|
--- |
|
dataset_info: |
|
features: |
|
- name: source |
|
dtype: string |
|
- name: task_type |
|
dtype: string |
|
- name: in_source_id |
|
dtype: string |
|
- name: problem |
|
dtype: string |
|
- name: gold_standard_solution |
|
dtype: string |
|
- name: problem_id |
|
dtype: string |
|
- name: metadata |
|
struct: |
|
- name: difficulty |
|
dtype: string |
|
- name: memory_limit |
|
dtype: string |
|
- name: memory_limit_bytes |
|
dtype: int64 |
|
- name: problem_url |
|
dtype: string |
|
- name: time_limit |
|
dtype: string |
|
- name: verification_info |
|
struct: |
|
- name: language |
|
dtype: string |
|
- name: test_cases |
|
list: |
|
- name: fn_name |
|
dtype: string |
|
- name: input |
|
dtype: string |
|
- name: output |
|
dtype: string |
|
- name: type |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 385930754 |
|
num_examples: 27839 |
|
download_size: 235246000 |
|
dataset_size: 385930754 |
|
configs: |
|
- config_name: default |
|
data_files: |
|
- split: train |
|
path: data/train-* |
|
--- |
|
```python |
|
import datasets |
|
import random |
|
|
|
|
|
def limit_test_cases_uniformly(example, max_test_cases=6): |
|
num_test_cases = random.randint(1, max_test_cases) |
|
example['verification_info']['test_cases'] = example['verification_info']['test_cases'][:num_test_cases] |
|
return example |
|
|
|
|
|
ds = datasets.load_dataset("open-r1/verifiable-coding-problems-python_decontaminated", split="train") |
|
ds_filtered = ds.map(limit_test_cases_uniformly, num_proc=10) |
|
|
|
ds_filtered.push_to_hub("rasdani/verifiable-coding-problems-python_decontaminated_fewer_test_cases") |
|
``` |
|
|
|
Before: |
|
<img src="before.png" alt="before.png" style="width: 400px; height: auto;"> |
|
|
|
After: |
|
<img src="after.png" alt="after.png" style="width: 400px; height: auto;"> |
|
|