File size: 9,289 Bytes
6906b56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
#!/usr/bin/env python
# encoding: utf-8
r"""
Two-dimensional variable-coefficient acoustics
==============================================

Solve the variable-coefficient acoustics equations in 2D:

.. math::
    p_t + K(x,y) (u_x + v_y) & = 0 \\
    u_t + p_x / \rho(x,y) & = 0 \\
    v_t + p_y / \rho(x,y) & = 0.

Here p is the pressure, (u,v) is the velocity, :math:`K(x,y)` is the bulk modulus,
and :math:`\rho(x,y)` is the density.

This example shows how to solve a problem with variable coefficients.
The left and right halves of the domain consist of different materials.
"""

from functools import partial

import numpy as np
from scipy.ndimage import gaussian_filter


def setup(
    kernel_language="Fortran",
    use_petsc=False,
    outdir="./_output",
    solver_type="classic",
    time_integrator="SSP104",
    lim_type=2,
    disable_output=False,
    num_cells=(256, 256),
    seed=None,
    include_splits=True,
    include_inclusions=True,
    T_max=2.0,
    num_steps=101,
):
    """
    Example python script for solving the 2d acoustics equations.
    """
    from clawpack import riemann

    if seed is None:
        seed = np.random.default_rng()
    if use_petsc:
        import clawpack.petclaw as pyclaw
    else:
        from clawpack import pyclaw

    if solver_type == "classic":
        solver = pyclaw.ClawSolver2D(riemann.vc_acoustics_2D)
        solver.dimensional_split = False
        solver.limiters = pyclaw.limiters.tvd.MC
    elif solver_type == "sharpclaw":
        solver = pyclaw.SharpClawSolver2D(riemann.vc_acoustics_2D)
        solver.time_integrator = time_integrator
        if time_integrator == "SSPLMMk2":
            solver.lmm_steps = 3
            solver.cfl_max = 0.25
            solver.cfl_desired = 0.24

    solver.bc_lower[0] = pyclaw.BC.wall
    solver.bc_upper[0] = pyclaw.BC.extrap
    solver.bc_lower[1] = pyclaw.BC.wall
    solver.bc_upper[1] = pyclaw.BC.extrap
    solver.aux_bc_lower[0] = pyclaw.BC.wall
    solver.aux_bc_upper[0] = pyclaw.BC.extrap
    solver.aux_bc_lower[1] = pyclaw.BC.wall
    solver.aux_bc_upper[1] = pyclaw.BC.extrap

    x = pyclaw.Dimension(-1.0, 1.0, num_cells[0], name="x")
    y = pyclaw.Dimension(-1.0, 1.0, num_cells[1], name="y")
    domain = pyclaw.Domain([x, y])

    num_eqn = 3
    num_aux = 2  # density, sound speed
    state = pyclaw.State(domain, num_eqn, num_aux)

    grid = state.grid
    X, Y = grid.p_centers
    is_vert = seed.integers(0, 2)
    midpoint = seed.uniform(-0.8, 0.8)
    rho_left = seed.uniform(0.2, 7)  # 4.0  # Density in left half
    rho_right = seed.uniform(0.2, 7)  # 1.0  # Density in right half
    bulk_left = 4.0  # Bulk modulus in left half
    bulk_right = 4.0  # Bulk modulus in right half

    def gaussian_bump(
        aux, mask, seed, rho_low=1, rho_high=7.0, sigma_low=0.1, sigma_high=5
    ):
        rho_bump = seed.uniform(rho_low, rho_high)
        rho_base = seed.uniform(rho_low, rho_high)

        Xmask = X[mask]
        xmax = Xmask.max()
        xmin = Xmask.min()
        Ymask = Y[mask]
        ymax = Ymask.max()
        ymin = Ymask.min()

        xc = seed.uniform(xmin, xmax)
        yc = seed.uniform(ymin, ymax)
        sigma = seed.uniform(sigma_low, sigma_high)
        rho = rho_base + (rho_bump - rho_base) * np.exp(
            -((Xmask - xc) ** 2 + (Ymask - yc) ** 2) / (sigma)
        )
        c = np.sqrt(bulk_left / rho)
        aux[0][mask] = rho
        aux[1][mask] = c

    def linear_gradient(aux, mask, seed, rho_low=1, rho_high=7.0):
        rho_x0 = seed.uniform(rho_low, rho_high)
        rho_x1 = seed.uniform(rho_low, rho_high)
        rho_y0 = seed.uniform(rho_low, rho_high)
        rho_y1 = seed.uniform(rho_low, rho_high)

        # Bilinearly interpolate between the four values
        Xmask = (X[mask] + 1) / 2
        xmax = Xmask.max()
        xmin = Xmask.min()
        Ymask = (Y[mask] + 1) / 2
        ymax = Ymask.max()
        ymin = Ymask.min()

        Xrel = (Xmask - xmin) / (xmax - xmin)
        Yrel = (Ymask - ymin) / (ymax - ymin)

        rho = (
            (1 - Xrel) * (1 - Yrel) * rho_x0
            + Xrel * (1 - Yrel) * rho_x1
            + (1 - Xrel) * Yrel * rho_y0
            + Xrel * Yrel * rho_y1
        )
        c = np.sqrt(bulk_left / rho)
        aux[0][mask] = rho
        aux[1][mask] = c

    def constant(aux, mask, seed, rho_low=1, rho_high=7.0):
        rho = seed.uniform(rho_low, rho_high)
        c = np.sqrt(bulk_left / rho)
        aux[0][mask] = rho
        aux[1][mask] = c

    def smoothed_gaussian_noise(
        aux, mask, seed, rho_low=1, rho_high=7.0, std=2, sigma_low=5, sigma_high=10
    ):
        rho = seed.uniform(rho_low, rho_high)
        background = seed.standard_normal(mask.shape)
        sigma = seed.uniform(sigma_low, sigma_high)

        background = gaussian_filter(background, sigma)
        rho = rho + background[mask]
        c = np.sqrt(bulk_left / rho)
        aux[0][mask] = rho
        aux[1][mask] = c

    gen_funcs = [gaussian_bump, linear_gradient, constant, smoothed_gaussian_noise]

    c_left = np.sqrt(bulk_left / rho_left)  # Sound speed (left)
    if include_splits:
        if is_vert:
            mask = Y < midpoint
        else:
            mask = X < midpoint
        seed.choice(gen_funcs)(state.aux, (~mask), seed)
    else:
        mask = np.ones_like(X, dtype=bool)
    seed.choice(gen_funcs)(state.aux, mask, seed)

    state.q[0, :, :] = 0.0
    state.q[1, :, :] = 0.0
    state.q[2, :, :] = 0.0
    # Set initial condition
    n_waves = seed.integers(1, 4)
    for i in range(n_waves):
        center = seed.uniform(-0.95, 0.95, 2)
        x0 = center[0]
        y0 = center[1]
        width = seed.uniform(0.05, 0.15)
        rad = seed.uniform(width + 0.01, 0.3)
        intensity = seed.uniform(0.5, 2.0)
        # x0 = -0.5; y0 = 0.
        r = np.sqrt((X - x0) ** 2 + (Y - y0) ** 2)
        # width = 0.1; rad = 0.25
        state.q[0, :, :] += (np.abs(r - rad) <= width) * (
            intensity + np.cos(np.pi * (r - rad) / width)
        )

    if include_inclusions:
        n_inclusions = seed.integers(0, 15)
        for i in range(n_inclusions):
            # Copied elipse code from
            g_ell_center = seed.uniform(-0.95, 0.95, 2)
            rads = seed.uniform(0.05, 0.6, 2)
            g_ell_width = rads[0]
            g_ell_height = rads[1]
            angle = seed.uniform(-45, 45)

            cos_angle = np.cos(np.radians(180.0 - angle))
            sin_angle = np.sin(np.radians(180.0 - angle))

            xc = X - g_ell_center[0]
            yc = Y - g_ell_center[1]

            xct = xc * cos_angle - yc * sin_angle
            yct = xc * sin_angle + yc * cos_angle

            rad_cc = (xct**2 / (g_ell_width / 2.0) ** 2) + (
                yct**2 / (g_ell_height / 2.0) ** 2
            )

            inclusion_rho = np.exp(seed.uniform(-1, 10))
            # r = np.sqrt((X-x0)**2 + (Y-y0)**2)
            c_left = np.sqrt(bulk_left / inclusion_rho)  # Sound speed (left)
            state.aux[0][rad_cc <= 1] = inclusion_rho
            state.aux[1][rad_cc <= 1] = c_left
            state.q[0][rad_cc <= 1] = 0.0

    claw = pyclaw.Controller()
    claw.keep_copy = True
    if disable_output:
        claw.output_format = None
    claw.solution = pyclaw.Solution(state, domain)
    claw.solver = solver
    claw.outdir = outdir
    claw.tfinal = T_max
    claw.num_output_times = num_steps
    claw.write_aux_init = True
    claw.setplot = setplot
    claw.output_options = {"format": "binary"}
    if use_petsc:
        claw.output_options = {"format": "binary"}

    return claw


def setplot(plotdata):
    """
    Plot solution using VisClaw.

    This example shows how to mark an internal boundary on a 2D plot.
    """

    from clawpack.visclaw import colormaps

    plotdata.clearfigures()  # clear any old figures,axes,items data

    # Figure for pressure
    plotfigure = plotdata.new_plotfigure(name="Pressure", figno=0)

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = "Pressure"
    plotaxes.scaled = True  # so aspect ratio is 1
    plotaxes.afteraxes = mark_interface

    # Set up for item on these axes:
    plotitem = plotaxes.new_plotitem(plot_type="2d_pcolor")
    plotitem.plot_var = 0
    plotitem.pcolor_cmap = colormaps.yellow_red_blue
    plotitem.add_colorbar = True
    plotitem.pcolor_cmin = 0.0
    plotitem.pcolor_cmax = 1.0

    # Figure for x-velocity plot
    plotfigure = plotdata.new_plotfigure(name="x-Velocity", figno=1)

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = "u"
    plotaxes.afteraxes = mark_interface

    plotitem = plotaxes.new_plotitem(plot_type="2d_pcolor")
    plotitem.plot_var = 1
    plotitem.pcolor_cmap = colormaps.yellow_red_blue
    plotitem.add_colorbar = True
    plotitem.pcolor_cmin = -0.3
    plotitem.pcolor_cmax = 0.3

    return plotdata


def mark_interface(current_data):
    import matplotlib.pyplot as plt

    plt.plot((0.0, 0.0), (-1.0, 1.0), "-k", linewidth=2)


if __name__ == "__main__":
    from clawpack.pyclaw.util import run_app_from_main

    setup_wrapped = partial(setup, seed=np.random.default_rng(42))
    output = run_app_from_main(setup_wrapped, setplot)