url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
input
stringlengths
73
2.09M
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_4
[1152, 1]
[1183, 9]
simp only [isFreeIn]
case h1.h1.h4 P : Formula u v : VarName ⊢ ¬isFreeIn u (forall_ u P.not_).not_
case h1.h1.h4 P : Formula u v : VarName ⊢ ¬(¬True ∧ isFreeIn u P)
Please generate a tactic in lean4 to solve the state. STATE: case h1.h1.h4 P : Formula u v : VarName ⊢ ¬isFreeIn u (forall_ u P.not_).not_ TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_4
[1152, 1]
[1183, 9]
simp
case h1.h1.h4 P : Formula u v : VarName ⊢ ¬(¬True ∧ isFreeIn u P)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h1.h1.h4 P : Formula u v : VarName ⊢ ¬(¬True ∧ isFreeIn u P) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_4
[1152, 1]
[1183, 9]
simp
case h1.h2 P : Formula u v : VarName ⊢ ∀ H ∈ {exists_ u (forall_ v P)}, ¬isFreeIn v H
case h1.h2 P : Formula u v : VarName ⊢ ¬isFreeIn v (exists_ u (forall_ v P))
Please generate a tactic in lean4 to solve the state. STATE: case h1.h2 P : Formula u v : VarName ⊢ ∀ H ∈ {exists_ u (forall_ v P)}, ¬isFreeIn v H TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_4
[1152, 1]
[1183, 9]
simp only [def_exists_]
case h1.h2 P : Formula u v : VarName ⊢ ¬isFreeIn v (exists_ u (forall_ v P))
case h1.h2 P : Formula u v : VarName ⊢ ¬isFreeIn v (forall_ u (forall_ v P).not_).not_
Please generate a tactic in lean4 to solve the state. STATE: case h1.h2 P : Formula u v : VarName ⊢ ¬isFreeIn v (exists_ u (forall_ v P)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_4
[1152, 1]
[1183, 9]
simp only [isFreeIn]
case h1.h2 P : Formula u v : VarName ⊢ ¬isFreeIn v (forall_ u (forall_ v P).not_).not_
case h1.h2 P : Formula u v : VarName ⊢ ¬(¬v = u ∧ ¬True ∧ isFreeIn v P)
Please generate a tactic in lean4 to solve the state. STATE: case h1.h2 P : Formula u v : VarName ⊢ ¬isFreeIn v (forall_ u (forall_ v P).not_).not_ TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_4
[1152, 1]
[1183, 9]
simp
case h1.h2 P : Formula u v : VarName ⊢ ¬(¬v = u ∧ ¬True ∧ isFreeIn v P)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h1.h2 P : Formula u v : VarName ⊢ ¬(¬v = u ∧ ¬True ∧ isFreeIn v P) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_5
[1186, 1]
[1200, 24]
apply IsDeduct.mp_ ((forall_ v P).iff_ P)
P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ IsProof ((forall_ v (P.iff_ Q)).imp_ (P.iff_ (forall_ v Q)))
case a P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ IsDeduct ∅ (((forall_ v P).iff_ P).imp_ ((forall_ v (P.iff_ Q)).imp_ (P.iff_ (forall_ v Q)))) case a P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ IsDeduct ∅ ((forall_ v P).iff_ P)
Please generate a tactic in lean4 to solve the state. STATE: P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ IsProof ((forall_ v (P.iff_ Q)).imp_ (P.iff_ (forall_ v Q))) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_5
[1186, 1]
[1200, 24]
apply IsDeduct.mp_ ((forall_ v (P.iff_ Q)).imp_ ((forall_ v P).iff_ (forall_ v Q)))
case a P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ IsDeduct ∅ (((forall_ v P).iff_ P).imp_ ((forall_ v (P.iff_ Q)).imp_ (P.iff_ (forall_ v Q))))
case a.a P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ IsDeduct ∅ (((forall_ v (P.iff_ Q)).imp_ ((forall_ v P).iff_ (forall_ v Q))).imp_ (((forall_ v P).iff_ P).imp_ ((forall_ v (P.iff_ Q)).imp_ (P.iff_ (forall_ v Q))))) case a.a P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ IsDeduct ∅ ((forall_ v (P.iff_ Q)).imp_ ((forall_ v P).iff_ (forall_ v Q)))
Please generate a tactic in lean4 to solve the state. STATE: case a P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ IsDeduct ∅ (((forall_ v P).iff_ P).imp_ ((forall_ v (P.iff_ Q)).imp_ (P.iff_ (forall_ v Q)))) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_5
[1186, 1]
[1200, 24]
simp only [def_iff_]
case a.a P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ IsDeduct ∅ (((forall_ v (P.iff_ Q)).imp_ ((forall_ v P).iff_ (forall_ v Q))).imp_ (((forall_ v P).iff_ P).imp_ ((forall_ v (P.iff_ Q)).imp_ (P.iff_ (forall_ v Q)))))
case a.a P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ IsDeduct ∅ (((forall_ v ((P.imp_ Q).and_ (Q.imp_ P))).imp_ (((forall_ v P).imp_ (forall_ v Q)).and_ ((forall_ v Q).imp_ (forall_ v P)))).imp_ ((((forall_ v P).imp_ P).and_ (P.imp_ (forall_ v P))).imp_ ((forall_ v ((P.imp_ Q).and_ (Q.imp_ P))).imp_ ((P.imp_ (forall_ v Q)).and_ ((forall_ v Q).imp_ P)))))
Please generate a tactic in lean4 to solve the state. STATE: case a.a P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ IsDeduct ∅ (((forall_ v (P.iff_ Q)).imp_ ((forall_ v P).iff_ (forall_ v Q))).imp_ (((forall_ v P).iff_ P).imp_ ((forall_ v (P.iff_ Q)).imp_ (P.iff_ (forall_ v Q))))) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_5
[1186, 1]
[1200, 24]
simp only [def_and_]
case a.a P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ IsDeduct ∅ (((forall_ v ((P.imp_ Q).and_ (Q.imp_ P))).imp_ (((forall_ v P).imp_ (forall_ v Q)).and_ ((forall_ v Q).imp_ (forall_ v P)))).imp_ ((((forall_ v P).imp_ P).and_ (P.imp_ (forall_ v P))).imp_ ((forall_ v ((P.imp_ Q).and_ (Q.imp_ P))).imp_ ((P.imp_ (forall_ v Q)).and_ ((forall_ v Q).imp_ P)))))
case a.a P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ IsDeduct ∅ (((forall_ v ((P.imp_ Q).imp_ (Q.imp_ P).not_).not_).imp_ (((forall_ v P).imp_ (forall_ v Q)).imp_ ((forall_ v Q).imp_ (forall_ v P)).not_).not_).imp_ ((((forall_ v P).imp_ P).imp_ (P.imp_ (forall_ v P)).not_).not_.imp_ ((forall_ v ((P.imp_ Q).imp_ (Q.imp_ P).not_).not_).imp_ ((P.imp_ (forall_ v Q)).imp_ ((forall_ v Q).imp_ P).not_).not_)))
Please generate a tactic in lean4 to solve the state. STATE: case a.a P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ IsDeduct ∅ (((forall_ v ((P.imp_ Q).and_ (Q.imp_ P))).imp_ (((forall_ v P).imp_ (forall_ v Q)).and_ ((forall_ v Q).imp_ (forall_ v P)))).imp_ ((((forall_ v P).imp_ P).and_ (P.imp_ (forall_ v P))).imp_ ((forall_ v ((P.imp_ Q).and_ (Q.imp_ P))).imp_ ((P.imp_ (forall_ v Q)).and_ ((forall_ v Q).imp_ P))))) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_5
[1186, 1]
[1200, 24]
SC
case a.a P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ IsDeduct ∅ (((forall_ v ((P.imp_ Q).imp_ (Q.imp_ P).not_).not_).imp_ (((forall_ v P).imp_ (forall_ v Q)).imp_ ((forall_ v Q).imp_ (forall_ v P)).not_).not_).imp_ ((((forall_ v P).imp_ P).imp_ (P.imp_ (forall_ v P)).not_).not_.imp_ ((forall_ v ((P.imp_ Q).imp_ (Q.imp_ P).not_).not_).imp_ ((P.imp_ (forall_ v Q)).imp_ ((forall_ v Q).imp_ P).not_).not_)))
no goals
Please generate a tactic in lean4 to solve the state. STATE: case a.a P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ IsDeduct ∅ (((forall_ v ((P.imp_ Q).imp_ (Q.imp_ P).not_).not_).imp_ (((forall_ v P).imp_ (forall_ v Q)).imp_ ((forall_ v Q).imp_ (forall_ v P)).not_).not_).imp_ ((((forall_ v P).imp_ P).imp_ (P.imp_ (forall_ v P)).not_).not_.imp_ ((forall_ v ((P.imp_ Q).imp_ (Q.imp_ P).not_).not_).imp_ ((P.imp_ (forall_ v Q)).imp_ ((forall_ v Q).imp_ P).not_).not_))) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_5
[1186, 1]
[1200, 24]
exact T_18_1 P Q v
case a.a P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ IsDeduct ∅ ((forall_ v (P.iff_ Q)).imp_ ((forall_ v P).iff_ (forall_ v Q)))
no goals
Please generate a tactic in lean4 to solve the state. STATE: case a.a P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ IsDeduct ∅ ((forall_ v (P.iff_ Q)).imp_ ((forall_ v P).iff_ (forall_ v Q))) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_5
[1186, 1]
[1200, 24]
exact T_19_1 P v h1
case a P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ IsDeduct ∅ ((forall_ v P).iff_ P)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case a P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ IsDeduct ∅ ((forall_ v P).iff_ P) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_6_left
[1203, 1]
[1237, 9]
apply deduction_theorem
P Q : Formula v : VarName ⊢ IsProof ((forall_ v (P.iff_ Q)).imp_ ((exists_ v P).imp_ (exists_ v Q)))
case h1 P Q : Formula v : VarName ⊢ IsDeduct (∅ ∪ {forall_ v (P.iff_ Q)}) ((exists_ v P).imp_ (exists_ v Q))
Please generate a tactic in lean4 to solve the state. STATE: P Q : Formula v : VarName ⊢ IsProof ((forall_ v (P.iff_ Q)).imp_ ((exists_ v P).imp_ (exists_ v Q))) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_6_left
[1203, 1]
[1237, 9]
apply deduction_theorem
case h1 P Q : Formula v : VarName ⊢ IsDeduct (∅ ∪ {forall_ v (P.iff_ Q)}) ((exists_ v P).imp_ (exists_ v Q))
case h1.h1 P Q : Formula v : VarName ⊢ IsDeduct (∅ ∪ {forall_ v (P.iff_ Q)} ∪ {exists_ v P}) (exists_ v Q)
Please generate a tactic in lean4 to solve the state. STATE: case h1 P Q : Formula v : VarName ⊢ IsDeduct (∅ ∪ {forall_ v (P.iff_ Q)}) ((exists_ v P).imp_ (exists_ v Q)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_6_left
[1203, 1]
[1237, 9]
simp
case h1.h1 P Q : Formula v : VarName ⊢ IsDeduct (∅ ∪ {forall_ v (P.iff_ Q)} ∪ {exists_ v P}) (exists_ v Q)
case h1.h1 P Q : Formula v : VarName ⊢ IsDeduct {exists_ v P, forall_ v (P.iff_ Q)} (exists_ v Q)
Please generate a tactic in lean4 to solve the state. STATE: case h1.h1 P Q : Formula v : VarName ⊢ IsDeduct (∅ ∪ {forall_ v (P.iff_ Q)} ∪ {exists_ v P}) (exists_ v Q) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_6_left
[1203, 1]
[1237, 9]
apply rule_C P (exists_ v Q) v {exists_ v P, forall_ v (P.iff_ Q)}
case h1.h1 P Q : Formula v : VarName ⊢ IsDeduct {exists_ v P, forall_ v (P.iff_ Q)} (exists_ v Q)
case h1.h1.h1 P Q : Formula v : VarName ⊢ IsDeduct {exists_ v P, forall_ v (P.iff_ Q)} (exists_ v P) case h1.h1.h2 P Q : Formula v : VarName ⊢ IsDeduct ({exists_ v P, forall_ v (P.iff_ Q)} ∪ {P}) (exists_ v Q) case h1.h1.h3 P Q : Formula v : VarName ⊢ ∀ H ∈ {exists_ v P, forall_ v (P.iff_ Q)}, ¬isFreeIn v H case h1.h1.h4 P Q : Formula v : VarName ⊢ ¬isFreeIn v (exists_ v Q)
Please generate a tactic in lean4 to solve the state. STATE: case h1.h1 P Q : Formula v : VarName ⊢ IsDeduct {exists_ v P, forall_ v (P.iff_ Q)} (exists_ v Q) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_6_left
[1203, 1]
[1237, 9]
apply IsDeduct.assume_
case h1.h1.h1 P Q : Formula v : VarName ⊢ IsDeduct {exists_ v P, forall_ v (P.iff_ Q)} (exists_ v P)
case h1.h1.h1.a P Q : Formula v : VarName ⊢ exists_ v P ∈ {exists_ v P, forall_ v (P.iff_ Q)}
Please generate a tactic in lean4 to solve the state. STATE: case h1.h1.h1 P Q : Formula v : VarName ⊢ IsDeduct {exists_ v P, forall_ v (P.iff_ Q)} (exists_ v P) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_6_left
[1203, 1]
[1237, 9]
simp
case h1.h1.h1.a P Q : Formula v : VarName ⊢ exists_ v P ∈ {exists_ v P, forall_ v (P.iff_ Q)}
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h1.h1.h1.a P Q : Formula v : VarName ⊢ exists_ v P ∈ {exists_ v P, forall_ v (P.iff_ Q)} TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_6_left
[1203, 1]
[1237, 9]
apply exists_intro Q v v
case h1.h1.h2 P Q : Formula v : VarName ⊢ IsDeduct ({exists_ v P, forall_ v (P.iff_ Q)} ∪ {P}) (exists_ v Q)
case h1.h1.h2.h1 P Q : Formula v : VarName ⊢ fastAdmits v v Q case h1.h1.h2.h2 P Q : Formula v : VarName ⊢ IsDeduct ({exists_ v P, forall_ v (P.iff_ Q)} ∪ {P}) (fastReplaceFree v v Q)
Please generate a tactic in lean4 to solve the state. STATE: case h1.h1.h2 P Q : Formula v : VarName ⊢ IsDeduct ({exists_ v P, forall_ v (P.iff_ Q)} ∪ {P}) (exists_ v Q) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_6_left
[1203, 1]
[1237, 9]
apply fastAdmits_self
case h1.h1.h2.h1 P Q : Formula v : VarName ⊢ fastAdmits v v Q
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h1.h1.h2.h1 P Q : Formula v : VarName ⊢ fastAdmits v v Q TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_6_left
[1203, 1]
[1237, 9]
simp only [fastReplaceFree_self]
case h1.h1.h2.h2 P Q : Formula v : VarName ⊢ IsDeduct ({exists_ v P, forall_ v (P.iff_ Q)} ∪ {P}) (fastReplaceFree v v Q)
case h1.h1.h2.h2 P Q : Formula v : VarName ⊢ IsDeduct ({exists_ v P, forall_ v (P.iff_ Q)} ∪ {P}) Q
Please generate a tactic in lean4 to solve the state. STATE: case h1.h1.h2.h2 P Q : Formula v : VarName ⊢ IsDeduct ({exists_ v P, forall_ v (P.iff_ Q)} ∪ {P}) (fastReplaceFree v v Q) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_6_left
[1203, 1]
[1237, 9]
apply IsDeduct.mp_ P
case h1.h1.h2.h2 P Q : Formula v : VarName ⊢ IsDeduct ({exists_ v P, forall_ v (P.iff_ Q)} ∪ {P}) Q
case h1.h1.h2.h2.a P Q : Formula v : VarName ⊢ IsDeduct ({exists_ v P, forall_ v (P.iff_ Q)} ∪ {P}) (P.imp_ Q) case h1.h1.h2.h2.a P Q : Formula v : VarName ⊢ IsDeduct ({exists_ v P, forall_ v (P.iff_ Q)} ∪ {P}) P
Please generate a tactic in lean4 to solve the state. STATE: case h1.h1.h2.h2 P Q : Formula v : VarName ⊢ IsDeduct ({exists_ v P, forall_ v (P.iff_ Q)} ∪ {P}) Q TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_6_left
[1203, 1]
[1237, 9]
apply IsDeduct.mp_ (P.iff_ Q)
case h1.h1.h2.h2.a P Q : Formula v : VarName ⊢ IsDeduct ({exists_ v P, forall_ v (P.iff_ Q)} ∪ {P}) (P.imp_ Q)
case h1.h1.h2.h2.a.a P Q : Formula v : VarName ⊢ IsDeduct ({exists_ v P, forall_ v (P.iff_ Q)} ∪ {P}) ((P.iff_ Q).imp_ (P.imp_ Q)) case h1.h1.h2.h2.a.a P Q : Formula v : VarName ⊢ IsDeduct ({exists_ v P, forall_ v (P.iff_ Q)} ∪ {P}) (P.iff_ Q)
Please generate a tactic in lean4 to solve the state. STATE: case h1.h1.h2.h2.a P Q : Formula v : VarName ⊢ IsDeduct ({exists_ v P, forall_ v (P.iff_ Q)} ∪ {P}) (P.imp_ Q) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_6_left
[1203, 1]
[1237, 9]
simp only [def_iff_]
case h1.h1.h2.h2.a.a P Q : Formula v : VarName ⊢ IsDeduct ({exists_ v P, forall_ v (P.iff_ Q)} ∪ {P}) ((P.iff_ Q).imp_ (P.imp_ Q))
case h1.h1.h2.h2.a.a P Q : Formula v : VarName ⊢ IsDeduct ({exists_ v P, forall_ v ((P.imp_ Q).and_ (Q.imp_ P))} ∪ {P}) (((P.imp_ Q).and_ (Q.imp_ P)).imp_ (P.imp_ Q))
Please generate a tactic in lean4 to solve the state. STATE: case h1.h1.h2.h2.a.a P Q : Formula v : VarName ⊢ IsDeduct ({exists_ v P, forall_ v (P.iff_ Q)} ∪ {P}) ((P.iff_ Q).imp_ (P.imp_ Q)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_6_left
[1203, 1]
[1237, 9]
simp only [def_and_]
case h1.h1.h2.h2.a.a P Q : Formula v : VarName ⊢ IsDeduct ({exists_ v P, forall_ v ((P.imp_ Q).and_ (Q.imp_ P))} ∪ {P}) (((P.imp_ Q).and_ (Q.imp_ P)).imp_ (P.imp_ Q))
case h1.h1.h2.h2.a.a P Q : Formula v : VarName ⊢ IsDeduct ({exists_ v P, forall_ v ((P.imp_ Q).imp_ (Q.imp_ P).not_).not_} ∪ {P}) (((P.imp_ Q).imp_ (Q.imp_ P).not_).not_.imp_ (P.imp_ Q))
Please generate a tactic in lean4 to solve the state. STATE: case h1.h1.h2.h2.a.a P Q : Formula v : VarName ⊢ IsDeduct ({exists_ v P, forall_ v ((P.imp_ Q).and_ (Q.imp_ P))} ∪ {P}) (((P.imp_ Q).and_ (Q.imp_ P)).imp_ (P.imp_ Q)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_6_left
[1203, 1]
[1237, 9]
SC
case h1.h1.h2.h2.a.a P Q : Formula v : VarName ⊢ IsDeduct ({exists_ v P, forall_ v ((P.imp_ Q).imp_ (Q.imp_ P).not_).not_} ∪ {P}) (((P.imp_ Q).imp_ (Q.imp_ P).not_).not_.imp_ (P.imp_ Q))
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h1.h1.h2.h2.a.a P Q : Formula v : VarName ⊢ IsDeduct ({exists_ v P, forall_ v ((P.imp_ Q).imp_ (Q.imp_ P).not_).not_} ∪ {P}) (((P.imp_ Q).imp_ (Q.imp_ P).not_).not_.imp_ (P.imp_ Q)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_6_left
[1203, 1]
[1237, 9]
apply specId v
case h1.h1.h2.h2.a.a P Q : Formula v : VarName ⊢ IsDeduct ({exists_ v P, forall_ v (P.iff_ Q)} ∪ {P}) (P.iff_ Q)
case h1.h1.h2.h2.a.a.h1 P Q : Formula v : VarName ⊢ IsDeduct ({exists_ v P, forall_ v (P.iff_ Q)} ∪ {P}) (forall_ v (P.iff_ Q))
Please generate a tactic in lean4 to solve the state. STATE: case h1.h1.h2.h2.a.a P Q : Formula v : VarName ⊢ IsDeduct ({exists_ v P, forall_ v (P.iff_ Q)} ∪ {P}) (P.iff_ Q) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_6_left
[1203, 1]
[1237, 9]
apply IsDeduct.assume_
case h1.h1.h2.h2.a.a.h1 P Q : Formula v : VarName ⊢ IsDeduct ({exists_ v P, forall_ v (P.iff_ Q)} ∪ {P}) (forall_ v (P.iff_ Q))
case h1.h1.h2.h2.a.a.h1.a P Q : Formula v : VarName ⊢ forall_ v (P.iff_ Q) ∈ {exists_ v P, forall_ v (P.iff_ Q)} ∪ {P}
Please generate a tactic in lean4 to solve the state. STATE: case h1.h1.h2.h2.a.a.h1 P Q : Formula v : VarName ⊢ IsDeduct ({exists_ v P, forall_ v (P.iff_ Q)} ∪ {P}) (forall_ v (P.iff_ Q)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_6_left
[1203, 1]
[1237, 9]
simp
case h1.h1.h2.h2.a.a.h1.a P Q : Formula v : VarName ⊢ forall_ v (P.iff_ Q) ∈ {exists_ v P, forall_ v (P.iff_ Q)} ∪ {P}
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h1.h1.h2.h2.a.a.h1.a P Q : Formula v : VarName ⊢ forall_ v (P.iff_ Q) ∈ {exists_ v P, forall_ v (P.iff_ Q)} ∪ {P} TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_6_left
[1203, 1]
[1237, 9]
apply IsDeduct.assume_
case h1.h1.h2.h2.a P Q : Formula v : VarName ⊢ IsDeduct ({exists_ v P, forall_ v (P.iff_ Q)} ∪ {P}) P
case h1.h1.h2.h2.a.a P Q : Formula v : VarName ⊢ P ∈ {exists_ v P, forall_ v (P.iff_ Q)} ∪ {P}
Please generate a tactic in lean4 to solve the state. STATE: case h1.h1.h2.h2.a P Q : Formula v : VarName ⊢ IsDeduct ({exists_ v P, forall_ v (P.iff_ Q)} ∪ {P}) P TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_6_left
[1203, 1]
[1237, 9]
simp
case h1.h1.h2.h2.a.a P Q : Formula v : VarName ⊢ P ∈ {exists_ v P, forall_ v (P.iff_ Q)} ∪ {P}
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h1.h1.h2.h2.a.a P Q : Formula v : VarName ⊢ P ∈ {exists_ v P, forall_ v (P.iff_ Q)} ∪ {P} TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_6_left
[1203, 1]
[1237, 9]
simp only [def_exists_]
case h1.h1.h3 P Q : Formula v : VarName ⊢ ∀ H ∈ {exists_ v P, forall_ v (P.iff_ Q)}, ¬isFreeIn v H
case h1.h1.h3 P Q : Formula v : VarName ⊢ ∀ H ∈ {(forall_ v P.not_).not_, forall_ v (P.iff_ Q)}, ¬isFreeIn v H
Please generate a tactic in lean4 to solve the state. STATE: case h1.h1.h3 P Q : Formula v : VarName ⊢ ∀ H ∈ {exists_ v P, forall_ v (P.iff_ Q)}, ¬isFreeIn v H TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_6_left
[1203, 1]
[1237, 9]
simp
case h1.h1.h3 P Q : Formula v : VarName ⊢ ∀ H ∈ {(forall_ v P.not_).not_, forall_ v (P.iff_ Q)}, ¬isFreeIn v H
case h1.h1.h3 P Q : Formula v : VarName ⊢ ¬isFreeIn v (forall_ v P.not_).not_ ∧ ¬isFreeIn v (forall_ v (P.iff_ Q))
Please generate a tactic in lean4 to solve the state. STATE: case h1.h1.h3 P Q : Formula v : VarName ⊢ ∀ H ∈ {(forall_ v P.not_).not_, forall_ v (P.iff_ Q)}, ¬isFreeIn v H TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_6_left
[1203, 1]
[1237, 9]
simp only [isFreeIn]
case h1.h1.h3 P Q : Formula v : VarName ⊢ ¬isFreeIn v (forall_ v P.not_).not_ ∧ ¬isFreeIn v (forall_ v (P.iff_ Q))
case h1.h1.h3 P Q : Formula v : VarName ⊢ ¬(¬True ∧ isFreeIn v P) ∧ ¬(¬True ∧ (isFreeIn v P ∨ isFreeIn v Q))
Please generate a tactic in lean4 to solve the state. STATE: case h1.h1.h3 P Q : Formula v : VarName ⊢ ¬isFreeIn v (forall_ v P.not_).not_ ∧ ¬isFreeIn v (forall_ v (P.iff_ Q)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_6_left
[1203, 1]
[1237, 9]
simp
case h1.h1.h3 P Q : Formula v : VarName ⊢ ¬(¬True ∧ isFreeIn v P) ∧ ¬(¬True ∧ (isFreeIn v P ∨ isFreeIn v Q))
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h1.h1.h3 P Q : Formula v : VarName ⊢ ¬(¬True ∧ isFreeIn v P) ∧ ¬(¬True ∧ (isFreeIn v P ∨ isFreeIn v Q)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_6_left
[1203, 1]
[1237, 9]
simp only [def_exists_]
case h1.h1.h4 P Q : Formula v : VarName ⊢ ¬isFreeIn v (exists_ v Q)
case h1.h1.h4 P Q : Formula v : VarName ⊢ ¬isFreeIn v (forall_ v Q.not_).not_
Please generate a tactic in lean4 to solve the state. STATE: case h1.h1.h4 P Q : Formula v : VarName ⊢ ¬isFreeIn v (exists_ v Q) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_6_left
[1203, 1]
[1237, 9]
simp only [isFreeIn]
case h1.h1.h4 P Q : Formula v : VarName ⊢ ¬isFreeIn v (forall_ v Q.not_).not_
case h1.h1.h4 P Q : Formula v : VarName ⊢ ¬(¬True ∧ isFreeIn v Q)
Please generate a tactic in lean4 to solve the state. STATE: case h1.h1.h4 P Q : Formula v : VarName ⊢ ¬isFreeIn v (forall_ v Q.not_).not_ TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_6_left
[1203, 1]
[1237, 9]
simp
case h1.h1.h4 P Q : Formula v : VarName ⊢ ¬(¬True ∧ isFreeIn v Q)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h1.h1.h4 P Q : Formula v : VarName ⊢ ¬(¬True ∧ isFreeIn v Q) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_6_right
[1240, 1]
[1262, 11]
apply deduction_theorem
P Q : Formula v : VarName ⊢ IsProof ((forall_ v (P.iff_ Q)).imp_ ((exists_ v Q).imp_ (exists_ v P)))
case h1 P Q : Formula v : VarName ⊢ IsDeduct (∅ ∪ {forall_ v (P.iff_ Q)}) ((exists_ v Q).imp_ (exists_ v P))
Please generate a tactic in lean4 to solve the state. STATE: P Q : Formula v : VarName ⊢ IsProof ((forall_ v (P.iff_ Q)).imp_ ((exists_ v Q).imp_ (exists_ v P))) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_6_right
[1240, 1]
[1262, 11]
simp
case h1 P Q : Formula v : VarName ⊢ IsDeduct (∅ ∪ {forall_ v (P.iff_ Q)}) ((exists_ v Q).imp_ (exists_ v P))
case h1 P Q : Formula v : VarName ⊢ IsDeduct {forall_ v (P.iff_ Q)} ((exists_ v Q).imp_ (exists_ v P))
Please generate a tactic in lean4 to solve the state. STATE: case h1 P Q : Formula v : VarName ⊢ IsDeduct (∅ ∪ {forall_ v (P.iff_ Q)}) ((exists_ v Q).imp_ (exists_ v P)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_6_right
[1240, 1]
[1262, 11]
apply IsDeduct.mp_ (forall_ v (Q.iff_ P))
case h1 P Q : Formula v : VarName ⊢ IsDeduct {forall_ v (P.iff_ Q)} ((exists_ v Q).imp_ (exists_ v P))
case h1.a P Q : Formula v : VarName ⊢ IsDeduct {forall_ v (P.iff_ Q)} ((forall_ v (Q.iff_ P)).imp_ ((exists_ v Q).imp_ (exists_ v P))) case h1.a P Q : Formula v : VarName ⊢ IsDeduct {forall_ v (P.iff_ Q)} (forall_ v (Q.iff_ P))
Please generate a tactic in lean4 to solve the state. STATE: case h1 P Q : Formula v : VarName ⊢ IsDeduct {forall_ v (P.iff_ Q)} ((exists_ v Q).imp_ (exists_ v P)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_6_right
[1240, 1]
[1262, 11]
apply proof_imp_deduct
case h1.a P Q : Formula v : VarName ⊢ IsDeduct {forall_ v (P.iff_ Q)} ((forall_ v (Q.iff_ P)).imp_ ((exists_ v Q).imp_ (exists_ v P)))
case h1.a.h1 P Q : Formula v : VarName ⊢ IsProof ((forall_ v (Q.iff_ P)).imp_ ((exists_ v Q).imp_ (exists_ v P)))
Please generate a tactic in lean4 to solve the state. STATE: case h1.a P Q : Formula v : VarName ⊢ IsDeduct {forall_ v (P.iff_ Q)} ((forall_ v (Q.iff_ P)).imp_ ((exists_ v Q).imp_ (exists_ v P))) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_6_right
[1240, 1]
[1262, 11]
apply T_19_6_left Q P v
case h1.a.h1 P Q : Formula v : VarName ⊢ IsProof ((forall_ v (Q.iff_ P)).imp_ ((exists_ v Q).imp_ (exists_ v P)))
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h1.a.h1 P Q : Formula v : VarName ⊢ IsProof ((forall_ v (Q.iff_ P)).imp_ ((exists_ v Q).imp_ (exists_ v P))) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_6_right
[1240, 1]
[1262, 11]
apply generalization
case h1.a P Q : Formula v : VarName ⊢ IsDeduct {forall_ v (P.iff_ Q)} (forall_ v (Q.iff_ P))
case h1.a.h1 P Q : Formula v : VarName ⊢ IsDeduct {forall_ v (P.iff_ Q)} (Q.iff_ P) case h1.a.h2 P Q : Formula v : VarName ⊢ ∀ H ∈ {forall_ v (P.iff_ Q)}, ¬isFreeIn v H
Please generate a tactic in lean4 to solve the state. STATE: case h1.a P Q : Formula v : VarName ⊢ IsDeduct {forall_ v (P.iff_ Q)} (forall_ v (Q.iff_ P)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_6_right
[1240, 1]
[1262, 11]
apply IsDeduct.mp_ (P.iff_ Q)
case h1.a.h1 P Q : Formula v : VarName ⊢ IsDeduct {forall_ v (P.iff_ Q)} (Q.iff_ P)
case h1.a.h1.a P Q : Formula v : VarName ⊢ IsDeduct {forall_ v (P.iff_ Q)} ((P.iff_ Q).imp_ (Q.iff_ P)) case h1.a.h1.a P Q : Formula v : VarName ⊢ IsDeduct {forall_ v (P.iff_ Q)} (P.iff_ Q)
Please generate a tactic in lean4 to solve the state. STATE: case h1.a.h1 P Q : Formula v : VarName ⊢ IsDeduct {forall_ v (P.iff_ Q)} (Q.iff_ P) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_6_right
[1240, 1]
[1262, 11]
simp only [def_iff_]
case h1.a.h1.a P Q : Formula v : VarName ⊢ IsDeduct {forall_ v (P.iff_ Q)} ((P.iff_ Q).imp_ (Q.iff_ P))
case h1.a.h1.a P Q : Formula v : VarName ⊢ IsDeduct {forall_ v ((P.imp_ Q).and_ (Q.imp_ P))} (((P.imp_ Q).and_ (Q.imp_ P)).imp_ ((Q.imp_ P).and_ (P.imp_ Q)))
Please generate a tactic in lean4 to solve the state. STATE: case h1.a.h1.a P Q : Formula v : VarName ⊢ IsDeduct {forall_ v (P.iff_ Q)} ((P.iff_ Q).imp_ (Q.iff_ P)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_6_right
[1240, 1]
[1262, 11]
simp only [def_and_]
case h1.a.h1.a P Q : Formula v : VarName ⊢ IsDeduct {forall_ v ((P.imp_ Q).and_ (Q.imp_ P))} (((P.imp_ Q).and_ (Q.imp_ P)).imp_ ((Q.imp_ P).and_ (P.imp_ Q)))
case h1.a.h1.a P Q : Formula v : VarName ⊢ IsDeduct {forall_ v ((P.imp_ Q).imp_ (Q.imp_ P).not_).not_} (((P.imp_ Q).imp_ (Q.imp_ P).not_).not_.imp_ ((Q.imp_ P).imp_ (P.imp_ Q).not_).not_)
Please generate a tactic in lean4 to solve the state. STATE: case h1.a.h1.a P Q : Formula v : VarName ⊢ IsDeduct {forall_ v ((P.imp_ Q).and_ (Q.imp_ P))} (((P.imp_ Q).and_ (Q.imp_ P)).imp_ ((Q.imp_ P).and_ (P.imp_ Q))) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_6_right
[1240, 1]
[1262, 11]
SC
case h1.a.h1.a P Q : Formula v : VarName ⊢ IsDeduct {forall_ v ((P.imp_ Q).imp_ (Q.imp_ P).not_).not_} (((P.imp_ Q).imp_ (Q.imp_ P).not_).not_.imp_ ((Q.imp_ P).imp_ (P.imp_ Q).not_).not_)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h1.a.h1.a P Q : Formula v : VarName ⊢ IsDeduct {forall_ v ((P.imp_ Q).imp_ (Q.imp_ P).not_).not_} (((P.imp_ Q).imp_ (Q.imp_ P).not_).not_.imp_ ((Q.imp_ P).imp_ (P.imp_ Q).not_).not_) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_6_right
[1240, 1]
[1262, 11]
apply specId v
case h1.a.h1.a P Q : Formula v : VarName ⊢ IsDeduct {forall_ v (P.iff_ Q)} (P.iff_ Q)
case h1.a.h1.a.h1 P Q : Formula v : VarName ⊢ IsDeduct {forall_ v (P.iff_ Q)} (forall_ v (P.iff_ Q))
Please generate a tactic in lean4 to solve the state. STATE: case h1.a.h1.a P Q : Formula v : VarName ⊢ IsDeduct {forall_ v (P.iff_ Q)} (P.iff_ Q) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_6_right
[1240, 1]
[1262, 11]
apply IsDeduct.assume_
case h1.a.h1.a.h1 P Q : Formula v : VarName ⊢ IsDeduct {forall_ v (P.iff_ Q)} (forall_ v (P.iff_ Q))
case h1.a.h1.a.h1.a P Q : Formula v : VarName ⊢ forall_ v (P.iff_ Q) ∈ {forall_ v (P.iff_ Q)}
Please generate a tactic in lean4 to solve the state. STATE: case h1.a.h1.a.h1 P Q : Formula v : VarName ⊢ IsDeduct {forall_ v (P.iff_ Q)} (forall_ v (P.iff_ Q)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_6_right
[1240, 1]
[1262, 11]
simp
case h1.a.h1.a.h1.a P Q : Formula v : VarName ⊢ forall_ v (P.iff_ Q) ∈ {forall_ v (P.iff_ Q)}
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h1.a.h1.a.h1.a P Q : Formula v : VarName ⊢ forall_ v (P.iff_ Q) ∈ {forall_ v (P.iff_ Q)} TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_6_right
[1240, 1]
[1262, 11]
simp
case h1.a.h2 P Q : Formula v : VarName ⊢ ∀ H ∈ {forall_ v (P.iff_ Q)}, ¬isFreeIn v H
case h1.a.h2 P Q : Formula v : VarName ⊢ ¬isFreeIn v (forall_ v (P.iff_ Q))
Please generate a tactic in lean4 to solve the state. STATE: case h1.a.h2 P Q : Formula v : VarName ⊢ ∀ H ∈ {forall_ v (P.iff_ Q)}, ¬isFreeIn v H TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_6_right
[1240, 1]
[1262, 11]
simp only [isFreeIn]
case h1.a.h2 P Q : Formula v : VarName ⊢ ¬isFreeIn v (forall_ v (P.iff_ Q))
case h1.a.h2 P Q : Formula v : VarName ⊢ ¬(¬True ∧ (isFreeIn v P ∨ isFreeIn v Q))
Please generate a tactic in lean4 to solve the state. STATE: case h1.a.h2 P Q : Formula v : VarName ⊢ ¬isFreeIn v (forall_ v (P.iff_ Q)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_6_right
[1240, 1]
[1262, 11]
simp
case h1.a.h2 P Q : Formula v : VarName ⊢ ¬(¬True ∧ (isFreeIn v P ∨ isFreeIn v Q))
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h1.a.h2 P Q : Formula v : VarName ⊢ ¬(¬True ∧ (isFreeIn v P ∨ isFreeIn v Q)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_6
[1265, 1]
[1280, 22]
apply IsDeduct.mp_ ((forall_ v (P.iff_ Q)).imp_ ((exists_ v P).imp_ (exists_ v Q)))
P Q : Formula v : VarName ⊢ IsProof ((forall_ v (P.iff_ Q)).imp_ ((exists_ v P).iff_ (exists_ v Q)))
case a P Q : Formula v : VarName ⊢ IsDeduct ∅ (((forall_ v (P.iff_ Q)).imp_ ((exists_ v P).imp_ (exists_ v Q))).imp_ ((forall_ v (P.iff_ Q)).imp_ ((exists_ v P).iff_ (exists_ v Q)))) case a P Q : Formula v : VarName ⊢ IsDeduct ∅ ((forall_ v (P.iff_ Q)).imp_ ((exists_ v P).imp_ (exists_ v Q)))
Please generate a tactic in lean4 to solve the state. STATE: P Q : Formula v : VarName ⊢ IsProof ((forall_ v (P.iff_ Q)).imp_ ((exists_ v P).iff_ (exists_ v Q))) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_6
[1265, 1]
[1280, 22]
apply IsDeduct.mp_ ((forall_ v (P.iff_ Q)).imp_ ((exists_ v Q).imp_ (exists_ v P)))
case a P Q : Formula v : VarName ⊢ IsDeduct ∅ (((forall_ v (P.iff_ Q)).imp_ ((exists_ v P).imp_ (exists_ v Q))).imp_ ((forall_ v (P.iff_ Q)).imp_ ((exists_ v P).iff_ (exists_ v Q))))
case a.a P Q : Formula v : VarName ⊢ IsDeduct ∅ (((forall_ v (P.iff_ Q)).imp_ ((exists_ v Q).imp_ (exists_ v P))).imp_ (((forall_ v (P.iff_ Q)).imp_ ((exists_ v P).imp_ (exists_ v Q))).imp_ ((forall_ v (P.iff_ Q)).imp_ ((exists_ v P).iff_ (exists_ v Q))))) case a.a P Q : Formula v : VarName ⊢ IsDeduct ∅ ((forall_ v (P.iff_ Q)).imp_ ((exists_ v Q).imp_ (exists_ v P)))
Please generate a tactic in lean4 to solve the state. STATE: case a P Q : Formula v : VarName ⊢ IsDeduct ∅ (((forall_ v (P.iff_ Q)).imp_ ((exists_ v P).imp_ (exists_ v Q))).imp_ ((forall_ v (P.iff_ Q)).imp_ ((exists_ v P).iff_ (exists_ v Q)))) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_6
[1265, 1]
[1280, 22]
simp only [def_exists_]
case a.a P Q : Formula v : VarName ⊢ IsDeduct ∅ (((forall_ v (P.iff_ Q)).imp_ ((exists_ v Q).imp_ (exists_ v P))).imp_ (((forall_ v (P.iff_ Q)).imp_ ((exists_ v P).imp_ (exists_ v Q))).imp_ ((forall_ v (P.iff_ Q)).imp_ ((exists_ v P).iff_ (exists_ v Q)))))
case a.a P Q : Formula v : VarName ⊢ IsDeduct ∅ (((forall_ v (P.iff_ Q)).imp_ ((forall_ v Q.not_).not_.imp_ (forall_ v P.not_).not_)).imp_ (((forall_ v (P.iff_ Q)).imp_ ((forall_ v P.not_).not_.imp_ (forall_ v Q.not_).not_)).imp_ ((forall_ v (P.iff_ Q)).imp_ ((forall_ v P.not_).not_.iff_ (forall_ v Q.not_).not_))))
Please generate a tactic in lean4 to solve the state. STATE: case a.a P Q : Formula v : VarName ⊢ IsDeduct ∅ (((forall_ v (P.iff_ Q)).imp_ ((exists_ v Q).imp_ (exists_ v P))).imp_ (((forall_ v (P.iff_ Q)).imp_ ((exists_ v P).imp_ (exists_ v Q))).imp_ ((forall_ v (P.iff_ Q)).imp_ ((exists_ v P).iff_ (exists_ v Q))))) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_6
[1265, 1]
[1280, 22]
simp only [def_iff_]
case a.a P Q : Formula v : VarName ⊢ IsDeduct ∅ (((forall_ v (P.iff_ Q)).imp_ ((forall_ v Q.not_).not_.imp_ (forall_ v P.not_).not_)).imp_ (((forall_ v (P.iff_ Q)).imp_ ((forall_ v P.not_).not_.imp_ (forall_ v Q.not_).not_)).imp_ ((forall_ v (P.iff_ Q)).imp_ ((forall_ v P.not_).not_.iff_ (forall_ v Q.not_).not_))))
case a.a P Q : Formula v : VarName ⊢ IsDeduct ∅ (((forall_ v ((P.imp_ Q).and_ (Q.imp_ P))).imp_ ((forall_ v Q.not_).not_.imp_ (forall_ v P.not_).not_)).imp_ (((forall_ v ((P.imp_ Q).and_ (Q.imp_ P))).imp_ ((forall_ v P.not_).not_.imp_ (forall_ v Q.not_).not_)).imp_ ((forall_ v ((P.imp_ Q).and_ (Q.imp_ P))).imp_ (((forall_ v P.not_).not_.imp_ (forall_ v Q.not_).not_).and_ ((forall_ v Q.not_).not_.imp_ (forall_ v P.not_).not_)))))
Please generate a tactic in lean4 to solve the state. STATE: case a.a P Q : Formula v : VarName ⊢ IsDeduct ∅ (((forall_ v (P.iff_ Q)).imp_ ((forall_ v Q.not_).not_.imp_ (forall_ v P.not_).not_)).imp_ (((forall_ v (P.iff_ Q)).imp_ ((forall_ v P.not_).not_.imp_ (forall_ v Q.not_).not_)).imp_ ((forall_ v (P.iff_ Q)).imp_ ((forall_ v P.not_).not_.iff_ (forall_ v Q.not_).not_)))) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_6
[1265, 1]
[1280, 22]
simp only [def_and_]
case a.a P Q : Formula v : VarName ⊢ IsDeduct ∅ (((forall_ v ((P.imp_ Q).and_ (Q.imp_ P))).imp_ ((forall_ v Q.not_).not_.imp_ (forall_ v P.not_).not_)).imp_ (((forall_ v ((P.imp_ Q).and_ (Q.imp_ P))).imp_ ((forall_ v P.not_).not_.imp_ (forall_ v Q.not_).not_)).imp_ ((forall_ v ((P.imp_ Q).and_ (Q.imp_ P))).imp_ (((forall_ v P.not_).not_.imp_ (forall_ v Q.not_).not_).and_ ((forall_ v Q.not_).not_.imp_ (forall_ v P.not_).not_)))))
case a.a P Q : Formula v : VarName ⊢ IsDeduct ∅ (((forall_ v ((P.imp_ Q).imp_ (Q.imp_ P).not_).not_).imp_ ((forall_ v Q.not_).not_.imp_ (forall_ v P.not_).not_)).imp_ (((forall_ v ((P.imp_ Q).imp_ (Q.imp_ P).not_).not_).imp_ ((forall_ v P.not_).not_.imp_ (forall_ v Q.not_).not_)).imp_ ((forall_ v ((P.imp_ Q).imp_ (Q.imp_ P).not_).not_).imp_ (((forall_ v P.not_).not_.imp_ (forall_ v Q.not_).not_).imp_ ((forall_ v Q.not_).not_.imp_ (forall_ v P.not_).not_).not_).not_)))
Please generate a tactic in lean4 to solve the state. STATE: case a.a P Q : Formula v : VarName ⊢ IsDeduct ∅ (((forall_ v ((P.imp_ Q).and_ (Q.imp_ P))).imp_ ((forall_ v Q.not_).not_.imp_ (forall_ v P.not_).not_)).imp_ (((forall_ v ((P.imp_ Q).and_ (Q.imp_ P))).imp_ ((forall_ v P.not_).not_.imp_ (forall_ v Q.not_).not_)).imp_ ((forall_ v ((P.imp_ Q).and_ (Q.imp_ P))).imp_ (((forall_ v P.not_).not_.imp_ (forall_ v Q.not_).not_).and_ ((forall_ v Q.not_).not_.imp_ (forall_ v P.not_).not_))))) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_6
[1265, 1]
[1280, 22]
SC
case a.a P Q : Formula v : VarName ⊢ IsDeduct ∅ (((forall_ v ((P.imp_ Q).imp_ (Q.imp_ P).not_).not_).imp_ ((forall_ v Q.not_).not_.imp_ (forall_ v P.not_).not_)).imp_ (((forall_ v ((P.imp_ Q).imp_ (Q.imp_ P).not_).not_).imp_ ((forall_ v P.not_).not_.imp_ (forall_ v Q.not_).not_)).imp_ ((forall_ v ((P.imp_ Q).imp_ (Q.imp_ P).not_).not_).imp_ (((forall_ v P.not_).not_.imp_ (forall_ v Q.not_).not_).imp_ ((forall_ v Q.not_).not_.imp_ (forall_ v P.not_).not_).not_).not_)))
no goals
Please generate a tactic in lean4 to solve the state. STATE: case a.a P Q : Formula v : VarName ⊢ IsDeduct ∅ (((forall_ v ((P.imp_ Q).imp_ (Q.imp_ P).not_).not_).imp_ ((forall_ v Q.not_).not_.imp_ (forall_ v P.not_).not_)).imp_ (((forall_ v ((P.imp_ Q).imp_ (Q.imp_ P).not_).not_).imp_ ((forall_ v P.not_).not_.imp_ (forall_ v Q.not_).not_)).imp_ ((forall_ v ((P.imp_ Q).imp_ (Q.imp_ P).not_).not_).imp_ (((forall_ v P.not_).not_.imp_ (forall_ v Q.not_).not_).imp_ ((forall_ v Q.not_).not_.imp_ (forall_ v P.not_).not_).not_).not_))) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_6
[1265, 1]
[1280, 22]
apply T_19_6_right
case a.a P Q : Formula v : VarName ⊢ IsDeduct ∅ ((forall_ v (P.iff_ Q)).imp_ ((exists_ v Q).imp_ (exists_ v P)))
no goals
Please generate a tactic in lean4 to solve the state. STATE: case a.a P Q : Formula v : VarName ⊢ IsDeduct ∅ ((forall_ v (P.iff_ Q)).imp_ ((exists_ v Q).imp_ (exists_ v P))) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_6
[1265, 1]
[1280, 22]
apply T_19_6_left
case a P Q : Formula v : VarName ⊢ IsDeduct ∅ ((forall_ v (P.iff_ Q)).imp_ ((exists_ v P).imp_ (exists_ v Q)))
no goals
Please generate a tactic in lean4 to solve the state. STATE: case a P Q : Formula v : VarName ⊢ IsDeduct ∅ ((forall_ v (P.iff_ Q)).imp_ ((exists_ v P).imp_ (exists_ v Q))) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_TS_21_left
[1283, 1]
[1301, 26]
apply C_18_4 (forall_ v P) P ((forall_ v (P.imp_ Q)).imp_ ((forall_ v P).imp_ (forall_ v Q)))
P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ IsProof ((forall_ v (P.imp_ Q)).imp_ (P.imp_ (forall_ v Q)))
case h1 P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ IsReplOfFormulaInFormula (forall_ v P) P ((forall_ v (P.imp_ Q)).imp_ ((forall_ v P).imp_ (forall_ v Q))) ((forall_ v (P.imp_ Q)).imp_ (P.imp_ (forall_ v Q))) case h2 P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ IsProof ((forall_ v P).iff_ P) case h3 P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ IsDeduct ∅ ((forall_ v (P.imp_ Q)).imp_ ((forall_ v P).imp_ (forall_ v Q)))
Please generate a tactic in lean4 to solve the state. STATE: P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ IsProof ((forall_ v (P.imp_ Q)).imp_ (P.imp_ (forall_ v Q))) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_TS_21_left
[1283, 1]
[1301, 26]
apply IsReplOfFormulaInFormula.imp_
case h1 P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ IsReplOfFormulaInFormula (forall_ v P) P ((forall_ v (P.imp_ Q)).imp_ ((forall_ v P).imp_ (forall_ v Q))) ((forall_ v (P.imp_ Q)).imp_ (P.imp_ (forall_ v Q)))
case h1.a P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ IsReplOfFormulaInFormula (forall_ v P) P (forall_ v (P.imp_ Q)) (forall_ v (P.imp_ Q)) case h1.a P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ IsReplOfFormulaInFormula (forall_ v P) P ((forall_ v P).imp_ (forall_ v Q)) (P.imp_ (forall_ v Q))
Please generate a tactic in lean4 to solve the state. STATE: case h1 P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ IsReplOfFormulaInFormula (forall_ v P) P ((forall_ v (P.imp_ Q)).imp_ ((forall_ v P).imp_ (forall_ v Q))) ((forall_ v (P.imp_ Q)).imp_ (P.imp_ (forall_ v Q))) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_TS_21_left
[1283, 1]
[1301, 26]
apply IsReplOfFormulaInFormula.same_
case h1.a P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ IsReplOfFormulaInFormula (forall_ v P) P (forall_ v (P.imp_ Q)) (forall_ v (P.imp_ Q))
case h1.a.a P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ forall_ v (P.imp_ Q) = forall_ v (P.imp_ Q)
Please generate a tactic in lean4 to solve the state. STATE: case h1.a P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ IsReplOfFormulaInFormula (forall_ v P) P (forall_ v (P.imp_ Q)) (forall_ v (P.imp_ Q)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_TS_21_left
[1283, 1]
[1301, 26]
rfl
case h1.a.a P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ forall_ v (P.imp_ Q) = forall_ v (P.imp_ Q)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h1.a.a P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ forall_ v (P.imp_ Q) = forall_ v (P.imp_ Q) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_TS_21_left
[1283, 1]
[1301, 26]
apply IsReplOfFormulaInFormula.imp_
case h1.a P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ IsReplOfFormulaInFormula (forall_ v P) P ((forall_ v P).imp_ (forall_ v Q)) (P.imp_ (forall_ v Q))
case h1.a.a P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ IsReplOfFormulaInFormula (forall_ v P) P (forall_ v P) P case h1.a.a P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ IsReplOfFormulaInFormula (forall_ v P) P (forall_ v Q) (forall_ v Q)
Please generate a tactic in lean4 to solve the state. STATE: case h1.a P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ IsReplOfFormulaInFormula (forall_ v P) P ((forall_ v P).imp_ (forall_ v Q)) (P.imp_ (forall_ v Q)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_TS_21_left
[1283, 1]
[1301, 26]
apply IsReplOfFormulaInFormula.diff_
case h1.a.a P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ IsReplOfFormulaInFormula (forall_ v P) P (forall_ v P) P
case h1.a.a.a P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ forall_ v P = forall_ v P case h1.a.a.a P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ P = P
Please generate a tactic in lean4 to solve the state. STATE: case h1.a.a P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ IsReplOfFormulaInFormula (forall_ v P) P (forall_ v P) P TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_TS_21_left
[1283, 1]
[1301, 26]
rfl
case h1.a.a.a P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ forall_ v P = forall_ v P
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h1.a.a.a P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ forall_ v P = forall_ v P TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_TS_21_left
[1283, 1]
[1301, 26]
rfl
case h1.a.a.a P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ P = P
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h1.a.a.a P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ P = P TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_TS_21_left
[1283, 1]
[1301, 26]
apply IsReplOfFormulaInFormula.same_
case h1.a.a P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ IsReplOfFormulaInFormula (forall_ v P) P (forall_ v Q) (forall_ v Q)
case h1.a.a.a P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ forall_ v Q = forall_ v Q
Please generate a tactic in lean4 to solve the state. STATE: case h1.a.a P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ IsReplOfFormulaInFormula (forall_ v P) P (forall_ v Q) (forall_ v Q) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_TS_21_left
[1283, 1]
[1301, 26]
rfl
case h1.a.a.a P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ forall_ v Q = forall_ v Q
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h1.a.a.a P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ forall_ v Q = forall_ v Q TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_TS_21_left
[1283, 1]
[1301, 26]
exact T_19_1 P v h1
case h2 P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ IsProof ((forall_ v P).iff_ P)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h2 P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ IsProof ((forall_ v P).iff_ P) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_TS_21_left
[1283, 1]
[1301, 26]
apply IsDeduct.axiom_
case h3 P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ IsDeduct ∅ ((forall_ v (P.imp_ Q)).imp_ ((forall_ v P).imp_ (forall_ v Q)))
case h3.a P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ IsAxiom ((forall_ v (P.imp_ Q)).imp_ ((forall_ v P).imp_ (forall_ v Q)))
Please generate a tactic in lean4 to solve the state. STATE: case h3 P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ IsDeduct ∅ ((forall_ v (P.imp_ Q)).imp_ ((forall_ v P).imp_ (forall_ v Q))) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_TS_21_left
[1283, 1]
[1301, 26]
apply IsAxiom.pred_1_
case h3.a P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ IsAxiom ((forall_ v (P.imp_ Q)).imp_ ((forall_ v P).imp_ (forall_ v Q)))
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h3.a P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ IsAxiom ((forall_ v (P.imp_ Q)).imp_ ((forall_ v P).imp_ (forall_ v Q))) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_TS_21_right
[1304, 1]
[1325, 13]
apply deduction_theorem
P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ IsProof ((P.imp_ (forall_ v Q)).imp_ (forall_ v (P.imp_ Q)))
case h1 P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ IsDeduct (∅ ∪ {P.imp_ (forall_ v Q)}) (forall_ v (P.imp_ Q))
Please generate a tactic in lean4 to solve the state. STATE: P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ IsProof ((P.imp_ (forall_ v Q)).imp_ (forall_ v (P.imp_ Q))) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_TS_21_right
[1304, 1]
[1325, 13]
simp
case h1 P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ IsDeduct (∅ ∪ {P.imp_ (forall_ v Q)}) (forall_ v (P.imp_ Q))
case h1 P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ IsDeduct {P.imp_ (forall_ v Q)} (forall_ v (P.imp_ Q))
Please generate a tactic in lean4 to solve the state. STATE: case h1 P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ IsDeduct (∅ ∪ {P.imp_ (forall_ v Q)}) (forall_ v (P.imp_ Q)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_TS_21_right
[1304, 1]
[1325, 13]
apply generalization
case h1 P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ IsDeduct {P.imp_ (forall_ v Q)} (forall_ v (P.imp_ Q))
case h1.h1 P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ IsDeduct {P.imp_ (forall_ v Q)} (P.imp_ Q) case h1.h2 P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ ∀ H ∈ {P.imp_ (forall_ v Q)}, ¬isFreeIn v H
Please generate a tactic in lean4 to solve the state. STATE: case h1 P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ IsDeduct {P.imp_ (forall_ v Q)} (forall_ v (P.imp_ Q)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_TS_21_right
[1304, 1]
[1325, 13]
apply deduction_theorem
case h1.h1 P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ IsDeduct {P.imp_ (forall_ v Q)} (P.imp_ Q)
case h1.h1.h1 P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ IsDeduct ({P.imp_ (forall_ v Q)} ∪ {P}) Q
Please generate a tactic in lean4 to solve the state. STATE: case h1.h1 P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ IsDeduct {P.imp_ (forall_ v Q)} (P.imp_ Q) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_TS_21_right
[1304, 1]
[1325, 13]
apply specId v
case h1.h1.h1 P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ IsDeduct ({P.imp_ (forall_ v Q)} ∪ {P}) Q
case h1.h1.h1.h1 P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ IsDeduct ({P.imp_ (forall_ v Q)} ∪ {P}) (forall_ v Q)
Please generate a tactic in lean4 to solve the state. STATE: case h1.h1.h1 P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ IsDeduct ({P.imp_ (forall_ v Q)} ∪ {P}) Q TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_TS_21_right
[1304, 1]
[1325, 13]
apply IsDeduct.mp_ P
case h1.h1.h1.h1 P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ IsDeduct ({P.imp_ (forall_ v Q)} ∪ {P}) (forall_ v Q)
case h1.h1.h1.h1.a P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ IsDeduct ({P.imp_ (forall_ v Q)} ∪ {P}) (P.imp_ (forall_ v Q)) case h1.h1.h1.h1.a P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ IsDeduct ({P.imp_ (forall_ v Q)} ∪ {P}) P
Please generate a tactic in lean4 to solve the state. STATE: case h1.h1.h1.h1 P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ IsDeduct ({P.imp_ (forall_ v Q)} ∪ {P}) (forall_ v Q) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_TS_21_right
[1304, 1]
[1325, 13]
apply IsDeduct.assume_
case h1.h1.h1.h1.a P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ IsDeduct ({P.imp_ (forall_ v Q)} ∪ {P}) (P.imp_ (forall_ v Q))
case h1.h1.h1.h1.a.a P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ P.imp_ (forall_ v Q) ∈ {P.imp_ (forall_ v Q)} ∪ {P}
Please generate a tactic in lean4 to solve the state. STATE: case h1.h1.h1.h1.a P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ IsDeduct ({P.imp_ (forall_ v Q)} ∪ {P}) (P.imp_ (forall_ v Q)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_TS_21_right
[1304, 1]
[1325, 13]
simp
case h1.h1.h1.h1.a.a P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ P.imp_ (forall_ v Q) ∈ {P.imp_ (forall_ v Q)} ∪ {P}
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h1.h1.h1.h1.a.a P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ P.imp_ (forall_ v Q) ∈ {P.imp_ (forall_ v Q)} ∪ {P} TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_TS_21_right
[1304, 1]
[1325, 13]
apply IsDeduct.assume_
case h1.h1.h1.h1.a P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ IsDeduct ({P.imp_ (forall_ v Q)} ∪ {P}) P
case h1.h1.h1.h1.a.a P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ P ∈ {P.imp_ (forall_ v Q)} ∪ {P}
Please generate a tactic in lean4 to solve the state. STATE: case h1.h1.h1.h1.a P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ IsDeduct ({P.imp_ (forall_ v Q)} ∪ {P}) P TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_TS_21_right
[1304, 1]
[1325, 13]
simp
case h1.h1.h1.h1.a.a P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ P ∈ {P.imp_ (forall_ v Q)} ∪ {P}
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h1.h1.h1.h1.a.a P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ P ∈ {P.imp_ (forall_ v Q)} ∪ {P} TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_TS_21_right
[1304, 1]
[1325, 13]
intro H a1
case h1.h2 P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ ∀ H ∈ {P.imp_ (forall_ v Q)}, ¬isFreeIn v H
case h1.h2 P Q : Formula v : VarName h1 : ¬isFreeIn v P H : Formula a1 : H ∈ {P.imp_ (forall_ v Q)} ⊢ ¬isFreeIn v H
Please generate a tactic in lean4 to solve the state. STATE: case h1.h2 P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ ∀ H ∈ {P.imp_ (forall_ v Q)}, ¬isFreeIn v H TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_TS_21_right
[1304, 1]
[1325, 13]
simp at a1
case h1.h2 P Q : Formula v : VarName h1 : ¬isFreeIn v P H : Formula a1 : H ∈ {P.imp_ (forall_ v Q)} ⊢ ¬isFreeIn v H
case h1.h2 P Q : Formula v : VarName h1 : ¬isFreeIn v P H : Formula a1 : H = P.imp_ (forall_ v Q) ⊢ ¬isFreeIn v H
Please generate a tactic in lean4 to solve the state. STATE: case h1.h2 P Q : Formula v : VarName h1 : ¬isFreeIn v P H : Formula a1 : H ∈ {P.imp_ (forall_ v Q)} ⊢ ¬isFreeIn v H TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_TS_21_right
[1304, 1]
[1325, 13]
subst a1
case h1.h2 P Q : Formula v : VarName h1 : ¬isFreeIn v P H : Formula a1 : H = P.imp_ (forall_ v Q) ⊢ ¬isFreeIn v H
case h1.h2 P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ ¬isFreeIn v (P.imp_ (forall_ v Q))
Please generate a tactic in lean4 to solve the state. STATE: case h1.h2 P Q : Formula v : VarName h1 : ¬isFreeIn v P H : Formula a1 : H = P.imp_ (forall_ v Q) ⊢ ¬isFreeIn v H TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_TS_21_right
[1304, 1]
[1325, 13]
simp only [isFreeIn]
case h1.h2 P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ ¬isFreeIn v (P.imp_ (forall_ v Q))
case h1.h2 P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ ¬(isFreeIn v P ∨ ¬True ∧ isFreeIn v Q)
Please generate a tactic in lean4 to solve the state. STATE: case h1.h2 P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ ¬isFreeIn v (P.imp_ (forall_ v Q)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_TS_21_right
[1304, 1]
[1325, 13]
simp
case h1.h2 P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ ¬(isFreeIn v P ∨ ¬True ∧ isFreeIn v Q)
case h1.h2 P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ ¬isFreeIn v P
Please generate a tactic in lean4 to solve the state. STATE: case h1.h2 P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ ¬(isFreeIn v P ∨ ¬True ∧ isFreeIn v Q) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_TS_21_right
[1304, 1]
[1325, 13]
exact h1
case h1.h2 P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ ¬isFreeIn v P
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h1.h2 P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ ¬isFreeIn v P TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_TS_21
[1328, 1]
[1342, 35]
apply IsDeduct.mp_ ((forall_ v (P.imp_ Q)).imp_ (P.imp_ (forall_ v Q)))
P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ IsProof ((forall_ v (P.imp_ Q)).iff_ (P.imp_ (forall_ v Q)))
case a P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ IsDeduct ∅ (((forall_ v (P.imp_ Q)).imp_ (P.imp_ (forall_ v Q))).imp_ ((forall_ v (P.imp_ Q)).iff_ (P.imp_ (forall_ v Q)))) case a P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ IsDeduct ∅ ((forall_ v (P.imp_ Q)).imp_ (P.imp_ (forall_ v Q)))
Please generate a tactic in lean4 to solve the state. STATE: P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ IsProof ((forall_ v (P.imp_ Q)).iff_ (P.imp_ (forall_ v Q))) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_TS_21
[1328, 1]
[1342, 35]
apply IsDeduct.mp_ ((P.imp_ (forall_ v Q)).imp_ (forall_ v (P.imp_ Q)))
case a P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ IsDeduct ∅ (((forall_ v (P.imp_ Q)).imp_ (P.imp_ (forall_ v Q))).imp_ ((forall_ v (P.imp_ Q)).iff_ (P.imp_ (forall_ v Q))))
case a.a P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ IsDeduct ∅ (((P.imp_ (forall_ v Q)).imp_ (forall_ v (P.imp_ Q))).imp_ (((forall_ v (P.imp_ Q)).imp_ (P.imp_ (forall_ v Q))).imp_ ((forall_ v (P.imp_ Q)).iff_ (P.imp_ (forall_ v Q))))) case a.a P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ IsDeduct ∅ ((P.imp_ (forall_ v Q)).imp_ (forall_ v (P.imp_ Q)))
Please generate a tactic in lean4 to solve the state. STATE: case a P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ IsDeduct ∅ (((forall_ v (P.imp_ Q)).imp_ (P.imp_ (forall_ v Q))).imp_ ((forall_ v (P.imp_ Q)).iff_ (P.imp_ (forall_ v Q)))) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_TS_21
[1328, 1]
[1342, 35]
simp only [def_iff_]
case a.a P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ IsDeduct ∅ (((P.imp_ (forall_ v Q)).imp_ (forall_ v (P.imp_ Q))).imp_ (((forall_ v (P.imp_ Q)).imp_ (P.imp_ (forall_ v Q))).imp_ ((forall_ v (P.imp_ Q)).iff_ (P.imp_ (forall_ v Q)))))
case a.a P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ IsDeduct ∅ (((P.imp_ (forall_ v Q)).imp_ (forall_ v (P.imp_ Q))).imp_ (((forall_ v (P.imp_ Q)).imp_ (P.imp_ (forall_ v Q))).imp_ (((forall_ v (P.imp_ Q)).imp_ (P.imp_ (forall_ v Q))).and_ ((P.imp_ (forall_ v Q)).imp_ (forall_ v (P.imp_ Q))))))
Please generate a tactic in lean4 to solve the state. STATE: case a.a P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ IsDeduct ∅ (((P.imp_ (forall_ v Q)).imp_ (forall_ v (P.imp_ Q))).imp_ (((forall_ v (P.imp_ Q)).imp_ (P.imp_ (forall_ v Q))).imp_ ((forall_ v (P.imp_ Q)).iff_ (P.imp_ (forall_ v Q))))) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_TS_21
[1328, 1]
[1342, 35]
simp only [def_and_]
case a.a P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ IsDeduct ∅ (((P.imp_ (forall_ v Q)).imp_ (forall_ v (P.imp_ Q))).imp_ (((forall_ v (P.imp_ Q)).imp_ (P.imp_ (forall_ v Q))).imp_ (((forall_ v (P.imp_ Q)).imp_ (P.imp_ (forall_ v Q))).and_ ((P.imp_ (forall_ v Q)).imp_ (forall_ v (P.imp_ Q))))))
case a.a P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ IsDeduct ∅ (((P.imp_ (forall_ v Q)).imp_ (forall_ v (P.imp_ Q))).imp_ (((forall_ v (P.imp_ Q)).imp_ (P.imp_ (forall_ v Q))).imp_ (((forall_ v (P.imp_ Q)).imp_ (P.imp_ (forall_ v Q))).imp_ ((P.imp_ (forall_ v Q)).imp_ (forall_ v (P.imp_ Q))).not_).not_))
Please generate a tactic in lean4 to solve the state. STATE: case a.a P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ IsDeduct ∅ (((P.imp_ (forall_ v Q)).imp_ (forall_ v (P.imp_ Q))).imp_ (((forall_ v (P.imp_ Q)).imp_ (P.imp_ (forall_ v Q))).imp_ (((forall_ v (P.imp_ Q)).imp_ (P.imp_ (forall_ v Q))).and_ ((P.imp_ (forall_ v Q)).imp_ (forall_ v (P.imp_ Q)))))) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_TS_21
[1328, 1]
[1342, 35]
SC
case a.a P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ IsDeduct ∅ (((P.imp_ (forall_ v Q)).imp_ (forall_ v (P.imp_ Q))).imp_ (((forall_ v (P.imp_ Q)).imp_ (P.imp_ (forall_ v Q))).imp_ (((forall_ v (P.imp_ Q)).imp_ (P.imp_ (forall_ v Q))).imp_ ((P.imp_ (forall_ v Q)).imp_ (forall_ v (P.imp_ Q))).not_).not_))
no goals
Please generate a tactic in lean4 to solve the state. STATE: case a.a P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ IsDeduct ∅ (((P.imp_ (forall_ v Q)).imp_ (forall_ v (P.imp_ Q))).imp_ (((forall_ v (P.imp_ Q)).imp_ (P.imp_ (forall_ v Q))).imp_ (((forall_ v (P.imp_ Q)).imp_ (P.imp_ (forall_ v Q))).imp_ ((P.imp_ (forall_ v Q)).imp_ (forall_ v (P.imp_ Q))).not_).not_)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_TS_21
[1328, 1]
[1342, 35]
exact T_19_TS_21_right P Q v h1
case a.a P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ IsDeduct ∅ ((P.imp_ (forall_ v Q)).imp_ (forall_ v (P.imp_ Q)))
no goals
Please generate a tactic in lean4 to solve the state. STATE: case a.a P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ IsDeduct ∅ ((P.imp_ (forall_ v Q)).imp_ (forall_ v (P.imp_ Q))) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_TS_21
[1328, 1]
[1342, 35]
exact T_19_TS_21_left P Q v h1
case a P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ IsDeduct ∅ ((forall_ v (P.imp_ Q)).imp_ (P.imp_ (forall_ v Q)))
no goals
Please generate a tactic in lean4 to solve the state. STATE: case a P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ IsDeduct ∅ ((forall_ v (P.imp_ Q)).imp_ (P.imp_ (forall_ v Q))) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_21_1
[1345, 1]
[1370, 15]
apply generalization
x y : VarName ⊢ IsProof (forall_ x (forall_ y ((eq_ x y).imp_ (eq_ y x))))
case h1 x y : VarName ⊢ IsDeduct ∅ (forall_ y ((eq_ x y).imp_ (eq_ y x))) case h2 x y : VarName ⊢ ∀ H ∈ ∅, ¬isFreeIn x H
Please generate a tactic in lean4 to solve the state. STATE: x y : VarName ⊢ IsProof (forall_ x (forall_ y ((eq_ x y).imp_ (eq_ y x)))) TACTIC: