text
stringlengths
1
2.05k
class TestBuilder(PyBuilder): def build( self, build_inputs: List[BuilderInput], ) -> List[BuilderResult]: return [BuilderResult(None, "error") for w in build_inputs] builder = TestBuilder() builder_inputs = [ BuilderInput(MatmulModule, Target("llvm")), BuilderInput(MatmulReluModule, Target("llvm")), BuilderInput(BatchMatmulModule, Target("llvm")), ] builder_results = builder.build(builder_inputs) assert len(builder_results) == len(builder_inputs) for result in builder_results: artifact_path = result.artifact_path error_msg = result.error_msg assert artifact_path is None assert error_msg == "error" def test_meta_schedule_error_handle_build_func(): """Test the error handing during building""" def initializer(): @register_func("meta_schedule.builder.test_build") def test_build(mod: Module, target: Target, _) -> None: raise ValueError("Builder intended Test Error (build func).") builder = LocalBuilder(f_build="meta_schedule.builder.test_build", initializer=initializer) builder_inputs = [BuilderInput(MatmulModule, Target("llvm"))] builder_results = builder.build(builder_inputs) assert len(builder_results) == len(builder_inputs) for result in builder_results: artifact_path = result.artifact_path error_msg = result.error_msg assert artifact_path is None assert error_msg.startswith("LocalBuilder: An exception occurred") def test_meta_schedule_error_handle_export_func(): """Test the error handing during building""" def initializer(): @register_func("meta_schedule.builder.test_export") def test_build(mod: Module) -> str: raise ValueError("Builder intended Test Error (export func).") builder = LocalBuilder(f_export="meta_schedule.builder.test_export", initializer=initializer) builder_inputs = [BuilderInput(MatmulModule, Target("llvm"))] builder_
results = builder.build(builder_inputs) assert len(builder_results) == len(builder_inputs) for result in builder_results: artifact_path = result.artifact_path error_msg = result.error_msg assert artifact_path is None assert error_msg.startswith("LocalBuilder: An exception occurred") def test_meta_schedule_error_handle_time_out(): """Test the error handing time out during building""" def initializer(): @register_func("meta_schedule.builder.test_time_out") def timeout_build(mod, target, _): time.sleep(2) builder = LocalBuilder( timeout_sec=1, f_build="meta_schedule.builder.test_time_out", initializer=initializer, ) builder_inputs = [BuilderInput(MatmulModule, Target("llvm"))] builder_results = builder.build(builder_inputs) assert len(builder_results) == len(builder_inputs) for result in builder_results: artifact_path = result.artifact_path error_msg = result.error_msg assert artifact_path is None assert error_msg.startswith("LocalBuilder: Timeout") def test_meta_schedule_missing_build_func(): with pytest.raises(ValueError): LocalBuilder(f_build="wrong-name") if __name__ == "__main__": tvm.testing.main()
""" Test Meta Schedule Builder """
import sys from typing
import List
import pytest
import tvm
import tvm.testing from tvm
import relay from tvm.meta_schedule.arg_info
import TensorInfo from tvm.meta_schedule.builder
import BuilderInput, LocalBuilder from tvm.meta_schedule.runner
import EvaluatorConfig, LocalRunner, RunnerInput from tvm.meta_schedule.testing.custom_builder_runner
import ( build_relay, build_relay_with_tensorrt, run_with_graph_executor, ) from tvm.meta_schedule.testing.relay_workload
import get_network from tvm.relay
import testing from tvm.relay.op.contrib
import tensorrt from tvm.target
import Target from tvm.tir
import FloatImm has_tensorrt_codegen = pytest.mark.skipif( not tvm.get_global_func("relay.ext.tensorrt", True), reason="TensorRT codegen not available", ) has_tensorrt_runtime = pytest.mark.skipif( not tensorrt.is_tensorrt_runtime_enabled(), reason="TensorRT runtime not available", ) def get_conv2d_relu( data_shape, out_channels, kernel_size, strides, padding, dilation, groups, data_layout, kernel_layout, dtype, ): data = relay.var("data", relay.TensorType(data_shape, dtype)) weight = relay.var("weight") net = relay.nn.conv2d( data=data, weight=weight, strides=strides, padding=padding, dilation=dilation, groups=groups, channels=out_channels, kernel_size=kernel_size, data_layout=data_layout, kernel_layout=kernel_layout, ) net = relay.add(net, net) net = relay.nn.relu(net) inputs = relay.analysis.free_vars(net) return relay.Function(inputs, net) def verify_meta_schedule_with_tensorrt( mod, params, data_shape, use_trt: bool = True, ): builder = LocalBuilder( f_build=build_relay_with_tensorrt if use_trt else build_relay, timeout_sec=1000, ) builder_input = BuilderInput(mod, Target("cuda"), params) builder_result = builder.build([builder_input])[0] assert builder_result.error_msg is None, builder_result.error_msg assert builder_result.artifact_path is not None runner_input = RunnerInput( builder_result.artifact_path, device_type="cuda", args_info=[TensorInfo("float32", data_shape)], ) runner = LocalRunner( evaluator_config=EvaluatorConfig( number=5, repeat=2, min_repeat_ms=0, enable_cpu_cache_flush=False, ), f_run_evaluator=run_with_graph_executor, ) runner_future = runner.run([runner_input])[0] runner_result = runner_future.result() assert runner_re
sult is not None assert runner_result.error_msg is None, runner_result.error_msg assert runner_result.run_secs is not None for result in runner_result.run_secs: if isinstance(result, FloatImm): result = result.value assert isinstance(result, float) assert result >= 0.0 @has_tensorrt_codegen def test_conv2d_relu(): data_shape = (1, 1280, 14, 14) out_channels = 256 kernel_size, strides, padding, dilation, groups = (1, 1), (1, 1), (0, 0, 0, 0), (1, 1), 1 data_layout, kernel_layout = "NCHW", "OIHW" dtype = "float32" f = get_conv2d_relu( data_shape, out_channels, kernel_size, strides, padding, dilation, groups, data_layout, kernel_layout, dtype, ) mod, params = testing.create_workload(f) verify_meta_schedule_with_tensorrt(mod, params, data_shape) @has_tensorrt_codegen @pytest.mark.parametrize("model_name", ["resnet_50"]) @pytest.mark.parametrize("input_shape", [[1, 3, 224, 224]]) @pytest.mark.parametrize("use_trt", [True, False]) def test_relay_model(model_name: str, input_shape: List[int], use_trt: bool): mod, params, _ = get_network(model_name, input_shape) verify_meta_schedule_with_tensorrt( mod, params, input_shape, use_trt, ) if __name__ == "__main__": tvm.testing.main()
import os
import re
import shutil
import tempfile
import unittest from functools
import partial from typing
import List
import numpy as np
import tvm
import tvm.testing from tvm.meta_schedule.cost_model
import PyCostModel, RandomModel, XGBModel from tvm.meta_schedule.cost_model.xgb_model
import PackSum, _get_custom_call_back from tvm.meta_schedule.feature_extractor
import RandomFeatureExtractor from tvm.meta_schedule.runner
import RunnerResult from tvm.meta_schedule.search_strategy
import MeasureCandidate from tvm.meta_schedule.tune_context
import TuneContext from tvm.meta_schedule.utils
import derived_object from tvm.script
import tir as T from tvm.tir.schedule.schedule
import Schedule @tvm.script.ir_module class Matmul: @T.prim_func def main(a: T.handle, b: T.handle, c: T.handle) -> None: T.func_attr({"global_symbol": "main", "tir.noalias": True}) A = T.match_buffer(a, (1024, 1024), "float32") B = T.match_buffer(b, (1024, 1024), "float32") C = T.match_buffer(c, (1024, 1024), "float32") for i, j, k in T.grid(1024, 1024, 1024): with T.block("matmul"): vi, vj, vk = T.axis.remap("SSR", [i, j, k]) with T.init(): C[vi, vj] = 0.0 C[vi, vj] = C[vi, vj] + A[vi, vk] * B[vk, vj] def test_meta_schedule_cost_model(): @derived_object
class FancyCostModel(PyCostModel): def load(self, path: str) -> None: pass def save(self, path: str) -> None: pass def update( self, context: TuneContext, candidates: List[MeasureCandidate], results: List[RunnerResult], ) -> None: pass def predict(self, context: TuneContext, candidates: List[MeasureCandidate]) -> np.ndarray: return np.random.rand(10) model = FancyCostModel() model.save("fancy_test_location") model.load("fancy_test_location") model.update(TuneContext(), [], []) results = model.predict( TuneContext(), [MeasureCandidate(Schedule(mod=Matmul), []) for _ in range(10)] ) assert results.shape == (10,) def test_meta_schedule_cost_model_as_string(): @derived_object
class NotSoFancyCostModel(PyCostModel): def load(self, path: str) -> None: pass def save(self, path: str) -> None: pass def update( self, context: TuneContext, candidates: List[MeasureCandidate], results: List[RunnerResult], ) -> None: pass def predict(self, context: TuneContext, candidates: List[MeasureCandidate]) -> np.ndarray: return np.random.rand(10) cost_model = NotSoFancyCostModel() pattern = re.compile(r"meta_schedule.NotSoFancyCostModel\(0x[a-f|0-9]*\)") assert pattern.match(str(cost_model)) def test_meta_schedule_random_model(): model = RandomModel() model.update(TuneContext(), [], []) res = model.predict(TuneContext(), [MeasureCandidate(Schedule(Matmul), []) for i in range(10)]) assert len(res) == 10 assert min(res) >= 0 and max(res) <= model.max_range def test_meta_schedule_random_model_reseed(): model = RandomModel(seed=100) res = model.predict(TuneContext(), [MeasureCandidate(Schedule(Matmul), []) for i in range(20)]) new_model = RandomModel(seed=100) new_res = new_model.predict( TuneContext(), [MeasureCandidate(Schedule(Matmul), []) for i in range(20)] ) assert (res == new_res).all() def test_meta_schedule_random_model_reload(): model = RandomModel(seed=25973) model.predict( TuneContext(), [MeasureCandidate(Schedule(Matmul), []) for i in range(30)] ) path = os.path.join(tempfile.mkdtemp(), "test_output_meta_schedule_random_model.npy") model.save(path) res1 = model.predict(TuneContext(), [MeasureCandidate(Schedule(Matmul), []) for i in range(70)]) model.load(path) res2 = model.predict(TuneContext(), [MeasureCandidate(Schedule(Matmul), []) for i in range(70)]) shutil.rmtree(os.path.dirname(path)) assert (res1 == res2).all() def _dummy_candidate(): return MeasureCandidate(Schedule(Matmul), []) def _dummy_result(num_samples: int = 4, max_r
un_sec: int = 10): return RunnerResult(list(np.random.rand(num_samples) * max_run_sec + 1e-6), None) def test_meta_schedule_xgb_model(): extractor = RandomFeatureExtractor() model = XGBModel(extractor=extractor, num_warmup_samples=2) update_sample_count = 10 predict_sample_count = 100 model.update( TuneContext(), [_dummy_candidate() for i in range(update_sample_count)], [_dummy_result() for i in range(update_sample_count)], ) model.predict(TuneContext(), [_dummy_candidate() for i in range(predict_sample_count)]) def test_meta_schedule_xgb_model_reload(): extractor = RandomFeatureExtractor() model = XGBModel(extractor=extractor, num_warmup_samples=10) update_sample_count = 20 predict_sample_count = 30 model.update( TuneContext(), [_dummy_candidate() for i in range(update_sample_count)], [_dummy_result() for i in range(update_sample_count)], ) model.predict(TuneContext(), [_dummy_candidate() for i in range(predict_sample_count)]) with tempfile.NamedTemporaryFile() as path: random_state = model.extractor.random_state old_data = model.data old_data_size = model.data_size model.save(path.name) res1 = model.predict( TuneContext(), [_dummy_candidate() for i in range(predict_sample_count)] ) model.extractor.random_state = random_state model.load(path.name) new_data = model.data new_data_size = model.data_size res2 = model.predict( TuneContext(), [_dummy_candidate() for i in range(predict_sample_count)] ) assert (res1 == res2).all() assert old_data_size == new_data_size assert len(old_data) == len(new_data) for (k1, g1), (k2, g2) in zip( old_data.items(), new_data.items() ): assert k1 == k2 assert k1 == g1.group_hash assert k2 == g2.group_hash assert (g1.costs == g2.costs).all() assert len(g1.feature
s) == len(g2.features) for f1, f2 in zip(g1.features, g2.features): assert (f1 == f2).all() def test_meta_schedule_xgb_model_reupdate(): extractor = RandomFeatureExtractor() model = XGBModel(extractor=extractor, num_warmup_samples=2) update_sample_count = 60 predict_sample_count = 100 model.update( TuneContext(), [_dummy_candidate() for i in range(update_sample_count)], [_dummy_result() for i in range(update_sample_count)], ) model.update( TuneContext(), [_dummy_candidate() for i in range(update_sample_count)], [_dummy_result() for i in range(update_sample_count)], ) model.update( TuneContext(), [_dummy_candidate() for i in range(update_sample_count)], [_dummy_result() for i in range(update_sample_count)], ) model.predict(TuneContext(), [_dummy_candidate() for i in range(predict_sample_count)]) def xgb_version_check():
import xgboost as xgb from packaging
import version return version.parse(xgb.__version__) >= version.parse("1.6.0") @unittest.skipIf(xgb_version_check(), "test not supported for xgboost version after 1.6.0") def test_meta_schedule_xgb_model_callback_as_function(): from itertools
import chain as itertools_chain
import xgboost as xgb extractor = RandomFeatureExtractor() model = XGBModel(extractor=extractor, num_warmup_samples=10) update_sample_count = 20 predict_sample_count = 30 model.update( TuneContext(), [_dummy_candidate() for i in range(update_sample_count)], [_dummy_result() for i in range(update_sample_count)], ) model.predict(TuneContext(), [_dummy_candidate() for i in range(predict_sample_count)]) with tempfile.NamedTemporaryFile() as path: random_state = model.extractor.random_state model.save(path.name) old_booster = model.booster xs = [ x.numpy().astype("float32") for x in extractor.extract_from( TuneContext(), [_dummy_candidate() for i in range(predict_sample_count)], ) ] d_test = PackSum(xs=xs, ys=None) pred1 = old_booster.predict(d_test.dmatrix) model.extractor.random_state = random_state model.load(path.name) d_train = PackSum( xs=list(itertools_chain.from_iterable([g.features for g in model.data.values()])), ys=np.concatenate( [g.min_cost / g.costs for g in model.data.values()], axis=0, ), ) def obj(ys_pred: np.ndarray, d_train1: "xgb.DMatrix"): return d_train.obj_square_error(ys_pred) def rmse(ys_pred: np.ndarray, d_train1: "xgb.DMatrix"): return d_train.rmse(ys_pred) def avg_peak_score(ys_pred: np.ndarray, d_train1: "xgb.DMatrix"): return d_train.average_peak_score(ys_pred, model.average_peak_n) new_booster = xgb.train( model.config.to_dict(), d_train.dmatrix, num_boost_round=10000, obj=obj, callbacks=[ partial( _get_custom_call_back( early_stopping_rounds=model.early_stopping_rounds,
verbose_eval=model.verbose_eval, fevals=[rmse, avg_peak_score], evals=[(d_train.dmatrix, "tr")], cvfolds=None, ) ) ], ) xs = [ x.numpy().astype("float32") for x in extractor.extract_from( TuneContext(), [_dummy_candidate() for i in range(predict_sample_count)], ) ] d_test = PackSum(xs=xs, ys=None) pred2 = new_booster.predict(d_test.dmatrix) assert np.allclose(pred1, pred2, rtol=1e-3, atol=1e-3) if __name__ == "__main__": tvm.testing.main()
"""Test Meta Schedule Database"""
import os.path as osp
import tempfile from typing
import Callable, Optional, List
import tvm
import tvm.testing from tvm.target
import Target from tvm
import meta_schedule as ms from tvm.meta_schedule.database
import TuningRecord, Workload from tvm
import tir from tvm.ir.module
import IRModule from tvm.script
import tir as T from tvm.tir
import Schedule @tvm.script.ir_module class Matmul: @T.prim_func def main(a: T.handle, b: T.handle, c: T.handle) -> None: T.func_attr({"global_symbol": "main"}) A = T.match_buffer(a, (1024, 1024), "float32") B = T.match_buffer(b, (1024, 1024), "float32") C = T.match_buffer(c, (1024, 1024), "float32") for i, j, k in T.grid(1024, 1024, 1024): with T.block("matmul"): vi, vj, vk = T.axis.remap("SSR", [i, j, k]) with T.init(): C[vi, vj] = 0.0 C[vi, vj] = C[vi, vj] + A[vi, vk] * B[vk, vj] @tvm.script.ir_module class MatmulRelu: @T.prim_func def main(a: T.handle, b: T.handle, d: T.handle) -> None: T.func_attr({"global_symbol": "main", "tir.noalias": True}) A = T.match_buffer(a, (16, 16), "float32") B = T.match_buffer(b, (16, 16), "float32") D = T.match_buffer(d, (16, 16), "float32") C = T.alloc_buffer((16, 16), "float32") for i, j, k in T.grid(16, 16, 16): with T.block("matmul"): vi, vj, vk = T.axis.remap("SSR", [i, j, k]) with T.init(): C[vi, vj] = 0.0 C[vi, vj] = C[vi, vj] + A[vi, vk] * B[vk, vj] for i, j in T.grid(16, 16): with T.block("relu"): vi, vj = T.axis.remap("SS", [i, j]) D[vi, vj] = T.max(C[vi, vj], 0.0) def _schedule_matmul(sch: Schedule): block = sch.get_block("matmul") i, j, k = sch.get_loops(block=block) i_tiles = [1, 1, 2, 512] j_tiles = [1, 512, 1, 2] k_tiles = [256, 4] i_0, i_1, i_2, i_3 = sch.split(loop=i, factors=i_tiles) j_0, j_1, j_2, j_3 = sch.split(loop=j, factors=j_tiles) k_0, k_1 = sch.split(loop=k, factors=k_tiles) sch.reorder(i_0, j_0, i_1, j_1, k_0, i_2, j_2, k_1, i_3, j_3) def _create_schedule(mod: IRModule, sch_fn: Callable[[Schedule], None]) -> Schedule: sch = tir.Schedule(mod=mod, debug_mask="all") sch_fn(sch) ret
urn sch def _create_tmp_database(tmpdir: str) -> ms.database.JSONDatabase: path_workload = osp.join(tmpdir, "workloads.json") path_tuning_record = osp.join(tmpdir, "tuning_records.json") return ms.database.JSONDatabase(path_workload, path_tuning_record) def _equal_record(a: ms.database.TuningRecord, b: ms.database.TuningRecord): assert str(a.trace) == str(b.trace) assert str(a.run_secs) == str(b.run_secs) assert str(a.target) == str(b.target) assert tvm.ir.structural_equal(a.workload.mod, b.workload.mod) for arg0, arg1 in zip(a.args_info, b.args_info): assert str(arg0.as_json()) == str(arg1.as_json()) @ms.utils.derived_object
class PyMemoryDatabaseDefault(ms.database.PyDatabase): def __init__(self): super().__init__() self.tuning_records_: List[TuningRecord] = [] self.workloads_: List[Workload] = [] def has_workload(self, mod: IRModule) -> bool: for workload in self.workloads_: if tvm.ir.structural_equal(mod, workload.mod): return True def commit_workload(self, mod: IRModule) -> ms.database.Workload: if self.has_workload(mod): for workload in self.workloads_: if tvm.ir.structural_equal(mod, workload.mod): return workload else: workload = ms.database.Workload(mod) self.workloads_.append(workload) return workload def commit_tuning_record(self, record: TuningRecord) -> None: self.tuning_records_.append(record) def get_all_tuning_records(self) -> List[TuningRecord]: return self.tuning_records_ def get_top_k(self, workload: ms.database.Workload, top_k: int) -> List[TuningRecord]: return sorted( list( filter( lambda x: tvm.ir.structural_equal(workload.mod, x.workload.mod), self.tuning_records_, ) ), key=lambda x: sum(x.run_secs) / len(x.run_secs) if x.run_secs else 1e9, )[:top_k] def __len__(self) -> int: return len(self.tuning_records_) @ms.utils.derived_object
class PyMemoryDatabaseOverride(ms.database.PyDatabase): def __init__(self): super().__init__() self.tuning_records_: List[TuningRecord] = [] self.workloads_: List[Workload] = [] def has_workload(self, mod: IRModule) -> bool: for workload in self.workloads_: if tvm.ir.structural_equal(mod, workload.mod): return True def commit_workload(self, mod: IRModule) -> ms.database.Workload: if self.has_workload(mod): for workload in self.workloads_: if tvm.ir.structural_equal(mod, workload.mod): return workload else: workload = ms.database.Workload(mod) self.workloads_.append(workload) return workload def commit_tuning_record(self, record: TuningRecord) -> None: self.tuning_records_.append(record) def get_all_tuning_records(self) -> List[TuningRecord]: return self.tuning_records_ def get_top_k(self, workload: ms.database.Workload, top_k: int) -> List[TuningRecord]: return sorted( list( filter( lambda x: tvm.ir.structural_equal(workload.mod, x.workload.mod), self.tuning_records_, ) ), key=lambda x: sum(x.run_secs) / len(x.run_secs) if x.run_secs else 1e9, )[:top_k] def __len__(self) -> int: return len(self.tuning_records_) def query_tuning_record( self, mod: IRModule, target: Target, workload_name: Optional[str] = None ) -> Optional[TuningRecord]: if self.has_workload(mod): records = self.get_top_k(self.commit_workload(mod), 2) if len(records) == 1: return records[0] elif len(records) == 2: return records[1] return None def query_schedule( self, mod: IRModule, target: Target, workload_name: Optional[str] = None ) -> Optional[Schedule]: record = self.query_tuning_r
ecord(mod, target, workload_name) if record is not None: sch = Schedule(record.workload.mod) record.trace.apply_to_schedule(sch, remove_postproc=False) return sch return None def query_ir_module( self, mod: IRModule, target: Target, workload_name: Optional[str] = None ) -> Optional[IRModule]: record = self.query_tuning_record(mod, target, workload_name) if record is not None: sch = Schedule(record.workload.mod) record.trace.apply_to_schedule(sch, remove_postproc=False) return sch.mod return None def test_meta_schedule_tuning_record_round_trip(): mod: IRModule = Matmul with tempfile.TemporaryDirectory() as tmpdir: database = _create_tmp_database(tmpdir) workload = database.commit_workload(mod) record = ms.database.TuningRecord( _create_schedule(mod, _schedule_matmul).trace, workload, [1.5, 2.5, 1.8], tvm.target.Target("llvm"), ms.arg_info.ArgInfo.from_prim_func(func=mod["main"]), ) database.commit_tuning_record(record) new_record = ms.database.TuningRecord.from_json(record.as_json(), workload) _equal_record(record, new_record) def test_meta_schedule_database_create(): with tempfile.TemporaryDirectory() as tmpdir: database = _create_tmp_database(tmpdir) assert osp.exists(database.path_workload) assert osp.exists(database.path_tuning_record) def test_meta_schedule_database_has_workload(): mod: IRModule = Matmul missing_mod: IRModule = MatmulRelu with tempfile.TemporaryDirectory() as tmpdir: database = _create_tmp_database(tmpdir) workload = database.commit_workload(mod) record = ms.database.TuningRecord( _create_schedule(mod, _schedule_matmul).trace, workload, [1.5, 2.5, 1.8], tvm.target.Target("llvm"), ms.arg_info.ArgInfo.from_prim_func(fu
nc=mod["main"]), ) database.commit_tuning_record(record) assert len(database) == 1 assert database.has_workload(mod) assert not database.has_workload(missing_mod) def test_meta_schedule_database_add_entry(): mod: IRModule = Matmul with tempfile.TemporaryDirectory() as tmpdir: database = _create_tmp_database(tmpdir) workload = database.commit_workload(mod) record = ms.database.TuningRecord( _create_schedule(mod, _schedule_matmul).trace, workload, [1.5, 2.5, 1.8], tvm.target.Target("llvm"), ms.arg_info.ArgInfo.from_prim_func(func=mod["main"]), ) database.commit_tuning_record(record) assert len(database) == 1 (ret,) = database.get_top_k(workload, 3) _equal_record(ret, record) def test_meta_schedule_database_missing(): mod: IRModule = Matmul mod_2: IRModule = MatmulRelu with tempfile.TemporaryDirectory() as tmpdir: database = _create_tmp_database(tmpdir) workload = database.commit_workload(mod) workload_2 = database.commit_workload(mod_2) record = ms.database.TuningRecord( _create_schedule(mod, _schedule_matmul).trace, workload, [1.5, 2.5, 1.8], tvm.target.Target("llvm"), ms.arg_info.ArgInfo.from_prim_func(func=mod["main"]), ) database.commit_tuning_record(record) ret = database.get_top_k(workload_2, 3) assert len(ret) == 0 def test_meta_schedule_database_sorting(): mod: IRModule = Matmul with tempfile.TemporaryDirectory() as tmpdir: database = _create_tmp_database(tmpdir) token = database.commit_workload(mod) trace = _create_schedule(mod, _schedule_matmul).trace records = [ ms.database.TuningRecord( trace, token, [7.0, 8.0, 9.0], tvm.target.Target("llvm"), ms.arg_info.ArgInfo.fr
om_prim_func(func=mod["main"]), ), ms.database.TuningRecord( trace, token, [1.0, 2.0, 3.0], tvm.target.Target("llvm"), ms.arg_info.ArgInfo.from_prim_func(func=mod["main"]), ), ms.database.TuningRecord( trace, token, [4.0, 5.0, 6.0], tvm.target.Target("llvm"), ms.arg_info.ArgInfo.from_prim_func(func=mod["main"]), ), ms.database.TuningRecord( trace, token, [1.1, 1.2, 600.0], tvm.target.Target("llvm"), ms.arg_info.ArgInfo.from_prim_func(func=mod["main"]), ), ms.database.TuningRecord( trace, token, [1.0, 100.0, 6.0], tvm.target.Target("llvm"), ms.arg_info.ArgInfo.from_prim_func(func=mod["main"]), ), ms.database.TuningRecord( trace, token, [4.0, 9.0, 8.0], tvm.target.Target("llvm"), ms.arg_info.ArgInfo.from_prim_func(func=mod["main"]), ), ] for record in records: database.commit_tuning_record(record) ret = database.get_top_k(token, 2) assert len(ret) == 2 try: _equal_record(ret[0], records[2]) _equal_record(ret[1], records[1]) except AssertionError: _equal_record(ret[0], records[1]) _equal_record(ret[1], records[2]) def test_meta_schedule_database_reload(): mod: IRModule = Matmul with tempfile.TemporaryDirectory() as tmpdir: database = _create_tmp_database(tmpdir) token = database.commit_workload(mod) trace = _create_schedule(mod, _schedule_matmul).trace records = [ ms.database.TuningRecord( trace, token,
[7.0, 8.0, 9.0], tvm.target.Target("llvm"), ms.arg_info.ArgInfo.from_prim_func(func=mod["main"]), ), ms.database.TuningRecord( trace, token, [1.0, 2.0, 3.0], tvm.target.Target("llvm"), ms.arg_info.ArgInfo.from_prim_func(func=mod["main"]), ), ms.database.TuningRecord( trace, token, [4.0, 5.0, 6.0], tvm.target.Target("llvm"), ms.arg_info.ArgInfo.from_prim_func(func=mod["main"]), ), ] for record in records: database.commit_tuning_record(record) new_database = ms.database.JSONDatabase( path_workload=database.path_workload, path_tuning_record=database.path_tuning_record, ) token = new_database.commit_workload(mod) ret = new_database.get_top_k(token, 2) assert len(ret) == 2 try: _equal_record(ret[0], records[2]) _equal_record(ret[1], records[1]) except AssertionError: _equal_record(ret[0], records[1]) _equal_record(ret[1], records[2]) def test_meta_schedule_database_union(): mod: IRModule = Matmul target = tvm.target.Target("llvm") arg_info = ms.arg_info.ArgInfo.from_prim_func(func=mod["main"]) db_1 = ms.database.MemoryDatabase() db_2 = ms.database.MemoryDatabase() trace = _create_schedule(mod, _schedule_matmul).trace def query(db): return db.query_tuning_record(mod=mod, target=target, workload_name="main").run_secs def commit_record(db, run_sec): db.commit_tuning_record( ms.database.TuningRecord( trace, workload=db.commit_workload(mod), run_secs=[run_sec], target=target, args_info=arg_info, ) ) commit_record(db_1, 1.0) (run_sec,
) = query(db_1) assert run_sec.value == 1.0 commit_record(db_2, 0.5) (run_sec,) = query(db_2) assert run_sec.value == 0.5 (run_secs,) = query(ms.database.UnionDatabase(db_1, db_2)) assert run_secs.value == 0.5 (run_secs,) = query(ms.database.OrderedUnionDatabase(db_1, db_2)) assert run_secs.value == 1.0 def test_meta_schedule_pydatabase_default_query(): mod: IRModule = Matmul target = tvm.target.Target("llvm") arg_info = ms.arg_info.ArgInfo.from_prim_func(func=mod["main"]) db = PyMemoryDatabaseDefault() sch = _create_schedule(mod, _schedule_matmul) trace = sch.trace def query(db, mod, target, kind): return db.query(mod=mod, target=target, workload_name="main", kind=kind) def commit_record(trace, db, run_sec): db.commit_tuning_record( ms.database.TuningRecord( trace, workload=db.commit_workload(mod), run_secs=[run_sec], target=target, args_info=arg_info, ) ) commit_record(trace, db, 1.0) record = query(db, mod, target, "record") assert record is not None and record.run_secs[0].value == 1.0 sch_res = query(db, mod, target, "schedule") assert sch_res is not None and tvm.ir.structural_equal(sch_res.mod, sch.mod) mod_res = query(db, mod, target, "ir_module") assert mod_res is not None and tvm.ir.structural_equal(mod_res, sch.mod) commit_record(Schedule(mod).trace, db, 0.2) record = query(db, mod, target, "record") assert record is not None and record.run_secs[0].value == 0.2 sch_res = query(db, mod, target, "schedule") assert sch_res is not None and tvm.ir.structural_equal(sch_res.mod, mod) mod_res = query(db, mod, target, "ir_module") assert mod_res is not None and tvm.ir.structural_equal(mod_res, mod) def test_meta_schedule_pydatabase_override_query(): mod: IRModule = Matmul target = tvm.target.Target("llvm") arg_info = ms.arg_info.ArgInfo.
from_prim_func(func=mod["main"]) db = PyMemoryDatabaseOverride() sch = _create_schedule(mod, _schedule_matmul) trace = sch.trace def query(db, mod, target, kind): return db.query(mod=mod, target=target, workload_name="main", kind=kind) def commit_record(trace, db, run_sec): db.commit_tuning_record( ms.database.TuningRecord( trace, workload=db.commit_workload(mod), run_secs=[run_sec], target=target, args_info=arg_info, ) ) commit_record(trace, db, 1.14) record = query(db, mod, target, "record") assert record is not None and record.run_secs[0].value == 1.14 sch_res = query(db, mod, target, "schedule") assert sch_res is not None and tvm.ir.structural_equal(sch_res.mod, sch.mod) mod_res = query(db, mod, target, "ir_module") assert mod_res is not None and tvm.ir.structural_equal(mod_res, sch.mod) commit_record(Schedule(mod).trace, db, 0.514) record = query(db, mod, target, "record") assert record is not None and record.run_secs[0].value == 1.14 sch_res = query(db, mod, target, "schedule") assert sch_res is not None and tvm.ir.structural_equal(sch_res.mod, sch.mod) mod_res = query(db, mod, target, "ir_module") assert mod_res is not None and tvm.ir.structural_equal(mod_res, sch.mod) def test_meta_schedule_pydatabase_current(): db = PyMemoryDatabaseDefault() with db: assert ms.database.Database.current() == db if __name__ == "__main__": tvm.testing.main()
import re from typing
import List
import numpy as np from tvm.meta_schedule
import TuneContext from tvm.meta_schedule.feature_extractor
import PyFeatureExtractor from tvm.meta_schedule.search_strategy
import MeasureCandidate from tvm.meta_schedule.utils
import derived_object from tvm.runtime.ndarray
import array def test_meta_schedule_feature_extractor(): @derived_object
class FancyFeatureExtractor(PyFeatureExtractor): def extract_from( self, context: TuneContext, candidates: List[MeasureCandidate], ) -> List[np.ndarray]: return [array(np.random.rand(4, 5))] extractor = FancyFeatureExtractor() features = extractor.extract_from(TuneContext(), []) assert len(features) == 1 assert features[0].shape == (4, 5) def test_meta_schedule_feature_extractor_as_string(): @derived_object
class NotSoFancyFeatureExtractor(PyFeatureExtractor): def extract_from( self, context: TuneContext, candidates: List[MeasureCandidate], ) -> List[np.ndarray]: return [] feature_extractor = NotSoFancyFeatureExtractor() pattern = re.compile(r"meta_schedule.NotSoFancyFeatureExtractor\(0x[a-f|0-9]*\)") assert pattern.match(str(feature_extractor)) if __name__ == "__main__": test_meta_schedule_feature_extractor() test_meta_schedule_feature_extractor_as_string()
import sys from typing
import Callable, List
import pytest
import tvm
import tvm.testing from numpy.testing
import assert_allclose from tvm
import meta_schedule as ms from tvm
import te, tir from tvm.script
import tir as T N_FEATURES = 164 @T.prim_func def matmul( A: T.Buffer[(512, 512), "float32"], B: T.Buffer[(512, 512), "float32"], C: T.Buffer[(512, 512), "float32"], ) -> None: T.func_attr({"global_symbol": "main", "tir.noalias": True}) for i0, i1, i2 in T.grid(512, 512, 512): with T.block("C"): i, j, k = T.axis.remap("SSR", [i0, i1, i2]) T.reads(C[i, j], A[i, k], B[k, j]) T.writes(C[i, j]) with T.init(): C[i, j] = T.float32(0) C[i, j] = C[i, j] + A[i, k] * B[k, j] @tvm.script.ir_module class LayoutTransform: @T.prim_func def main(placeholder: T.Buffer[(1, 16, 7, 7, 32), "float32"], placeholder_1: T.Buffer[(25088,), "float32"], T_layout_trans: T.Buffer[(1, 1, 7, 7, 512), "float32"]) -> None: T.func_attr({"tir.noalias": True, "global_symbol": "main"}) for i0_i1_i2_i3_i4_fused in T.parallel(25088, annotations={"pragma_auto_unroll_max_step":64, "pragma_unroll_explicit":1}): with T.block("T_layout_trans_1"): ax0 = T.axis.spatial(1, 0) ax1 = T.axis.spatial(1, 0) ax2 = T.axis.spatial(7, i0_i1_i2_i3_i4_fused ax3 = T.axis.spatial(7, i0_i1_i2_i3_i4_fused % 3584 ax4 = T.axis.spatial(512, i0_i1_i2_i3_i4_fused % 512) T.reads(placeholder[0, (ax4 * 49 + ax2 * 7 + ax3) % 25088 T.writes(T_layout_trans[ax0, ax1, ax2, ax3, ax4]) T_layout_trans[ax0, ax1, ax2, ax3, ax4] = T.if_then_else(ax0 < 1 and ax1 * 512 + ax4 < 512 and ax2 < 7 and ax3 < 7, T.Select(T.float32(0) < T.if_then_else(0 < 1 and ((ax1 * 512 + ax4) * 49 + ax2 * 7 + ax3) % 25088 % 25088 def _make_context(target) -> ms.TuneContext: return ms.TuneContext( target=target, num_threads=1, ) def _make_candidate(f_sch: Callable[[], tir.Schedule]) -> ms.MeasureCandidate: return ms.MeasureCandidate(sch=f_sch(), args_info=[]) d
ef _feature_names( buffers_per_store: int = 5, arith_intensity_curve_num_samples: int = 10, ) -> List[str]: result = [ "float_mad", "float_addsub", "float_mul", "float_divmod", "float_cmp", "float_mathfunc", "float_otherfunc", "int_mad", "int_addsub", "int_mul", "int_divmod", "int_cmp", "int_mathfunc", "int_otherfunc", "bool_op", "select_op", "vec_num", "vec_prod", "vec_len", "vec_type.kPosNone", "vec_type.kPosInnerSpatial", "vec_type.kPosMiddleSpatial", "vec_type.kPosOuterSpatial", "vec_type.kPosInnerReduce", "vec_type.kPosMiddleReduce", "vec_type.kPosOuterReduce", "vec_type.kPosMixed", "unroll_num", "unroll_prod", "unroll_len", "unroll_type.kPosNone", "unroll_type.kPosInnerSpatial", "unroll_type.kPosMiddleSpatial", "unroll_type.kPosOuterSpatial", "unroll_type.kPosInnerReduce", "unroll_type.kPosMiddleReduce", "unroll_type.kPosOuterReduce", "unroll_type.kPosMixed", "parallel_num", "parallel_prod", "parallel_len", "parallel_type.kPosNone", "parallel_type.kPosInnerSpatial", "parallel_type.kPosMiddleSpatial", "parallel_type.kPosOuterSpatial", "parallel_type.kPosInnerReduce", "parallel_type.kPosMiddleReduce", "parallel_type.kPosOuterReduce", "parallel_type.kPosMixed", "is_gpu", "blockIdx_x_len", "blockIdx_y_len", "blockIdx_z_len", "threadIdx_x_len", "threadIdx_y_len", "threadIdx_z_len", "vthread_len", ] for i in range(buffers_per_store): result.extend( f"B{i}.{s}" for s in [ "acc_type.kRead", "acc_type.kWrite", "acc_type.kReadWrite", "bytes",
"unique_bytes", "lines", "unique_lines", "reuse_type.kLoopMultipleRead", "reuse_type.kSerialMultipleReadWrite", "reuse_type.kNoReuse", "reuse_dis_iter", "reuse_dis_bytes", "reuse_ct", "bytes_d_reuse_ct", "unique_bytes_d_reuse_ct", "lines_d_reuse_ct", "unique_lines_d_reuse_ct", "stride", ] ) result.extend(f"arith_intensity_curve_{i}" for i in range(arith_intensity_curve_num_samples)) result.extend( [ "alloc_size", "alloc_prod", "alloc_outer_prod", "alloc_inner_prod", "outer_prod", "num_loops", "auto_unroll_max_step", ] ) assert len(result) == N_FEATURES return result def _zip_feature(feature, names): assert feature.ndim == 1 assert feature.shape[0] == N_FEATURES assert len(names) == N_FEATURES return list(zip(names, feature)) def _print_feature(feature, st, ed): named_feature = _zip_feature(feature, _feature_names()) for k, v in named_feature[st:ed]: print("\t", k, v) def test_cpu_matmul(): def _create_schedule(): func = matmul sch = tir.Schedule(func, debug_mask="all") block = sch.get_block("C") i, j, k = sch.get_loops(block) i_o, i_i = sch.split(i, factors=[None, 16]) j_o, j_i = sch.split(j, factors=[None, 8]) sch.reorder(i_o, j_o, k, j_i, i_i) sch.vectorize(j_i) sch.parallel(i_o) sch.parallel(j_o) sch.unroll(k) return sch extractor = ms.feature_extractor.PerStoreFeature() (feature,) = extractor.extract_from( _make_context(tvm.target.Target("llvm")), candidates=[_make_candidate(_create_schedule)], ) feature = feature.numpy() assert feature.shape == (1, N_FEATURES) f = feature[0]
assert_allclose( actual=f[0:16], desired=[ 0, 27, 27, 0, 0, 0, 0, 0, 29, 29, 0, 0, 0, 0, 0, 0, ], rtol=1e-5, atol=1e-5, ) assert_allclose( actual=f[16:27], desired=[1.0, 3.169924, 3.169924, 0, 0, 0, 0, 0, 0, 0, 1], rtol=1e-5, atol=1e-5, ) assert_allclose( actual=f[27:38], desired=[1.0, 9.002815, 9.002815, 0, 0, 0, 0, 0, 0, 0, 1], rtol=1e-5, atol=1e-5, ) assert_allclose( actual=f[38:49], desired=[1.58496, 11.0007, 6.022368, 0, 0, 0, 0, 0, 0, 0, 1], rtol=1e-5, atol=1e-5, ) assert_allclose( actual=f[49:57], desired=[0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0], rtol=1e-5, atol=1e-5, ) assert_allclose( actual=f[57:75], desired=[ 1, 0, 0, 29, 20, 27, 14, 1, 0, 0, 4.087463, 7.0552826, 3.169925, 26, 17, 24, 11.0007038, 9.002815, ], rtol=1e-5, atol=1e-5, ) assert_allclose( actual=f[75:93], desired=[ 0.0, 0.0, 1.0, 29.0, 20.000001907348633, 27.0, 14.00008773803711, 1.0, 0.0, 0.0, 7.011227130889893, 9.250298500061035, 9.002815246582031, 20.000001907348633, 11.000703811645508, 18.0000057220459, 5.044394016265869, 9.002815246582031, ], rtol=1e-5, atol=1e-5, ) assert_allclose( actual=f[93:111], desired=[ 1.0, 0.0, 0.0,
29.0, 20.000001907348633, 19.000001907348633, 14.00008773803711, 1.0, 0.0, 0.0, 1.0, 3.700439691543579, 4.087462902069092, 25.0, 16.000022888183594, 15.000043869018555, 10.001408194392809, 0.0, ], rtol=1e-5, atol=1e-5, ) assert_allclose( actual=f[111:129], desired=[0.0] * 18, rtol=1e-5, atol=1e-5, ) assert_allclose( actual=f[129:147], desired=[0.0] * 18, rtol=1e-5, atol=1e-5, ) assert_allclose( actual=f[147:157], desired=[ 3.812599, 4.464822, 4.912349, 5.253426, 5.529086, 5.76043, 5.959752, 6.134849, 6.290977, 6.431846, ], rtol=1e-5, atol=1e-5, ) assert_allclose( actual=f[157:164], desired=[ 20.000001907348633, 18.0000057220459, 1.0, 27.0, 27.0, 2.5849626064300537, 0.0, ], rtol=1e-5, atol=1e-5, ) def test_cpu_fusion(): @T.prim_func def func(a: T.handle, b: T.handle, c: T.handle) -> None: A = T.match_buffer(a, [64, 32], dtype="float32") B = T.match_buffer(b, [64, 32], dtype="float32") C = T.match_buffer(c, [64, 32], dtype="float32") for i, j in T.grid(64, 32): with T.block(): T.reads([A[i, j], B[i, j]]) T.writes([B[i, j], C[i, j]]) with T.block("B"): T.reads([A[i, j]]) T.writes([B[i, j]]) B[i, j] = A[i, j] with T.block("C"): T.reads([B[i, j]]) T.writes([C[i, j]])
C[i, j] = B[i, j] def _create_schedule(): return tir.Schedule(func, debug_mask="all") extractor = ms.feature_extractor.PerStoreFeature() (feature,) = extractor.extract_from( _make_context(tvm.target.Target("llvm")), candidates=[_make_candidate(_create_schedule)], ) feature = feature.numpy() assert feature.shape == (2, N_FEATURES) f = feature[0] assert_allclose( actual=f[0:16], desired=[0.0] * 16, rtol=1e-5, atol=1e-5, ) assert_allclose( actual=f[16:27], desired=[0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], rtol=1e-5, atol=1e-5, ) assert_allclose( actual=f[27:38], desired=[0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], rtol=1e-5, atol=1e-5, ) assert_allclose( actual=f[38:49], desired=[0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], rtol=1e-5, atol=1e-5, ) assert_allclose( actual=f[49:57], desired=[0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0], rtol=1e-5, atol=1e-5, ) assert_allclose( actual=f[57:75], desired=[ 1.0, 0.0, 0.0, 13.000176429748535, 13.000176429748535, 7.011227130889893, 7.011227130889893, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 14.00008773803711, 14.00008773803711, 8.005624771118164, 8.005624771118164, 1.0, ], rtol=1e-5, atol=1e-5, ) assert_allclose( actual=f[75:93], desired=[ 0.0, 1.0, 0.0, 13.000176429748535, 13.000176429748535, 7.011227130889893, 7.011227130889893, 0.0, 0.0,
1.0, 0.0, 0.0, 0.0, 14.00008773803711, 14.00008773803711, 8.005624771118164, 8.005624771118164, 1.0, ], rtol=1e-5, atol=1e-5, ) assert_allclose( actual=f[93:111], desired=[0.0] * 18, rtol=1e-5, atol=1e-5, ) assert_allclose( actual=f[111:129], desired=[0.0] * 18, rtol=1e-5, atol=1e-5, ) assert_allclose( actual=f[129:147], desired=[0.0] * 18, rtol=1e-5, atol=1e-5, ) assert_allclose( actual=f[147:157], desired=[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], rtol=1e-5, atol=1e-5, ) assert_allclose( actual=f[157:164], desired=[ 13.000176, 11.000703811645508, 1.0, 11.000703811645508, 11.000703811645508, 1.5849624872207642, 0.0, ], rtol=1e-5, atol=1e-5, ) f = feature[1] assert_allclose( actual=f[0:16], desired=[0.0] * 16, rtol=1e-5, atol=1e-5, ) assert_allclose( actual=f[16:27], desired=[0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], rtol=1e-5, atol=1e-5, ) assert_allclose( actual=f[27:38], desired=[0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], rtol=1e-5, atol=1e-5, ) assert_allclose( actual=f[38:49], desired=[0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], rtol=1e-5, atol=1e-5, ) assert_allclose( actual=f[49:57], desired=[0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0], rtol=1e-5, atol=1e-5, ) assert_allclose( actual=f[57:75], desired=[ 1.0, 0.0,
0.0, 13.000176429748535, 13.000176429748535, 7.011227130889893, 7.011227130889893, 0.0, 1.0, 0.0, 1.0, 4.087462902069092, 1.0, 13.000176429748535, 13.000176429748535, 7.011227130889893, 7.011227130889893, 1.0, ], rtol=1e-5, atol=1e-5, ) assert_allclose( actual=f[75:93], desired=[ 0.0, 1.0, 0.0, 13.000176429748535, 13.000176429748535, 7.011227130889893, 7.011227130889893, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 14.00008773803711, 14.00008773803711, 8.005624771118164, 8.005624771118164, 1.0, ], rtol=1e-5, atol=1e-5, ) assert_allclose( actual=f[93:111], desired=[0.0] * 18, rtol=1e-5, atol=1e-5, ) assert_allclose( actual=f[111:129], desired=[0.0] * 18, rtol=1e-5, atol=1e-5, ) assert_allclose( actual=f[129:147], desired=[0.0] * 18, rtol=1e-5, atol=1e-5, ) assert_allclose( actual=f[147:157], desired=[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], rtol=1e-5, atol=1e-5, ) assert_allclose( actual=f[157:164], desired=[ 13.000176429748535, 11.000703811645508, 1.0, 11.000703811645508, 11.000703811645508, 1.5849624872207642, 0.0, ], rtol=1e-5, atol=1e-5, ) def test_gpu(): def _create_schedule(): func = matmul sch = tir.Schedule(func, debug_mask="all") c = sch.get_block("C") c_local = sch.cache_write(c, 0, "local")
i, j, k = sch.get_loops(c) i0, i1, i2, i3, i4 = sch.split(i, factors=[None, 1, 16, 32, 1]) j0, j1, j2, j3, j4 = sch.split(j, factors=[None, 4, 1, 1, 16]) k0, k1, k2 = sch.split(k, factors=[None, 1, 2]) sch.reorder( i0, j0, i1, j1, i2, j2, k0, k1, i3, j3, k2, i4, j4, ) i0_j0 = sch.fuse(i0, j0) i1_j1 = sch.fuse(i1, j1) i2_j2 = sch.fuse(i2, j2) sch.bind(i0_j0, "blockIdx.x") sch.bind(i1_j1, "vthread.x") sch.bind(i2_j2, "threadIdx.x") sch.reverse_compute_at(c_local, i2_j2) a_shared = sch.cache_read(c, 1, "shared") sch.compute_at(a_shared, k0) _, _, _, _, a_i, a_j = sch.get_loops(a_shared) a_ij = sch.fuse(a_i, a_j) _, a_j = sch.split(a_ij, factors=[None, 16]) sch.bind(a_j, "threadIdx.x") b_shared = sch.cache_read(c, 2, "shared") sch.compute_at(b_shared, k0) _, _, _, _, b_i, b_j = sch.get_loops(b_shared) b_ij = sch.fuse(b_i, b_j) _, b_j = sch.split(b_ij, factors=[None, 16]) sch.bind(b_j, "threadIdx.x") sch.annotate(i0_j0, "pragma_auto_unroll_max_step", tir.IntImm("int32", 1024)) sch.annotate(i0_j0, "pragma_unroll_explicit", tir.IntImm("int32", 1)) return sch extractor = ms.feature_extractor.PerStoreFeature() (feature,) = extractor.extract_from( _make_context(tvm.target.Target("cuda")), candidates=[_make_candidate(_create_schedule)], ) feature = feature.numpy() assert feature.shape == (4, N_FEATURES) f = feature[0] assert_allclose( actual=f[0:16], desired=[ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 24.000000085991324,
24.000000085991324, 24.000000085991324, 0.0, 0.0, 0.0, 0.0, 0.0, ], rtol=1e-5, atol=1e-5, ) assert_allclose( actual=f[16:27], desired=[0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], rtol=1e-5, atol=1e-5, ) assert_allclose( actual=f[27:38], desired=[0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], rtol=1e-5, atol=1e-5, ) assert_allclose( actual=f[38:49], desired=[0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], rtol=1e-5, atol=1e-5, ) assert_allclose( actual=f[49:57], desired=[1.0, 3.169925001442312, 1.0, 1.0, 4.087462841250339, 1.0, 1.0, 2.321928094887362], rtol=1e-5, atol=1e-5, ) assert_allclose( actual=f[57:75], desired=[ 1.0, 0.0, 0.0, 25.000000042995662, 20.000001375860553, 23.00000017198264, 14.000088052430122, 1.0, 0.0, 0.0, 18.00000550343433, 20.00562591970089, 2.321928094887362, 23.00000017198264, 18.00000550343433, 21.000000687930438, 12.0003521774803, 12.0003521774803, ], rtol=1e-5, atol=1e-5, ) assert_allclose( actual=f[75:93], desired=[ 0.0, 1.0, 0.0, 25.000000042995662, 12.0003521774803, 23.00000017198264, 9.002815015607053, 1.0, 0.0, 0.0, 6.022367813028454, 11.98049663618346, 8.005624549193879, 17.000011006847668, 4.087462841250339, 15.000044026886828, 1.584962500721156, 4.087462841250339,
], rtol=1e-5, atol=1e-5, ) assert_allclose( actual=f[93:111], desired=[ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ], rtol=1e-5, atol=1e-5, ) assert_allclose( actual=f[111:129], desired=[ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ], rtol=1e-5, atol=1e-5, ) assert_allclose( actual=f[129:147], desired=[ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ], rtol=1e-5, atol=1e-5, ) assert_allclose( actual=f[147:157], desired=[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], rtol=1e-5, atol=1e-5, ) assert_allclose( actual=f[157:164], desired=[ 12.0003521774803, 27.000000010748916, 17.000011006847668, 6.022367813028454, 23.00000017198264, 2.584962500721156, 10.001408, ], rtol=1e-5, atol=1e-5, ) f = feature[1] assert_allclose( actual=f[0:16], desired=[ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 21.584962959341485, 21.584962959341485, 21.000000687930438, 0.0, 0.0, 0.0, 0.0, 0.0, ], rtol=1e-5, atol=1e-5, ) assert_allclose( actual=f[16:27], desired=[0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], rtol=1e-5, atol=1e-5, ) assert_allclose( actual=f[27:38], desired=[0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], rtol=1e-5, atol=1e-5, ) assert_allclose( actual=f[38:49], desired=[0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], rtol=1e-5, atol=1e-5, ) assert_allclose( actual=f[49:57], desired=[1.0, 3.169925001442312, 1.0, 1.0, 4.087462841250339, 1.0, 1.0, 2.321928094887362], rtol=1e-5, atol=1e-5, ) assert_allclose( actual=f[57:75], desired=[ 1.0, 0.0, 0.0, 22.00000034396526, 20.000001375860553, 20.000001375860553, 14.000088052430122, 1.0, 0.0, 0.0, 15.000044026886828, 20.17555076886471, 2.321928094887362, 20.000001375860553, 18.00000550343433, 18.00000550343433, 12.0003521774803, 4.087462841250339, ], rtol=1e-5, atol=1e-5, ) assert_allclose( actual=f[75:93], desired=[ 0.0, 1.0, 0.0, 22.00000034396526, 9.002815015607053, 20.000001375860553, 3.169925001442312, 1.0, 0.0, 0.0, 3.169925001442312, 9.61654884377899, 8.005624549193879, 14.000088052430122, 1.584962500721156, 12.0003521774803
, 0.044394119358453436, 4.087462841250339, ], rtol=1e-5, atol=1e-5, ) assert_allclose( actual=f[93:111], desired=[ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ], rtol=1e-5, atol=1e-5, ) assert_allclose( actual=f[111:129], desired=[ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ], rtol=1e-5, atol=1e-5, ) assert_allclose( actual=f[129:147], desired=[ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ], rtol=1e-5, atol=1e-5, ) assert_allclose( actual=f[147:157], desired=[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], rtol=1e-5, atol=1e-5, ) assert_allclose( actual=f[157:164], desired=[ 9.002815015607053, 24.000000085991324, 17.000011006847668, 3.169925001442312, 20.000001375860553, 2.584962500721156, 10.001408, ], rtol=1e-5, atol=1e-5, ) f = feature[2] assert_allclose( actual=f[0:16], desired=[ 0.0, 27.0000