Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
parquet
Languages:
Portuguese
Size:
1M - 10M
License:
metadata
configs:
- config_name: fold0
data_files:
- split: train
path: fold0/train-*
- split: validation
path: fold0/validation-*
- split: test
path: fold0/test-*
- config_name: fold1
data_files:
- split: train
path: fold1/train-*
- split: validation
path: fold1/validation-*
- split: test
path: fold1/test-*
- config_name: fold2
data_files:
- split: train
path: fold2/train-*
- split: validation
path: fold2/validation-*
- split: test
path: fold2/test-*
- config_name: fold3
data_files:
- split: train
path: fold3/train-*
- split: validation
path: fold3/validation-*
- split: test
path: fold3/test-*
- config_name: fold4
data_files:
- split: train
path: fold4/train-*
- split: validation
path: fold4/validation-*
- split: test
path: fold4/test-*
- config_name: fold5
data_files:
- split: train
path: fold5/train-*
- split: validation
path: fold5/validation-*
- split: test
path: fold5/test-*
- config_name: fold6
data_files:
- split: train
path: fold6/train-*
- split: validation
path: fold6/validation-*
- split: test
path: fold6/test-*
- config_name: fold7
data_files:
- split: train
path: fold7/train-*
- split: validation
path: fold7/validation-*
- split: test
path: fold7/test-*
- config_name: fold8
data_files:
- split: train
path: fold8/train-*
- split: validation
path: fold8/validation-*
- split: test
path: fold8/test-*
- config_name: fold9
data_files:
- split: train
path: fold9/train-*
- split: validation
path: fold9/validation-*
- split: test
path: fold9/test-*
license: mit
task_categories:
- text-classification
language:
- pt
tags:
- legal
- legislative
dataset_info:
- config_name: fold0
features:
- name: id_API
dtype: string
- name: summary
dtype: string
- name: subject
sequence: string
splits:
- name: train
num_bytes: 32604012
num_examples: 126228
- name: validation
num_bytes: 3576665
num_examples: 13895
- name: test
num_bytes: 4029162
num_examples: 15579
download_size: 15179616
dataset_size: 40209839
- config_name: fold1
features:
- name: id_API
dtype: string
- name: summary
dtype: string
- name: subject
sequence: string
splits:
- name: train
num_bytes: 32520988
num_examples: 126047
- name: validation
num_bytes: 3659115
num_examples: 14049
- name: test
num_bytes: 4029736
num_examples: 15606
download_size: 15196083
dataset_size: 40209839
- config_name: fold2
features:
- name: id_API
dtype: string
- name: summary
dtype: string
- name: subject
sequence: string
splits:
- name: train
num_bytes: 32633002
num_examples: 126129
- name: validation
num_bytes: 3585296
num_examples: 13997
- name: test
num_bytes: 3991541
num_examples: 15576
download_size: 15186410
dataset_size: 40209839
- config_name: fold3
features:
- name: id_API
dtype: string
- name: summary
dtype: string
- name: subject
sequence: string
splits:
- name: train
num_bytes: 32627688
num_examples: 126247
- name: validation
num_bytes: 3578106
num_examples: 13963
- name: test
num_bytes: 4004045
num_examples: 15492
download_size: 15180222
dataset_size: 40209839
- config_name: fold4
features:
- name: id_API
dtype: string
- name: summary
dtype: string
- name: subject
sequence: string
splits:
- name: train
num_bytes: 32597950
num_examples: 126125
- name: validation
num_bytes: 3595374
num_examples: 14008
- name: test
num_bytes: 4016515
num_examples: 15569
download_size: 15190975
dataset_size: 40209839
- config_name: fold5
features:
- name: id_API
dtype: string
- name: summary
dtype: string
- name: subject
sequence: string
splits:
- name: train
num_bytes: 32513117
num_examples: 126046
- name: validation
num_bytes: 3638100
num_examples: 14047
- name: test
num_bytes: 4058622
num_examples: 15609
download_size: 15194510
dataset_size: 40209839
- config_name: fold6
features:
- name: id_API
dtype: string
- name: summary
dtype: string
- name: subject
sequence: string
splits:
- name: train
num_bytes: 32593926
num_examples: 126307
- name: validation
num_bytes: 3597549
num_examples: 13957
- name: test
num_bytes: 4018364
num_examples: 15438
download_size: 15184065
dataset_size: 40209839
- config_name: fold7
features:
- name: id_API
dtype: string
- name: summary
dtype: string
- name: subject
sequence: string
splits:
- name: train
num_bytes: 32580938
num_examples: 126071
- name: validation
num_bytes: 3602352
num_examples: 14009
- name: test
num_bytes: 4026549
num_examples: 15622
download_size: 15193564
dataset_size: 40209839
- config_name: fold8
features:
- name: id_API
dtype: string
- name: summary
dtype: string
- name: subject
sequence: string
splits:
- name: train
num_bytes: 32569125
num_examples: 126146
- name: validation
num_bytes: 3612787
num_examples: 13966
- name: test
num_bytes: 4027927
num_examples: 15590
download_size: 15172702
dataset_size: 40209839
- config_name: fold9
features:
- name: id_API
dtype: string
- name: summary
dtype: string
- name: subject
sequence: string
splits:
- name: train
num_bytes: 32590719
num_examples: 126145
- name: validation
num_bytes: 3611742
num_examples: 13936
- name: test
num_bytes: 4007378
num_examples: 15621
download_size: 15180407
dataset_size: 40209839
π§π· Brazilian Legislative Bills β Summary Dataset
This dataset contains summaries (ementas) of legislative bills proposed in the Brazilian Chamber of Deputies (BCoD) from 1991 to 2022.
It is intended for multi-label classification, where each bill may be associated with one or more subject categories (temas).
π This is the summary version of the dataset.
If you are looking for the keywords version, see:
π ronunes/LegiSubject-Br-Keywords
π Dataset Structure
The dataset is organized into 10 stratified cross-validation folds (fold0
to fold9
).
Each fold contains 3 standard splits:
train
validation
test
Each split contains the following fields:
Column | Description |
---|---|
id_API |
Unique identifier for the bill in the BCoD API |
summary |
The summary of the bill (originally ementa ) |
subject |
List of subject labels associated with the bill |
The task is to predict the subject(s) of a bill given its summary.
-
Usage
You can load each fold easily with the Hugging Face datasets
library:
from datasets import load_dataset
ds = load_dataset("ronunes/LegiSubject-Br-Summaries", name="fold0", split="train")