amharic-sentiment / README.md
rasyosef's picture
Update README.md
543f0ad verified
---
language:
- am
size_categories:
- 1K<n<10K
task_categories:
- text-classification
dataset_info:
features:
- name: clean_tweet
dtype: string
- name: label
dtype:
class_label:
names:
'0': negative
'1': positive
splits:
- name: train
num_bytes: 468510
num_examples: 2223
- name: dev
num_bytes: 56319
num_examples: 279
- name: test
num_bytes: 58731
num_examples: 279
download_size: 338974
dataset_size: 583560
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: dev
path: data/dev-*
- split: test
path: data/test-*
---
# Amharic Sentiment Dataset
This dataset contains `2781` cleaned Amharic Tweets, labeled as having either `positive` or `negative` sentiment. This dataset can be used to train a sentiment classification model.
### Dataset Source
https://github.com/liyaSileshi/amharic-sentiment-analysis/blob/main/data_preprocess/train.csv
### Finetuned Models
The following models were finetuned using this dataset. The reported precision, recall, and f1 metrics are macro averages.
|Model|Size (# params)| Accuracy | Precision | Recall | F1 |
| --- | ------------- | -------- | --------- | ------ | -- |
|bert-medium-amharic|40.5M|0.83|0.83|0.82|0.83|
|bert-small-amharic|27.8M|0.83|0.83|0.82|0.83|
|bert-mini-amharic|10.7M|0.81|0.81|0.81|0.81|
|bert-tiny-amharic|4.18M|0.79|0.79|0.79|0.79|
|xlm-roberta-base|279M|0.83|0.83|0.83|0.83|
|am-roberta|443M|0.82|0.83|0.82|0.82|
#### Code
In this repository, you can find notebooks for finetuning each of the above models using this dataset
- https://github.com/rasyosef/amharic-sentiment-classification