Datasets:
File size: 5,904 Bytes
f26539d 2409b9f f26539d 12b7db0 f26539d 12b7db0 f26539d 12b7db0 2409b9f 12b7db0 7adbb95 7a5bfa2 12b7db0 f26539d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 |
---
datasets:
- rsdmu/streetreview
task_categories:
- zero-shot-classification
- image-classification
- image-segmentation
- image-feature-extraction
tags:
- urban-planning
- montreal
- publicspace
- inclusivity
- accessibility
- participatory
license: cc-by-4.0
language:
- en
size_categories:
- 10K<n<100K
pretty_name: Street Review Dataset
annotations_creators:
- crowdsourced
- expert-generated
---
# StreetReview Dataset
![image/png](https://cdn-uploads.huggingface.co/production/uploads/657d0fd583543a061b23b027/8rTxCdOovDoGAGjTYVSMw.png)
## Overview
**StreetReview** is a curated dataset designed to evaluate the inclusivity, accessibility, aesthetics, and practicality of urban streetscapes, particularly in a multicultural city context. Focused on Montréal, Canada, the dataset combines diverse demographic evaluations with rich metadata and street-view imagery. It aims to advance research in urban planning, public space design, and machine learning applications for creating inclusive and user-friendly urban environments.
## Table of Contents
- [Overview](#overview)
- [Dataset Structure](#dataset-structure)
- [Root Directory](#root-directory)
- [Street Image Data](#street-image-data)
- [Street Evaluation Data](#street-evaluation-data)
- [Methodology](#methodology)
- [Participatory Evaluation Process](#participatory-evaluation-process)
- [Data Collection](#data-collection)
- [Data Fields](#data-fields)
- [Metadata](#metadata)
- [Evaluations](#evaluations)
- [Usage](#usage)
- [Cloning the Repository](#cloning-the-repository)
- [Example Code](#example-code)
- [License](#license)
- [Citing StreetReview](#citing-streetreview)
- [Contributing](#contributing)
- [Contact](#contact)
## Dataset Structure
The **StreetReview** dataset is organized as follows:
### Root Directory
- **`metadata.csv`**: Comprehensive metadata for each evaluation point.
- **`street_eval/`**: CSV files containing evaluation data for individual street sections.
- **`street_img/`**: Street-view images categorized by street and section.
### Street Image Data
Images are stored in `street_img/` and organized into folders by street and section, with three perspectives per section (`_main`, `_head`, `_tail`). Example structure:
```
street_img/
├── i01_cote_sainte_catherine_main/
│ ├── main_001.jpg
│ ├── main_002.jpg
│ ...
└── i02_rue_berri_main/
├── main_001.jpg
├── main_002.jpg
...
```
### Street Evaluation Data
Evaluation data is stored in `street_eval/` as CSV files named after their corresponding street section. Example:
```
street_eval/
├── i01_evaluations.csv
├── i02_evaluations.csv
...
```
## Methodology
### Participatory Evaluation Process
The dataset was created using a participatory approach to capture diverse urban experiences:
1. **Individual Evaluation**: Participants rated 20 street on four criteria using a color-coded system.
2. **Group Evaluation**: In focus groups, participants reassessed images collectively and refined their evaluations.
### Data Collection
- **Participants**: 28 individuals contributed to criteria development; 12 participated in detailed evaluations.
- **Evaluation Points**: 60 points across 20 streets, with two images per point.
- **Dataset Expansion**: Up to 250 images per point, rotated for diversity.
## Data Fields
### Metadata
The `metadata.csv` file contains attributes such as:
| Field | Description |
|------------------------|--------------------------------------|
| `point_id` | Unique identifier |
| `sidewalk_width` | Width of sidewalks |
| `greenery_presence` | Presence of greenery |
| `building_height` | Height of adjacent buildings |
| ... | ... |
### Evaluations
Each CSV file in `street_eval/` includes ratings from various demographic groups. Ratings are based on a 1-4 scale. For example, a score of 1 for accessibility means "not accessible," scores of 2 or 3 indicate "average accessibility," and a score of 4 represents "highest accessibility."
| Field | Description |
|---------------------------|---------------------------------|
| `lgbtqia2+_accessibility` | Accessibility rating by LGBTQIA2+ |
| `elderly_male_practicality` | Practicality rating by elderly males |
| `group_inclusivity` | Inclusivity rating by groups of 3-5 diverse individuals |
| ... | ... |
## Usage
### Cloning the Repository
Clone the repository with:
```bash
git clone https://huggingface.co/datasets/rsdmu/streetreview
```
### Example Code
```python
import pandas as pd
from PIL import Image
import os
# Load metadata
metadata = pd.read_csv('metadata.csv')
# Load evaluation data
eval_data = pd.read_csv('street_eval/i01_evaluations.csv')
# Display an image
image_path = 'street_img/i01_cote_sainte_catherine_main/main_001.jpg'
image = Image.open(image_path)
image.show()
```
## License
Licensed under [Creative Commons Attribution 4.0 International (CC BY 4.0)](https://creativecommons.org/licenses/by/4.0/).
## Citing StreetReview
```bibtex
@dataset{streetreview2024,
title = {StreetReview Dataset: Evaluating Urban Streetscapes for Inclusivity and Accessibility},
author = {Rashid Mushkani},
year = {2025},
url = {https://huggingface.co/datasets/rsdmu/streetreview}
}
```
## Contributing
We welcome contributions! Please fork the repository, make changes, and submit a pull request.
## Contact
For inquiries, contact:
- **Email**: [Rashid Mushkani](mailto:[email protected])
- **Website**: [Rashid Mushkani](https://rsdmu.com)
- **GitHub**: [RSDMU](https://github.com/rsdmu)
---
© 2024 RSDMU. All rights reserved. |