Datasets:
License:
File size: 2,922 Bytes
a158d14 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 |
#!/usr/bin/python3
# -*- coding: utf-8 -*-
import numpy as np
from smart.python_speech_features.silence_detect import detect_silence
def calc_wave_features(signal, sample_rate):
assert signal.dtype == np.int16
assert sample_rate == 8000
signal = np.array(signal, dtype=np.float32)
# plt.plot(signal)
# plt.show()
l = len(signal)
# 均值
mean = np.mean(signal)
# 方差
var = np.var(signal)
# 百分位数
per = np.percentile(signal, q=[1, 25, 50, 75, 99])
per1, per25, per50, per75, per99 = per
# 静音段占比
silences = detect_silence(
signal=signal,
samplerate=sample_rate,
min_energy=120,
min_cross_zero_rate=0.01
)
silence_total = 0
for silence in silences:
li = silence[1] - silence[0]
silence_total += li
silence_rate = silence_total / l
# 非静音段方差
last_e = 0
non_silences = list()
for silence in silences:
b, e = silence
if b > last_e:
non_silences.append([last_e, b])
last_e = e
else:
if l > last_e:
non_silences.append([last_e, l])
# 静音段的数量
silence_count = len(non_silences)
if silence_count == 0:
mean_non_silence = 0
var_non_silence = 0
var_var_non_silence = 0
var_non_silence_rate = 1
else:
signal_non_silences = list()
for non_silence in non_silences:
b, e = non_silence
signal_non_silences.append(signal[b: e])
# 非静音段, 各段方差的方差.
v = list()
for signal_non_silence in signal_non_silences:
v.append(np.var(signal_non_silence))
var_var_non_silence = np.var(v)
signal_non_silences = np.concatenate(signal_non_silences)
# 非静音段整体均值
mean_non_silence = np.mean(signal_non_silences)
# 非静音段整体方差
var_non_silence = np.var(signal_non_silences)
# 非静音段整体方差 除以 整体方差
var_non_silence_rate = var_non_silence / var
# 全段, 分段方差的方差
sub_signal_list = np.split(signal, 20)
whole_var = list()
for sub_signal in sub_signal_list:
sub_var = np.var(sub_signal)
whole_var.append(sub_var)
var_var_whole = np.var(whole_var)
result = {
'mean': mean,
'var': var,
'per1': per1,
'per25': per25,
'per50': per50,
'per75': per75,
'per99': per99,
'silence_rate': silence_rate,
'mean_non_silence': mean_non_silence,
'silence_count': silence_count,
'var_var_non_silence': var_var_non_silence,
'var_non_silence': var_non_silence,
'var_non_silence_rate': var_non_silence_rate,
'var_var_whole': var_var_whole,
}
return result
if __name__ == '__main__':
pass
|