|
--- |
|
|
|
tags: |
|
- pyterrier |
|
- pyterrier-artifact |
|
- pyterrier-artifact.sparse_index |
|
- pyterrier-artifact.sparse_index.pisa |
|
task_categories: |
|
- text-retrieval |
|
viewer: false |
|
--- |
|
|
|
# arguana.pisa |
|
|
|
## Description |
|
|
|
A PISA index for the Arguana dataset |
|
|
|
## Usage |
|
|
|
```python |
|
# Load the artifact |
|
import pyterrier as pt |
|
index = pt.Artifact.from_hf('my terrier/arguana.pisa') |
|
index.bm25() # returns a BM25 retriever |
|
``` |
|
|
|
## Benchmarks |
|
|
|
| name | nDCG@10 | R@1000 | |
|
|:-------|----------:|---------:| |
|
| bm25 | 0.3436 | 0.9808 | |
|
| dph | 0.3502 | 0.9815 | |
|
|
|
## Reproduction |
|
|
|
```python |
|
import pyterrier as pt |
|
from tqdm import tqdm |
|
import ir_datasets |
|
from pyterrier_pisa import PisaIndex |
|
index = PisaIndex("arguana.pisa", threads=16) |
|
dataset = ir_datasets.load('beir/arguana') |
|
docs = ({'docno': d.doc_id, 'text': d.default_text()} for d in tqdm(dataset.docs)) |
|
index.index(docs) |
|
``` |
|
|
|
## Metadata |
|
|
|
``` |
|
{ |
|
"type": "sparse_index", |
|
"format": "pisa", |
|
"package_hint": "pyterrier-pisa", |
|
"stemmer": "porter2" |
|
} |
|
``` |
|
|