The viewer is disabled because this dataset repo requires arbitrary Python code execution. Please consider
removing the
loading script
and relying on
automated data support
(you can use
convert_to_parquet
from the datasets
library). If this is not possible, please
open a discussion
for direct help.
Subscene

Dataset Summary
Subscene is a vast collection of multilingual subtitles, encompassing 65 different languages and consisting of more than 30 billion tokens with a total size of 410.70 GB. This dataset includes subtitles for movies, series, and animations gathered from the Subscene dump. It provides a rich resource for studying language variations and building multilingual NLP models. We have carefully applied a fastText classifier to remove any non-language content from incorrect subsets. Additionally, we performed basic cleaning and filtration. However, there is still room for further cleaning and refinement.
Dataset Structure
Data Instances
{"subtitle_name": "choir-girl",
"file_name": "Choir.Girl.2019.HDRip.XviD.AC3-EVO.json",
"transcript": [{"id": 1, "start_time": "00:00:09,741", "end_time": "00:00:13,702", "text": "Subtitles by explosiveskull"}, {"id": 2, "start_time": "00:01:58,569", "end_time": "00:02:00,536", "text": "Get Julius on the phone."}, {"id": 3, "start_time": "00:02:00,538", "end_time": "00:02:03,338", "text": "The sponsor's got an issue with sharing the page."}, {"id": 4, "start_time": "00:02:08,412", "end_time": "00:02:09,411", "text": "Eugene."}, {"id": 5, "start_time": "00:02:10,748", "end_time": "00:02:14,950", "text": "Yeah, uh, I'm supposed to meet Julius."}, {"id": 6, "start_time": "00:02:14,952", "end_time": "00:02:19,888", "text": "I'm Anne Kellan, the editor. You won't be meeting him."}, {"id": 7, "start_time": "00:02:19,890", "end_time": "00:02:22,391", "text": "He said on the phone that, um..."}, {"id": 8, "start_time": "00:02:22,393", "end_time": "00:02:24,293", "text": "We won't be publishing these."}, {"id": 9, "start_time": "00:02:24,295", "end_time": "00:02:31,266", "text": "You have a child overdosing, an elderly woman being bashed"}, {"id": 10, "start_time": "00:02:31,268", "end_time": "00:02:33,302", "text": "and this,"}, {"id": 11, "start_time": "00:02:33,304", "end_time": "00:02:36,205", "text": "a girl either being sexually assaulted or prostituting herself."}, {"id": 12, "start_time": "00:02:36,907", "end_time": "00:02:39,374", "text": "I spoke to Julius and..."}, ...]
}
{"subtitle_name": "the-fabulous-first-season",
"file_name": "The.Fabulous.S01E06.DUBBED.WEBRip.x264-ION10_Arabic.json",
"transcript": [{"id": "1", "start_time": "00:00:06,006", "end_time": "00:00:09,926", "text": "\"مسلسلات NETFLIX\""}, {"id": "2", "start_time": "00:00:18,309", "end_time": "00:00:19,849", "text": "- المجال مفتوح أمامك. - اركض!"}, {"id": "3", "start_time": "00:00:19,936", "end_time": "00:00:22,186", "text": "تلك فرصتك! هيا يا \"وو مين\"!"}, {"id": "4", "start_time": "00:00:23,189", "end_time": "00:00:24,229", "text": "- ويلاه. - لا بأس."}, {"id": "5", "start_time": "00:00:24,315", "end_time": "00:00:26,025", "text": "رائع، أحسنت صنعًا!"}, {"id": "6", "start_time": "00:00:26,109", "end_time": "00:00:27,189", "text": "أحسنت!"}, {"id": "7", "start_time": "00:00:27,277", "end_time": "00:00:28,397", "text": "ألن تخبرني؟"}, {"id": "8", "start_time": "00:00:29,320", "end_time": "00:00:30,490", "text": "الفتاة التي في الصورة."}, {"id": "9", "start_time": "00:00:31,072", "end_time": "00:00:32,622", "text": "كم هو مثابر. العب الكرة فحسب."}, ....]
}
Data Fields
subtitle_name
(str
): The name of the folder containing the subtitle file. This likely corresponds to the movie, series, or anime title.file_name
(str
): The specific filename of the subtitle file itself.transcript
(dict
): This dictionary holds the complete transcript information for the subtitle file. It contains nested structures to represent individual subtitle segments.id
(int
): (Withintranscript
dictionary) A unique identifier for a specific subtitle segment within the file.start_time
(str
): (Withintranscript
dictionary) The starting time of the subtitle segment, likely formatted according to a specific timecode standard.end_time
(str
): (Withintranscript
dictionary) The ending time of the subtitle segment, following the same timecode format asstart_time
.text
(str
): (Withintranscript
dictionary) The actual text content displayed for that specific subtitle segment.
Using The HuggingFace datasets
from datasets import load_dataset
# Load the Arabic subset only
ds = load_dataset("refine-ai/Subscene", "arabic", trust_remote_code=True)
Dataset Statstics
Language | Raw Size | Num Char | Num Byte | Num Words | Num Token |
---|---|---|---|---|---|
Arabic | 59.7 GB | 12B | 24B | 3B | 5B |
Armenian | 933.7 KB | 175K | 372K | 36K | 177K |
Azerbaijani | 5.7 MB | 1M | 2M | 225K | 701K |
Basque | 36.4 MB | 9M | 10M | 1M | 3M |
Belarusian | 3.2 MB | 598K | 1M | 119K | 433K |
Bengali | 2.6 GB | 429M | 1B | 88M | 152M |
traditional_chinese | 1.1 GB | 202M | 323M | 38M | 110M |
Bosnian | 51.0 MB | 12M | 15M | 3M | 6M |
Brazilian-Portuguese | 9.1 GB | 2B | 3B | 463M | 727M |
Bulgarian | 324.7 MB | 60M | 126M | 13M | 38M |
Bulgarian-English | 4.2 MB | 851K | 1M | 179K | 515K |
Burmese | 724 MB | 127M | 378M | 11M | 237M |
Cambodian-Khmer | 165.5 MB | 28M | 80M | 2M | 32M |
Catalan | 70.8 MB | 17M | 20M | 4M | 6M |
simplified_chinese | 3.9 GB | 197M | 505M | 29M | 129M |
Croatian | 1.1 GB | 260M | 315M | 54M | 129M |
Czech | 2.4 GB | 519M | 671M | 108M | 288M |
Danish | 12.1 GB | 3B | 4B | 716M | 1B |
Dutch | 5.5 GB | 1B | 2B | 319M | 610M |
Dutch-English | 28.3 MB | 7M | 9M | 2M | 3M |
English | 127.9 GB | 30B | 36B | 7B | 10B |
English-German | 160.5 MB | 39M | 47M | 8M | 14M |
Esperanto | 4.6 MB | 1M | 1M | 224K | 431K |
Estonian | 345.9 MB | 83M | 98M | 15M | 39M |
Farsi_persian | 40.3 GB | 7B | 15B | 2B | 5B |
Finnish | 4.3 GB | 1B | 1B | 179M | 522M |
French | 18 GB | 5B | 6B | 1B | 1B |
Georgian | 2.3 MB | 432K | 1M | 79K | 378K |
German | 3 GB | 788M | 931M | 157M | 307M |
Greek | 4.5 GB | 919M | 2B | 181M | 737M |
Greenlandic | 10.2 MB | 3M | 3M | 298K | 1M |
Hebrew | 4.9 GB | 839M | 2B | 194M | 811M |
Hindi | 575 MB | 92M | 285M | 24M | 36M |
Hungarian | 1.2 GB | 287M | 353M | 52M | 141M |
Hungarian_English | 600kb | 126K | 152K | 25K | 53K |
Icelandic | 476.1 MB | 110M | 144M | 23M | 58M |
Indonesian | 9.7 GB | 10B | 12B | 2B | 3B |
Italian | 7 GB | 2B | 3B | 501M | 950M |
Japanese | 2.0 GB | 198M | 596M | 29M | 190M |
Kannada | 21.8 MB | 4M | 11M | 564K | 1M |
Korean | 5.5 GB | 553M | 2B | 188M | 821M |
Kurdish | 72.4 MB | 14M | 29M | 3M | 11M |
Latvian | 157.2 MB | 35M | 43M | 6M | 18M |
Lithuanian | 207.3 MB | 47M | 57M | 8M | 24M |
Macedonian | 97 MB | 20M | 41M | 4M | 12M |
Malay | 4.9 GB | 1B | 1B | 221M | 371M |
Malayalam | 446.9 MB | 86M | 246M | 11M | 27M |
Manipuri | 1000kb | 93K | 280K | 14K | 60K |
Mongolian | 9.9 MB | 2M | 4M | 390K | 2M |
Nepali | 37.8 MB | 6M | 19M | 1M | 2M |
Norwegian | 6.8 GB | 2B | 2B | 392M | 765M |
Pashto | 9.5 MB | 2M | 4M | 417K | 870K |
Polish | 2 GB | 467M | 570M | 85M | 243M |
Portuguese | 3.7 GB | 899M | 1B | 191M | 280M |
Punjabi | 55.3 MB | 87K | 263K | 22K | 33K |
Romanian | 3.5 GB | 835M | 1B | 183M | 402M |
Russian | 1.9 GB | 359M | 740M | 71M | 220M |
Serbian | 929.5 MB | 225M | 285M | 48M | 113M |
Sinhala | 1.1 GB | 185M | 544M | 37M | 345M |
Slovak | 649.2 MB | 140M | 179M | 29M | 75M |
Slovenian | 654.8 MB | 151M | 183M | 31M | 74M |
Somali | 1.1 MB | 300K | 353K | 62K | 134K |
Spanish | 10.9 GB | 3B | 3B | 548M | 831M |
Sundanese | 3.1 Mb | 762K | 881K | 135K | 302K |
Swahili | 15.9 MB | 4M | 4M | 661K | 1M |
Swedish | 6.9 GB | 2B | 2B | 392M | 795M |
Tagalog | 188 MB | 45M | 52M | 9M | 18M |
Tamil | 1 GB | 50M | 149M | 7M | 16M |
Telugu | 223.5 MB | 39M | 115M | 6M | 14M |
Thai | 6.9 GB | 1B | 3B | 77M | 1B |
Turkish | 6.7 GB | 2B | 2B | 268M | 789M |
Ukrainian | 891.1 MB | 168M | 346M | 34M | 116M |
Urdu | 5 GB | 53M | 116M | 15M | 21M |
Vietnamese | 16 GB | 3B | 5B | 952M | 1B |
Yoruba | 820.6 KB | 154K | 230K | 46K | 80K |
Citation Information
If you use this corpus, please cite the paper:
@misc{refine-ai,
author = {Refine AI},
title = {Subscene: A Large-Scale Multilingual Subtitle Dataset},
year = {2024},
}
Acknowledgements
We would like to extend our thanks to everyone who has worked on and contributed to the Subscene website. A special thanks goes to eionlol for uploading the entire Subscene dump, organized by language. You can access the archive through the following link: https://archive.org/details/subscene-final-dump
- Downloads last month
- 2,656