File size: 9,059 Bytes
dc50279
 
 
 
 
 
 
 
 
 
657aafe
 
 
58adcac
 
 
 
 
 
657aafe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58adcac
 
 
 
 
 
 
 
 
 
1a61c58
a7d73e0
 
 
 
77c4503
a7d73e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2f301ac
41e5f28
2f301ac
a7d73e0
 
 
e188723
42b3dcc
77c4503
 
a59b3b2
74f16c3
77c4503
 
0bb5805
51f7033
a7d73e0
 
88b2cf5
a7d73e0
88b2cf5
a7d73e0
 
 
88b2cf5
a7d73e0
 
88b2cf5
a7d73e0
 
88b2cf5
 
 
a7d73e0
 
cc8bea5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a7d73e0
462e4c3
a7d73e0
462e4c3
 
 
 
28c53e2
e5eda06
28c53e2
 
 
 
 
 
 
 
 
 
 
 
462e4c3
 
 
066d0c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0875359
066d0c6
 
 
763d6e1
 
 
 
f673ca0
 
 
 
 
c7745b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
---
license: apache-2.0
task_categories:
- automatic-speech-recognition
- text-to-speech
language:
- en
pretty_name: Technical Indian English
size_categories:
- 1K<n<10K
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
  - split: test
    path: data/test-*
  - split: validation
    path: data/validation-*
dataset_info:
  features:
  - name: audio
    struct:
    - name: array
      sequence:
        sequence: float32
    - name: path
      dtype: string
    - name: sampling_rate
      dtype: int64
  - name: split
    dtype: string
  - name: ID
    dtype: string
  - name: Transcript
    dtype: string
  - name: Normalised_Transcript
    dtype: string
  - name: Speech_Duration_seconds
    dtype: float64
  - name: Speaker_ID
    dtype: int64
  - name: Gender
    dtype: string
  - name: Caste
    dtype: string
  - name: Year_Class
    dtype: string
  - name: Speech_Class
    dtype: string
  - name: Discipline_Group
    dtype: string
  - name: Native_Region
    dtype: string
  - name: Topic
    dtype: string
  splits:
  - name: train
    num_bytes: 12626734601
    num_examples: 7884
  - name: test
    num_bytes: 1548446759
    num_examples: 986
  - name: validation
    num_bytes: 1576842184
    num_examples: 986
  download_size: 15746227296
  dataset_size: 15752023544
---



# Dataset Card for TIE_Shorts

## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description
- **Repository:** https://github.com/raianand1991/TIE
- **Paper:** https://ojs.aaai.org/index.php/ICWSM/article/view/31390/33550
- **Point of Contact:** [[email protected]](mailto:[email protected])

### Dataset Summary

TIE_shorts is a derived version of the [Technical Indian English (TIE)](https://github.com/raianand1991/TIE) dataset, a large-scale speech dataset (~ 8K hours) originally consisting of approximately 750 GB of content 
sourced from the [NPTEL](https://nptel.ac.in/) platform. The original TIE dataset contains around 9.8K technical lectures in English delivered by instructors from various regions across India, 
with each lecture averaging about 50 minutes. These lectures cover a wide range of technical subjects and capture diverse linguistic features characteristic of Indian 
English.

The TIE_shorts version (~ 70 hours audio and 600K ground-truth tokens) was created to facilitate efficient training and usage in speech processing tasks by providing shorter audio samples. In TIE_shorts, 
consecutive audio snippets from the original dataset were merged based on timestamps, with a condition that the final merged audio should not exceed 30 seconds in duration.
This process results in 25–30 second audio clips, each accompanied by a corresponding ground-truth transcript. This approach retains the linguistic diversity of the original 
dataset while significantly reducing the size and complexity, making TIE_shorts ideal for Automatic Speech Recognition (ASR) and other speech-to-text applications. 
As the dataset consists of approximately 9.8K files spoken by 331 speakers from diverse demographics across the Indian population, it is also well-suited for speaker identification and text-to-speech (TTS) training applications.
### Example usage

The TIE_Shorts dataset provides labeled audio data with metadata, including fields like Speaker ID, Gender, Caste, Native Region, and more. You can load the dataset with different configurations to access specific data subsets.:

To load the entire TIE_Shorts dataset, use the following code:
```python
from datasets import load_dataset

tie_shorts = load_dataset("raianand/TIE_shorts")
```

To load only a specific split (such as train, test, or validation), use:

```python
tie_shorts_train = load_dataset("raianand/TIE_shorts", split="train")
tie_shorts_test = load_dataset("raianand/TIE_shorts", split="test")
tie_shorts_validation = load_dataset("raianand/TIE_shorts", split="validation")
```

Inference using [Open AI Whisper](https://huggingface.co/openai/whisper-base) model, :

```python

from transformers import WhisperProcessor, WhisperForConditionalGeneration


# load model and processor
processor = WhisperProcessor.from_pretrained("openai/whisper-base")
model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-base")

sample = tie_shorts_test[0]["audio"]
input_features = processor(sample["array"], sampling_rate=sample["sampling_rate"], return_tensors="pt").input_features 

# generate token ids
predicted_ids = model.generate(input_features)
# decode token ids to text
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
print(transcription)
['the first time and therefore, because I find a lot of them have plagiarized therefore, I will not deduct or make any punishment for plagiarism then what the teacher tends to be arriving it as is arriving']
```

## Dataset Structure

### Data Instances

```python
{
ID: GGlaqd17Ctg,
audio: {'array': [[-0.05644894391298294, -0.07796351611614227 ]],'sampling_rate':16000},
split: train ,
Transcript: So, and various details are listed there in the map it will not be very clear right now in this video screen. But I will advise you to purchase the map or go to a laboratory or somewhere where you can have a map.,
Normalised_Transcript: so and various details are listed there in the map it will not be very clear right now in this video screen but i will advise you to purchase the map or go to a laboratory or somewhere where you can have a map,
Gender: M,
Speaker_ID: 74,
Native_Region: NORTH,
Caste: UR,
Speech_Duration_seconds: 16.88,
Year_Class: LES_2000,
Speech_Class: FAST,
Discipline_Group: Engineering,
Topic: Lecture 1 Surveying,
}

```

### Data Fields

Data Fields for TIE_Shorts

The dataset has the following structure:

* `audio_id` (string) - The unique identifier for each audio segment.
* `audio` (dict) - A dictionary containing the following fields related to the audio:
  * `array` (numpy.ndarray) - A NumPy array representing the decoded audio waveform. For brevity, only the first few samples are shown.
  * `sampling_rate` (int) - The sampling rate of the audio, typically 16000 Hz for this dataset.
* `raw_text` (string) - The original, unmodified (orthographic) transcription of the audio segment.
* `normalized_text` (string) - The normalized transcription of the audio segment, which is typically cleaned and adjusted for clarity.
* `gender` (string) - The gender of the speaker (e.g., "M", "F").
* `speaker_id` (string) - A unique identifier for the speaker.
* `caste` (string) - The caste group of the speaker, (RES: Reserved Category, UR: Unreserved Category)
* `speech_duration_seconds` (float) - The duration of the speech in seconds.
* `year_class` (string) - The academic year and class the speaker belongs to (e.g., LES_1980: Lecturers with PhD before 1980, LES_1990: Lecturers with PhD between 1980 to 1990, LES_2000:  Lecturers with PhD between 1990 to 2000, GRT_2000:Lecturers with PhD post 2000 ).
* `speech_class` (string) - The classification of speech rate, e.g., "SLOW", "AVG", "FAST".
* `native_region` (string) - Indian region to which speaker belongs to. ("WEST","EAST","NORTH","SOUTH")
* `discipline_group` (string) - The speaker's discipline or academic field (e.g., "Engineering", "Non-Engineering").
* `topic` (string) - The topic of the lecture or speech given by the speaker.


### Source Data

The audio data and corresponding ground-truth transcripts are sourced from  [NPTEL Platform](https://nptel.ac.in/)


### Licensing Information

The dataset is distributed under Attribution-ShareAlike 2.0 Generic (CC BY-SA 2.0).

### Citation Information

Please cite this paper:

```bibtex
@inproceedings{rai2024deep,
  title={A Deep Dive into the Disparity of Word Error Rates across Thousands of NPTEL MOOC Videos},
  author={Rai, Anand Kumar and Jaiswal, Siddharth D and Mukherjee, Animesh},
  booktitle={Proceedings of the International AAAI Conference on Web and Social Media},
  volume={18},
  pages={1302--1314},
  year={2024}
}
```