|
--- |
|
license: apache-2.0 |
|
dataset_info: |
|
features: |
|
- name: Smiles |
|
dtype: string |
|
- name: DockingScore |
|
dtype: float64 |
|
- name: dG |
|
dtype: float64 |
|
- name: dGError |
|
dtype: float64 |
|
splits: |
|
- name: train |
|
num_bytes: 641714 |
|
num_examples: 8997 |
|
- name: test |
|
num_bytes: 71163 |
|
num_examples: 1000 |
|
download_size: 315048 |
|
dataset_size: 712877 |
|
configs: |
|
- config_name: default |
|
data_files: |
|
- split: train |
|
path: data/train-* |
|
- split: test |
|
path: data/test-* |
|
tags: |
|
- molecule |
|
- chemistry |
|
- smiles |
|
- free_energy |
|
size_categories: |
|
- 1K<n<10K |
|
--- |
|
|
|
Molecular dataset: 10,000 TYK2 inhibitors (SMILES strings) with Docking scores and Relative Binding Free Energy (dG) |
|
|
|
|
|
Dataset from paper: |
|
|
|
James Thompson, W Patrick Walters, Jianwen A Feng, Nicolas A Pabon, Hongcheng Xu, Michael Maser, Brian B Goldman, Demetri Moustakas, Molly Schmidt, Forrest York, |
|
Optimizing active learning for free energy calculations, Artificial Intelligence in the Life Sciences, Volume 2, 2022, 100050, ISSN 2667-3185, |
|
https://doi.org/10.1016/j.ailsci.2022.100050. |
|
|
|
https://www.sciencedirect.com/science/article/pii/S2667318522000204 |
|
|
|
original source: https://github.com/google-research/google-research/tree/master/al_for_fep |