File size: 3,317 Bytes
b54785d
 
 
 
 
 
 
 
 
 
 
c411401
 
 
 
 
b54785d
 
 
 
 
c411401
 
874fe3a
 
 
 
 
 
 
 
 
b54785d
874fe3a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
---
dataset_info:
  features:
  - name: seq
    dtype: string
  - name: label
    dtype: int64
  splits:
  - name: train
    num_bytes: 3669447
    num_examples: 6622
  - name: test
    num_bytes: 1038554
    num_examples: 1842
  download_size: 4646324
  dataset_size: 4708001
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
  - split: test
    path: data/test-*
license: apache-2.0
task_categories:
- text-classification
tags:
- chemistry
- biology
- medical
size_categories:
- 1K<n<10K
---


# Dataset Card for Localization Prediction Dataset

### Dataset Summary

The task of Protein Subcellular Localization Prediction bears substantial relevance in bioinformatics, owing to its contributions to proteomics research and its potential to augment our comprehension of protein function and disease mechanisms. In this task, the input to the model is an amino acid sequence of a protein, which is transformed into an output comprising a probability distribution over 10 unique subcellular localization categories. 

## Dataset Structure

### Data Instances
For each instance, there is a string representing the protein sequence and an integer label indicating which subcellular position the protein sequence locates at.  See the [localization prediction dataset viewer](https://huggingface.co/datasets/Bo1015/localization_prediction/viewer) to explore more examples.

```
{'seq':'MEHVIDNFDNIDKCLKCGKPIKVVKLKYIKKKIENIPNSHLINFKYCSKCKRENVIENL'
'label':6}
```

The average  for the `seq` and the `label` are provided below:

| Feature    | Mean Count |
| ---------- | ---------------- |
| seq    |    544   |
| label (0) |    0.01   |
| label (1)  |    0.10   |
| label (2)  |    0.20   |
| label (3)  |    0.03   |
| label (4)  |    0.07   |
| label (5)  |    0.06   |
| label (6)  |    0.11   |
| label (7)  |    0.34   |
| label (8)  |    0.06   |
| label (9)  |    0.02   |




### Data Fields

- `seq`: a string containing the protein sequence
- `label`: an integer label indicating which subcellular position the protein sequence locates at.

### Data Splits

The localization prediction dataset has 2 splits: _train_ and _test_. Below are the statistics of the dataset.

| Dataset Split | Number of Instances in Split                |
| ------------- | ------------------------------------------- |
| Train         | 6,622                   |
| Test          | 1,842                           |

### Source Data

#### Initial Data Collection and Normalization
The dataset applied for this task is derived from Uniprot, meticulously curated by [DeepLoc](https://academic.oup.com/bioinformatics/article/33/21/3387/3931857).

### Licensing Information

The dataset is released under the [Apache-2.0 License](http://www.apache.org/licenses/LICENSE-2.0). 

### Citation
If you find our work useful, please consider citing the following paper:

```
@misc{chen2024xtrimopglm,
  title={xTrimoPGLM: unified 100B-scale pre-trained transformer for deciphering the language of protein},
  author={Chen, Bo and Cheng, Xingyi and Li, Pan and Geng, Yangli-ao and Gong, Jing and Li, Shen and Bei, Zhilei and Tan, Xu and Wang, Boyan and Zeng, Xin and others},
  year={2024},
  eprint={2401.06199},
  archivePrefix={arXiv},
  primaryClass={cs.CL},
  note={arXiv preprint arXiv:2401.06199}
}
```