material_production / README.md
proteinglm's picture
Update README.md
d670e09 verified
metadata
dataset_info:
  features:
    - name: seq
      dtype: string
    - name: label
      dtype: int64
  splits:
    - name: train
      num_bytes: 7623988
      num_examples: 23339
    - name: test
      num_bytes: 1570971
      num_examples: 4791
  download_size: 18018950
  dataset_size: 9194959
configs:
  - config_name: default
    data_files:
      - split: train
        path: data/train-*
      - split: test
        path: data/test-*
license: apache-2.0
task_categories:
  - text-classification
tags:
  - chemistry
  - biology
  - medical
size_categories:
  - 10K<n<100K

Dataset Card for Material Production Dataset

Dataset Summary

The task is to predict whether a protein sequence fails at the protein material stage.

Dataset Structure

Data Instances

For each instance, there is a string representing the protein sequence and an integer label indicating whether a protein sequence fails at the protein material stage. See the material production dataset viewer to explore more examples.

{'seq':'MEHVIDNFDNIDKCLKCGKPIKVVKLKYIKKKIENIPNSHLINFKYCSKCKRENVIENL'
'label':1}

The average for the seq and the label are provided below:

Feature Mean Count
seq 315
label (0) 0.3
label (1) 0.7

Data Fields

  • seq: a string containing the protein sequence
  • label: an integer label indicating whether a protein sequence fails at the protein material stage.

Data Splits

The material production dataset has 2 splits: train and test. Below are the statistics of the dataset.

Dataset Split Number of Instances in Split
Train 23,339
Test 4,791

Source Data

Initial Data Collection and Normalization

The dataset is collected from PredPPCrys.

Licensing Information

The dataset is released under the Apache-2.0 License.

Citation

If you find our work useful, please consider citing the following paper:

@misc{chen2024xtrimopglm,
  title={xTrimoPGLM: unified 100B-scale pre-trained transformer for deciphering the language of protein},
  author={Chen, Bo and Cheng, Xingyi and Li, Pan and Geng, Yangli-ao and Gong, Jing and Li, Shen and Bei, Zhilei and Tan, Xu and Wang, Boyan and Zeng, Xin and others},
  year={2024},
  eprint={2401.06199},
  archivePrefix={arXiv},
  primaryClass={cs.CL},
  note={arXiv preprint arXiv:2401.06199}
}