File size: 4,760 Bytes
89d5a24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
91780bc
89d5a24
 
 
2267a60
89d5a24
 
2267a60
89d5a24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f189bb
 
 
89d5a24
 
 
4f189bb
 
89d5a24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# TODO: Address all TODOs and remove all explanatory comments
"""TODO: Add a description here."""


import csv
import json
import os

import datasets
import gzip

# TODO: Add BibTeX citation
# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\
@InProceedings{huggingface:dataset,
title = {A great new dataset},
author={huggingface, Inc.
},
year={2020}
}
"""

# TODO: Add description of the dataset here
# You can copy an official description
_DESCRIPTION = """\
This new dataset is designed to solve this great NLP task and is crafted with a lot of care.
"""

# TODO: Add a link to an official homepage for the dataset here
_HOMEPAGE = ""

# TODO: Add the licence for the dataset here if you can find it
_LICENSE = ""

# TODO: Add link to the official dataset URLs here
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
_URLS = "https://huggingface.co/datasets/khalidalt/subscene/resolve/main/{Lang}/{Lang}_subscene_{split}{index}.json.gz"

_N_FILES_PER_SPLIT = {
    'arabic': {'train':33 },
    'english': {'train': 82},
}

_LangID = ['arabic', 'english']
# TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case

class SubsceneConfig(datasets.BuilderConfig):
    """ Builder config for Subscene Dataset. """

    def __init__(self, subset, **kwargs):
        super(SubsceneConfig, self).__init__(**kwargs)

        if subset !="all":

            self.subset = [subset]
        else:
            self.subset = _LangID

class Subscene(datasets.GeneratorBasedBuilder):
    """TODO: Short description of my dataset."""

    VERSION = datasets.Version("1.1.0")
    BUILDER_CONFIGS_CLASS = SubsceneConfig
    BUILDER_CONFIGS = [
        SubsceneConfig(name=subset,
        subset=subset,
        version=datasets.Version("1.1.0", ""),
        description='')
        for subset in _LangID
    ]


    def _info(self):
        # information about the datasets and feature type of the datasets items.

        features = datasets.Features(
            {
                "subtitle_name": datasets.Value("string"),
                "file_name": datasets.Value("string"),
                "transcript": datasets.Value("string"),
            }
        )



        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            # License for the dataset if available
            license=_LICENSE,
            # Citation for the dataset
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        #split = 'train'
        #print("Split")
        data_urls = {}
        for split in ['train']: #'validation']:
            #if self.config.subset = "all":

            data_urls[split] = [
                _URLS.format(
                    Lang = subset,
                    split='validation' if split=='_val' else '',
                    index = i,
                )
                for subset in self.config.subset
                for i in range(_N_FILES_PER_SPLIT[subset][split])
            ]

        train_downloaded_files = dl_manager.download(data_urls["train"])
        #validation_downloaded_files = dl_manager.download(data_urls["validation"])
        return [
            datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepaths": train_downloaded_files}),
            #datasets.SplitGenerator(
            #    name=datasets.Split.VALIDATION, gen_kwargs={"filepaths": validation_downloaded_files}
            #),
        ]


    # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
    def _generate_examples(self, filepaths):

        id_ = 0
        for filepath in filepaths:
            with gzip.open(open(filepath,"rb"), "rt", encoding = "utf-8") as f:
                for row in f:
                    if row:

                        data = json.loads(row)
                        yield id_, data
                        id_ +=1