metadata
dataset_info:
- config_name: fr_Laws
features:
- name: text
dtype: string
- name: spans
list:
- name: start
dtype: int64
- name: end
dtype: int64
- name: label
dtype: string
- name: token_start
dtype: int64
- name: token_end
dtype: int64
- name: tokens
list:
- name: text
dtype: string
- name: start
dtype: int64
- name: end
dtype: int64
- name: id
dtype: int64
- name: ws
dtype: bool
- name: source
dtype: string
splits:
- name: train
num_bytes: 8773683
num_examples: 2131
download_size: 0
dataset_size: 8773683
- config_name: it_Laws
features:
- name: text
dtype: string
- name: spans
list:
- name: start
dtype: int64
- name: end
dtype: int64
- name: label
dtype: string
- name: token_start
dtype: int64
- name: token_end
dtype: int64
- name: tokens
list:
- name: text
dtype: string
- name: start
dtype: int64
- name: end
dtype: int64
- name: id
dtype: int64
- name: ws
dtype: bool
- name: source
dtype: string
splits:
- name: train
num_bytes: 8130577
num_examples: 2910
download_size: 0
dataset_size: 8130577
- config_name: es_Laws
features:
- name: text
dtype: string
- name: spans
list:
- name: start
dtype: int64
- name: end
dtype: int64
- name: label
dtype: string
- name: token_start
dtype: int64
- name: token_end
dtype: int64
- name: tokens
list:
- name: text
dtype: string
- name: start
dtype: int64
- name: end
dtype: int64
- name: id
dtype: int64
- name: ws
dtype: bool
- name: source
dtype: string
splits:
- name: train
num_bytes: 6260211
num_examples: 677
download_size: 0
dataset_size: 6260211
- config_name: en_Laws
features:
- name: text
dtype: string
- name: spans
list:
- name: start
dtype: int64
- name: end
dtype: int64
- name: label
dtype: string
- name: token_start
dtype: int64
- name: token_end
dtype: int64
- name: tokens
list:
- name: text
dtype: string
- name: start
dtype: int64
- name: end
dtype: int64
- name: id
dtype: int64
- name: ws
dtype: bool
- name: source
dtype: string
splits:
- name: train
download_size: 0
dataset_size: 0
- config_name: de_Laws
features:
- name: text
dtype: string
- name: spans
list:
- name: start
dtype: int64
- name: end
dtype: int64
- name: label
dtype: string
- name: token_start
dtype: int64
- name: token_end
dtype: int64
- name: tokens
list:
- name: text
dtype: string
- name: start
dtype: int64
- name: end
dtype: int64
- name: id
dtype: int64
- name: ws
dtype: bool
- name: source
dtype: string
splits:
- name: train
num_bytes: 13792836
num_examples: 13
download_size: 0
dataset_size: 13792836
- config_name: fr_Judgements
features:
- name: text
dtype: string
- name: spans
list:
- name: start
dtype: int64
- name: end
dtype: int64
- name: label
dtype: string
- name: token_start
dtype: int64
- name: token_end
dtype: int64
- name: tokens
list:
- name: text
dtype: string
- name: start
dtype: int64
- name: end
dtype: int64
- name: id
dtype: int64
- name: ws
dtype: bool
- name: source
dtype: string
splits:
- name: train
num_bytes: 8788244
num_examples: 315
download_size: 0
dataset_size: 8788244
- config_name: fr_all
features:
- name: text
dtype: string
- name: spans
list:
- name: start
dtype: int64
- name: end
dtype: int64
- name: label
dtype: string
- name: token_start
dtype: int64
- name: token_end
dtype: int64
- name: tokens
list:
- name: text
dtype: string
- name: start
dtype: int64
- name: end
dtype: int64
- name: id
dtype: int64
- name: ws
dtype: bool
- name: source
dtype: string
splits:
- name: train
num_bytes: 25977816
num_examples: 2446
download_size: 4782672
dataset_size: 25977816
- config_name: it_Judgements
features:
- name: text
dtype: string
- name: spans
list:
- name: start
dtype: int64
- name: end
dtype: int64
- name: label
dtype: string
- name: token_start
dtype: int64
- name: token_end
dtype: int64
- name: tokens
list:
- name: text
dtype: string
- name: start
dtype: int64
- name: end
dtype: int64
- name: id
dtype: int64
- name: ws
dtype: bool
- name: source
dtype: string
splits:
- name: train
num_bytes: 8989061
num_examples: 243
download_size: 0
dataset_size: 8989061
- config_name: it_all
features:
- name: text
dtype: string
- name: spans
list:
- name: start
dtype: int64
- name: end
dtype: int64
- name: label
dtype: string
- name: token_start
dtype: int64
- name: token_end
dtype: int64
- name: tokens
list:
- name: text
dtype: string
- name: start
dtype: int64
- name: end
dtype: int64
- name: id
dtype: int64
- name: ws
dtype: bool
- name: source
dtype: string
splits:
- name: train
num_bytes: 25097560
num_examples: 3153
download_size: 4610540
dataset_size: 25097560
- config_name: es_Judgements
features:
- name: text
dtype: string
- name: spans
list:
- name: start
dtype: int64
- name: end
dtype: int64
- name: label
dtype: string
- name: token_start
dtype: int64
- name: token_end
dtype: int64
- name: tokens
list:
- name: text
dtype: string
- name: start
dtype: int64
- name: end
dtype: int64
- name: id
dtype: int64
- name: ws
dtype: bool
- name: source
dtype: string
splits:
- name: train
num_bytes: 9460558
num_examples: 190
download_size: 0
dataset_size: 9460558
- config_name: es_all
features:
- name: text
dtype: string
- name: spans
list:
- name: start
dtype: int64
- name: end
dtype: int64
- name: label
dtype: string
- name: token_start
dtype: int64
- name: token_end
dtype: int64
- name: tokens
list:
- name: text
dtype: string
- name: start
dtype: int64
- name: end
dtype: int64
- name: id
dtype: int64
- name: ws
dtype: bool
- name: source
dtype: string
splits:
- name: train
num_bytes: 23090629
num_examples: 867
download_size: 4438716
dataset_size: 23090629
- config_name: en_Judgements
features:
- name: text
dtype: string
- name: spans
list:
- name: start
dtype: int64
- name: end
dtype: int64
- name: label
dtype: string
- name: token_start
dtype: int64
- name: token_end
dtype: int64
- name: tokens
list:
- name: text
dtype: string
- name: start
dtype: int64
- name: end
dtype: int64
- name: id
dtype: int64
- name: ws
dtype: bool
- name: source
dtype: string
splits:
- name: train
num_bytes: 18401754
num_examples: 80
download_size: 0
dataset_size: 18401754
- config_name: en_all
features:
- name: text
dtype: string
- name: spans
list:
- name: start
dtype: int64
- name: end
dtype: int64
- name: label
dtype: string
- name: token_start
dtype: int64
- name: token_end
dtype: int64
- name: tokens
list:
- name: text
dtype: string
- name: start
dtype: int64
- name: end
dtype: int64
- name: id
dtype: int64
- name: ws
dtype: bool
- name: source
dtype: string
splits:
- name: train
num_bytes: 27363914
num_examples: 80
download_size: 5448700
dataset_size: 27363914
- config_name: de_Judgements
features:
- name: text
dtype: string
- name: spans
list:
- name: start
dtype: int64
- name: end
dtype: int64
- name: label
dtype: string
- name: token_start
dtype: int64
- name: token_end
dtype: int64
- name: tokens
list:
- name: text
dtype: string
- name: start
dtype: int64
- name: end
dtype: int64
- name: id
dtype: int64
- name: ws
dtype: bool
- name: source
dtype: string
splits:
- name: train
num_bytes: 14082173
num_examples: 131
download_size: 0
dataset_size: 14082173
- config_name: de_all
features:
- name: text
dtype: string
- name: spans
list:
- name: start
dtype: int64
- name: end
dtype: int64
- name: label
dtype: string
- name: token_start
dtype: int64
- name: token_end
dtype: int64
- name: tokens
list:
- name: text
dtype: string
- name: start
dtype: int64
- name: end
dtype: int64
- name: id
dtype: int64
- name: ws
dtype: bool
- name: source
dtype: string
splits:
- name: train
num_bytes: 40429185
num_examples: 144
download_size: 7883640
dataset_size: 40429185
- config_name: fr_laws
features:
- name: text
dtype: string
- name: spans
list:
- name: start
dtype: int64
- name: end
dtype: int64
- name: label
dtype: string
- name: token_start
dtype: int64
- name: token_end
dtype: int64
- name: tokens
list:
- name: text
dtype: string
- name: start
dtype: int64
- name: end
dtype: int64
- name: id
dtype: int64
- name: ws
dtype: bool
- name: source
dtype: string
splits:
- name: train
num_bytes: 12924503
num_examples: 2131
download_size: 2201568
dataset_size: 12924503
- config_name: fr_judgements
features:
- name: text
dtype: string
- name: spans
list:
- name: start
dtype: int64
- name: end
dtype: int64
- name: label
dtype: string
- name: token_start
dtype: int64
- name: token_end
dtype: int64
- name: tokens
list:
- name: text
dtype: string
- name: start
dtype: int64
- name: end
dtype: int64
- name: id
dtype: int64
- name: ws
dtype: bool
- name: source
dtype: string
splits:
- name: train
num_bytes: 13053313
num_examples: 315
download_size: 2581104
dataset_size: 13053313
- config_name: it_laws
features:
- name: text
dtype: string
- name: spans
list:
- name: start
dtype: int64
- name: end
dtype: int64
- name: label
dtype: string
- name: token_start
dtype: int64
- name: token_end
dtype: int64
- name: tokens
list:
- name: text
dtype: string
- name: start
dtype: int64
- name: end
dtype: int64
- name: id
dtype: int64
- name: ws
dtype: bool
- name: source
dtype: string
splits:
- name: train
num_bytes: 11869343
num_examples: 2910
download_size: 2048828
dataset_size: 11869343
- config_name: it_judgements
features:
- name: text
dtype: string
- name: spans
list:
- name: start
dtype: int64
- name: end
dtype: int64
- name: label
dtype: string
- name: token_start
dtype: int64
- name: token_end
dtype: int64
- name: tokens
list:
- name: text
dtype: string
- name: start
dtype: int64
- name: end
dtype: int64
- name: id
dtype: int64
- name: ws
dtype: bool
- name: source
dtype: string
splits:
- name: train
num_bytes: 13228218
num_examples: 243
download_size: 2561712
dataset_size: 13228218
- config_name: es_laws
features:
- name: text
dtype: string
- name: spans
list:
- name: start
dtype: int64
- name: end
dtype: int64
- name: label
dtype: string
- name: token_start
dtype: int64
- name: token_end
dtype: int64
- name: tokens
list:
- name: text
dtype: string
- name: start
dtype: int64
- name: end
dtype: int64
- name: id
dtype: int64
- name: ws
dtype: bool
- name: source
dtype: string
splits:
- name: train
num_bytes: 9183057
num_examples: 677
download_size: 1753376
dataset_size: 9183057
- config_name: es_judgements
features:
- name: text
dtype: string
- name: spans
list:
- name: start
dtype: int64
- name: end
dtype: int64
- name: label
dtype: string
- name: token_start
dtype: int64
- name: token_end
dtype: int64
- name: tokens
list:
- name: text
dtype: string
- name: start
dtype: int64
- name: end
dtype: int64
- name: id
dtype: int64
- name: ws
dtype: bool
- name: source
dtype: string
splits:
- name: train
num_bytes: 13907572
num_examples: 190
download_size: 2685340
dataset_size: 13907572
- config_name: en_laws
features:
- name: text
dtype: string
- name: spans
list:
- name: start
dtype: int64
- name: end
dtype: int64
- name: label
dtype: string
- name: token_start
dtype: int64
- name: token_end
dtype: int64
- name: tokens
list:
- name: text
dtype: string
- name: start
dtype: int64
- name: end
dtype: int64
- name: id
dtype: int64
- name: ws
dtype: bool
- name: source
dtype: string
splits:
- name: train
download_size: 0
dataset_size: 0
- config_name: en_judgements
features:
- name: text
dtype: string
- name: spans
list:
- name: start
dtype: int64
- name: end
dtype: int64
- name: label
dtype: string
- name: token_start
dtype: int64
- name: token_end
dtype: int64
- name: tokens
list:
- name: text
dtype: string
- name: start
dtype: int64
- name: end
dtype: int64
- name: id
dtype: int64
- name: ws
dtype: bool
- name: source
dtype: string
splits:
- name: train
num_bytes: 27363914
num_examples: 80
download_size: 5448700
dataset_size: 27363914
- config_name: de_laws
features:
- name: text
dtype: string
- name: spans
list:
- name: start
dtype: int64
- name: end
dtype: int64
- name: label
dtype: string
- name: token_start
dtype: int64
- name: token_end
dtype: int64
- name: tokens
list:
- name: text
dtype: string
- name: start
dtype: int64
- name: end
dtype: int64
- name: id
dtype: int64
- name: ws
dtype: bool
- name: source
dtype: string
splits:
- name: train
num_bytes: 19935635
num_examples: 13
download_size: 3745480
dataset_size: 19935635
- config_name: de_judgements
features:
- name: text
dtype: string
- name: spans
list:
- name: start
dtype: int64
- name: end
dtype: int64
- name: label
dtype: string
- name: token_start
dtype: int64
- name: token_end
dtype: int64
- name: tokens
list:
- name: text
dtype: string
- name: start
dtype: int64
- name: end
dtype: int64
- name: id
dtype: int64
- name: ws
dtype: bool
- name: source
dtype: string
splits:
- name: train
num_bytes: 20493550
num_examples: 131
download_size: 4138160
dataset_size: 20493550
- config_name: pt_laws
features:
- name: text
dtype: string
- name: spans
list:
- name: start
dtype: int64
- name: end
dtype: int64
- name: label
dtype: string
- name: token_start
dtype: int64
- name: token_end
dtype: int64
- name: tokens
list:
- name: text
dtype: string
- name: start
dtype: int64
- name: end
dtype: int64
- name: id
dtype: int64
- name: ws
dtype: bool
- name: source
dtype: string
splits:
- name: train
num_bytes: 1005902
num_examples: 58
download_size: 209128
dataset_size: 1005902
- config_name: pt_judgements
features:
- name: text
dtype: string
- name: spans
list:
- name: start
dtype: int64
- name: end
dtype: int64
- name: label
dtype: string
- name: token_start
dtype: int64
- name: token_end
dtype: int64
- name: tokens
list:
- name: text
dtype: string
- name: start
dtype: int64
- name: end
dtype: int64
- name: id
dtype: int64
- name: ws
dtype: bool
- name: source
dtype: string
splits:
- name: train
num_bytes: 812282
num_examples: 10
download_size: 173424
dataset_size: 812282
- config_name: pt_all
features:
- name: text
dtype: string
- name: spans
list:
- name: start
dtype: int64
- name: end
dtype: int64
- name: label
dtype: string
- name: token_start
dtype: int64
- name: token_end
dtype: int64
- name: tokens
list:
- name: text
dtype: string
- name: start
dtype: int64
- name: end
dtype: int64
- name: id
dtype: int64
- name: ws
dtype: bool
- name: source
dtype: string
splits:
- name: train
num_bytes: 1818184
num_examples: 68
download_size: 382552
dataset_size: 1818184
- config_name: all_laws
features:
- name: text
dtype: string
- name: spans
list:
- name: start
dtype: int64
- name: end
dtype: int64
- name: label
dtype: string
- name: token_start
dtype: int64
- name: token_end
dtype: int64
- name: tokens
list:
- name: text
dtype: string
- name: start
dtype: int64
- name: end
dtype: int64
- name: id
dtype: int64
- name: ws
dtype: bool
- name: source
dtype: string
splits:
- name: train
num_bytes: 54918438
num_examples: 5789
download_size: 9958380
dataset_size: 54918438
- config_name: all_judgements
features:
- name: text
dtype: string
- name: spans
list:
- name: start
dtype: int64
- name: end
dtype: int64
- name: label
dtype: string
- name: token_start
dtype: int64
- name: token_end
dtype: int64
- name: tokens
list:
- name: text
dtype: string
- name: start
dtype: int64
- name: end
dtype: int64
- name: id
dtype: int64
- name: ws
dtype: bool
- name: source
dtype: string
splits:
- name: train
num_bytes: 88858845
num_examples: 969
download_size: 17588440
dataset_size: 88858845
- config_name: all_all
features:
- name: text
dtype: string
- name: spans
list:
- name: start
dtype: int64
- name: end
dtype: int64
- name: label
dtype: string
- name: token_start
dtype: int64
- name: token_end
dtype: int64
- name: tokens
list:
- name: text
dtype: string
- name: start
dtype: int64
- name: end
dtype: int64
- name: id
dtype: int64
- name: ws
dtype: bool
- name: source
dtype: string
splits:
- name: train
num_bytes: 143777284
num_examples: 6758
download_size: 27546820
dataset_size: 143777284
task_categories:
- token-classification
language:
- en
- es
- de
- it
- pt
- fr
pretty_name: 'MultiLegalSBD: A Multilingual Legal Sentence Boundary Detection Dataset'
size_categories:
- 100K<n<1M
Dataset Card for Dataset Name
Dataset Description
- Homepage:
- Repository:
- Paper:
- Leaderboard:
- Point of Contact:
Dataset Summary
This is a multilingual dataset containing ~130k annotated sentence boundaries. It contains laws and court decision in 6 different languages.
Supported Tasks and Leaderboards
[More Information Needed]
Languages
English, French, Italian, German, Portuguese, Spanish
Dataset Structure
It is structured in the following format: {language}_{type}_{shard}.jsonl.xz
type is one of the following:
- laws
- judgements
Use the the dataset like this:
from datasets import load_dataset
config = 'fr_laws' #{language}_{type} | to load all languages and/or all types, use 'all_all'
dataset = load_dataset('rcds/MultiLegalSBD', config)
Data Instances
[More Information Needed]
Data Fields
- text: the original text
- spans:
- start: offset of the first character
- end: offset of the last character
- label: One label only -> Sentence
- token_start: id of the first token
- token_end: id of the last token
- tokens:
- text: token text
- start: offset of the first character
- end: offset of the last character
- id: token id
- ws: whether the token is followed by whitespace
Data Splits
There is only one split available
Dataset Creation
Curation Rationale
[More Information Needed]
Source Data
Initial Data Collection and Normalization
[More Information Needed]
Who are the source language producers?
[More Information Needed]
Annotations
Annotation process
[More Information Needed]
Who are the annotators?
[More Information Needed]
Personal and Sensitive Information
[More Information Needed]
Considerations for Using the Data
Social Impact of Dataset
[More Information Needed]
Discussion of Biases
[More Information Needed]
Other Known Limitations
[More Information Needed]
Additional Information
Dataset Curators
[More Information Needed]
Licensing Information
[More Information Needed]
Citation Information
@inproceedings{10.1145/3594536.3595132,
author = {Brugger, Tobias and St\"{u}rmer, Matthias and Niklaus, Joel},
title = {MultiLegalSBD: A Multilingual Legal Sentence Boundary Detection Dataset},
year = {2023},
isbn = {9798400701979},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
url = {https://doi.org/10.1145/3594536.3595132},
doi = {10.1145/3594536.3595132},
abstract = {Sentence Boundary Detection (SBD) is one of the foundational building blocks of Natural Language Processing (NLP), with incorrectly split sentences heavily influencing the output quality of downstream tasks. It is a challenging task for algorithms, especially in the legal domain, considering the complex and different sentence structures used. In this work, we curated a diverse multilingual legal dataset consisting of over 130'000 annotated sentences in 6 languages. Our experimental results indicate that the performance of existing SBD models is subpar on multilingual legal data. We trained and tested monolingual and multilingual models based on CRF, BiLSTM-CRF, and transformers, demonstrating state-of-the-art performance. We also show that our multilingual models outperform all baselines in the zero-shot setting on a Portuguese test set. To encourage further research and development by the community, we have made our dataset, models, and code publicly available.},
booktitle = {Proceedings of the Nineteenth International Conference on Artificial Intelligence and Law},
pages = {42–51},
numpages = {10},
keywords = {Natural Language Processing, Sentence Boundary Detection, Text Annotation, Legal Document Analysis, Multilingual},
location = {Braga, Portugal},
series = {ICAIL '23}
}
Contributions
[More Information Needed]