File size: 7,481 Bytes
2eccbda
 
 
ca95bc9
2eccbda
 
 
 
 
ca95bc9
 
2eccbda
 
 
 
 
658aa3c
2eccbda
658aa3c
2eccbda
658aa3c
2eccbda
 
 
 
 
 
ca95bc9
2eccbda
 
 
 
 
 
 
ca95bc9
2eccbda
 
ca95bc9
6559553
2eccbda
6559553
 
 
 
 
2eccbda
 
 
ca95bc9
2eccbda
 
 
 
ca95bc9
2eccbda
 
 
 
 
 
6559553
2eccbda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6559553
3ada9ba
6559553
3ada9ba
 
 
2eccbda
 
 
 
ca95bc9
2eccbda
 
 
ca95bc9
2eccbda
 
 
ca95bc9
2eccbda
 
 
 
 
6559553
 
 
 
 
2eccbda
 
 
 
6559553
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import os
import json
import logging
import datasets

logger = logging.getLogger(__name__)

_DESCRIPTION = """
This dataset contains T1-weighted .nii.gz structural MRI scans in a BIDS-like arrangement.
Each scan has an associated JSON sidecar with metadata, including a 'split' field indicating
whether it's train, validation, or test.
"""

_CITATION = """
@dataset{Radiata-Brain-Structure,
  author    = {Jesse Brown and Clayton Young},
  title     = {Brain-Structure: Processed Structural MRI Brain Scans Across the Lifespan},
  year      = {2025},
  url          = {https://huggingface.co/datasets/radiata-ai/brain-structure},
  note      = {Version 1.0},
  publisher    = {Hugging Face}
}
"""

_HOMEPAGE = "https://huggingface.co/datasets/radiata-ai/brain-structure"
_LICENSE = "ODC-By v1.0"


class BrainStructureConfig(datasets.BuilderConfig):
    """
    Configuration class for the Brain-Structure dataset.
    """
    def __init__(self, **kwargs):
        super().__init__(**kwargs)


class BrainStructure(datasets.GeneratorBasedBuilder):
    """
    A dataset loader for T1 .nii.gz files plus JSON sidecars indicating splits
    (train, validation, test).

    Examples of how users typically load this dataset:

    >>> from datasets import load_dataset
    >>> ds_val = load_dataset("radiata-ai/brain-structure", split="validation", trust_remote_code=True)
    >>> ds_train = load_dataset("./brain-structure", split="train")  # local clone
    """

    VERSION = datasets.Version("1.0.0")

    BUILDER_CONFIGS = [
        BrainStructureConfig(
            name="all",
            version=VERSION,
            description="All structural MRI data in a BIDS-like arrangement, labeled with train/val/test splits."
        ),
    ]
    DEFAULT_CONFIG_NAME = "all"

    def _info(self):
        """
        Returns DatasetInfo, including the feature schema and other metadata.
        """
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "id": datasets.Value("string"),
                    "nii_filepath": datasets.Value("string"),
                    "metadata": {
                        "split": datasets.Value("string"),
                        "participant_id": datasets.Value("string"),
                        "session_id": datasets.Value("string"),
                        "study": datasets.Value("string"),
                        "age": datasets.Value("int32"),
                        "sex": datasets.Value("string"),
                        "clinical_diagnosis": datasets.Value("string"),
                        "scanner_manufacturer": datasets.Value("string"),
                        "scanner_model": datasets.Value("string"),
                        "field_strength": datasets.Value("string"),
                        "image_quality_rating": datasets.Value("float"),
                        "total_intracranial_volume": datasets.Value("float"),
                        "license": datasets.Value("string"),
                        "website": datasets.Value("string"),
                        "citation": datasets.Value("string"),
                        "t1_file_name": datasets.Value("string"),
                        "radiata_id": datasets.Value("int32"),
                    },
                }
            ),
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager: datasets.DownloadManager):
        """
        Creates SplitGenerators for 'train', 'validation', and 'test'.
        We locate the dataset files by referencing the directory of this script.
        """
        data_dir = os.path.abspath(os.path.dirname(__file__))

        logger.info(f"BrainStructure: scanning data in {data_dir}")

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={"data_dir": data_dir, "desired_split": "train"}
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={"data_dir": data_dir, "desired_split": "validation"}
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={"data_dir": data_dir, "desired_split": "test"}
            ),
        ]

    def _generate_examples(self, data_dir, desired_split):
        """
        Recursively walks the directory structure, looking for JSON sidecar files
        ending in '_scandata.json'. For each matching file, yields an example
        if sidecar["split"] == desired_split.

        The corresponding .nii.gz is located by prefix matching.
        """
        id_ = 0
        for root, dirs, files in os.walk(data_dir):
            for fname in files:
                # If you only want "msub" files, you can add: if fname.startswith("msub") and ...
                if fname.endswith("_scandata.json"):
                    sidecar_path = os.path.join(root, fname)
                    with open(sidecar_path, "r") as f:
                        sidecar = json.load(f)

                    if sidecar.get("split") == desired_split:
                        # Find the .nii.gz prefix
                        nii_prefix = fname.replace("_scandata.json", "_T1w")
                        nii_filepath = None
                        for potential_file in files:
                            if potential_file.startswith(nii_prefix) and potential_file.endswith(".nii.gz"):
                                nii_filepath = os.path.join(root, potential_file)
                                break

                        if not nii_filepath:
                            logger.warning(f"No corresponding .nii.gz found for {sidecar_path}")
                            continue

                        yield id_, {
                            "id": str(id_),
                            "nii_filepath": nii_filepath,
                            "metadata": {
                                "split": sidecar.get("split", ""),
                                "participant_id": sidecar.get("participant_id", ""),
                                "session_id": sidecar.get("session_id", ""),
                                "study": sidecar.get("study", ""),
                                "age": sidecar.get("age", 0),
                                "sex": sidecar.get("sex", ""),
                                "clinical_diagnosis": sidecar.get("clinical_diagnosis", ""),
                                "scanner_manufacturer": sidecar.get("scanner_manufacturer", ""),
                                "scanner_model": sidecar.get("scanner_model", ""),
                                "field_strength": sidecar.get("field_strength", ""),
                                "image_quality_rating": float(sidecar.get("image_quality_rating", 0.0)),
                                "total_intracranial_volume": float(sidecar.get("total_intracranial_volume", 0.0)),
                                "license": sidecar.get("license", ""),
                                "website": sidecar.get("website", ""),
                                "citation": sidecar.get("citation", ""),
                                "t1_file_name": sidecar.get("t1_file_name", ""),
                                "radiata_id": sidecar.get("radiata_id", 0),
                            },
                        }
                        id_ += 1