File size: 5,233 Bytes
8620e7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d446ad
8620e7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
---
license: apache-2.0
---
# Dataset Card for 3dshapes

## Dataset Description

The **3dshapes dataset** is a **synthetic 3D object image dataset** designed for benchmarking algorithms in **disentangled representation learning** and **unsupervised representation learning**.  

It was introduced in the **FactorVAE** paper [[Kim & Mnih, ICML 2018](https://proceedings.mlr.press/v80/kim18b.html)], as one of the standard testbeds for learning interpretable and disentangled latent factors. The dataset consists of images of **3D procedurally generated scenes**, where 6 **ground-truth independent factors of variation** are explicitly controlled:

- **Floor color** (hue)
- **Wall color** (hue)
- **Object color** (hue)
- **Object size** (scale)
- **Object shape** (categorical)
- **Object orientation** (rotation angle)

**3dshapes is generated as a full Cartesian product of all factor combinations**, making it perfectly suited for systematic evaluation of disentanglement. The dataset contains **480,000 images** at a resolution of **64×64 pixels**, covering **all possible combinations of the 6 factors exactly once**. The images are stored in **row-major order** according to the factor sweep, enabling precise control over factor-based evaluation.
![Dataset Visualization](https://huggingface.co/datasets/randall-lab/shapes3d/resolve/main/3dshapes.gif)

## Dataset Source
- **Homepage**: [https://github.com/deepmind/3dshapes-dataset](https://github.com/deepmind/3dshapes-dataset)
- **License**: [Apache License 2.0](http://www.apache.org/licenses/LICENSE-2.0)
- **Paper**: Hyunjik Kim & Andriy Mnih. _Disentangling by Factorising_. ICML 2018.

## Dataset Structure
|Factors|Possible Values|
|---|---|
|floor_color (hue)| 10 values linearly spaced in [0, 1] |
|wall_color (hue)| 10 values linearly spaced in [0, 1] |
|object_color (hue)| 10 values linearly spaced in [0, 1] |
|scale| 8 values linearly spaced in [0.75, 1.25] |
|shape| 4 values: 0, 1, 2, 3 |
|orientation| 15 values linearly spaced in [-30, 30] |

Each image corresponds to a unique combination of these **6 factors**. The images are stored in a **row-major order** (fastest-changing factor is `orientation`, slowest-changing factor is `floor_color`).

### Why no train/test split?
The 3dshapes dataset does not provide an official train/test split. It is designed for **representation learning research**, where the goal is to learn disentangled and interpretable latent factors. Since the dataset is a **complete Cartesian product of all factor combinations**, models typically require access to the full dataset to explore factor-wise variations.

## Example Usage
Below is a quick example of how to load this dataset via the Hugging Face Datasets library:
```python
from datasets import load_dataset

# Load the dataset
dataset = load_dataset("randall-lab/shapes3d", split="train", trust_remote_code=True)

# Access a sample from the dataset
example = dataset[0]
image = example["image"]
label = example["label"]          # Value labels: [floor_hue, wall_hue, object_hue, scale, shape, orientation]
label_index = example["label_index"]  # Index labels: [floor_idx, wall_idx, object_idx, scale_idx, shape_idx, orientation_idx]

# Label Value
floor_value = example["floor"]      # 0-1
wall_value = example["wall"]        # 0-1
object_value = example["object"]    # 0-1
scale_value = example["scale"]      # 0.75-1.25
shape_value = example["shape"]      # 0,1,2,3
orientation_value = example["orientation"]  # -30 - 30

# Label index
floor_idx = example["floor_idx"]      # 0-9
wall_idx = example["wall_idx"]        # 0-9
object_idx = example["object_idx"]    # 0-9
scale_idx = example["scale_idx"]      # 0-7
shape_idx = example["shape_idx"]      # 0-3
orientation_idx = example["orientation_idx"]  # 0-14

image.show()  # Display the image
print(f"Label (factor values): {label}")
print(f"Label (factor indices): {label_index}")
```
If you are using colab, you should update datasets to avoid errors
```
pip install -U datasets
```
## Citation
```
@InProceedings{pmlr-v80-kim18b,
  title = 	 {Disentangling by Factorising},
  author =       {Kim, Hyunjik and Mnih, Andriy},
  booktitle = 	 {Proceedings of the 35th International Conference on Machine Learning},
  pages = 	 {2649--2658},
  year = 	 {2018},
  editor = 	 {Dy, Jennifer and Krause, Andreas},
  volume = 	 {80},
  series = 	 {Proceedings of Machine Learning Research},
  month = 	 {10--15 Jul},
  publisher =    {PMLR},
  pdf = 	 {http://proceedings.mlr.press/v80/kim18b/kim18b.pdf},
  url = 	 {https://proceedings.mlr.press/v80/kim18b.html},
  abstract = 	 {We define and address the problem of unsupervised learning of disentangled representations on data generated from independent factors of variation. We propose FactorVAE, a method that disentangles by encouraging the distribution of representations to be factorial and hence independent across the dimensions. We show that it improves upon beta-VAE by providing a better trade-off between disentanglement and reconstruction quality and being more robust to the number of training iterations. Moreover, we highlight the problems of a commonly used disentanglement metric and introduce a new metric that does not suffer from them.}
}
```