Datasets:

ArXiv:
License:
File size: 7,401 Bytes
f0bc58b
 
 
 
 
 
 
 
 
 
 
 
 
40173a3
 
f0bc58b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
---
license: apache-2.0
---
# Dataset Card for MedIAnomaly

## Dataset Description

**MedIAnomaly** is a benchmark designed to evaluate anomaly detection methods in the medical imaging domain. It provides a standardized evaluation protocol across **seven real-world medical image datasets**, including both **image-level anomaly classification (AnoCls)** and **pixel-level anomaly segmentation (AnoSeg)** tasks.  

All datasets follow a **one-class training setting**, where **only normal (non-anomalous) images are available in the training set**, and the **test set includes both normal and abnormal cases**. This reflects real-world scenarios where anomalies are rare and not annotated during training.

The benchmark includes a total of **seven datasets**, spanning across various imaging modalities (X-ray, MRI, fundus, dermatoscopy, histopathology), and ensures unified data format and preprocessing to support fair and reproducible comparison of anomaly detection methods.

![dataset](https://huggingface.co/datasets/randall-lab/medianomaly/resolve/main/example.png)

## Dataset Source
- **Homepage**: [https://github.com/caiyu6666/MedIAnomaly](https://github.com/caiyu6666/MedIAnomaly)
- **License**: [Apache License 2.0](http://www.apache.org/licenses/LICENSE-2.0)
- **Paper**: Yu Cai et al. _MedIAnomaly: A Comparative Study of Anomaly Detection in Medical Images_, arXiv 2024.

## Dataset Structure

| Dataset      | Modality              | Task              | ๐’Ÿ<sub>train</sub> | ๐’Ÿ<sub>test</sub> (Normal+Abnormal) |
|--------------|-----------------------|-------------------|------------------|----------------------------|
| RSNA         | Chest X-ray           | AnoCls            | 3851             | 1000 + 1000                |
| VinDr-CXR    | Chest X-ray           | AnoCls            | 4000             | 1000 + 1000                |
| Brain Tumor  | Brain MRI             | AnoCls            | 1000             | 600 + 600                  |
| LAG          | Retinal fundus image  | AnoCls            | 1500             | 811 + 811                  |
| ISIC2018     | Dermatoscopic image   | AnoCls            | 6705             | 909 + 603                  |
| Camelyon16   | Histopathology image  | AnoCls            | 5088             | 1120 + 1113                |
| BraTS2021    | Brain MRI             | AnoCls & AnoSeg   | 4211             | 828 + 1948                 |

### Notes on Dataset-Specific Definitions

- **RSNA**: Training images are all normal chest X-rays. Test set contains a balanced mix of normal and pneumonia images.
- **VinDr-CXR**: Training set consists only of normal chest X-rays. Test set includes both normal and abnormal findings.
- **Brain Tumor**: MRI scans. All training samples are healthy brains; test set contains normal and tumor cases.
- **LAG**: Retinal fundus images. Training set includes only normal cases; glaucomatous images appear in test set.
- **ISIC2018**: One-hot multi-label data. Only images with `NV = 1` and all other labels = 0 are considered **normal**. All others (with any other disease present) are considered **abnormal**.
- **Camelyon16**: Histopathological whole-slide patches. Training includes only benign tissue. Abnormal cancerous regions are tested.
- **BraTS2021**: Brain MRI for both classification and segmentation. Training includes only normal images. Test set includes tumor cases with segmentation masks.

## Example Usage

### RSNA
```python
from datasets import load_dataset

dataset = load_dataset("randall-lab/medianomaly", name="rsna", split="train", trust_remote_code=True)
# dataset = load_dataset("randall-lab/medianomaly", name="rsna", split="test", trust_remote_code=True)

# View a sample
example = dataset[0]
image = example["image"]
label = example["label"]  # "normal" or "abnormal"

image.show()
print(f"Label: {label}")
```

### Vin-CXR
```python
from datasets import load_dataset

dataset = load_dataset("randall-lab/medianomaly", name="vincxr", split="train", trust_remote_code=True)
# dataset = load_dataset("randall-lab/medianomaly", name="vincxr", split="test", trust_remote_code=True)

# View a sample
example = dataset[0]
image = example["image"]
label = example["label"]  # "normal" or "abnormal"

image.show()
print(f"Label: {label}")
```

### Brain Tumor
```python
from datasets import load_dataset

dataset = load_dataset("randall-lab/medianomaly", name="braintumor", split="train", trust_remote_code=True)
# dataset = load_dataset("randall-lab/medianomaly", name="braintumor", split="test", trust_remote_code=True)

# View a sample
example = dataset[0]
image = example["image"]
label = example["label"]  # "normal" or "abnormal"

image.show()
print(f"Label: {label}")
```

### LAG
```python
from datasets import load_dataset

dataset = load_dataset("randall-lab/medianomaly", name="lag", split="train", trust_remote_code=True)
# dataset = load_dataset("randall-lab/medianomaly", name="lag", split="test", trust_remote_code=True)

# View a sample
example = dataset[0]
image = example["image"]
label = example["label"]  # "normal" or "abnormal"

image.show()
print(f"Label: {label}")
```

### Camelyon16
```python
from datasets import load_dataset

dataset = load_dataset("randall-lab/medianomaly", name="camelyon16", split="train", trust_remote_code=True)
# dataset = load_dataset("randall-lab/medianomaly", name="camelyon16", split="test", trust_remote_code=True)

# View a sample
example = dataset[0]
image = example["image"]
label = example["label"]  # "normal" or "abnormal"

image.show()
print(f"Label: {label}")
```

### BraTS2021
```python
from datasets import load_dataset

# Train
dataset = load_dataset("randall-lab/medianomaly", name="brats2021", split="train", trust_remote_code=True)

example = dataset[0]
image = example["image"]
label = example["label"]  # "normal" or "abnormal"

image.show()
print(f"Label: {label}")

# Test
dataset = load_dataset("randall-lab/medianomaly", name="brats2021", split="test", trust_remote_code=True)

example = dataset[828] # >= 828 is abnormal images with seg mask
image = example["image"]
label = example["label"]  # "normal" or "abnormal"
anno = example["annotation"] # None if label is 0, seg mask if label is 1

image.show()
anno.show()
print(f"Label: {label}")
```

### ISIC2018
```python
from datasets import load_dataset

dataset = load_dataset("randall-lab/medianomaly", name="isic2018_task3", split="train", trust_remote_code=True)
# dataset = load_dataset("randall-lab/medianomaly", name="isic2018_task3", split="test", trust_remote_code=True)

# View a sample
example = dataset[0]
image = example["image"]
label = example["label"]  # "normal" or "abnormal"
labels = example["labels"] # one-hot multi label for different disease [MEL, NV, BCC, AKIEC, BKL, DF, VASC]

# Individual binary class labels (0 or 1)
mel_label = example["MEL"]
nv_label = example["NV"]
bcc_label = example["BCC"]
akiec_label = example["AKIEC"]
bkl_label = example["BKL"]
df_label = example["DF"]
vasc_label = example["VASC"]

image.show()
print(f"Label: {label}")
```

If you are using colab, you should update datasets to avoid errors
```
pip install -U datasets
```
## Citation
```
@article{cai2024medianomaly,
  title={MedIAnomaly: A comparative study of anomaly detection in medical images},
  author={Cai, Yu and Zhang, Weiwen and Chen, Hao and Cheng, Kwang-Ting},
  journal={arXiv preprint arXiv:2404.04518},
  year={2024}
}
```