fullname
stringlengths
2
164
header
stringlengths
61
1.2k
imported_modules
stringlengths
60
684
opened_namespaces
stringlengths
1
1.07k
formal_statement
stringlengths
12
18.2k
formal_statement_original
stringlengths
23
18.2k
formal_statement_references
stringlengths
0
5.33k
formal_proof
stringlengths
0
11.8k
formal_proof_references
stringlengths
0
18.2k
doc_string
stringlengths
0
10.5k
problem_id
stringclasses
1 value
problem_kind
stringclasses
2 values
informal_statement
stringclasses
1 value
informal_proof
stringclasses
1 value
ref
stringlengths
0
68
inv_references
stringclasses
1 value
passed
stringclasses
2 values
module_name
stringlengths
25
90
head
null
lean_toolchain
stringclasses
1 value
package_name
stringclasses
1 value
unitInterval.instMeasureSpaceElemReal
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval open scoped unitInterval open MeasureTheory
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval
open scoped unitInterval open MeasureTheory
noncomputable instance : MeasureSpace I := sorry
def instMeasureSpaceElemReal_extracted : MeasureSpace ↑I := sorry
[['unitInterval'], ['Set', 'Elem'], ['Real'], ['MeasureTheory', 'MeasureSpace']]
noncomputable instance : MeasureSpace I := Measure.Subtype.measureSpace
[['Membership', 'mem'], ['unitInterval'], ['Set'], ['Real'], ['Real', 'measureSpace'], ['Set', 'instMembership'], ['MeasureTheory', 'Measure', 'Subtype', 'measureSpace']]
theorem
Syntax(original=True, range=StringRange(start=587, stop=658))
True
['Mathlib', 'MeasureTheory', 'Constructions', 'UnitInterval']
null
leanprover/lean4:v4.11.0
Mathlib
unitInterval.volume_def
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval open scoped unitInterval open MeasureTheory
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval
open scoped unitInterval open MeasureTheory
theorem volume_def : (volume : Measure I) = volume.comap Subtype.val := sorry
theorem volume_def_extracted : volume = Measure.comap Subtype.val volume := sorry
[['Membership', 'mem'], ['MeasureTheory', 'Measure'], ['MeasureTheory', 'MeasureSpace', 'toMeasurableSpace'], ['unitInterval'], ['Set', 'Elem'], ['Subtype', 'val'], ['MeasureTheory', 'Measure', 'comap'], ['Set'], ['Real'], ['Real', 'measureSpace'], ['unitInterval', 'instMeasureSpaceElemReal'], ['Set', 'instMembership'], ['MeasureTheory', 'MeasureSpace', 'volume'], ['Subtype'], ['Eq']]
theorem volume_def : (volume : Measure I) = volume.comap Subtype.val := rfl
[['MeasureTheory', 'Measure'], ['MeasureTheory', 'MeasureSpace', 'toMeasurableSpace'], ['unitInterval'], ['Set', 'Elem'], ['Real'], ['unitInterval', 'instMeasureSpaceElemReal'], ['MeasureTheory', 'MeasureSpace', 'volume'], ['rfl']]
theorem
Syntax(original=True, range=StringRange(start=660, stop=735))
True
['Mathlib', 'MeasureTheory', 'Constructions', 'UnitInterval']
null
leanprover/lean4:v4.11.0
Mathlib
unitInterval.instIsProbabilityMeasureElemRealVolume
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval open scoped unitInterval open MeasureTheory
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval
open scoped unitInterval open MeasureTheory
instance : IsProbabilityMeasure (volume : Measure I) := sorry
def instIsProbabilityMeasureElemRealVolume_extracted : IsProbabilityMeasure volume := sorry
[['MeasureTheory', 'MeasureSpace', 'toMeasurableSpace'], ['unitInterval'], ['Set', 'Elem'], ['Real'], ['unitInterval', 'instMeasureSpaceElemReal'], ['MeasureTheory', 'IsProbabilityMeasure'], ['MeasureTheory', 'MeasureSpace', 'volume']]
instance : IsProbabilityMeasure (volume : Measure I) where measure_univ := by rw [Measure.Subtype.volume_univ measurableSet_Icc.nullMeasurableSet, Real.volume_Icc, sub_zero, ENNReal.ofReal_one]
[['AddCommGroup', 'toDivisionAddCommMonoid'], ['Real', 'volume_Icc'], ['Real', 'borelSpace'], ['OfNat', 'ofNat'], ['Set', 'Icc'], ['Set'], ['Real'], ['ENNReal', 'ofReal'], ['Eq', 'refl'], ['MeasureTheory', 'Measure', 'instFunLike'], ['Real', 'instAddCommGroup'], ['unitInterval', 'instMeasureSpaceElemReal'], ['MeasureTheory', 'Measure', 'Subtype', 'measureSpace'], ['SubtractionCommMonoid', 'toSubtractionMonoid'], ['ENNReal', 'ofReal_one'], ['CanonicallyOrderedCommSemiring', 'toOne'], ['MeasureTheory', 'MeasureSpace', 'volume'], ['BorelSpace', 'opensMeasurable'], ['Eq'], ['MeasureTheory', 'IsProbabilityMeasure', 'mk'], ['MeasureTheory', 'Measure'], ['Zero', 'toOfNat0'], ['SubNegMonoid', 'toSub'], ['instOrderTopologyReal'], ['Real', 'linearOrder'], ['ENNReal'], ['OrderTopology', 'to_orderClosedTopology'], ['Eq', 'mpr'], ['Set', 'Elem'], ['sub_zero'], ['Real', 'measureSpace'], ['UniformSpace', 'toTopologicalSpace'], ['DFunLike', 'coe'], ['SubtractionMonoid', 'toSubNegZeroMonoid'], ['id'], ['instHSub'], ['Membership', 'mem'], ['measurableSet_Icc'], ['Real', 'instSub'], ['ENNReal', 'instCanonicallyOrderedCommSemiring'], ['HSub', 'hSub'], ['PseudoMetricSpace', 'toUniformSpace'], ['Real', 'pseudoMetricSpace'], ['Real', 'instZero'], ['One', 'toOfNat1'], ['Set', 'instMembership'], ['MeasurableSet', 'nullMeasurableSet'], ['SubNegZeroMonoid', 'toNegZeroClass'], ['Set', 'univ'], ['SubNegZeroMonoid', 'toSubNegMonoid'], ['MeasureTheory', 'MeasureSpace', 'toMeasurableSpace'], ['Real', 'instOne'], ['unitInterval'], ['Real', 'instPreorder'], ['NegZeroClass', 'toZero'], ['congrArg'], ['MeasureTheory', 'Measure', 'Subtype', 'volume_univ']]
theorem
Syntax(original=True, range=StringRange(start=737, stop=942))
True
['Mathlib', 'MeasureTheory', 'Constructions', 'UnitInterval']
null
leanprover/lean4:v4.11.0
Mathlib
unitInterval.measurable_symm
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval open scoped unitInterval open MeasureTheory
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval
open scoped unitInterval open MeasureTheory
@[measurability] theorem measurable_symm : Measurable symm := sorry
theorem measurable_symm_extracted : Measurable Οƒ := sorry
[['unitInterval', 'symm'], ['Membership', 'mem'], ['unitInterval'], ['Subtype', 'instMeasurableSpace'], ['Set', 'Elem'], ['Real', 'measurableSpace'], ['Set'], ['Real'], ['Measurable'], ['Set', 'instMembership']]
@[measurability] theorem measurable_symm : Measurable symm := continuous_symm.measurable
[['Membership', 'mem'], ['Real', 'borelSpace'], ['Subtype', 'instMeasurableSpace'], ['Real'], ['Set'], ['Real', 'measurableSpace'], ['PseudoMetricSpace', 'toUniformSpace'], ['Real', 'pseudoMetricSpace'], ['Set', 'instMembership'], ['Subtype', 'borelSpace'], ['BorelSpace', 'opensMeasurable'], ['unitInterval', 'symm'], ['Continuous', 'measurable'], ['unitInterval'], ['Set', 'Elem'], ['unitInterval', 'continuous_symm'], ['Subtype', 'opensMeasurableSpace'], ['instTopologicalSpaceSubtype'], ['UniformSpace', 'toTopologicalSpace']]
theorem
Syntax(original=True, range=StringRange(start=944, stop=1032))
True
['Mathlib', 'MeasureTheory', 'Constructions', 'UnitInterval']
null
leanprover/lean4:v4.11.0
Mathlib
unitInterval.instIsProbabilityMeasureElemRealVolume_tac_814
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval open scoped unitInterval open MeasureTheory
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval
open scoped unitInterval open MeasureTheory
lemma instIsProbabilityMeasureElemRealVolume_tac_814 : volume Set.univ = 1 := sorry
lemma instIsProbabilityMeasureElemRealVolume_tac_814 : volume Set.univ = 1 := sorry
[['Real', 'volume_Icc'], ['measurableSet_Icc', 'nullMeasurableSet'], ['sub_zero'], ['Measure', 'Subtype', 'volume_univ'], ['ENNReal', 'ofReal_one']]
tactic
['Mathlib', 'MeasureTheory', 'Constructions', 'UnitInterval']
null
leanprover/lean4:v4.11.0
Mathlib
unitInterval.instIsProbabilityMeasureElemRealVolume_tac_814
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval open scoped unitInterval open MeasureTheory
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval
open scoped unitInterval open MeasureTheory
lemma instIsProbabilityMeasureElemRealVolume_tac_814 : volume Set.univ = 1 := sorry
lemma instIsProbabilityMeasureElemRealVolume_tac_814 : volume Set.univ = 1 := sorry
tactic
['Mathlib', 'MeasureTheory', 'Constructions', 'UnitInterval']
null
leanprover/lean4:v4.11.0
Mathlib
unitInterval.instIsProbabilityMeasureElemRealVolume_tac_821
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval open scoped unitInterval open MeasureTheory
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval
open scoped unitInterval open MeasureTheory
lemma instIsProbabilityMeasureElemRealVolume_tac_821 : volume Set.univ = 1 := sorry
lemma instIsProbabilityMeasureElemRealVolume_tac_821 : volume Set.univ = 1 := sorry
[['Real', 'volume_Icc'], ['measurableSet_Icc', 'nullMeasurableSet'], ['sub_zero'], ['Measure', 'Subtype', 'volume_univ'], ['ENNReal', 'ofReal_one']]
tactic
['Mathlib', 'MeasureTheory', 'Constructions', 'UnitInterval']
null
leanprover/lean4:v4.11.0
Mathlib
unitInterval.instIsProbabilityMeasureElemRealVolume_tac_821
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval open scoped unitInterval open MeasureTheory
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval
open scoped unitInterval open MeasureTheory
lemma instIsProbabilityMeasureElemRealVolume_tac_821 : volume Set.univ = 1 := sorry
lemma instIsProbabilityMeasureElemRealVolume_tac_821 : volume Set.univ = 1 := sorry
[['Real', 'volume_Icc'], ['measurableSet_Icc', 'nullMeasurableSet'], ['sub_zero'], ['Measure', 'Subtype', 'volume_univ'], ['ENNReal', 'ofReal_one']]
tactic
['Mathlib', 'MeasureTheory', 'Constructions', 'UnitInterval']
null
leanprover/lean4:v4.11.0
Mathlib
unitInterval.instIsProbabilityMeasureElemRealVolume_tac_821
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval open scoped unitInterval open MeasureTheory
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval
open scoped unitInterval open MeasureTheory
lemma instIsProbabilityMeasureElemRealVolume_tac_821 : volume Set.univ = 1 := sorry
lemma instIsProbabilityMeasureElemRealVolume_tac_821 : volume Set.univ = 1 := sorry
[['Real', 'volume_Icc'], ['measurableSet_Icc', 'nullMeasurableSet'], ['sub_zero'], ['Measure', 'Subtype', 'volume_univ'], ['ENNReal', 'ofReal_one']]
tactic
['Mathlib', 'MeasureTheory', 'Constructions', 'UnitInterval']
null
leanprover/lean4:v4.11.0
Mathlib
unitInterval.instIsProbabilityMeasureElemRealVolume_tac_821
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval open scoped unitInterval open MeasureTheory
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval
open scoped unitInterval open MeasureTheory
lemma instIsProbabilityMeasureElemRealVolume_tac_821 : volume Set.univ = 1 := sorry
lemma instIsProbabilityMeasureElemRealVolume_tac_821 : volume Set.univ = 1 := sorry
[['Real', 'volume_Icc'], ['measurableSet_Icc', 'nullMeasurableSet'], ['sub_zero'], ['Measure', 'Subtype', 'volume_univ'], ['ENNReal', 'ofReal_one']]
tactic
['Mathlib', 'MeasureTheory', 'Constructions', 'UnitInterval']
null
leanprover/lean4:v4.11.0
Mathlib
unitInterval.instIsProbabilityMeasureElemRealVolume_tac_821
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval open scoped unitInterval open MeasureTheory
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval
open scoped unitInterval open MeasureTheory
lemma instIsProbabilityMeasureElemRealVolume_tac_821 : volume Set.univ = 1 := sorry
lemma instIsProbabilityMeasureElemRealVolume_tac_821 : volume Set.univ = 1 := sorry
[['Real', 'volume_Icc'], ['measurableSet_Icc', 'nullMeasurableSet'], ['sub_zero'], ['Measure', 'Subtype', 'volume_univ'], ['ENNReal', 'ofReal_one']]
tactic
['Mathlib', 'MeasureTheory', 'Constructions', 'UnitInterval']
null
leanprover/lean4:v4.11.0
Mathlib
unitInterval.instIsProbabilityMeasureElemRealVolume_tac_821
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval open scoped unitInterval open MeasureTheory
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval
open scoped unitInterval open MeasureTheory
lemma instIsProbabilityMeasureElemRealVolume_tac_821 : volume Set.univ = 1 := sorry
lemma instIsProbabilityMeasureElemRealVolume_tac_821 : volume Set.univ = 1 := sorry
[['Real', 'volume_Icc'], ['measurableSet_Icc', 'nullMeasurableSet'], ['sub_zero'], ['Measure', 'Subtype', 'volume_univ'], ['ENNReal', 'ofReal_one']]
tactic
['Mathlib', 'MeasureTheory', 'Constructions', 'UnitInterval']
null
leanprover/lean4:v4.11.0
Mathlib
unitInterval.instIsProbabilityMeasureElemRealVolume_tac_821
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval open scoped unitInterval open MeasureTheory
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval
open scoped unitInterval open MeasureTheory
lemma instIsProbabilityMeasureElemRealVolume_tac_821 : volume Set.univ = 1 := sorry
lemma instIsProbabilityMeasureElemRealVolume_tac_821 : volume Set.univ = 1 := sorry
[['Real', 'volume_Icc'], ['measurableSet_Icc', 'nullMeasurableSet'], ['sub_zero'], ['Measure', 'Subtype', 'volume_univ'], ['ENNReal', 'ofReal_one']]
tactic
['Mathlib', 'MeasureTheory', 'Constructions', 'UnitInterval']
null
leanprover/lean4:v4.11.0
Mathlib
unitInterval.instIsProbabilityMeasureElemRealVolume_tac_821
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval open scoped unitInterval open MeasureTheory
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval
open scoped unitInterval open MeasureTheory
lemma instIsProbabilityMeasureElemRealVolume_tac_821 : volume Set.univ = 1 := sorry
lemma instIsProbabilityMeasureElemRealVolume_tac_821 : volume Set.univ = 1 := sorry
tactic
['Mathlib', 'MeasureTheory', 'Constructions', 'UnitInterval']
null
leanprover/lean4:v4.11.0
Mathlib
unitInterval.instIsProbabilityMeasureElemRealVolume_tac_825
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval open scoped unitInterval open MeasureTheory
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval
open scoped unitInterval open MeasureTheory
lemma instIsProbabilityMeasureElemRealVolume_tac_825 : volume Set.univ = 1 := sorry
lemma instIsProbabilityMeasureElemRealVolume_tac_825 : volume Set.univ = 1 := sorry
[['measurableSet_Icc', 'nullMeasurableSet'], ['Measure', 'Subtype', 'volume_univ']]
tactic
['Mathlib', 'MeasureTheory', 'Constructions', 'UnitInterval']
null
leanprover/lean4:v4.11.0
Mathlib
unitInterval.instIsProbabilityMeasureElemRealVolume_tac_890
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval open scoped unitInterval open MeasureTheory
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval
open scoped unitInterval open MeasureTheory
lemma instIsProbabilityMeasureElemRealVolume_tac_890 : volume (Set.Icc 0 1) = 1 := sorry
lemma instIsProbabilityMeasureElemRealVolume_tac_890 : volume (Set.Icc 0 1) = 1 := sorry
[['Real', 'volume_Icc']]
tactic
['Mathlib', 'MeasureTheory', 'Constructions', 'UnitInterval']
null
leanprover/lean4:v4.11.0
Mathlib
unitInterval.instIsProbabilityMeasureElemRealVolume_tac_907
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval open scoped unitInterval open MeasureTheory
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval
open scoped unitInterval open MeasureTheory
lemma instIsProbabilityMeasureElemRealVolume_tac_907 : ENNReal.ofReal (1 - 0) = 1 := sorry
lemma instIsProbabilityMeasureElemRealVolume_tac_907 : ENNReal.ofReal (1 - 0) = 1 := sorry
[['sub_zero']]
tactic
['Mathlib', 'MeasureTheory', 'Constructions', 'UnitInterval']
null
leanprover/lean4:v4.11.0
Mathlib
unitInterval.instIsProbabilityMeasureElemRealVolume_tac_923
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval open scoped unitInterval open MeasureTheory
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval
open scoped unitInterval open MeasureTheory
lemma instIsProbabilityMeasureElemRealVolume_tac_923 : ENNReal.ofReal 1 = 1 := sorry
lemma instIsProbabilityMeasureElemRealVolume_tac_923 : ENNReal.ofReal 1 = 1 := sorry
[['ENNReal', 'ofReal_one']]
tactic
['Mathlib', 'MeasureTheory', 'Constructions', 'UnitInterval']
null
leanprover/lean4:v4.11.0
Mathlib
unitInterval.instIsProbabilityMeasureElemRealVolume_tac_821
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval open scoped unitInterval open MeasureTheory
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval
open scoped unitInterval open MeasureTheory
lemma instIsProbabilityMeasureElemRealVolume_tac_821 : 1 = 1 := sorry
lemma instIsProbabilityMeasureElemRealVolume_tac_821 : 1 = 1 := sorry
tactic
['Mathlib', 'MeasureTheory', 'Constructions', 'UnitInterval']
null
leanprover/lean4:v4.11.0
Mathlib
unitInterval.instIsProbabilityMeasureElemRealVolume_tac_821
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval open scoped unitInterval open MeasureTheory
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval
open scoped unitInterval open MeasureTheory
lemma instIsProbabilityMeasureElemRealVolume_tac_821 : 1 = 1 := sorry
lemma instIsProbabilityMeasureElemRealVolume_tac_821 : 1 = 1 := sorry
tactic
['Mathlib', 'MeasureTheory', 'Constructions', 'UnitInterval']
null
leanprover/lean4:v4.11.0
Mathlib
unitInterval.instIsProbabilityMeasureElemRealVolume_tac_941
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval open scoped unitInterval open MeasureTheory
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval
open scoped unitInterval open MeasureTheory
lemma instIsProbabilityMeasureElemRealVolume_tac_941 : 1 = 1 := sorry
lemma instIsProbabilityMeasureElemRealVolume_tac_941 : 1 = 1 := sorry
tactic
['Mathlib', 'MeasureTheory', 'Constructions', 'UnitInterval']
null
leanprover/lean4:v4.11.0
Mathlib
unitInterval.instIsProbabilityMeasureElemRealVolume_tac_821
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval open scoped unitInterval open MeasureTheory
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval
open scoped unitInterval open MeasureTheory
lemma instIsProbabilityMeasureElemRealVolume_tac_821 : 1 = 1 := sorry
lemma instIsProbabilityMeasureElemRealVolume_tac_821 : 1 = 1 := sorry
tactic
['Mathlib', 'MeasureTheory', 'Constructions', 'UnitInterval']
null
leanprover/lean4:v4.11.0
Mathlib
unitInterval.instIsProbabilityMeasureElemRealVolume_tac_821
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval open scoped unitInterval open MeasureTheory
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval
open scoped unitInterval open MeasureTheory
lemma instIsProbabilityMeasureElemRealVolume_tac_821 : 1 = 1 := sorry
lemma instIsProbabilityMeasureElemRealVolume_tac_821 : 1 = 1 := sorry
tactic
['Mathlib', 'MeasureTheory', 'Constructions', 'UnitInterval']
null
leanprover/lean4:v4.11.0
Mathlib
unitInterval.instIsProbabilityMeasureElemRealVolume_tac_821
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval open scoped unitInterval open MeasureTheory
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval
open scoped unitInterval open MeasureTheory
lemma instIsProbabilityMeasureElemRealVolume_tac_821 : 1 = 1 := sorry
lemma instIsProbabilityMeasureElemRealVolume_tac_821 : 1 = 1 := sorry
tactic
['Mathlib', 'MeasureTheory', 'Constructions', 'UnitInterval']
null
leanprover/lean4:v4.11.0
Mathlib
unitInterval.instIsProbabilityMeasureElemRealVolume_tac_821
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval open scoped unitInterval open MeasureTheory
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval
open scoped unitInterval open MeasureTheory
lemma instIsProbabilityMeasureElemRealVolume_tac_821 : 1 = 1 := sorry
lemma instIsProbabilityMeasureElemRealVolume_tac_821 : 1 = 1 := sorry
tactic
['Mathlib', 'MeasureTheory', 'Constructions', 'UnitInterval']
null
leanprover/lean4:v4.11.0
Mathlib
unitInterval.instIsProbabilityMeasureElemRealVolume_tac_821
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval open scoped unitInterval open MeasureTheory
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval
open scoped unitInterval open MeasureTheory
lemma instIsProbabilityMeasureElemRealVolume_tac_821 : 1 = 1 := sorry
lemma instIsProbabilityMeasureElemRealVolume_tac_821 : 1 = 1 := sorry
tactic
['Mathlib', 'MeasureTheory', 'Constructions', 'UnitInterval']
null
leanprover/lean4:v4.11.0
Mathlib
unitInterval.instIsProbabilityMeasureElemRealVolume_tac_821
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval open scoped unitInterval open MeasureTheory
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval
open scoped unitInterval open MeasureTheory
lemma instIsProbabilityMeasureElemRealVolume_tac_821 : 1 = 1 := sorry
lemma instIsProbabilityMeasureElemRealVolume_tac_821 : 1 = 1 := sorry
tactic
['Mathlib', 'MeasureTheory', 'Constructions', 'UnitInterval']
null
leanprover/lean4:v4.11.0
Mathlib
unitInterval.instIsProbabilityMeasureElemRealVolume_tac_821
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval open scoped unitInterval open MeasureTheory
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval
open scoped unitInterval open MeasureTheory
lemma instIsProbabilityMeasureElemRealVolume_tac_821 : 1 = 1 := sorry
lemma instIsProbabilityMeasureElemRealVolume_tac_821 : 1 = 1 := sorry
tactic
['Mathlib', 'MeasureTheory', 'Constructions', 'UnitInterval']
null
leanprover/lean4:v4.11.0
Mathlib
unitInterval.instIsProbabilityMeasureElemRealVolume_tac_821
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval open scoped unitInterval open MeasureTheory
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval
open scoped unitInterval open MeasureTheory
lemma instIsProbabilityMeasureElemRealVolume_tac_821 : 1 = 1 := sorry
lemma instIsProbabilityMeasureElemRealVolume_tac_821 : 1 = 1 := sorry
tactic
['Mathlib', 'MeasureTheory', 'Constructions', 'UnitInterval']
null
leanprover/lean4:v4.11.0
Mathlib
unitInterval.instIsProbabilityMeasureElemRealVolume_tac_821
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval open scoped unitInterval open MeasureTheory
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval
open scoped unitInterval open MeasureTheory
lemma instIsProbabilityMeasureElemRealVolume_tac_821 : 1 = 1 := sorry
lemma instIsProbabilityMeasureElemRealVolume_tac_821 : 1 = 1 := sorry
tactic
['Mathlib', 'MeasureTheory', 'Constructions', 'UnitInterval']
null
leanprover/lean4:v4.11.0
Mathlib
unitInterval.instIsProbabilityMeasureElemRealVolume_tac_821
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval open scoped unitInterval open MeasureTheory
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval
open scoped unitInterval open MeasureTheory
lemma instIsProbabilityMeasureElemRealVolume_tac_821 : 1 = 1 := sorry
lemma instIsProbabilityMeasureElemRealVolume_tac_821 : 1 = 1 := sorry
tactic
['Mathlib', 'MeasureTheory', 'Constructions', 'UnitInterval']
null
leanprover/lean4:v4.11.0
Mathlib
unitInterval.instIsProbabilityMeasureElemRealVolume_tac_821
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval open scoped unitInterval open MeasureTheory
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval
open scoped unitInterval open MeasureTheory
lemma instIsProbabilityMeasureElemRealVolume_tac_821 : 1 = 1 := sorry
lemma instIsProbabilityMeasureElemRealVolume_tac_821 : 1 = 1 := sorry
tactic
['Mathlib', 'MeasureTheory', 'Constructions', 'UnitInterval']
null
leanprover/lean4:v4.11.0
Mathlib
unitInterval.instIsProbabilityMeasureElemRealVolume_tac_821
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval open scoped unitInterval open MeasureTheory
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval
open scoped unitInterval open MeasureTheory
lemma instIsProbabilityMeasureElemRealVolume_tac_821 : 1 = 1 := sorry
lemma instIsProbabilityMeasureElemRealVolume_tac_821 : 1 = 1 := sorry
tactic
['Mathlib', 'MeasureTheory', 'Constructions', 'UnitInterval']
null
leanprover/lean4:v4.11.0
Mathlib
unitInterval.instIsProbabilityMeasureElemRealVolume_tac_821
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval open scoped unitInterval open MeasureTheory
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval
open scoped unitInterval open MeasureTheory
lemma instIsProbabilityMeasureElemRealVolume_tac_821 : 1 = 1 := sorry
lemma instIsProbabilityMeasureElemRealVolume_tac_821 : 1 = 1 := sorry
tactic
['Mathlib', 'MeasureTheory', 'Constructions', 'UnitInterval']
null
leanprover/lean4:v4.11.0
Mathlib
unitInterval.instIsProbabilityMeasureElemRealVolume_tac_821
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval open scoped unitInterval open MeasureTheory
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval
open scoped unitInterval open MeasureTheory
lemma instIsProbabilityMeasureElemRealVolume_tac_821 : 1 = 1 := sorry
lemma instIsProbabilityMeasureElemRealVolume_tac_821 : 1 = 1 := sorry
tactic
['Mathlib', 'MeasureTheory', 'Constructions', 'UnitInterval']
null
leanprover/lean4:v4.11.0
Mathlib
unitInterval.instIsProbabilityMeasureElemRealVolume_tac_821
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval open scoped unitInterval open MeasureTheory
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval
open scoped unitInterval open MeasureTheory
lemma instIsProbabilityMeasureElemRealVolume_tac_821 : 1 = 1 := sorry
lemma instIsProbabilityMeasureElemRealVolume_tac_821 : 1 = 1 := sorry
tactic
['Mathlib', 'MeasureTheory', 'Constructions', 'UnitInterval']
null
leanprover/lean4:v4.11.0
Mathlib
RCLike.measurableSpace
import Init import Mathlib.Analysis.Complex.Basic import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Constructions.BorelSpace.Complex
import Init import Mathlib.Analysis.Complex.Basic import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Constructions.BorelSpace.Complex
instance (priority := 900) RCLike.measurableSpace {π•œ : Type*} [RCLike π•œ] : MeasurableSpace π•œ := sorry
def measurableSpace_extracted : {π•œ : Type u_1} β†’ [inst : RCLike π•œ] β†’ MeasurableSpace π•œ := sorry
[['MeasurableSpace']]
instance (priority := 900) RCLike.measurableSpace {π•œ : Type*} [RCLike π•œ] : MeasurableSpace π•œ := borel π•œ
[['NormedCommRing', 'toSeminormedCommRing'], ['RCLike', 'toDenselyNormedField'], ['SeminormedCommRing', 'toSeminormedRing'], ['borel'], ['PseudoMetricSpace', 'toUniformSpace'], ['SeminormedRing', 'toPseudoMetricSpace'], ['DenselyNormedField', 'toNormedField'], ['NormedField', 'toNormedCommRing'], ['UniformSpace', 'toTopologicalSpace']]
theorem
Syntax(original=True, range=StringRange(start=330, stop=447))
True
['Mathlib', 'MeasureTheory', 'Constructions', 'BorelSpace', 'Complex']
null
leanprover/lean4:v4.11.0
Mathlib
RCLike.borelSpace
import Init import Mathlib.Analysis.Complex.Basic import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Constructions.BorelSpace.Complex
import Init import Mathlib.Analysis.Complex.Basic import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Constructions.BorelSpace.Complex
instance (priority := 900) RCLike.borelSpace {π•œ : Type*} [RCLike π•œ] : BorelSpace π•œ := sorry
def borelSpace_extracted : βˆ€ {π•œ : Type u_1} [inst : RCLike π•œ], BorelSpace π•œ := sorry
[['NormedCommRing', 'toSeminormedCommRing'], ['RCLike', 'toDenselyNormedField'], ['SeminormedCommRing', 'toSeminormedRing'], ['BorelSpace'], ['PseudoMetricSpace', 'toUniformSpace'], ['SeminormedRing', 'toPseudoMetricSpace'], ['DenselyNormedField', 'toNormedField'], ['RCLike', 'measurableSpace'], ['NormedField', 'toNormedCommRing'], ['UniformSpace', 'toTopologicalSpace']]
instance (priority := 900) RCLike.borelSpace {π•œ : Type*} [RCLike π•œ] : BorelSpace π•œ := ⟨rfl⟩
[['NormedCommRing', 'toSeminormedCommRing'], ['RCLike', 'toDenselyNormedField'], ['SeminormedCommRing', 'toSeminormedRing'], ['BorelSpace', 'mk'], ['PseudoMetricSpace', 'toUniformSpace'], ['SeminormedRing', 'toPseudoMetricSpace'], ['DenselyNormedField', 'toNormedField'], ['RCLike', 'measurableSpace'], ['NormedField', 'toNormedCommRing'], ['UniformSpace', 'toTopologicalSpace'], ['MeasurableSpace'], ['rfl']]
theorem
Syntax(original=True, range=StringRange(start=449, stop=555))
True
['Mathlib', 'MeasureTheory', 'Constructions', 'BorelSpace', 'Complex']
null
leanprover/lean4:v4.11.0
Mathlib
Complex.measurableSpace
import Init import Mathlib.Analysis.Complex.Basic import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Constructions.BorelSpace.Complex
import Init import Mathlib.Analysis.Complex.Basic import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Constructions.BorelSpace.Complex
instance Complex.measurableSpace : MeasurableSpace β„‚ := sorry
def measurableSpace_extracted : MeasurableSpace β„‚ := sorry
[['Complex'], ['MeasurableSpace']]
instance Complex.measurableSpace : MeasurableSpace β„‚ := borel β„‚
[['NormedCommRing', 'toSeminormedCommRing'], ['SeminormedCommRing', 'toSeminormedRing'], ['Complex', 'instNormedField'], ['borel'], ['PseudoMetricSpace', 'toUniformSpace'], ['SeminormedRing', 'toPseudoMetricSpace'], ['Complex'], ['NormedField', 'toNormedCommRing'], ['UniformSpace', 'toTopologicalSpace']]
theorem
Syntax(original=True, range=StringRange(start=557, stop=626))
True
['Mathlib', 'MeasureTheory', 'Constructions', 'BorelSpace', 'Complex']
null
leanprover/lean4:v4.11.0
Mathlib
Complex.borelSpace
import Init import Mathlib.Analysis.Complex.Basic import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Constructions.BorelSpace.Complex
import Init import Mathlib.Analysis.Complex.Basic import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Constructions.BorelSpace.Complex
instance Complex.borelSpace : BorelSpace β„‚ := sorry
def borelSpace_extracted : BorelSpace β„‚ := sorry
[['NormedCommRing', 'toSeminormedCommRing'], ['SeminormedCommRing', 'toSeminormedRing'], ['BorelSpace'], ['Complex', 'instNormedField'], ['Complex', 'measurableSpace'], ['PseudoMetricSpace', 'toUniformSpace'], ['SeminormedRing', 'toPseudoMetricSpace'], ['Complex'], ['NormedField', 'toNormedCommRing'], ['UniformSpace', 'toTopologicalSpace']]
instance Complex.borelSpace : BorelSpace β„‚ := ⟨rfl⟩
[['NormedCommRing', 'toSeminormedCommRing'], ['SeminormedCommRing', 'toSeminormedRing'], ['BorelSpace', 'mk'], ['Complex', 'instNormedField'], ['Complex', 'measurableSpace'], ['PseudoMetricSpace', 'toUniformSpace'], ['SeminormedRing', 'toPseudoMetricSpace'], ['Complex'], ['NormedField', 'toNormedCommRing'], ['UniformSpace', 'toTopologicalSpace'], ['MeasurableSpace'], ['rfl']]
theorem
Syntax(original=True, range=StringRange(start=628, stop=687))
True
['Mathlib', 'MeasureTheory', 'Constructions', 'BorelSpace', 'Complex']
null
leanprover/lean4:v4.11.0
Mathlib
EventuallyMeasurableSpace
import Init import Mathlib.MeasureTheory.MeasurableSpace.Defs import Mathlib.Order.Filter.CountableInter import Mathlib.MeasureTheory.Constructions.EventuallyMeasurable open Filter Set MeasurableSpace
import Init import Mathlib.MeasureTheory.MeasurableSpace.Defs import Mathlib.Order.Filter.CountableInter import Mathlib.MeasureTheory.Constructions.EventuallyMeasurable
open Filter Set MeasurableSpace
/-- The `MeasurableSpace` of sets which are measurable with respect to a given Οƒ-algebra `m` on `Ξ±`, modulo a given Οƒ-filter `l` on `Ξ±`. -/ def EventuallyMeasurableSpace (l : Filter Ξ±) [CountableInterFilter l] : MeasurableSpace Ξ± := sorry
def EventuallyMeasurableSpace_extracted : {Ξ± : Type u_1} β†’ MeasurableSpace Ξ± β†’ (l : Filter Ξ±) β†’ [inst : CountableInterFilter l] β†’ MeasurableSpace Ξ± := sorry
[['MeasurableSpace']]
/-- The `MeasurableSpace` of sets which are measurable with respect to a given Οƒ-algebra `m` on `Ξ±`, modulo a given Οƒ-filter `l` on `Ξ±`. -/ def EventuallyMeasurableSpace (l : Filter Ξ±) [CountableInterFilter l] : MeasurableSpace Ξ± where MeasurableSet' s := βˆƒ t, MeasurableSet t ∧ s =αΆ [l] t measurableSet_empty := βŸ¨βˆ…, MeasurableSet.empty, EventuallyEq.refl _ _ ⟩ measurableSet_compl := fun s ⟨t, ht, hts⟩ => ⟨tᢜ, ht.compl, hts.compl⟩ measurableSet_iUnion s hs := by choose t ht hts using hs exact βŸ¨β‹ƒ i, t i, MeasurableSet.iUnion ht, EventuallyEq.countable_iUnion hts⟩
[['And'], ['Exists'], ['Filter', 'EventuallyEq'], ['Set'], ['MeasurableSet'], ['EventuallyMeasurableSpace', 'proof_3'], ['MeasurableSpace', 'mk'], ['EventuallyMeasurableSpace', 'proof_1'], ['EventuallyMeasurableSpace', 'proof_2']]
The `MeasurableSpace` of sets which are measurable with respect to a given Οƒ-algebra `m` on `Ξ±`, modulo a given Οƒ-filter `l` on `Ξ±`.
theorem
Syntax(original=True, range=StringRange(start=1392, stop=2007))
True
['Mathlib', 'MeasureTheory', 'Constructions', 'EventuallyMeasurable']
null
leanprover/lean4:v4.11.0
Mathlib
EventuallyMeasurableSet
import Init import Mathlib.MeasureTheory.MeasurableSpace.Defs import Mathlib.Order.Filter.CountableInter import Mathlib.MeasureTheory.Constructions.EventuallyMeasurable open Filter Set MeasurableSpace
import Init import Mathlib.MeasureTheory.MeasurableSpace.Defs import Mathlib.Order.Filter.CountableInter import Mathlib.MeasureTheory.Constructions.EventuallyMeasurable
open Filter Set MeasurableSpace
/-- We say a set `s` is an `EventuallyMeasurableSet` with respect to a given Οƒ-algebra `m` and Οƒ-filter `l` if it differs from a set in `m` by a set in the dual ideal of `l`. -/ def EventuallyMeasurableSet (l : Filter Ξ±) [CountableInterFilter l] (s : Set Ξ±) : Prop := sorry
def EventuallyMeasurableSet_extracted : {Ξ± : Type u_1} β†’ MeasurableSpace Ξ± β†’ (l : Filter Ξ±) β†’ [inst : CountableInterFilter l] β†’ Set Ξ± β†’ Prop := sorry
/-- We say a set `s` is an `EventuallyMeasurableSet` with respect to a given Οƒ-algebra `m` and Οƒ-filter `l` if it differs from a set in `m` by a set in the dual ideal of `l`. -/ def EventuallyMeasurableSet (l : Filter Ξ±) [CountableInterFilter l] (s : Set Ξ±) : Prop := @MeasurableSet _ (EventuallyMeasurableSpace m l) s
[['EventuallyMeasurableSpace'], ['MeasurableSet']]
We say a set `s` is an `EventuallyMeasurableSet` with respect to a given Οƒ-algebra `m` and Οƒ-filter `l` if it differs from a set in `m` by a set in the dual ideal of `l`.
theorem
Syntax(original=True, range=StringRange(start=2009, stop=2334))
True
['Mathlib', 'MeasureTheory', 'Constructions', 'EventuallyMeasurable']
null
leanprover/lean4:v4.11.0
Mathlib
MeasurableSet.eventuallyMeasurableSet
import Init import Mathlib.MeasureTheory.MeasurableSpace.Defs import Mathlib.Order.Filter.CountableInter import Mathlib.MeasureTheory.Constructions.EventuallyMeasurable open Filter Set MeasurableSpace
import Init import Mathlib.MeasureTheory.MeasurableSpace.Defs import Mathlib.Order.Filter.CountableInter import Mathlib.MeasureTheory.Constructions.EventuallyMeasurable
open Filter Set MeasurableSpace
theorem MeasurableSet.eventuallyMeasurableSet (hs : MeasurableSet s) : EventuallyMeasurableSet m l s := sorry
theorem eventuallyMeasurableSet_extracted : βˆ€ {Ξ± : Type u_1} {m : MeasurableSpace Ξ±} {s : Set Ξ±} {l : Filter Ξ±} [inst : CountableInterFilter l], MeasurableSet s β†’ EventuallyMeasurableSet m l s := sorry
[['EventuallyMeasurableSet']]
theorem MeasurableSet.eventuallyMeasurableSet (hs : MeasurableSet s) : EventuallyMeasurableSet m l s := ⟨s, hs, EventuallyEq.refl _ _⟩
[['And'], ['Filter', 'EventuallyEq'], ['Filter', 'EventuallyEq', 'refl'], ['Set'], ['MeasurableSet'], ['And', 'intro'], ['Exists', 'intro']]
theorem
Syntax(original=True, range=StringRange(start=2400, stop=2544))
True
['Mathlib', 'MeasureTheory', 'Constructions', 'EventuallyMeasurable']
null
leanprover/lean4:v4.11.0
Mathlib
EventuallyMeasurableSpace.measurable_le
import Init import Mathlib.MeasureTheory.MeasurableSpace.Defs import Mathlib.Order.Filter.CountableInter import Mathlib.MeasureTheory.Constructions.EventuallyMeasurable open Filter Set MeasurableSpace
import Init import Mathlib.MeasureTheory.MeasurableSpace.Defs import Mathlib.Order.Filter.CountableInter import Mathlib.MeasureTheory.Constructions.EventuallyMeasurable
open Filter Set MeasurableSpace
theorem EventuallyMeasurableSpace.measurable_le : m ≀ EventuallyMeasurableSpace m l := sorry
theorem measurable_le_extracted : βˆ€ {Ξ± : Type u_1} {m : MeasurableSpace Ξ±} {l : Filter Ξ±} [inst : CountableInterFilter l], m ≀ EventuallyMeasurableSpace m l := sorry
[['EventuallyMeasurableSpace'], ['MeasurableSpace', 'instLE'], ['MeasurableSpace'], ['LE', 'le']]
theorem EventuallyMeasurableSpace.measurable_le : m ≀ EventuallyMeasurableSpace m l := fun _ hs => hs.eventuallyMeasurableSet
[['MeasurableSet', 'eventuallyMeasurableSet']]
theorem
Syntax(original=True, range=StringRange(start=2546, stop=2675))
True
['Mathlib', 'MeasureTheory', 'Constructions', 'EventuallyMeasurable']
null
leanprover/lean4:v4.11.0
Mathlib
eventuallyMeasurableSet_of_mem_filter
import Init import Mathlib.MeasureTheory.MeasurableSpace.Defs import Mathlib.Order.Filter.CountableInter import Mathlib.MeasureTheory.Constructions.EventuallyMeasurable open Filter Set MeasurableSpace
import Init import Mathlib.MeasureTheory.MeasurableSpace.Defs import Mathlib.Order.Filter.CountableInter import Mathlib.MeasureTheory.Constructions.EventuallyMeasurable
open Filter Set MeasurableSpace
theorem eventuallyMeasurableSet_of_mem_filter (hs : s ∈ l) : EventuallyMeasurableSet m l s := sorry
theorem eventuallyMeasurableSet_of_mem_filter_extracted : βˆ€ {Ξ± : Type u_1} {m : MeasurableSpace Ξ±} {s : Set Ξ±} {l : Filter Ξ±} [inst : CountableInterFilter l], s ∈ l β†’ EventuallyMeasurableSet m l s := sorry
[['EventuallyMeasurableSet']]
theorem eventuallyMeasurableSet_of_mem_filter (hs : s ∈ l) : EventuallyMeasurableSet m l s := ⟨univ, MeasurableSet.univ, eventuallyEq_univ.mpr hs⟩
[['Membership', 'mem'], ['MeasurableSet', 'univ'], ['And'], ['Filter', 'EventuallyEq'], ['Set'], ['MeasurableSet'], ['Filter'], ['And', 'intro'], ['Exists', 'intro'], ['Filter', 'eventuallyEq_univ'], ['Set', 'univ'], ['Iff', 'mpr'], ['instMembershipSetFilter']]
theorem
Syntax(original=True, range=StringRange(start=2677, stop=2831))
True
['Mathlib', 'MeasureTheory', 'Constructions', 'EventuallyMeasurable']
null
leanprover/lean4:v4.11.0
Mathlib
EventuallyMeasurableSet.congr
import Init import Mathlib.MeasureTheory.MeasurableSpace.Defs import Mathlib.Order.Filter.CountableInter import Mathlib.MeasureTheory.Constructions.EventuallyMeasurable open Filter Set MeasurableSpace
import Init import Mathlib.MeasureTheory.MeasurableSpace.Defs import Mathlib.Order.Filter.CountableInter import Mathlib.MeasureTheory.Constructions.EventuallyMeasurable
open Filter Set MeasurableSpace
/-- A set which is `EventuallyEq` to an `EventuallyMeasurableSet` is an `EventuallyMeasurableSet`. -/ theorem EventuallyMeasurableSet.congr (ht : EventuallyMeasurableSet m l t) (hst : s =αΆ [l] t) : EventuallyMeasurableSet m l s := sorry
theorem congr_extracted : βˆ€ {Ξ± : Type u_1} {m : MeasurableSpace Ξ±} {s t : Set Ξ±} {l : Filter Ξ±} [inst : CountableInterFilter l], EventuallyMeasurableSet m l t β†’ s =αΆ [l] t β†’ EventuallyMeasurableSet m l s := sorry
[['EventuallyMeasurableSet']]
/-- A set which is `EventuallyEq` to an `EventuallyMeasurableSet` is an `EventuallyMeasurableSet`. -/ theorem EventuallyMeasurableSet.congr (ht : EventuallyMeasurableSet m l t) (hst : s =ᢠ[l] t) : EventuallyMeasurableSet m l s := by rcases ht with ⟨t', ht', htt'⟩ exact ⟨t', ht', hst.trans htt'⟩
[['And'], ['Filter', 'EventuallyEq'], ['Set'], ['MeasurableSet'], ['Filter', 'EventuallyEq', 'trans'], ['And', 'intro'], ['Exists', 'intro'], ['And', 'casesOn'], ['EventuallyMeasurableSet'], ['Exists', 'casesOn']]
A set which is `EventuallyEq` to an `EventuallyMeasurableSet` is an `EventuallyMeasurableSet`.
theorem
Syntax(original=True, range=StringRange(start=2833, stop=3146))
True
['Mathlib', 'MeasureTheory', 'Constructions', 'EventuallyMeasurable']
null
leanprover/lean4:v4.11.0
Mathlib
EventuallyMeasurableSpace.measurableSingleton
import Init import Mathlib.MeasureTheory.MeasurableSpace.Defs import Mathlib.Order.Filter.CountableInter import Mathlib.MeasureTheory.Constructions.EventuallyMeasurable open Filter Set MeasurableSpace
import Init import Mathlib.MeasureTheory.MeasurableSpace.Defs import Mathlib.Order.Filter.CountableInter import Mathlib.MeasureTheory.Constructions.EventuallyMeasurable
open Filter Set MeasurableSpace
instance measurableSingleton [MeasurableSingletonClass Ξ±] : @MeasurableSingletonClass Ξ± (EventuallyMeasurableSpace m l) := sorry
def measurableSingleton_extracted : βˆ€ {Ξ± : Type u_1} {m : MeasurableSpace Ξ±} {l : Filter Ξ±} [inst : CountableInterFilter l] [inst_1 : MeasurableSingletonClass Ξ±], MeasurableSingletonClass Ξ± := sorry
[['MeasurableSingletonClass'], ['EventuallyMeasurableSpace']]
instance measurableSingleton [MeasurableSingletonClass Ξ±] : @MeasurableSingletonClass Ξ± (EventuallyMeasurableSpace m l) := @MeasurableSingletonClass.mk _ (_) <| fun x => (MeasurableSet.singleton x).eventuallyMeasurableSet
[['MeasurableSet', 'eventuallyMeasurableSet'], ['Set', 'instSingletonSet'], ['EventuallyMeasurableSpace'], ['Set'], ['Singleton', 'singleton'], ['MeasurableSet', 'singleton'], ['MeasurableSingletonClass', 'mk']]
theorem
Syntax(original=True, range=StringRange(start=3204, stop=3433))
True
['Mathlib', 'MeasureTheory', 'Constructions', 'EventuallyMeasurable']
null
leanprover/lean4:v4.11.0
Mathlib
EventuallyMeasurable
import Init import Mathlib.MeasureTheory.MeasurableSpace.Defs import Mathlib.Order.Filter.CountableInter import Mathlib.MeasureTheory.Constructions.EventuallyMeasurable open Filter Set MeasurableSpace open Function
import Init import Mathlib.MeasureTheory.MeasurableSpace.Defs import Mathlib.Order.Filter.CountableInter import Mathlib.MeasureTheory.Constructions.EventuallyMeasurable
open Filter Set MeasurableSpace open Function
/-- We say a function is `EventuallyMeasurable` with respect to a given Οƒ-algebra `m` and Οƒ-filter `l` if the preimage of any measurable set is equal to some `m`-measurable set modulo `l`. Warning: This is not always the same as being equal to some `m`-measurable function modulo `l`. In general it is weaker. See `Measurable.eventuallyMeasurable_of_eventuallyEq`. *TODO*: Add lemmas about when these are equivalent. -/ def EventuallyMeasurable (f : Ξ± β†’ Ξ²) : Prop := sorry
def EventuallyMeasurable_extracted : {Ξ± : Type u_1} β†’ MeasurableSpace Ξ± β†’ (l : Filter Ξ±) β†’ [inst : CountableInterFilter l] β†’ {Ξ² : Type u_2} β†’ [inst : MeasurableSpace Ξ²] β†’ (Ξ± β†’ Ξ²) β†’ Prop := sorry
/-- We say a function is `EventuallyMeasurable` with respect to a given Οƒ-algebra `m` and Οƒ-filter `l` if the preimage of any measurable set is equal to some `m`-measurable set modulo `l`. Warning: This is not always the same as being equal to some `m`-measurable function modulo `l`. In general it is weaker. See `Measurable.eventuallyMeasurable_of_eventuallyEq`. *TODO*: Add lemmas about when these are equivalent. -/ def EventuallyMeasurable (f : Ξ± β†’ Ξ²) : Prop := @Measurable _ _ (EventuallyMeasurableSpace m l) _ f
[['EventuallyMeasurableSpace'], ['Measurable']]
We say a function is `EventuallyMeasurable` with respect to a given Οƒ-algebra `m` and Οƒ-filter `l` if the preimage of any measurable set is equal to some `m`-measurable set modulo `l`. Warning: This is not always the same as being equal to some `m`-measurable function modulo `l`. In general it is weaker. See `Measurable.eventuallyMeasurable_of_eventuallyEq`. *TODO*: Add lemmas about when these are equivalent.
theorem
Syntax(original=True, range=StringRange(start=3600, stop=4124))
True
['Mathlib', 'MeasureTheory', 'Constructions', 'EventuallyMeasurable']
null
leanprover/lean4:v4.11.0
Mathlib
Measurable.eventuallyMeasurable
import Init import Mathlib.MeasureTheory.MeasurableSpace.Defs import Mathlib.Order.Filter.CountableInter import Mathlib.MeasureTheory.Constructions.EventuallyMeasurable open Filter Set MeasurableSpace open Function
import Init import Mathlib.MeasureTheory.MeasurableSpace.Defs import Mathlib.Order.Filter.CountableInter import Mathlib.MeasureTheory.Constructions.EventuallyMeasurable
open Filter Set MeasurableSpace open Function
theorem Measurable.eventuallyMeasurable (hf : Measurable f) : EventuallyMeasurable m l f := sorry
theorem eventuallyMeasurable_extracted : βˆ€ {Ξ± : Type u_1} {m : MeasurableSpace Ξ±} {l : Filter Ξ±} [inst : CountableInterFilter l] {Ξ² : Type u_2} [inst_1 : MeasurableSpace Ξ²] {f : Ξ± β†’ Ξ²}, Measurable f β†’ EventuallyMeasurable m l f := sorry
[['EventuallyMeasurable']]
theorem Measurable.eventuallyMeasurable (hf : Measurable f) : EventuallyMeasurable m l f := hf.le EventuallyMeasurableSpace.measurable_le
[['EventuallyMeasurableSpace', 'measurable_le'], ['EventuallyMeasurableSpace'], ['Measurable', 'le']]
theorem
Syntax(original=True, range=StringRange(start=4176, stop=4315))
True
['Mathlib', 'MeasureTheory', 'Constructions', 'EventuallyMeasurable']
null
leanprover/lean4:v4.11.0
Mathlib
Measurable.comp_eventuallyMeasurable
import Init import Mathlib.MeasureTheory.MeasurableSpace.Defs import Mathlib.Order.Filter.CountableInter import Mathlib.MeasureTheory.Constructions.EventuallyMeasurable open Filter Set MeasurableSpace open Function
import Init import Mathlib.MeasureTheory.MeasurableSpace.Defs import Mathlib.Order.Filter.CountableInter import Mathlib.MeasureTheory.Constructions.EventuallyMeasurable
open Filter Set MeasurableSpace open Function
theorem Measurable.comp_eventuallyMeasurable (hh : Measurable h) (hf : EventuallyMeasurable m l f) : EventuallyMeasurable m l (h ∘ f) := sorry
theorem comp_eventuallyMeasurable_extracted : βˆ€ {Ξ± : Type u_1} {m : MeasurableSpace Ξ±} {l : Filter Ξ±} [inst : CountableInterFilter l] {Ξ² : Type u_2} {Ξ³ : Type u_3} [inst_1 : MeasurableSpace Ξ²] [inst_2 : MeasurableSpace Ξ³] {f : Ξ± β†’ Ξ²} {h : Ξ² β†’ Ξ³}, Measurable h β†’ EventuallyMeasurable m l f β†’ EventuallyMeasurable m l (h ∘ f) := sorry
[['Function', 'comp'], ['EventuallyMeasurable']]
theorem Measurable.comp_eventuallyMeasurable (hh : Measurable h) (hf : EventuallyMeasurable m l f) : EventuallyMeasurable m l (h ∘ f) := hh.comp hf
[['EventuallyMeasurableSpace'], ['Measurable', 'comp']]
theorem
Syntax(original=True, range=StringRange(start=4317, stop=4472))
True
['Mathlib', 'MeasureTheory', 'Constructions', 'EventuallyMeasurable']
null
leanprover/lean4:v4.11.0
Mathlib
EventuallyMeasurable.congr
import Init import Mathlib.MeasureTheory.MeasurableSpace.Defs import Mathlib.Order.Filter.CountableInter import Mathlib.MeasureTheory.Constructions.EventuallyMeasurable open Filter Set MeasurableSpace open Function
import Init import Mathlib.MeasureTheory.MeasurableSpace.Defs import Mathlib.Order.Filter.CountableInter import Mathlib.MeasureTheory.Constructions.EventuallyMeasurable
open Filter Set MeasurableSpace open Function
/-- A function which is `EventuallyEq` to some `EventuallyMeasurable` function is `EventuallyMeasurable`.-/ theorem EventuallyMeasurable.congr (hf : EventuallyMeasurable m l f) (hgf : g =αΆ [l] f) : EventuallyMeasurable m l g := sorry
theorem congr_extracted : βˆ€ {Ξ± : Type u_1} {m : MeasurableSpace Ξ±} {l : Filter Ξ±} [inst : CountableInterFilter l] {Ξ² : Type u_2} [inst_1 : MeasurableSpace Ξ²] {f g : Ξ± β†’ Ξ²}, EventuallyMeasurable m l f β†’ g =αΆ [l] f β†’ EventuallyMeasurable m l g := sorry
[['EventuallyMeasurable']]
/-- A function which is `EventuallyEq` to some `EventuallyMeasurable` function is `EventuallyMeasurable`.-/ theorem EventuallyMeasurable.congr (hf : EventuallyMeasurable m l f) (hgf : g =αΆ [l] f) : EventuallyMeasurable m l g := fun _ hs => EventuallyMeasurableSet.congr (hf hs) (hgf.preimage _)
[['Set', 'preimage'], ['Filter', 'EventuallyEq', 'preimage'], ['EventuallyMeasurableSet', 'congr']]
A function which is `EventuallyEq` to some `EventuallyMeasurable` function is `EventuallyMeasurable`.
theorem
Syntax(original=True, range=StringRange(start=4474, stop=4779))
True
['Mathlib', 'MeasureTheory', 'Constructions', 'EventuallyMeasurable']
null
leanprover/lean4:v4.11.0
Mathlib
Measurable.eventuallyMeasurable_of_eventuallyEq
import Init import Mathlib.MeasureTheory.MeasurableSpace.Defs import Mathlib.Order.Filter.CountableInter import Mathlib.MeasureTheory.Constructions.EventuallyMeasurable open Filter Set MeasurableSpace open Function
import Init import Mathlib.MeasureTheory.MeasurableSpace.Defs import Mathlib.Order.Filter.CountableInter import Mathlib.MeasureTheory.Constructions.EventuallyMeasurable
open Filter Set MeasurableSpace open Function
/-- A function which is `EventuallyEq` to some `Measurable` function is `EventuallyMeasurable`.-/ theorem Measurable.eventuallyMeasurable_of_eventuallyEq (hf : Measurable f) (hgf : g =αΆ [l] f) : EventuallyMeasurable m l g := sorry
theorem eventuallyMeasurable_of_eventuallyEq_extracted : βˆ€ {Ξ± : Type u_1} {m : MeasurableSpace Ξ±} {l : Filter Ξ±} [inst : CountableInterFilter l] {Ξ² : Type u_2} [inst_1 : MeasurableSpace Ξ²] {f g : Ξ± β†’ Ξ²}, Measurable f β†’ g =αΆ [l] f β†’ EventuallyMeasurable m l g := sorry
[['EventuallyMeasurable']]
/-- A function which is `EventuallyEq` to some `Measurable` function is `EventuallyMeasurable`.-/ theorem Measurable.eventuallyMeasurable_of_eventuallyEq (hf : Measurable f) (hgf : g =αΆ [l] f) : EventuallyMeasurable m l g := hf.eventuallyMeasurable.congr hgf
[['EventuallyMeasurable', 'congr'], ['Measurable', 'eventuallyMeasurable']]
A function which is `EventuallyEq` to some `Measurable` function is `EventuallyMeasurable`.
theorem
Syntax(original=True, range=StringRange(start=4781, stop=5046))
True
['Mathlib', 'MeasureTheory', 'Constructions', 'EventuallyMeasurable']
null
leanprover/lean4:v4.11.0
Mathlib
EventuallyMeasurableSpace_tac_1889
import Init import Mathlib.MeasureTheory.MeasurableSpace.Defs import Mathlib.Order.Filter.CountableInter import Mathlib.MeasureTheory.Constructions.EventuallyMeasurable open Filter Set MeasurableSpace
import Init import Mathlib.MeasureTheory.MeasurableSpace.Defs import Mathlib.Order.Filter.CountableInter import Mathlib.MeasureTheory.Constructions.EventuallyMeasurable
open Filter Set MeasurableSpace
lemma EventuallyMeasurableSpace_tac_1889 (m : MeasurableSpace Ξ±) (t : Set Ξ±) (l : Filter Ξ±) [CountableInterFilter l] (s : β„• β†’ Set Ξ±) (hs : βˆ€ (i : β„•), (fun s => βˆƒ t, MeasurableSet t ∧ s =αΆ [l] t) (s i)) : (fun s => βˆƒ t, MeasurableSet t ∧ s =αΆ [l] t) (⋃ i, s i) := sorry
lemma EventuallyMeasurableSpace_tac_1889 {Ξ± : Type*} (m : MeasurableSpace Ξ±) (s✝ : Set Ξ±) (t : Set Ξ±) (l : Filter Ξ±) [CountableInterFilter l] (s : β„• β†’ Set Ξ±) (hs : βˆ€ (i : β„•), (fun s => βˆƒ t, MeasurableSet t ∧ s =αΆ [l] t) (s i)) : (fun s => βˆƒ t, MeasurableSet t ∧ s =αΆ [l] t) (⋃ i, s i) := sorry
[['hs'], ['hts'], ['EventuallyEq', 'countable_iUnion'], ['t'], ['ht'], ['MeasurableSet', 'iUnion'], ['i']]
tactic
['Mathlib', 'MeasureTheory', 'Constructions', 'EventuallyMeasurable']
null
leanprover/lean4:v4.11.0
Mathlib
EventuallyMeasurableSpace_tac_1889
import Init import Mathlib.MeasureTheory.MeasurableSpace.Defs import Mathlib.Order.Filter.CountableInter import Mathlib.MeasureTheory.Constructions.EventuallyMeasurable open Filter Set MeasurableSpace
import Init import Mathlib.MeasureTheory.MeasurableSpace.Defs import Mathlib.Order.Filter.CountableInter import Mathlib.MeasureTheory.Constructions.EventuallyMeasurable
open Filter Set MeasurableSpace
lemma EventuallyMeasurableSpace_tac_1889 (m : MeasurableSpace Ξ±) (t : Set Ξ±) (l : Filter Ξ±) [CountableInterFilter l] (s : β„• β†’ Set Ξ±) (hs : βˆ€ (i : β„•), (fun s => βˆƒ t, MeasurableSet t ∧ s =αΆ [l] t) (s i)) : (fun s => βˆƒ t, MeasurableSet t ∧ s =αΆ [l] t) (⋃ i, s i) := sorry
lemma EventuallyMeasurableSpace_tac_1889 {Ξ± : Type*} (m : MeasurableSpace Ξ±) (s✝ : Set Ξ±) (t : Set Ξ±) (l : Filter Ξ±) [CountableInterFilter l] (s : β„• β†’ Set Ξ±) (hs : βˆ€ (i : β„•), (fun s => βˆƒ t, MeasurableSet t ∧ s =αΆ [l] t) (s i)) : (fun s => βˆƒ t, MeasurableSet t ∧ s =αΆ [l] t) (⋃ i, s i) := sorry
tactic
['Mathlib', 'MeasureTheory', 'Constructions', 'EventuallyMeasurable']
null
leanprover/lean4:v4.11.0
Mathlib
EventuallyMeasurableSpace_tac_1896
import Init import Mathlib.MeasureTheory.MeasurableSpace.Defs import Mathlib.Order.Filter.CountableInter import Mathlib.MeasureTheory.Constructions.EventuallyMeasurable open Filter Set MeasurableSpace
import Init import Mathlib.MeasureTheory.MeasurableSpace.Defs import Mathlib.Order.Filter.CountableInter import Mathlib.MeasureTheory.Constructions.EventuallyMeasurable
open Filter Set MeasurableSpace
lemma EventuallyMeasurableSpace_tac_1896 (m : MeasurableSpace Ξ±) (t : Set Ξ±) (l : Filter Ξ±) [CountableInterFilter l] (s : β„• β†’ Set Ξ±) (hs : βˆ€ (i : β„•), (fun s => βˆƒ t, MeasurableSet t ∧ s =αΆ [l] t) (s i)) : (fun s => βˆƒ t, MeasurableSet t ∧ s =αΆ [l] t) (⋃ i, s i) := sorry
lemma EventuallyMeasurableSpace_tac_1896 {Ξ± : Type*} (m : MeasurableSpace Ξ±) (s✝ : Set Ξ±) (t : Set Ξ±) (l : Filter Ξ±) [CountableInterFilter l] (s : β„• β†’ Set Ξ±) (hs : βˆ€ (i : β„•), (fun s => βˆƒ t, MeasurableSet t ∧ s =αΆ [l] t) (s i)) : (fun s => βˆƒ t, MeasurableSet t ∧ s =αΆ [l] t) (⋃ i, s i) := sorry
[['hs'], ['hts'], ['EventuallyEq', 'countable_iUnion'], ['t'], ['ht'], ['MeasurableSet', 'iUnion'], ['i']]
tactic
['Mathlib', 'MeasureTheory', 'Constructions', 'EventuallyMeasurable']
null
leanprover/lean4:v4.11.0
Mathlib
EventuallyMeasurableSpace_tac_1896
import Init import Mathlib.MeasureTheory.MeasurableSpace.Defs import Mathlib.Order.Filter.CountableInter import Mathlib.MeasureTheory.Constructions.EventuallyMeasurable open Filter Set MeasurableSpace
import Init import Mathlib.MeasureTheory.MeasurableSpace.Defs import Mathlib.Order.Filter.CountableInter import Mathlib.MeasureTheory.Constructions.EventuallyMeasurable
open Filter Set MeasurableSpace
lemma EventuallyMeasurableSpace_tac_1896 (m : MeasurableSpace Ξ±) (t : Set Ξ±) (l : Filter Ξ±) [CountableInterFilter l] (s : β„• β†’ Set Ξ±) (hs : βˆ€ (i : β„•), (fun s => βˆƒ t, MeasurableSet t ∧ s =αΆ [l] t) (s i)) : (fun s => βˆƒ t, MeasurableSet t ∧ s =αΆ [l] t) (⋃ i, s i) := sorry
lemma EventuallyMeasurableSpace_tac_1896 {Ξ± : Type*} (m : MeasurableSpace Ξ±) (s✝ : Set Ξ±) (t : Set Ξ±) (l : Filter Ξ±) [CountableInterFilter l] (s : β„• β†’ Set Ξ±) (hs : βˆ€ (i : β„•), (fun s => βˆƒ t, MeasurableSet t ∧ s =αΆ [l] t) (s i)) : (fun s => βˆƒ t, MeasurableSet t ∧ s =αΆ [l] t) (⋃ i, s i) := sorry
[['hs'], ['hts'], ['EventuallyEq', 'countable_iUnion'], ['t'], ['ht'], ['MeasurableSet', 'iUnion'], ['i']]
tactic
['Mathlib', 'MeasureTheory', 'Constructions', 'EventuallyMeasurable']
null
leanprover/lean4:v4.11.0
Mathlib
EventuallyMeasurableSpace_tac_1896
import Init import Mathlib.MeasureTheory.MeasurableSpace.Defs import Mathlib.Order.Filter.CountableInter import Mathlib.MeasureTheory.Constructions.EventuallyMeasurable open Filter Set MeasurableSpace
import Init import Mathlib.MeasureTheory.MeasurableSpace.Defs import Mathlib.Order.Filter.CountableInter import Mathlib.MeasureTheory.Constructions.EventuallyMeasurable
open Filter Set MeasurableSpace
lemma EventuallyMeasurableSpace_tac_1896 (m : MeasurableSpace Ξ±) (t : Set Ξ±) (l : Filter Ξ±) [CountableInterFilter l] (s : β„• β†’ Set Ξ±) (hs : βˆ€ (i : β„•), (fun s => βˆƒ t, MeasurableSet t ∧ s =αΆ [l] t) (s i)) : (fun s => βˆƒ t, MeasurableSet t ∧ s =αΆ [l] t) (⋃ i, s i) := sorry
lemma EventuallyMeasurableSpace_tac_1896 {Ξ± : Type*} (m : MeasurableSpace Ξ±) (s✝ : Set Ξ±) (t : Set Ξ±) (l : Filter Ξ±) [CountableInterFilter l] (s : β„• β†’ Set Ξ±) (hs : βˆ€ (i : β„•), (fun s => βˆƒ t, MeasurableSet t ∧ s =αΆ [l] t) (s i)) : (fun s => βˆƒ t, MeasurableSet t ∧ s =αΆ [l] t) (⋃ i, s i) := sorry
[['hs'], ['hts'], ['t'], ['ht']]
tactic
['Mathlib', 'MeasureTheory', 'Constructions', 'EventuallyMeasurable']
null
leanprover/lean4:v4.11.0
Mathlib
EventuallyMeasurableSpace_tac_1925
import Init import Mathlib.MeasureTheory.MeasurableSpace.Defs import Mathlib.Order.Filter.CountableInter import Mathlib.MeasureTheory.Constructions.EventuallyMeasurable open Filter Set MeasurableSpace
import Init import Mathlib.MeasureTheory.MeasurableSpace.Defs import Mathlib.Order.Filter.CountableInter import Mathlib.MeasureTheory.Constructions.EventuallyMeasurable
open Filter Set MeasurableSpace
lemma EventuallyMeasurableSpace_tac_1925 (m : MeasurableSpace Ξ±) (l : Filter Ξ±) [CountableInterFilter l] (s : β„• β†’ Set Ξ±) (t : β„• β†’ Set Ξ±) (ht : βˆ€ (i : β„•), MeasurableSet (t i)) (hts : βˆ€ (i : β„•), s i =αΆ [l] t i) : βˆƒ t, MeasurableSet t ∧ ⋃ i, s i =αΆ [l] t := sorry
lemma EventuallyMeasurableSpace_tac_1925 {Ξ± : Type*} (m : MeasurableSpace Ξ±) (s✝ : Set Ξ±) (t✝ : Set Ξ±) (l : Filter Ξ±) [CountableInterFilter l] (s : β„• β†’ Set Ξ±) (t : β„• β†’ Set Ξ±) (ht : βˆ€ (i : β„•), MeasurableSet (t i)) (hts : βˆ€ (i : β„•), s i =αΆ [l] t i) : βˆƒ t, MeasurableSet t ∧ ⋃ i, s i =αΆ [l] t := sorry
[['hts'], ['EventuallyEq', 'countable_iUnion'], ['t'], ['ht'], ['MeasurableSet', 'iUnion'], ['i']]
tactic
['Mathlib', 'MeasureTheory', 'Constructions', 'EventuallyMeasurable']
null
leanprover/lean4:v4.11.0
Mathlib
EventuallyMeasurableSet.congr_tac_3069
import Init import Mathlib.MeasureTheory.MeasurableSpace.Defs import Mathlib.Order.Filter.CountableInter import Mathlib.MeasureTheory.Constructions.EventuallyMeasurable open Filter Set MeasurableSpace
import Init import Mathlib.MeasureTheory.MeasurableSpace.Defs import Mathlib.Order.Filter.CountableInter import Mathlib.MeasureTheory.Constructions.EventuallyMeasurable
open Filter Set MeasurableSpace
lemma congr_tac_3069 (m : MeasurableSpace Ξ±) (s : Set Ξ±) (t : Set Ξ±) (l : Filter Ξ±) [CountableInterFilter l] (ht : EventuallyMeasurableSet m l t) (hst : s =αΆ [l] t) : EventuallyMeasurableSet m l s := sorry
lemma congr_tac_3069 {Ξ± : Type*} (m : MeasurableSpace Ξ±) (s : Set Ξ±) (t : Set Ξ±) (l : Filter Ξ±) [CountableInterFilter l] (ht : EventuallyMeasurableSet m l t) (hst : s =αΆ [l] t) : EventuallyMeasurableSet m l s := sorry
[['hst', 'trans'], ["ht'"], ["t'"], ['ht'], ["htt'"]]
tactic
['Mathlib', 'MeasureTheory', 'Constructions', 'EventuallyMeasurable']
null
leanprover/lean4:v4.11.0
Mathlib
EventuallyMeasurableSet.congr_tac_3069
import Init import Mathlib.MeasureTheory.MeasurableSpace.Defs import Mathlib.Order.Filter.CountableInter import Mathlib.MeasureTheory.Constructions.EventuallyMeasurable open Filter Set MeasurableSpace
import Init import Mathlib.MeasureTheory.MeasurableSpace.Defs import Mathlib.Order.Filter.CountableInter import Mathlib.MeasureTheory.Constructions.EventuallyMeasurable
open Filter Set MeasurableSpace
lemma congr_tac_3069 (m : MeasurableSpace Ξ±) (s : Set Ξ±) (t : Set Ξ±) (l : Filter Ξ±) [CountableInterFilter l] (ht : EventuallyMeasurableSet m l t) (hst : s =αΆ [l] t) : EventuallyMeasurableSet m l s := sorry
lemma congr_tac_3069 {Ξ± : Type*} (m : MeasurableSpace Ξ±) (s : Set Ξ±) (t : Set Ξ±) (l : Filter Ξ±) [CountableInterFilter l] (ht : EventuallyMeasurableSet m l t) (hst : s =αΆ [l] t) : EventuallyMeasurableSet m l s := sorry
tactic
['Mathlib', 'MeasureTheory', 'Constructions', 'EventuallyMeasurable']
null
leanprover/lean4:v4.11.0
Mathlib
EventuallyMeasurableSet.congr_tac_3074
import Init import Mathlib.MeasureTheory.MeasurableSpace.Defs import Mathlib.Order.Filter.CountableInter import Mathlib.MeasureTheory.Constructions.EventuallyMeasurable open Filter Set MeasurableSpace
import Init import Mathlib.MeasureTheory.MeasurableSpace.Defs import Mathlib.Order.Filter.CountableInter import Mathlib.MeasureTheory.Constructions.EventuallyMeasurable
open Filter Set MeasurableSpace
lemma congr_tac_3074 (m : MeasurableSpace Ξ±) (s : Set Ξ±) (t : Set Ξ±) (l : Filter Ξ±) [CountableInterFilter l] (ht : EventuallyMeasurableSet m l t) (hst : s =αΆ [l] t) : EventuallyMeasurableSet m l s := sorry
lemma congr_tac_3074 {Ξ± : Type*} (m : MeasurableSpace Ξ±) (s : Set Ξ±) (t : Set Ξ±) (l : Filter Ξ±) [CountableInterFilter l] (ht : EventuallyMeasurableSet m l t) (hst : s =αΆ [l] t) : EventuallyMeasurableSet m l s := sorry
[['hst', 'trans'], ["ht'"], ["t'"], ['ht'], ["htt'"]]
tactic
['Mathlib', 'MeasureTheory', 'Constructions', 'EventuallyMeasurable']
null
leanprover/lean4:v4.11.0
Mathlib
EventuallyMeasurableSet.congr_tac_3074
import Init import Mathlib.MeasureTheory.MeasurableSpace.Defs import Mathlib.Order.Filter.CountableInter import Mathlib.MeasureTheory.Constructions.EventuallyMeasurable open Filter Set MeasurableSpace
import Init import Mathlib.MeasureTheory.MeasurableSpace.Defs import Mathlib.Order.Filter.CountableInter import Mathlib.MeasureTheory.Constructions.EventuallyMeasurable
open Filter Set MeasurableSpace
lemma congr_tac_3074 (m : MeasurableSpace Ξ±) (s : Set Ξ±) (t : Set Ξ±) (l : Filter Ξ±) [CountableInterFilter l] (ht : EventuallyMeasurableSet m l t) (hst : s =αΆ [l] t) : EventuallyMeasurableSet m l s := sorry
lemma congr_tac_3074 {Ξ± : Type*} (m : MeasurableSpace Ξ±) (s : Set Ξ±) (t : Set Ξ±) (l : Filter Ξ±) [CountableInterFilter l] (ht : EventuallyMeasurableSet m l t) (hst : s =αΆ [l] t) : EventuallyMeasurableSet m l s := sorry
[['hst', 'trans'], ["ht'"], ["t'"], ['ht'], ["htt'"]]
tactic
['Mathlib', 'MeasureTheory', 'Constructions', 'EventuallyMeasurable']
null
leanprover/lean4:v4.11.0
Mathlib
EventuallyMeasurableSet.congr_tac_3074
import Init import Mathlib.MeasureTheory.MeasurableSpace.Defs import Mathlib.Order.Filter.CountableInter import Mathlib.MeasureTheory.Constructions.EventuallyMeasurable open Filter Set MeasurableSpace
import Init import Mathlib.MeasureTheory.MeasurableSpace.Defs import Mathlib.Order.Filter.CountableInter import Mathlib.MeasureTheory.Constructions.EventuallyMeasurable
open Filter Set MeasurableSpace
lemma congr_tac_3074 (m : MeasurableSpace Ξ±) (s : Set Ξ±) (t : Set Ξ±) (l : Filter Ξ±) [CountableInterFilter l] (ht : EventuallyMeasurableSet m l t) (hst : s =αΆ [l] t) : EventuallyMeasurableSet m l s := sorry
lemma congr_tac_3074 {Ξ± : Type*} (m : MeasurableSpace Ξ±) (s : Set Ξ±) (t : Set Ξ±) (l : Filter Ξ±) [CountableInterFilter l] (ht : EventuallyMeasurableSet m l t) (hst : s =αΆ [l] t) : EventuallyMeasurableSet m l s := sorry
[["ht'"], ["t'"], ['ht'], ["htt'"]]
tactic
['Mathlib', 'MeasureTheory', 'Constructions', 'EventuallyMeasurable']
null
leanprover/lean4:v4.11.0
Mathlib
EventuallyMeasurableSet.congr_tac_3111
import Init import Mathlib.MeasureTheory.MeasurableSpace.Defs import Mathlib.Order.Filter.CountableInter import Mathlib.MeasureTheory.Constructions.EventuallyMeasurable open Filter Set MeasurableSpace
import Init import Mathlib.MeasureTheory.MeasurableSpace.Defs import Mathlib.Order.Filter.CountableInter import Mathlib.MeasureTheory.Constructions.EventuallyMeasurable
open Filter Set MeasurableSpace
lemma congr_tac_3111 (m : MeasurableSpace Ξ±) (s : Set Ξ±) (t : Set Ξ±) (l : Filter Ξ±) [CountableInterFilter l] (hst : s =αΆ [l] t) (t' : Set Ξ±) (ht' : MeasurableSet t') (htt' : t =αΆ [l] t') : EventuallyMeasurableSet m l s := sorry
lemma congr_tac_3111 {Ξ± : Type*} (m : MeasurableSpace Ξ±) (s : Set Ξ±) (t : Set Ξ±) (l : Filter Ξ±) [CountableInterFilter l] (hst : s =αΆ [l] t) (t' : Set Ξ±) (ht' : MeasurableSet t') (htt' : t =αΆ [l] t') : EventuallyMeasurableSet m l s := sorry
[['hst', 'trans'], ["ht'"], ["t'"], ["htt'"]]
tactic
['Mathlib', 'MeasureTheory', 'Constructions', 'EventuallyMeasurable']
null
leanprover/lean4:v4.11.0
Mathlib
ContinuousLinearMap.measurable
import Init import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.Analysis.NormedSpace.OperatorNorm.NormedSpace import Mathlib.Topology.Algebra.Module.FiniteDimension import Mathlib.MeasureTheory.Constructions.BorelSpace.ContinuousLinearMap open MeasureTheory
import Init import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.Analysis.NormedSpace.OperatorNorm.NormedSpace import Mathlib.Topology.Algebra.Module.FiniteDimension import Mathlib.MeasureTheory.Constructions.BorelSpace.ContinuousLinearMap
open MeasureTheory
@[fun_prop, measurability] protected theorem measurable (L : E β†’L[π•œ] F) : Measurable L := sorry
theorem measurable_extracted : βˆ€ {π•œ : Type u_2} [inst : NormedField π•œ] {E : Type u_3} [inst_1 : NormedAddCommGroup E] [inst_2 : NormedSpace π•œ E] [inst_3 : MeasurableSpace E] [inst_4 : OpensMeasurableSpace E] {F : Type u_4} [inst_5 : NormedAddCommGroup F] [inst_6 : NormedSpace π•œ F] [inst_7 : MeasurableSpace F] [inst_8 : BorelSpace F] (L : E β†’L[π•œ] F), Measurable ⇑L := sorry
[['NormedAddCommGroup', 'toAddCommGroup'], ['SeminormedAddCommGroup', 'toPseudoMetricSpace'], ['PseudoMetricSpace', 'toUniformSpace'], ['Field', 'toSemifield'], ['AddCommGroup', 'toAddCommMonoid'], ['RingHom', 'id'], ['NormedField', 'toField'], ['DivisionSemiring', 'toSemiring'], ['Semiring', 'toNonAssocSemiring'], ['ContinuousLinearMap'], ['ContinuousLinearMap', 'funLike'], ['NormedAddCommGroup', 'toSeminormedAddCommGroup'], ['Measurable'], ['Semifield', 'toDivisionSemiring'], ['DFunLike', 'coe'], ['UniformSpace', 'toTopologicalSpace'], ['NormedSpace', 'toModule']]
@[fun_prop, measurability] protected theorem measurable (L : E β†’L[π•œ] F) : Measurable L := L.continuous.measurable
[['NormedAddCommGroup', 'toAddCommGroup'], ['ContinuousLinearMap', 'continuous'], ['SeminormedAddCommGroup', 'toPseudoMetricSpace'], ['PseudoMetricSpace', 'toUniformSpace'], ['Field', 'toSemifield'], ['AddCommGroup', 'toAddCommMonoid'], ['RingHom', 'id'], ['NormedField', 'toField'], ['DivisionSemiring', 'toSemiring'], ['Continuous', 'measurable'], ['Semiring', 'toNonAssocSemiring'], ['ContinuousLinearMap'], ['ContinuousLinearMap', 'funLike'], ['NormedAddCommGroup', 'toSeminormedAddCommGroup'], ['Semifield', 'toDivisionSemiring'], ['UniformSpace', 'toTopologicalSpace'], ['DFunLike', 'coe'], ['NormedSpace', 'toModule']]
theorem
Syntax(original=True, range=StringRange(start=725, stop=845))
True
['Mathlib', 'MeasureTheory', 'Constructions', 'BorelSpace', 'ContinuousLinearMap']
null
leanprover/lean4:v4.11.0
Mathlib
ContinuousLinearMap.measurable_comp
import Init import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.Analysis.NormedSpace.OperatorNorm.NormedSpace import Mathlib.Topology.Algebra.Module.FiniteDimension import Mathlib.MeasureTheory.Constructions.BorelSpace.ContinuousLinearMap open MeasureTheory
import Init import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.Analysis.NormedSpace.OperatorNorm.NormedSpace import Mathlib.Topology.Algebra.Module.FiniteDimension import Mathlib.MeasureTheory.Constructions.BorelSpace.ContinuousLinearMap
open MeasureTheory
@[fun_prop] theorem measurable_comp (L : E β†’L[π•œ] F) {Ο† : Ξ± β†’ E} (Ο†_meas : Measurable Ο†) : Measurable fun a : Ξ± => L (Ο† a) := sorry
theorem measurable_comp_extracted : βˆ€ {Ξ± : Type u_1} [inst : MeasurableSpace Ξ±] {π•œ : Type u_2} [inst_1 : NormedField π•œ] {E : Type u_3} [inst_2 : NormedAddCommGroup E] [inst_3 : NormedSpace π•œ E] [inst_4 : MeasurableSpace E] [inst_5 : OpensMeasurableSpace E] {F : Type u_4} [inst_6 : NormedAddCommGroup F] [inst_7 : NormedSpace π•œ F] [inst_8 : MeasurableSpace F] [inst_9 : BorelSpace F] (L : E β†’L[π•œ] F) {Ο† : Ξ± β†’ E}, Measurable Ο† β†’ Measurable fun a => L (Ο† a) := sorry
[['NormedAddCommGroup', 'toAddCommGroup'], ['SeminormedAddCommGroup', 'toPseudoMetricSpace'], ['PseudoMetricSpace', 'toUniformSpace'], ['Field', 'toSemifield'], ['AddCommGroup', 'toAddCommMonoid'], ['RingHom', 'id'], ['NormedField', 'toField'], ['DivisionSemiring', 'toSemiring'], ['Semiring', 'toNonAssocSemiring'], ['ContinuousLinearMap'], ['ContinuousLinearMap', 'funLike'], ['NormedAddCommGroup', 'toSeminormedAddCommGroup'], ['Measurable'], ['Semifield', 'toDivisionSemiring'], ['DFunLike', 'coe'], ['UniformSpace', 'toTopologicalSpace'], ['NormedSpace', 'toModule']]
@[fun_prop] theorem measurable_comp (L : E β†’L[π•œ] F) {Ο† : Ξ± β†’ E} (Ο†_meas : Measurable Ο†) : Measurable fun a : Ξ± => L (Ο† a) := L.measurable.comp Ο†_meas
[['NormedAddCommGroup', 'toAddCommGroup'], ['SeminormedAddCommGroup', 'toPseudoMetricSpace'], ['PseudoMetricSpace', 'toUniformSpace'], ['Field', 'toSemifield'], ['AddCommGroup', 'toAddCommMonoid'], ['RingHom', 'id'], ['Measurable', 'comp'], ['NormedField', 'toField'], ['DivisionSemiring', 'toSemiring'], ['Semiring', 'toNonAssocSemiring'], ['ContinuousLinearMap'], ['ContinuousLinearMap', 'funLike'], ['NormedAddCommGroup', 'toSeminormedAddCommGroup'], ['Semifield', 'toDivisionSemiring'], ['ContinuousLinearMap', 'measurable'], ['DFunLike', 'coe'], ['UniformSpace', 'toTopologicalSpace'], ['NormedSpace', 'toModule']]
theorem
Syntax(original=True, range=StringRange(start=847, stop=1016))
True
['Mathlib', 'MeasureTheory', 'Constructions', 'BorelSpace', 'ContinuousLinearMap']
null
leanprover/lean4:v4.11.0
Mathlib
ContinuousLinearMap.instMeasurableSpace
import Init import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.Analysis.NormedSpace.OperatorNorm.NormedSpace import Mathlib.Topology.Algebra.Module.FiniteDimension import Mathlib.MeasureTheory.Constructions.BorelSpace.ContinuousLinearMap open MeasureTheory
import Init import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.Analysis.NormedSpace.OperatorNorm.NormedSpace import Mathlib.Topology.Algebra.Module.FiniteDimension import Mathlib.MeasureTheory.Constructions.BorelSpace.ContinuousLinearMap
open MeasureTheory
instance instMeasurableSpace : MeasurableSpace (E β†’L[π•œ] F) := sorry
def instMeasurableSpace_extracted : {π•œ : Type u_2} β†’ [inst : NontriviallyNormedField π•œ] β†’ {E : Type u_3} β†’ [inst_1 : NormedAddCommGroup E] β†’ [inst_2 : NormedSpace π•œ E] β†’ {F : Type u_4} β†’ [inst_3 : NormedAddCommGroup F] β†’ [inst_4 : NormedSpace π•œ F] β†’ MeasurableSpace (E β†’L[π•œ] F) := sorry
[['NormedAddCommGroup', 'toAddCommGroup'], ['NormedField', 'toField'], ['DivisionSemiring', 'toSemiring'], ['Semiring', 'toNonAssocSemiring'], ['ContinuousLinearMap'], ['SeminormedAddCommGroup', 'toPseudoMetricSpace'], ['NontriviallyNormedField', 'toNormedField'], ['NormedAddCommGroup', 'toSeminormedAddCommGroup'], ['PseudoMetricSpace', 'toUniformSpace'], ['AddCommGroup', 'toAddCommMonoid'], ['Field', 'toSemifield'], ['Semifield', 'toDivisionSemiring'], ['NormedSpace', 'toModule'], ['UniformSpace', 'toTopologicalSpace'], ['RingHom', 'id'], ['MeasurableSpace']]
instance instMeasurableSpace : MeasurableSpace (E β†’L[π•œ] F) := borel _
[['ContinuousLinearMap', 'instMeasurableSpace', 'proof_1'], ['NormedAddCommGroup', 'toAddCommGroup'], ['ContinuousLinearMap', 'topologicalSpace'], ['borel'], ['NontriviallyNormedField', 'toNormedField'], ['SeminormedAddCommGroup', 'toPseudoMetricSpace'], ['PseudoMetricSpace', 'toUniformSpace'], ['Field', 'toSemifield'], ['AddCommGroup', 'toAddCommMonoid'], ['RingHom', 'id'], ['NormedField', 'toField'], ['DivisionSemiring', 'toSemiring'], ['SeminormedAddCommGroup', 'toAddCommGroup'], ['Semiring', 'toNonAssocSemiring'], ['ContinuousLinearMap'], ['NormedAddCommGroup', 'toSeminormedAddCommGroup'], ['Semifield', 'toDivisionSemiring'], ['UniformSpace', 'toTopologicalSpace'], ['NormedSpace', 'toModule']]
theorem
Syntax(original=True, range=StringRange(start=1253, stop=1329))
True
['Mathlib', 'MeasureTheory', 'Constructions', 'BorelSpace', 'ContinuousLinearMap']
null
leanprover/lean4:v4.11.0
Mathlib
ContinuousLinearMap.instBorelSpace
import Init import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.Analysis.NormedSpace.OperatorNorm.NormedSpace import Mathlib.Topology.Algebra.Module.FiniteDimension import Mathlib.MeasureTheory.Constructions.BorelSpace.ContinuousLinearMap open MeasureTheory
import Init import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.Analysis.NormedSpace.OperatorNorm.NormedSpace import Mathlib.Topology.Algebra.Module.FiniteDimension import Mathlib.MeasureTheory.Constructions.BorelSpace.ContinuousLinearMap
open MeasureTheory
instance instBorelSpace : BorelSpace (E β†’L[π•œ] F) := sorry
def instBorelSpace_extracted : βˆ€ {π•œ : Type u_2} [inst : NontriviallyNormedField π•œ] {E : Type u_3} [inst_1 : NormedAddCommGroup E] [inst_2 : NormedSpace π•œ E] {F : Type u_4} [inst_3 : NormedAddCommGroup F] [inst_4 : NormedSpace π•œ F], BorelSpace (E β†’L[π•œ] F) := sorry
[['NormedAddCommGroup', 'toAddCommGroup'], ['ContinuousLinearMap', 'topologicalSpace'], ['SeminormedAddCommGroup', 'toTopologicalAddGroup'], ['BorelSpace'], ['NontriviallyNormedField', 'toNormedField'], ['SeminormedAddCommGroup', 'toPseudoMetricSpace'], ['PseudoMetricSpace', 'toUniformSpace'], ['Field', 'toSemifield'], ['AddCommGroup', 'toAddCommMonoid'], ['ContinuousLinearMap', 'instMeasurableSpace'], ['RingHom', 'id'], ['NormedField', 'toField'], ['DivisionSemiring', 'toSemiring'], ['SeminormedAddCommGroup', 'toAddCommGroup'], ['Semiring', 'toNonAssocSemiring'], ['ContinuousLinearMap'], ['NormedAddCommGroup', 'toSeminormedAddCommGroup'], ['Semifield', 'toDivisionSemiring'], ['UniformSpace', 'toTopologicalSpace'], ['NormedSpace', 'toModule']]
instance instBorelSpace : BorelSpace (E β†’L[π•œ] F) := ⟨rfl⟩
[['NormedAddCommGroup', 'toAddCommGroup'], ['ContinuousLinearMap', 'topologicalSpace'], ['SeminormedAddCommGroup', 'toTopologicalAddGroup'], ['BorelSpace', 'mk'], ['NontriviallyNormedField', 'toNormedField'], ['SeminormedAddCommGroup', 'toPseudoMetricSpace'], ['PseudoMetricSpace', 'toUniformSpace'], ['Field', 'toSemifield'], ['AddCommGroup', 'toAddCommMonoid'], ['rfl'], ['ContinuousLinearMap', 'instMeasurableSpace'], ['RingHom', 'id'], ['NormedField', 'toField'], ['DivisionSemiring', 'toSemiring'], ['SeminormedAddCommGroup', 'toAddCommGroup'], ['Semiring', 'toNonAssocSemiring'], ['ContinuousLinearMap'], ['NormedAddCommGroup', 'toSeminormedAddCommGroup'], ['Semifield', 'toDivisionSemiring'], ['UniformSpace', 'toTopologicalSpace'], ['NormedSpace', 'toModule'], ['MeasurableSpace']]
theorem
Syntax(original=True, range=StringRange(start=1331, stop=1399))
True
['Mathlib', 'MeasureTheory', 'Constructions', 'BorelSpace', 'ContinuousLinearMap']
null
leanprover/lean4:v4.11.0
Mathlib
ContinuousLinearMap.measurable_apply
import Init import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.Analysis.NormedSpace.OperatorNorm.NormedSpace import Mathlib.Topology.Algebra.Module.FiniteDimension import Mathlib.MeasureTheory.Constructions.BorelSpace.ContinuousLinearMap open MeasureTheory
import Init import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.Analysis.NormedSpace.OperatorNorm.NormedSpace import Mathlib.Topology.Algebra.Module.FiniteDimension import Mathlib.MeasureTheory.Constructions.BorelSpace.ContinuousLinearMap
open MeasureTheory
@[fun_prop, measurability] theorem measurable_apply [MeasurableSpace F] [BorelSpace F] (x : E) : Measurable fun f : E β†’L[π•œ] F => f x := sorry
theorem measurable_apply_extracted : βˆ€ {π•œ : Type u_2} [inst : NontriviallyNormedField π•œ] {E : Type u_3} [inst_1 : NormedAddCommGroup E] [inst_2 : NormedSpace π•œ E] {F : Type u_4} [inst_3 : NormedAddCommGroup F] [inst_4 : NormedSpace π•œ F] [inst_5 : MeasurableSpace F] [inst_6 : BorelSpace F] (x : E), Measurable fun f => f x := sorry
[['NormedAddCommGroup', 'toAddCommGroup'], ['NontriviallyNormedField', 'toNormedField'], ['SeminormedAddCommGroup', 'toPseudoMetricSpace'], ['PseudoMetricSpace', 'toUniformSpace'], ['Field', 'toSemifield'], ['AddCommGroup', 'toAddCommMonoid'], ['RingHom', 'id'], ['ContinuousLinearMap', 'instMeasurableSpace'], ['NormedField', 'toField'], ['DivisionSemiring', 'toSemiring'], ['Semiring', 'toNonAssocSemiring'], ['ContinuousLinearMap'], ['ContinuousLinearMap', 'funLike'], ['NormedAddCommGroup', 'toSeminormedAddCommGroup'], ['Measurable'], ['Semifield', 'toDivisionSemiring'], ['DFunLike', 'coe'], ['UniformSpace', 'toTopologicalSpace'], ['NormedSpace', 'toModule']]
@[fun_prop, measurability] theorem measurable_apply [MeasurableSpace F] [BorelSpace F] (x : E) : Measurable fun f : E β†’L[π•œ] F => f x := (apply π•œ F x).continuous.measurable
[['CommMonoidWithZero', 'toZero'], ['AddCommGroup', 'toDivisionAddCommMonoid'], ['SeminormedAddCommGroup', 'toTopologicalAddGroup'], ['ContinuousLinearMap', 'continuous'], ['ContinuousLinearMap', 'apply'], ['NontriviallyNormedField', 'toNormedField'], ['Semiring', 'toMonoidWithZero'], ['SeminormedRing', 'toPseudoMetricSpace'], ['AddCommGroup', 'toAddCommMonoid'], ['AddCommMonoid', 'toAddMonoid'], ['Semifield', 'toCommGroupWithZero'], ['SubtractionCommMonoid', 'toSubtractionMonoid'], ['SeminormedAddGroup', 'toAddGroup'], ['RingHom', 'id'], ['BorelSpace', 'opensMeasurable'], ['ContinuousLinearMap', 'module'], ['ContinuousLinearMap', 'addCommGroup'], ['NormedField', 'toField'], ['Field', 'toCommRing'], ['SMulWithZero', 'toSMulZeroClass'], ['SeminormedCommRing', 'toSeminormedRing'], ['SeminormedAddCommGroup', 'toAddCommGroup'], ['Semiring', 'toNonAssocSemiring'], ['Continuous', 'measurable'], ['ContinuousLinearMap', 'funLike'], ['NormedSpace', 'boundedSMul'], ['AddMonoid', 'toZero'], ['UniformSpace', 'toTopologicalSpace'], ['DFunLike', 'coe'], ['NormedRing', 'toRing'], ['SubtractionMonoid', 'toSubNegZeroMonoid'], ['MulActionWithZero', 'toMulAction'], ['TopologicalAddGroup', 'toContinuousAdd'], ['ContinuousLinearMap', 'topologicalSpace'], ['ContinuousLinearMap', 'instBorelSpace'], ['SeminormedAddCommGroup', 'toPseudoMetricSpace'], ['smulCommClass_self'], ['PseudoMetricSpace', 'toUniformSpace'], ['NormedCommRing', 'toNormedRing'], ['ContinuousSMul', 'continuousConstSMul'], ['Field', 'toSemifield'], ['NormedField', 'toNormedCommRing'], ['Module', 'toMulActionWithZero'], ['SubNegZeroMonoid', 'toNegZeroClass'], ['CommGroupWithZero', 'toCommMonoidWithZero'], ['ContinuousLinearMap', 'instMeasurableSpace'], ['SMulZeroClass', 'toSMul'], ['NormedCommRing', 'toSeminormedCommRing'], ['DivisionSemiring', 'toSemiring'], ['CommRing', 'toCommMonoid'], ['MulActionWithZero', 'toSMulWithZero'], ['ContinuousLinearMap'], ['NormedAddCommGroup', 'toSeminormedAddCommGroup'], ['Semifield', 'toDivisionSemiring'], ['ContinuousLinearMap', 'addCommMonoid'], ['MonoidWithZero', 'toZero'], ['NormedSpace', 'toModule'], ['BoundedSMul', 'continuousSMul'], ['SeminormedAddCommGroup', 'toSeminormedAddGroup'], ['NegZeroClass', 'toZero']]
theorem
Syntax(original=True, range=StringRange(start=1401, stop=1586))
True
['Mathlib', 'MeasureTheory', 'Constructions', 'BorelSpace', 'ContinuousLinearMap']
null
leanprover/lean4:v4.11.0
Mathlib
ContinuousLinearMap.measurable_apply'
import Init import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.Analysis.NormedSpace.OperatorNorm.NormedSpace import Mathlib.Topology.Algebra.Module.FiniteDimension import Mathlib.MeasureTheory.Constructions.BorelSpace.ContinuousLinearMap open MeasureTheory
import Init import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.Analysis.NormedSpace.OperatorNorm.NormedSpace import Mathlib.Topology.Algebra.Module.FiniteDimension import Mathlib.MeasureTheory.Constructions.BorelSpace.ContinuousLinearMap
open MeasureTheory
@[measurability] theorem measurable_apply' [MeasurableSpace E] [OpensMeasurableSpace E] [MeasurableSpace F] [BorelSpace F] : Measurable fun (x : E) (f : E β†’L[π•œ] F) => f x := sorry
theorem measurable_apply'_extracted : βˆ€ {π•œ : Type u_2} [inst : NontriviallyNormedField π•œ] {E : Type u_3} [inst_1 : NormedAddCommGroup E] [inst_2 : NormedSpace π•œ E] {F : Type u_4} [inst_3 : NormedAddCommGroup F] [inst_4 : NormedSpace π•œ F] [inst_5 : MeasurableSpace E] [inst_6 : OpensMeasurableSpace E] [inst_7 : MeasurableSpace F] [inst_8 : BorelSpace F], Measurable fun x f => f x := sorry
[['NormedAddCommGroup', 'toAddCommGroup'], ['NontriviallyNormedField', 'toNormedField'], ['SeminormedAddCommGroup', 'toPseudoMetricSpace'], ['PseudoMetricSpace', 'toUniformSpace'], ['Field', 'toSemifield'], ['AddCommGroup', 'toAddCommMonoid'], ['RingHom', 'id'], ['NormedField', 'toField'], ['DivisionSemiring', 'toSemiring'], ['Semiring', 'toNonAssocSemiring'], ['ContinuousLinearMap'], ['MeasurableSpace', 'pi'], ['ContinuousLinearMap', 'funLike'], ['NormedAddCommGroup', 'toSeminormedAddCommGroup'], ['Measurable'], ['Semifield', 'toDivisionSemiring'], ['DFunLike', 'coe'], ['UniformSpace', 'toTopologicalSpace'], ['NormedSpace', 'toModule']]
@[measurability] theorem measurable_apply' [MeasurableSpace E] [OpensMeasurableSpace E] [MeasurableSpace F] [BorelSpace F] : Measurable fun (x : E) (f : E β†’L[π•œ] F) => f x := measurable_pi_lambda _ fun f => f.measurable
[['NormedAddCommGroup', 'toAddCommGroup'], ['NontriviallyNormedField', 'toNormedField'], ['SeminormedAddCommGroup', 'toPseudoMetricSpace'], ['PseudoMetricSpace', 'toUniformSpace'], ['Field', 'toSemifield'], ['AddCommGroup', 'toAddCommMonoid'], ['measurable_pi_lambda'], ['RingHom', 'id'], ['NormedField', 'toField'], ['DivisionSemiring', 'toSemiring'], ['Semiring', 'toNonAssocSemiring'], ['ContinuousLinearMap'], ['ContinuousLinearMap', 'funLike'], ['NormedAddCommGroup', 'toSeminormedAddCommGroup'], ['Semifield', 'toDivisionSemiring'], ['ContinuousLinearMap', 'measurable'], ['UniformSpace', 'toTopologicalSpace'], ['NormedSpace', 'toModule'], ['DFunLike', 'coe']]
theorem
Syntax(original=True, range=StringRange(start=1588, stop=1817))
True
['Mathlib', 'MeasureTheory', 'Constructions', 'BorelSpace', 'ContinuousLinearMap']
null
leanprover/lean4:v4.11.0
Mathlib
ContinuousLinearMap.measurable_coe
import Init import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.Analysis.NormedSpace.OperatorNorm.NormedSpace import Mathlib.Topology.Algebra.Module.FiniteDimension import Mathlib.MeasureTheory.Constructions.BorelSpace.ContinuousLinearMap open MeasureTheory
import Init import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.Analysis.NormedSpace.OperatorNorm.NormedSpace import Mathlib.Topology.Algebra.Module.FiniteDimension import Mathlib.MeasureTheory.Constructions.BorelSpace.ContinuousLinearMap
open MeasureTheory
@[measurability] theorem measurable_coe [MeasurableSpace F] [BorelSpace F] : Measurable fun (f : E β†’L[π•œ] F) (x : E) => f x := sorry
theorem measurable_coe_extracted : βˆ€ {π•œ : Type u_2} [inst : NontriviallyNormedField π•œ] {E : Type u_3} [inst_1 : NormedAddCommGroup E] [inst_2 : NormedSpace π•œ E] {F : Type u_4} [inst_3 : NormedAddCommGroup F] [inst_4 : NormedSpace π•œ F] [inst_5 : MeasurableSpace F] [inst_6 : BorelSpace F], Measurable fun f x => f x := sorry
[['NormedAddCommGroup', 'toAddCommGroup'], ['NontriviallyNormedField', 'toNormedField'], ['SeminormedAddCommGroup', 'toPseudoMetricSpace'], ['PseudoMetricSpace', 'toUniformSpace'], ['Field', 'toSemifield'], ['AddCommGroup', 'toAddCommMonoid'], ['RingHom', 'id'], ['ContinuousLinearMap', 'instMeasurableSpace'], ['NormedField', 'toField'], ['DivisionSemiring', 'toSemiring'], ['Semiring', 'toNonAssocSemiring'], ['ContinuousLinearMap'], ['MeasurableSpace', 'pi'], ['ContinuousLinearMap', 'funLike'], ['NormedAddCommGroup', 'toSeminormedAddCommGroup'], ['Measurable'], ['Semifield', 'toDivisionSemiring'], ['DFunLike', 'coe'], ['UniformSpace', 'toTopologicalSpace'], ['NormedSpace', 'toModule']]
@[measurability] theorem measurable_coe [MeasurableSpace F] [BorelSpace F] : Measurable fun (f : E β†’L[π•œ] F) (x : E) => f x := measurable_pi_lambda _ measurable_apply
[['NormedAddCommGroup', 'toAddCommGroup'], ['NontriviallyNormedField', 'toNormedField'], ['SeminormedAddCommGroup', 'toPseudoMetricSpace'], ['PseudoMetricSpace', 'toUniformSpace'], ['Field', 'toSemifield'], ['AddCommGroup', 'toAddCommMonoid'], ['ContinuousLinearMap', 'measurable_apply'], ['measurable_pi_lambda'], ['RingHom', 'id'], ['ContinuousLinearMap', 'instMeasurableSpace'], ['NormedField', 'toField'], ['DivisionSemiring', 'toSemiring'], ['Semiring', 'toNonAssocSemiring'], ['ContinuousLinearMap'], ['ContinuousLinearMap', 'funLike'], ['NormedAddCommGroup', 'toSeminormedAddCommGroup'], ['Semifield', 'toDivisionSemiring'], ['DFunLike', 'coe'], ['UniformSpace', 'toTopologicalSpace'], ['NormedSpace', 'toModule']]
theorem
Syntax(original=True, range=StringRange(start=1819, stop=1995))
True
['Mathlib', 'MeasureTheory', 'Constructions', 'BorelSpace', 'ContinuousLinearMap']
null
leanprover/lean4:v4.11.0
Mathlib
Measurable.apply_continuousLinearMap
import Init import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.Analysis.NormedSpace.OperatorNorm.NormedSpace import Mathlib.Topology.Algebra.Module.FiniteDimension import Mathlib.MeasureTheory.Constructions.BorelSpace.ContinuousLinearMap open MeasureTheory
import Init import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.Analysis.NormedSpace.OperatorNorm.NormedSpace import Mathlib.Topology.Algebra.Module.FiniteDimension import Mathlib.MeasureTheory.Constructions.BorelSpace.ContinuousLinearMap
open MeasureTheory
@[fun_prop, measurability] theorem Measurable.apply_continuousLinearMap {Ο† : Ξ± β†’ F β†’L[π•œ] E} (hΟ† : Measurable Ο†) (v : F) : Measurable fun a => Ο† a v := sorry
theorem apply_continuousLinearMap_extracted : βˆ€ {Ξ± : Type u_1} [inst : MeasurableSpace Ξ±] {π•œ : Type u_2} [inst_1 : NontriviallyNormedField π•œ] {E : Type u_3} [inst_2 : NormedAddCommGroup E] [inst_3 : NormedSpace π•œ E] [inst_4 : MeasurableSpace E] [inst_5 : BorelSpace E] {F : Type u_4} [inst_6 : NormedAddCommGroup F] [inst_7 : NormedSpace π•œ F] {Ο† : Ξ± β†’ F β†’L[π•œ] E}, Measurable Ο† β†’ βˆ€ (v : F), Measurable fun a => (Ο† a) v := sorry
[['NormedAddCommGroup', 'toAddCommGroup'], ['NontriviallyNormedField', 'toNormedField'], ['SeminormedAddCommGroup', 'toPseudoMetricSpace'], ['PseudoMetricSpace', 'toUniformSpace'], ['Field', 'toSemifield'], ['AddCommGroup', 'toAddCommMonoid'], ['RingHom', 'id'], ['NormedField', 'toField'], ['DivisionSemiring', 'toSemiring'], ['Semiring', 'toNonAssocSemiring'], ['ContinuousLinearMap'], ['ContinuousLinearMap', 'funLike'], ['NormedAddCommGroup', 'toSeminormedAddCommGroup'], ['Measurable'], ['Semifield', 'toDivisionSemiring'], ['DFunLike', 'coe'], ['UniformSpace', 'toTopologicalSpace'], ['NormedSpace', 'toModule']]
@[fun_prop, measurability] theorem Measurable.apply_continuousLinearMap {Ο† : Ξ± β†’ F β†’L[π•œ] E} (hΟ† : Measurable Ο†) (v : F) : Measurable fun a => Ο† a v := (ContinuousLinearMap.apply π•œ E v).measurable.comp hΟ†
[['ContinuousLinearMap', 'apply'], ['NontriviallyNormedField', 'toNormedField'], ['AddCommGroup', 'toAddCommMonoid'], ['ContinuousLinearMap', 'toNormedAddCommGroup'], ['Semifield', 'toCommGroupWithZero'], ['SeminormedCommRing', 'toSeminormedRing'], ['Semiring', 'toNonAssocSemiring'], ['SMulWithZero', 'toSMulZeroClass'], ['MulActionWithZero', 'toMulAction'], ['NormedRing', 'toRing'], ['TopologicalAddGroup', 'toContinuousAdd'], ['ContinuousLinearMap', 'topologicalSpace'], ['ContinuousLinearMap', 'instBorelSpace'], ['smulCommClass_self'], ['PseudoMetricSpace', 'toUniformSpace'], ['NormedCommRing', 'toNormedRing'], ['Module', 'toMulActionWithZero'], ['EuclideanDomain', 'toCommRing'], ['CommGroupWithZero', 'toCommMonoidWithZero'], ['SMulZeroClass', 'toSMul'], ['CommRing', 'toCommMonoid'], ['MulActionWithZero', 'toSMulWithZero'], ['ContinuousLinearMap'], ['Field', 'toEuclideanDomain'], ['NormedAddCommGroup', 'toSeminormedAddCommGroup'], ['NormedSpace', 'toModule'], ['MonoidWithZero', 'toZero'], ['SeminormedAddCommGroup', 'toSeminormedAddGroup'], ['BoundedSMul', 'continuousSMul'], ['NormedAddCommGroup', 'toAddCommGroup'], ['AddCommGroup', 'toDivisionAddCommMonoid'], ['SeminormedAddCommGroup', 'toTopologicalAddGroup'], ['CommMonoidWithZero', 'toZero'], ['Semiring', 'toMonoidWithZero'], ['ContinuousLinearMap', 'toNormedSpace'], ['SeminormedRing', 'toPseudoMetricSpace'], ['AddCommMonoid', 'toAddMonoid'], ['SubtractionCommMonoid', 'toSubtractionMonoid'], ['SeminormedAddGroup', 'toAddGroup'], ['RingHom', 'id'], ['ContinuousLinearMap', 'module'], ['BorelSpace', 'opensMeasurable'], ['NormedField', 'toField'], ['Field', 'toCommRing'], ['ContinuousLinearMap', 'addCommGroup'], ['SeminormedAddCommGroup', 'toAddCommGroup'], ['ContinuousLinearMap', 'funLike'], ['AddMonoid', 'toZero'], ['NormedSpace', 'boundedSMul'], ['DFunLike', 'coe'], ['UniformSpace', 'toTopologicalSpace'], ['ContinuousLinearMap', 'measurable'], ['SubtractionMonoid', 'toSubNegZeroMonoid'], ['SeminormedAddCommGroup', 'toPseudoMetricSpace'], ['Field', 'toSemifield'], ['ContinuousSMul', 'continuousConstSMul'], ['SubNegZeroMonoid', 'toNegZeroClass'], ['NormedField', 'toNormedCommRing'], ['ContinuousLinearMap', 'instMeasurableSpace'], ['Measurable', 'comp'], ['NormedCommRing', 'toSeminormedCommRing'], ['DivisionSemiring', 'toSemiring'], ['RingHomIsometric', 'ids'], ['Semifield', 'toDivisionSemiring'], ['ContinuousLinearMap', 'addCommMonoid'], ['NegZeroClass', 'toZero']]
theorem
Syntax(original=True, range=StringRange(start=2288, stop=2513))
True
['Mathlib', 'MeasureTheory', 'Constructions', 'BorelSpace', 'ContinuousLinearMap']
null
leanprover/lean4:v4.11.0
Mathlib
AEMeasurable.apply_continuousLinearMap
import Init import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.Analysis.NormedSpace.OperatorNorm.NormedSpace import Mathlib.Topology.Algebra.Module.FiniteDimension import Mathlib.MeasureTheory.Constructions.BorelSpace.ContinuousLinearMap open MeasureTheory
import Init import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.Analysis.NormedSpace.OperatorNorm.NormedSpace import Mathlib.Topology.Algebra.Module.FiniteDimension import Mathlib.MeasureTheory.Constructions.BorelSpace.ContinuousLinearMap
open MeasureTheory
@[measurability] theorem AEMeasurable.apply_continuousLinearMap {Ο† : Ξ± β†’ F β†’L[π•œ] E} {ΞΌ : Measure Ξ±} (hΟ† : AEMeasurable Ο† ΞΌ) (v : F) : AEMeasurable (fun a => Ο† a v) ΞΌ := sorry
theorem apply_continuousLinearMap_extracted : βˆ€ {Ξ± : Type u_1} [inst : MeasurableSpace Ξ±] {π•œ : Type u_2} [inst_1 : NontriviallyNormedField π•œ] {E : Type u_3} [inst_2 : NormedAddCommGroup E] [inst_3 : NormedSpace π•œ E] [inst_4 : MeasurableSpace E] [inst_5 : BorelSpace E] {F : Type u_4} [inst_6 : NormedAddCommGroup F] [inst_7 : NormedSpace π•œ F] {Ο† : Ξ± β†’ F β†’L[π•œ] E} {ΞΌ : Measure Ξ±}, AEMeasurable Ο† ΞΌ β†’ βˆ€ (v : F), AEMeasurable (fun a => (Ο† a) v) ΞΌ := sorry
[['NormedAddCommGroup', 'toAddCommGroup'], ['NontriviallyNormedField', 'toNormedField'], ['SeminormedAddCommGroup', 'toPseudoMetricSpace'], ['PseudoMetricSpace', 'toUniformSpace'], ['Field', 'toSemifield'], ['AddCommGroup', 'toAddCommMonoid'], ['RingHom', 'id'], ['NormedField', 'toField'], ['DivisionSemiring', 'toSemiring'], ['Semiring', 'toNonAssocSemiring'], ['ContinuousLinearMap'], ['ContinuousLinearMap', 'funLike'], ['NormedAddCommGroup', 'toSeminormedAddCommGroup'], ['Semifield', 'toDivisionSemiring'], ['DFunLike', 'coe'], ['UniformSpace', 'toTopologicalSpace'], ['NormedSpace', 'toModule'], ['AEMeasurable']]
@[measurability] theorem AEMeasurable.apply_continuousLinearMap {Ο† : Ξ± β†’ F β†’L[π•œ] E} {ΞΌ : Measure Ξ±} (hΟ† : AEMeasurable Ο† ΞΌ) (v : F) : AEMeasurable (fun a => Ο† a v) ΞΌ := (ContinuousLinearMap.apply π•œ E v).measurable.comp_aemeasurable hΟ†
[['ContinuousLinearMap', 'apply'], ['NontriviallyNormedField', 'toNormedField'], ['AddCommGroup', 'toAddCommMonoid'], ['ContinuousLinearMap', 'toNormedAddCommGroup'], ['Semifield', 'toCommGroupWithZero'], ['SeminormedCommRing', 'toSeminormedRing'], ['Semiring', 'toNonAssocSemiring'], ['SMulWithZero', 'toSMulZeroClass'], ['MulActionWithZero', 'toMulAction'], ['NormedRing', 'toRing'], ['TopologicalAddGroup', 'toContinuousAdd'], ['ContinuousLinearMap', 'topologicalSpace'], ['ContinuousLinearMap', 'instBorelSpace'], ['smulCommClass_self'], ['PseudoMetricSpace', 'toUniformSpace'], ['NormedCommRing', 'toNormedRing'], ['Module', 'toMulActionWithZero'], ['EuclideanDomain', 'toCommRing'], ['CommGroupWithZero', 'toCommMonoidWithZero'], ['SMulZeroClass', 'toSMul'], ['CommRing', 'toCommMonoid'], ['MulActionWithZero', 'toSMulWithZero'], ['ContinuousLinearMap'], ['Field', 'toEuclideanDomain'], ['NormedAddCommGroup', 'toSeminormedAddCommGroup'], ['NormedSpace', 'toModule'], ['MonoidWithZero', 'toZero'], ['SeminormedAddCommGroup', 'toSeminormedAddGroup'], ['BoundedSMul', 'continuousSMul'], ['NormedAddCommGroup', 'toAddCommGroup'], ['AddCommGroup', 'toDivisionAddCommMonoid'], ['SeminormedAddCommGroup', 'toTopologicalAddGroup'], ['CommMonoidWithZero', 'toZero'], ['Semiring', 'toMonoidWithZero'], ['ContinuousLinearMap', 'toNormedSpace'], ['SeminormedRing', 'toPseudoMetricSpace'], ['AddCommMonoid', 'toAddMonoid'], ['SubtractionCommMonoid', 'toSubtractionMonoid'], ['SeminormedAddGroup', 'toAddGroup'], ['RingHom', 'id'], ['ContinuousLinearMap', 'module'], ['BorelSpace', 'opensMeasurable'], ['NormedField', 'toField'], ['Field', 'toCommRing'], ['ContinuousLinearMap', 'addCommGroup'], ['SeminormedAddCommGroup', 'toAddCommGroup'], ['ContinuousLinearMap', 'funLike'], ['AddMonoid', 'toZero'], ['NormedSpace', 'boundedSMul'], ['Measurable', 'comp_aemeasurable'], ['DFunLike', 'coe'], ['UniformSpace', 'toTopologicalSpace'], ['ContinuousLinearMap', 'measurable'], ['SubtractionMonoid', 'toSubNegZeroMonoid'], ['SeminormedAddCommGroup', 'toPseudoMetricSpace'], ['Field', 'toSemifield'], ['ContinuousSMul', 'continuousConstSMul'], ['SubNegZeroMonoid', 'toNegZeroClass'], ['NormedField', 'toNormedCommRing'], ['ContinuousLinearMap', 'instMeasurableSpace'], ['NormedCommRing', 'toSeminormedCommRing'], ['DivisionSemiring', 'toSemiring'], ['RingHomIsometric', 'ids'], ['Semifield', 'toDivisionSemiring'], ['ContinuousLinearMap', 'addCommMonoid'], ['NegZeroClass', 'toZero']]
theorem
Syntax(original=True, range=StringRange(start=2515, stop=2775))
True
['Mathlib', 'MeasureTheory', 'Constructions', 'BorelSpace', 'ContinuousLinearMap']
null
leanprover/lean4:v4.11.0
Mathlib
measurable_smul_const
import Init import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.Analysis.NormedSpace.OperatorNorm.NormedSpace import Mathlib.Topology.Algebra.Module.FiniteDimension import Mathlib.MeasureTheory.Constructions.BorelSpace.ContinuousLinearMap open MeasureTheory
import Init import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.Analysis.NormedSpace.OperatorNorm.NormedSpace import Mathlib.Topology.Algebra.Module.FiniteDimension import Mathlib.MeasureTheory.Constructions.BorelSpace.ContinuousLinearMap
open MeasureTheory
theorem measurable_smul_const {f : Ξ± β†’ π•œ} {c : E} (hc : c β‰  0) : (Measurable fun x => f x β€’ c) ↔ Measurable f := sorry
theorem measurable_smul_const_extracted : βˆ€ {Ξ± : Type u_1} [inst : MeasurableSpace Ξ±] {π•œ : Type u_2} [inst_1 : NontriviallyNormedField π•œ] [inst_2 : CompleteSpace π•œ] [inst_3 : MeasurableSpace π•œ] [inst_4 : BorelSpace π•œ] {E : Type u_3} [inst_5 : NormedAddCommGroup E] [inst_6 : NormedSpace π•œ E] [inst_7 : MeasurableSpace E] [inst_8 : BorelSpace E] {f : Ξ± β†’ π•œ} {c : E}, c β‰  0 β†’ ((Measurable fun x => f x β€’ c) ↔ Measurable f) := sorry
[['NormedAddCommGroup', 'toAddCommGroup'], ['AddCommGroup', 'toDivisionAddCommMonoid'], ['CommMonoidWithZero', 'toZero'], ['instHSMul'], ['NontriviallyNormedField', 'toNormedField'], ['Semiring', 'toMonoidWithZero'], ['AddCommGroup', 'toAddCommMonoid'], ['Field', 'toSemifield'], ['Semifield', 'toCommGroupWithZero'], ['Module', 'toMulActionWithZero'], ['SubNegZeroMonoid', 'toNegZeroClass'], ['SubtractionCommMonoid', 'toSubtractionMonoid'], ['CommGroupWithZero', 'toCommMonoidWithZero'], ['SMulZeroClass', 'toSMul'], ['NormedField', 'toField'], ['DivisionSemiring', 'toSemiring'], ['MulActionWithZero', 'toSMulWithZero'], ['SMulWithZero', 'toSMulZeroClass'], ['Iff'], ['NormedAddCommGroup', 'toSeminormedAddCommGroup'], ['HSMul', 'hSMul'], ['Semifield', 'toDivisionSemiring'], ['Measurable'], ['NormedSpace', 'toModule'], ['NegZeroClass', 'toZero'], ['SubtractionMonoid', 'toSubNegZeroMonoid']]
theorem measurable_smul_const {f : Ξ± β†’ π•œ} {c : E} (hc : c β‰  0) : (Measurable fun x => f x β€’ c) ↔ Measurable f := (closedEmbedding_smul_left hc).measurableEmbedding.measurable_comp_iff
[['NormedAddCommGroup', 'toAddCommGroup'], ['SeminormedAddCommGroup', 'toTopologicalAddGroup'], ['CommMonoidWithZero', 'toZero'], ['AddCommGroup', 'toDivisionAddCommMonoid'], ['instHSMul'], ['NontriviallyNormedField', 'toNormedField'], ['ClosedEmbedding', 'measurableEmbedding'], ['Semiring', 'toMonoidWithZero'], ['AddCommGroup', 'toAddCommMonoid'], ['SeminormedRing', 'toPseudoMetricSpace'], ['MeasurableEmbedding', 'measurable_comp_iff'], ['Semifield', 'toCommGroupWithZero'], ['SubtractionCommMonoid', 'toSubtractionMonoid'], ['MetricSpace', 'toMetrizableSpace'], ['NormedField', 'toField'], ['SMulWithZero', 'toSMulZeroClass'], ['SeminormedCommRing', 'toSeminormedRing'], ['NormedSpace', 'boundedSMul'], ['HSMul', 'hSMul'], ['UniformSpace', 'toTopologicalSpace'], ['SubtractionMonoid', 'toSubNegZeroMonoid'], ['TopologicalSpace', 't2Space_of_metrizableSpace'], ['closedEmbedding_smul_left'], ['SeminormedAddCommGroup', 'toPseudoMetricSpace'], ['PseudoMetricSpace', 'toUniformSpace'], ['Field', 'toSemifield'], ['SubNegZeroMonoid', 'toNegZeroClass'], ['Module', 'toMulActionWithZero'], ['NormedField', 'toNormedCommRing'], ['CommGroupWithZero', 'toCommMonoidWithZero'], ['SMulZeroClass', 'toSMul'], ['NormedAddCommGroup', 'toMetricSpace'], ['DivisionSemiring', 'toSemiring'], ['NormedCommRing', 'toSeminormedCommRing'], ['MulActionWithZero', 'toSMulWithZero'], ['NormedAddCommGroup', 'toSeminormedAddCommGroup'], ['Semifield', 'toDivisionSemiring'], ['NormedSpace', 'toModule'], ['BoundedSMul', 'continuousSMul'], ['NegZeroClass', 'toZero']]
theorem
Syntax(original=True, range=StringRange(start=3066, stop=3267))
True
['Mathlib', 'MeasureTheory', 'Constructions', 'BorelSpace', 'ContinuousLinearMap']
null
leanprover/lean4:v4.11.0
Mathlib
aemeasurable_smul_const
import Init import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.Analysis.NormedSpace.OperatorNorm.NormedSpace import Mathlib.Topology.Algebra.Module.FiniteDimension import Mathlib.MeasureTheory.Constructions.BorelSpace.ContinuousLinearMap open MeasureTheory
import Init import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.Analysis.NormedSpace.OperatorNorm.NormedSpace import Mathlib.Topology.Algebra.Module.FiniteDimension import Mathlib.MeasureTheory.Constructions.BorelSpace.ContinuousLinearMap
open MeasureTheory
theorem aemeasurable_smul_const {f : Ξ± β†’ π•œ} {ΞΌ : Measure Ξ±} {c : E} (hc : c β‰  0) : AEMeasurable (fun x => f x β€’ c) ΞΌ ↔ AEMeasurable f ΞΌ := sorry
theorem aemeasurable_smul_const_extracted : βˆ€ {Ξ± : Type u_1} [inst : MeasurableSpace Ξ±] {π•œ : Type u_2} [inst_1 : NontriviallyNormedField π•œ] [inst_2 : CompleteSpace π•œ] [inst_3 : MeasurableSpace π•œ] [inst_4 : BorelSpace π•œ] {E : Type u_3} [inst_5 : NormedAddCommGroup E] [inst_6 : NormedSpace π•œ E] [inst_7 : MeasurableSpace E] [inst_8 : BorelSpace E] {f : Ξ± β†’ π•œ} {ΞΌ : Measure Ξ±} {c : E}, c β‰  0 β†’ (AEMeasurable (fun x => f x β€’ c) ΞΌ ↔ AEMeasurable f ΞΌ) := sorry
[['NormedAddCommGroup', 'toAddCommGroup'], ['AddCommGroup', 'toDivisionAddCommMonoid'], ['CommMonoidWithZero', 'toZero'], ['instHSMul'], ['NontriviallyNormedField', 'toNormedField'], ['Semiring', 'toMonoidWithZero'], ['AddCommGroup', 'toAddCommMonoid'], ['Field', 'toSemifield'], ['Semifield', 'toCommGroupWithZero'], ['Module', 'toMulActionWithZero'], ['SubNegZeroMonoid', 'toNegZeroClass'], ['SubtractionCommMonoid', 'toSubtractionMonoid'], ['CommGroupWithZero', 'toCommMonoidWithZero'], ['SMulZeroClass', 'toSMul'], ['NormedField', 'toField'], ['DivisionSemiring', 'toSemiring'], ['MulActionWithZero', 'toSMulWithZero'], ['SMulWithZero', 'toSMulZeroClass'], ['Iff'], ['NormedAddCommGroup', 'toSeminormedAddCommGroup'], ['HSMul', 'hSMul'], ['Semifield', 'toDivisionSemiring'], ['NormedSpace', 'toModule'], ['NegZeroClass', 'toZero'], ['AEMeasurable'], ['SubtractionMonoid', 'toSubNegZeroMonoid']]
theorem aemeasurable_smul_const {f : Ξ± β†’ π•œ} {ΞΌ : Measure Ξ±} {c : E} (hc : c β‰  0) : AEMeasurable (fun x => f x β€’ c) ΞΌ ↔ AEMeasurable f ΞΌ := (closedEmbedding_smul_left hc).measurableEmbedding.aemeasurable_comp_iff
[['NormedAddCommGroup', 'toAddCommGroup'], ['SeminormedAddCommGroup', 'toTopologicalAddGroup'], ['CommMonoidWithZero', 'toZero'], ['AddCommGroup', 'toDivisionAddCommMonoid'], ['instHSMul'], ['NontriviallyNormedField', 'toNormedField'], ['ClosedEmbedding', 'measurableEmbedding'], ['Semiring', 'toMonoidWithZero'], ['AddCommGroup', 'toAddCommMonoid'], ['SeminormedRing', 'toPseudoMetricSpace'], ['Semifield', 'toCommGroupWithZero'], ['SubtractionCommMonoid', 'toSubtractionMonoid'], ['MetricSpace', 'toMetrizableSpace'], ['NormedField', 'toField'], ['SMulWithZero', 'toSMulZeroClass'], ['SeminormedCommRing', 'toSeminormedRing'], ['NormedSpace', 'boundedSMul'], ['HSMul', 'hSMul'], ['UniformSpace', 'toTopologicalSpace'], ['SubtractionMonoid', 'toSubNegZeroMonoid'], ['TopologicalSpace', 't2Space_of_metrizableSpace'], ['closedEmbedding_smul_left'], ['SeminormedAddCommGroup', 'toPseudoMetricSpace'], ['PseudoMetricSpace', 'toUniformSpace'], ['Field', 'toSemifield'], ['SubNegZeroMonoid', 'toNegZeroClass'], ['Module', 'toMulActionWithZero'], ['NormedField', 'toNormedCommRing'], ['CommGroupWithZero', 'toCommMonoidWithZero'], ['SMulZeroClass', 'toSMul'], ['NormedAddCommGroup', 'toMetricSpace'], ['MeasurableEmbedding', 'aemeasurable_comp_iff'], ['DivisionSemiring', 'toSemiring'], ['NormedCommRing', 'toSeminormedCommRing'], ['MulActionWithZero', 'toSMulWithZero'], ['NormedAddCommGroup', 'toSeminormedAddCommGroup'], ['Semifield', 'toDivisionSemiring'], ['NormedSpace', 'toModule'], ['BoundedSMul', 'continuousSMul'], ['NegZeroClass', 'toZero']]
theorem
Syntax(original=True, range=StringRange(start=3269, stop=3502))
True
['Mathlib', 'MeasureTheory', 'Constructions', 'BorelSpace', 'ContinuousLinearMap']
null
leanprover/lean4:v4.11.0
Mathlib
ProbabilityTheory.term𝔼[_|_]
import Init import Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.Probability.Notation open MeasureTheory open scoped MeasureTheory
import Init import Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.Probability.Notation
open MeasureTheory open scoped MeasureTheory
scoped[ProbabilityTheory] notation "𝔼[" X "|" m "]" => MeasureTheory.condexp m MeasureTheory.MeasureSpace.volume X := sorry
def term𝔼[_|_]_extracted : Lean.ParserDescr := sorry
[['Lean', 'ParserDescr']]
scoped[ProbabilityTheory] notation "𝔼[" X "|" m "]" => MeasureTheory.condexp m MeasureTheory.MeasureSpace.volume X
[['Lean', 'ParserDescr', 'binary'], ['Lean', 'Name', 'mkStr2'], ['OfNat', 'ofNat'], ['Lean', 'ParserDescr', 'cat'], ['Lean', 'ParserDescr', 'node'], ['instOfNatNat'], ['Lean', 'Name', 'mkStr1'], ['Nat'], ['Lean', 'ParserDescr', 'symbol']]
theorem
Syntax(original=False, range=StringRange(start=1468, stop=1587))
True
['Mathlib', 'Probability', 'Notation']
null
leanprover/lean4:v4.11.0
Mathlib
ProbabilityTheory._aux___macroRules_ProbabilityTheory_term𝔼[_|_]_1
import Init import Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.Probability.Notation open MeasureTheory open scoped MeasureTheory
import Init import Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.Probability.Notation
open MeasureTheory open scoped MeasureTheory
scoped[ProbabilityTheory] notation "𝔼[" X "|" m "]" => MeasureTheory.condexp m MeasureTheory.MeasureSpace.volume X := sorry
def _aux___macroRules_ProbabilityTheory_term𝔼[_|_]_1_extracted : Lean.Macro := sorry
[['Lean', 'Macro']]
scoped[ProbabilityTheory] notation "𝔼[" X "|" m "]" => MeasureTheory.condexp m MeasureTheory.MeasureSpace.volume X
[['EStateM'], ['OfNat', 'ofNat'], ['Lean', 'Name', 'mkStr3'], ['String', "toSubstring'"], ['Lean', 'MacroM'], ['String'], ['Lean', 'Syntax', 'Preresolved', 'decl'], ['Lean', 'Macro', 'instMonadQuotationMacroM'], ['Lean', 'Name', 'mkStr1'], ['Lean', 'Syntax', 'Preresolved'], ['Lean', 'addMacroScope'], ['Pure', 'pure'], ['Monad', 'toBind'], ['Lean', 'Macro', 'instMonadRefMacroM'], ['Eq'], ['ite'], ['Lean', 'TSyntax'], ['EStateM', 'instMonad'], ['Lean', 'MonadQuotation', 'getCurrMacroScope'], ['Lean', 'Macro', 'State'], ['Bool', 'true'], ['PUnit'], ['Lean', 'Macro', 'Exception'], ['instOfNatNat'], ['Lean', 'Syntax', 'ident'], ['List', 'nil'], ['Nat'], ['Bind', 'bind'], ['Lean', 'Syntax', 'node3'], ['Applicative', 'toPure'], ['instDecidableEqBool'], ['Lean', 'Syntax', 'node2'], ['List', 'cons'], ['Lean', 'Syntax', 'isOfKind'], ['Lean', 'Macro', 'Context'], ['Lean', 'Name', 'mkStr4'], ['Lean', 'TSyntax', 'raw'], ['Lean', 'TSyntax', 'mk'], ['instMonadExceptOfMonadExceptOf'], ['ReaderT', 'instMonadExceptOf'], ['Lean', 'Syntax', 'getArg'], ['Lean', 'Syntax'], ['Lean', 'Macro', 'Exception', 'unsupportedSyntax'], ['EStateM', 'instMonadExceptOfOfBacktrackable'], ['Lean', 'MacroScope'], ['Lean', 'MonadRef', 'mkInfoFromRefPos'], ['ReaderT', 'instApplicativeOfMonad'], ['Lean', 'Name', 'mkStr2'], ['Lean', 'MonadQuotation', 'getMainModule'], ['Lean', 'SyntaxNodeKind'], ['letFun'], ['EStateM', 'nonBacktrackable'], ['MonadExcept', 'throw'], ['Lean', 'SourceInfo'], ['Bool'], ['ReaderT', 'instMonad'], ['Lean', 'Name']]
theorem
Syntax(original=False, range=StringRange(start=1468, stop=1587))
True
['Mathlib', 'Probability', 'Notation']
null
leanprover/lean4:v4.11.0
Mathlib
ProbabilityTheory._aux___unexpand_MeasureTheory_condexp_1
import Init import Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.Probability.Notation open MeasureTheory open scoped MeasureTheory
import Init import Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.Probability.Notation
open MeasureTheory open scoped MeasureTheory
scoped[ProbabilityTheory] notation "𝔼[" X "|" m "]" => MeasureTheory.condexp m MeasureTheory.MeasureSpace.volume X := sorry
def _aux___unexpand_MeasureTheory_condexp_1_extracted : Lean.PrettyPrinter.Unexpander := sorry
[['Lean', 'PrettyPrinter', 'Unexpander']]
scoped[ProbabilityTheory] notation "𝔼[" X "|" m "]" => MeasureTheory.condexp m MeasureTheory.MeasureSpace.volume X
[['Lean', 'withRef'], ['Lean', 'Syntax', 'matchesNull'], ['EStateM'], ['cond'], ['OfNat', 'ofNat'], ['Lean', 'Name', 'mkStr3'], ['Lean', 'Name', 'mkStr1'], ['Pure', 'pure'], ['Monad', 'toBind'], ['Eq'], ['ite'], ['Lean', 'TSyntax'], ['EStateM', 'instMonad'], ['Lean', 'MonadQuotation', 'getCurrMacroScope'], ['Bool', 'true'], ['Unit', 'unit'], ['PUnit'], ['instOfNatNat'], ['List', 'nil'], ['Bind', 'bind'], ['Nat'], ['Applicative', 'toPure'], ['instDecidableEqBool'], ['Lean', 'PrettyPrinter', 'instMonadQuotationUnexpandM'], ['Lean', 'Syntax', 'isOfKind'], ['List', 'cons'], ['Lean', 'Name', 'mkStr4'], ['Unit'], ['Lean', 'TSyntax', 'raw'], ['Lean', 'Syntax', 'matchesIdent'], ['Lean', 'TSyntax', 'mk'], ['Lean', 'MonadQuotation', 'toMonadRef'], ['instMonadExceptOfMonadExceptOf'], ['Lean', 'Syntax', 'atom'], ['Lean', 'Syntax', 'node5'], ['ReaderT', 'instMonadExceptOf'], ['Lean', 'Syntax', 'getArg'], ['Lean', 'Syntax'], ['EStateM', 'instMonadExceptOfOfBacktrackable'], ['Lean', 'MacroScope'], ['Lean', 'MonadRef', 'mkInfoFromRefPos'], ['or'], ['Lean', 'Name', 'mkStr2'], ['ReaderT', 'instApplicativeOfMonad'], ['Lean', 'MonadQuotation', 'getMainModule'], ['Bool', 'false'], ['Lean', 'PrettyPrinter', 'UnexpandM'], ['letFun'], ['Lean', 'SyntaxNodeKind'], ['EStateM', 'nonBacktrackable'], ['MonadExcept', 'throw'], ['Lean', 'SourceInfo'], ['Bool'], ['ReaderT', 'instMonad'], ['Lean', 'Name']]
theorem
Syntax(original=False, range=StringRange(start=1468, stop=1587))
True
['Mathlib', 'Probability', 'Notation']
null
leanprover/lean4:v4.11.0
Mathlib
ProbabilityTheory.term_[_]
import Init import Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.Probability.Notation open MeasureTheory open scoped MeasureTheory
import Init import Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.Probability.Notation
open MeasureTheory open scoped MeasureTheory
scoped[ProbabilityTheory] notation P "[" X "]" => ∫ x, ↑(X x) βˆ‚P := sorry
def term_[_]_extracted : Lean.TrailingParserDescr := sorry
[['Lean', 'TrailingParserDescr']]
scoped[ProbabilityTheory] notation P "[" X "]" => ∫ x, ↑(X x) βˆ‚P
[['Lean', 'ParserDescr', 'binary'], ['Lean', 'Name', 'mkStr2'], ['OfNat', 'ofNat'], ['Lean', 'ParserDescr', 'cat'], ['Lean', 'ParserDescr', 'trailingNode'], ['instOfNatNat'], ['Lean', 'Name', 'mkStr1'], ['Nat'], ['Lean', 'ParserDescr', 'symbol']]
theorem
Syntax(original=False, range=StringRange(start=1702, stop=1772))
True
['Mathlib', 'Probability', 'Notation']
null
leanprover/lean4:v4.11.0
Mathlib
ProbabilityTheory._aux___macroRules_ProbabilityTheory_term_[_]_1
import Init import Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.Probability.Notation open MeasureTheory open scoped MeasureTheory
import Init import Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.Probability.Notation
open MeasureTheory open scoped MeasureTheory
scoped[ProbabilityTheory] notation P "[" X "]" => ∫ x, ↑(X x) βˆ‚P := sorry
def _aux___macroRules_ProbabilityTheory_term_[_]_1_extracted : Lean.Macro := sorry
[['Lean', 'Macro']]
scoped[ProbabilityTheory] notation P "[" X "]" => ∫ x, ↑(X x) βˆ‚P
[['EStateM'], ['OfNat', 'ofNat'], ['Array', 'mkArray0'], ['Lean', 'Name', 'mkStr3'], ['String', "toSubstring'"], ['Lean', 'MacroM'], ['Lean', 'Macro', 'instMonadQuotationMacroM'], ['Lean', 'Name', 'mkStr1'], ['Lean', 'Syntax', 'Preresolved'], ['Lean', 'addMacroScope'], ['Pure', 'pure'], ['Monad', 'toBind'], ['Lean', 'Macro', 'instMonadRefMacroM'], ['Eq'], ['ite'], ['Lean', 'TSyntax'], ['EStateM', 'instMonad'], ['Lean', 'MonadQuotation', 'getCurrMacroScope'], ['Lean', 'Syntax', 'node1'], ['Lean', 'Macro', 'State'], ['Bool', 'true'], ['PUnit'], ['Lean', 'Macro', 'Exception'], ['instOfNatNat'], ['Lean', 'Syntax', 'ident'], ['List', 'nil'], ['Nat'], ['Bind', 'bind'], ['Lean', 'Syntax', 'node3'], ['Applicative', 'toPure'], ['instDecidableEqBool'], ['Lean', 'Syntax', 'node2'], ['List', 'cons'], ['Lean', 'Syntax', 'isOfKind'], ['Lean', 'Macro', 'Context'], ['Lean', 'Name', 'mkStr4'], ['Lean', 'TSyntax', 'raw'], ['Lean', 'TSyntax', 'mk'], ['instMonadExceptOfMonadExceptOf'], ['Lean', 'Syntax', 'atom'], ['ReaderT', 'instMonadExceptOf'], ['Lean', 'Syntax', 'node6'], ['Lean', 'Syntax', 'getArg'], ['Lean', 'Syntax'], ['Lean', 'Macro', 'Exception', 'unsupportedSyntax'], ['EStateM', 'instMonadExceptOfOfBacktrackable'], ['Lean', 'Syntax', 'node'], ['Lean', 'MacroScope'], ['Lean', 'MonadRef', 'mkInfoFromRefPos'], ['ReaderT', 'instApplicativeOfMonad'], ['Lean', 'Name', 'mkStr2'], ['Lean', 'MonadQuotation', 'getMainModule'], ['Lean', 'SyntaxNodeKind'], ['letFun'], ['EStateM', 'nonBacktrackable'], ['MonadExcept', 'throw'], ['Lean', 'SourceInfo'], ['Bool'], ['ReaderT', 'instMonad'], ['Lean', 'Name']]
theorem
Syntax(original=False, range=StringRange(start=1702, stop=1772))
True
['Mathlib', 'Probability', 'Notation']
null
leanprover/lean4:v4.11.0
Mathlib
ProbabilityTheory.term𝔼[_]
import Init import Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.Probability.Notation open MeasureTheory open scoped MeasureTheory
import Init import Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.Probability.Notation
open MeasureTheory open scoped MeasureTheory
scoped[ProbabilityTheory] notation "𝔼[" X "]" => ∫ a, (X : _ β†’ _) a := sorry
def term𝔼[_]_extracted : Lean.ParserDescr := sorry
[['Lean', 'ParserDescr']]
scoped[ProbabilityTheory] notation "𝔼[" X "]" => ∫ a, (X : _ β†’ _) a
[['Lean', 'ParserDescr', 'binary'], ['Lean', 'Name', 'mkStr2'], ['OfNat', 'ofNat'], ['Lean', 'ParserDescr', 'cat'], ['Lean', 'ParserDescr', 'node'], ['instOfNatNat'], ['Lean', 'Name', 'mkStr1'], ['Nat'], ['Lean', 'ParserDescr', 'symbol']]
theorem
Syntax(original=False, range=StringRange(start=1774, stop=1848))
True
['Mathlib', 'Probability', 'Notation']
null
leanprover/lean4:v4.11.0
Mathlib
ProbabilityTheory._aux___macroRules_ProbabilityTheory_term𝔼[_]_1
import Init import Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.Probability.Notation open MeasureTheory open scoped MeasureTheory
import Init import Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.Probability.Notation
open MeasureTheory open scoped MeasureTheory
scoped[ProbabilityTheory] notation "𝔼[" X "]" => ∫ a, (X : _ β†’ _) a := sorry
def _aux___macroRules_ProbabilityTheory_term𝔼[_]_1_extracted : Lean.Macro := sorry
[['Lean', 'Macro']]
scoped[ProbabilityTheory] notation "𝔼[" X "]" => ∫ a, (X : _ β†’ _) a
[['EStateM'], ['OfNat', 'ofNat'], ['Array', 'mkArray0'], ['Lean', 'Name', 'mkStr3'], ['String', "toSubstring'"], ['Lean', 'MacroM'], ['Lean', 'Macro', 'instMonadQuotationMacroM'], ['Lean', 'Name', 'mkStr1'], ['Lean', 'Syntax', 'Preresolved'], ['Lean', 'addMacroScope'], ['Lean', 'Syntax', 'node4'], ['Pure', 'pure'], ['Monad', 'toBind'], ['Lean', 'Macro', 'instMonadRefMacroM'], ['Eq'], ['ite'], ['Lean', 'TSyntax'], ['EStateM', 'instMonad'], ['Lean', 'MonadQuotation', 'getCurrMacroScope'], ['Lean', 'Syntax', 'node1'], ['Lean', 'Macro', 'State'], ['Bool', 'true'], ['PUnit'], ['Lean', 'Macro', 'Exception'], ['instOfNatNat'], ['Lean', 'Syntax', 'ident'], ['List', 'nil'], ['Nat'], ['Bind', 'bind'], ['Lean', 'Syntax', 'node3'], ['Applicative', 'toPure'], ['instDecidableEqBool'], ['Lean', 'Syntax', 'node2'], ['List', 'cons'], ['Lean', 'Syntax', 'isOfKind'], ['Lean', 'Macro', 'Context'], ['Lean', 'Name', 'mkStr4'], ['Lean', 'TSyntax', 'raw'], ['Lean', 'TSyntax', 'mk'], ['instMonadExceptOfMonadExceptOf'], ['Lean', 'Syntax', 'atom'], ['Lean', 'Syntax', 'node5'], ['ReaderT', 'instMonadExceptOf'], ['Lean', 'Syntax', 'getArg'], ['Lean', 'Syntax'], ['Lean', 'Macro', 'Exception', 'unsupportedSyntax'], ['EStateM', 'instMonadExceptOfOfBacktrackable'], ['Lean', 'Syntax', 'node'], ['Lean', 'MacroScope'], ['Lean', 'MonadRef', 'mkInfoFromRefPos'], ['ReaderT', 'instApplicativeOfMonad'], ['Lean', 'Name', 'mkStr2'], ['Lean', 'MonadQuotation', 'getMainModule'], ['Lean', 'SyntaxNodeKind'], ['letFun'], ['EStateM', 'nonBacktrackable'], ['MonadExcept', 'throw'], ['Lean', 'SourceInfo'], ['Bool'], ['ReaderT', 'instMonad'], ['Lean', 'Name']]
theorem
Syntax(original=False, range=StringRange(start=1774, stop=1848))
True
['Mathlib', 'Probability', 'Notation']
null
leanprover/lean4:v4.11.0
Mathlib
ProbabilityTheory.term_⟦_|_⟧
import Init import Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.Probability.Notation open MeasureTheory open scoped MeasureTheory
import Init import Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.Probability.Notation
open MeasureTheory open scoped MeasureTheory
scoped[ProbabilityTheory] notation P "⟦" s "|" m "⟧" => MeasureTheory.condexp m P (Set.indicator s fun Ο‰ => (1 : ℝ)) := sorry
def term_⟦_|_⟧_extracted : Lean.TrailingParserDescr := sorry
[['Lean', 'TrailingParserDescr']]
scoped[ProbabilityTheory] notation P "⟦" s "|" m "⟧" => MeasureTheory.condexp m P (Set.indicator s fun Ο‰ => (1 : ℝ))
[['Lean', 'ParserDescr', 'binary'], ['Lean', 'Name', 'mkStr2'], ['OfNat', 'ofNat'], ['Lean', 'ParserDescr', 'cat'], ['Lean', 'ParserDescr', 'trailingNode'], ['instOfNatNat'], ['Lean', 'Name', 'mkStr1'], ['Nat'], ['Lean', 'ParserDescr', 'symbol']]
theorem
Syntax(original=False, range=StringRange(start=1850, stop=1975))
True
['Mathlib', 'Probability', 'Notation']
null
leanprover/lean4:v4.11.0
Mathlib
ProbabilityTheory._aux___macroRules_ProbabilityTheory_term_⟦_|_⟧_1
import Init import Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.Probability.Notation open MeasureTheory open scoped MeasureTheory
import Init import Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.Probability.Notation
open MeasureTheory open scoped MeasureTheory
scoped[ProbabilityTheory] notation P "⟦" s "|" m "⟧" => MeasureTheory.condexp m P (Set.indicator s fun Ο‰ => (1 : ℝ)) := sorry
def _aux___macroRules_ProbabilityTheory_term_⟦_|_⟧_1_extracted : Lean.Macro := sorry
[['Lean', 'Macro']]
scoped[ProbabilityTheory] notation P "⟦" s "|" m "⟧" => MeasureTheory.condexp m P (Set.indicator s fun Ο‰ => (1 : ℝ))
[['EStateM'], ['OfNat', 'ofNat'], ['Array', 'mkArray0'], ['String', "toSubstring'"], ['Lean', 'MacroM'], ['String'], ['Lean', 'Syntax', 'Preresolved', 'decl'], ['Lean', 'Macro', 'instMonadQuotationMacroM'], ['Lean', 'Name', 'mkStr1'], ['Lean', 'Syntax', 'Preresolved'], ['Lean', 'Syntax', 'node4'], ['Lean', 'addMacroScope'], ['Pure', 'pure'], ['Lean', 'Syntax', 'Preresolved', 'namespace'], ['Monad', 'toBind'], ['Lean', 'Macro', 'instMonadRefMacroM'], ['Eq'], ['ite'], ['Lean', 'TSyntax'], ['EStateM', 'instMonad'], ['Lean', 'MonadQuotation', 'getCurrMacroScope'], ['Lean', 'Syntax', 'node1'], ['Lean', 'Macro', 'State'], ['Bool', 'true'], ['PUnit'], ['Lean', 'Macro', 'Exception'], ['instOfNatNat'], ['Lean', 'Syntax', 'ident'], ['List', 'nil'], ['Nat'], ['Bind', 'bind'], ['Lean', 'Syntax', 'node3'], ['Applicative', 'toPure'], ['instDecidableEqBool'], ['Lean', 'Syntax', 'node2'], ['List', 'cons'], ['Lean', 'Syntax', 'isOfKind'], ['Lean', 'Macro', 'Context'], ['Lean', 'Name', 'mkStr4'], ['Lean', 'TSyntax', 'raw'], ['Lean', 'TSyntax', 'mk'], ['instMonadExceptOfMonadExceptOf'], ['Lean', 'Syntax', 'atom'], ['Lean', 'Syntax', 'node5'], ['ReaderT', 'instMonadExceptOf'], ['Lean', 'Syntax', 'getArg'], ['Lean', 'Syntax'], ['Lean', 'Macro', 'Exception', 'unsupportedSyntax'], ['EStateM', 'instMonadExceptOfOfBacktrackable'], ['Lean', 'Syntax', 'node'], ['Lean', 'MacroScope'], ['Lean', 'MonadRef', 'mkInfoFromRefPos'], ['ReaderT', 'instApplicativeOfMonad'], ['Lean', 'Name', 'mkStr2'], ['Lean', 'MonadQuotation', 'getMainModule'], ['Lean', 'SyntaxNodeKind'], ['letFun'], ['EStateM', 'nonBacktrackable'], ['MonadExcept', 'throw'], ['Lean', 'SourceInfo'], ['Bool'], ['ReaderT', 'instMonad'], ['Lean', 'Name']]
theorem
Syntax(original=False, range=StringRange(start=1850, stop=1975))
True
['Mathlib', 'Probability', 'Notation']
null
leanprover/lean4:v4.11.0
Mathlib
ProbabilityTheory._aux___unexpand_MeasureTheory_condexp_2
import Init import Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.Probability.Notation open MeasureTheory open scoped MeasureTheory
import Init import Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.Probability.Notation
open MeasureTheory open scoped MeasureTheory
scoped[ProbabilityTheory] notation P "⟦" s "|" m "⟧" => MeasureTheory.condexp m P (Set.indicator s fun Ο‰ => (1 : ℝ)) := sorry
def _aux___unexpand_MeasureTheory_condexp_2_extracted : Lean.PrettyPrinter.Unexpander := sorry
[['Lean', 'PrettyPrinter', 'Unexpander']]
scoped[ProbabilityTheory] notation P "⟦" s "|" m "⟧" => MeasureTheory.condexp m P (Set.indicator s fun Ο‰ => (1 : ℝ))
[['Lean', 'withRef'], ['Lean', 'Syntax', 'matchesNull'], ['Lean', 'Syntax', 'matchesLit'], ['EStateM'], ['cond'], ['OfNat', 'ofNat'], ['Lean', 'Name', 'mkStr1'], ['Pure', 'pure'], ['Monad', 'toBind'], ['Eq'], ['ite'], ['Lean', 'TSyntax'], ['EStateM', 'instMonad'], ['Lean', 'MonadQuotation', 'getCurrMacroScope'], ['Bool', 'true'], ['Unit', 'unit'], ['PUnit'], ['instOfNatNat'], ['List', 'nil'], ['Bind', 'bind'], ['Nat'], ['Applicative', 'toPure'], ['instDecidableEqBool'], ['Lean', 'PrettyPrinter', 'instMonadQuotationUnexpandM'], ['Lean', 'Syntax', 'isOfKind'], ['List', 'cons'], ['Lean', 'Name', 'mkStr4'], ['Unit'], ['Lean', 'TSyntax', 'raw'], ['Lean', 'Syntax', 'matchesIdent'], ['Lean', 'TSyntax', 'mk'], ['Lean', 'MonadQuotation', 'toMonadRef'], ['instMonadExceptOfMonadExceptOf'], ['Lean', 'Syntax', 'atom'], ['ReaderT', 'instMonadExceptOf'], ['Lean', 'Syntax', 'node6'], ['Lean', 'Syntax', 'getArg'], ['Lean', 'Syntax'], ['EStateM', 'instMonadExceptOfOfBacktrackable'], ['Lean', 'MacroScope'], ['Lean', 'MonadRef', 'mkInfoFromRefPos'], ['or'], ['ReaderT', 'instApplicativeOfMonad'], ['Lean', 'Name', 'mkStr2'], ['Lean', 'MonadQuotation', 'getMainModule'], ['Bool', 'false'], ['Lean', 'PrettyPrinter', 'UnexpandM'], ['letFun'], ['Lean', 'SyntaxNodeKind'], ['EStateM', 'nonBacktrackable'], ['MonadExcept', 'throw'], ['Lean', 'SourceInfo'], ['Bool'], ['ReaderT', 'instMonad'], ['Lean', 'Name']]
theorem
Syntax(original=False, range=StringRange(start=1850, stop=1975))
True
['Mathlib', 'Probability', 'Notation']
null
leanprover/lean4:v4.11.0
Mathlib
ProbabilityTheory.term_=ₐₛ_
import Init import Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.Probability.Notation open MeasureTheory open scoped MeasureTheory
import Init import Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.Probability.Notation
open MeasureTheory open scoped MeasureTheory
scoped[ProbabilityTheory] notation:50 X " =ₐₛ " Y:50 => X =ᡐ[MeasureTheory.MeasureSpace.volume] Y := sorry
def term_=ₐₛ__extracted : Lean.TrailingParserDescr := sorry
[['Lean', 'TrailingParserDescr']]
scoped[ProbabilityTheory] notation:50 X " =ₐₛ " Y:50 => X =ᡐ[MeasureTheory.MeasureSpace.volume] Y
[['Lean', 'ParserDescr', 'binary'], ['Lean', 'Name', 'mkStr2'], ['OfNat', 'ofNat'], ['Lean', 'ParserDescr', 'cat'], ['Lean', 'ParserDescr', 'trailingNode'], ['instOfNatNat'], ['Lean', 'Name', 'mkStr1'], ['Nat'], ['Lean', 'ParserDescr', 'symbol']]
theorem
Syntax(original=False, range=StringRange(start=1977, stop=2080))
True
['Mathlib', 'Probability', 'Notation']
null
leanprover/lean4:v4.11.0
Mathlib
ProbabilityTheory._aux___macroRules_ProbabilityTheory_term_=ₐₛ__1
import Init import Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.Probability.Notation open MeasureTheory open scoped MeasureTheory
import Init import Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.Probability.Notation
open MeasureTheory open scoped MeasureTheory
scoped[ProbabilityTheory] notation:50 X " =ₐₛ " Y:50 => X =ᡐ[MeasureTheory.MeasureSpace.volume] Y := sorry
def _aux___macroRules_ProbabilityTheory_term_=ₐₛ__1_extracted : Lean.Macro := sorry
[['Lean', 'Macro']]
scoped[ProbabilityTheory] notation:50 X " =ₐₛ " Y:50 => X =ᡐ[MeasureTheory.MeasureSpace.volume] Y
[['EStateM'], ['OfNat', 'ofNat'], ['Lean', 'Name', 'mkStr3'], ['String', "toSubstring'"], ['Lean', 'MacroM'], ['String'], ['Lean', 'Syntax', 'Preresolved', 'decl'], ['Lean', 'Macro', 'instMonadQuotationMacroM'], ['Lean', 'Name', 'mkStr1'], ['Lean', 'Syntax', 'Preresolved'], ['Lean', 'addMacroScope'], ['Pure', 'pure'], ['Monad', 'toBind'], ['Lean', 'Macro', 'instMonadRefMacroM'], ['Eq'], ['ite'], ['Lean', 'TSyntax'], ['EStateM', 'instMonad'], ['Lean', 'MonadQuotation', 'getCurrMacroScope'], ['Lean', 'Macro', 'State'], ['Bool', 'true'], ['PUnit'], ['Lean', 'Macro', 'Exception'], ['instOfNatNat'], ['Lean', 'Syntax', 'ident'], ['List', 'nil'], ['Nat'], ['Bind', 'bind'], ['Applicative', 'toPure'], ['instDecidableEqBool'], ['List', 'cons'], ['Lean', 'Syntax', 'isOfKind'], ['Lean', 'Macro', 'Context'], ['Lean', 'TSyntax', 'raw'], ['Lean', 'TSyntax', 'mk'], ['instMonadExceptOfMonadExceptOf'], ['Lean', 'Syntax', 'atom'], ['Lean', 'Syntax', 'node5'], ['ReaderT', 'instMonadExceptOf'], ['Lean', 'Syntax', 'getArg'], ['Lean', 'Syntax'], ['Lean', 'Macro', 'Exception', 'unsupportedSyntax'], ['EStateM', 'instMonadExceptOfOfBacktrackable'], ['Lean', 'MacroScope'], ['Lean', 'MonadRef', 'mkInfoFromRefPos'], ['ReaderT', 'instApplicativeOfMonad'], ['Lean', 'Name', 'mkStr2'], ['Lean', 'MonadQuotation', 'getMainModule'], ['Lean', 'SyntaxNodeKind'], ['letFun'], ['EStateM', 'nonBacktrackable'], ['MonadExcept', 'throw'], ['Lean', 'SourceInfo'], ['Bool'], ['ReaderT', 'instMonad'], ['Lean', 'Name']]
theorem
Syntax(original=False, range=StringRange(start=1977, stop=2080))
True
['Mathlib', 'Probability', 'Notation']
null
leanprover/lean4:v4.11.0
Mathlib
ProbabilityTheory.term_≀ₐₛ_
import Init import Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.Probability.Notation open MeasureTheory open scoped MeasureTheory
import Init import Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.Probability.Notation
open MeasureTheory open scoped MeasureTheory
scoped[ProbabilityTheory] notation:50 X " ≀ₐₛ " Y:50 => X ≀ᡐ[MeasureTheory.MeasureSpace.volume] Y := sorry
def term_≀ₐₛ__extracted : Lean.TrailingParserDescr := sorry
[['Lean', 'TrailingParserDescr']]
scoped[ProbabilityTheory] notation:50 X " ≀ₐₛ " Y:50 => X ≀ᡐ[MeasureTheory.MeasureSpace.volume] Y
[['Lean', 'ParserDescr', 'binary'], ['Lean', 'Name', 'mkStr2'], ['OfNat', 'ofNat'], ['Lean', 'ParserDescr', 'cat'], ['Lean', 'ParserDescr', 'trailingNode'], ['instOfNatNat'], ['Lean', 'Name', 'mkStr1'], ['Nat'], ['Lean', 'ParserDescr', 'symbol']]
theorem
Syntax(original=False, range=StringRange(start=2082, stop=2189))
True
['Mathlib', 'Probability', 'Notation']
null
leanprover/lean4:v4.11.0
Mathlib
ProbabilityTheory._aux___macroRules_ProbabilityTheory_term_≀ₐₛ__1
import Init import Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.Probability.Notation open MeasureTheory open scoped MeasureTheory
import Init import Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.Probability.Notation
open MeasureTheory open scoped MeasureTheory
scoped[ProbabilityTheory] notation:50 X " ≀ₐₛ " Y:50 => X ≀ᡐ[MeasureTheory.MeasureSpace.volume] Y := sorry
def _aux___macroRules_ProbabilityTheory_term_≀ₐₛ__1_extracted : Lean.Macro := sorry
[['Lean', 'Macro']]
scoped[ProbabilityTheory] notation:50 X " ≀ₐₛ " Y:50 => X ≀ᡐ[MeasureTheory.MeasureSpace.volume] Y
[['EStateM'], ['OfNat', 'ofNat'], ['Lean', 'Name', 'mkStr3'], ['String', "toSubstring'"], ['Lean', 'MacroM'], ['String'], ['Lean', 'Syntax', 'Preresolved', 'decl'], ['Lean', 'Macro', 'instMonadQuotationMacroM'], ['Lean', 'Name', 'mkStr1'], ['Lean', 'Syntax', 'Preresolved'], ['Lean', 'addMacroScope'], ['Pure', 'pure'], ['Monad', 'toBind'], ['Lean', 'Macro', 'instMonadRefMacroM'], ['Eq'], ['ite'], ['Lean', 'TSyntax'], ['EStateM', 'instMonad'], ['Lean', 'MonadQuotation', 'getCurrMacroScope'], ['Lean', 'Macro', 'State'], ['Bool', 'true'], ['PUnit'], ['Lean', 'Macro', 'Exception'], ['instOfNatNat'], ['Lean', 'Syntax', 'ident'], ['List', 'nil'], ['Nat'], ['Bind', 'bind'], ['Applicative', 'toPure'], ['instDecidableEqBool'], ['List', 'cons'], ['Lean', 'Syntax', 'isOfKind'], ['Lean', 'Macro', 'Context'], ['Lean', 'TSyntax', 'raw'], ['Lean', 'TSyntax', 'mk'], ['instMonadExceptOfMonadExceptOf'], ['Lean', 'Syntax', 'atom'], ['Lean', 'Syntax', 'node5'], ['ReaderT', 'instMonadExceptOf'], ['Lean', 'Syntax', 'getArg'], ['Lean', 'Syntax'], ['Lean', 'Macro', 'Exception', 'unsupportedSyntax'], ['EStateM', 'instMonadExceptOfOfBacktrackable'], ['Lean', 'MacroScope'], ['Lean', 'MonadRef', 'mkInfoFromRefPos'], ['ReaderT', 'instApplicativeOfMonad'], ['Lean', 'Name', 'mkStr2'], ['Lean', 'MonadQuotation', 'getMainModule'], ['Lean', 'SyntaxNodeKind'], ['letFun'], ['EStateM', 'nonBacktrackable'], ['MonadExcept', 'throw'], ['Lean', 'SourceInfo'], ['Bool'], ['ReaderT', 'instMonad'], ['Lean', 'Name']]
theorem
Syntax(original=False, range=StringRange(start=2082, stop=2189))
True
['Mathlib', 'Probability', 'Notation']
null
leanprover/lean4:v4.11.0
Mathlib
ProbabilityTheory.termβˆ‚_/βˆ‚_
import Init import Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.Probability.Notation open MeasureTheory open scoped MeasureTheory
import Init import Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.Probability.Notation
open MeasureTheory open scoped MeasureTheory
scoped[ProbabilityTheory] notation "βˆ‚" P "/βˆ‚" Q:100 => MeasureTheory.Measure.rnDeriv P Q := sorry
def termβˆ‚_/βˆ‚__extracted : Lean.ParserDescr := sorry
[['Lean', 'ParserDescr']]
scoped[ProbabilityTheory] notation "βˆ‚" P "/βˆ‚" Q:100 => MeasureTheory.Measure.rnDeriv P Q
[['Lean', 'ParserDescr', 'binary'], ['Lean', 'Name', 'mkStr2'], ['OfNat', 'ofNat'], ['Lean', 'ParserDescr', 'cat'], ['Lean', 'ParserDescr', 'node'], ['instOfNatNat'], ['Lean', 'Name', 'mkStr1'], ['Nat'], ['Lean', 'ParserDescr', 'symbol']]
theorem
Syntax(original=False, range=StringRange(start=2191, stop=2283))
True
['Mathlib', 'Probability', 'Notation']
null
leanprover/lean4:v4.11.0
Mathlib
ProbabilityTheory._aux___macroRules_ProbabilityTheory_termβˆ‚_/βˆ‚__1
import Init import Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.Probability.Notation open MeasureTheory open scoped MeasureTheory
import Init import Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.Probability.Notation
open MeasureTheory open scoped MeasureTheory
scoped[ProbabilityTheory] notation "βˆ‚" P "/βˆ‚" Q:100 => MeasureTheory.Measure.rnDeriv P Q := sorry
def _aux___macroRules_ProbabilityTheory_termβˆ‚_/βˆ‚__1_extracted : Lean.Macro := sorry
[['Lean', 'Macro']]
scoped[ProbabilityTheory] notation "βˆ‚" P "/βˆ‚" Q:100 => MeasureTheory.Measure.rnDeriv P Q
[['EStateM'], ['OfNat', 'ofNat'], ['Lean', 'Name', 'mkStr3'], ['String', "toSubstring'"], ['Lean', 'MacroM'], ['String'], ['Lean', 'Syntax', 'Preresolved', 'decl'], ['Lean', 'Macro', 'instMonadQuotationMacroM'], ['Lean', 'Name', 'mkStr1'], ['Lean', 'Syntax', 'Preresolved'], ['Lean', 'addMacroScope'], ['Pure', 'pure'], ['Monad', 'toBind'], ['Lean', 'Macro', 'instMonadRefMacroM'], ['Eq'], ['ite'], ['Lean', 'TSyntax'], ['EStateM', 'instMonad'], ['Lean', 'MonadQuotation', 'getCurrMacroScope'], ['Lean', 'Macro', 'State'], ['Bool', 'true'], ['PUnit'], ['Lean', 'Macro', 'Exception'], ['instOfNatNat'], ['Lean', 'Syntax', 'ident'], ['List', 'nil'], ['Nat'], ['Bind', 'bind'], ['Applicative', 'toPure'], ['instDecidableEqBool'], ['Lean', 'Syntax', 'node2'], ['List', 'cons'], ['Lean', 'Syntax', 'isOfKind'], ['Lean', 'Macro', 'Context'], ['Lean', 'Name', 'mkStr4'], ['Lean', 'TSyntax', 'raw'], ['Lean', 'TSyntax', 'mk'], ['instMonadExceptOfMonadExceptOf'], ['ReaderT', 'instMonadExceptOf'], ['Lean', 'Syntax', 'getArg'], ['Lean', 'Syntax'], ['Lean', 'Macro', 'Exception', 'unsupportedSyntax'], ['EStateM', 'instMonadExceptOfOfBacktrackable'], ['Lean', 'MacroScope'], ['Lean', 'MonadRef', 'mkInfoFromRefPos'], ['ReaderT', 'instApplicativeOfMonad'], ['Lean', 'Name', 'mkStr2'], ['Lean', 'MonadQuotation', 'getMainModule'], ['Lean', 'SyntaxNodeKind'], ['letFun'], ['EStateM', 'nonBacktrackable'], ['MonadExcept', 'throw'], ['Lean', 'SourceInfo'], ['Bool'], ['ReaderT', 'instMonad'], ['Lean', 'Name']]
theorem
Syntax(original=False, range=StringRange(start=2191, stop=2283))
True
['Mathlib', 'Probability', 'Notation']
null
leanprover/lean4:v4.11.0
Mathlib
ProbabilityTheory._aux___unexpand_MeasureTheory_Measure_rnDeriv_1
import Init import Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.Probability.Notation open MeasureTheory open scoped MeasureTheory
import Init import Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.Probability.Notation
open MeasureTheory open scoped MeasureTheory
scoped[ProbabilityTheory] notation "βˆ‚" P "/βˆ‚" Q:100 => MeasureTheory.Measure.rnDeriv P Q := sorry
def _aux___unexpand_MeasureTheory_Measure_rnDeriv_1_extracted : Lean.PrettyPrinter.Unexpander := sorry
[['Lean', 'PrettyPrinter', 'Unexpander']]
scoped[ProbabilityTheory] notation "βˆ‚" P "/βˆ‚" Q:100 => MeasureTheory.Measure.rnDeriv P Q
[['Lean', 'withRef'], ['Lean', 'Syntax', 'matchesNull'], ['EStateM'], ['cond'], ['OfNat', 'ofNat'], ['Lean', 'Name', 'mkStr1'], ['Lean', 'Syntax', 'node4'], ['Pure', 'pure'], ['Monad', 'toBind'], ['Eq'], ['ite'], ['Lean', 'TSyntax'], ['EStateM', 'instMonad'], ['Lean', 'MonadQuotation', 'getCurrMacroScope'], ['Bool', 'true'], ['Unit', 'unit'], ['PUnit'], ['instOfNatNat'], ['List', 'nil'], ['Nat'], ['Bind', 'bind'], ['Applicative', 'toPure'], ['instDecidableEqBool'], ['Lean', 'PrettyPrinter', 'instMonadQuotationUnexpandM'], ['Lean', 'Syntax', 'isOfKind'], ['List', 'cons'], ['Lean', 'Name', 'mkStr4'], ['Unit'], ['Lean', 'TSyntax', 'raw'], ['Lean', 'TSyntax', 'mk'], ['Lean', 'MonadQuotation', 'toMonadRef'], ['instMonadExceptOfMonadExceptOf'], ['Lean', 'Syntax', 'atom'], ['ReaderT', 'instMonadExceptOf'], ['Lean', 'Syntax', 'getArg'], ['Lean', 'Syntax'], ['EStateM', 'instMonadExceptOfOfBacktrackable'], ['Lean', 'MacroScope'], ['Lean', 'MonadRef', 'mkInfoFromRefPos'], ['or'], ['Lean', 'Name', 'mkStr2'], ['ReaderT', 'instApplicativeOfMonad'], ['Lean', 'MonadQuotation', 'getMainModule'], ['Bool', 'false'], ['Lean', 'PrettyPrinter', 'UnexpandM'], ['letFun'], ['Lean', 'SyntaxNodeKind'], ['EStateM', 'nonBacktrackable'], ['MonadExcept', 'throw'], ['Lean', 'SourceInfo'], ['Bool'], ['ReaderT', 'instMonad'], ['Lean', 'Name']]
theorem
Syntax(original=False, range=StringRange(start=2191, stop=2283))
True
['Mathlib', 'Probability', 'Notation']
null
leanprover/lean4:v4.11.0
Mathlib
ProbabilityTheory.termβ„™
import Init import Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.Probability.Notation open MeasureTheory open scoped MeasureTheory
import Init import Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.Probability.Notation
open MeasureTheory open scoped MeasureTheory
scoped[ProbabilityTheory] notation "β„™" => MeasureTheory.MeasureSpace.volume := sorry
def termβ„™_extracted : Lean.ParserDescr := sorry
[['Lean', 'ParserDescr']]
scoped[ProbabilityTheory] notation "β„™" => MeasureTheory.MeasureSpace.volume
[['Lean', 'Name', 'mkStr2'], ['OfNat', 'ofNat'], ['Lean', 'ParserDescr', 'node'], ['instOfNatNat'], ['Nat'], ['Lean', 'ParserDescr', 'symbol']]
theorem
Syntax(original=False, range=StringRange(start=2285, stop=2362))
True
['Mathlib', 'Probability', 'Notation']
null
leanprover/lean4:v4.11.0
Mathlib
ProbabilityTheory._aux___macroRules_ProbabilityTheory_termβ„™_1
import Init import Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.Probability.Notation open MeasureTheory open scoped MeasureTheory
import Init import Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.Probability.Notation
open MeasureTheory open scoped MeasureTheory
scoped[ProbabilityTheory] notation "β„™" => MeasureTheory.MeasureSpace.volume := sorry
def _aux___macroRules_ProbabilityTheory_termβ„™_1_extracted : Lean.Macro := sorry
[['Lean', 'Macro']]
scoped[ProbabilityTheory] notation "β„™" => MeasureTheory.MeasureSpace.volume
[['EStateM'], ['OfNat', 'ofNat'], ['Lean', 'Name', 'mkStr3'], ['String', "toSubstring'"], ['Lean', 'MacroM'], ['String'], ['Lean', 'Syntax', 'Preresolved', 'decl'], ['Lean', 'Name', 'mkStr1'], ['Lean', 'Macro', 'instMonadQuotationMacroM'], ['Lean', 'Syntax', 'Preresolved'], ['Lean', 'addMacroScope'], ['Pure', 'pure'], ['Monad', 'toBind'], ['Lean', 'Macro', 'instMonadRefMacroM'], ['Eq'], ['ite'], ['EStateM', 'instMonad'], ['Lean', 'MonadQuotation', 'getCurrMacroScope'], ['Lean', 'Macro', 'State'], ['Bool', 'true'], ['PUnit'], ['Lean', 'Macro', 'Exception'], ['instOfNatNat'], ['Lean', 'Syntax', 'ident'], ['List', 'nil'], ['Bind', 'bind'], ['Nat'], ['Applicative', 'toPure'], ['instDecidableEqBool'], ['List', 'cons'], ['Lean', 'Syntax', 'isOfKind'], ['Lean', 'Macro', 'Context'], ['Lean', 'TSyntax', 'raw'], ['Lean', 'TSyntax', 'mk'], ['instMonadExceptOfMonadExceptOf'], ['ReaderT', 'instMonadExceptOf'], ['Lean', 'Syntax', 'getArg'], ['Lean', 'Syntax'], ['Lean', 'Macro', 'Exception', 'unsupportedSyntax'], ['EStateM', 'instMonadExceptOfOfBacktrackable'], ['Lean', 'MacroScope'], ['Lean', 'MonadRef', 'mkInfoFromRefPos'], ['Lean', 'Name', 'mkStr2'], ['ReaderT', 'instApplicativeOfMonad'], ['Lean', 'MonadQuotation', 'getMainModule'], ['Lean', 'SyntaxNodeKind'], ['letFun'], ['EStateM', 'nonBacktrackable'], ['MonadExcept', 'throw'], ['Lean', 'SourceInfo'], ['ReaderT', 'instMonad'], ['Bool'], ['Lean', 'Name']]
theorem
Syntax(original=False, range=StringRange(start=2285, stop=2362))
True
['Mathlib', 'Probability', 'Notation']
null
leanprover/lean4:v4.11.0
Mathlib
ProbabilityTheory._aux___unexpand_MeasureTheory_MeasureSpace_volume_1
import Init import Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.Probability.Notation open MeasureTheory open scoped MeasureTheory
import Init import Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.Probability.Notation
open MeasureTheory open scoped MeasureTheory
scoped[ProbabilityTheory] notation "β„™" => MeasureTheory.MeasureSpace.volume := sorry
def _aux___unexpand_MeasureTheory_MeasureSpace_volume_1_extracted : Lean.PrettyPrinter.Unexpander := sorry
[['Lean', 'PrettyPrinter', 'Unexpander']]
scoped[ProbabilityTheory] notation "β„™" => MeasureTheory.MeasureSpace.volume
[['Lean', 'withRef'], ['EStateM'], ['cond'], ['Lean', 'Name', 'mkStr1'], ['Pure', 'pure'], ['Monad', 'toBind'], ['Lean', 'TSyntax'], ['EStateM', 'instMonad'], ['Lean', 'MonadQuotation', 'getCurrMacroScope'], ['Lean', 'Syntax', 'node1'], ['Unit', 'unit'], ['PUnit'], ['List', 'nil'], ['Bind', 'bind'], ['Applicative', 'toPure'], ['Lean', 'PrettyPrinter', 'instMonadQuotationUnexpandM'], ['List', 'cons'], ['Lean', 'Syntax', 'isOfKind'], ['Unit'], ['Lean', 'TSyntax', 'raw'], ['Lean', 'TSyntax', 'mk'], ['Lean', 'MonadQuotation', 'toMonadRef'], ['instMonadExceptOfMonadExceptOf'], ['Lean', 'Syntax', 'atom'], ['ReaderT', 'instMonadExceptOf'], ['Lean', 'Syntax'], ['EStateM', 'instMonadExceptOfOfBacktrackable'], ['Lean', 'MacroScope'], ['or'], ['Lean', 'MonadRef', 'mkInfoFromRefPos'], ['Lean', 'Name', 'mkStr2'], ['ReaderT', 'instApplicativeOfMonad'], ['Bool', 'false'], ['Lean', 'MonadQuotation', 'getMainModule'], ['Lean', 'SyntaxNodeKind'], ['Lean', 'PrettyPrinter', 'UnexpandM'], ['letFun'], ['EStateM', 'nonBacktrackable'], ['MonadExcept', 'throw'], ['Lean', 'SourceInfo'], ['ReaderT', 'instMonad'], ['Lean', 'Name']]
theorem
Syntax(original=False, range=StringRange(start=2285, stop=2362))
True
['Mathlib', 'Probability', 'Notation']
null
leanprover/lean4:v4.11.0
Mathlib
README.md exists but content is empty.
Downloads last month
31