x β Set.Ioo (c - r) (c + r), βx β Metric.ball (βc) r
H : β β¦z : ββ¦, z β Metric.ball (βc) r β β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f βc * (z - βc) ^ n = f z
β’ β F, DifferentiableOn β F (Set.Ioo (c - r) (c + r)) β§ Set.EqOn (f β ofReal') (ofReal' β F) (Set.Ioo (c - r) (c + r)) | case refine_1
f : β β β
r c : β
hf : DifferentiableOn β f (Metric.ball (βc) r)
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
Hz : β x β Set.Ioo (c - r) (c + r), βx β Metric.ball (βc) r
H : β β¦z : ββ¦, z β Metric.ball (βc) r β β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f βc * (z - βc) ^ n = f z
x : β
hx : x β Set.Ioo (c - r) (c + r)
β’ DifferentiableWithinAt β (fun x => β' (n : β), (βn !)β»ΒΉ * D n * (x - c) ^ n) (Set.Ioo (c - r) (c + r)) x
case refine_2
f : β β β
r c : β
hf : DifferentiableOn β f (Metric.ball (βc) r)
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
Hz : β x β Set.Ioo (c - r) (c + r), βx β Metric.ball (βc) r
H : β β¦z : ββ¦, z β Metric.ball (βc) r β β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f βc * (z - βc) ^ n = f z
x : β
hx : x β Set.Ioo (c - r) (c + r)
β’ (f β ofReal') x = (ofReal' β fun x => β' (n : β), (βn !)β»ΒΉ * D n * (x - c) ^ n) x | Please generate a tactic in lean4 to solve the state.
STATE:
f : β β β
r c : β
hf : DifferentiableOn β f (Metric.ball (βc) r)
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
Hz : β x β Set.Ioo (c - r) (c + r), βx β Metric.ball (βc) r
H : β β¦z : ββ¦, z β Metric.ball (βc) r β β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f βc * (z - βc) ^ n = f z
β’ β F, DifferentiableOn β F (Set.Ioo (c - r) (c + r)) β§ Set.EqOn (f β ofReal') (ofReal' β F) (Set.Ioo (c - r) (c + r))
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.realValued_of_iteratedDeriv_real_on_ball | [159, 1] | [183, 8] | intro x hx | f : β β β
r c : β
hf : DifferentiableOn β f (Metric.ball (βc) r)
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
β’ β x β Set.Ioo (c - r) (c + r), βx β Metric.ball (βc) r | f : β β β
r c : β
hf : DifferentiableOn β f (Metric.ball (βc) r)
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
x : β
hx : x β Set.Ioo (c - r) (c + r)
β’ βx β Metric.ball (βc) r | Please generate a tactic in lean4 to solve the state.
STATE:
f : β β β
r c : β
hf : DifferentiableOn β f (Metric.ball (βc) r)
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
β’ β x β Set.Ioo (c - r) (c + r), βx β Metric.ball (βc) r
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.realValued_of_iteratedDeriv_real_on_ball | [159, 1] | [183, 8] | refine Metric.mem_ball.mpr ?_ | f : β β β
r c : β
hf : DifferentiableOn β f (Metric.ball (βc) r)
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
x : β
hx : x β Set.Ioo (c - r) (c + r)
β’ βx β Metric.ball (βc) r | f : β β β
r c : β
hf : DifferentiableOn β f (Metric.ball (βc) r)
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
x : β
hx : x β Set.Ioo (c - r) (c + r)
β’ dist βx βc < r | Please generate a tactic in lean4 to solve the state.
STATE:
f : β β β
r c : β
hf : DifferentiableOn β f (Metric.ball (βc) r)
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
x : β
hx : x β Set.Ioo (c - r) (c + r)
β’ βx β Metric.ball (βc) r
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.realValued_of_iteratedDeriv_real_on_ball | [159, 1] | [183, 8] | rw [dist_eq, β ofReal_sub, abs_ofReal, abs_sub_lt_iff, sub_lt_iff_lt_add', sub_lt_comm] | f : β β β
r c : β
hf : DifferentiableOn β f (Metric.ball (βc) r)
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
x : β
hx : x β Set.Ioo (c - r) (c + r)
β’ dist βx βc < r | f : β β β
r c : β
hf : DifferentiableOn β f (Metric.ball (βc) r)
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
x : β
hx : x β Set.Ioo (c - r) (c + r)
β’ x < c + r β§ c - r < x | Please generate a tactic in lean4 to solve the state.
STATE:
f : β β β
r c : β
hf : DifferentiableOn β f (Metric.ball (βc) r)
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
x : β
hx : x β Set.Ioo (c - r) (c + r)
β’ dist βx βc < r
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.realValued_of_iteratedDeriv_real_on_ball | [159, 1] | [183, 8] | exact and_comm.mpr hx | f : β β β
r c : β
hf : DifferentiableOn β f (Metric.ball (βc) r)
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
x : β
hx : x β Set.Ioo (c - r) (c + r)
β’ x < c + r β§ c - r < x | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
f : β β β
r c : β
hf : DifferentiableOn β f (Metric.ball (βc) r)
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
x : β
hx : x β Set.Ioo (c - r) (c + r)
β’ x < c + r β§ c - r < x
TACTIC:
|
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.