nusa-translation / README.md
mahfuzh74's picture
Update README.md
4677241 verified
|
raw
history blame
6.26 kB
metadata
language:
  - min
  - ban
  - bug
  - id
pretty_name: NusaTranslation
license: cc-by-sa-4.0
task_categories:
  - translation
size_categories:
  - 100K<n<1M

Dataset Description

NusaTranslation is a dataset for machine translation tasks, featuring curated pairs of translations, totaling around 300,000 instances, from Indonesian to three distinct languages:

  • Balinese (ban)
  • Buginese (bug)
  • Minangkabau (min)

How to use the data

To access the data you can use the Hugging Face Python datasets library. To load NusaTranslation, simply call datasets.load_dataset() as shown on the snippet below:

import datasets

min_dataset = datasets.load_dataset("prosa-text/nusa-translation", name="min")
ban_dataset = datasets.load_dataset("prosa-text/nusa-translation", name="ban")
bug_dataset = datasets.load_dataset("prosa-text/nusa-translation", name="bug")

Data Fields

Every instance contains the following fields:

  • text: original text in Indonesian.
  • translated: the translated text.
  • language: the language code (min, ban, bug)

Example:

{
  "text": "Lagu tersebut di bawah naungan perusahaan musik Indonesia, Trinity Optima Production. Video musik lagu tersebut dirilis pada 19 April bersamaan dengan rilisnya lagu tersebut dalam versi bahasa Inggris. Video musik diunggah di kanal YouTube pribadinya dan telah ditonton lebih dari dua juta kali. Lalu pada 3 Juni 2019, ia merilis lagu \"I Love You 3000\" yang ia tulis sendiri.",
  "translated": "Lagu tasabuik di bawah naungan parusahaan musik Indonesia, Trinity Optima Production. Video musik lagu tasabuik dirilis pado 19 April basamaan jo rilisnyo lagu tasabuik dalam versi bahasa Inggris. Video musik diunggah di kanal YouTube pribadinyo jo lah ditonton labiah dari duo juta kali. Lalu pado 3 Juni 2019, inyo marilis lagu \"I Love You 3000\" nan inyo tulis surang.",
  "language": "min"
}

Data Instances & Splits

The data is splitted into three data splits, i.e., training, validation, and test.

Language Data Split Num Sample
Balinese Training 126972
Validation 3000
Test 10000
Buginese Training 128472
Validation 3000
Test 10000
Minangkabau Training 126972
Validation 3000
Test 10000

Data Analysis

We calculate the statistics from 3 aspects, i.e., characters, words, tokens

lang data total_characters average_characters_per_row variance_characters total_words average_words_per_row variance_words total_tokens average_tokens_per_row variance_tokens
Balinese all 49891009 356.44 3168.84 7130696 50.94 48.71 13606931 97.21 287.61
Buginese all 50037752 353.69 3259.37 7179251 50.75 52.63 14798634 104.60 354.50
Minangkabau all 48748663 348.27 2956.63 7086576 50.63 44.72 13212897 94.40 253.39

Balinese: The dataset has the highest average number of characters and words per row

Highest average number of characters and words per row: This indicates the tendency to write long sentences, possibly reflecting a detailed or elaborate writing style.

Buginese: The dataset has the highest average number of tokens per row and the highest total number of characters and tokens

Highest average tokens per row: This indicates that Buginese sentences typically have more words and potentially smaller word breaks, leading to a higher token count. This could relate to a more concise or direct writing style compared to other 2 languages.

Highest total characters and tokens: This suggests that Balinese sentences in the dataset tend to be longer than those in other languages, possibly due to more complex sentence structures.

Minangkabau: The dataset has the lowest total number of characters and tokens and the lowest average number of words per row.

Lowest total characters and tokens: Having the least overall content suggests that Minangkabau sentences might be shorter but use denser word choices or have many common character combinations.

Lowest average words per row: This implies that Minangkabau sentences might use longer words and less unique character combinations compared to other languages.

Additional Information

Licensing Information

The dataset is released under the terms of CC-BY-SA 4.0. By using this dataset, you are also bound to the respective Terms of Use and License of the dataset.

Citation Information

@article{purwarianti2023nusatranslation,
  title={NusaTranslation: Dialogue Summarization and Generation for Underrepresented and Extremely Low-Resource Languages},
  author={Purwarianti, Ayu and Adhista, Dea and Baptiso, Agung and Mahfuzh, Miftahul and Yusrina Sabila and Cahyawijaya, Samuel and Aji, Alham Fikri},
  journal={arXiv preprint arXiv:(coming soon)},
  url={https://huggingface.co/datasets/prosa-text/nusa-translation},
  year={2023}
}

Acknowledgement

This research work is funded and supported by The Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH and FAIR Forward - Artificial Intelligence for all. We thank Direktorat Jenderal Pendidikan Tinggi, Riset, dan Teknologi Kementerian Pendidikan, Kebudayaan, Riset, dan Teknologi (Ditjen DIKTI) for providing the computing resources for this project.

Contact Us

If you have any question please contact our support team at [email protected].