fullname
stringlengths
2
164
header
stringlengths
61
1.2k
imported_modules
stringlengths
60
684
opened_namespaces
stringlengths
1
1.07k
formal_statement
stringlengths
12
18.2k
formal_statement_original
stringlengths
23
18.2k
formal_statement_references
stringlengths
0
5.33k
formal_proof
stringlengths
0
11.8k
formal_proof_references
stringlengths
0
18.2k
doc_string
stringlengths
0
10.5k
problem_id
stringclasses
1 value
problem_kind
stringclasses
2 values
informal_statement
stringclasses
1 value
informal_proof
stringclasses
1 value
ref
stringlengths
0
68
inv_references
stringclasses
1 value
passed
stringclasses
2 values
module_name
stringlengths
25
90
head
null
lean_toolchain
stringclasses
1 value
package_name
stringclasses
1 value
unitInterval.instMeasureSpaceElemReal
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval open scoped unitInterval open MeasureTheory
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval
open scoped unitInterval open MeasureTheory
noncomputable instance : MeasureSpace I := sorry
def instMeasureSpaceElemReal_extracted : MeasureSpace ↑I := sorry
[['unitInterval'], ['Set', 'Elem'], ['Real'], ['MeasureTheory', 'MeasureSpace']]
noncomputable instance : MeasureSpace I := Measure.Subtype.measureSpace
[['Membership', 'mem'], ['unitInterval'], ['Set'], ['Real'], ['Real', 'measureSpace'], ['Set', 'instMembership'], ['MeasureTheory', 'Measure', 'Subtype', 'measureSpace']]
theorem
Syntax(original=True, range=StringRange(start=587, stop=658))
True
['Mathlib', 'MeasureTheory', 'Constructions', 'UnitInterval']
null
leanprover/lean4:v4.11.0
Mathlib
unitInterval.volume_def
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval open scoped unitInterval open MeasureTheory
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval
open scoped unitInterval open MeasureTheory
theorem volume_def : (volume : Measure I) = volume.comap Subtype.val := sorry
theorem volume_def_extracted : volume = Measure.comap Subtype.val volume := sorry
[['Membership', 'mem'], ['MeasureTheory', 'Measure'], ['MeasureTheory', 'MeasureSpace', 'toMeasurableSpace'], ['unitInterval'], ['Set', 'Elem'], ['Subtype', 'val'], ['MeasureTheory', 'Measure', 'comap'], ['Set'], ['Real'], ['Real', 'measureSpace'], ['unitInterval', 'instMeasureSpaceElemReal'], ['Set', 'instMembership'], ['MeasureTheory', 'MeasureSpace', 'volume'], ['Subtype'], ['Eq']]
theorem volume_def : (volume : Measure I) = volume.comap Subtype.val := rfl
[['MeasureTheory', 'Measure'], ['MeasureTheory', 'MeasureSpace', 'toMeasurableSpace'], ['unitInterval'], ['Set', 'Elem'], ['Real'], ['unitInterval', 'instMeasureSpaceElemReal'], ['MeasureTheory', 'MeasureSpace', 'volume'], ['rfl']]
theorem
Syntax(original=True, range=StringRange(start=660, stop=735))
True
['Mathlib', 'MeasureTheory', 'Constructions', 'UnitInterval']
null
leanprover/lean4:v4.11.0
Mathlib
unitInterval.instIsProbabilityMeasureElemRealVolume
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval open scoped unitInterval open MeasureTheory
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval
open scoped unitInterval open MeasureTheory
instance : IsProbabilityMeasure (volume : Measure I) := sorry
def instIsProbabilityMeasureElemRealVolume_extracted : IsProbabilityMeasure volume := sorry
[['MeasureTheory', 'MeasureSpace', 'toMeasurableSpace'], ['unitInterval'], ['Set', 'Elem'], ['Real'], ['unitInterval', 'instMeasureSpaceElemReal'], ['MeasureTheory', 'IsProbabilityMeasure'], ['MeasureTheory', 'MeasureSpace', 'volume']]
instance : IsProbabilityMeasure (volume : Measure I) where measure_univ := by rw [Measure.Subtype.volume_univ measurableSet_Icc.nullMeasurableSet, Real.volume_Icc, sub_zero, ENNReal.ofReal_one]
[['AddCommGroup', 'toDivisionAddCommMonoid'], ['Real', 'volume_Icc'], ['Real', 'borelSpace'], ['OfNat', 'ofNat'], ['Set', 'Icc'], ['Set'], ['Real'], ['ENNReal', 'ofReal'], ['Eq', 'refl'], ['MeasureTheory', 'Measure', 'instFunLike'], ['Real', 'instAddCommGroup'], ['unitInterval', 'instMeasureSpaceElemReal'], ['MeasureTheory', 'Measure', 'Subtype', 'measureSpace'], ['SubtractionCommMonoid', 'toSubtractionMonoid'], ['ENNReal', 'ofReal_one'], ['CanonicallyOrderedCommSemiring', 'toOne'], ['MeasureTheory', 'MeasureSpace', 'volume'], ['BorelSpace', 'opensMeasurable'], ['Eq'], ['MeasureTheory', 'IsProbabilityMeasure', 'mk'], ['MeasureTheory', 'Measure'], ['Zero', 'toOfNat0'], ['SubNegMonoid', 'toSub'], ['instOrderTopologyReal'], ['Real', 'linearOrder'], ['ENNReal'], ['OrderTopology', 'to_orderClosedTopology'], ['Eq', 'mpr'], ['Set', 'Elem'], ['sub_zero'], ['Real', 'measureSpace'], ['UniformSpace', 'toTopologicalSpace'], ['DFunLike', 'coe'], ['SubtractionMonoid', 'toSubNegZeroMonoid'], ['id'], ['instHSub'], ['Membership', 'mem'], ['measurableSet_Icc'], ['Real', 'instSub'], ['ENNReal', 'instCanonicallyOrderedCommSemiring'], ['HSub', 'hSub'], ['PseudoMetricSpace', 'toUniformSpace'], ['Real', 'pseudoMetricSpace'], ['Real', 'instZero'], ['One', 'toOfNat1'], ['Set', 'instMembership'], ['MeasurableSet', 'nullMeasurableSet'], ['SubNegZeroMonoid', 'toNegZeroClass'], ['Set', 'univ'], ['SubNegZeroMonoid', 'toSubNegMonoid'], ['MeasureTheory', 'MeasureSpace', 'toMeasurableSpace'], ['Real', 'instOne'], ['unitInterval'], ['Real', 'instPreorder'], ['NegZeroClass', 'toZero'], ['congrArg'], ['MeasureTheory', 'Measure', 'Subtype', 'volume_univ']]
theorem
Syntax(original=True, range=StringRange(start=737, stop=942))
True
['Mathlib', 'MeasureTheory', 'Constructions', 'UnitInterval']
null
leanprover/lean4:v4.11.0
Mathlib
unitInterval.measurable_symm
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval open scoped unitInterval open MeasureTheory
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval
open scoped unitInterval open MeasureTheory
@[measurability] theorem measurable_symm : Measurable symm := sorry
theorem measurable_symm_extracted : Measurable Οƒ := sorry
[['unitInterval', 'symm'], ['Membership', 'mem'], ['unitInterval'], ['Subtype', 'instMeasurableSpace'], ['Set', 'Elem'], ['Real', 'measurableSpace'], ['Set'], ['Real'], ['Measurable'], ['Set', 'instMembership']]
@[measurability] theorem measurable_symm : Measurable symm := continuous_symm.measurable
[['Membership', 'mem'], ['Real', 'borelSpace'], ['Subtype', 'instMeasurableSpace'], ['Real'], ['Set'], ['Real', 'measurableSpace'], ['PseudoMetricSpace', 'toUniformSpace'], ['Real', 'pseudoMetricSpace'], ['Set', 'instMembership'], ['Subtype', 'borelSpace'], ['BorelSpace', 'opensMeasurable'], ['unitInterval', 'symm'], ['Continuous', 'measurable'], ['unitInterval'], ['Set', 'Elem'], ['unitInterval', 'continuous_symm'], ['Subtype', 'opensMeasurableSpace'], ['instTopologicalSpaceSubtype'], ['UniformSpace', 'toTopologicalSpace']]
theorem
Syntax(original=True, range=StringRange(start=944, stop=1032))
True
['Mathlib', 'MeasureTheory', 'Constructions', 'UnitInterval']
null
leanprover/lean4:v4.11.0
Mathlib
unitInterval.instIsProbabilityMeasureElemRealVolume_tac_814
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval open scoped unitInterval open MeasureTheory
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval
open scoped unitInterval open MeasureTheory
lemma instIsProbabilityMeasureElemRealVolume_tac_814 : volume Set.univ = 1 := sorry
lemma instIsProbabilityMeasureElemRealVolume_tac_814 : volume Set.univ = 1 := sorry
[['Real', 'volume_Icc'], ['measurableSet_Icc', 'nullMeasurableSet'], ['sub_zero'], ['Measure', 'Subtype', 'volume_univ'], ['ENNReal', 'ofReal_one']]
tactic
['Mathlib', 'MeasureTheory', 'Constructions', 'UnitInterval']
null
leanprover/lean4:v4.11.0
Mathlib
unitInterval.instIsProbabilityMeasureElemRealVolume_tac_814
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval open scoped unitInterval open MeasureTheory
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval
open scoped unitInterval open MeasureTheory
lemma instIsProbabilityMeasureElemRealVolume_tac_814 : volume Set.univ = 1 := sorry
lemma instIsProbabilityMeasureElemRealVolume_tac_814 : volume Set.univ = 1 := sorry
tactic
['Mathlib', 'MeasureTheory', 'Constructions', 'UnitInterval']
null
leanprover/lean4:v4.11.0
Mathlib
unitInterval.instIsProbabilityMeasureElemRealVolume_tac_821
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval open scoped unitInterval open MeasureTheory
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval
open scoped unitInterval open MeasureTheory
lemma instIsProbabilityMeasureElemRealVolume_tac_821 : volume Set.univ = 1 := sorry
lemma instIsProbabilityMeasureElemRealVolume_tac_821 : volume Set.univ = 1 := sorry
[['Real', 'volume_Icc'], ['measurableSet_Icc', 'nullMeasurableSet'], ['sub_zero'], ['Measure', 'Subtype', 'volume_univ'], ['ENNReal', 'ofReal_one']]
tactic
['Mathlib', 'MeasureTheory', 'Constructions', 'UnitInterval']
null
leanprover/lean4:v4.11.0
Mathlib
unitInterval.instIsProbabilityMeasureElemRealVolume_tac_821
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval open scoped unitInterval open MeasureTheory
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval
open scoped unitInterval open MeasureTheory
lemma instIsProbabilityMeasureElemRealVolume_tac_821 : volume Set.univ = 1 := sorry
lemma instIsProbabilityMeasureElemRealVolume_tac_821 : volume Set.univ = 1 := sorry
[['Real', 'volume_Icc'], ['measurableSet_Icc', 'nullMeasurableSet'], ['sub_zero'], ['Measure', 'Subtype', 'volume_univ'], ['ENNReal', 'ofReal_one']]
tactic
['Mathlib', 'MeasureTheory', 'Constructions', 'UnitInterval']
null
leanprover/lean4:v4.11.0
Mathlib
unitInterval.instIsProbabilityMeasureElemRealVolume_tac_821
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval open scoped unitInterval open MeasureTheory
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval
open scoped unitInterval open MeasureTheory
lemma instIsProbabilityMeasureElemRealVolume_tac_821 : volume Set.univ = 1 := sorry
lemma instIsProbabilityMeasureElemRealVolume_tac_821 : volume Set.univ = 1 := sorry
[['Real', 'volume_Icc'], ['measurableSet_Icc', 'nullMeasurableSet'], ['sub_zero'], ['Measure', 'Subtype', 'volume_univ'], ['ENNReal', 'ofReal_one']]
tactic
['Mathlib', 'MeasureTheory', 'Constructions', 'UnitInterval']
null
leanprover/lean4:v4.11.0
Mathlib
unitInterval.instIsProbabilityMeasureElemRealVolume_tac_821
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval open scoped unitInterval open MeasureTheory
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval
open scoped unitInterval open MeasureTheory
lemma instIsProbabilityMeasureElemRealVolume_tac_821 : volume Set.univ = 1 := sorry
lemma instIsProbabilityMeasureElemRealVolume_tac_821 : volume Set.univ = 1 := sorry
[['Real', 'volume_Icc'], ['measurableSet_Icc', 'nullMeasurableSet'], ['sub_zero'], ['Measure', 'Subtype', 'volume_univ'], ['ENNReal', 'ofReal_one']]
tactic
['Mathlib', 'MeasureTheory', 'Constructions', 'UnitInterval']
null
leanprover/lean4:v4.11.0
Mathlib
unitInterval.instIsProbabilityMeasureElemRealVolume_tac_821
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval open scoped unitInterval open MeasureTheory
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval
open scoped unitInterval open MeasureTheory
lemma instIsProbabilityMeasureElemRealVolume_tac_821 : volume Set.univ = 1 := sorry
lemma instIsProbabilityMeasureElemRealVolume_tac_821 : volume Set.univ = 1 := sorry
[['Real', 'volume_Icc'], ['measurableSet_Icc', 'nullMeasurableSet'], ['sub_zero'], ['Measure', 'Subtype', 'volume_univ'], ['ENNReal', 'ofReal_one']]
tactic
['Mathlib', 'MeasureTheory', 'Constructions', 'UnitInterval']
null
leanprover/lean4:v4.11.0
Mathlib
unitInterval.instIsProbabilityMeasureElemRealVolume_tac_821
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval open scoped unitInterval open MeasureTheory
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval
open scoped unitInterval open MeasureTheory
lemma instIsProbabilityMeasureElemRealVolume_tac_821 : volume Set.univ = 1 := sorry
lemma instIsProbabilityMeasureElemRealVolume_tac_821 : volume Set.univ = 1 := sorry
[['Real', 'volume_Icc'], ['measurableSet_Icc', 'nullMeasurableSet'], ['sub_zero'], ['Measure', 'Subtype', 'volume_univ'], ['ENNReal', 'ofReal_one']]
tactic
['Mathlib', 'MeasureTheory', 'Constructions', 'UnitInterval']
null
leanprover/lean4:v4.11.0
Mathlib
unitInterval.instIsProbabilityMeasureElemRealVolume_tac_821
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval open scoped unitInterval open MeasureTheory
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval
open scoped unitInterval open MeasureTheory
lemma instIsProbabilityMeasureElemRealVolume_tac_821 : volume Set.univ = 1 := sorry
lemma instIsProbabilityMeasureElemRealVolume_tac_821 : volume Set.univ = 1 := sorry
[['Real', 'volume_Icc'], ['measurableSet_Icc', 'nullMeasurableSet'], ['sub_zero'], ['Measure', 'Subtype', 'volume_univ'], ['ENNReal', 'ofReal_one']]
tactic
['Mathlib', 'MeasureTheory', 'Constructions', 'UnitInterval']
null
leanprover/lean4:v4.11.0
Mathlib
unitInterval.instIsProbabilityMeasureElemRealVolume_tac_821
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval open scoped unitInterval open MeasureTheory
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval
open scoped unitInterval open MeasureTheory
lemma instIsProbabilityMeasureElemRealVolume_tac_821 : volume Set.univ = 1 := sorry
lemma instIsProbabilityMeasureElemRealVolume_tac_821 : volume Set.univ = 1 := sorry
tactic
['Mathlib', 'MeasureTheory', 'Constructions', 'UnitInterval']
null
leanprover/lean4:v4.11.0
Mathlib
unitInterval.instIsProbabilityMeasureElemRealVolume_tac_825
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval open scoped unitInterval open MeasureTheory
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval
open scoped unitInterval open MeasureTheory
lemma instIsProbabilityMeasureElemRealVolume_tac_825 : volume Set.univ = 1 := sorry
lemma instIsProbabilityMeasureElemRealVolume_tac_825 : volume Set.univ = 1 := sorry
[['measurableSet_Icc', 'nullMeasurableSet'], ['Measure', 'Subtype', 'volume_univ']]
tactic
['Mathlib', 'MeasureTheory', 'Constructions', 'UnitInterval']
null
leanprover/lean4:v4.11.0
Mathlib
unitInterval.instIsProbabilityMeasureElemRealVolume_tac_890
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval open scoped unitInterval open MeasureTheory
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval
open scoped unitInterval open MeasureTheory
lemma instIsProbabilityMeasureElemRealVolume_tac_890 : volume (Set.Icc 0 1) = 1 := sorry
lemma instIsProbabilityMeasureElemRealVolume_tac_890 : volume (Set.Icc 0 1) = 1 := sorry
[['Real', 'volume_Icc']]
tactic
['Mathlib', 'MeasureTheory', 'Constructions', 'UnitInterval']
null
leanprover/lean4:v4.11.0
Mathlib
unitInterval.instIsProbabilityMeasureElemRealVolume_tac_907
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval open scoped unitInterval open MeasureTheory
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval
open scoped unitInterval open MeasureTheory
lemma instIsProbabilityMeasureElemRealVolume_tac_907 : ENNReal.ofReal (1 - 0) = 1 := sorry
lemma instIsProbabilityMeasureElemRealVolume_tac_907 : ENNReal.ofReal (1 - 0) = 1 := sorry
[['sub_zero']]
tactic
['Mathlib', 'MeasureTheory', 'Constructions', 'UnitInterval']
null
leanprover/lean4:v4.11.0
Mathlib
unitInterval.instIsProbabilityMeasureElemRealVolume_tac_923
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval open scoped unitInterval open MeasureTheory
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval
open scoped unitInterval open MeasureTheory
lemma instIsProbabilityMeasureElemRealVolume_tac_923 : ENNReal.ofReal 1 = 1 := sorry
lemma instIsProbabilityMeasureElemRealVolume_tac_923 : ENNReal.ofReal 1 = 1 := sorry
[['ENNReal', 'ofReal_one']]
tactic
['Mathlib', 'MeasureTheory', 'Constructions', 'UnitInterval']
null
leanprover/lean4:v4.11.0
Mathlib
unitInterval.instIsProbabilityMeasureElemRealVolume_tac_821
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval open scoped unitInterval open MeasureTheory
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval
open scoped unitInterval open MeasureTheory
lemma instIsProbabilityMeasureElemRealVolume_tac_821 : 1 = 1 := sorry
lemma instIsProbabilityMeasureElemRealVolume_tac_821 : 1 = 1 := sorry
tactic
['Mathlib', 'MeasureTheory', 'Constructions', 'UnitInterval']
null
leanprover/lean4:v4.11.0
Mathlib
unitInterval.instIsProbabilityMeasureElemRealVolume_tac_821
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval open scoped unitInterval open MeasureTheory
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval
open scoped unitInterval open MeasureTheory
lemma instIsProbabilityMeasureElemRealVolume_tac_821 : 1 = 1 := sorry
lemma instIsProbabilityMeasureElemRealVolume_tac_821 : 1 = 1 := sorry
tactic
['Mathlib', 'MeasureTheory', 'Constructions', 'UnitInterval']
null
leanprover/lean4:v4.11.0
Mathlib
unitInterval.instIsProbabilityMeasureElemRealVolume_tac_941
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval open scoped unitInterval open MeasureTheory
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval
open scoped unitInterval open MeasureTheory
lemma instIsProbabilityMeasureElemRealVolume_tac_941 : 1 = 1 := sorry
lemma instIsProbabilityMeasureElemRealVolume_tac_941 : 1 = 1 := sorry
tactic
['Mathlib', 'MeasureTheory', 'Constructions', 'UnitInterval']
null
leanprover/lean4:v4.11.0
Mathlib
unitInterval.instIsProbabilityMeasureElemRealVolume_tac_821
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval open scoped unitInterval open MeasureTheory
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval
open scoped unitInterval open MeasureTheory
lemma instIsProbabilityMeasureElemRealVolume_tac_821 : 1 = 1 := sorry
lemma instIsProbabilityMeasureElemRealVolume_tac_821 : 1 = 1 := sorry
tactic
['Mathlib', 'MeasureTheory', 'Constructions', 'UnitInterval']
null
leanprover/lean4:v4.11.0
Mathlib
unitInterval.instIsProbabilityMeasureElemRealVolume_tac_821
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval open scoped unitInterval open MeasureTheory
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval
open scoped unitInterval open MeasureTheory
lemma instIsProbabilityMeasureElemRealVolume_tac_821 : 1 = 1 := sorry
lemma instIsProbabilityMeasureElemRealVolume_tac_821 : 1 = 1 := sorry
tactic
['Mathlib', 'MeasureTheory', 'Constructions', 'UnitInterval']
null
leanprover/lean4:v4.11.0
Mathlib
unitInterval.instIsProbabilityMeasureElemRealVolume_tac_821
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval open scoped unitInterval open MeasureTheory
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval
open scoped unitInterval open MeasureTheory
lemma instIsProbabilityMeasureElemRealVolume_tac_821 : 1 = 1 := sorry
lemma instIsProbabilityMeasureElemRealVolume_tac_821 : 1 = 1 := sorry
tactic
['Mathlib', 'MeasureTheory', 'Constructions', 'UnitInterval']
null
leanprover/lean4:v4.11.0
Mathlib
unitInterval.instIsProbabilityMeasureElemRealVolume_tac_821
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval open scoped unitInterval open MeasureTheory
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval
open scoped unitInterval open MeasureTheory
lemma instIsProbabilityMeasureElemRealVolume_tac_821 : 1 = 1 := sorry
lemma instIsProbabilityMeasureElemRealVolume_tac_821 : 1 = 1 := sorry
tactic
['Mathlib', 'MeasureTheory', 'Constructions', 'UnitInterval']
null
leanprover/lean4:v4.11.0
Mathlib
unitInterval.instIsProbabilityMeasureElemRealVolume_tac_821
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval open scoped unitInterval open MeasureTheory
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval
open scoped unitInterval open MeasureTheory
lemma instIsProbabilityMeasureElemRealVolume_tac_821 : 1 = 1 := sorry
lemma instIsProbabilityMeasureElemRealVolume_tac_821 : 1 = 1 := sorry
tactic
['Mathlib', 'MeasureTheory', 'Constructions', 'UnitInterval']
null
leanprover/lean4:v4.11.0
Mathlib
unitInterval.instIsProbabilityMeasureElemRealVolume_tac_821
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval open scoped unitInterval open MeasureTheory
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval
open scoped unitInterval open MeasureTheory
lemma instIsProbabilityMeasureElemRealVolume_tac_821 : 1 = 1 := sorry
lemma instIsProbabilityMeasureElemRealVolume_tac_821 : 1 = 1 := sorry
tactic
['Mathlib', 'MeasureTheory', 'Constructions', 'UnitInterval']
null
leanprover/lean4:v4.11.0
Mathlib
unitInterval.instIsProbabilityMeasureElemRealVolume_tac_821
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval open scoped unitInterval open MeasureTheory
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval
open scoped unitInterval open MeasureTheory
lemma instIsProbabilityMeasureElemRealVolume_tac_821 : 1 = 1 := sorry
lemma instIsProbabilityMeasureElemRealVolume_tac_821 : 1 = 1 := sorry
tactic
['Mathlib', 'MeasureTheory', 'Constructions', 'UnitInterval']
null
leanprover/lean4:v4.11.0
Mathlib
unitInterval.instIsProbabilityMeasureElemRealVolume_tac_821
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval open scoped unitInterval open MeasureTheory
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval
open scoped unitInterval open MeasureTheory
lemma instIsProbabilityMeasureElemRealVolume_tac_821 : 1 = 1 := sorry
lemma instIsProbabilityMeasureElemRealVolume_tac_821 : 1 = 1 := sorry
tactic
['Mathlib', 'MeasureTheory', 'Constructions', 'UnitInterval']
null
leanprover/lean4:v4.11.0
Mathlib
unitInterval.instIsProbabilityMeasureElemRealVolume_tac_821
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval open scoped unitInterval open MeasureTheory
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval
open scoped unitInterval open MeasureTheory
lemma instIsProbabilityMeasureElemRealVolume_tac_821 : 1 = 1 := sorry
lemma instIsProbabilityMeasureElemRealVolume_tac_821 : 1 = 1 := sorry
tactic
['Mathlib', 'MeasureTheory', 'Constructions', 'UnitInterval']
null
leanprover/lean4:v4.11.0
Mathlib
unitInterval.instIsProbabilityMeasureElemRealVolume_tac_821
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval open scoped unitInterval open MeasureTheory
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval
open scoped unitInterval open MeasureTheory
lemma instIsProbabilityMeasureElemRealVolume_tac_821 : 1 = 1 := sorry
lemma instIsProbabilityMeasureElemRealVolume_tac_821 : 1 = 1 := sorry
tactic
['Mathlib', 'MeasureTheory', 'Constructions', 'UnitInterval']
null
leanprover/lean4:v4.11.0
Mathlib
unitInterval.instIsProbabilityMeasureElemRealVolume_tac_821
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval open scoped unitInterval open MeasureTheory
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval
open scoped unitInterval open MeasureTheory
lemma instIsProbabilityMeasureElemRealVolume_tac_821 : 1 = 1 := sorry
lemma instIsProbabilityMeasureElemRealVolume_tac_821 : 1 = 1 := sorry
tactic
['Mathlib', 'MeasureTheory', 'Constructions', 'UnitInterval']
null
leanprover/lean4:v4.11.0
Mathlib
unitInterval.instIsProbabilityMeasureElemRealVolume_tac_821
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval open scoped unitInterval open MeasureTheory
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval
open scoped unitInterval open MeasureTheory
lemma instIsProbabilityMeasureElemRealVolume_tac_821 : 1 = 1 := sorry
lemma instIsProbabilityMeasureElemRealVolume_tac_821 : 1 = 1 := sorry
tactic
['Mathlib', 'MeasureTheory', 'Constructions', 'UnitInterval']
null
leanprover/lean4:v4.11.0
Mathlib
unitInterval.instIsProbabilityMeasureElemRealVolume_tac_821
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval open scoped unitInterval open MeasureTheory
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval
open scoped unitInterval open MeasureTheory
lemma instIsProbabilityMeasureElemRealVolume_tac_821 : 1 = 1 := sorry
lemma instIsProbabilityMeasureElemRealVolume_tac_821 : 1 = 1 := sorry
tactic
['Mathlib', 'MeasureTheory', 'Constructions', 'UnitInterval']
null
leanprover/lean4:v4.11.0
Mathlib
unitInterval.instIsProbabilityMeasureElemRealVolume_tac_821
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval open scoped unitInterval open MeasureTheory
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval
open scoped unitInterval open MeasureTheory
lemma instIsProbabilityMeasureElemRealVolume_tac_821 : 1 = 1 := sorry
lemma instIsProbabilityMeasureElemRealVolume_tac_821 : 1 = 1 := sorry
tactic
['Mathlib', 'MeasureTheory', 'Constructions', 'UnitInterval']
null
leanprover/lean4:v4.11.0
Mathlib
unitInterval.instIsProbabilityMeasureElemRealVolume_tac_821
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval open scoped unitInterval open MeasureTheory
import Init import Mathlib.Topology.UnitInterval import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Measure.Haar.OfBasis import Mathlib.MeasureTheory.Measure.Lebesgue.Basic import Mathlib.MeasureTheory.Constructions.UnitInterval
open scoped unitInterval open MeasureTheory
lemma instIsProbabilityMeasureElemRealVolume_tac_821 : 1 = 1 := sorry
lemma instIsProbabilityMeasureElemRealVolume_tac_821 : 1 = 1 := sorry
tactic
['Mathlib', 'MeasureTheory', 'Constructions', 'UnitInterval']
null
leanprover/lean4:v4.11.0
Mathlib
RCLike.measurableSpace
import Init import Mathlib.Analysis.Complex.Basic import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Constructions.BorelSpace.Complex
import Init import Mathlib.Analysis.Complex.Basic import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Constructions.BorelSpace.Complex
instance (priority := 900) RCLike.measurableSpace {π•œ : Type*} [RCLike π•œ] : MeasurableSpace π•œ := sorry
def measurableSpace_extracted : {π•œ : Type u_1} β†’ [inst : RCLike π•œ] β†’ MeasurableSpace π•œ := sorry
[['MeasurableSpace']]
instance (priority := 900) RCLike.measurableSpace {π•œ : Type*} [RCLike π•œ] : MeasurableSpace π•œ := borel π•œ
[['NormedCommRing', 'toSeminormedCommRing'], ['RCLike', 'toDenselyNormedField'], ['SeminormedCommRing', 'toSeminormedRing'], ['borel'], ['PseudoMetricSpace', 'toUniformSpace'], ['SeminormedRing', 'toPseudoMetricSpace'], ['DenselyNormedField', 'toNormedField'], ['NormedField', 'toNormedCommRing'], ['UniformSpace', 'toTopologicalSpace']]
theorem
Syntax(original=True, range=StringRange(start=330, stop=447))
True
['Mathlib', 'MeasureTheory', 'Constructions', 'BorelSpace', 'Complex']
null
leanprover/lean4:v4.11.0
Mathlib
RCLike.borelSpace
import Init import Mathlib.Analysis.Complex.Basic import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Constructions.BorelSpace.Complex
import Init import Mathlib.Analysis.Complex.Basic import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Constructions.BorelSpace.Complex
instance (priority := 900) RCLike.borelSpace {π•œ : Type*} [RCLike π•œ] : BorelSpace π•œ := sorry
def borelSpace_extracted : βˆ€ {π•œ : Type u_1} [inst : RCLike π•œ], BorelSpace π•œ := sorry
[['NormedCommRing', 'toSeminormedCommRing'], ['RCLike', 'toDenselyNormedField'], ['SeminormedCommRing', 'toSeminormedRing'], ['BorelSpace'], ['PseudoMetricSpace', 'toUniformSpace'], ['SeminormedRing', 'toPseudoMetricSpace'], ['DenselyNormedField', 'toNormedField'], ['RCLike', 'measurableSpace'], ['NormedField', 'toNormedCommRing'], ['UniformSpace', 'toTopologicalSpace']]
instance (priority := 900) RCLike.borelSpace {π•œ : Type*} [RCLike π•œ] : BorelSpace π•œ := ⟨rfl⟩
[['NormedCommRing', 'toSeminormedCommRing'], ['RCLike', 'toDenselyNormedField'], ['SeminormedCommRing', 'toSeminormedRing'], ['BorelSpace', 'mk'], ['PseudoMetricSpace', 'toUniformSpace'], ['SeminormedRing', 'toPseudoMetricSpace'], ['DenselyNormedField', 'toNormedField'], ['RCLike', 'measurableSpace'], ['NormedField', 'toNormedCommRing'], ['UniformSpace', 'toTopologicalSpace'], ['MeasurableSpace'], ['rfl']]
theorem
Syntax(original=True, range=StringRange(start=449, stop=555))
True
['Mathlib', 'MeasureTheory', 'Constructions', 'BorelSpace', 'Complex']
null
leanprover/lean4:v4.11.0
Mathlib
Complex.measurableSpace
import Init import Mathlib.Analysis.Complex.Basic import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Constructions.BorelSpace.Complex
import Init import Mathlib.Analysis.Complex.Basic import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Constructions.BorelSpace.Complex
instance Complex.measurableSpace : MeasurableSpace β„‚ := sorry
def measurableSpace_extracted : MeasurableSpace β„‚ := sorry
[['Complex'], ['MeasurableSpace']]
instance Complex.measurableSpace : MeasurableSpace β„‚ := borel β„‚
[['NormedCommRing', 'toSeminormedCommRing'], ['SeminormedCommRing', 'toSeminormedRing'], ['Complex', 'instNormedField'], ['borel'], ['PseudoMetricSpace', 'toUniformSpace'], ['SeminormedRing', 'toPseudoMetricSpace'], ['Complex'], ['NormedField', 'toNormedCommRing'], ['UniformSpace', 'toTopologicalSpace']]
theorem
Syntax(original=True, range=StringRange(start=557, stop=626))
True
['Mathlib', 'MeasureTheory', 'Constructions', 'BorelSpace', 'Complex']
null
leanprover/lean4:v4.11.0
Mathlib
Complex.borelSpace
import Init import Mathlib.Analysis.Complex.Basic import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Constructions.BorelSpace.Complex
import Init import Mathlib.Analysis.Complex.Basic import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.MeasureTheory.Constructions.BorelSpace.Complex
instance Complex.borelSpace : BorelSpace β„‚ := sorry
def borelSpace_extracted : BorelSpace β„‚ := sorry
[['NormedCommRing', 'toSeminormedCommRing'], ['SeminormedCommRing', 'toSeminormedRing'], ['BorelSpace'], ['Complex', 'instNormedField'], ['Complex', 'measurableSpace'], ['PseudoMetricSpace', 'toUniformSpace'], ['SeminormedRing', 'toPseudoMetricSpace'], ['Complex'], ['NormedField', 'toNormedCommRing'], ['UniformSpace', 'toTopologicalSpace']]
instance Complex.borelSpace : BorelSpace β„‚ := ⟨rfl⟩
[['NormedCommRing', 'toSeminormedCommRing'], ['SeminormedCommRing', 'toSeminormedRing'], ['BorelSpace', 'mk'], ['Complex', 'instNormedField'], ['Complex', 'measurableSpace'], ['PseudoMetricSpace', 'toUniformSpace'], ['SeminormedRing', 'toPseudoMetricSpace'], ['Complex'], ['NormedField', 'toNormedCommRing'], ['UniformSpace', 'toTopologicalSpace'], ['MeasurableSpace'], ['rfl']]
theorem
Syntax(original=True, range=StringRange(start=628, stop=687))
True
['Mathlib', 'MeasureTheory', 'Constructions', 'BorelSpace', 'Complex']
null
leanprover/lean4:v4.11.0
Mathlib
EventuallyMeasurableSpace
import Init import Mathlib.MeasureTheory.MeasurableSpace.Defs import Mathlib.Order.Filter.CountableInter import Mathlib.MeasureTheory.Constructions.EventuallyMeasurable open Filter Set MeasurableSpace
import Init import Mathlib.MeasureTheory.MeasurableSpace.Defs import Mathlib.Order.Filter.CountableInter import Mathlib.MeasureTheory.Constructions.EventuallyMeasurable
open Filter Set MeasurableSpace
/-- The `MeasurableSpace` of sets which are measurable with respect to a given Οƒ-algebra `m` on `Ξ±`, modulo a given Οƒ-filter `l` on `Ξ±`. -/ def EventuallyMeasurableSpace (l : Filter Ξ±) [CountableInterFilter l] : MeasurableSpace Ξ± := sorry
def EventuallyMeasurableSpace_extracted : {Ξ± : Type u_1} β†’ MeasurableSpace Ξ± β†’ (l : Filter Ξ±) β†’ [inst : CountableInterFilter l] β†’ MeasurableSpace Ξ± := sorry
[['MeasurableSpace']]
/-- The `MeasurableSpace` of sets which are measurable with respect to a given Οƒ-algebra `m` on `Ξ±`, modulo a given Οƒ-filter `l` on `Ξ±`. -/ def EventuallyMeasurableSpace (l : Filter Ξ±) [CountableInterFilter l] : MeasurableSpace Ξ± where MeasurableSet' s := βˆƒ t, MeasurableSet t ∧ s =αΆ [l] t measurableSet_empty := βŸ¨βˆ…, MeasurableSet.empty, EventuallyEq.refl _ _ ⟩ measurableSet_compl := fun s ⟨t, ht, hts⟩ => ⟨tᢜ, ht.compl, hts.compl⟩ measurableSet_iUnion s hs := by choose t ht hts using hs exact βŸ¨β‹ƒ i, t i, MeasurableSet.iUnion ht, EventuallyEq.countable_iUnion hts⟩
[['And'], ['Exists'], ['Filter', 'EventuallyEq'], ['Set'], ['MeasurableSet'], ['EventuallyMeasurableSpace', 'proof_3'], ['MeasurableSpace', 'mk'], ['EventuallyMeasurableSpace', 'proof_1'], ['EventuallyMeasurableSpace', 'proof_2']]
The `MeasurableSpace` of sets which are measurable with respect to a given Οƒ-algebra `m` on `Ξ±`, modulo a given Οƒ-filter `l` on `Ξ±`.
theorem
Syntax(original=True, range=StringRange(start=1392, stop=2007))
True
['Mathlib', 'MeasureTheory', 'Constructions', 'EventuallyMeasurable']
null
leanprover/lean4:v4.11.0
Mathlib
EventuallyMeasurableSet
import Init import Mathlib.MeasureTheory.MeasurableSpace.Defs import Mathlib.Order.Filter.CountableInter import Mathlib.MeasureTheory.Constructions.EventuallyMeasurable open Filter Set MeasurableSpace
import Init import Mathlib.MeasureTheory.MeasurableSpace.Defs import Mathlib.Order.Filter.CountableInter import Mathlib.MeasureTheory.Constructions.EventuallyMeasurable
open Filter Set MeasurableSpace
/-- We say a set `s` is an `EventuallyMeasurableSet` with respect to a given Οƒ-algebra `m` and Οƒ-filter `l` if it differs from a set in `m` by a set in the dual ideal of `l`. -/ def EventuallyMeasurableSet (l : Filter Ξ±) [CountableInterFilter l] (s : Set Ξ±) : Prop := sorry
def EventuallyMeasurableSet_extracted : {Ξ± : Type u_1} β†’ MeasurableSpace Ξ± β†’ (l : Filter Ξ±) β†’ [inst : CountableInterFilter l] β†’ Set Ξ± β†’ Prop := sorry
/-- We say a set `s` is an `EventuallyMeasurableSet` with respect to a given Οƒ-algebra `m` and Οƒ-filter `l` if it differs from a set in `m` by a set in the dual ideal of `l`. -/ def EventuallyMeasurableSet (l : Filter Ξ±) [CountableInterFilter l] (s : Set Ξ±) : Prop := @MeasurableSet _ (EventuallyMeasurableSpace m l) s
[['EventuallyMeasurableSpace'], ['MeasurableSet']]
We say a set `s` is an `EventuallyMeasurableSet` with respect to a given Οƒ-algebra `m` and Οƒ-filter `l` if it differs from a set in `m` by a set in the dual ideal of `l`.
theorem
Syntax(original=True, range=StringRange(start=2009, stop=2334))
True
['Mathlib', 'MeasureTheory', 'Constructions', 'EventuallyMeasurable']
null
leanprover/lean4:v4.11.0
Mathlib
MeasurableSet.eventuallyMeasurableSet
import Init import Mathlib.MeasureTheory.MeasurableSpace.Defs import Mathlib.Order.Filter.CountableInter import Mathlib.MeasureTheory.Constructions.EventuallyMeasurable open Filter Set MeasurableSpace
import Init import Mathlib.MeasureTheory.MeasurableSpace.Defs import Mathlib.Order.Filter.CountableInter import Mathlib.MeasureTheory.Constructions.EventuallyMeasurable
open Filter Set MeasurableSpace
theorem MeasurableSet.eventuallyMeasurableSet (hs : MeasurableSet s) : EventuallyMeasurableSet m l s := sorry
theorem eventuallyMeasurableSet_extracted : βˆ€ {Ξ± : Type u_1} {m : MeasurableSpace Ξ±} {s : Set Ξ±} {l : Filter Ξ±} [inst : CountableInterFilter l], MeasurableSet s β†’ EventuallyMeasurableSet m l s := sorry
[['EventuallyMeasurableSet']]
theorem MeasurableSet.eventuallyMeasurableSet (hs : MeasurableSet s) : EventuallyMeasurableSet m l s := ⟨s, hs, EventuallyEq.refl _ _⟩
[['And'], ['Filter', 'EventuallyEq'], ['Filter', 'EventuallyEq', 'refl'], ['Set'], ['MeasurableSet'], ['And', 'intro'], ['Exists', 'intro']]
theorem
Syntax(original=True, range=StringRange(start=2400, stop=2544))
True
['Mathlib', 'MeasureTheory', 'Constructions', 'EventuallyMeasurable']
null
leanprover/lean4:v4.11.0
Mathlib
EventuallyMeasurableSpace.measurable_le
import Init import Mathlib.MeasureTheory.MeasurableSpace.Defs import Mathlib.Order.Filter.CountableInter import Mathlib.MeasureTheory.Constructions.EventuallyMeasurable open Filter Set MeasurableSpace
import Init import Mathlib.MeasureTheory.MeasurableSpace.Defs import Mathlib.Order.Filter.CountableInter import Mathlib.MeasureTheory.Constructions.EventuallyMeasurable
open Filter Set MeasurableSpace
theorem EventuallyMeasurableSpace.measurable_le : m ≀ EventuallyMeasurableSpace m l := sorry
theorem measurable_le_extracted : βˆ€ {Ξ± : Type u_1} {m : MeasurableSpace Ξ±} {l : Filter Ξ±} [inst : CountableInterFilter l], m ≀ EventuallyMeasurableSpace m l := sorry
[['EventuallyMeasurableSpace'], ['MeasurableSpace', 'instLE'], ['MeasurableSpace'], ['LE', 'le']]
theorem EventuallyMeasurableSpace.measurable_le : m ≀ EventuallyMeasurableSpace m l := fun _ hs => hs.eventuallyMeasurableSet
[['MeasurableSet', 'eventuallyMeasurableSet']]
theorem
Syntax(original=True, range=StringRange(start=2546, stop=2675))
True
['Mathlib', 'MeasureTheory', 'Constructions', 'EventuallyMeasurable']
null
leanprover/lean4:v4.11.0
Mathlib
eventuallyMeasurableSet_of_mem_filter
import Init import Mathlib.MeasureTheory.MeasurableSpace.Defs import Mathlib.Order.Filter.CountableInter import Mathlib.MeasureTheory.Constructions.EventuallyMeasurable open Filter Set MeasurableSpace
import Init import Mathlib.MeasureTheory.MeasurableSpace.Defs import Mathlib.Order.Filter.CountableInter import Mathlib.MeasureTheory.Constructions.EventuallyMeasurable
open Filter Set MeasurableSpace
theorem eventuallyMeasurableSet_of_mem_filter (hs : s ∈ l) : EventuallyMeasurableSet m l s := sorry
theorem eventuallyMeasurableSet_of_mem_filter_extracted : βˆ€ {Ξ± : Type u_1} {m : MeasurableSpace Ξ±} {s : Set Ξ±} {l : Filter Ξ±} [inst : CountableInterFilter l], s ∈ l β†’ EventuallyMeasurableSet m l s := sorry
[['EventuallyMeasurableSet']]
theorem eventuallyMeasurableSet_of_mem_filter (hs : s ∈ l) : EventuallyMeasurableSet m l s := ⟨univ, MeasurableSet.univ, eventuallyEq_univ.mpr hs⟩
[['Membership', 'mem'], ['MeasurableSet', 'univ'], ['And'], ['Filter', 'EventuallyEq'], ['Set'], ['MeasurableSet'], ['Filter'], ['And', 'intro'], ['Exists', 'intro'], ['Filter', 'eventuallyEq_univ'], ['Set', 'univ'], ['Iff', 'mpr'], ['instMembershipSetFilter']]
theorem
Syntax(original=True, range=StringRange(start=2677, stop=2831))
True
['Mathlib', 'MeasureTheory', 'Constructions', 'EventuallyMeasurable']
null
leanprover/lean4:v4.11.0
Mathlib
EventuallyMeasurableSet.congr
import Init import Mathlib.MeasureTheory.MeasurableSpace.Defs import Mathlib.Order.Filter.CountableInter import Mathlib.MeasureTheory.Constructions.EventuallyMeasurable open Filter Set MeasurableSpace
import Init import Mathlib.MeasureTheory.MeasurableSpace.Defs import Mathlib.Order.Filter.CountableInter import Mathlib.MeasureTheory.Constructions.EventuallyMeasurable
open Filter Set MeasurableSpace
/-- A set which is `EventuallyEq` to an `EventuallyMeasurableSet` is an `EventuallyMeasurableSet`. -/ theorem EventuallyMeasurableSet.congr (ht : EventuallyMeasurableSet m l t) (hst : s =αΆ [l] t) : EventuallyMeasurableSet m l s := sorry
theorem congr_extracted : βˆ€ {Ξ± : Type u_1} {m : MeasurableSpace Ξ±} {s t : Set Ξ±} {l : Filter Ξ±} [inst : CountableInterFilter l], EventuallyMeasurableSet m l t β†’ s =αΆ [l] t β†’ EventuallyMeasurableSet m l s := sorry
[['EventuallyMeasurableSet']]
/-- A set which is `EventuallyEq` to an `EventuallyMeasurableSet` is an `EventuallyMeasurableSet`. -/ theorem EventuallyMeasurableSet.congr (ht : EventuallyMeasurableSet m l t) (hst : s =ᢠ[l] t) : EventuallyMeasurableSet m l s := by rcases ht with ⟨t', ht', htt'⟩ exact ⟨t', ht', hst.trans htt'⟩
[['And'], ['Filter', 'EventuallyEq'], ['Set'], ['MeasurableSet'], ['Filter', 'EventuallyEq', 'trans'], ['And', 'intro'], ['Exists', 'intro'], ['And', 'casesOn'], ['EventuallyMeasurableSet'], ['Exists', 'casesOn']]
A set which is `EventuallyEq` to an `EventuallyMeasurableSet` is an `EventuallyMeasurableSet`.
theorem
Syntax(original=True, range=StringRange(start=2833, stop=3146))
True
['Mathlib', 'MeasureTheory', 'Constructions', 'EventuallyMeasurable']
null
leanprover/lean4:v4.11.0
Mathlib
EventuallyMeasurableSpace.measurableSingleton
import Init import Mathlib.MeasureTheory.MeasurableSpace.Defs import Mathlib.Order.Filter.CountableInter import Mathlib.MeasureTheory.Constructions.EventuallyMeasurable open Filter Set MeasurableSpace
import Init import Mathlib.MeasureTheory.MeasurableSpace.Defs import Mathlib.Order.Filter.CountableInter import Mathlib.MeasureTheory.Constructions.EventuallyMeasurable
open Filter Set MeasurableSpace
instance measurableSingleton [MeasurableSingletonClass Ξ±] : @MeasurableSingletonClass Ξ± (EventuallyMeasurableSpace m l) := sorry
def measurableSingleton_extracted : βˆ€ {Ξ± : Type u_1} {m : MeasurableSpace Ξ±} {l : Filter Ξ±} [inst : CountableInterFilter l] [inst_1 : MeasurableSingletonClass Ξ±], MeasurableSingletonClass Ξ± := sorry
[['MeasurableSingletonClass'], ['EventuallyMeasurableSpace']]
instance measurableSingleton [MeasurableSingletonClass Ξ±] : @MeasurableSingletonClass Ξ± (EventuallyMeasurableSpace m l) := @MeasurableSingletonClass.mk _ (_) <| fun x => (MeasurableSet.singleton x).eventuallyMeasurableSet
[['MeasurableSet', 'eventuallyMeasurableSet'], ['Set', 'instSingletonSet'], ['EventuallyMeasurableSpace'], ['Set'], ['Singleton', 'singleton'], ['MeasurableSet', 'singleton'], ['MeasurableSingletonClass', 'mk']]
theorem
Syntax(original=True, range=StringRange(start=3204, stop=3433))
True
['Mathlib', 'MeasureTheory', 'Constructions', 'EventuallyMeasurable']
null
leanprover/lean4:v4.11.0
Mathlib
EventuallyMeasurable
import Init import Mathlib.MeasureTheory.MeasurableSpace.Defs import Mathlib.Order.Filter.CountableInter import Mathlib.MeasureTheory.Constructions.EventuallyMeasurable open Filter Set MeasurableSpace open Function
import Init import Mathlib.MeasureTheory.MeasurableSpace.Defs import Mathlib.Order.Filter.CountableInter import Mathlib.MeasureTheory.Constructions.EventuallyMeasurable
open Filter Set MeasurableSpace open Function
/-- We say a function is `EventuallyMeasurable` with respect to a given Οƒ-algebra `m` and Οƒ-filter `l` if the preimage of any measurable set is equal to some `m`-measurable set modulo `l`. Warning: This is not always the same as being equal to some `m`-measurable function modulo `l`. In general it is weaker. See `Measurable.eventuallyMeasurable_of_eventuallyEq`. *TODO*: Add lemmas about when these are equivalent. -/ def EventuallyMeasurable (f : Ξ± β†’ Ξ²) : Prop := sorry
def EventuallyMeasurable_extracted : {Ξ± : Type u_1} β†’ MeasurableSpace Ξ± β†’ (l : Filter Ξ±) β†’ [inst : CountableInterFilter l] β†’ {Ξ² : Type u_2} β†’ [inst : MeasurableSpace Ξ²] β†’ (Ξ± β†’ Ξ²) β†’ Prop := sorry
/-- We say a function is `EventuallyMeasurable` with respect to a given Οƒ-algebra `m` and Οƒ-filter `l` if the preimage of any measurable set is equal to some `m`-measurable set modulo `l`. Warning: This is not always the same as being equal to some `m`-measurable function modulo `l`. In general it is weaker. See `Measurable.eventuallyMeasurable_of_eventuallyEq`. *TODO*: Add lemmas about when these are equivalent. -/ def EventuallyMeasurable (f : Ξ± β†’ Ξ²) : Prop := @Measurable _ _ (EventuallyMeasurableSpace m l) _ f
[['EventuallyMeasurableSpace'], ['Measurable']]
We say a function is `EventuallyMeasurable` with respect to a given Οƒ-algebra `m` and Οƒ-filter `l` if the preimage of any measurable set is equal to some `m`-measurable set modulo `l`. Warning: This is not always the same as being equal to some `m`-measurable function modulo `l`. In general it is weaker. See `Measurable.eventuallyMeasurable_of_eventuallyEq`. *TODO*: Add lemmas about when these are equivalent.
theorem
Syntax(original=True, range=StringRange(start=3600, stop=4124))
True
['Mathlib', 'MeasureTheory', 'Constructions', 'EventuallyMeasurable']
null
leanprover/lean4:v4.11.0
Mathlib
Measurable.eventuallyMeasurable
import Init import Mathlib.MeasureTheory.MeasurableSpace.Defs import Mathlib.Order.Filter.CountableInter import Mathlib.MeasureTheory.Constructions.EventuallyMeasurable open Filter Set MeasurableSpace open Function
import Init import Mathlib.MeasureTheory.MeasurableSpace.Defs import Mathlib.Order.Filter.CountableInter import Mathlib.MeasureTheory.Constructions.EventuallyMeasurable
open Filter Set MeasurableSpace open Function
theorem Measurable.eventuallyMeasurable (hf : Measurable f) : EventuallyMeasurable m l f := sorry
theorem eventuallyMeasurable_extracted : βˆ€ {Ξ± : Type u_1} {m : MeasurableSpace Ξ±} {l : Filter Ξ±} [inst : CountableInterFilter l] {Ξ² : Type u_2} [inst_1 : MeasurableSpace Ξ²] {f : Ξ± β†’ Ξ²}, Measurable f β†’ EventuallyMeasurable m l f := sorry
[['EventuallyMeasurable']]
theorem Measurable.eventuallyMeasurable (hf : Measurable f) : EventuallyMeasurable m l f := hf.le EventuallyMeasurableSpace.measurable_le
[['EventuallyMeasurableSpace', 'measurable_le'], ['EventuallyMeasurableSpace'], ['Measurable', 'le']]
theorem
Syntax(original=True, range=StringRange(start=4176, stop=4315))
True
['Mathlib', 'MeasureTheory', 'Constructions', 'EventuallyMeasurable']
null
leanprover/lean4:v4.11.0
Mathlib
Measurable.comp_eventuallyMeasurable
import Init import Mathlib.MeasureTheory.MeasurableSpace.Defs import Mathlib.Order.Filter.CountableInter import Mathlib.MeasureTheory.Constructions.EventuallyMeasurable open Filter Set MeasurableSpace open Function
import Init import Mathlib.MeasureTheory.MeasurableSpace.Defs import Mathlib.Order.Filter.CountableInter import Mathlib.MeasureTheory.Constructions.EventuallyMeasurable
open Filter Set MeasurableSpace open Function
theorem Measurable.comp_eventuallyMeasurable (hh : Measurable h) (hf : EventuallyMeasurable m l f) : EventuallyMeasurable m l (h ∘ f) := sorry
theorem comp_eventuallyMeasurable_extracted : βˆ€ {Ξ± : Type u_1} {m : MeasurableSpace Ξ±} {l : Filter Ξ±} [inst : CountableInterFilter l] {Ξ² : Type u_2} {Ξ³ : Type u_3} [inst_1 : MeasurableSpace Ξ²] [inst_2 : MeasurableSpace Ξ³] {f : Ξ± β†’ Ξ²} {h : Ξ² β†’ Ξ³}, Measurable h β†’ EventuallyMeasurable m l f β†’ EventuallyMeasurable m l (h ∘ f) := sorry
[['Function', 'comp'], ['EventuallyMeasurable']]
theorem Measurable.comp_eventuallyMeasurable (hh : Measurable h) (hf : EventuallyMeasurable m l f) : EventuallyMeasurable m l (h ∘ f) := hh.comp hf
[['EventuallyMeasurableSpace'], ['Measurable', 'comp']]
theorem
Syntax(original=True, range=StringRange(start=4317, stop=4472))
True
['Mathlib', 'MeasureTheory', 'Constructions', 'EventuallyMeasurable']
null
leanprover/lean4:v4.11.0
Mathlib
EventuallyMeasurable.congr
import Init import Mathlib.MeasureTheory.MeasurableSpace.Defs import Mathlib.Order.Filter.CountableInter import Mathlib.MeasureTheory.Constructions.EventuallyMeasurable open Filter Set MeasurableSpace open Function
import Init import Mathlib.MeasureTheory.MeasurableSpace.Defs import Mathlib.Order.Filter.CountableInter import Mathlib.MeasureTheory.Constructions.EventuallyMeasurable
open Filter Set MeasurableSpace open Function
/-- A function which is `EventuallyEq` to some `EventuallyMeasurable` function is `EventuallyMeasurable`.-/ theorem EventuallyMeasurable.congr (hf : EventuallyMeasurable m l f) (hgf : g =αΆ [l] f) : EventuallyMeasurable m l g := sorry
theorem congr_extracted : βˆ€ {Ξ± : Type u_1} {m : MeasurableSpace Ξ±} {l : Filter Ξ±} [inst : CountableInterFilter l] {Ξ² : Type u_2} [inst_1 : MeasurableSpace Ξ²] {f g : Ξ± β†’ Ξ²}, EventuallyMeasurable m l f β†’ g =αΆ [l] f β†’ EventuallyMeasurable m l g := sorry
[['EventuallyMeasurable']]
/-- A function which is `EventuallyEq` to some `EventuallyMeasurable` function is `EventuallyMeasurable`.-/ theorem EventuallyMeasurable.congr (hf : EventuallyMeasurable m l f) (hgf : g =αΆ [l] f) : EventuallyMeasurable m l g := fun _ hs => EventuallyMeasurableSet.congr (hf hs) (hgf.preimage _)
[['Set', 'preimage'], ['Filter', 'EventuallyEq', 'preimage'], ['EventuallyMeasurableSet', 'congr']]
A function which is `EventuallyEq` to some `EventuallyMeasurable` function is `EventuallyMeasurable`.
theorem
Syntax(original=True, range=StringRange(start=4474, stop=4779))
True
['Mathlib', 'MeasureTheory', 'Constructions', 'EventuallyMeasurable']
null
leanprover/lean4:v4.11.0
Mathlib
Measurable.eventuallyMeasurable_of_eventuallyEq
import Init import Mathlib.MeasureTheory.MeasurableSpace.Defs import Mathlib.Order.Filter.CountableInter import Mathlib.MeasureTheory.Constructions.EventuallyMeasurable open Filter Set MeasurableSpace open Function
import Init import Mathlib.MeasureTheory.MeasurableSpace.Defs import Mathlib.Order.Filter.CountableInter import Mathlib.MeasureTheory.Constructions.EventuallyMeasurable
open Filter Set MeasurableSpace open Function
/-- A function which is `EventuallyEq` to some `Measurable` function is `EventuallyMeasurable`.-/ theorem Measurable.eventuallyMeasurable_of_eventuallyEq (hf : Measurable f) (hgf : g =αΆ [l] f) : EventuallyMeasurable m l g := sorry
theorem eventuallyMeasurable_of_eventuallyEq_extracted : βˆ€ {Ξ± : Type u_1} {m : MeasurableSpace Ξ±} {l : Filter Ξ±} [inst : CountableInterFilter l] {Ξ² : Type u_2} [inst_1 : MeasurableSpace Ξ²] {f g : Ξ± β†’ Ξ²}, Measurable f β†’ g =αΆ [l] f β†’ EventuallyMeasurable m l g := sorry
[['EventuallyMeasurable']]
/-- A function which is `EventuallyEq` to some `Measurable` function is `EventuallyMeasurable`.-/ theorem Measurable.eventuallyMeasurable_of_eventuallyEq (hf : Measurable f) (hgf : g =αΆ [l] f) : EventuallyMeasurable m l g := hf.eventuallyMeasurable.congr hgf
[['EventuallyMeasurable', 'congr'], ['Measurable', 'eventuallyMeasurable']]
A function which is `EventuallyEq` to some `Measurable` function is `EventuallyMeasurable`.
theorem
Syntax(original=True, range=StringRange(start=4781, stop=5046))
True
['Mathlib', 'MeasureTheory', 'Constructions', 'EventuallyMeasurable']
null
leanprover/lean4:v4.11.0
Mathlib
EventuallyMeasurableSpace_tac_1889
import Init import Mathlib.MeasureTheory.MeasurableSpace.Defs import Mathlib.Order.Filter.CountableInter import Mathlib.MeasureTheory.Constructions.EventuallyMeasurable open Filter Set MeasurableSpace
import Init import Mathlib.MeasureTheory.MeasurableSpace.Defs import Mathlib.Order.Filter.CountableInter import Mathlib.MeasureTheory.Constructions.EventuallyMeasurable
open Filter Set MeasurableSpace
lemma EventuallyMeasurableSpace_tac_1889 (m : MeasurableSpace Ξ±) (t : Set Ξ±) (l : Filter Ξ±) [CountableInterFilter l] (s : β„• β†’ Set Ξ±) (hs : βˆ€ (i : β„•), (fun s => βˆƒ t, MeasurableSet t ∧ s =αΆ [l] t) (s i)) : (fun s => βˆƒ t, MeasurableSet t ∧ s =αΆ [l] t) (⋃ i, s i) := sorry
lemma EventuallyMeasurableSpace_tac_1889 {Ξ± : Type*} (m : MeasurableSpace Ξ±) (s✝ : Set Ξ±) (t : Set Ξ±) (l : Filter Ξ±) [CountableInterFilter l] (s : β„• β†’ Set Ξ±) (hs : βˆ€ (i : β„•), (fun s => βˆƒ t, MeasurableSet t ∧ s =αΆ [l] t) (s i)) : (fun s => βˆƒ t, MeasurableSet t ∧ s =αΆ [l] t) (⋃ i, s i) := sorry
[['hs'], ['hts'], ['EventuallyEq', 'countable_iUnion'], ['t'], ['ht'], ['MeasurableSet', 'iUnion'], ['i']]
tactic
['Mathlib', 'MeasureTheory', 'Constructions', 'EventuallyMeasurable']
null
leanprover/lean4:v4.11.0
Mathlib
EventuallyMeasurableSpace_tac_1889
import Init import Mathlib.MeasureTheory.MeasurableSpace.Defs import Mathlib.Order.Filter.CountableInter import Mathlib.MeasureTheory.Constructions.EventuallyMeasurable open Filter Set MeasurableSpace
import Init import Mathlib.MeasureTheory.MeasurableSpace.Defs import Mathlib.Order.Filter.CountableInter import Mathlib.MeasureTheory.Constructions.EventuallyMeasurable
open Filter Set MeasurableSpace
lemma EventuallyMeasurableSpace_tac_1889 (m : MeasurableSpace Ξ±) (t : Set Ξ±) (l : Filter Ξ±) [CountableInterFilter l] (s : β„• β†’ Set Ξ±) (hs : βˆ€ (i : β„•), (fun s => βˆƒ t, MeasurableSet t ∧ s =αΆ [l] t) (s i)) : (fun s => βˆƒ t, MeasurableSet t ∧ s =αΆ [l] t) (⋃ i, s i) := sorry
lemma EventuallyMeasurableSpace_tac_1889 {Ξ± : Type*} (m : MeasurableSpace Ξ±) (s✝ : Set Ξ±) (t : Set Ξ±) (l : Filter Ξ±) [CountableInterFilter l] (s : β„• β†’ Set Ξ±) (hs : βˆ€ (i : β„•), (fun s => βˆƒ t, MeasurableSet t ∧ s =αΆ [l] t) (s i)) : (fun s => βˆƒ t, MeasurableSet t ∧ s =αΆ [l] t) (⋃ i, s i) := sorry
tactic
['Mathlib', 'MeasureTheory', 'Constructions', 'EventuallyMeasurable']
null
leanprover/lean4:v4.11.0
Mathlib
EventuallyMeasurableSpace_tac_1896
import Init import Mathlib.MeasureTheory.MeasurableSpace.Defs import Mathlib.Order.Filter.CountableInter import Mathlib.MeasureTheory.Constructions.EventuallyMeasurable open Filter Set MeasurableSpace
import Init import Mathlib.MeasureTheory.MeasurableSpace.Defs import Mathlib.Order.Filter.CountableInter import Mathlib.MeasureTheory.Constructions.EventuallyMeasurable
open Filter Set MeasurableSpace
lemma EventuallyMeasurableSpace_tac_1896 (m : MeasurableSpace Ξ±) (t : Set Ξ±) (l : Filter Ξ±) [CountableInterFilter l] (s : β„• β†’ Set Ξ±) (hs : βˆ€ (i : β„•), (fun s => βˆƒ t, MeasurableSet t ∧ s =αΆ [l] t) (s i)) : (fun s => βˆƒ t, MeasurableSet t ∧ s =αΆ [l] t) (⋃ i, s i) := sorry
lemma EventuallyMeasurableSpace_tac_1896 {Ξ± : Type*} (m : MeasurableSpace Ξ±) (s✝ : Set Ξ±) (t : Set Ξ±) (l : Filter Ξ±) [CountableInterFilter l] (s : β„• β†’ Set Ξ±) (hs : βˆ€ (i : β„•), (fun s => βˆƒ t, MeasurableSet t ∧ s =αΆ [l] t) (s i)) : (fun s => βˆƒ t, MeasurableSet t ∧ s =αΆ [l] t) (⋃ i, s i) := sorry
[['hs'], ['hts'], ['EventuallyEq', 'countable_iUnion'], ['t'], ['ht'], ['MeasurableSet', 'iUnion'], ['i']]
tactic
['Mathlib', 'MeasureTheory', 'Constructions', 'EventuallyMeasurable']
null
leanprover/lean4:v4.11.0
Mathlib
EventuallyMeasurableSpace_tac_1896
import Init import Mathlib.MeasureTheory.MeasurableSpace.Defs import Mathlib.Order.Filter.CountableInter import Mathlib.MeasureTheory.Constructions.EventuallyMeasurable open Filter Set MeasurableSpace
import Init import Mathlib.MeasureTheory.MeasurableSpace.Defs import Mathlib.Order.Filter.CountableInter import Mathlib.MeasureTheory.Constructions.EventuallyMeasurable
open Filter Set MeasurableSpace
lemma EventuallyMeasurableSpace_tac_1896 (m : MeasurableSpace Ξ±) (t : Set Ξ±) (l : Filter Ξ±) [CountableInterFilter l] (s : β„• β†’ Set Ξ±) (hs : βˆ€ (i : β„•), (fun s => βˆƒ t, MeasurableSet t ∧ s =αΆ [l] t) (s i)) : (fun s => βˆƒ t, MeasurableSet t ∧ s =αΆ [l] t) (⋃ i, s i) := sorry
lemma EventuallyMeasurableSpace_tac_1896 {Ξ± : Type*} (m : MeasurableSpace Ξ±) (s✝ : Set Ξ±) (t : Set Ξ±) (l : Filter Ξ±) [CountableInterFilter l] (s : β„• β†’ Set Ξ±) (hs : βˆ€ (i : β„•), (fun s => βˆƒ t, MeasurableSet t ∧ s =αΆ [l] t) (s i)) : (fun s => βˆƒ t, MeasurableSet t ∧ s =αΆ [l] t) (⋃ i, s i) := sorry
[['hs'], ['hts'], ['EventuallyEq', 'countable_iUnion'], ['t'], ['ht'], ['MeasurableSet', 'iUnion'], ['i']]
tactic
['Mathlib', 'MeasureTheory', 'Constructions', 'EventuallyMeasurable']
null
leanprover/lean4:v4.11.0
Mathlib
EventuallyMeasurableSpace_tac_1896
import Init import Mathlib.MeasureTheory.MeasurableSpace.Defs import Mathlib.Order.Filter.CountableInter import Mathlib.MeasureTheory.Constructions.EventuallyMeasurable open Filter Set MeasurableSpace
import Init import Mathlib.MeasureTheory.MeasurableSpace.Defs import Mathlib.Order.Filter.CountableInter import Mathlib.MeasureTheory.Constructions.EventuallyMeasurable
open Filter Set MeasurableSpace
lemma EventuallyMeasurableSpace_tac_1896 (m : MeasurableSpace Ξ±) (t : Set Ξ±) (l : Filter Ξ±) [CountableInterFilter l] (s : β„• β†’ Set Ξ±) (hs : βˆ€ (i : β„•), (fun s => βˆƒ t, MeasurableSet t ∧ s =αΆ [l] t) (s i)) : (fun s => βˆƒ t, MeasurableSet t ∧ s =αΆ [l] t) (⋃ i, s i) := sorry
lemma EventuallyMeasurableSpace_tac_1896 {Ξ± : Type*} (m : MeasurableSpace Ξ±) (s✝ : Set Ξ±) (t : Set Ξ±) (l : Filter Ξ±) [CountableInterFilter l] (s : β„• β†’ Set Ξ±) (hs : βˆ€ (i : β„•), (fun s => βˆƒ t, MeasurableSet t ∧ s =αΆ [l] t) (s i)) : (fun s => βˆƒ t, MeasurableSet t ∧ s =αΆ [l] t) (⋃ i, s i) := sorry
[['hs'], ['hts'], ['t'], ['ht']]
tactic
['Mathlib', 'MeasureTheory', 'Constructions', 'EventuallyMeasurable']
null
leanprover/lean4:v4.11.0
Mathlib
EventuallyMeasurableSpace_tac_1925
import Init import Mathlib.MeasureTheory.MeasurableSpace.Defs import Mathlib.Order.Filter.CountableInter import Mathlib.MeasureTheory.Constructions.EventuallyMeasurable open Filter Set MeasurableSpace
import Init import Mathlib.MeasureTheory.MeasurableSpace.Defs import Mathlib.Order.Filter.CountableInter import Mathlib.MeasureTheory.Constructions.EventuallyMeasurable
open Filter Set MeasurableSpace
lemma EventuallyMeasurableSpace_tac_1925 (m : MeasurableSpace Ξ±) (l : Filter Ξ±) [CountableInterFilter l] (s : β„• β†’ Set Ξ±) (t : β„• β†’ Set Ξ±) (ht : βˆ€ (i : β„•), MeasurableSet (t i)) (hts : βˆ€ (i : β„•), s i =αΆ [l] t i) : βˆƒ t, MeasurableSet t ∧ ⋃ i, s i =αΆ [l] t := sorry
lemma EventuallyMeasurableSpace_tac_1925 {Ξ± : Type*} (m : MeasurableSpace Ξ±) (s✝ : Set Ξ±) (t✝ : Set Ξ±) (l : Filter Ξ±) [CountableInterFilter l] (s : β„• β†’ Set Ξ±) (t : β„• β†’ Set Ξ±) (ht : βˆ€ (i : β„•), MeasurableSet (t i)) (hts : βˆ€ (i : β„•), s i =αΆ [l] t i) : βˆƒ t, MeasurableSet t ∧ ⋃ i, s i =αΆ [l] t := sorry
[['hts'], ['EventuallyEq', 'countable_iUnion'], ['t'], ['ht'], ['MeasurableSet', 'iUnion'], ['i']]
tactic
['Mathlib', 'MeasureTheory', 'Constructions', 'EventuallyMeasurable']
null
leanprover/lean4:v4.11.0
Mathlib
EventuallyMeasurableSet.congr_tac_3069
import Init import Mathlib.MeasureTheory.MeasurableSpace.Defs import Mathlib.Order.Filter.CountableInter import Mathlib.MeasureTheory.Constructions.EventuallyMeasurable open Filter Set MeasurableSpace
import Init import Mathlib.MeasureTheory.MeasurableSpace.Defs import Mathlib.Order.Filter.CountableInter import Mathlib.MeasureTheory.Constructions.EventuallyMeasurable
open Filter Set MeasurableSpace
lemma congr_tac_3069 (m : MeasurableSpace Ξ±) (s : Set Ξ±) (t : Set Ξ±) (l : Filter Ξ±) [CountableInterFilter l] (ht : EventuallyMeasurableSet m l t) (hst : s =αΆ [l] t) : EventuallyMeasurableSet m l s := sorry
lemma congr_tac_3069 {Ξ± : Type*} (m : MeasurableSpace Ξ±) (s : Set Ξ±) (t : Set Ξ±) (l : Filter Ξ±) [CountableInterFilter l] (ht : EventuallyMeasurableSet m l t) (hst : s =αΆ [l] t) : EventuallyMeasurableSet m l s := sorry
[['hst', 'trans'], ["ht'"], ["t'"], ['ht'], ["htt'"]]
tactic
['Mathlib', 'MeasureTheory', 'Constructions', 'EventuallyMeasurable']
null
leanprover/lean4:v4.11.0
Mathlib
EventuallyMeasurableSet.congr_tac_3069
import Init import Mathlib.MeasureTheory.MeasurableSpace.Defs import Mathlib.Order.Filter.CountableInter import Mathlib.MeasureTheory.Constructions.EventuallyMeasurable open Filter Set MeasurableSpace
import Init import Mathlib.MeasureTheory.MeasurableSpace.Defs import Mathlib.Order.Filter.CountableInter import Mathlib.MeasureTheory.Constructions.EventuallyMeasurable
open Filter Set MeasurableSpace
lemma congr_tac_3069 (m : MeasurableSpace Ξ±) (s : Set Ξ±) (t : Set Ξ±) (l : Filter Ξ±) [CountableInterFilter l] (ht : EventuallyMeasurableSet m l t) (hst : s =αΆ [l] t) : EventuallyMeasurableSet m l s := sorry
lemma congr_tac_3069 {Ξ± : Type*} (m : MeasurableSpace Ξ±) (s : Set Ξ±) (t : Set Ξ±) (l : Filter Ξ±) [CountableInterFilter l] (ht : EventuallyMeasurableSet m l t) (hst : s =αΆ [l] t) : EventuallyMeasurableSet m l s := sorry
tactic
['Mathlib', 'MeasureTheory', 'Constructions', 'EventuallyMeasurable']
null
leanprover/lean4:v4.11.0
Mathlib
EventuallyMeasurableSet.congr_tac_3074
import Init import Mathlib.MeasureTheory.MeasurableSpace.Defs import Mathlib.Order.Filter.CountableInter import Mathlib.MeasureTheory.Constructions.EventuallyMeasurable open Filter Set MeasurableSpace
import Init import Mathlib.MeasureTheory.MeasurableSpace.Defs import Mathlib.Order.Filter.CountableInter import Mathlib.MeasureTheory.Constructions.EventuallyMeasurable
open Filter Set MeasurableSpace
lemma congr_tac_3074 (m : MeasurableSpace Ξ±) (s : Set Ξ±) (t : Set Ξ±) (l : Filter Ξ±) [CountableInterFilter l] (ht : EventuallyMeasurableSet m l t) (hst : s =αΆ [l] t) : EventuallyMeasurableSet m l s := sorry
lemma congr_tac_3074 {Ξ± : Type*} (m : MeasurableSpace Ξ±) (s : Set Ξ±) (t : Set Ξ±) (l : Filter Ξ±) [CountableInterFilter l] (ht : EventuallyMeasurableSet m l t) (hst : s =αΆ [l] t) : EventuallyMeasurableSet m l s := sorry
[['hst', 'trans'], ["ht'"], ["t'"], ['ht'], ["htt'"]]
tactic
['Mathlib', 'MeasureTheory', 'Constructions', 'EventuallyMeasurable']
null
leanprover/lean4:v4.11.0
Mathlib
EventuallyMeasurableSet.congr_tac_3074
import Init import Mathlib.MeasureTheory.MeasurableSpace.Defs import Mathlib.Order.Filter.CountableInter import Mathlib.MeasureTheory.Constructions.EventuallyMeasurable open Filter Set MeasurableSpace
import Init import Mathlib.MeasureTheory.MeasurableSpace.Defs import Mathlib.Order.Filter.CountableInter import Mathlib.MeasureTheory.Constructions.EventuallyMeasurable
open Filter Set MeasurableSpace
lemma congr_tac_3074 (m : MeasurableSpace Ξ±) (s : Set Ξ±) (t : Set Ξ±) (l : Filter Ξ±) [CountableInterFilter l] (ht : EventuallyMeasurableSet m l t) (hst : s =αΆ [l] t) : EventuallyMeasurableSet m l s := sorry
lemma congr_tac_3074 {Ξ± : Type*} (m : MeasurableSpace Ξ±) (s : Set Ξ±) (t : Set Ξ±) (l : Filter Ξ±) [CountableInterFilter l] (ht : EventuallyMeasurableSet m l t) (hst : s =αΆ [l] t) : EventuallyMeasurableSet m l s := sorry
[['hst', 'trans'], ["ht'"], ["t'"], ['ht'], ["htt'"]]
tactic
['Mathlib', 'MeasureTheory', 'Constructions', 'EventuallyMeasurable']
null
leanprover/lean4:v4.11.0
Mathlib
EventuallyMeasurableSet.congr_tac_3074
import Init import Mathlib.MeasureTheory.MeasurableSpace.Defs import Mathlib.Order.Filter.CountableInter import Mathlib.MeasureTheory.Constructions.EventuallyMeasurable open Filter Set MeasurableSpace
import Init import Mathlib.MeasureTheory.MeasurableSpace.Defs import Mathlib.Order.Filter.CountableInter import Mathlib.MeasureTheory.Constructions.EventuallyMeasurable
open Filter Set MeasurableSpace
lemma congr_tac_3074 (m : MeasurableSpace Ξ±) (s : Set Ξ±) (t : Set Ξ±) (l : Filter Ξ±) [CountableInterFilter l] (ht : EventuallyMeasurableSet m l t) (hst : s =αΆ [l] t) : EventuallyMeasurableSet m l s := sorry
lemma congr_tac_3074 {Ξ± : Type*} (m : MeasurableSpace Ξ±) (s : Set Ξ±) (t : Set Ξ±) (l : Filter Ξ±) [CountableInterFilter l] (ht : EventuallyMeasurableSet m l t) (hst : s =αΆ [l] t) : EventuallyMeasurableSet m l s := sorry
[["ht'"], ["t'"], ['ht'], ["htt'"]]
tactic
['Mathlib', 'MeasureTheory', 'Constructions', 'EventuallyMeasurable']
null
leanprover/lean4:v4.11.0
Mathlib
EventuallyMeasurableSet.congr_tac_3111
import Init import Mathlib.MeasureTheory.MeasurableSpace.Defs import Mathlib.Order.Filter.CountableInter import Mathlib.MeasureTheory.Constructions.EventuallyMeasurable open Filter Set MeasurableSpace
import Init import Mathlib.MeasureTheory.MeasurableSpace.Defs import Mathlib.Order.Filter.CountableInter import Mathlib.MeasureTheory.Constructions.EventuallyMeasurable
open Filter Set MeasurableSpace
lemma congr_tac_3111 (m : MeasurableSpace Ξ±) (s : Set Ξ±) (t : Set Ξ±) (l : Filter Ξ±) [CountableInterFilter l] (hst : s =αΆ [l] t) (t' : Set Ξ±) (ht' : MeasurableSet t') (htt' : t =αΆ [l] t') : EventuallyMeasurableSet m l s := sorry
lemma congr_tac_3111 {Ξ± : Type*} (m : MeasurableSpace Ξ±) (s : Set Ξ±) (t : Set Ξ±) (l : Filter Ξ±) [CountableInterFilter l] (hst : s =αΆ [l] t) (t' : Set Ξ±) (ht' : MeasurableSet t') (htt' : t =αΆ [l] t') : EventuallyMeasurableSet m l s := sorry
[['hst', 'trans'], ["ht'"], ["t'"], ["htt'"]]
tactic
['Mathlib', 'MeasureTheory', 'Constructions', 'EventuallyMeasurable']
null
leanprover/lean4:v4.11.0
Mathlib
ContinuousLinearMap.measurable
import Init import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.Analysis.NormedSpace.OperatorNorm.NormedSpace import Mathlib.Topology.Algebra.Module.FiniteDimension import Mathlib.MeasureTheory.Constructions.BorelSpace.ContinuousLinearMap open MeasureTheory
import Init import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.Analysis.NormedSpace.OperatorNorm.NormedSpace import Mathlib.Topology.Algebra.Module.FiniteDimension import Mathlib.MeasureTheory.Constructions.BorelSpace.ContinuousLinearMap
open MeasureTheory
@[fun_prop, measurability] protected theorem measurable (L : E β†’L[π•œ] F) : Measurable L := sorry
theorem measurable_extracted : βˆ€ {π•œ : Type u_2} [inst : NormedField π•œ] {E : Type u_3} [inst_1 : NormedAddCommGroup E] [inst_2 : NormedSpace π•œ E] [inst_3 : MeasurableSpace E] [inst_4 : OpensMeasurableSpace E] {F : Type u_4} [inst_5 : NormedAddCommGroup F] [inst_6 : NormedSpace π•œ F] [inst_7 : MeasurableSpace F] [inst_8 : BorelSpace F] (L : E β†’L[π•œ] F), Measurable ⇑L := sorry
[['NormedAddCommGroup', 'toAddCommGroup'], ['SeminormedAddCommGroup', 'toPseudoMetricSpace'], ['PseudoMetricSpace', 'toUniformSpace'], ['Field', 'toSemifield'], ['AddCommGroup', 'toAddCommMonoid'], ['RingHom', 'id'], ['NormedField', 'toField'], ['DivisionSemiring', 'toSemiring'], ['Semiring', 'toNonAssocSemiring'], ['ContinuousLinearMap'], ['ContinuousLinearMap', 'funLike'], ['NormedAddCommGroup', 'toSeminormedAddCommGroup'], ['Measurable'], ['Semifield', 'toDivisionSemiring'], ['DFunLike', 'coe'], ['UniformSpace', 'toTopologicalSpace'], ['NormedSpace', 'toModule']]
@[fun_prop, measurability] protected theorem measurable (L : E β†’L[π•œ] F) : Measurable L := L.continuous.measurable
[['NormedAddCommGroup', 'toAddCommGroup'], ['ContinuousLinearMap', 'continuous'], ['SeminormedAddCommGroup', 'toPseudoMetricSpace'], ['PseudoMetricSpace', 'toUniformSpace'], ['Field', 'toSemifield'], ['AddCommGroup', 'toAddCommMonoid'], ['RingHom', 'id'], ['NormedField', 'toField'], ['DivisionSemiring', 'toSemiring'], ['Continuous', 'measurable'], ['Semiring', 'toNonAssocSemiring'], ['ContinuousLinearMap'], ['ContinuousLinearMap', 'funLike'], ['NormedAddCommGroup', 'toSeminormedAddCommGroup'], ['Semifield', 'toDivisionSemiring'], ['UniformSpace', 'toTopologicalSpace'], ['DFunLike', 'coe'], ['NormedSpace', 'toModule']]
theorem
Syntax(original=True, range=StringRange(start=725, stop=845))
True
['Mathlib', 'MeasureTheory', 'Constructions', 'BorelSpace', 'ContinuousLinearMap']
null
leanprover/lean4:v4.11.0
Mathlib
ContinuousLinearMap.measurable_comp
import Init import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.Analysis.NormedSpace.OperatorNorm.NormedSpace import Mathlib.Topology.Algebra.Module.FiniteDimension import Mathlib.MeasureTheory.Constructions.BorelSpace.ContinuousLinearMap open MeasureTheory
import Init import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.Analysis.NormedSpace.OperatorNorm.NormedSpace import Mathlib.Topology.Algebra.Module.FiniteDimension import Mathlib.MeasureTheory.Constructions.BorelSpace.ContinuousLinearMap
open MeasureTheory
@[fun_prop] theorem measurable_comp (L : E β†’L[π•œ] F) {Ο† : Ξ± β†’ E} (Ο†_meas : Measurable Ο†) : Measurable fun a : Ξ± => L (Ο† a) := sorry
theorem measurable_comp_extracted : βˆ€ {Ξ± : Type u_1} [inst : MeasurableSpace Ξ±] {π•œ : Type u_2} [inst_1 : NormedField π•œ] {E : Type u_3} [inst_2 : NormedAddCommGroup E] [inst_3 : NormedSpace π•œ E] [inst_4 : MeasurableSpace E] [inst_5 : OpensMeasurableSpace E] {F : Type u_4} [inst_6 : NormedAddCommGroup F] [inst_7 : NormedSpace π•œ F] [inst_8 : MeasurableSpace F] [inst_9 : BorelSpace F] (L : E β†’L[π•œ] F) {Ο† : Ξ± β†’ E}, Measurable Ο† β†’ Measurable fun a => L (Ο† a) := sorry
[['NormedAddCommGroup', 'toAddCommGroup'], ['SeminormedAddCommGroup', 'toPseudoMetricSpace'], ['PseudoMetricSpace', 'toUniformSpace'], ['Field', 'toSemifield'], ['AddCommGroup', 'toAddCommMonoid'], ['RingHom', 'id'], ['NormedField', 'toField'], ['DivisionSemiring', 'toSemiring'], ['Semiring', 'toNonAssocSemiring'], ['ContinuousLinearMap'], ['ContinuousLinearMap', 'funLike'], ['NormedAddCommGroup', 'toSeminormedAddCommGroup'], ['Measurable'], ['Semifield', 'toDivisionSemiring'], ['DFunLike', 'coe'], ['UniformSpace', 'toTopologicalSpace'], ['NormedSpace', 'toModule']]
@[fun_prop] theorem measurable_comp (L : E β†’L[π•œ] F) {Ο† : Ξ± β†’ E} (Ο†_meas : Measurable Ο†) : Measurable fun a : Ξ± => L (Ο† a) := L.measurable.comp Ο†_meas
[['NormedAddCommGroup', 'toAddCommGroup'], ['SeminormedAddCommGroup', 'toPseudoMetricSpace'], ['PseudoMetricSpace', 'toUniformSpace'], ['Field', 'toSemifield'], ['AddCommGroup', 'toAddCommMonoid'], ['RingHom', 'id'], ['Measurable', 'comp'], ['NormedField', 'toField'], ['DivisionSemiring', 'toSemiring'], ['Semiring', 'toNonAssocSemiring'], ['ContinuousLinearMap'], ['ContinuousLinearMap', 'funLike'], ['NormedAddCommGroup', 'toSeminormedAddCommGroup'], ['Semifield', 'toDivisionSemiring'], ['ContinuousLinearMap', 'measurable'], ['DFunLike', 'coe'], ['UniformSpace', 'toTopologicalSpace'], ['NormedSpace', 'toModule']]
theorem
Syntax(original=True, range=StringRange(start=847, stop=1016))
True
['Mathlib', 'MeasureTheory', 'Constructions', 'BorelSpace', 'ContinuousLinearMap']
null
leanprover/lean4:v4.11.0
Mathlib
ContinuousLinearMap.instMeasurableSpace
import Init import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.Analysis.NormedSpace.OperatorNorm.NormedSpace import Mathlib.Topology.Algebra.Module.FiniteDimension import Mathlib.MeasureTheory.Constructions.BorelSpace.ContinuousLinearMap open MeasureTheory
import Init import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.Analysis.NormedSpace.OperatorNorm.NormedSpace import Mathlib.Topology.Algebra.Module.FiniteDimension import Mathlib.MeasureTheory.Constructions.BorelSpace.ContinuousLinearMap
open MeasureTheory
instance instMeasurableSpace : MeasurableSpace (E β†’L[π•œ] F) := sorry
def instMeasurableSpace_extracted : {π•œ : Type u_2} β†’ [inst : NontriviallyNormedField π•œ] β†’ {E : Type u_3} β†’ [inst_1 : NormedAddCommGroup E] β†’ [inst_2 : NormedSpace π•œ E] β†’ {F : Type u_4} β†’ [inst_3 : NormedAddCommGroup F] β†’ [inst_4 : NormedSpace π•œ F] β†’ MeasurableSpace (E β†’L[π•œ] F) := sorry
[['NormedAddCommGroup', 'toAddCommGroup'], ['NormedField', 'toField'], ['DivisionSemiring', 'toSemiring'], ['Semiring', 'toNonAssocSemiring'], ['ContinuousLinearMap'], ['SeminormedAddCommGroup', 'toPseudoMetricSpace'], ['NontriviallyNormedField', 'toNormedField'], ['NormedAddCommGroup', 'toSeminormedAddCommGroup'], ['PseudoMetricSpace', 'toUniformSpace'], ['AddCommGroup', 'toAddCommMonoid'], ['Field', 'toSemifield'], ['Semifield', 'toDivisionSemiring'], ['NormedSpace', 'toModule'], ['UniformSpace', 'toTopologicalSpace'], ['RingHom', 'id'], ['MeasurableSpace']]
instance instMeasurableSpace : MeasurableSpace (E β†’L[π•œ] F) := borel _
[['ContinuousLinearMap', 'instMeasurableSpace', 'proof_1'], ['NormedAddCommGroup', 'toAddCommGroup'], ['ContinuousLinearMap', 'topologicalSpace'], ['borel'], ['NontriviallyNormedField', 'toNormedField'], ['SeminormedAddCommGroup', 'toPseudoMetricSpace'], ['PseudoMetricSpace', 'toUniformSpace'], ['Field', 'toSemifield'], ['AddCommGroup', 'toAddCommMonoid'], ['RingHom', 'id'], ['NormedField', 'toField'], ['DivisionSemiring', 'toSemiring'], ['SeminormedAddCommGroup', 'toAddCommGroup'], ['Semiring', 'toNonAssocSemiring'], ['ContinuousLinearMap'], ['NormedAddCommGroup', 'toSeminormedAddCommGroup'], ['Semifield', 'toDivisionSemiring'], ['UniformSpace', 'toTopologicalSpace'], ['NormedSpace', 'toModule']]
theorem
Syntax(original=True, range=StringRange(start=1253, stop=1329))
True
['Mathlib', 'MeasureTheory', 'Constructions', 'BorelSpace', 'ContinuousLinearMap']
null
leanprover/lean4:v4.11.0
Mathlib
ContinuousLinearMap.instBorelSpace
import Init import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.Analysis.NormedSpace.OperatorNorm.NormedSpace import Mathlib.Topology.Algebra.Module.FiniteDimension import Mathlib.MeasureTheory.Constructions.BorelSpace.ContinuousLinearMap open MeasureTheory
import Init import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.Analysis.NormedSpace.OperatorNorm.NormedSpace import Mathlib.Topology.Algebra.Module.FiniteDimension import Mathlib.MeasureTheory.Constructions.BorelSpace.ContinuousLinearMap
open MeasureTheory
instance instBorelSpace : BorelSpace (E β†’L[π•œ] F) := sorry
def instBorelSpace_extracted : βˆ€ {π•œ : Type u_2} [inst : NontriviallyNormedField π•œ] {E : Type u_3} [inst_1 : NormedAddCommGroup E] [inst_2 : NormedSpace π•œ E] {F : Type u_4} [inst_3 : NormedAddCommGroup F] [inst_4 : NormedSpace π•œ F], BorelSpace (E β†’L[π•œ] F) := sorry
[['NormedAddCommGroup', 'toAddCommGroup'], ['ContinuousLinearMap', 'topologicalSpace'], ['SeminormedAddCommGroup', 'toTopologicalAddGroup'], ['BorelSpace'], ['NontriviallyNormedField', 'toNormedField'], ['SeminormedAddCommGroup', 'toPseudoMetricSpace'], ['PseudoMetricSpace', 'toUniformSpace'], ['Field', 'toSemifield'], ['AddCommGroup', 'toAddCommMonoid'], ['ContinuousLinearMap', 'instMeasurableSpace'], ['RingHom', 'id'], ['NormedField', 'toField'], ['DivisionSemiring', 'toSemiring'], ['SeminormedAddCommGroup', 'toAddCommGroup'], ['Semiring', 'toNonAssocSemiring'], ['ContinuousLinearMap'], ['NormedAddCommGroup', 'toSeminormedAddCommGroup'], ['Semifield', 'toDivisionSemiring'], ['UniformSpace', 'toTopologicalSpace'], ['NormedSpace', 'toModule']]
instance instBorelSpace : BorelSpace (E β†’L[π•œ] F) := ⟨rfl⟩
[['NormedAddCommGroup', 'toAddCommGroup'], ['ContinuousLinearMap', 'topologicalSpace'], ['SeminormedAddCommGroup', 'toTopologicalAddGroup'], ['BorelSpace', 'mk'], ['NontriviallyNormedField', 'toNormedField'], ['SeminormedAddCommGroup', 'toPseudoMetricSpace'], ['PseudoMetricSpace', 'toUniformSpace'], ['Field', 'toSemifield'], ['AddCommGroup', 'toAddCommMonoid'], ['rfl'], ['ContinuousLinearMap', 'instMeasurableSpace'], ['RingHom', 'id'], ['NormedField', 'toField'], ['DivisionSemiring', 'toSemiring'], ['SeminormedAddCommGroup', 'toAddCommGroup'], ['Semiring', 'toNonAssocSemiring'], ['ContinuousLinearMap'], ['NormedAddCommGroup', 'toSeminormedAddCommGroup'], ['Semifield', 'toDivisionSemiring'], ['UniformSpace', 'toTopologicalSpace'], ['NormedSpace', 'toModule'], ['MeasurableSpace']]
theorem
Syntax(original=True, range=StringRange(start=1331, stop=1399))
True
['Mathlib', 'MeasureTheory', 'Constructions', 'BorelSpace', 'ContinuousLinearMap']
null
leanprover/lean4:v4.11.0
Mathlib
ContinuousLinearMap.measurable_apply
import Init import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.Analysis.NormedSpace.OperatorNorm.NormedSpace import Mathlib.Topology.Algebra.Module.FiniteDimension import Mathlib.MeasureTheory.Constructions.BorelSpace.ContinuousLinearMap open MeasureTheory
import Init import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.Analysis.NormedSpace.OperatorNorm.NormedSpace import Mathlib.Topology.Algebra.Module.FiniteDimension import Mathlib.MeasureTheory.Constructions.BorelSpace.ContinuousLinearMap
open MeasureTheory
@[fun_prop, measurability] theorem measurable_apply [MeasurableSpace F] [BorelSpace F] (x : E) : Measurable fun f : E β†’L[π•œ] F => f x := sorry
theorem measurable_apply_extracted : βˆ€ {π•œ : Type u_2} [inst : NontriviallyNormedField π•œ] {E : Type u_3} [inst_1 : NormedAddCommGroup E] [inst_2 : NormedSpace π•œ E] {F : Type u_4} [inst_3 : NormedAddCommGroup F] [inst_4 : NormedSpace π•œ F] [inst_5 : MeasurableSpace F] [inst_6 : BorelSpace F] (x : E), Measurable fun f => f x := sorry
[['NormedAddCommGroup', 'toAddCommGroup'], ['NontriviallyNormedField', 'toNormedField'], ['SeminormedAddCommGroup', 'toPseudoMetricSpace'], ['PseudoMetricSpace', 'toUniformSpace'], ['Field', 'toSemifield'], ['AddCommGroup', 'toAddCommMonoid'], ['RingHom', 'id'], ['ContinuousLinearMap', 'instMeasurableSpace'], ['NormedField', 'toField'], ['DivisionSemiring', 'toSemiring'], ['Semiring', 'toNonAssocSemiring'], ['ContinuousLinearMap'], ['ContinuousLinearMap', 'funLike'], ['NormedAddCommGroup', 'toSeminormedAddCommGroup'], ['Measurable'], ['Semifield', 'toDivisionSemiring'], ['DFunLike', 'coe'], ['UniformSpace', 'toTopologicalSpace'], ['NormedSpace', 'toModule']]
@[fun_prop, measurability] theorem measurable_apply [MeasurableSpace F] [BorelSpace F] (x : E) : Measurable fun f : E β†’L[π•œ] F => f x := (apply π•œ F x).continuous.measurable
[['CommMonoidWithZero', 'toZero'], ['AddCommGroup', 'toDivisionAddCommMonoid'], ['SeminormedAddCommGroup', 'toTopologicalAddGroup'], ['ContinuousLinearMap', 'continuous'], ['ContinuousLinearMap', 'apply'], ['NontriviallyNormedField', 'toNormedField'], ['Semiring', 'toMonoidWithZero'], ['SeminormedRing', 'toPseudoMetricSpace'], ['AddCommGroup', 'toAddCommMonoid'], ['AddCommMonoid', 'toAddMonoid'], ['Semifield', 'toCommGroupWithZero'], ['SubtractionCommMonoid', 'toSubtractionMonoid'], ['SeminormedAddGroup', 'toAddGroup'], ['RingHom', 'id'], ['BorelSpace', 'opensMeasurable'], ['ContinuousLinearMap', 'module'], ['ContinuousLinearMap', 'addCommGroup'], ['NormedField', 'toField'], ['Field', 'toCommRing'], ['SMulWithZero', 'toSMulZeroClass'], ['SeminormedCommRing', 'toSeminormedRing'], ['SeminormedAddCommGroup', 'toAddCommGroup'], ['Semiring', 'toNonAssocSemiring'], ['Continuous', 'measurable'], ['ContinuousLinearMap', 'funLike'], ['NormedSpace', 'boundedSMul'], ['AddMonoid', 'toZero'], ['UniformSpace', 'toTopologicalSpace'], ['DFunLike', 'coe'], ['NormedRing', 'toRing'], ['SubtractionMonoid', 'toSubNegZeroMonoid'], ['MulActionWithZero', 'toMulAction'], ['TopologicalAddGroup', 'toContinuousAdd'], ['ContinuousLinearMap', 'topologicalSpace'], ['ContinuousLinearMap', 'instBorelSpace'], ['SeminormedAddCommGroup', 'toPseudoMetricSpace'], ['smulCommClass_self'], ['PseudoMetricSpace', 'toUniformSpace'], ['NormedCommRing', 'toNormedRing'], ['ContinuousSMul', 'continuousConstSMul'], ['Field', 'toSemifield'], ['NormedField', 'toNormedCommRing'], ['Module', 'toMulActionWithZero'], ['SubNegZeroMonoid', 'toNegZeroClass'], ['CommGroupWithZero', 'toCommMonoidWithZero'], ['ContinuousLinearMap', 'instMeasurableSpace'], ['SMulZeroClass', 'toSMul'], ['NormedCommRing', 'toSeminormedCommRing'], ['DivisionSemiring', 'toSemiring'], ['CommRing', 'toCommMonoid'], ['MulActionWithZero', 'toSMulWithZero'], ['ContinuousLinearMap'], ['NormedAddCommGroup', 'toSeminormedAddCommGroup'], ['Semifield', 'toDivisionSemiring'], ['ContinuousLinearMap', 'addCommMonoid'], ['MonoidWithZero', 'toZero'], ['NormedSpace', 'toModule'], ['BoundedSMul', 'continuousSMul'], ['SeminormedAddCommGroup', 'toSeminormedAddGroup'], ['NegZeroClass', 'toZero']]
theorem
Syntax(original=True, range=StringRange(start=1401, stop=1586))
True
['Mathlib', 'MeasureTheory', 'Constructions', 'BorelSpace', 'ContinuousLinearMap']
null
leanprover/lean4:v4.11.0
Mathlib
ContinuousLinearMap.measurable_apply'
import Init import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.Analysis.NormedSpace.OperatorNorm.NormedSpace import Mathlib.Topology.Algebra.Module.FiniteDimension import Mathlib.MeasureTheory.Constructions.BorelSpace.ContinuousLinearMap open MeasureTheory
import Init import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.Analysis.NormedSpace.OperatorNorm.NormedSpace import Mathlib.Topology.Algebra.Module.FiniteDimension import Mathlib.MeasureTheory.Constructions.BorelSpace.ContinuousLinearMap
open MeasureTheory
@[measurability] theorem measurable_apply' [MeasurableSpace E] [OpensMeasurableSpace E] [MeasurableSpace F] [BorelSpace F] : Measurable fun (x : E) (f : E β†’L[π•œ] F) => f x := sorry
theorem measurable_apply'_extracted : βˆ€ {π•œ : Type u_2} [inst : NontriviallyNormedField π•œ] {E : Type u_3} [inst_1 : NormedAddCommGroup E] [inst_2 : NormedSpace π•œ E] {F : Type u_4} [inst_3 : NormedAddCommGroup F] [inst_4 : NormedSpace π•œ F] [inst_5 : MeasurableSpace E] [inst_6 : OpensMeasurableSpace E] [inst_7 : MeasurableSpace F] [inst_8 : BorelSpace F], Measurable fun x f => f x := sorry
[['NormedAddCommGroup', 'toAddCommGroup'], ['NontriviallyNormedField', 'toNormedField'], ['SeminormedAddCommGroup', 'toPseudoMetricSpace'], ['PseudoMetricSpace', 'toUniformSpace'], ['Field', 'toSemifield'], ['AddCommGroup', 'toAddCommMonoid'], ['RingHom', 'id'], ['NormedField', 'toField'], ['DivisionSemiring', 'toSemiring'], ['Semiring', 'toNonAssocSemiring'], ['ContinuousLinearMap'], ['MeasurableSpace', 'pi'], ['ContinuousLinearMap', 'funLike'], ['NormedAddCommGroup', 'toSeminormedAddCommGroup'], ['Measurable'], ['Semifield', 'toDivisionSemiring'], ['DFunLike', 'coe'], ['UniformSpace', 'toTopologicalSpace'], ['NormedSpace', 'toModule']]
@[measurability] theorem measurable_apply' [MeasurableSpace E] [OpensMeasurableSpace E] [MeasurableSpace F] [BorelSpace F] : Measurable fun (x : E) (f : E β†’L[π•œ] F) => f x := measurable_pi_lambda _ fun f => f.measurable
[['NormedAddCommGroup', 'toAddCommGroup'], ['NontriviallyNormedField', 'toNormedField'], ['SeminormedAddCommGroup', 'toPseudoMetricSpace'], ['PseudoMetricSpace', 'toUniformSpace'], ['Field', 'toSemifield'], ['AddCommGroup', 'toAddCommMonoid'], ['measurable_pi_lambda'], ['RingHom', 'id'], ['NormedField', 'toField'], ['DivisionSemiring', 'toSemiring'], ['Semiring', 'toNonAssocSemiring'], ['ContinuousLinearMap'], ['ContinuousLinearMap', 'funLike'], ['NormedAddCommGroup', 'toSeminormedAddCommGroup'], ['Semifield', 'toDivisionSemiring'], ['ContinuousLinearMap', 'measurable'], ['UniformSpace', 'toTopologicalSpace'], ['NormedSpace', 'toModule'], ['DFunLike', 'coe']]
theorem
Syntax(original=True, range=StringRange(start=1588, stop=1817))
True
['Mathlib', 'MeasureTheory', 'Constructions', 'BorelSpace', 'ContinuousLinearMap']
null
leanprover/lean4:v4.11.0
Mathlib
ContinuousLinearMap.measurable_coe
import Init import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.Analysis.NormedSpace.OperatorNorm.NormedSpace import Mathlib.Topology.Algebra.Module.FiniteDimension import Mathlib.MeasureTheory.Constructions.BorelSpace.ContinuousLinearMap open MeasureTheory
import Init import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.Analysis.NormedSpace.OperatorNorm.NormedSpace import Mathlib.Topology.Algebra.Module.FiniteDimension import Mathlib.MeasureTheory.Constructions.BorelSpace.ContinuousLinearMap
open MeasureTheory
@[measurability] theorem measurable_coe [MeasurableSpace F] [BorelSpace F] : Measurable fun (f : E β†’L[π•œ] F) (x : E) => f x := sorry
theorem measurable_coe_extracted : βˆ€ {π•œ : Type u_2} [inst : NontriviallyNormedField π•œ] {E : Type u_3} [inst_1 : NormedAddCommGroup E] [inst_2 : NormedSpace π•œ E] {F : Type u_4} [inst_3 : NormedAddCommGroup F] [inst_4 : NormedSpace π•œ F] [inst_5 : MeasurableSpace F] [inst_6 : BorelSpace F], Measurable fun f x => f x := sorry
[['NormedAddCommGroup', 'toAddCommGroup'], ['NontriviallyNormedField', 'toNormedField'], ['SeminormedAddCommGroup', 'toPseudoMetricSpace'], ['PseudoMetricSpace', 'toUniformSpace'], ['Field', 'toSemifield'], ['AddCommGroup', 'toAddCommMonoid'], ['RingHom', 'id'], ['ContinuousLinearMap', 'instMeasurableSpace'], ['NormedField', 'toField'], ['DivisionSemiring', 'toSemiring'], ['Semiring', 'toNonAssocSemiring'], ['ContinuousLinearMap'], ['MeasurableSpace', 'pi'], ['ContinuousLinearMap', 'funLike'], ['NormedAddCommGroup', 'toSeminormedAddCommGroup'], ['Measurable'], ['Semifield', 'toDivisionSemiring'], ['DFunLike', 'coe'], ['UniformSpace', 'toTopologicalSpace'], ['NormedSpace', 'toModule']]
@[measurability] theorem measurable_coe [MeasurableSpace F] [BorelSpace F] : Measurable fun (f : E β†’L[π•œ] F) (x : E) => f x := measurable_pi_lambda _ measurable_apply
[['NormedAddCommGroup', 'toAddCommGroup'], ['NontriviallyNormedField', 'toNormedField'], ['SeminormedAddCommGroup', 'toPseudoMetricSpace'], ['PseudoMetricSpace', 'toUniformSpace'], ['Field', 'toSemifield'], ['AddCommGroup', 'toAddCommMonoid'], ['ContinuousLinearMap', 'measurable_apply'], ['measurable_pi_lambda'], ['RingHom', 'id'], ['ContinuousLinearMap', 'instMeasurableSpace'], ['NormedField', 'toField'], ['DivisionSemiring', 'toSemiring'], ['Semiring', 'toNonAssocSemiring'], ['ContinuousLinearMap'], ['ContinuousLinearMap', 'funLike'], ['NormedAddCommGroup', 'toSeminormedAddCommGroup'], ['Semifield', 'toDivisionSemiring'], ['DFunLike', 'coe'], ['UniformSpace', 'toTopologicalSpace'], ['NormedSpace', 'toModule']]
theorem
Syntax(original=True, range=StringRange(start=1819, stop=1995))
True
['Mathlib', 'MeasureTheory', 'Constructions', 'BorelSpace', 'ContinuousLinearMap']
null
leanprover/lean4:v4.11.0
Mathlib
Measurable.apply_continuousLinearMap
import Init import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.Analysis.NormedSpace.OperatorNorm.NormedSpace import Mathlib.Topology.Algebra.Module.FiniteDimension import Mathlib.MeasureTheory.Constructions.BorelSpace.ContinuousLinearMap open MeasureTheory
import Init import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.Analysis.NormedSpace.OperatorNorm.NormedSpace import Mathlib.Topology.Algebra.Module.FiniteDimension import Mathlib.MeasureTheory.Constructions.BorelSpace.ContinuousLinearMap
open MeasureTheory
@[fun_prop, measurability] theorem Measurable.apply_continuousLinearMap {Ο† : Ξ± β†’ F β†’L[π•œ] E} (hΟ† : Measurable Ο†) (v : F) : Measurable fun a => Ο† a v := sorry
theorem apply_continuousLinearMap_extracted : βˆ€ {Ξ± : Type u_1} [inst : MeasurableSpace Ξ±] {π•œ : Type u_2} [inst_1 : NontriviallyNormedField π•œ] {E : Type u_3} [inst_2 : NormedAddCommGroup E] [inst_3 : NormedSpace π•œ E] [inst_4 : MeasurableSpace E] [inst_5 : BorelSpace E] {F : Type u_4} [inst_6 : NormedAddCommGroup F] [inst_7 : NormedSpace π•œ F] {Ο† : Ξ± β†’ F β†’L[π•œ] E}, Measurable Ο† β†’ βˆ€ (v : F), Measurable fun a => (Ο† a) v := sorry
[['NormedAddCommGroup', 'toAddCommGroup'], ['NontriviallyNormedField', 'toNormedField'], ['SeminormedAddCommGroup', 'toPseudoMetricSpace'], ['PseudoMetricSpace', 'toUniformSpace'], ['Field', 'toSemifield'], ['AddCommGroup', 'toAddCommMonoid'], ['RingHom', 'id'], ['NormedField', 'toField'], ['DivisionSemiring', 'toSemiring'], ['Semiring', 'toNonAssocSemiring'], ['ContinuousLinearMap'], ['ContinuousLinearMap', 'funLike'], ['NormedAddCommGroup', 'toSeminormedAddCommGroup'], ['Measurable'], ['Semifield', 'toDivisionSemiring'], ['DFunLike', 'coe'], ['UniformSpace', 'toTopologicalSpace'], ['NormedSpace', 'toModule']]
@[fun_prop, measurability] theorem Measurable.apply_continuousLinearMap {Ο† : Ξ± β†’ F β†’L[π•œ] E} (hΟ† : Measurable Ο†) (v : F) : Measurable fun a => Ο† a v := (ContinuousLinearMap.apply π•œ E v).measurable.comp hΟ†
[['ContinuousLinearMap', 'apply'], ['NontriviallyNormedField', 'toNormedField'], ['AddCommGroup', 'toAddCommMonoid'], ['ContinuousLinearMap', 'toNormedAddCommGroup'], ['Semifield', 'toCommGroupWithZero'], ['SeminormedCommRing', 'toSeminormedRing'], ['Semiring', 'toNonAssocSemiring'], ['SMulWithZero', 'toSMulZeroClass'], ['MulActionWithZero', 'toMulAction'], ['NormedRing', 'toRing'], ['TopologicalAddGroup', 'toContinuousAdd'], ['ContinuousLinearMap', 'topologicalSpace'], ['ContinuousLinearMap', 'instBorelSpace'], ['smulCommClass_self'], ['PseudoMetricSpace', 'toUniformSpace'], ['NormedCommRing', 'toNormedRing'], ['Module', 'toMulActionWithZero'], ['EuclideanDomain', 'toCommRing'], ['CommGroupWithZero', 'toCommMonoidWithZero'], ['SMulZeroClass', 'toSMul'], ['CommRing', 'toCommMonoid'], ['MulActionWithZero', 'toSMulWithZero'], ['ContinuousLinearMap'], ['Field', 'toEuclideanDomain'], ['NormedAddCommGroup', 'toSeminormedAddCommGroup'], ['NormedSpace', 'toModule'], ['MonoidWithZero', 'toZero'], ['SeminormedAddCommGroup', 'toSeminormedAddGroup'], ['BoundedSMul', 'continuousSMul'], ['NormedAddCommGroup', 'toAddCommGroup'], ['AddCommGroup', 'toDivisionAddCommMonoid'], ['SeminormedAddCommGroup', 'toTopologicalAddGroup'], ['CommMonoidWithZero', 'toZero'], ['Semiring', 'toMonoidWithZero'], ['ContinuousLinearMap', 'toNormedSpace'], ['SeminormedRing', 'toPseudoMetricSpace'], ['AddCommMonoid', 'toAddMonoid'], ['SubtractionCommMonoid', 'toSubtractionMonoid'], ['SeminormedAddGroup', 'toAddGroup'], ['RingHom', 'id'], ['ContinuousLinearMap', 'module'], ['BorelSpace', 'opensMeasurable'], ['NormedField', 'toField'], ['Field', 'toCommRing'], ['ContinuousLinearMap', 'addCommGroup'], ['SeminormedAddCommGroup', 'toAddCommGroup'], ['ContinuousLinearMap', 'funLike'], ['AddMonoid', 'toZero'], ['NormedSpace', 'boundedSMul'], ['DFunLike', 'coe'], ['UniformSpace', 'toTopologicalSpace'], ['ContinuousLinearMap', 'measurable'], ['SubtractionMonoid', 'toSubNegZeroMonoid'], ['SeminormedAddCommGroup', 'toPseudoMetricSpace'], ['Field', 'toSemifield'], ['ContinuousSMul', 'continuousConstSMul'], ['SubNegZeroMonoid', 'toNegZeroClass'], ['NormedField', 'toNormedCommRing'], ['ContinuousLinearMap', 'instMeasurableSpace'], ['Measurable', 'comp'], ['NormedCommRing', 'toSeminormedCommRing'], ['DivisionSemiring', 'toSemiring'], ['RingHomIsometric', 'ids'], ['Semifield', 'toDivisionSemiring'], ['ContinuousLinearMap', 'addCommMonoid'], ['NegZeroClass', 'toZero']]
theorem
Syntax(original=True, range=StringRange(start=2288, stop=2513))
True
['Mathlib', 'MeasureTheory', 'Constructions', 'BorelSpace', 'ContinuousLinearMap']
null
leanprover/lean4:v4.11.0
Mathlib
AEMeasurable.apply_continuousLinearMap
import Init import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.Analysis.NormedSpace.OperatorNorm.NormedSpace import Mathlib.Topology.Algebra.Module.FiniteDimension import Mathlib.MeasureTheory.Constructions.BorelSpace.ContinuousLinearMap open MeasureTheory
import Init import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.Analysis.NormedSpace.OperatorNorm.NormedSpace import Mathlib.Topology.Algebra.Module.FiniteDimension import Mathlib.MeasureTheory.Constructions.BorelSpace.ContinuousLinearMap
open MeasureTheory
@[measurability] theorem AEMeasurable.apply_continuousLinearMap {Ο† : Ξ± β†’ F β†’L[π•œ] E} {ΞΌ : Measure Ξ±} (hΟ† : AEMeasurable Ο† ΞΌ) (v : F) : AEMeasurable (fun a => Ο† a v) ΞΌ := sorry
theorem apply_continuousLinearMap_extracted : βˆ€ {Ξ± : Type u_1} [inst : MeasurableSpace Ξ±] {π•œ : Type u_2} [inst_1 : NontriviallyNormedField π•œ] {E : Type u_3} [inst_2 : NormedAddCommGroup E] [inst_3 : NormedSpace π•œ E] [inst_4 : MeasurableSpace E] [inst_5 : BorelSpace E] {F : Type u_4} [inst_6 : NormedAddCommGroup F] [inst_7 : NormedSpace π•œ F] {Ο† : Ξ± β†’ F β†’L[π•œ] E} {ΞΌ : Measure Ξ±}, AEMeasurable Ο† ΞΌ β†’ βˆ€ (v : F), AEMeasurable (fun a => (Ο† a) v) ΞΌ := sorry
[['NormedAddCommGroup', 'toAddCommGroup'], ['NontriviallyNormedField', 'toNormedField'], ['SeminormedAddCommGroup', 'toPseudoMetricSpace'], ['PseudoMetricSpace', 'toUniformSpace'], ['Field', 'toSemifield'], ['AddCommGroup', 'toAddCommMonoid'], ['RingHom', 'id'], ['NormedField', 'toField'], ['DivisionSemiring', 'toSemiring'], ['Semiring', 'toNonAssocSemiring'], ['ContinuousLinearMap'], ['ContinuousLinearMap', 'funLike'], ['NormedAddCommGroup', 'toSeminormedAddCommGroup'], ['Semifield', 'toDivisionSemiring'], ['DFunLike', 'coe'], ['UniformSpace', 'toTopologicalSpace'], ['NormedSpace', 'toModule'], ['AEMeasurable']]
@[measurability] theorem AEMeasurable.apply_continuousLinearMap {Ο† : Ξ± β†’ F β†’L[π•œ] E} {ΞΌ : Measure Ξ±} (hΟ† : AEMeasurable Ο† ΞΌ) (v : F) : AEMeasurable (fun a => Ο† a v) ΞΌ := (ContinuousLinearMap.apply π•œ E v).measurable.comp_aemeasurable hΟ†
[['ContinuousLinearMap', 'apply'], ['NontriviallyNormedField', 'toNormedField'], ['AddCommGroup', 'toAddCommMonoid'], ['ContinuousLinearMap', 'toNormedAddCommGroup'], ['Semifield', 'toCommGroupWithZero'], ['SeminormedCommRing', 'toSeminormedRing'], ['Semiring', 'toNonAssocSemiring'], ['SMulWithZero', 'toSMulZeroClass'], ['MulActionWithZero', 'toMulAction'], ['NormedRing', 'toRing'], ['TopologicalAddGroup', 'toContinuousAdd'], ['ContinuousLinearMap', 'topologicalSpace'], ['ContinuousLinearMap', 'instBorelSpace'], ['smulCommClass_self'], ['PseudoMetricSpace', 'toUniformSpace'], ['NormedCommRing', 'toNormedRing'], ['Module', 'toMulActionWithZero'], ['EuclideanDomain', 'toCommRing'], ['CommGroupWithZero', 'toCommMonoidWithZero'], ['SMulZeroClass', 'toSMul'], ['CommRing', 'toCommMonoid'], ['MulActionWithZero', 'toSMulWithZero'], ['ContinuousLinearMap'], ['Field', 'toEuclideanDomain'], ['NormedAddCommGroup', 'toSeminormedAddCommGroup'], ['NormedSpace', 'toModule'], ['MonoidWithZero', 'toZero'], ['SeminormedAddCommGroup', 'toSeminormedAddGroup'], ['BoundedSMul', 'continuousSMul'], ['NormedAddCommGroup', 'toAddCommGroup'], ['AddCommGroup', 'toDivisionAddCommMonoid'], ['SeminormedAddCommGroup', 'toTopologicalAddGroup'], ['CommMonoidWithZero', 'toZero'], ['Semiring', 'toMonoidWithZero'], ['ContinuousLinearMap', 'toNormedSpace'], ['SeminormedRing', 'toPseudoMetricSpace'], ['AddCommMonoid', 'toAddMonoid'], ['SubtractionCommMonoid', 'toSubtractionMonoid'], ['SeminormedAddGroup', 'toAddGroup'], ['RingHom', 'id'], ['ContinuousLinearMap', 'module'], ['BorelSpace', 'opensMeasurable'], ['NormedField', 'toField'], ['Field', 'toCommRing'], ['ContinuousLinearMap', 'addCommGroup'], ['SeminormedAddCommGroup', 'toAddCommGroup'], ['ContinuousLinearMap', 'funLike'], ['AddMonoid', 'toZero'], ['NormedSpace', 'boundedSMul'], ['Measurable', 'comp_aemeasurable'], ['DFunLike', 'coe'], ['UniformSpace', 'toTopologicalSpace'], ['ContinuousLinearMap', 'measurable'], ['SubtractionMonoid', 'toSubNegZeroMonoid'], ['SeminormedAddCommGroup', 'toPseudoMetricSpace'], ['Field', 'toSemifield'], ['ContinuousSMul', 'continuousConstSMul'], ['SubNegZeroMonoid', 'toNegZeroClass'], ['NormedField', 'toNormedCommRing'], ['ContinuousLinearMap', 'instMeasurableSpace'], ['NormedCommRing', 'toSeminormedCommRing'], ['DivisionSemiring', 'toSemiring'], ['RingHomIsometric', 'ids'], ['Semifield', 'toDivisionSemiring'], ['ContinuousLinearMap', 'addCommMonoid'], ['NegZeroClass', 'toZero']]
theorem
Syntax(original=True, range=StringRange(start=2515, stop=2775))
True
['Mathlib', 'MeasureTheory', 'Constructions', 'BorelSpace', 'ContinuousLinearMap']
null
leanprover/lean4:v4.11.0
Mathlib
measurable_smul_const
import Init import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.Analysis.NormedSpace.OperatorNorm.NormedSpace import Mathlib.Topology.Algebra.Module.FiniteDimension import Mathlib.MeasureTheory.Constructions.BorelSpace.ContinuousLinearMap open MeasureTheory
import Init import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.Analysis.NormedSpace.OperatorNorm.NormedSpace import Mathlib.Topology.Algebra.Module.FiniteDimension import Mathlib.MeasureTheory.Constructions.BorelSpace.ContinuousLinearMap
open MeasureTheory
theorem measurable_smul_const {f : Ξ± β†’ π•œ} {c : E} (hc : c β‰  0) : (Measurable fun x => f x β€’ c) ↔ Measurable f := sorry
theorem measurable_smul_const_extracted : βˆ€ {Ξ± : Type u_1} [inst : MeasurableSpace Ξ±] {π•œ : Type u_2} [inst_1 : NontriviallyNormedField π•œ] [inst_2 : CompleteSpace π•œ] [inst_3 : MeasurableSpace π•œ] [inst_4 : BorelSpace π•œ] {E : Type u_3} [inst_5 : NormedAddCommGroup E] [inst_6 : NormedSpace π•œ E] [inst_7 : MeasurableSpace E] [inst_8 : BorelSpace E] {f : Ξ± β†’ π•œ} {c : E}, c β‰  0 β†’ ((Measurable fun x => f x β€’ c) ↔ Measurable f) := sorry
[['NormedAddCommGroup', 'toAddCommGroup'], ['AddCommGroup', 'toDivisionAddCommMonoid'], ['CommMonoidWithZero', 'toZero'], ['instHSMul'], ['NontriviallyNormedField', 'toNormedField'], ['Semiring', 'toMonoidWithZero'], ['AddCommGroup', 'toAddCommMonoid'], ['Field', 'toSemifield'], ['Semifield', 'toCommGroupWithZero'], ['Module', 'toMulActionWithZero'], ['SubNegZeroMonoid', 'toNegZeroClass'], ['SubtractionCommMonoid', 'toSubtractionMonoid'], ['CommGroupWithZero', 'toCommMonoidWithZero'], ['SMulZeroClass', 'toSMul'], ['NormedField', 'toField'], ['DivisionSemiring', 'toSemiring'], ['MulActionWithZero', 'toSMulWithZero'], ['SMulWithZero', 'toSMulZeroClass'], ['Iff'], ['NormedAddCommGroup', 'toSeminormedAddCommGroup'], ['HSMul', 'hSMul'], ['Semifield', 'toDivisionSemiring'], ['Measurable'], ['NormedSpace', 'toModule'], ['NegZeroClass', 'toZero'], ['SubtractionMonoid', 'toSubNegZeroMonoid']]
theorem measurable_smul_const {f : Ξ± β†’ π•œ} {c : E} (hc : c β‰  0) : (Measurable fun x => f x β€’ c) ↔ Measurable f := (closedEmbedding_smul_left hc).measurableEmbedding.measurable_comp_iff
[['NormedAddCommGroup', 'toAddCommGroup'], ['SeminormedAddCommGroup', 'toTopologicalAddGroup'], ['CommMonoidWithZero', 'toZero'], ['AddCommGroup', 'toDivisionAddCommMonoid'], ['instHSMul'], ['NontriviallyNormedField', 'toNormedField'], ['ClosedEmbedding', 'measurableEmbedding'], ['Semiring', 'toMonoidWithZero'], ['AddCommGroup', 'toAddCommMonoid'], ['SeminormedRing', 'toPseudoMetricSpace'], ['MeasurableEmbedding', 'measurable_comp_iff'], ['Semifield', 'toCommGroupWithZero'], ['SubtractionCommMonoid', 'toSubtractionMonoid'], ['MetricSpace', 'toMetrizableSpace'], ['NormedField', 'toField'], ['SMulWithZero', 'toSMulZeroClass'], ['SeminormedCommRing', 'toSeminormedRing'], ['NormedSpace', 'boundedSMul'], ['HSMul', 'hSMul'], ['UniformSpace', 'toTopologicalSpace'], ['SubtractionMonoid', 'toSubNegZeroMonoid'], ['TopologicalSpace', 't2Space_of_metrizableSpace'], ['closedEmbedding_smul_left'], ['SeminormedAddCommGroup', 'toPseudoMetricSpace'], ['PseudoMetricSpace', 'toUniformSpace'], ['Field', 'toSemifield'], ['SubNegZeroMonoid', 'toNegZeroClass'], ['Module', 'toMulActionWithZero'], ['NormedField', 'toNormedCommRing'], ['CommGroupWithZero', 'toCommMonoidWithZero'], ['SMulZeroClass', 'toSMul'], ['NormedAddCommGroup', 'toMetricSpace'], ['DivisionSemiring', 'toSemiring'], ['NormedCommRing', 'toSeminormedCommRing'], ['MulActionWithZero', 'toSMulWithZero'], ['NormedAddCommGroup', 'toSeminormedAddCommGroup'], ['Semifield', 'toDivisionSemiring'], ['NormedSpace', 'toModule'], ['BoundedSMul', 'continuousSMul'], ['NegZeroClass', 'toZero']]
theorem
Syntax(original=True, range=StringRange(start=3066, stop=3267))
True
['Mathlib', 'MeasureTheory', 'Constructions', 'BorelSpace', 'ContinuousLinearMap']
null
leanprover/lean4:v4.11.0
Mathlib
aemeasurable_smul_const
import Init import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.Analysis.NormedSpace.OperatorNorm.NormedSpace import Mathlib.Topology.Algebra.Module.FiniteDimension import Mathlib.MeasureTheory.Constructions.BorelSpace.ContinuousLinearMap open MeasureTheory
import Init import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic import Mathlib.Analysis.NormedSpace.OperatorNorm.NormedSpace import Mathlib.Topology.Algebra.Module.FiniteDimension import Mathlib.MeasureTheory.Constructions.BorelSpace.ContinuousLinearMap
open MeasureTheory
theorem aemeasurable_smul_const {f : Ξ± β†’ π•œ} {ΞΌ : Measure Ξ±} {c : E} (hc : c β‰  0) : AEMeasurable (fun x => f x β€’ c) ΞΌ ↔ AEMeasurable f ΞΌ := sorry
theorem aemeasurable_smul_const_extracted : βˆ€ {Ξ± : Type u_1} [inst : MeasurableSpace Ξ±] {π•œ : Type u_2} [inst_1 : NontriviallyNormedField π•œ] [inst_2 : CompleteSpace π•œ] [inst_3 : MeasurableSpace π•œ] [inst_4 : BorelSpace π•œ] {E : Type u_3} [inst_5 : NormedAddCommGroup E] [inst_6 : NormedSpace π•œ E] [inst_7 : MeasurableSpace E] [inst_8 : BorelSpace E] {f : Ξ± β†’ π•œ} {ΞΌ : Measure Ξ±} {c : E}, c β‰  0 β†’ (AEMeasurable (fun x => f x β€’ c) ΞΌ ↔ AEMeasurable f ΞΌ) := sorry
[['NormedAddCommGroup', 'toAddCommGroup'], ['AddCommGroup', 'toDivisionAddCommMonoid'], ['CommMonoidWithZero', 'toZero'], ['instHSMul'], ['NontriviallyNormedField', 'toNormedField'], ['Semiring', 'toMonoidWithZero'], ['AddCommGroup', 'toAddCommMonoid'], ['Field', 'toSemifield'], ['Semifield', 'toCommGroupWithZero'], ['Module', 'toMulActionWithZero'], ['SubNegZeroMonoid', 'toNegZeroClass'], ['SubtractionCommMonoid', 'toSubtractionMonoid'], ['CommGroupWithZero', 'toCommMonoidWithZero'], ['SMulZeroClass', 'toSMul'], ['NormedField', 'toField'], ['DivisionSemiring', 'toSemiring'], ['MulActionWithZero', 'toSMulWithZero'], ['SMulWithZero', 'toSMulZeroClass'], ['Iff'], ['NormedAddCommGroup', 'toSeminormedAddCommGroup'], ['HSMul', 'hSMul'], ['Semifield', 'toDivisionSemiring'], ['NormedSpace', 'toModule'], ['NegZeroClass', 'toZero'], ['AEMeasurable'], ['SubtractionMonoid', 'toSubNegZeroMonoid']]
theorem aemeasurable_smul_const {f : Ξ± β†’ π•œ} {ΞΌ : Measure Ξ±} {c : E} (hc : c β‰  0) : AEMeasurable (fun x => f x β€’ c) ΞΌ ↔ AEMeasurable f ΞΌ := (closedEmbedding_smul_left hc).measurableEmbedding.aemeasurable_comp_iff
[['NormedAddCommGroup', 'toAddCommGroup'], ['SeminormedAddCommGroup', 'toTopologicalAddGroup'], ['CommMonoidWithZero', 'toZero'], ['AddCommGroup', 'toDivisionAddCommMonoid'], ['instHSMul'], ['NontriviallyNormedField', 'toNormedField'], ['ClosedEmbedding', 'measurableEmbedding'], ['Semiring', 'toMonoidWithZero'], ['AddCommGroup', 'toAddCommMonoid'], ['SeminormedRing', 'toPseudoMetricSpace'], ['Semifield', 'toCommGroupWithZero'], ['SubtractionCommMonoid', 'toSubtractionMonoid'], ['MetricSpace', 'toMetrizableSpace'], ['NormedField', 'toField'], ['SMulWithZero', 'toSMulZeroClass'], ['SeminormedCommRing', 'toSeminormedRing'], ['NormedSpace', 'boundedSMul'], ['HSMul', 'hSMul'], ['UniformSpace', 'toTopologicalSpace'], ['SubtractionMonoid', 'toSubNegZeroMonoid'], ['TopologicalSpace', 't2Space_of_metrizableSpace'], ['closedEmbedding_smul_left'], ['SeminormedAddCommGroup', 'toPseudoMetricSpace'], ['PseudoMetricSpace', 'toUniformSpace'], ['Field', 'toSemifield'], ['SubNegZeroMonoid', 'toNegZeroClass'], ['Module', 'toMulActionWithZero'], ['NormedField', 'toNormedCommRing'], ['CommGroupWithZero', 'toCommMonoidWithZero'], ['SMulZeroClass', 'toSMul'], ['NormedAddCommGroup', 'toMetricSpace'], ['MeasurableEmbedding', 'aemeasurable_comp_iff'], ['DivisionSemiring', 'toSemiring'], ['NormedCommRing', 'toSeminormedCommRing'], ['MulActionWithZero', 'toSMulWithZero'], ['NormedAddCommGroup', 'toSeminormedAddCommGroup'], ['Semifield', 'toDivisionSemiring'], ['NormedSpace', 'toModule'], ['BoundedSMul', 'continuousSMul'], ['NegZeroClass', 'toZero']]
theorem
Syntax(original=True, range=StringRange(start=3269, stop=3502))
True
['Mathlib', 'MeasureTheory', 'Constructions', 'BorelSpace', 'ContinuousLinearMap']
null
leanprover/lean4:v4.11.0
Mathlib
ProbabilityTheory.term𝔼[_|_]
import Init import Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.Probability.Notation open MeasureTheory open scoped MeasureTheory
import Init import Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.Probability.Notation
open MeasureTheory open scoped MeasureTheory
scoped[ProbabilityTheory] notation "𝔼[" X "|" m "]" => MeasureTheory.condexp m MeasureTheory.MeasureSpace.volume X := sorry
def term𝔼[_|_]_extracted : Lean.ParserDescr := sorry
[['Lean', 'ParserDescr']]
scoped[ProbabilityTheory] notation "𝔼[" X "|" m "]" => MeasureTheory.condexp m MeasureTheory.MeasureSpace.volume X
[['Lean', 'ParserDescr', 'binary'], ['Lean', 'Name', 'mkStr2'], ['OfNat', 'ofNat'], ['Lean', 'ParserDescr', 'cat'], ['Lean', 'ParserDescr', 'node'], ['instOfNatNat'], ['Lean', 'Name', 'mkStr1'], ['Nat'], ['Lean', 'ParserDescr', 'symbol']]
theorem
Syntax(original=False, range=StringRange(start=1468, stop=1587))
True
['Mathlib', 'Probability', 'Notation']
null
leanprover/lean4:v4.11.0
Mathlib
ProbabilityTheory._aux___macroRules_ProbabilityTheory_term𝔼[_|_]_1
import Init import Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.Probability.Notation open MeasureTheory open scoped MeasureTheory
import Init import Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.Probability.Notation
open MeasureTheory open scoped MeasureTheory
scoped[ProbabilityTheory] notation "𝔼[" X "|" m "]" => MeasureTheory.condexp m MeasureTheory.MeasureSpace.volume X := sorry
def _aux___macroRules_ProbabilityTheory_term𝔼[_|_]_1_extracted : Lean.Macro := sorry
[['Lean', 'Macro']]
scoped[ProbabilityTheory] notation "𝔼[" X "|" m "]" => MeasureTheory.condexp m MeasureTheory.MeasureSpace.volume X
[['EStateM'], ['OfNat', 'ofNat'], ['Lean', 'Name', 'mkStr3'], ['String', "toSubstring'"], ['Lean', 'MacroM'], ['String'], ['Lean', 'Syntax', 'Preresolved', 'decl'], ['Lean', 'Macro', 'instMonadQuotationMacroM'], ['Lean', 'Name', 'mkStr1'], ['Lean', 'Syntax', 'Preresolved'], ['Lean', 'addMacroScope'], ['Pure', 'pure'], ['Monad', 'toBind'], ['Lean', 'Macro', 'instMonadRefMacroM'], ['Eq'], ['ite'], ['Lean', 'TSyntax'], ['EStateM', 'instMonad'], ['Lean', 'MonadQuotation', 'getCurrMacroScope'], ['Lean', 'Macro', 'State'], ['Bool', 'true'], ['PUnit'], ['Lean', 'Macro', 'Exception'], ['instOfNatNat'], ['Lean', 'Syntax', 'ident'], ['List', 'nil'], ['Nat'], ['Bind', 'bind'], ['Lean', 'Syntax', 'node3'], ['Applicative', 'toPure'], ['instDecidableEqBool'], ['Lean', 'Syntax', 'node2'], ['List', 'cons'], ['Lean', 'Syntax', 'isOfKind'], ['Lean', 'Macro', 'Context'], ['Lean', 'Name', 'mkStr4'], ['Lean', 'TSyntax', 'raw'], ['Lean', 'TSyntax', 'mk'], ['instMonadExceptOfMonadExceptOf'], ['ReaderT', 'instMonadExceptOf'], ['Lean', 'Syntax', 'getArg'], ['Lean', 'Syntax'], ['Lean', 'Macro', 'Exception', 'unsupportedSyntax'], ['EStateM', 'instMonadExceptOfOfBacktrackable'], ['Lean', 'MacroScope'], ['Lean', 'MonadRef', 'mkInfoFromRefPos'], ['ReaderT', 'instApplicativeOfMonad'], ['Lean', 'Name', 'mkStr2'], ['Lean', 'MonadQuotation', 'getMainModule'], ['Lean', 'SyntaxNodeKind'], ['letFun'], ['EStateM', 'nonBacktrackable'], ['MonadExcept', 'throw'], ['Lean', 'SourceInfo'], ['Bool'], ['ReaderT', 'instMonad'], ['Lean', 'Name']]
theorem
Syntax(original=False, range=StringRange(start=1468, stop=1587))
True
['Mathlib', 'Probability', 'Notation']
null
leanprover/lean4:v4.11.0
Mathlib
ProbabilityTheory._aux___unexpand_MeasureTheory_condexp_1
import Init import Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.Probability.Notation open MeasureTheory open scoped MeasureTheory
import Init import Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.Probability.Notation
open MeasureTheory open scoped MeasureTheory
scoped[ProbabilityTheory] notation "𝔼[" X "|" m "]" => MeasureTheory.condexp m MeasureTheory.MeasureSpace.volume X := sorry
def _aux___unexpand_MeasureTheory_condexp_1_extracted : Lean.PrettyPrinter.Unexpander := sorry
[['Lean', 'PrettyPrinter', 'Unexpander']]
scoped[ProbabilityTheory] notation "𝔼[" X "|" m "]" => MeasureTheory.condexp m MeasureTheory.MeasureSpace.volume X
[['Lean', 'withRef'], ['Lean', 'Syntax', 'matchesNull'], ['EStateM'], ['cond'], ['OfNat', 'ofNat'], ['Lean', 'Name', 'mkStr3'], ['Lean', 'Name', 'mkStr1'], ['Pure', 'pure'], ['Monad', 'toBind'], ['Eq'], ['ite'], ['Lean', 'TSyntax'], ['EStateM', 'instMonad'], ['Lean', 'MonadQuotation', 'getCurrMacroScope'], ['Bool', 'true'], ['Unit', 'unit'], ['PUnit'], ['instOfNatNat'], ['List', 'nil'], ['Bind', 'bind'], ['Nat'], ['Applicative', 'toPure'], ['instDecidableEqBool'], ['Lean', 'PrettyPrinter', 'instMonadQuotationUnexpandM'], ['Lean', 'Syntax', 'isOfKind'], ['List', 'cons'], ['Lean', 'Name', 'mkStr4'], ['Unit'], ['Lean', 'TSyntax', 'raw'], ['Lean', 'Syntax', 'matchesIdent'], ['Lean', 'TSyntax', 'mk'], ['Lean', 'MonadQuotation', 'toMonadRef'], ['instMonadExceptOfMonadExceptOf'], ['Lean', 'Syntax', 'atom'], ['Lean', 'Syntax', 'node5'], ['ReaderT', 'instMonadExceptOf'], ['Lean', 'Syntax', 'getArg'], ['Lean', 'Syntax'], ['EStateM', 'instMonadExceptOfOfBacktrackable'], ['Lean', 'MacroScope'], ['Lean', 'MonadRef', 'mkInfoFromRefPos'], ['or'], ['Lean', 'Name', 'mkStr2'], ['ReaderT', 'instApplicativeOfMonad'], ['Lean', 'MonadQuotation', 'getMainModule'], ['Bool', 'false'], ['Lean', 'PrettyPrinter', 'UnexpandM'], ['letFun'], ['Lean', 'SyntaxNodeKind'], ['EStateM', 'nonBacktrackable'], ['MonadExcept', 'throw'], ['Lean', 'SourceInfo'], ['Bool'], ['ReaderT', 'instMonad'], ['Lean', 'Name']]
theorem
Syntax(original=False, range=StringRange(start=1468, stop=1587))
True
['Mathlib', 'Probability', 'Notation']
null
leanprover/lean4:v4.11.0
Mathlib
ProbabilityTheory.term_[_]
import Init import Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.Probability.Notation open MeasureTheory open scoped MeasureTheory
import Init import Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.Probability.Notation
open MeasureTheory open scoped MeasureTheory
scoped[ProbabilityTheory] notation P "[" X "]" => ∫ x, ↑(X x) βˆ‚P := sorry
def term_[_]_extracted : Lean.TrailingParserDescr := sorry
[['Lean', 'TrailingParserDescr']]
scoped[ProbabilityTheory] notation P "[" X "]" => ∫ x, ↑(X x) βˆ‚P
[['Lean', 'ParserDescr', 'binary'], ['Lean', 'Name', 'mkStr2'], ['OfNat', 'ofNat'], ['Lean', 'ParserDescr', 'cat'], ['Lean', 'ParserDescr', 'trailingNode'], ['instOfNatNat'], ['Lean', 'Name', 'mkStr1'], ['Nat'], ['Lean', 'ParserDescr', 'symbol']]
theorem
Syntax(original=False, range=StringRange(start=1702, stop=1772))
True
['Mathlib', 'Probability', 'Notation']
null
leanprover/lean4:v4.11.0
Mathlib
ProbabilityTheory._aux___macroRules_ProbabilityTheory_term_[_]_1
import Init import Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.Probability.Notation open MeasureTheory open scoped MeasureTheory
import Init import Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.Probability.Notation
open MeasureTheory open scoped MeasureTheory
scoped[ProbabilityTheory] notation P "[" X "]" => ∫ x, ↑(X x) βˆ‚P := sorry
def _aux___macroRules_ProbabilityTheory_term_[_]_1_extracted : Lean.Macro := sorry
[['Lean', 'Macro']]
scoped[ProbabilityTheory] notation P "[" X "]" => ∫ x, ↑(X x) βˆ‚P
[['EStateM'], ['OfNat', 'ofNat'], ['Array', 'mkArray0'], ['Lean', 'Name', 'mkStr3'], ['String', "toSubstring'"], ['Lean', 'MacroM'], ['Lean', 'Macro', 'instMonadQuotationMacroM'], ['Lean', 'Name', 'mkStr1'], ['Lean', 'Syntax', 'Preresolved'], ['Lean', 'addMacroScope'], ['Pure', 'pure'], ['Monad', 'toBind'], ['Lean', 'Macro', 'instMonadRefMacroM'], ['Eq'], ['ite'], ['Lean', 'TSyntax'], ['EStateM', 'instMonad'], ['Lean', 'MonadQuotation', 'getCurrMacroScope'], ['Lean', 'Syntax', 'node1'], ['Lean', 'Macro', 'State'], ['Bool', 'true'], ['PUnit'], ['Lean', 'Macro', 'Exception'], ['instOfNatNat'], ['Lean', 'Syntax', 'ident'], ['List', 'nil'], ['Nat'], ['Bind', 'bind'], ['Lean', 'Syntax', 'node3'], ['Applicative', 'toPure'], ['instDecidableEqBool'], ['Lean', 'Syntax', 'node2'], ['List', 'cons'], ['Lean', 'Syntax', 'isOfKind'], ['Lean', 'Macro', 'Context'], ['Lean', 'Name', 'mkStr4'], ['Lean', 'TSyntax', 'raw'], ['Lean', 'TSyntax', 'mk'], ['instMonadExceptOfMonadExceptOf'], ['Lean', 'Syntax', 'atom'], ['ReaderT', 'instMonadExceptOf'], ['Lean', 'Syntax', 'node6'], ['Lean', 'Syntax', 'getArg'], ['Lean', 'Syntax'], ['Lean', 'Macro', 'Exception', 'unsupportedSyntax'], ['EStateM', 'instMonadExceptOfOfBacktrackable'], ['Lean', 'Syntax', 'node'], ['Lean', 'MacroScope'], ['Lean', 'MonadRef', 'mkInfoFromRefPos'], ['ReaderT', 'instApplicativeOfMonad'], ['Lean', 'Name', 'mkStr2'], ['Lean', 'MonadQuotation', 'getMainModule'], ['Lean', 'SyntaxNodeKind'], ['letFun'], ['EStateM', 'nonBacktrackable'], ['MonadExcept', 'throw'], ['Lean', 'SourceInfo'], ['Bool'], ['ReaderT', 'instMonad'], ['Lean', 'Name']]
theorem
Syntax(original=False, range=StringRange(start=1702, stop=1772))
True
['Mathlib', 'Probability', 'Notation']
null
leanprover/lean4:v4.11.0
Mathlib
ProbabilityTheory.term𝔼[_]
import Init import Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.Probability.Notation open MeasureTheory open scoped MeasureTheory
import Init import Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.Probability.Notation
open MeasureTheory open scoped MeasureTheory
scoped[ProbabilityTheory] notation "𝔼[" X "]" => ∫ a, (X : _ β†’ _) a := sorry
def term𝔼[_]_extracted : Lean.ParserDescr := sorry
[['Lean', 'ParserDescr']]
scoped[ProbabilityTheory] notation "𝔼[" X "]" => ∫ a, (X : _ β†’ _) a
[['Lean', 'ParserDescr', 'binary'], ['Lean', 'Name', 'mkStr2'], ['OfNat', 'ofNat'], ['Lean', 'ParserDescr', 'cat'], ['Lean', 'ParserDescr', 'node'], ['instOfNatNat'], ['Lean', 'Name', 'mkStr1'], ['Nat'], ['Lean', 'ParserDescr', 'symbol']]
theorem
Syntax(original=False, range=StringRange(start=1774, stop=1848))
True
['Mathlib', 'Probability', 'Notation']
null
leanprover/lean4:v4.11.0
Mathlib
ProbabilityTheory._aux___macroRules_ProbabilityTheory_term𝔼[_]_1
import Init import Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.Probability.Notation open MeasureTheory open scoped MeasureTheory
import Init import Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.Probability.Notation
open MeasureTheory open scoped MeasureTheory
scoped[ProbabilityTheory] notation "𝔼[" X "]" => ∫ a, (X : _ β†’ _) a := sorry
def _aux___macroRules_ProbabilityTheory_term𝔼[_]_1_extracted : Lean.Macro := sorry
[['Lean', 'Macro']]
scoped[ProbabilityTheory] notation "𝔼[" X "]" => ∫ a, (X : _ β†’ _) a
[['EStateM'], ['OfNat', 'ofNat'], ['Array', 'mkArray0'], ['Lean', 'Name', 'mkStr3'], ['String', "toSubstring'"], ['Lean', 'MacroM'], ['Lean', 'Macro', 'instMonadQuotationMacroM'], ['Lean', 'Name', 'mkStr1'], ['Lean', 'Syntax', 'Preresolved'], ['Lean', 'addMacroScope'], ['Lean', 'Syntax', 'node4'], ['Pure', 'pure'], ['Monad', 'toBind'], ['Lean', 'Macro', 'instMonadRefMacroM'], ['Eq'], ['ite'], ['Lean', 'TSyntax'], ['EStateM', 'instMonad'], ['Lean', 'MonadQuotation', 'getCurrMacroScope'], ['Lean', 'Syntax', 'node1'], ['Lean', 'Macro', 'State'], ['Bool', 'true'], ['PUnit'], ['Lean', 'Macro', 'Exception'], ['instOfNatNat'], ['Lean', 'Syntax', 'ident'], ['List', 'nil'], ['Nat'], ['Bind', 'bind'], ['Lean', 'Syntax', 'node3'], ['Applicative', 'toPure'], ['instDecidableEqBool'], ['Lean', 'Syntax', 'node2'], ['List', 'cons'], ['Lean', 'Syntax', 'isOfKind'], ['Lean', 'Macro', 'Context'], ['Lean', 'Name', 'mkStr4'], ['Lean', 'TSyntax', 'raw'], ['Lean', 'TSyntax', 'mk'], ['instMonadExceptOfMonadExceptOf'], ['Lean', 'Syntax', 'atom'], ['Lean', 'Syntax', 'node5'], ['ReaderT', 'instMonadExceptOf'], ['Lean', 'Syntax', 'getArg'], ['Lean', 'Syntax'], ['Lean', 'Macro', 'Exception', 'unsupportedSyntax'], ['EStateM', 'instMonadExceptOfOfBacktrackable'], ['Lean', 'Syntax', 'node'], ['Lean', 'MacroScope'], ['Lean', 'MonadRef', 'mkInfoFromRefPos'], ['ReaderT', 'instApplicativeOfMonad'], ['Lean', 'Name', 'mkStr2'], ['Lean', 'MonadQuotation', 'getMainModule'], ['Lean', 'SyntaxNodeKind'], ['letFun'], ['EStateM', 'nonBacktrackable'], ['MonadExcept', 'throw'], ['Lean', 'SourceInfo'], ['Bool'], ['ReaderT', 'instMonad'], ['Lean', 'Name']]
theorem
Syntax(original=False, range=StringRange(start=1774, stop=1848))
True
['Mathlib', 'Probability', 'Notation']
null
leanprover/lean4:v4.11.0
Mathlib
ProbabilityTheory.term_⟦_|_⟧
import Init import Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.Probability.Notation open MeasureTheory open scoped MeasureTheory
import Init import Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.Probability.Notation
open MeasureTheory open scoped MeasureTheory
scoped[ProbabilityTheory] notation P "⟦" s "|" m "⟧" => MeasureTheory.condexp m P (Set.indicator s fun Ο‰ => (1 : ℝ)) := sorry
def term_⟦_|_⟧_extracted : Lean.TrailingParserDescr := sorry
[['Lean', 'TrailingParserDescr']]
scoped[ProbabilityTheory] notation P "⟦" s "|" m "⟧" => MeasureTheory.condexp m P (Set.indicator s fun Ο‰ => (1 : ℝ))
[['Lean', 'ParserDescr', 'binary'], ['Lean', 'Name', 'mkStr2'], ['OfNat', 'ofNat'], ['Lean', 'ParserDescr', 'cat'], ['Lean', 'ParserDescr', 'trailingNode'], ['instOfNatNat'], ['Lean', 'Name', 'mkStr1'], ['Nat'], ['Lean', 'ParserDescr', 'symbol']]
theorem
Syntax(original=False, range=StringRange(start=1850, stop=1975))
True
['Mathlib', 'Probability', 'Notation']
null
leanprover/lean4:v4.11.0
Mathlib
ProbabilityTheory._aux___macroRules_ProbabilityTheory_term_⟦_|_⟧_1
import Init import Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.Probability.Notation open MeasureTheory open scoped MeasureTheory
import Init import Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.Probability.Notation
open MeasureTheory open scoped MeasureTheory
scoped[ProbabilityTheory] notation P "⟦" s "|" m "⟧" => MeasureTheory.condexp m P (Set.indicator s fun Ο‰ => (1 : ℝ)) := sorry
def _aux___macroRules_ProbabilityTheory_term_⟦_|_⟧_1_extracted : Lean.Macro := sorry
[['Lean', 'Macro']]
scoped[ProbabilityTheory] notation P "⟦" s "|" m "⟧" => MeasureTheory.condexp m P (Set.indicator s fun Ο‰ => (1 : ℝ))
[['EStateM'], ['OfNat', 'ofNat'], ['Array', 'mkArray0'], ['String', "toSubstring'"], ['Lean', 'MacroM'], ['String'], ['Lean', 'Syntax', 'Preresolved', 'decl'], ['Lean', 'Macro', 'instMonadQuotationMacroM'], ['Lean', 'Name', 'mkStr1'], ['Lean', 'Syntax', 'Preresolved'], ['Lean', 'Syntax', 'node4'], ['Lean', 'addMacroScope'], ['Pure', 'pure'], ['Lean', 'Syntax', 'Preresolved', 'namespace'], ['Monad', 'toBind'], ['Lean', 'Macro', 'instMonadRefMacroM'], ['Eq'], ['ite'], ['Lean', 'TSyntax'], ['EStateM', 'instMonad'], ['Lean', 'MonadQuotation', 'getCurrMacroScope'], ['Lean', 'Syntax', 'node1'], ['Lean', 'Macro', 'State'], ['Bool', 'true'], ['PUnit'], ['Lean', 'Macro', 'Exception'], ['instOfNatNat'], ['Lean', 'Syntax', 'ident'], ['List', 'nil'], ['Nat'], ['Bind', 'bind'], ['Lean', 'Syntax', 'node3'], ['Applicative', 'toPure'], ['instDecidableEqBool'], ['Lean', 'Syntax', 'node2'], ['List', 'cons'], ['Lean', 'Syntax', 'isOfKind'], ['Lean', 'Macro', 'Context'], ['Lean', 'Name', 'mkStr4'], ['Lean', 'TSyntax', 'raw'], ['Lean', 'TSyntax', 'mk'], ['instMonadExceptOfMonadExceptOf'], ['Lean', 'Syntax', 'atom'], ['Lean', 'Syntax', 'node5'], ['ReaderT', 'instMonadExceptOf'], ['Lean', 'Syntax', 'getArg'], ['Lean', 'Syntax'], ['Lean', 'Macro', 'Exception', 'unsupportedSyntax'], ['EStateM', 'instMonadExceptOfOfBacktrackable'], ['Lean', 'Syntax', 'node'], ['Lean', 'MacroScope'], ['Lean', 'MonadRef', 'mkInfoFromRefPos'], ['ReaderT', 'instApplicativeOfMonad'], ['Lean', 'Name', 'mkStr2'], ['Lean', 'MonadQuotation', 'getMainModule'], ['Lean', 'SyntaxNodeKind'], ['letFun'], ['EStateM', 'nonBacktrackable'], ['MonadExcept', 'throw'], ['Lean', 'SourceInfo'], ['Bool'], ['ReaderT', 'instMonad'], ['Lean', 'Name']]
theorem
Syntax(original=False, range=StringRange(start=1850, stop=1975))
True
['Mathlib', 'Probability', 'Notation']
null
leanprover/lean4:v4.11.0
Mathlib
ProbabilityTheory._aux___unexpand_MeasureTheory_condexp_2
import Init import Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.Probability.Notation open MeasureTheory open scoped MeasureTheory
import Init import Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.Probability.Notation
open MeasureTheory open scoped MeasureTheory
scoped[ProbabilityTheory] notation P "⟦" s "|" m "⟧" => MeasureTheory.condexp m P (Set.indicator s fun Ο‰ => (1 : ℝ)) := sorry
def _aux___unexpand_MeasureTheory_condexp_2_extracted : Lean.PrettyPrinter.Unexpander := sorry
[['Lean', 'PrettyPrinter', 'Unexpander']]
scoped[ProbabilityTheory] notation P "⟦" s "|" m "⟧" => MeasureTheory.condexp m P (Set.indicator s fun Ο‰ => (1 : ℝ))
[['Lean', 'withRef'], ['Lean', 'Syntax', 'matchesNull'], ['Lean', 'Syntax', 'matchesLit'], ['EStateM'], ['cond'], ['OfNat', 'ofNat'], ['Lean', 'Name', 'mkStr1'], ['Pure', 'pure'], ['Monad', 'toBind'], ['Eq'], ['ite'], ['Lean', 'TSyntax'], ['EStateM', 'instMonad'], ['Lean', 'MonadQuotation', 'getCurrMacroScope'], ['Bool', 'true'], ['Unit', 'unit'], ['PUnit'], ['instOfNatNat'], ['List', 'nil'], ['Bind', 'bind'], ['Nat'], ['Applicative', 'toPure'], ['instDecidableEqBool'], ['Lean', 'PrettyPrinter', 'instMonadQuotationUnexpandM'], ['Lean', 'Syntax', 'isOfKind'], ['List', 'cons'], ['Lean', 'Name', 'mkStr4'], ['Unit'], ['Lean', 'TSyntax', 'raw'], ['Lean', 'Syntax', 'matchesIdent'], ['Lean', 'TSyntax', 'mk'], ['Lean', 'MonadQuotation', 'toMonadRef'], ['instMonadExceptOfMonadExceptOf'], ['Lean', 'Syntax', 'atom'], ['ReaderT', 'instMonadExceptOf'], ['Lean', 'Syntax', 'node6'], ['Lean', 'Syntax', 'getArg'], ['Lean', 'Syntax'], ['EStateM', 'instMonadExceptOfOfBacktrackable'], ['Lean', 'MacroScope'], ['Lean', 'MonadRef', 'mkInfoFromRefPos'], ['or'], ['ReaderT', 'instApplicativeOfMonad'], ['Lean', 'Name', 'mkStr2'], ['Lean', 'MonadQuotation', 'getMainModule'], ['Bool', 'false'], ['Lean', 'PrettyPrinter', 'UnexpandM'], ['letFun'], ['Lean', 'SyntaxNodeKind'], ['EStateM', 'nonBacktrackable'], ['MonadExcept', 'throw'], ['Lean', 'SourceInfo'], ['Bool'], ['ReaderT', 'instMonad'], ['Lean', 'Name']]
theorem
Syntax(original=False, range=StringRange(start=1850, stop=1975))
True
['Mathlib', 'Probability', 'Notation']
null
leanprover/lean4:v4.11.0
Mathlib
ProbabilityTheory.term_=ₐₛ_
import Init import Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.Probability.Notation open MeasureTheory open scoped MeasureTheory
import Init import Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.Probability.Notation
open MeasureTheory open scoped MeasureTheory
scoped[ProbabilityTheory] notation:50 X " =ₐₛ " Y:50 => X =ᡐ[MeasureTheory.MeasureSpace.volume] Y := sorry
def term_=ₐₛ__extracted : Lean.TrailingParserDescr := sorry
[['Lean', 'TrailingParserDescr']]
scoped[ProbabilityTheory] notation:50 X " =ₐₛ " Y:50 => X =ᡐ[MeasureTheory.MeasureSpace.volume] Y
[['Lean', 'ParserDescr', 'binary'], ['Lean', 'Name', 'mkStr2'], ['OfNat', 'ofNat'], ['Lean', 'ParserDescr', 'cat'], ['Lean', 'ParserDescr', 'trailingNode'], ['instOfNatNat'], ['Lean', 'Name', 'mkStr1'], ['Nat'], ['Lean', 'ParserDescr', 'symbol']]
theorem
Syntax(original=False, range=StringRange(start=1977, stop=2080))
True
['Mathlib', 'Probability', 'Notation']
null
leanprover/lean4:v4.11.0
Mathlib
ProbabilityTheory._aux___macroRules_ProbabilityTheory_term_=ₐₛ__1
import Init import Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.Probability.Notation open MeasureTheory open scoped MeasureTheory
import Init import Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.Probability.Notation
open MeasureTheory open scoped MeasureTheory
scoped[ProbabilityTheory] notation:50 X " =ₐₛ " Y:50 => X =ᡐ[MeasureTheory.MeasureSpace.volume] Y := sorry
def _aux___macroRules_ProbabilityTheory_term_=ₐₛ__1_extracted : Lean.Macro := sorry
[['Lean', 'Macro']]
scoped[ProbabilityTheory] notation:50 X " =ₐₛ " Y:50 => X =ᡐ[MeasureTheory.MeasureSpace.volume] Y
[['EStateM'], ['OfNat', 'ofNat'], ['Lean', 'Name', 'mkStr3'], ['String', "toSubstring'"], ['Lean', 'MacroM'], ['String'], ['Lean', 'Syntax', 'Preresolved', 'decl'], ['Lean', 'Macro', 'instMonadQuotationMacroM'], ['Lean', 'Name', 'mkStr1'], ['Lean', 'Syntax', 'Preresolved'], ['Lean', 'addMacroScope'], ['Pure', 'pure'], ['Monad', 'toBind'], ['Lean', 'Macro', 'instMonadRefMacroM'], ['Eq'], ['ite'], ['Lean', 'TSyntax'], ['EStateM', 'instMonad'], ['Lean', 'MonadQuotation', 'getCurrMacroScope'], ['Lean', 'Macro', 'State'], ['Bool', 'true'], ['PUnit'], ['Lean', 'Macro', 'Exception'], ['instOfNatNat'], ['Lean', 'Syntax', 'ident'], ['List', 'nil'], ['Nat'], ['Bind', 'bind'], ['Applicative', 'toPure'], ['instDecidableEqBool'], ['List', 'cons'], ['Lean', 'Syntax', 'isOfKind'], ['Lean', 'Macro', 'Context'], ['Lean', 'TSyntax', 'raw'], ['Lean', 'TSyntax', 'mk'], ['instMonadExceptOfMonadExceptOf'], ['Lean', 'Syntax', 'atom'], ['Lean', 'Syntax', 'node5'], ['ReaderT', 'instMonadExceptOf'], ['Lean', 'Syntax', 'getArg'], ['Lean', 'Syntax'], ['Lean', 'Macro', 'Exception', 'unsupportedSyntax'], ['EStateM', 'instMonadExceptOfOfBacktrackable'], ['Lean', 'MacroScope'], ['Lean', 'MonadRef', 'mkInfoFromRefPos'], ['ReaderT', 'instApplicativeOfMonad'], ['Lean', 'Name', 'mkStr2'], ['Lean', 'MonadQuotation', 'getMainModule'], ['Lean', 'SyntaxNodeKind'], ['letFun'], ['EStateM', 'nonBacktrackable'], ['MonadExcept', 'throw'], ['Lean', 'SourceInfo'], ['Bool'], ['ReaderT', 'instMonad'], ['Lean', 'Name']]
theorem
Syntax(original=False, range=StringRange(start=1977, stop=2080))
True
['Mathlib', 'Probability', 'Notation']
null
leanprover/lean4:v4.11.0
Mathlib
ProbabilityTheory.term_≀ₐₛ_
import Init import Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.Probability.Notation open MeasureTheory open scoped MeasureTheory
import Init import Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.Probability.Notation
open MeasureTheory open scoped MeasureTheory
scoped[ProbabilityTheory] notation:50 X " ≀ₐₛ " Y:50 => X ≀ᡐ[MeasureTheory.MeasureSpace.volume] Y := sorry
def term_≀ₐₛ__extracted : Lean.TrailingParserDescr := sorry
[['Lean', 'TrailingParserDescr']]
scoped[ProbabilityTheory] notation:50 X " ≀ₐₛ " Y:50 => X ≀ᡐ[MeasureTheory.MeasureSpace.volume] Y
[['Lean', 'ParserDescr', 'binary'], ['Lean', 'Name', 'mkStr2'], ['OfNat', 'ofNat'], ['Lean', 'ParserDescr', 'cat'], ['Lean', 'ParserDescr', 'trailingNode'], ['instOfNatNat'], ['Lean', 'Name', 'mkStr1'], ['Nat'], ['Lean', 'ParserDescr', 'symbol']]
theorem
Syntax(original=False, range=StringRange(start=2082, stop=2189))
True
['Mathlib', 'Probability', 'Notation']
null
leanprover/lean4:v4.11.0
Mathlib
ProbabilityTheory._aux___macroRules_ProbabilityTheory_term_≀ₐₛ__1
import Init import Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.Probability.Notation open MeasureTheory open scoped MeasureTheory
import Init import Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.Probability.Notation
open MeasureTheory open scoped MeasureTheory
scoped[ProbabilityTheory] notation:50 X " ≀ₐₛ " Y:50 => X ≀ᡐ[MeasureTheory.MeasureSpace.volume] Y := sorry
def _aux___macroRules_ProbabilityTheory_term_≀ₐₛ__1_extracted : Lean.Macro := sorry
[['Lean', 'Macro']]
scoped[ProbabilityTheory] notation:50 X " ≀ₐₛ " Y:50 => X ≀ᡐ[MeasureTheory.MeasureSpace.volume] Y
[['EStateM'], ['OfNat', 'ofNat'], ['Lean', 'Name', 'mkStr3'], ['String', "toSubstring'"], ['Lean', 'MacroM'], ['String'], ['Lean', 'Syntax', 'Preresolved', 'decl'], ['Lean', 'Macro', 'instMonadQuotationMacroM'], ['Lean', 'Name', 'mkStr1'], ['Lean', 'Syntax', 'Preresolved'], ['Lean', 'addMacroScope'], ['Pure', 'pure'], ['Monad', 'toBind'], ['Lean', 'Macro', 'instMonadRefMacroM'], ['Eq'], ['ite'], ['Lean', 'TSyntax'], ['EStateM', 'instMonad'], ['Lean', 'MonadQuotation', 'getCurrMacroScope'], ['Lean', 'Macro', 'State'], ['Bool', 'true'], ['PUnit'], ['Lean', 'Macro', 'Exception'], ['instOfNatNat'], ['Lean', 'Syntax', 'ident'], ['List', 'nil'], ['Nat'], ['Bind', 'bind'], ['Applicative', 'toPure'], ['instDecidableEqBool'], ['List', 'cons'], ['Lean', 'Syntax', 'isOfKind'], ['Lean', 'Macro', 'Context'], ['Lean', 'TSyntax', 'raw'], ['Lean', 'TSyntax', 'mk'], ['instMonadExceptOfMonadExceptOf'], ['Lean', 'Syntax', 'atom'], ['Lean', 'Syntax', 'node5'], ['ReaderT', 'instMonadExceptOf'], ['Lean', 'Syntax', 'getArg'], ['Lean', 'Syntax'], ['Lean', 'Macro', 'Exception', 'unsupportedSyntax'], ['EStateM', 'instMonadExceptOfOfBacktrackable'], ['Lean', 'MacroScope'], ['Lean', 'MonadRef', 'mkInfoFromRefPos'], ['ReaderT', 'instApplicativeOfMonad'], ['Lean', 'Name', 'mkStr2'], ['Lean', 'MonadQuotation', 'getMainModule'], ['Lean', 'SyntaxNodeKind'], ['letFun'], ['EStateM', 'nonBacktrackable'], ['MonadExcept', 'throw'], ['Lean', 'SourceInfo'], ['Bool'], ['ReaderT', 'instMonad'], ['Lean', 'Name']]
theorem
Syntax(original=False, range=StringRange(start=2082, stop=2189))
True
['Mathlib', 'Probability', 'Notation']
null
leanprover/lean4:v4.11.0
Mathlib
ProbabilityTheory.termβˆ‚_/βˆ‚_
import Init import Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.Probability.Notation open MeasureTheory open scoped MeasureTheory
import Init import Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.Probability.Notation
open MeasureTheory open scoped MeasureTheory
scoped[ProbabilityTheory] notation "βˆ‚" P "/βˆ‚" Q:100 => MeasureTheory.Measure.rnDeriv P Q := sorry
def termβˆ‚_/βˆ‚__extracted : Lean.ParserDescr := sorry
[['Lean', 'ParserDescr']]
scoped[ProbabilityTheory] notation "βˆ‚" P "/βˆ‚" Q:100 => MeasureTheory.Measure.rnDeriv P Q
[['Lean', 'ParserDescr', 'binary'], ['Lean', 'Name', 'mkStr2'], ['OfNat', 'ofNat'], ['Lean', 'ParserDescr', 'cat'], ['Lean', 'ParserDescr', 'node'], ['instOfNatNat'], ['Lean', 'Name', 'mkStr1'], ['Nat'], ['Lean', 'ParserDescr', 'symbol']]
theorem
Syntax(original=False, range=StringRange(start=2191, stop=2283))
True
['Mathlib', 'Probability', 'Notation']
null
leanprover/lean4:v4.11.0
Mathlib
ProbabilityTheory._aux___macroRules_ProbabilityTheory_termβˆ‚_/βˆ‚__1
import Init import Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.Probability.Notation open MeasureTheory open scoped MeasureTheory
import Init import Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.Probability.Notation
open MeasureTheory open scoped MeasureTheory
scoped[ProbabilityTheory] notation "βˆ‚" P "/βˆ‚" Q:100 => MeasureTheory.Measure.rnDeriv P Q := sorry
def _aux___macroRules_ProbabilityTheory_termβˆ‚_/βˆ‚__1_extracted : Lean.Macro := sorry
[['Lean', 'Macro']]
scoped[ProbabilityTheory] notation "βˆ‚" P "/βˆ‚" Q:100 => MeasureTheory.Measure.rnDeriv P Q
[['EStateM'], ['OfNat', 'ofNat'], ['Lean', 'Name', 'mkStr3'], ['String', "toSubstring'"], ['Lean', 'MacroM'], ['String'], ['Lean', 'Syntax', 'Preresolved', 'decl'], ['Lean', 'Macro', 'instMonadQuotationMacroM'], ['Lean', 'Name', 'mkStr1'], ['Lean', 'Syntax', 'Preresolved'], ['Lean', 'addMacroScope'], ['Pure', 'pure'], ['Monad', 'toBind'], ['Lean', 'Macro', 'instMonadRefMacroM'], ['Eq'], ['ite'], ['Lean', 'TSyntax'], ['EStateM', 'instMonad'], ['Lean', 'MonadQuotation', 'getCurrMacroScope'], ['Lean', 'Macro', 'State'], ['Bool', 'true'], ['PUnit'], ['Lean', 'Macro', 'Exception'], ['instOfNatNat'], ['Lean', 'Syntax', 'ident'], ['List', 'nil'], ['Nat'], ['Bind', 'bind'], ['Applicative', 'toPure'], ['instDecidableEqBool'], ['Lean', 'Syntax', 'node2'], ['List', 'cons'], ['Lean', 'Syntax', 'isOfKind'], ['Lean', 'Macro', 'Context'], ['Lean', 'Name', 'mkStr4'], ['Lean', 'TSyntax', 'raw'], ['Lean', 'TSyntax', 'mk'], ['instMonadExceptOfMonadExceptOf'], ['ReaderT', 'instMonadExceptOf'], ['Lean', 'Syntax', 'getArg'], ['Lean', 'Syntax'], ['Lean', 'Macro', 'Exception', 'unsupportedSyntax'], ['EStateM', 'instMonadExceptOfOfBacktrackable'], ['Lean', 'MacroScope'], ['Lean', 'MonadRef', 'mkInfoFromRefPos'], ['ReaderT', 'instApplicativeOfMonad'], ['Lean', 'Name', 'mkStr2'], ['Lean', 'MonadQuotation', 'getMainModule'], ['Lean', 'SyntaxNodeKind'], ['letFun'], ['EStateM', 'nonBacktrackable'], ['MonadExcept', 'throw'], ['Lean', 'SourceInfo'], ['Bool'], ['ReaderT', 'instMonad'], ['Lean', 'Name']]
theorem
Syntax(original=False, range=StringRange(start=2191, stop=2283))
True
['Mathlib', 'Probability', 'Notation']
null
leanprover/lean4:v4.11.0
Mathlib
ProbabilityTheory._aux___unexpand_MeasureTheory_Measure_rnDeriv_1
import Init import Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.Probability.Notation open MeasureTheory open scoped MeasureTheory
import Init import Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.Probability.Notation
open MeasureTheory open scoped MeasureTheory
scoped[ProbabilityTheory] notation "βˆ‚" P "/βˆ‚" Q:100 => MeasureTheory.Measure.rnDeriv P Q := sorry
def _aux___unexpand_MeasureTheory_Measure_rnDeriv_1_extracted : Lean.PrettyPrinter.Unexpander := sorry
[['Lean', 'PrettyPrinter', 'Unexpander']]
scoped[ProbabilityTheory] notation "βˆ‚" P "/βˆ‚" Q:100 => MeasureTheory.Measure.rnDeriv P Q
[['Lean', 'withRef'], ['Lean', 'Syntax', 'matchesNull'], ['EStateM'], ['cond'], ['OfNat', 'ofNat'], ['Lean', 'Name', 'mkStr1'], ['Lean', 'Syntax', 'node4'], ['Pure', 'pure'], ['Monad', 'toBind'], ['Eq'], ['ite'], ['Lean', 'TSyntax'], ['EStateM', 'instMonad'], ['Lean', 'MonadQuotation', 'getCurrMacroScope'], ['Bool', 'true'], ['Unit', 'unit'], ['PUnit'], ['instOfNatNat'], ['List', 'nil'], ['Nat'], ['Bind', 'bind'], ['Applicative', 'toPure'], ['instDecidableEqBool'], ['Lean', 'PrettyPrinter', 'instMonadQuotationUnexpandM'], ['Lean', 'Syntax', 'isOfKind'], ['List', 'cons'], ['Lean', 'Name', 'mkStr4'], ['Unit'], ['Lean', 'TSyntax', 'raw'], ['Lean', 'TSyntax', 'mk'], ['Lean', 'MonadQuotation', 'toMonadRef'], ['instMonadExceptOfMonadExceptOf'], ['Lean', 'Syntax', 'atom'], ['ReaderT', 'instMonadExceptOf'], ['Lean', 'Syntax', 'getArg'], ['Lean', 'Syntax'], ['EStateM', 'instMonadExceptOfOfBacktrackable'], ['Lean', 'MacroScope'], ['Lean', 'MonadRef', 'mkInfoFromRefPos'], ['or'], ['Lean', 'Name', 'mkStr2'], ['ReaderT', 'instApplicativeOfMonad'], ['Lean', 'MonadQuotation', 'getMainModule'], ['Bool', 'false'], ['Lean', 'PrettyPrinter', 'UnexpandM'], ['letFun'], ['Lean', 'SyntaxNodeKind'], ['EStateM', 'nonBacktrackable'], ['MonadExcept', 'throw'], ['Lean', 'SourceInfo'], ['Bool'], ['ReaderT', 'instMonad'], ['Lean', 'Name']]
theorem
Syntax(original=False, range=StringRange(start=2191, stop=2283))
True
['Mathlib', 'Probability', 'Notation']
null
leanprover/lean4:v4.11.0
Mathlib
ProbabilityTheory.termβ„™
import Init import Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.Probability.Notation open MeasureTheory open scoped MeasureTheory
import Init import Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.Probability.Notation
open MeasureTheory open scoped MeasureTheory
scoped[ProbabilityTheory] notation "β„™" => MeasureTheory.MeasureSpace.volume := sorry
def termβ„™_extracted : Lean.ParserDescr := sorry
[['Lean', 'ParserDescr']]
scoped[ProbabilityTheory] notation "β„™" => MeasureTheory.MeasureSpace.volume
[['Lean', 'Name', 'mkStr2'], ['OfNat', 'ofNat'], ['Lean', 'ParserDescr', 'node'], ['instOfNatNat'], ['Nat'], ['Lean', 'ParserDescr', 'symbol']]
theorem
Syntax(original=False, range=StringRange(start=2285, stop=2362))
True
['Mathlib', 'Probability', 'Notation']
null
leanprover/lean4:v4.11.0
Mathlib
ProbabilityTheory._aux___macroRules_ProbabilityTheory_termβ„™_1
import Init import Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.Probability.Notation open MeasureTheory open scoped MeasureTheory
import Init import Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.Probability.Notation
open MeasureTheory open scoped MeasureTheory
scoped[ProbabilityTheory] notation "β„™" => MeasureTheory.MeasureSpace.volume := sorry
def _aux___macroRules_ProbabilityTheory_termβ„™_1_extracted : Lean.Macro := sorry
[['Lean', 'Macro']]
scoped[ProbabilityTheory] notation "β„™" => MeasureTheory.MeasureSpace.volume
[['EStateM'], ['OfNat', 'ofNat'], ['Lean', 'Name', 'mkStr3'], ['String', "toSubstring'"], ['Lean', 'MacroM'], ['String'], ['Lean', 'Syntax', 'Preresolved', 'decl'], ['Lean', 'Name', 'mkStr1'], ['Lean', 'Macro', 'instMonadQuotationMacroM'], ['Lean', 'Syntax', 'Preresolved'], ['Lean', 'addMacroScope'], ['Pure', 'pure'], ['Monad', 'toBind'], ['Lean', 'Macro', 'instMonadRefMacroM'], ['Eq'], ['ite'], ['EStateM', 'instMonad'], ['Lean', 'MonadQuotation', 'getCurrMacroScope'], ['Lean', 'Macro', 'State'], ['Bool', 'true'], ['PUnit'], ['Lean', 'Macro', 'Exception'], ['instOfNatNat'], ['Lean', 'Syntax', 'ident'], ['List', 'nil'], ['Bind', 'bind'], ['Nat'], ['Applicative', 'toPure'], ['instDecidableEqBool'], ['List', 'cons'], ['Lean', 'Syntax', 'isOfKind'], ['Lean', 'Macro', 'Context'], ['Lean', 'TSyntax', 'raw'], ['Lean', 'TSyntax', 'mk'], ['instMonadExceptOfMonadExceptOf'], ['ReaderT', 'instMonadExceptOf'], ['Lean', 'Syntax', 'getArg'], ['Lean', 'Syntax'], ['Lean', 'Macro', 'Exception', 'unsupportedSyntax'], ['EStateM', 'instMonadExceptOfOfBacktrackable'], ['Lean', 'MacroScope'], ['Lean', 'MonadRef', 'mkInfoFromRefPos'], ['Lean', 'Name', 'mkStr2'], ['ReaderT', 'instApplicativeOfMonad'], ['Lean', 'MonadQuotation', 'getMainModule'], ['Lean', 'SyntaxNodeKind'], ['letFun'], ['EStateM', 'nonBacktrackable'], ['MonadExcept', 'throw'], ['Lean', 'SourceInfo'], ['ReaderT', 'instMonad'], ['Bool'], ['Lean', 'Name']]
theorem
Syntax(original=False, range=StringRange(start=2285, stop=2362))
True
['Mathlib', 'Probability', 'Notation']
null
leanprover/lean4:v4.11.0
Mathlib
ProbabilityTheory._aux___unexpand_MeasureTheory_MeasureSpace_volume_1
import Init import Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.Probability.Notation open MeasureTheory open scoped MeasureTheory
import Init import Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.Probability.Notation
open MeasureTheory open scoped MeasureTheory
scoped[ProbabilityTheory] notation "β„™" => MeasureTheory.MeasureSpace.volume := sorry
def _aux___unexpand_MeasureTheory_MeasureSpace_volume_1_extracted : Lean.PrettyPrinter.Unexpander := sorry
[['Lean', 'PrettyPrinter', 'Unexpander']]
scoped[ProbabilityTheory] notation "β„™" => MeasureTheory.MeasureSpace.volume
[['Lean', 'withRef'], ['EStateM'], ['cond'], ['Lean', 'Name', 'mkStr1'], ['Pure', 'pure'], ['Monad', 'toBind'], ['Lean', 'TSyntax'], ['EStateM', 'instMonad'], ['Lean', 'MonadQuotation', 'getCurrMacroScope'], ['Lean', 'Syntax', 'node1'], ['Unit', 'unit'], ['PUnit'], ['List', 'nil'], ['Bind', 'bind'], ['Applicative', 'toPure'], ['Lean', 'PrettyPrinter', 'instMonadQuotationUnexpandM'], ['List', 'cons'], ['Lean', 'Syntax', 'isOfKind'], ['Unit'], ['Lean', 'TSyntax', 'raw'], ['Lean', 'TSyntax', 'mk'], ['Lean', 'MonadQuotation', 'toMonadRef'], ['instMonadExceptOfMonadExceptOf'], ['Lean', 'Syntax', 'atom'], ['ReaderT', 'instMonadExceptOf'], ['Lean', 'Syntax'], ['EStateM', 'instMonadExceptOfOfBacktrackable'], ['Lean', 'MacroScope'], ['or'], ['Lean', 'MonadRef', 'mkInfoFromRefPos'], ['Lean', 'Name', 'mkStr2'], ['ReaderT', 'instApplicativeOfMonad'], ['Bool', 'false'], ['Lean', 'MonadQuotation', 'getMainModule'], ['Lean', 'SyntaxNodeKind'], ['Lean', 'PrettyPrinter', 'UnexpandM'], ['letFun'], ['EStateM', 'nonBacktrackable'], ['MonadExcept', 'throw'], ['Lean', 'SourceInfo'], ['ReaderT', 'instMonad'], ['Lean', 'Name']]
theorem
Syntax(original=False, range=StringRange(start=2285, stop=2362))
True
['Mathlib', 'Probability', 'Notation']
null
leanprover/lean4:v4.11.0
Mathlib
exp_neg_integrableOn_Ioi
import Init import Mathlib.MeasureTheory.Integral.Asymptotics import Mathlib.MeasureTheory.Integral.IntervalIntegral import Mathlib.MeasureTheory.Integral.IntegralEqImproper import Mathlib.MeasureTheory.Integral.ExpDecay open Real intervalIntegral MeasureTheory Set Filter open scoped Topology
import Init import Mathlib.MeasureTheory.Integral.Asymptotics import Mathlib.MeasureTheory.Integral.IntervalIntegral import Mathlib.MeasureTheory.Integral.IntegralEqImproper import Mathlib.MeasureTheory.Integral.ExpDecay
open Real intervalIntegral MeasureTheory Set Filter open scoped Topology
/-- `exp (-b * x)` is integrable on `(a, ∞)`. -/ theorem exp_neg_integrableOn_Ioi (a : ℝ) {b : ℝ} (h : 0 < b) : IntegrableOn (fun x : ℝ => exp (-b * x)) (Ioi a) := sorry
theorem exp_neg_integrableOn_Ioi_extracted : βˆ€ (a : ℝ) {b : ℝ}, 0 < b β†’ IntegrableOn (fun x => rexp (-b * x)) (Ioi a) volume := sorry
[['Real', 'instNeg'], ['instHMul'], ['Real', 'instMul'], ['Real', 'instPreorder'], ['Real', 'measurableSpace'], ['Real'], ['HMul', 'hMul'], ['Real', 'measureSpace'], ['Neg', 'neg'], ['MeasureTheory', 'IntegrableOn'], ['Set', 'Ioi'], ['MeasureTheory', 'MeasureSpace', 'volume'], ['Real', 'exp'], ['Real', 'normedAddCommGroup']]
/-- `exp (-b * x)` is integrable on `(a, ∞)`. -/ theorem exp_neg_integrableOn_Ioi (a : ℝ) {b : ℝ} (h : 0 < b) : IntegrableOn (fun x : ℝ => exp (-b * x)) (Ioi a) := by have : Tendsto (fun x => -exp (-b * x) / b) atTop (𝓝 (-0 / b)) := by refine Tendsto.div_const (Tendsto.neg ?_) _ exact tendsto_exp_atBot.comp (tendsto_id.const_mul_atTop_of_neg (neg_neg_iff_pos.2 h)) refine integrableOn_Ioi_deriv_of_nonneg' (fun x _ => ?_) (fun x _ => (exp_pos _).le) this simpa [h.ne'] using ((hasDerivAt_id x).const_mul b).neg.exp.neg.div_const b
[['IsLeftCancelAdd', 'covariant_add_lt_of_covariant_add_le'], ['NonUnitalCommRing', 'toNonUnitalNonAssocCommRing'], ['Real', 'instNeg'], ['NonUnitalNonAssocRing', 'toHasDistribNeg'], ['LT', 'lt', "ne'"], ['OfNat', 'ofNat'], ['PartialOrder', 'toPreorder'], ['mul_neg'], ['NontriviallyNormedField', 'toNormedField'], ['Real', 'measurableSpace'], ['Semifield', 'toCommGroupWithZero'], ['NonUnitalNonAssocCommRing', 'toNonUnitalNonAssocRing'], ['Set', 'Ioi'], ['Iff', 'mpr'], ['IsUnit', 'mul_div_cancel_right'], ['HasDerivAt', 'const_mul'], ['HasDistribNeg', 'toInvolutiveNeg'], ['Filter', 'Tendsto'], ['LinearOrderedField', 'toLinearOrderedSemifield'], ['HDiv', 'hDiv'], ['NonUnitalNonAssocCommSemiring', 'toNonUnitalNonAssocSemiring'], ['RCLike', 'innerProductSpace'], ['instHDiv'], ['NormedAlgebra', "toNormedSpace'"], ['neg_neg_iff_pos'], ['TopologicalSemiring', 'toContinuousMul'], ['MulOneClass', 'toOne'], ['PseudoMetricSpace', 'toUniformSpace'], ['NonUnitalNonAssocCommRing', 'toNonUnitalNonAssocCommSemiring'], ['NormedCommRing', 'toNormedRing'], ['Real', 'normedCommRing'], ['HasDerivAt'], ['HasDerivAt', 'neg'], ['Filter', 'Tendsto', 'comp'], ['InnerProductSpace', 'toNormedSpace'], ['Real', 'instMul'], ['Mathlib', 'Algebra', 'GroupWithZero', 'Units', 'Basic', '_auxLemma', 9], ['LT', 'lt'], ['NormedAddCommGroup', 'toSeminormedAddCommGroup'], ['congr'], ['Field', 'toDiv'], ['MonoidWithZero', 'toZero'], ['congrFun'], ['AddZeroClass', 'toAdd'], ['AddCommGroup', 'toDivisionAddCommMonoid'], ['Filter', 'Tendsto', 'div_const'], ['Filter', 'tendsto_id'], ['Real'], ['LinearOrderedField', 'toLinearOrderedCommRing'], ['neg_neg'], ['AddMonoid', 'toAddZeroClass'], ['NonAssocSemiring', 'toMulZeroOneClass'], ['True'], ['NormedField', 'toField'], ['Real', 'instAddGroup'], ['InvolutiveNeg', 'toNeg'], ['AddGroup', 'toAddCancelMonoid'], ['UniformSpace', 'toTopologicalSpace'], ['neg_mul'], ['OrderedAddCommGroup', 'to_covariantClass_left_le'], ['SubtractionMonoid', 'toSubNegZeroMonoid'], ['Real', 'denselyNormedField'], ['CommGroupWithZero', 'toDivisionCommMonoid'], ['LinearOrderedCommRing', 'toLinearOrderedRing'], ['RCLike', 'toNormedAlgebra'], ['NonUnitalNonAssocRing', 'toMul'], ['Real', 'exp_pos'], ['Field', 'toSemifield'], ['Neg', 'neg'], ['One', 'toOfNat1'], ['SubNegZeroMonoid', 'toNegZeroClass'], ['NormedField', 'toNormedCommRing'], ['GroupWithZero', 'toMonoidWithZero'], ['NormedCommRing', 'toSeminormedCommRing'], ['Real', 'instPreorder'], ['Real', 'instRCLike'], ['letFun'], ['Semifield', 'toDivisionSemiring'], ['IsUnit'], ['NegZeroClass', 'toNeg'], ['NonUnitalNormedRing', 'toNormedAddCommGroup'], ['Real', 'orderedAddCommGroup'], ['MulOneClass', 'toMul'], ['MulZeroOneClass', 'toMulOneClass'], ['AddGroup', 'toSubtractionMonoid'], ['hasDerivAt_id'], ['Eq'], ['NormedRing', 'toNonUnitalNormedRing'], ['MeasureTheory', "integrableOn_Ioi_deriv_of_nonneg'"], ['Eq', 'mpr'], ['Semiring', 'toNonAssocSemiring'], ['MonoidWithZero', 'toMonoid'], ['DivisionCommMonoid', 'toDivisionMonoid'], ['NormedField', 'toNormedSpace'], ['Real', 'measureSpace'], ['not_false_eq_true'], ['Eq', 'trans'], ['NormedRing', 'toRing'], ['Real', 'normedAddCommGroup'], ['StrictOrderedRing', 'toPartialOrder'], ['Ne'], ['DivisionSemiring', 'toGroupWithZero'], ['Real', 'partialOrder'], ['HasDerivAt', 'div_const'], ['Real', 'instZero'], ['NonAssocRing', 'toNonUnitalNonAssocRing'], ['instHMul'], ['of_eq_true'], ['AddCancelMonoid', 'toIsCancelAdd'], ['NormedCommRing', 'toNonUnitalNormedCommRing'], ['Eq', 'mp'], ['NonUnitalNormedCommRing', 'toNonUnitalNormedRing'], ['Not'], ['mul_one'], ['Filter', 'atTop'], ['congrArg'], ['NormedAddCommGroup', 'toAddCommGroup'], ['LinearOrderedSemifield', 'toSemifield'], ['LinearOrderedRing', 'toStrictOrderedRing'], ['Real', 'instDivInvMonoid'], ['TopologicalRing', 'toContinuousNeg'], ['MeasureTheory', 'IntegrableOn'], ['SubtractionCommMonoid', 'toSubtractionMonoid'], ['NonUnitalSeminormedCommRing', 'toNonUnitalCommRing'], ['MeasureTheory', 'MeasureSpace', 'volume'], ['LinearOrderedField', 'toDiv'], ['Ring', 'toNonAssocRing'], ['Filter', 'atBot'], ['Zero', 'toOfNat0'], ['Preorder', 'toLT'], ['TopologicalRing', 'toTopologicalSemiring'], ['Filter', 'Tendsto', 'const_mul_atTop_of_neg'], ['id'], ['funext'], ['LT', 'lt', 'le'], ['False'], ['IsCancelAdd', 'toIsLeftCancelAdd'], ['nhds'], ['Real', 'instLinearOrderedField'], ['Real', 'pseudoMetricSpace'], ['Filter', 'Tendsto', 'neg'], ['Real', 'exp'], ['AddGroup', 'toSubNegMonoid'], ['Semiring', 'toOne'], ['Real', 'tendsto_exp_atBot'], ['DivisionSemiring', 'toSemiring'], ['eq_false'], ['Real', 'semiring'], ['SubNegMonoid', 'toAddMonoid'], ['instTopologicalRingReal'], ['HMul', 'hMul'], ['SeminormedCommRing', 'toNonUnitalSeminormedCommRing'], ['HasDerivAt', 'exp'], ['NegZeroClass', 'toZero'], ['DenselyNormedField', 'toNontriviallyNormedField']]
`exp (-b * x)` is integrable on `(a, ∞)`.
theorem
Syntax(original=True, range=StringRange(start=777, stop=1338))
True
['Mathlib', 'MeasureTheory', 'Integral', 'ExpDecay']
null
leanprover/lean4:v4.11.0
Mathlib
integrable_of_isBigO_exp_neg
import Init import Mathlib.MeasureTheory.Integral.Asymptotics import Mathlib.MeasureTheory.Integral.IntervalIntegral import Mathlib.MeasureTheory.Integral.IntegralEqImproper import Mathlib.MeasureTheory.Integral.ExpDecay open Real intervalIntegral MeasureTheory Set Filter open scoped Topology
import Init import Mathlib.MeasureTheory.Integral.Asymptotics import Mathlib.MeasureTheory.Integral.IntervalIntegral import Mathlib.MeasureTheory.Integral.IntegralEqImproper import Mathlib.MeasureTheory.Integral.ExpDecay
open Real intervalIntegral MeasureTheory Set Filter open scoped Topology
/-- If `f` is continuous on `[a, ∞)`, and is `O (exp (-b * x))` at `∞` for some `b > 0`, then `f` is integrable on `(a, ∞)`. -/ theorem integrable_of_isBigO_exp_neg {f : ℝ β†’ ℝ} {a b : ℝ} (h0 : 0 < b) (hf : ContinuousOn f (Ici a)) (ho : f =O[atTop] fun x => exp (-b * x)) : IntegrableOn f (Ioi a) := sorry
theorem integrable_of_isBigO_exp_neg_extracted : βˆ€ {f : ℝ β†’ ℝ} {a b : ℝ}, 0 < b β†’ ContinuousOn f (Ici a) β†’ (f =O[atTop] fun x => rexp (-b * x)) β†’ IntegrableOn f (Ioi a) volume := sorry
[['Real', 'instPreorder'], ['Real', 'measurableSpace'], ['Real'], ['Real', 'measureSpace'], ['MeasureTheory', 'IntegrableOn'], ['Set', 'Ioi'], ['MeasureTheory', 'MeasureSpace', 'volume'], ['Real', 'normedAddCommGroup']]
/-- If `f` is continuous on `[a, ∞)`, and is `O (exp (-b * x))` at `∞` for some `b > 0`, then `f` is integrable on `(a, ∞)`. -/ theorem integrable_of_isBigO_exp_neg {f : ℝ β†’ ℝ} {a b : ℝ} (h0 : 0 < b) (hf : ContinuousOn f (Ici a)) (ho : f =O[atTop] fun x => exp (-b * x)) : IntegrableOn f (Ioi a) := integrableOn_Ici_iff_integrableOn_Ioi.mp <| (hf.locallyIntegrableOn measurableSet_Ici).integrableOn_of_isBigO_atTop ho ⟨Ioi b, Ioi_mem_atTop b, exp_neg_integrableOn_Ioi b h0⟩
[['StrictOrderedSemiring', 'toNoMaxOrder'], ['integrableOn_Ici_iff_integrableOn_Ioi'], ['Real', 'instNeg'], ['T5Space', 'toT4Space'], ['PartialOrder', 'toPreorder'], ['Real', 'measurableSpace'], ['NormedLatticeAddCommGroup', 'orderClosedTopology'], ['atTop_isMeasurablyGenerated'], ['ConditionallyCompleteLinearOrder', 'toCompactIccSpace'], ['Set', 'Ioi'], ['Real', 'locallyFinite_volume'], ['Real', 'linearOrder'], ['T4Space', 't3Space'], ['Iff', 'mp'], ['Real', 'strictOrderedSemiring'], ['measurableSingleton_of_standardBorel'], ['Real', 'measureSpace'], ['Filter'], ['T3Space', 'toT0Space'], ['Real', 'normedAddCommGroup'], ['Real', 'partialOrder'], ['Lattice', 'toSemilatticeInf'], ['PseudoMetricSpace', 'toUniformSpace'], ['TopologicalSpace', 'SecondCountableTopology', 'to_separableSpace'], ['DistribLattice', 'toLattice'], ['instHMul'], ['And'], ['Real', 'instMul'], ['Real', 'noAtoms_volume'], ['Real', 'metricSpace'], ['NormedAddCommGroup', 'toSeminormedAddCommGroup'], ['secondCountableTopologyEither_of_right'], ['And', 'intro'], ['Real', 'normedLatticeAddCommGroup'], ['Filter', 'atTop'], ['ContinuousOn', 'locallyIntegrableOn'], ['Real', 'borelSpace'], ['PolishSpace', 'of_separableSpace_completeSpace_metrizable'], ['Real'], ['Set'], ['Exists', 'intro'], ['MeasureTheory', 'IntegrableOn'], ['Set', 'Ici'], ['instSecondCountableTopologyReal'], ['instDistribLatticeOfLinearOrder'], ['MeasureTheory', 'MeasureSpace', 'volume'], ['Real', 'instConditionallyCompleteLinearOrder'], ['MeasureTheory', 'LocallyIntegrableOn', 'integrableOn_of_isBigO_atTop'], ['BorelSpace', 'opensMeasurable'], ['instOrderTopologyReal'], ['EMetric', 'instIsCountablyGeneratedUniformity'], ['exp_neg_integrableOn_Ioi'], ['UniformSpace', 'toTopologicalSpace'], ['Filter', 'Ioi_mem_atTop'], ['instMembershipSetFilter'], ['MetricSpace', 'toEMetricSpace'], ['Membership', 'mem'], ['standardBorel_of_polish'], ['measurableSet_Ici'], ['SeminormedAddCommGroup', 'toPseudoMetricSpace'], ['Real', 'pseudoMetricSpace'], ['SemilatticeInf', 'toPartialOrder'], ['Neg', 'neg'], ['Real', 'exp'], ['OrderTopology', 't5Space'], ['EMetricSpace', 'toPseudoEMetricSpace'], ['Real', 'instPreorder'], ['HMul', 'hMul'], ['Real', 'instCompleteSpace']]
If `f` is continuous on `[a, ∞)`, and is `O (exp (-b * x))` at `∞` for some `b > 0`, then `f` is integrable on `(a, ∞)`.
theorem
Syntax(original=True, range=StringRange(start=1340, stop=1849))
True
['Mathlib', 'MeasureTheory', 'Integral', 'ExpDecay']
null
leanprover/lean4:v4.11.0
Mathlib
exp_neg_integrableOn_Ioi_tac_899
import Init import Mathlib.MeasureTheory.Integral.Asymptotics import Mathlib.MeasureTheory.Integral.IntervalIntegral import Mathlib.MeasureTheory.Integral.IntegralEqImproper import Mathlib.MeasureTheory.Integral.ExpDecay open Real intervalIntegral MeasureTheory Set Filter open scoped Topology
import Init import Mathlib.MeasureTheory.Integral.Asymptotics import Mathlib.MeasureTheory.Integral.IntervalIntegral import Mathlib.MeasureTheory.Integral.IntegralEqImproper import Mathlib.MeasureTheory.Integral.ExpDecay
open Real intervalIntegral MeasureTheory Set Filter open scoped Topology
lemma exp_neg_integrableOn_Ioi_tac_899 (a : ℝ) (b : ℝ) (h : 0 < b) : Measure ℝ := sorry
lemma exp_neg_integrableOn_Ioi_tac_899 (a : ℝ) (b : ℝ) (h : 0 < b) : Measure ℝ := sorry
tactic
['Mathlib', 'MeasureTheory', 'Integral', 'ExpDecay']
null
leanprover/lean4:v4.11.0
Mathlib
exp_neg_integrableOn_Ioi_tac_899
import Init import Mathlib.MeasureTheory.Integral.Asymptotics import Mathlib.MeasureTheory.Integral.IntervalIntegral import Mathlib.MeasureTheory.Integral.IntegralEqImproper import Mathlib.MeasureTheory.Integral.ExpDecay open Real intervalIntegral MeasureTheory Set Filter open scoped Topology
import Init import Mathlib.MeasureTheory.Integral.Asymptotics import Mathlib.MeasureTheory.Integral.IntervalIntegral import Mathlib.MeasureTheory.Integral.IntegralEqImproper import Mathlib.MeasureTheory.Integral.ExpDecay
open Real intervalIntegral MeasureTheory Set Filter open scoped Topology
lemma exp_neg_integrableOn_Ioi_tac_899 (a : ℝ) (b : ℝ) (h : 0 < b) : Measure ℝ := sorry
lemma exp_neg_integrableOn_Ioi_tac_899 (a : ℝ) (b : ℝ) (h : 0 < b) : Measure ℝ := sorry
tactic
['Mathlib', 'MeasureTheory', 'Integral', 'ExpDecay']
null
leanprover/lean4:v4.11.0
Mathlib
exp_neg_integrableOn_Ioi_tac_953
import Init import Mathlib.MeasureTheory.Integral.Asymptotics import Mathlib.MeasureTheory.Integral.IntervalIntegral import Mathlib.MeasureTheory.Integral.IntegralEqImproper import Mathlib.MeasureTheory.Integral.ExpDecay open Real intervalIntegral MeasureTheory Set Filter open scoped Topology
import Init import Mathlib.MeasureTheory.Integral.Asymptotics import Mathlib.MeasureTheory.Integral.IntervalIntegral import Mathlib.MeasureTheory.Integral.IntegralEqImproper import Mathlib.MeasureTheory.Integral.ExpDecay
open Real intervalIntegral MeasureTheory Set Filter open scoped Topology
lemma exp_neg_integrableOn_Ioi_tac_953 (a : ℝ) (b : ℝ) (h : 0 < b) : IntegrableOn (fun x => rexp (-b * x)) (Ioi a) volume := sorry
lemma exp_neg_integrableOn_Ioi_tac_953 (a : ℝ) (b : ℝ) (h : 0 < b) : IntegrableOn (fun x => rexp (-b * x)) (Ioi a) volume := sorry
[['Tendsto', 'div_const'], ['le'], ['Tendsto'], ['neg_neg_iff_pos'], ['this'], ['atTop'], ['const_mul'], ['h', "ne'"], ["integrableOn_Ioi_deriv_of_nonneg'"], ['hasDerivAt_id'], ['b'], ['neg', 'exp', 'neg', 'div_const'], ['h'], ['tendsto_id', 'const_mul_atTop_of_neg'], ['x'], ['exp'], ['tendsto_exp_atBot', 'comp'], ['Tendsto', 'neg'], ['exp_pos'], []]
tactic
['Mathlib', 'MeasureTheory', 'Integral', 'ExpDecay']
null
leanprover/lean4:v4.11.0
Mathlib