File size: 5,904 Bytes
f26539d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2409b9f
f26539d
 
 
 
 
 
 
12b7db0
 
f26539d
12b7db0
 
 
f26539d
12b7db0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2409b9f
12b7db0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7adbb95
7a5bfa2
12b7db0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f26539d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
---
datasets:
- rsdmu/streetreview
task_categories:
- zero-shot-classification
- image-classification
- image-segmentation
- image-feature-extraction
tags:
- urban-planning
- montreal
- publicspace
- inclusivity
- accessibility
- participatory
license: cc-by-4.0
language:
- en
size_categories:
- 10K<n<100K
pretty_name: Street Review Dataset
annotations_creators:
- crowdsourced
- expert-generated
---


# StreetReview Dataset

![image/png](https://cdn-uploads.huggingface.co/production/uploads/657d0fd583543a061b23b027/8rTxCdOovDoGAGjTYVSMw.png)

## Overview


**StreetReview** is a curated dataset designed to evaluate the inclusivity, accessibility, aesthetics, and practicality of urban streetscapes, particularly in a multicultural city context. Focused on Montréal, Canada, the dataset combines diverse demographic evaluations with rich metadata and street-view imagery. It aims to advance research in urban planning, public space design, and machine learning applications for creating inclusive and user-friendly urban environments.

## Table of Contents

- [Overview](#overview)
- [Dataset Structure](#dataset-structure)
  - [Root Directory](#root-directory)
  - [Street Image Data](#street-image-data)
  - [Street Evaluation Data](#street-evaluation-data)
- [Methodology](#methodology)
  - [Participatory Evaluation Process](#participatory-evaluation-process)
  - [Data Collection](#data-collection)
- [Data Fields](#data-fields)
  - [Metadata](#metadata)
  - [Evaluations](#evaluations)
- [Usage](#usage)
  - [Cloning the Repository](#cloning-the-repository)
  - [Example Code](#example-code)
- [License](#license)
- [Citing StreetReview](#citing-streetreview)
- [Contributing](#contributing)
- [Contact](#contact)

## Dataset Structure

The **StreetReview** dataset is organized as follows:

### Root Directory

- **`metadata.csv`**: Comprehensive metadata for each evaluation point.
- **`street_eval/`**: CSV files containing evaluation data for individual street sections.
- **`street_img/`**: Street-view images categorized by street and section.

### Street Image Data

Images are stored in `street_img/` and organized into folders by street and section, with three perspectives per section (`_main`, `_head`, `_tail`). Example structure:

```
street_img/
├── i01_cote_sainte_catherine_main/
│   ├── main_001.jpg
│   ├── main_002.jpg
│   ...
└── i02_rue_berri_main/
    ├── main_001.jpg
    ├── main_002.jpg
    ...
```

### Street Evaluation Data

Evaluation data is stored in `street_eval/` as CSV files named after their corresponding street section. Example:

```
street_eval/
├── i01_evaluations.csv
├── i02_evaluations.csv
...
```

## Methodology

### Participatory Evaluation Process

The dataset was created using a participatory approach to capture diverse urban experiences:

1. **Individual Evaluation**: Participants rated 20 street on four criteria using a color-coded system.
2. **Group Evaluation**: In focus groups, participants reassessed images collectively and refined their evaluations.

### Data Collection

- **Participants**: 28 individuals contributed to criteria development; 12 participated in detailed evaluations.
- **Evaluation Points**: 60 points across 20 streets, with two images per point.
- **Dataset Expansion**: Up to 250 images per point, rotated for diversity.

## Data Fields

### Metadata

The `metadata.csv` file contains attributes such as:

| Field                  | Description                          |
|------------------------|--------------------------------------|
| `point_id`             | Unique identifier                   |
| `sidewalk_width`       | Width of sidewalks                  |
| `greenery_presence`    | Presence of greenery                |
| `building_height`      | Height of adjacent buildings        |
| ...                    | ...                                 |

### Evaluations

Each CSV file in `street_eval/` includes ratings from various demographic groups. Ratings are based on a 1-4 scale. For example, a score of 1 for accessibility means "not accessible," scores of 2 or 3 indicate "average accessibility," and a score of 4 represents "highest accessibility."

| Field                     | Description                     |
|---------------------------|---------------------------------|
| `lgbtqia2+_accessibility` | Accessibility rating by LGBTQIA2+ |
| `elderly_male_practicality` | Practicality rating by elderly males |
| `group_inclusivity`       | Inclusivity rating by groups of 3-5 diverse individuals    |
| ...                       | ...                             |

## Usage

### Cloning the Repository

Clone the repository with:

```bash
git clone https://huggingface.co/datasets/rsdmu/streetreview
```

### Example Code

```python
import pandas as pd
from PIL import Image
import os

# Load metadata
metadata = pd.read_csv('metadata.csv')

# Load evaluation data
eval_data = pd.read_csv('street_eval/i01_evaluations.csv')

# Display an image
image_path = 'street_img/i01_cote_sainte_catherine_main/main_001.jpg'
image = Image.open(image_path)
image.show()
```

## License

Licensed under [Creative Commons Attribution 4.0 International (CC BY 4.0)](https://creativecommons.org/licenses/by/4.0/).

## Citing StreetReview

```bibtex
@dataset{streetreview2024,
  title = {StreetReview Dataset: Evaluating Urban Streetscapes for Inclusivity and Accessibility},
  author = {Rashid Mushkani},
  year = {2025},
  url = {https://huggingface.co/datasets/rsdmu/streetreview}
}
```

## Contributing

We welcome contributions! Please fork the repository, make changes, and submit a pull request.

## Contact

For inquiries, contact:

- **Email**: [Rashid Mushkani](mailto:[email protected])
- **Website**: [Rashid Mushkani](https://rsdmu.com)
- **GitHub**: [RSDMU](https://github.com/rsdmu)

---

© 2024 RSDMU. All rights reserved.