|
|
|
|
|
""" Work in progress |
|
temp utility. |
|
Load in two pre-calculated embeddings files. |
|
(eg: *.allid.*) |
|
|
|
Go through the full range and calculate distances between each. |
|
|
|
Add up and display |
|
|
|
This covers the full official range of tokenids, |
|
0-49405 |
|
|
|
""" |
|
|
|
|
|
import sys |
|
import torch |
|
from safetensors import safe_open |
|
|
|
file1=sys.argv[1] |
|
file2=sys.argv[2] |
|
|
|
|
|
|
|
device=torch.device("cuda") |
|
print(f"reading {file1} embeddings now",file=sys.stderr) |
|
model = safe_open(file1,framework="pt",device="cuda") |
|
embs1=model.get_tensor("embeddings") |
|
embs1.to(device) |
|
print("Shape of loaded embeds =",embs1.shape) |
|
|
|
print(f"reading {file2} embeddings now",file=sys.stderr) |
|
model = safe_open(file2,framework="pt",device="cuda") |
|
embs2=model.get_tensor("embeddings") |
|
embs2.to(device) |
|
print("Shape of loaded embeds =",embs2.shape) |
|
|
|
if torch.equal(embs1 , embs2): |
|
print("HEY! Both files are identical!") |
|
exit(0) |
|
|
|
|
|
|
|
|
|
print(f"calculating distances...") |
|
|
|
|
|
|
|
|
|
|
|
|
|
targetdistances = torch.norm(embs2 - embs1, dim=1) |
|
|
|
|
|
|
|
|
|
print("sum of all distances=",torch.sum(targetdistances)) |
|
|
|
embs1_avg=torch.mean(embs1,dim=0) |
|
embs2_avg=torch.mean(embs2,dim=0) |
|
avg_dist= torch.cdist( embs1_avg.unsqueeze(0),embs2_avg.unsqueeze(0), p=2) |
|
print("However, the distance between the avg-point of each is:",avg_dist) |
|
|
|
|
|
|
|
|
|
import PyQt5 |
|
import matplotlib |
|
matplotlib.use('QT5Agg') |
|
|
|
import matplotlib.pyplot as plt |
|
|
|
junk, ax = plt.subplots() |
|
graph1=targetdistances.tolist() |
|
ax.plot(graph1, label="Distance between same tokenID") |
|
ax.set_title("Comparison between two CLIPTextModel datasets") |
|
ax.set_ylabel("Distance") |
|
ax.set_xlabel("CLIP TokenID") |
|
|
|
ax.legend() |
|
plt.show() |
|
|
|
|