Datasets:

Modalities:
Text
Formats:
json
Sub-tasks:
extractive-qa
Languages:
Catalan
Size:
< 1K
ArXiv:
Libraries:
Datasets
pandas
License:
viquiquad / README.md
carmentano's picture
updated README
7e2fb43
|
raw
history blame
6.12 kB
---
annotations_creators:
- expert-generated
language_creators:
- found
languages:
- catalan
licenses:
- cc-by-sa-4.0
multilinguality:
- monolingual
pretty_name: vilaquad
size_categories:
- unknown
source_datasets: []
task_categories:
- question-answering
task_ids:
- extractive-qa
---
# ViquiQuAD, An extractive QA dataset for catalan, from the Wikipedia
## Dataset Description
- **Paper:** [Are Multilingual Models the Best Choice for Moderately Under-resourced Languages? A Comprehensive Assessment for Catalan](https://arxiv.org/abs/2107.07903)
- **Point of Contact:** Carlos Rodríguez-Penagos ([email protected]) and Carme Armentano-Oller ([email protected])
### Dataset Summary
This dataset contains 3111 contexts extracted from a set of 597 high quality original (no translations) articles in the Catalan Wikipedia "Viquipèdia" (ca.wikipedia.org), and 1 to 5 questions with their answer for each fragment.
Viquipedia articles are used under [CC-by-sa] (https://creativecommons.org/licenses/by-sa/3.0/legalcode) licence.
This dataset can be used to fine-tune and evaluate extractive-QA and Language Models. It is part of the Catalan Language Understanding Benchmark (CLUB).
### Supported Tasks and Leaderboards
Extractive-QA, Language Model
### Languages
CA - Catalan
## Dataset Structure
### Data Instances
<pre>
{
"data": [
{
"title": "Frederick W. Mote",
"paragraphs": [
{
"context": "L'historiador Frederick W. Mote va escriure que l'ús del terme \\\\\\\\\\\\\\\\"classes socials\\\\\\\\\\\\\\\\" per a aquest sistema era enganyós i que la posició de les persones dins del sistema de quatre classes no era una indicació del seu poder social i riquesa reals, sinó que només implicava \\\\\\\\\\\\\\\\"graus de privilegi\\\\\\\\\\\\\\\\" als quals tenien dret institucionalment i legalment, de manera que la posició d'una persona dins de les classes no era una garantia de la seva posició, ja que hi havia xinesos rics i amb bona reputació social, però alhora hi havia menys mongols i semu rics que mongols i semu que vivien en la pobresa i eren maltractats.",
"qas": [
{
"answers": [
{
"text": "Frederick W. Mote",
"answer_start": 14
}
],
"id": "5728848cff5b5019007da298",
"question": "Qui creia que el sistema de classes socials de Yuan no s’hauria d’anomenar classes socials?"
},
...
]
}
]
},
...
]
}
</pre>
### Data Fields
Follows [Rajpurkar, Pranav et al., 2016](http://arxiv.org/abs/1606.05250) for squad v1 datasets.
### Data Splits
- train: 11259 examples
- developement: 1493 examples
- test: 1428 examples
## Dataset Creation
### Methodology
From a set of high quality, non-translation, articles in the Catalan Wikipedia (ca.wikipedia.org), 597 were randomly chosen, and from them 3111, 5-8 sentence contexts were extracted. We commissioned creation of between 1 and 5 questions for each context, following an adaptation of the guidelines from SQUAD 1.0 [Rajpurkar, Pranav et al. “SQuAD: 100, 000+ Questions for Machine Comprehension of Text.” EMNLP (2016)], (http://arxiv.org/abs/1606.05250). In total, 15153 pairs of a question and an extracted fragment that contains the answer were created.
### Curation Rationale
For compatibility with similar datasets in other languages, we followed as close as possible existing curation guidelines.
### Source Data
- https://ca.wikipedia.org
#### Initial Data Collection and Normalization
The source data are scraped articles from the Catalan wikipedia site (https://ca.wikipedia.org).
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
We commissioned the creation of 1 to 5 questions for each context, following an adaptation of the guidelines from SQUAD 1.0 (Rajpurkar, Pranav et al. “SQuAD: 100, 000+ Questions for Machine Comprehension of Text.” EMNLP (2016)), http://arxiv.org/abs/1606.05250.
#### Who are the annotators?
Annotation was commissioned to an specialized company that hired a team of native language speakers.
### Personal and Sensitive Information
No personal or sensitive information included.
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
Carlos Rodríguez-Penagos ([email protected]) and Carme Armentano-Oller ([email protected])
### Licensing Information
This work is licensed under a <a rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/">Attribution-ShareAlike 4.0 International License</a>.
### Citation Information
```
@inproceedings{armengol-estape-etal-2021-multilingual,
title = "Are Multilingual Models the Best Choice for Moderately Under-resourced Languages? {A} Comprehensive Assessment for {C}atalan",
author = "Armengol-Estap{\'e}, Jordi and
Carrino, Casimiro Pio and
Rodriguez-Penagos, Carlos and
de Gibert Bonet, Ona and
Armentano-Oller, Carme and
Gonzalez-Agirre, Aitor and
Melero, Maite and
Villegas, Marta",
booktitle = "Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021",
month = aug,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.findings-acl.437",
doi = "10.18653/v1/2021.findings-acl.437",
pages = "4933--4946",
}
```
[DOI](https://doi.org/10.5281/zenodo.4562344)
### Funding
This work was funded by the [Catalan Ministry of the Vice-presidency, Digital Policies and Territory](https://politiquesdigitals.gencat.cat/en/inici/index.html) within the framework of the [Aina project](https://politiquesdigitals.gencat.cat/ca/tic/aina-el-projecte-per-garantir-el-catala-en-lera-digital/).