text
stringlengths 1
2.05k
|
---|
rget, name="update_context")
out = conv2d_nchw(context, kernel, stride, padding, dilate, dtype)
s = schedule_conv2d_nchw([out])
conv2d_inc = tvm.build(s, [context, kernel, out], target, name="conv2d_inc")
out = topi.nn.fifo_buffer(inc_output, output_window, axis=buffer_axis)
s = tvm.topi.testing.get_injective_schedule(target)([out])
update_output_window = tvm.build(
s, [inc_output, output_window, out], target, name="update_output_window"
)
out = topi.nn.fifo_buffer(inc_input, input_window, axis=buffer_axis)
s = tvm.topi.testing.get_injective_schedule(target)([out])
update_input_window = tvm.build(
s, [inc_input, input_window, out], target, name="update_input_window"
)
out = conv2d_nchw(input_window, kernel, stride, padding, dilate, dtype)
s = schedule_conv2d_nchw([out])
conv2d = tvm.build(s, [input_window, kernel, out], target, name="conv2d")
input_window_tvm = tvm.nd.array(input_window_np, device=dev)
new_input_window_tvm = tvm.nd.empty(shape=input_window_shape, device=dev, dtype=dtype)
kernel_tvm = tvm.nd.array(kernel_np, device=dev)
context_tvm = tvm.nd.array(context_np, device=dev)
new_context_tvm = tvm.nd.empty(shape=context_shape, device=dev, dtype=dtype)
inc_output_tvm = tvm.nd.empty(shape=inc_output_shape, device=dev, dtype=dtype)
output_window_tvm = tvm.nd.array(output_window_np, device=dev)
new_output_window_tvm = tvm.nd.empty(shape=output_window_shape, device=dev, dtype=dtype)
output_window_ref_tvm = tvm.nd.empty(shape=output_window_shape, device=dev, dtype=dtype)
for i in range(num_iteration):
inc_input_tvm = tvm.nd.array(inc_input_np[i], device=dev)
update_context(inc_input_tvm, context_tvm, new_context_tvm)
conv2d_inc(new_context_tvm, kernel_tvm, inc_output |
_tvm)
update_output_window(inc_output_tvm, output_window_tvm, new_output_window_tvm)
context_tvm = new_context_tvm
output_window_tvm = new_output_window_tvm
update_input_window(inc_input_tvm, input_window_tvm, new_input_window_tvm)
input_window_tvm = new_input_window_tvm
conv2d(input_window_tvm, kernel_tvm, output_window_ref_tvm)
tvm.testing.assert_allclose(output_window_tvm.numpy(), output_window_ref_tvm.numpy())
for target, dev in tvm.testing.enabled_targets():
check_device(target, dev)
@tvm.testing.uses_gpu
def test_fifo_buffer():
for ndim in [1, 2, 3, 4, 5, 6]:
for axis in range(ndim):
buffer_shape = tuple(7 for _ in range(ndim))
data_shape = tuple((2 if i == axis else 7) for i in range(ndim))
print(
"Testing FIFO buffer op: buffer_shape = {}, data_shape = {}, axis = {}".format(
buffer_shape, data_shape, axis
)
)
verify_fifo_buffer(buffer_shape, data_shape, axis)
@tvm.testing.uses_gpu
def test_conv1d_integration():
print("Testing FIFO buffer with 1D convolution")
verify_conv1d_integration()
if __name__ == "__main__":
test_fifo_buffer()
test_conv1d_integration() |
"""Test for argwhere operator""" |
import numpy as np |
import pytest |
import tvm |
import tvm.testing
from tvm |
import te
from tvm |
import topi |
import tvm.topi.testing
_argwhere_schedule = {
"generic": topi.generic.schedule_argwhere,
"gpu": topi.cuda.schedule_argwhere,
}
_argwhere_compute = {"llvm": topi.argwhere, "cuda": topi.cuda.argwhere}
data_shape = tvm.testing.parameter(
(1,),
(100,),
(1, 1),
(5, 3),
(32, 64),
(128, 65),
(200, 500),
(6, 5, 3),
(1, 1, 1),
(1, 1, 1, 1),
(6, 4, 5, 3),
(1, 1, 1, 1, 1),
(6, 4, 5, 3, 7),
)
@tvm.testing.parametrize_targets("llvm", "cuda")
def test_argwhere(target, dev, data_shape):
dtype = "int32"
np_data = np.random.choice([0, 1, 2, 3], size=data_shape).astype(dtype)
np_out = np.argwhere(np_data)
out_shape = np_out.shape[0]
np_shape = np.ones(shape=(out_shape, len(data_shape)), dtype=dtype)
out_shape = te.placeholder(shape=(out_shape, len(data_shape)), name="out_shape", dtype=dtype)
condition = te.placeholder(shape=data_shape, name="condition", dtype=dtype)
with tvm.target.Target(target):
out = _argwhere_compute[target](out_shape, condition)
s_func = tvm.topi.testing.dispatch(target, _argwhere_schedule)
sch = s_func(out)
func = tvm.build(sch, [out_shape, condition, out], target, name="argwhere")
args = [tvm.nd.array(np_shape, dev)]
args.append(tvm.nd.array(np_data, dev))
args.append(tvm.nd.empty(out.shape, device=dev, dtype=condition.dtype))
func(*args)
np.set_printoptions(threshold=np.inf)
tvm_out = args[-1].numpy()
tvm.testing.assert_allclose(tvm_out, np_out)
if __name__ == "__main__":
tvm.testing.main() |
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
import tvm
from tvm import te
from tvm import topi
from tvm.topi import utils
def test_util():
x = tvm.tir.const(100, "int32")
assert utils.get_const_int(x) == 100
assert utils.get_const_tuple((x, x)) == (100, 100)
def test_ewise():
m = te.var("m")
l = te.var("l")
A = te.placeholder((m, l), name="A")
def test_apply(func, name):
B = func(A)
assert tuple(B.shape) == tuple(A.shape)
assert B.op.body[0].op.name == "tir." + name
test_apply(topi.exp, "exp")
test_apply(topi.erf, "erf")
test_apply(topi.tanh, "tanh")
test_apply(topi.sigmoid, "sigmoid")
test_apply(topi.log, "log")
test_apply(topi.sqrt, "sqrt")
test_apply(topi.rsqrt, "rsqrt")
test_apply(topi.sin, "sin")
test_apply(topi.cos, "cos")
test_apply(topi.tan, "tan")
test_apply(topi.atan, "atan")
if __name__ == "__main__":
test_util()
test_ewise()
|
"""Test code for batch_matmul operator""" |
import numpy as np |
import tvm
from tvm |
import te
from tvm |
import topi |
import tvm.topi.testing
from tvm.topi.utils |
import get_const_tuple
from tvm.contrib.pickle_memoize |
import memoize |
import tvm.testing
from common |
import Int8Fallback
_batch_matmul_implement = {
"generic": (topi.nn.batch_matmul, topi.generic.schedule_batch_matmul),
"cpu": (topi.x86.batch_matmul, topi.x86.schedule_batch_matmul),
"gpu": (topi.cuda.batch_matmul, topi.cuda.schedule_batch_matmul),
}
def verify_batch_matmul(x_batch, y_batch, M, N, K, dynamic=False, debug=False):
if not dynamic:
x = te.placeholder((x_batch, M, K), name="x")
y = te.placeholder((y_batch, N, K), name="y")
dtype = x.dtype
else:
assert x_batch == y_batch or x_batch == 1 or y_batch == 1
batch_size = max(x_batch, y_batch)
dynamic_batch_size = te.var("dynamic_batch_size")
dynamic_M = te.var("dynamic_M")
dynamic_N = te.var("dynamic_N")
dynamic_K = te.var("dynamic_K")
x = te.placeholder((dynamic_batch_size, dynamic_M, dynamic_K), name="x")
y = te.placeholder((dynamic_batch_size, dynamic_N, dynamic_K), name="y")
dtype = x.dtype
@memoize("topi.tests.test_topi_batch_matmul")
def get_ref_data():
a_np = np.random.uniform(size=(x_batch, M, K)).astype(dtype)
b_np = np.random.uniform(size=(y_batch, N, K)).astype(dtype)
c_np = tvm.topi.testing.batch_matmul(a_np, b_np)
return (a_np, b_np, c_np)
a_np, b_np, c_np = get_ref_data()
def check_device(target, dev):
print("Running on target: %s" % target)
with tvm.target.Target(target):
fcompute, fschedule = tvm.topi.testing.dispatch(target, _batch_matmul_implement)
out = fcompute(x, y)
if not dynamic:
s = fschedule([out])
out_shape = out.shape
else:
s = te.create_schedule(out.op)
out_shape = (batch_size, M, N)
if debug:
print(tvm.lower(s, [x, y, out], simple_mode=True))
a = tvm.nd.array(a_np, dev)
b = tvm.nd.array(b_np, dev)
c = tvm.nd.array(np.zeros(get_const_tuple(out_shape), dtype=dtype), dev) |
f = tvm.build(s, [x, y, out], target, name="dense")
f(a, b, c)
tvm.testing.assert_allclose(c.numpy(), c_np, rtol=1e-5)
for target, dev in tvm.testing.enabled_targets():
target_kind = tvm.target.Target(target).kind.name
if dynamic and target_kind in ["cuda", "nvptx", "vulkan", "opencl"]:
print("Dynamic batch matmul test is skippped on %s" % target)
continue
check_device(target, dev)
def verify_batch_matmul_int8(x_batch, y_batch, M, N, K):
dtype = "int8"
out_dtype = "int32"
assert x_batch == y_batch or x_batch == 1 or y_batch == 1
x = te.placeholder((x_batch, M, K), name="x", dtype=dtype)
y = te.placeholder((y_batch, N, K), name="y", dtype=dtype)
@memoize("topi.tests.test_topi_batch_matmul")
def get_ref_data():
a_np = np.random.randint(low=-128, high=127, size=(x_batch, M, K)).astype(dtype)
b_np = np.random.randint(low=-128, high=127, size=(y_batch, N, K)).astype(dtype)
c_np = tvm.topi.testing.batch_matmul(a_np, b_np, out_dtype=out_dtype)
return (a_np, b_np, c_np)
a_np, b_np, c_np = get_ref_data()
def check_device(device):
dev = tvm.device(device, 0)
if device == "cuda" and not tvm.contrib.nvcc.have_int8(dev.compute_version):
print("Skip because int8 intrinsics are not available")
return
print("Running on target: %s" % device)
with tvm.target.Target(device):
out = topi.cuda.batch_matmul_int8(x, y, None, out_dtype)
s = topi.cuda.schedule_batch_matmul_int8([out])
a = tvm.nd.array(a_np, dev)
b = tvm.nd.array(b_np, dev)
c = tvm.nd.array(np.zeros(get_const_tuple(out.shape), dtype=out_dtype), dev)
f = tvm.build(s, [x, y, out], device, name="batch_matmul_int8")
f(a, b, c)
tvm.testing.assert_allclose(c.numpy(), c_np, rtol=1e-5)
for device in ["cuda"]:
check_device(device)
@tvm.testing.uses_gpu
def test_batch_matmul():
veri |
fy_batch_matmul(1, 1, 16, 16, 32)
verify_batch_matmul(5, 5, 16, 16, 32)
verify_batch_matmul(5, 5, 16, 20, 32)
verify_batch_matmul(30, 30, 16, 20, 32)
verify_batch_matmul(1, 5, 16, 16, 32)
verify_batch_matmul(5, 1, 16, 16, 32)
verify_batch_matmul(1, 1, 16, 16, 32, dynamic=True)
verify_batch_matmul(5, 5, 16, 16, 32, dynamic=True)
@tvm.testing.requires_cuda
@tvm.testing.requires_gpu
def test_batch_matmul_int8():
with Int8Fallback():
verify_batch_matmul_int8(1, 1, 2, 3, 1)
verify_batch_matmul_int8(1, 1, 16, 24, 32)
verify_batch_matmul_int8(5, 5, 24, 16, 32)
verify_batch_matmul_int8(30, 30, 16, 20, 32)
verify_batch_matmul_int8(1, 5, 16, 16, 32)
verify_batch_matmul_int8(5, 1, 16, 16, 32)
if __name__ == "__main__":
test_batch_matmul()
test_batch_matmul_int8() |
"""Test code for batch_matmul operator""" |
import numpy as np |
import tvm
from tvm |
import te
from tvm |
import topi |
import tvm.topi.testing
from tvm.topi.utils |
import get_const_tuple
from tvm.contrib.pickle_memoize |
import memoize |
import tvm.testing
_batch_matmul_implement = {
"gpu": (topi.cuda.batch_matmul_tensorcore, topi.cuda.schedule_batch_matmul_tensorcore),
}
def convert_int32_into_int4(a_int32):
"""convert int32 values into int4
Parameters
----------
a_int32 : int
Return
------
a_int4 : int
"""
B, K, L = a_int32.shape
assert L % 8 == 0
a_int4 = np.zeros(shape=(B, K, L
for b in range(B):
for k in range(K):
for l in range(L
for m in range(min(8, L - l * 8)):
a_int4[b, k, l] = a_int4[b, k, l] | (
(a_int32[b, k, l * 8 + m] & 0xF) << ((7 - m) * 4)
)
return a_int4
def verify_batch_matmul(x_batch, y_batch, M, N, K, dtype):
x = te.placeholder((x_batch, M, K), name="x", dtype=dtype)
y = te.placeholder((y_batch, N, K), name="y", dtype=dtype)
assert dtype in ["int4", "int8", "float16"]
out_dtype = "float32"
if dtype in ["int8", "int4"]:
out_dtype = "int32"
@memoize("topi.tests.test_topi_batch_matmul_tensorcore")
def get_ref_data():
if dtype == "int4":
a_np = np.random.randint(low=-8, high=7, size=(x_batch, M, K))
b_np = np.random.randint(low=-8, high=7, size=(y_batch, N, K))
elif dtype == "int8":
a_np = np.random.randint(low=-128, high=127, size=(x_batch, M, K)).astype(dtype)
b_np = np.random.randint(low=-128, high=127, size=(y_batch, N, K)).astype(dtype)
else:
a_np = np.random.uniform(size=(x_batch, M, K)).astype(dtype)
b_np = np.random.uniform(size=(y_batch, N, K)).astype(dtype)
c_np = tvm.topi.testing.batch_matmul(a_np, b_np, out_dtype)
return (a_np, b_np, c_np)
a_np, b_np, c_np = get_ref_data()
if dtype == "int4":
a_np = convert_int32_into_int4(a_np)
b_np = convert_int32_into_int4(b_np)
def check_device(device):
dev = tvm.device(device, 0)
print("Running on target: %s" % devi |
ce)
with tvm.target.Target(device):
fcompute, fschedule = tvm.topi.testing.dispatch(device, _batch_matmul_implement)
out = fcompute(x, y, None, out_dtype)
s = fschedule([out])
a = tvm.nd.array(a_np, dev)
b = tvm.nd.array(b_np, dev)
c = tvm.nd.array(np.zeros(get_const_tuple(out.shape), dtype=out_dtype), dev)
f = tvm.build(s, [x, y, out], device, name="batch_matmul")
f(a, b, c)
tvm.testing.assert_allclose(c.numpy(), c_np, rtol=1e-3)
check_device("cuda")
@tvm.testing.requires_tensorcore
def test_batch_matmul():
for dtype in ["float16", "int8", "int4"]:
verify_batch_matmul(1, 1, 16, 16, 32, dtype)
verify_batch_matmul(5, 5, 16, 16, 32, dtype)
verify_batch_matmul(5, 5, 16, 32, 32, dtype)
verify_batch_matmul(30, 30, 16, 32, 32, dtype)
if __name__ == "__main__":
test_batch_matmul() |
"""Tests for the batch_norm operator.""" |
import numpy as np |
import pytest |
import tvm
from tvm |
import te
from tvm |
import topi |
import tvm.testing |
import tvm.topi.testing
_DEVICE = "llvm"
_BATCH_NORM_IMPLEMENT = {
"generic": (topi.nn.batch_norm, topi.generic.schedule_batch_norm),
"cpu": (topi.nn.batch_norm, topi.x86.schedule_batch_norm),
}
@pytest.mark.parametrize(
"shape, axis, epsilon, center, scale",
[
((1,), 0, 0.1, True, True),
((2, 3), 0, 0.1, True, True),
((1, 2, 4), 0, 0.1, True, True),
((1, 2, 3, 4), 0, 0.001, False, False),
((2, 3, 4, 1), 1, 0.01, False, True),
((3, 4, 1, 2), 2, 0.1, True, False),
((4, 1, 2, 3), 3, 1.0, True, True),
((1, 2, 4, 4, 5), 0, 0.1, True, True),
],
)
def test_batch_norm(shape, axis, epsilon, center, scale):
x_np = np.random.random(shape).astype("float32")
gamma_np = np.random.random(shape[axis]).astype("float32")
beta_np = np.random.random(shape[axis]).astype("float32")
moving_mean_np = np.random.random(shape[axis]).astype("float32")
moving_var_np = np.random.random(shape[axis]).astype("float32")
out_x_np, out_moving_mean_np, out_moving_var_np = tvm.topi.testing.batch_norm(
x_np, gamma_np, beta_np, moving_mean_np, moving_var_np, axis, epsilon, center, scale
)
x_te = te.placeholder(shape, name="x", dtype="float32")
gamma_te = te.placeholder((shape[axis],), name="gamma", dtype="float32")
beta_te = te.placeholder((shape[axis],), name="beta", dtype="float32")
moving_mean_te = te.placeholder((shape[axis],), name="moving_mean", dtype="float32")
moving_var_te = te.placeholder((shape[axis],), name="moving_var", dtype="float32")
with tvm.target.Target(_DEVICE):
fcompute, fschedule = tvm.topi.testing.dispatch(_DEVICE, _BATCH_NORM_IMPLEMENT)
out_x, out_moving_mean, out_moving_var = fcompute(
x_te, gamma_te, beta_te, moving_mean_te, moving_var_te, axis, epsilon, center, scale
)
s = fschedule([out_x, out_moving_mean, out_moving_var])
dev = tvm.device(_DEVICE, 0)
x_tvm = tvm.nd.array(x_np, dev)
gamma_tvm = tvm.nd.array |
(gamma_np, dev)
beta_tvm = tvm.nd.array(beta_np, dev)
moving_mean_tvm = tvm.nd.array(moving_mean_np, dev)
moving_var_tvm = tvm.nd.array(moving_var_np, dev)
out_x_tvm = tvm.nd.array(np.zeros(shape, dtype=out_x.dtype), dev)
out_moving_mean_tvm = tvm.nd.array(
np.zeros((shape[axis],), dtype=out_moving_mean.dtype), dev
)
out_moving_var_tvm = tvm.nd.array(np.zeros((shape[axis],), dtype=out_moving_var.dtype), dev)
f = tvm.build(
s,
[
x_te,
gamma_te,
beta_te,
moving_mean_te,
moving_var_te,
out_x,
out_moving_mean,
out_moving_var,
],
_DEVICE,
)
f(
x_tvm,
gamma_tvm,
beta_tvm,
moving_mean_tvm,
moving_var_tvm,
out_x_tvm,
out_moving_mean_tvm,
out_moving_var_tvm,
)
tvm.testing.assert_allclose(out_x_tvm.numpy(), out_x_np, rtol=1e-3)
tvm.testing.assert_allclose(out_moving_mean_tvm.numpy(), out_moving_mean_np, rtol=1e-3)
tvm.testing.assert_allclose(out_moving_var_tvm.numpy(), out_moving_var_np, rtol=1e-3)
if __name__ == "__main__":
test_batch_norm() |
"""Test code for batch to space""" |
import numpy as np |
import tvm
from tvm |
import te
from tvm |
import topi |
import tvm.testing |
import tvm.topi.testing
def verify_batch_to_space_nd(input_shape, block_shape, crop_begin_list, crop_end_list):
out_shape = []
out_shape.append(int((input_shape[0] / np.prod(block_shape))))
for i in range(1, len(block_shape) + 1):
crop = crop_begin_list[i - 1] + crop_end_list[i - 1]
out_shape.append(input_shape[i] * block_shape[i - 1] - crop)
for i in range(len(block_shape) + 1, len(input_shape)):
out_shape.append(input_shape[i])
A = te.placeholder(input_shape, name="A", dtype="float32")
dtype = A.dtype
a_np = np.random.uniform(size=input_shape).astype(dtype)
B = topi.nn.batch_to_space_nd(A, block_shape, crop_begin_list, crop_end_list)
b_np = tvm.topi.testing.batch_to_space_nd_python(
a_np, block_shape, crop_begin_list, crop_end_list
)
def check_device(target, dev):
print("Running on target: %s" % target)
with tvm.target.create(target):
s = tvm.topi.testing.get_injective_schedule(target)(B)
a = tvm.nd.array(a_np, dev)
b = tvm.nd.array(np.zeros(out_shape, dtype=dtype), dev)
f = tvm.build(s, [A, B], target)
f(a, b)
tvm.testing.assert_allclose(b.numpy(), b_np, rtol=1e-3, atol=1e-3)
for target, dev in tvm.testing.enabled_targets():
check_device(target, dev)
@tvm.testing.uses_gpu
def test_batch_to_space():
verify_batch_to_space_nd([4, 1, 1, 1], [2, 2], [0, 0], [0, 0])
verify_batch_to_space_nd([8, 1, 3, 1], [2, 2], [0, 2], [0, 0])
verify_batch_to_space_nd([18, 2, 1, 2], [2, 3], [1, 1], [0, 0])
verify_batch_to_space_nd([20, 5, 8, 7], [2, 2], [1, 1], [1, 1])
if __name__ == "__main__":
test_batch_to_space() |
import numpy as np |
import tvm
from tvm |
import te
from tvm |
import topi |
import tvm.testing |
import tvm.topi.testing
from tvm.topi.utils |
import get_const_tuple
from tvm.contrib.pickle_memoize |
import memoize
def generate_quantized_np(shape, bits, out_dtype):
min_val = 0
max_val = 1 << bits
return np.random.randint(min_val, max_val, size=shape).astype(out_dtype)
def verify_bitserial_conv2d_nchw(
batch,
in_size,
in_channel,
num_filter,
kernel,
stride,
padding,
activation_bits,
weight_bits,
unipolar,
):
in_height = in_width = in_size
input_dtype = "uint32"
out_dtype = "int32"
with tvm.target.Target("llvm"):
A = te.placeholder((batch, in_channel, in_height, in_width), dtype=input_dtype, name="A")
W = te.placeholder((num_filter, in_channel, kernel, kernel), dtype=input_dtype, name="W")
B = topi.x86.bitserial_conv2d_nchw(
A, W, stride, padding, activation_bits, weight_bits, input_dtype, out_dtype, unipolar
)
s = topi.x86.schedule_bitserial_conv2d_nchw([B])
a_shape = get_const_tuple(A.shape)
w_shape = get_const_tuple(W.shape)
@memoize("topi.tests.test_topi_bitseral_conv2d_nchw")
def get_ref_data():
a_np = generate_quantized_np(get_const_tuple(a_shape), activation_bits, input_dtype)
w_np = generate_quantized_np(get_const_tuple(w_shape), weight_bits, input_dtype)
if unipolar:
w_ = np.copy(w_np).astype(out_dtype)
for x in np.nditer(w_, op_flags=["readwrite"]):
x[...] = 1 if x == 1 else -1
b_np = tvm.topi.testing.conv2d_nchw_python(a_np.astype(out_dtype), w_, stride, padding)
else:
b_np = tvm.topi.testing.conv2d_nchw_python(a_np, w_np, stride, padding)
return a_np, w_np, b_np
a_np, w_np, b_np = get_ref_data()
dev = tvm.cpu(0)
a = tvm.nd.array(a_np, dev)
w = tvm.nd.array(w_np, dev)
b = tvm.nd.array(np.zeros(get_const_tuple(B.shape), dtype=B.dtype), dev)
func = tvm.build(s, [A, W, B], "llvm")
func(a, w, b)
tvm.testing.assert_allclose(b.numpy(), b_np, rtol=1e-5)
def verify_bitserial_conv2d_nhwc(
batch,
in_size,
in_channel, |
num_filter,
kernel,
stride,
padding,
activation_bits,
weight_bits,
unipolar,
):
in_height = in_width = in_size
input_dtype = "uint32"
out_dtype = "int32"
with tvm.target.Target("llvm"):
A = te.placeholder((batch, in_height, in_width, in_channel), dtype=input_dtype, name="A")
W = te.placeholder((kernel, kernel, in_channel, num_filter), dtype=input_dtype, name="W")
B = topi.x86.bitserial_conv2d_nhwc(
A, W, stride, padding, activation_bits, weight_bits, input_dtype, out_dtype, unipolar
)
s = topi.x86.schedule_bitserial_conv2d_nhwc([B])
a_shape = get_const_tuple(A.shape)
w_shape = get_const_tuple(W.shape)
@memoize("topi.tests.test_topi_bitseral_conv2d_nhwc")
def get_ref_data():
a_np = generate_quantized_np(get_const_tuple(a_shape), activation_bits, input_dtype)
w_np = generate_quantized_np(get_const_tuple(w_shape), weight_bits, input_dtype)
if unipolar:
w_ = np.copy(w_np).astype(out_dtype)
for x in np.nditer(w_, op_flags=["readwrite"]):
x[...] = 1 if x == 1 else -1
b_np = tvm.topi.testing.conv2d_nhwc_python(a_np, w_, stride, padding).astype(out_dtype)
else:
b_np = tvm.topi.testing.conv2d_nhwc_python(a_np, w_np, stride, padding).astype(
out_dtype
)
return a_np, w_np, b_np
a_np, w_np, b_np = get_ref_data()
dev = tvm.cpu(0)
a = tvm.nd.array(a_np, dev)
w = tvm.nd.array(w_np, dev)
b = tvm.nd.array(np.zeros(get_const_tuple(B.shape), dtype=B.dtype), dev)
func = tvm.build(s, [A, W, B], "llvm")
func(a, w, b)
tvm.testing.assert_allclose(b.numpy(), b_np, rtol=1e-5)
def test_bitserial_conv2d():
in_size = 56
ic, oc = 64, 64
k = 3
stride = 1
pad = 1
verify_bitserial_conv2d_nchw(1, in_size, ic, oc, k, stride, pad, 1, 1, True)
verify_bitserial_conv2d_nchw(1, in_size, ic, oc, k, stride, pad, 2, 1, True)
verify_bitserial_conv2d |
_nchw(1, in_size, ic, oc, k, stride, pad, 1, 1, False)
verify_bitserial_conv2d_nchw(1, in_size, ic, oc, k, stride, pad, 2, 1, False)
verify_bitserial_conv2d_nchw(1, in_size, ic, oc, k, stride, pad, 2, 2, False)
verify_bitserial_conv2d_nhwc(1, in_size, ic, oc, k, stride, pad, 1, 1, True)
verify_bitserial_conv2d_nhwc(1, in_size, ic, oc, k, stride, pad, 2, 1, True)
verify_bitserial_conv2d_nhwc(1, in_size, ic, oc, k, stride, pad, 1, 1, False)
verify_bitserial_conv2d_nhwc(1, in_size, ic, oc, k, stride, pad, 2, 1, False)
verify_bitserial_conv2d_nhwc(1, in_size, ic, oc, k, stride, pad, 2, 2, False)
if __name__ == "__main__":
test_bitserial_conv2d() |
import os |
import re |
import numpy as np |
import tvm
from tvm |
import te
from tvm |
import topi |
import tvm.topi.testing
from tvm.topi.utils |
import get_const_tuple
def generate_quantized_np(shape, bits, out_dtype):
np.random.seed(0)
min_val = 0
max_val = 1 << bits
return np.random.randint(min_val, max_val, size=shape).astype(out_dtype)
def verify_bitserial_conv2d_nhwc(
batch,
in_size,
in_channel,
num_filter,
kernel,
stride,
padding,
activation_bits,
weight_bits,
unipolar,
use_relu=False,
):
in_height = in_width = in_size
input_type = "uint32"
out_dtype = "int16"
device = "llvm -device=arm_cpu -model=bcm2837 -mtriple=armv7l-linux-gnueabihf -mattr=+neon"
with tvm.target.Target(device):
A = te.placeholder((batch, in_height, in_width, in_channel), dtype=input_type, name="A")
W = te.placeholder((kernel, kernel, in_channel, num_filter), dtype=input_type, name="W")
B = topi.arm_cpu.bitserial_conv2d_nhwc(
A, W, stride, padding, activation_bits, weight_bits, "uint8", out_dtype, unipolar
)
if use_relu:
B = topi.nn.relu(B)
s = topi.arm_cpu.schedule_bitserial_conv2d_nhwc([B])
func = tvm.build(s, [A, W, B], device)
assembly = func.get_source("asm")
matches = re.findall("vpadal", assembly)
assert len(matches) > 0
matches = re.findall("vcnt", assembly)
assert len(matches) > 0
matches = re.findall("vpadd", assembly)
assert len(matches) > 0
dev = tvm.device(device, 0)
if "arm" not in os.uname()[4]:
print("Skipped running code, not an arm device")
return
print("Running on target: %s" % device)
def get_ref_data():
a_np = generate_quantized_np(get_const_tuple(A.shape), activation_bits, input_type)
w_np = generate_quantized_np(get_const_tuple(W.shape), weight_bits, input_type)
if unipolar:
w_ = np.copy(w_np).astype(out_dtype)
for x in np.nditer(w_, op_flags=["readwrite"]):
x[...] = 1 if x == 1 else -1
b_np = tvm.topi.testing.conv2d_nhwc_python(a_np, w_, stride, padding).asty |
pe(out_dtype)
else:
b_np = tvm.topi.testing.conv2d_nhwc_python(a_np, w_np, stride, padding).astype(
out_dtype
)
return a_np, w_np, b_np
a_np, w_np, b_np = get_ref_data()
a = tvm.nd.array(a_np, dev)
w = tvm.nd.array(w_np, dev)
b = tvm.nd.array(np.zeros(get_const_tuple(B.shape), dtype=B.dtype), dev)
func = tvm.build(s, [A, W, B], device)
func(a, w, b)
np.testing.assert_allclose(b.numpy(), b_np, rtol=1e-5)
def test_bitserial_conv2d():
in_size = 56
ic, oc = 64, 64
k = 3
stride = 1
pad = 1
verify_bitserial_conv2d_nhwc(1, in_size, ic, oc, k, stride, pad, 1, 1, False)
verify_bitserial_conv2d_nhwc(1, in_size, ic, oc, k, stride, pad, 2, 1, False)
verify_bitserial_conv2d_nhwc(1, in_size, ic, oc, k, stride, pad, 1, 1, True)
verify_bitserial_conv2d_nhwc(1, in_size, ic, oc, k, stride, pad, 2, 1, True)
verify_bitserial_conv2d_nhwc(1, in_size, ic, oc, k, stride, pad, 2, 1, True, True)
if __name__ == "__main__":
test_bitserial_conv2d() |
"""Test code for bitserial_dense operator""" |
import os |
import numpy as np |
import tvm
from tvm |
import te
from tvm |
import topi |
import tvm.testing |
import tvm.topi.testing
from tvm.topi.utils |
import get_const_tuple
from tvm.contrib.pickle_memoize |
import memoize
_bitserial_dense_implement = {
"generic": (topi.nn.bitserial_dense, topi.generic.schedule_bitserial_dense),
"cpu": (topi.x86.bitserial_dense, topi.x86.schedule_bitserial_dense),
"arm_cpu": (topi.arm_cpu.bitserial_dense, topi.arm_cpu.schedule_bitserial_dense),
}
def generate_quantized_np(shape, bits, out_dtype):
min_val = 0
max_val = 1 << bits
return np.random.randint(min_val, max_val, size=shape).astype(out_dtype)
def verify_bitserial_dense(batch, in_dim, out_dim, activation_bits, weight_bits, unipolar):
out_dtype = "int16"
def get_ref_data(a_shape, b_shape, input_dtype):
a_np = generate_quantized_np(get_const_tuple(a_shape), activation_bits, input_dtype)
b_np = generate_quantized_np(get_const_tuple(b_shape), weight_bits, input_dtype)
if unipolar:
b_ = np.copy(b_np).astype(out_dtype)
for x in np.nditer(b_, op_flags=["readwrite"]):
x[...] = 1 if x == 1 else -1
c_np = np.dot(a_np, b_.T)
else:
c_np = np.dot(a_np, b_np.T)
return a_np, b_np, c_np
for target in ["llvm", "llvm -device=arm_cpu"]:
if "arm_cpu" in target and "arm" not in os.uname()[4]:
print("Skipped running code, not an arm device")
continue
input_dtype = "uint8" if "arm_cpu" in target else "uint32"
A = te.placeholder((batch, in_dim), dtype=input_dtype, name="A")
B = te.placeholder((out_dim, in_dim), dtype=input_dtype, name="B")
fcompute, fschedule = tvm.topi.testing.dispatch(target, _bitserial_dense_implement)
C = fcompute(A, B, activation_bits, weight_bits, input_dtype, out_dtype, unipolar)
s = fschedule([C])
a_shape = get_const_tuple(A.shape)
b_shape = get_const_tuple(B.shape)
a_np, b_np, c_np = get_ref_data(a_shape, b_shape, input_dtype)
dev = tvm.cpu(0)
a = tvm.nd.array(a_np, dev)
b = tvm.nd.array(b_np, dev)
c = tvm.nd.array(np.zeros(get_const_tuple(C.shap |
e), dtype=C.dtype), dev)
func = tvm.build(s, [A, B, C], target)
func(a, b, c)
tvm.testing.assert_allclose(c.numpy(), c_np, rtol=1e-5)
def test_bitserial_dense():
verify_bitserial_dense(1, 1024, 1000, 1, 1, True)
verify_bitserial_dense(1, 1024, 1000, 2, 1, True)
verify_bitserial_dense(1, 1024, 1000, 1, 1, False)
verify_bitserial_dense(1, 1024, 1000, 2, 1, False)
if __name__ == "__main__":
test_bitserial_dense() |
"""Test code for binary neural network operators.""" |
import numpy as np |
import tvm |
import tvm.testing
from tvm |
import te
from tvm |
import topi
from tvm.topi.utils |
import get_const_tuple
from tvm.contrib.pickle_memoize |
import memoize
def verify_binary_dense(batch, in_dim, out_dim):
A = te.placeholder((batch, in_dim), name="A")
B = te.placeholder((out_dim, in_dim), name="B")
bnn_A = topi.nn.binarize_pack(A)
bnn_B = topi.nn.binarize_pack(B)
bnn_A1 = te.placeholder(bnn_A.shape, dtype=bnn_A.dtype)
bnn_B1 = te.placeholder(bnn_B.shape, dtype=bnn_B.dtype)
bnn_C = topi.nn.binary_dense(bnn_A1, bnn_B1)
with tvm.target.Target("llvm"):
s1 = topi.x86.schedule_binarize_pack(bnn_A)
s2 = topi.x86.schedule_binarize_pack(bnn_B)
s3 = topi.x86.schedule_binary_dense(bnn_C)
dtype = A.dtype
@memoize("topi.tests.test_topi_binary_dense")
def get_ref_data():
a_np = (np.random.randint(2, size=(batch, in_dim)) * 2 - 1).astype(dtype)
b_np = (np.random.randint(2, size=(out_dim, in_dim)) * 2 - 1).astype(dtype)
c_np = np.dot(a_np, b_np.T)
return a_np, b_np, c_np
a_np, b_np, c_np = get_ref_data()
dev = tvm.cpu(0)
a = tvm.nd.array(a_np, dev)
b = tvm.nd.array(b_np, dev)
bnn_a = tvm.nd.array(np.zeros(get_const_tuple(bnn_A.shape), dtype=bnn_A.dtype), dev)
bnn_b = tvm.nd.array(np.zeros(get_const_tuple(bnn_B.shape), dtype=bnn_B.dtype), dev)
bnn_c = tvm.nd.array(np.zeros(get_const_tuple(bnn_C.shape), dtype=bnn_C.dtype), dev)
f1 = tvm.build(s1, [A, bnn_A], "llvm")
f2 = tvm.build(s2, [B, bnn_B], "llvm")
f3 = tvm.build(s3, [bnn_A1, bnn_B1, bnn_C], "llvm")
f1(a, bnn_a)
f2(b, bnn_b)
f3(bnn_a, bnn_b, bnn_c)
tvm.testing.assert_allclose(bnn_c.numpy(), c_np, rtol=1e-5)
def test_binary_dense():
verify_binary_dense(1, 4096, 1024)
verify_binary_dense(1, 1024, 1000)
if __name__ == "__main__":
test_binary_dense() |
"""Test code for broadcasting operators.""" |
import numpy as np |
import tvm
from tvm |
import te
from tvm |
import topi |
import tvm.testing |
import tvm.topi.testing
def verify_broadcast_to_ele(in_shape, out_shape, fbcast):
A = te.placeholder(shape=in_shape, name="A")
B = fbcast(A, out_shape)
def check_target(target):
dev = tvm.device(target, 0)
if not tvm.testing.device_enabled(target):
print("Skip because %s is not enabled" % target)
return
print("Running on target: %s" % target)
with tvm.target.Target(target):
s = tvm.topi.testing.get_broadcast_schedule(target)(B)
foo = tvm.build(s, [A, B], target, name="broadcast_to")
data_npy = np.random.uniform(size=in_shape).astype(A.dtype)
out_npy = np.broadcast_to(data_npy, out_shape)
data_nd = tvm.nd.array(data_npy, dev)
out_nd = tvm.nd.array(np.empty(out_shape).astype(B.dtype), dev)
foo(data_nd, out_nd)
tvm.testing.assert_allclose(out_nd.numpy(), out_npy)
for target, dev in tvm.testing.enabled_targets():
check_target(target)
check_target("sdaccel")
def verify_broadcast_binary_ele(
lhs_shape,
rhs_shape,
ftopi,
fnumpy,
lhs_min=-100,
lhs_max=100,
rhs_min=-100,
rhs_max=100,
dtype="float32",
):
A = (
te.var("A", dtype=dtype)
if lhs_shape is None
else te.placeholder(shape=lhs_shape, name="A", dtype=dtype)
)
B = (
te.var("B", dtype=dtype)
if rhs_shape is None
else te.placeholder(shape=rhs_shape, name="B", dtype=dtype)
)
C = ftopi(A, B)
if isinstance(A, tvm.tir.PrimExpr) and isinstance(B, tvm.tir.PrimExpr):
assert isinstance(C, tvm.tir.PrimExpr)
return
def gen_operand(shape, low, high, dev):
if shape is None:
npy = float(np.random.uniform(low=low, high=high))
if dtype.startswith("int"):
npy = int(npy)
nd = npy
else:
npy = np.random.uniform(low=low, high=high, size=shape).astype(dtype)
nd = tvm.nd.array(npy, dev)
return npy, nd |
def check_target(target):
dev = tvm.device(target, 0)
if not tvm.testing.device_enabled(target):
print("Skip because %s is not enabled" % target)
return
print("Running on target: %s" % target)
with tvm.target.Target(target):
s = tvm.topi.testing.get_broadcast_schedule(target)(C)
foo = tvm.build(s, [A, B, C], target, name="broadcast_binary" + "_" + ftopi.__name__)
lhs_npy, lhs_nd = gen_operand(lhs_shape, lhs_min, lhs_max, dev)
rhs_npy, rhs_nd = gen_operand(rhs_shape, rhs_min, rhs_max, dev)
out_npy = fnumpy(lhs_npy, rhs_npy)
out_nd = tvm.nd.array(np.empty(out_npy.shape).astype(C.dtype), dev)
foo(lhs_nd, rhs_nd, out_nd)
tvm.testing.assert_allclose(out_nd.numpy(), out_npy, rtol=1e-4, atol=1e-4)
for target, dev in tvm.testing.enabled_targets():
check_target(target)
check_target("sdaccel")
@tvm.testing.uses_gpu
def test_broadcast_to():
verify_broadcast_to_ele((1,), (10,), topi.broadcast_to)
verify_broadcast_to_ele((), (10,), topi.broadcast_to)
verify_broadcast_to_ele((1, 1, 5, 4), (3, 4, 4, 4, 5, 4), topi.broadcast_to)
verify_broadcast_to_ele((1, 128, 1, 32), (64, 128, 64, 32), topi.broadcast_to)
@tvm.testing.uses_gpu
def test_add():
verify_broadcast_binary_ele((), (), topi.add, np.add)
verify_broadcast_binary_ele((5, 2, 3), (2, 1), topi.add, np.add)
@tvm.testing.uses_gpu
def test_subtract():
verify_broadcast_binary_ele((5, 2, 3), (), topi.subtract, np.subtract)
verify_broadcast_binary_ele((5, 2, 3), None, topi.subtract, np.subtract)
verify_broadcast_binary_ele(None, None, topi.subtract, np.subtract)
verify_broadcast_binary_ele((1, 32), (64, 32), topi.subtract, np.subtract)
@tvm.testing.uses_gpu
def test_multiply():
verify_broadcast_binary_ele((5, 64, 128), (2, 5, 64, 1), topi.multiply, np.multiply)
@tvm.testing.uses_gpu
def test_divide():
verify_broadcast_binary_ele(None, (10,), topi.divide, np.divide, rhs_min=0.00 |
01)
verify_broadcast_binary_ele((), None, topi.divide, np.divide, rhs_min=0.0001)
verify_broadcast_binary_ele((2, 3, 1, 32), (64, 32), topi.divide, np.divide, rhs_min=0.0001)
@tvm.testing.uses_gpu
def test_floor_divide():
def _canonical_floor_div(a, b):
return np.floor(a / b)
verify_broadcast_binary_ele(
None, (10,), topi.floor_divide, _canonical_floor_div, rhs_min=0.0001
)
verify_broadcast_binary_ele((), None, topi.floor_divide, _canonical_floor_div, rhs_min=0.0001)
verify_broadcast_binary_ele(
(2, 3, 64, 32), (64, 32), topi.floor_divide, _canonical_floor_div, rhs_min=0.0001
)
@tvm.testing.uses_gpu
def test_maximum_minmum():
verify_broadcast_binary_ele((32,), (64, 32), topi.maximum, np.maximum)
verify_broadcast_binary_ele((1, 2, 2, 1, 32), (64, 32), topi.minimum, np.minimum)
@tvm.testing.uses_gpu
def test_power():
verify_broadcast_binary_ele(
(1, 2, 2), (2,), topi.power, np.power, lhs_min=0.001, rhs_min=0.001, rhs_max=2
)
@tvm.testing.uses_gpu
def test_mod():
verify_broadcast_binary_ele(
(1, 2, 2), (2,), topi.mod, np.mod, lhs_min=0.001, rhs_min=1, dtype="int32"
)
@tvm.testing.uses_gpu
def test_floor_mod():
def _canonical_floor_mod(a, b):
return a - np.floor(a / b) * b
verify_broadcast_binary_ele(
(1, 2, 2),
(2,),
topi.floor_mod,
_canonical_floor_mod,
lhs_min=0.001,
rhs_min=1,
dtype="int32",
)
verify_broadcast_binary_ele(
(3, 4, 5),
(3, 4, 5),
topi.floor_mod,
_canonical_floor_mod,
lhs_min=0.001,
rhs_min=1,
dtype="float32",
)
@tvm.testing.uses_gpu
def test_cmp():
def greater(x, y):
return topi.greater(x, y).astype("int8")
def less(x, y):
return topi.less(x, y).astype("int8")
def equal(x, y):
return topi.equal(x, y).astype("int8")
def not_equal(x, y):
return topi.not_equal(x, y).astype("int8")
def greater_equa |
l(x, y):
return topi.greater_equal(x, y).astype("int8")
def less_equal(x, y):
return topi.less_equal(x, y).astype("int8")
verify_broadcast_binary_ele((1, 2, 2), (2,), greater, np.greater)
verify_broadcast_binary_ele((2, 1, 2), (2, 3, 1), less, np.less)
verify_broadcast_binary_ele(
(2, 1, 2),
(2, 3, 1),
equal,
np.equal,
lhs_min=-2,
lhs_max=2,
rhs_min=-2,
rhs_max=2,
dtype="int32",
)
verify_broadcast_binary_ele(
(2, 1, 2),
(2, 3, 1),
not_equal,
np.not_equal,
lhs_min=-2,
lhs_max=2,
rhs_min=-2,
rhs_max=2,
dtype="int32",
)
verify_broadcast_binary_ele(
(7, 1, 5),
(7, 3, 1),
greater_equal,
np.greater_equal,
lhs_min=-3,
lhs_max=3,
rhs_min=-3,
rhs_max=3,
dtype="int32",
)
verify_broadcast_binary_ele(
(7, 1, 5),
(7, 3, 1),
less_equal,
np.less_equal,
lhs_min=-3,
lhs_max=3,
rhs_min=-3,
rhs_max=3,
dtype="int32",
)
@tvm.testing.uses_gpu
def test_shift():
verify_broadcast_binary_ele(
(2, 1, 2), None, topi.right_shift, np.right_shift, dtype="int32", rhs_min=0, rhs_max=32
)
verify_broadcast_binary_ele(
(1, 2, 2), (2,), topi.left_shift, np.left_shift, dtype="int32", rhs_min=0, rhs_max=32
)
verify_broadcast_binary_ele(
(1, 2, 2), (2,), topi.left_shift, np.left_shift, dtype="int32", rhs_min=0, rhs_max=32
)
@tvm.testing.uses_gpu
def test_logical_single_ele():
def test_apply(
func,
name,
f_numpy,
indata,
dtype="bool",
):
A = te.placeholder(shape=indata.shape, name="A", dtype=dtype)
B = func(A)
if isinstance(A, tvm.tir.PrimExpr):
assert isinstance(B, tvm.tir.PrimExpr)
return
def check_target(target, dev):
print(" |
Running on target: %s" % target)
with tvm.target.Target(target):
s = tvm.topi.testing.get_broadcast_schedule(target)(B)
foo = tvm.build(s, [A, B], target, name=name)
data_npy = indata.astype(A.dtype)
data_nd = tvm.nd.array(data_npy, dev)
out_npy = f_numpy(indata)
out_nd = tvm.nd.array(np.empty(data_npy.shape).astype(B.dtype), dev)
foo(data_nd, out_nd)
tvm.testing.assert_allclose(out_nd.numpy(), out_npy)
for target, dev in tvm.testing.enabled_targets():
check_target(target, dev)
test_apply(topi.logical_not, "logical_not", np.logical_not, np.array([True, False, 0, 1]))
test_apply(topi.logical_not, "logical_not", np.logical_not, np.array(np.arange(5) < 3))
@tvm.testing.uses_gpu
def test_bitwise_not():
def test_apply(
func,
name,
f_numpy,
shape,
dtype="int32",
):
A = te.placeholder(shape=shape, name="A", dtype=dtype)
B = func(A)
if isinstance(A, tvm.tir.PrimExpr):
assert isinstance(B, tvm.tir.PrimExpr)
return
def check_target(target, dev):
print("Running on target: %s" % target)
with tvm.target.Target(target):
s = tvm.topi.testing.get_broadcast_schedule(target)(B)
foo = tvm.build(s, [A, B], target, name=name)
data_npy = np.random.uniform(size=shape).astype(A.dtype)
data_nd = tvm.nd.array(data_npy, dev)
out_npy = f_numpy(data_npy)
out_nd = tvm.nd.array(np.empty(data_npy.shape).astype(B.dtype), dev)
foo(data_nd, out_nd)
tvm.testing.assert_allclose(out_nd.numpy(), out_npy)
for target, dev in tvm.testing.enabled_targets():
check_target(target, dev)
test_apply(topi.bitwise_not, "bitwise_not", np.bitwise_not, ())
test_apply(topi.bitwise_not, "bitwise_not", np.bitwise_not, (2, 1, 2))
@tvm.testing.uses_gpu
def tes |
t_logical_binary_ele():
def test_apply(
func,
name,
f_numpy,
lhs,
rhs,
dtype="bool",
):
A = te.var("A", dtype=dtype)
B = te.var("B", dtype=dtype)
C = func(A, B)
if isinstance(A, tvm.tir.PrimExpr) and isinstance(B, tvm.tir.PrimExpr):
assert isinstance(C, tvm.tir.PrimExpr)
return
def check_target(target, dev):
print("Running on target: %s" % target)
with tvm.target.Target(target):
s = tvm.topi.testing.get_broadcast_schedule(target)(C)
foo = tvm.build(s, [A, B, C], target, name=name)
lhs_nd = tvm.nd.array(lhs, dev)
rhs_nd = tvm.nd.array(rhs, dev)
out_npy = f_numpy(lhs, rhs)
out_nd = tvm.nd.array(np.empty(out_npy.shape).astype(C.dtype), dev)
foo(lhs_nd, rhs_nd, out_nd)
tvm.testing.assert_allclose(out_nd.numpy(), out_npy, rtol=1e-4, atol=1e-4)
for target, dev in tvm.testing.enabled_targets():
check_target(target, dev)
test_apply(topi.logical_and, "logical_and", np.logical_and, True, False)
test_apply(topi.logical_and, "logical_and", np.logical_and, [True, False], [False, False])
test_apply(topi.logical_or, "logical_or", np.logical_or, True, False)
test_apply(topi.logical_or, "logical_or", np.logical_or, [True, False], [False, False])
test_apply(topi.logical_xor, "logical_xor", np.logical_xor, True, False)
test_apply(topi.logical_xor, "logical_xor", np.logical_xor, [True, False], [False, False])
@tvm.testing.uses_gpu
def test_bitwise_and():
verify_broadcast_binary_ele(None, None, topi.bitwise_and, np.bitwise_and, dtype="int32")
verify_broadcast_binary_ele(
(2, 1, 2), (2, 1, 2), topi.bitwise_and, np.bitwise_and, dtype="int32"
)
@tvm.testing.uses_gpu
def test_bitwise_or():
verify_broadcast_binary_ele(None, None, topi.bitwise_or, np.bitwise_or, dtype="int32")
verify_broadcast_binary_ele((2, 1, |
2), (2, 1, 2), topi.bitwise_or, np.bitwise_or, dtype="int32")
@tvm.testing.uses_gpu
def test_bitwise_xor():
verify_broadcast_binary_ele(None, None, topi.bitwise_xor, np.bitwise_xor, dtype="int32")
verify_broadcast_binary_ele(
(2, 1, 2), (2, 1, 2), topi.bitwise_xor, np.bitwise_xor, dtype="int32"
)
if __name__ == "__main__":
test_add()
test_shift()
test_cmp()
test_mod()
test_floor_mod()
test_subtract()
test_multiply()
test_divide()
test_floor_divide()
test_maximum_minmum()
test_power()
test_broadcast_to()
test_logical_single_ele()
test_bitwise_not()
test_logical_binary_ele()
test_bitwise_and()
test_bitwise_or()
test_bitwise_xor() |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.