Datasets:
File size: 9,289 Bytes
6906b56 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 |
#!/usr/bin/env python
# encoding: utf-8
r"""
Two-dimensional variable-coefficient acoustics
==============================================
Solve the variable-coefficient acoustics equations in 2D:
.. math::
p_t + K(x,y) (u_x + v_y) & = 0 \\
u_t + p_x / \rho(x,y) & = 0 \\
v_t + p_y / \rho(x,y) & = 0.
Here p is the pressure, (u,v) is the velocity, :math:`K(x,y)` is the bulk modulus,
and :math:`\rho(x,y)` is the density.
This example shows how to solve a problem with variable coefficients.
The left and right halves of the domain consist of different materials.
"""
from functools import partial
import numpy as np
from scipy.ndimage import gaussian_filter
def setup(
kernel_language="Fortran",
use_petsc=False,
outdir="./_output",
solver_type="classic",
time_integrator="SSP104",
lim_type=2,
disable_output=False,
num_cells=(256, 256),
seed=None,
include_splits=True,
include_inclusions=True,
T_max=2.0,
num_steps=101,
):
"""
Example python script for solving the 2d acoustics equations.
"""
from clawpack import riemann
if seed is None:
seed = np.random.default_rng()
if use_petsc:
import clawpack.petclaw as pyclaw
else:
from clawpack import pyclaw
if solver_type == "classic":
solver = pyclaw.ClawSolver2D(riemann.vc_acoustics_2D)
solver.dimensional_split = False
solver.limiters = pyclaw.limiters.tvd.MC
elif solver_type == "sharpclaw":
solver = pyclaw.SharpClawSolver2D(riemann.vc_acoustics_2D)
solver.time_integrator = time_integrator
if time_integrator == "SSPLMMk2":
solver.lmm_steps = 3
solver.cfl_max = 0.25
solver.cfl_desired = 0.24
solver.bc_lower[0] = pyclaw.BC.wall
solver.bc_upper[0] = pyclaw.BC.extrap
solver.bc_lower[1] = pyclaw.BC.wall
solver.bc_upper[1] = pyclaw.BC.extrap
solver.aux_bc_lower[0] = pyclaw.BC.wall
solver.aux_bc_upper[0] = pyclaw.BC.extrap
solver.aux_bc_lower[1] = pyclaw.BC.wall
solver.aux_bc_upper[1] = pyclaw.BC.extrap
x = pyclaw.Dimension(-1.0, 1.0, num_cells[0], name="x")
y = pyclaw.Dimension(-1.0, 1.0, num_cells[1], name="y")
domain = pyclaw.Domain([x, y])
num_eqn = 3
num_aux = 2 # density, sound speed
state = pyclaw.State(domain, num_eqn, num_aux)
grid = state.grid
X, Y = grid.p_centers
is_vert = seed.integers(0, 2)
midpoint = seed.uniform(-0.8, 0.8)
rho_left = seed.uniform(0.2, 7) # 4.0 # Density in left half
rho_right = seed.uniform(0.2, 7) # 1.0 # Density in right half
bulk_left = 4.0 # Bulk modulus in left half
bulk_right = 4.0 # Bulk modulus in right half
def gaussian_bump(
aux, mask, seed, rho_low=1, rho_high=7.0, sigma_low=0.1, sigma_high=5
):
rho_bump = seed.uniform(rho_low, rho_high)
rho_base = seed.uniform(rho_low, rho_high)
Xmask = X[mask]
xmax = Xmask.max()
xmin = Xmask.min()
Ymask = Y[mask]
ymax = Ymask.max()
ymin = Ymask.min()
xc = seed.uniform(xmin, xmax)
yc = seed.uniform(ymin, ymax)
sigma = seed.uniform(sigma_low, sigma_high)
rho = rho_base + (rho_bump - rho_base) * np.exp(
-((Xmask - xc) ** 2 + (Ymask - yc) ** 2) / (sigma)
)
c = np.sqrt(bulk_left / rho)
aux[0][mask] = rho
aux[1][mask] = c
def linear_gradient(aux, mask, seed, rho_low=1, rho_high=7.0):
rho_x0 = seed.uniform(rho_low, rho_high)
rho_x1 = seed.uniform(rho_low, rho_high)
rho_y0 = seed.uniform(rho_low, rho_high)
rho_y1 = seed.uniform(rho_low, rho_high)
# Bilinearly interpolate between the four values
Xmask = (X[mask] + 1) / 2
xmax = Xmask.max()
xmin = Xmask.min()
Ymask = (Y[mask] + 1) / 2
ymax = Ymask.max()
ymin = Ymask.min()
Xrel = (Xmask - xmin) / (xmax - xmin)
Yrel = (Ymask - ymin) / (ymax - ymin)
rho = (
(1 - Xrel) * (1 - Yrel) * rho_x0
+ Xrel * (1 - Yrel) * rho_x1
+ (1 - Xrel) * Yrel * rho_y0
+ Xrel * Yrel * rho_y1
)
c = np.sqrt(bulk_left / rho)
aux[0][mask] = rho
aux[1][mask] = c
def constant(aux, mask, seed, rho_low=1, rho_high=7.0):
rho = seed.uniform(rho_low, rho_high)
c = np.sqrt(bulk_left / rho)
aux[0][mask] = rho
aux[1][mask] = c
def smoothed_gaussian_noise(
aux, mask, seed, rho_low=1, rho_high=7.0, std=2, sigma_low=5, sigma_high=10
):
rho = seed.uniform(rho_low, rho_high)
background = seed.standard_normal(mask.shape)
sigma = seed.uniform(sigma_low, sigma_high)
background = gaussian_filter(background, sigma)
rho = rho + background[mask]
c = np.sqrt(bulk_left / rho)
aux[0][mask] = rho
aux[1][mask] = c
gen_funcs = [gaussian_bump, linear_gradient, constant, smoothed_gaussian_noise]
c_left = np.sqrt(bulk_left / rho_left) # Sound speed (left)
if include_splits:
if is_vert:
mask = Y < midpoint
else:
mask = X < midpoint
seed.choice(gen_funcs)(state.aux, (~mask), seed)
else:
mask = np.ones_like(X, dtype=bool)
seed.choice(gen_funcs)(state.aux, mask, seed)
state.q[0, :, :] = 0.0
state.q[1, :, :] = 0.0
state.q[2, :, :] = 0.0
# Set initial condition
n_waves = seed.integers(1, 4)
for i in range(n_waves):
center = seed.uniform(-0.95, 0.95, 2)
x0 = center[0]
y0 = center[1]
width = seed.uniform(0.05, 0.15)
rad = seed.uniform(width + 0.01, 0.3)
intensity = seed.uniform(0.5, 2.0)
# x0 = -0.5; y0 = 0.
r = np.sqrt((X - x0) ** 2 + (Y - y0) ** 2)
# width = 0.1; rad = 0.25
state.q[0, :, :] += (np.abs(r - rad) <= width) * (
intensity + np.cos(np.pi * (r - rad) / width)
)
if include_inclusions:
n_inclusions = seed.integers(0, 15)
for i in range(n_inclusions):
# Copied elipse code from
g_ell_center = seed.uniform(-0.95, 0.95, 2)
rads = seed.uniform(0.05, 0.6, 2)
g_ell_width = rads[0]
g_ell_height = rads[1]
angle = seed.uniform(-45, 45)
cos_angle = np.cos(np.radians(180.0 - angle))
sin_angle = np.sin(np.radians(180.0 - angle))
xc = X - g_ell_center[0]
yc = Y - g_ell_center[1]
xct = xc * cos_angle - yc * sin_angle
yct = xc * sin_angle + yc * cos_angle
rad_cc = (xct**2 / (g_ell_width / 2.0) ** 2) + (
yct**2 / (g_ell_height / 2.0) ** 2
)
inclusion_rho = np.exp(seed.uniform(-1, 10))
# r = np.sqrt((X-x0)**2 + (Y-y0)**2)
c_left = np.sqrt(bulk_left / inclusion_rho) # Sound speed (left)
state.aux[0][rad_cc <= 1] = inclusion_rho
state.aux[1][rad_cc <= 1] = c_left
state.q[0][rad_cc <= 1] = 0.0
claw = pyclaw.Controller()
claw.keep_copy = True
if disable_output:
claw.output_format = None
claw.solution = pyclaw.Solution(state, domain)
claw.solver = solver
claw.outdir = outdir
claw.tfinal = T_max
claw.num_output_times = num_steps
claw.write_aux_init = True
claw.setplot = setplot
claw.output_options = {"format": "binary"}
if use_petsc:
claw.output_options = {"format": "binary"}
return claw
def setplot(plotdata):
"""
Plot solution using VisClaw.
This example shows how to mark an internal boundary on a 2D plot.
"""
from clawpack.visclaw import colormaps
plotdata.clearfigures() # clear any old figures,axes,items data
# Figure for pressure
plotfigure = plotdata.new_plotfigure(name="Pressure", figno=0)
# Set up for axes in this figure:
plotaxes = plotfigure.new_plotaxes()
plotaxes.title = "Pressure"
plotaxes.scaled = True # so aspect ratio is 1
plotaxes.afteraxes = mark_interface
# Set up for item on these axes:
plotitem = plotaxes.new_plotitem(plot_type="2d_pcolor")
plotitem.plot_var = 0
plotitem.pcolor_cmap = colormaps.yellow_red_blue
plotitem.add_colorbar = True
plotitem.pcolor_cmin = 0.0
plotitem.pcolor_cmax = 1.0
# Figure for x-velocity plot
plotfigure = plotdata.new_plotfigure(name="x-Velocity", figno=1)
# Set up for axes in this figure:
plotaxes = plotfigure.new_plotaxes()
plotaxes.title = "u"
plotaxes.afteraxes = mark_interface
plotitem = plotaxes.new_plotitem(plot_type="2d_pcolor")
plotitem.plot_var = 1
plotitem.pcolor_cmap = colormaps.yellow_red_blue
plotitem.add_colorbar = True
plotitem.pcolor_cmin = -0.3
plotitem.pcolor_cmax = 0.3
return plotdata
def mark_interface(current_data):
import matplotlib.pyplot as plt
plt.plot((0.0, 0.0), (-1.0, 1.0), "-k", linewidth=2)
if __name__ == "__main__":
from clawpack.pyclaw.util import run_app_from_main
setup_wrapped = partial(setup, seed=np.random.default_rng(42))
output = run_app_from_main(setup_wrapped, setplot)
|