text
stringlengths
1
2.05k
struct Dataset {\n", " x_values: Tensor<FP16x16>,\n", " y_values: Tensor<FP16x16>,\n", "}\n", "\n", " "impl DataPreprocessing of DatasetTrait {\n", " fn normalize_dataset(ref self: Dataset) -> Dataset {\n", " let mut x_values = TensorTrait::<FP16x16>::new(array![1].span(), array![FixedTrait::new(0, false)].span());\n", " let mut y_values = TensorTrait::<FP16x16>::new(array![1].span(), array![FixedTrait::new(0, false)].span());\n", " " if self.x_values.shape.len() > 1 {\n", " x_values = normalize_feature_data(self.x_values);\n", " y_values = normalize_label_data(self.y_values);\n", " }\n", " " if self.x_values.shape.len() == 1 {\n", " x_values = normalize_label_data(self.x_values);\n", " y_values = normalize_label_data(self.y_values);\n", " }\n", "\n", " return Dataset { x_values, y_values };\n", " }\n", "}\n", "\n", " "fn normalize_feature_data(tensor_data: Tensor<FP16x16>) -> Tensor<FP16x16> {\n", " let mut x_min_array = ArrayTrait::<FP16x16>::new();\n", " let mut x_max_array = ArrayTrait::<FP16x16>::new();\n", " let mut x_range_array = ArrayTrait::<FP16x16>::new();\n", " let mut normalized_array = ArrayTrait::<FP16x16>::new();\n", " " let transposed_tensor = tensor_data.transpose(axes: array![1, 0].span());\n", " let tensor_shape = transposed_tensor.shape;\n", " let tensor_row_len = *tensor_shape.at(0); " let tensor_column_len = *tensor_shape.at(1); " " let mut i: u32 = 0;\n", " loop {\n", " if i >= tensor_row_len {\n", " break ();\n", " }\n", " let mut transposed_tensor_row = get_tensor_data_by_row(transposed_tensor, i);\n", " x_max_array.append(transposed_tensor_row.max_in_tensor());\n", " x_min_array.append(transposed_tensor_row.min
_in_tensor());\n", " x_range_array\n", " .append(transposed_tensor_row.max_in_tensor() - transposed_tensor_row.min_in_tensor());\n", " i += 1;\n", " };\n", " " let mut x_min = TensorTrait::<\n", " FP16x16\n", " >::new(shape: array![1, tensor_row_len].span(), data: x_min_array.span());\n", " let mut x_range = TensorTrait::<\n", " FP16x16\n", " >::new(shape: array![1, tensor_row_len].span(), data: x_range_array.span());\n", " let normalized_tensor = (tensor_data - x_min) / x_range;\n", " return normalized_tensor;\n", "}\n", "\n", " "fn normalize_label_data(tensor_data: Tensor<FP16x16>) -> Tensor<FP16x16> {\n", " let mut tensor_data_ = tensor_data;\n", " let mut normalized_array = ArrayTrait::<FP16x16>::new();\n", " let mut range = tensor_data.max_in_tensor() - tensor_data.min_in_tensor();\n", " " let mut i: u32 = 0;\n", "\n", " loop {\n", " match tensor_data_.data.pop_front() {\n", " Option::Some(tensor_val) => {\n", " let mut diff = *tensor_val - tensor_data.min_in_tensor();\n", " normalized_array.append(diff / range);\n", " i += 1;\n", " },\n", " Option::None(_) => { break; }\n", " };\n", " };\n", " " let mut normalized_tensor = TensorTrait::<\n", " FP16x16\n", " >::new(shape: array![tensor_data.data.len()].span(), data: normalized_array.span());\n", " return normalized_tensor;\n", "}\n", "\n" ] }, { "cell_type": "markdown", "id": "12784736", "metadata": {}, "source": [ " "\n", "Implement the Multiple Linear Regression functions" ] }, { "cell_type": "code", "execution_count": 43, "id": "ea7c8acc", "metadata": {}, "outputs": [], "source": [ "os.makedirs(f'multiple_linear_regression_aave/src/model/', exis
t_ok=True)" ] }, { "cell_type": "code", "execution_count": 44, "id": "543d3c63", "metadata": {}, "outputs": [], "source": [ "! touch multiple_linear_regression_aave/src/model/multiple_linear_regression_model.cairo" ] }, { "cell_type": "code", "execution_count": 45, "id": "24d21d37", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Overwriting multiple_linear_regression_aave/src/model/multiple_linear_regression_model.cairo\n" ] } ], "source": [ "%%writefile multiple_linear_regression_aave/src/model/multiple_linear_regression_model.cairo\n", "\n", "use orion::operators::tensor::{\n", " Tensor, TensorTrait, FP16x16Tensor, U32Tensor, U32TensorAdd, FP16x16TensorSub, FP16x16TensorAdd,\n", " FP16x16TensorDiv, FP16x16TensorMul\n", "};\n", "use orion::numbers::{FP16x16, FixedTrait};\n", "use multiple_linear_regresion::data_preprocessing::{Dataset, DatasetTrait};\n", "use multiple_linear_regresion::helper_functions::{\n", " get_tensor_data_by_row, transpose_tensor, calculate_mean, calculate_r_score,\n", " normalize_user_x_inputs, rescale_predictions\n", "};\n", "\n", "\n", " "
struct MultipleLinearRegressionModel {\n", " coefficients: Tensor<FP16x16>\n", "}\n", "\n", " "impl RegressionOperation of MultipleLinearRegressionModelTrait {\n", " " fn predict(\n", " ref self: MultipleLinearRegressionModel, feature_inputs: Tensor<FP16x16>\n", " ) -> Tensor<FP16x16> {\n", " " let mut prediction_result = TensorTrait::<\n", " FP16x16\n", " >::new(shape: array![1].span(), data: array![FixedTrait::new(10, false)].span());\n", "\n", " let mut result = ArrayTrait::<FP16x16>::new();\n", " " if feature_inputs.shape.len() > 1 {\n", " let feature_values = add_bias_term(feature_inputs, 1);\n", " let mut data_len: u32 = *feature_values.shape.at(0);\n", " let mut i: u32 = 0;\n", " loop {\n", " if i >= data_len {\n", " break ();\n", " }\n", " let feature_row_values = get_tensor_data_by_row(feature_values, i);\n", " let predicted_values = feature_row_values.matmul(@self.coefficients);\n", " result.append(*predicted_values.data.at(0));\n", " i += 1;\n", " };\n", " prediction_result =\n", " TensorTrait::<\n", " FP16x16\n", " >::new(shape: array![result.len()].span(), data: result.span());\n", " }\n", "\n", " " if feature_inputs.shape.len() == 1 && self.coefficients.data.len() > 1 {\n", " let feature_values = add_bias_term(feature_inputs, 1);\n", " prediction_result = feature_values.matmul(@self.coefficients);\n", " }\n", "\n", " return prediction_result;\n", " }\n", "}\n", "\n", "fn MultipleLinearRegression(dataset: Dataset) -> MultipleLinearRegressionModel {\n", " let x
_values_tranposed = transpose_tensor(dataset.x_values);\n", " let x_values_tranposed_with_bias = add_bias_term(x_values_tranposed, 0);\n", " let decorrelated_x_features = decorrelate_x_features(x_values_tranposed_with_bias);\n", " let coefficients = compute_gradients(\n", " decorrelated_x_features, dataset.y_values, x_values_tranposed_with_bias\n", " );\n", " return MultipleLinearRegressionModel { coefficients };\n", "}\n", "\n", " "fn add_bias_term(x_feature: Tensor<FP16x16>, axis: u32) -> Tensor<FP16x16> {\n", " let mut x_feature_ = x_feature;\n", " let mut tensor_with_bias = TensorTrait::<\n", " FP16x16\n", " >::new(shape: array![1].span(), data: array![FixedTrait::new(10, false)].span());\n", " let mut result = ArrayTrait::<FP16x16>::new();\n", " " if x_feature.shape.len() > 1 {\n", " let mut index: u32 = 0;\n", " if axis == 1 {\n", " index = 0;\n", " } else {\n", " index = 1;\n", " }\n", " let data_len = *x_feature.shape.at(index); " let mut i: u32 = 0;\n", " loop {\n", " if i >= data_len {\n", " break ();\n", " }\n", " result\n", " .append(FixedTrait::new(65536, false)); " i += 1;\n", " };\n", " if axis == 0 {\n", " let res_tensor = TensorTrait::new(\n", " shape: array![1, data_len].span(), data: result.span()\n", " );\n", " tensor_with_bias =\n", " TensorTrait::concat(tensors: array![x_feature, res_tensor].span(), axis: axis);\n", " } else {\n", " let res_tensor = TensorTrait::new(\n", " shape: array![data_len, 1].span(), data: result.span()\n", " );\n", " tensor_with_bias =\n", " TensorTrait::
concat(tensors: array![x_feature, res_tensor].span(), axis: axis);\n", " }\n", " }\n", " " if x_feature.shape.len() == 1 {\n", " let mut j: u32 = 0;\n", " loop {\n", " match x_feature_.data.pop_front() {\n", " Option::Some(x_val) => {\n", " result.append(*x_val);\n", " j += 1;\n", " },\n", " Option::None(_) => { break; }\n", " };\n", " };\n", " result.append(FixedTrait::new(65536, false)); " tensor_with_bias =\n", " TensorTrait::<FP16x16>::new(shape: array![result.len()].span(), data: result.span());\n", " }\n", " return tensor_with_bias;\n", "}\n", "\n", " "fn decorrelate_x_features(x_feature_data: Tensor<FP16x16>) -> Tensor<FP16x16> {\n", " let mut input_tensor = x_feature_data;\n", "\n", " let mut i: u32 = 0;\n", " loop {\n", " if i >= *x_feature_data.shape.at(0) {\n", " break ();\n", " }\n", " let mut placeholder = ArrayTrait::<FP16x16>::new();\n", " let mut feature_row_values = get_tensor_data_by_row(input_tensor, i);\n", " let mut feature_squared = feature_row_values.matmul(@feature_row_values);\n", " " if *feature_squared.data.at(0) == FixedTrait::new(0, false) {\n", " feature_squared =\n", " TensorTrait::<\n", " FP16x16\n", " >::new(shape: array![1].span(), data: array![FixedTrait::new(10, false)].span());\n", " }\n", " " let mut j: u32 = i + 1;\n", " loop {\n", " if j >= *x_feature_data.shape.at(0) {\n", " break ();\n", " }\n", " let mut remaining_tensor_values = get_tensor_data_by_row(input_tensor, j);\n", " let feature_cross_pro
duct = feature_row_values.matmul(@remaining_tensor_values);\n", " let feature_gradients = feature_cross_product / feature_squared;\n", " remaining_tensor_values = remaining_tensor_values\n", " - (feature_row_values\n", " * feature_gradients); " " let mut k: u32 = 0;\n", " loop {\n", " if k >= remaining_tensor_values.data.len() {\n", " break ();\n", " }\n", " placeholder.append(*remaining_tensor_values.data.at(k));\n", " k += 1;\n", " };\n", "\n", " j += 1;\n", " };\n", " " let mut decorrelated_tensor = TensorTrait::new(\n", " shape: array![*x_feature_data.shape.at(0) - 1 - i, *x_feature_data.shape.at(1)].span(),\n", " data: placeholder.span()\n", " );\n", " let mut original_tensor = input_tensor\n", " .slice(\n", " starts: array![0, 0].span(),\n", " ends: array![i + 1, *x_feature_data.shape.at(1)].span(),\n", " axes: Option::None(()),\n", " steps: Option::Some(array![1, 1].span())\n", " );\n", " input_tensor =\n", " TensorTrait::concat(\n", " tensors: array![original_tensor, decorrelated_tensor].span(), axis: 0\n", " );\n", " i += 1;\n", " };\n", " return input_tensor;\n", "}\n", "\n", " "fn compute_gradients(\n", " decorrelated_x_features: Tensor<FP16x16>,\n", " y_values: Tensor<FP16x16>,\n", " original_x_tensor_values: Tensor<FP16x16>\n", ") -> Tensor<FP16x16> {\n", " let mut gradient_values_flipped = TensorTrait::<\n", " FP16x16\n", " >::new(shape: array![1].span(), data: array![FixedTrait::new(10, false)].span());\n", "\n
", " let mut result = ArrayTrait::<FP16x16>::new();\n", " let mut tensor_y_vals = y_values;\n", " let mut i: u32 = *decorrelated_x_features.shape.at(0);\n", " " loop {\n", " if i <= 0 {\n", " break ();\n", " }\n", " let index_val = i - 1;\n", " let mut decorelated_feature_row_values = get_tensor_data_by_row(\n", " decorrelated_x_features, index_val\n", " ); " let mut decorelated_features_squared = decorelated_feature_row_values\n", " .matmul(@decorelated_feature_row_values);\n", " let mut feature_label_cross_product = tensor_y_vals\n", " .matmul(@decorelated_feature_row_values); " " if *decorelated_features_squared.data.at(0) == FixedTrait::new(0, false) {\n", " decorelated_features_squared =\n", " TensorTrait::<\n", " FP16x16\n", " >::new(shape: array![1].span(), data: array![FixedTrait::new(10, false)].span());\n", " }\n", " " let mut single_gradient_value = feature_label_cross_product\n", " / decorelated_features_squared; " result.append(*single_gradient_value.data.at(0));\n", " " let mut original_x_tensor_row_values = get_tensor_data_by_row(\n", " original_x_tensor_values, index_val\n", " );\n", " tensor_y_vals = tensor_y_vals\n", " - (original_x_tensor_row_values\n", " * single_gradient_value); " i -= 1;\n", " };\n", " " let final_gradients = TensorTrait::new(\n", " shape: array![*decorrelated_x_features.shape.at(0)].span(), data: result.span()\n", " );\n", "\n", " let mut reverse_grad_array = ArrayTrait::<FP16x16>::new();\n", " let mut data_len: u32 = final_gradients.data.len();\n", " loop {\n", " if
data_len <= 0 {\n", " break ();\n", " }\n", " let temp_val = data_len - 1;\n", " reverse_grad_array.append(*final_gradients.data.at(temp_val));\n", " data_len -= 1;\n", " };\n", " " let gradient_values_flipped = TensorTrait::<\n", " FP16x16\n", " >::new(shape: array![reverse_grad_array.len()].span(), data: reverse_grad_array.span());\n", "\n", " return gradient_values_flipped;\n", "}\n", "\n", "\n" ] }, { "cell_type": "code", "execution_count": 46, "id": "6b37fbe5", "metadata": {}, "outputs": [], "source": [ "! touch multiple_linear_regression_aave/src/model.cairo" ] }, { "cell_type": "code", "execution_count": 47, "id": "22f961a5", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Overwriting multiple_linear_regression_aave/src/model.cairo\n" ] } ], "source": [ "%%writefile multiple_linear_regression_aave/src/model.cairo\n", "mod multiple_linear_regression_model;" ] }, { "cell_type": "markdown", "id": "8c1f41c6", "metadata": {}, "source": [ " "\n", "Running some checks to ensure the model is performing as expected. Some of the checks involve:\n", "- data normalizations checks\n", "- tensor shape/dimension check\n", "- coefficient value and dimension checks \n", "- model accuracy deviance checks" ] }, { "cell_type": "code", "execution_count": 48, "id": "dfb70ccd", "metadata": {}, "outputs": [], "source": [ "! touch multiple_linear_regression_aave/src/test.cairo" ] }, { "cell_type": "code", "execution_count": 49, "id": "4dd10050", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Overwriting multiple_linear_regression_aave/src/test.cairo\n" ] } ], "source": [ "%%writefile multiple_linear
_regression_aave/src/test.cairo\n", "\n", "\n", "\n", " "use debug::PrintTrait;\n", "use array::{ArrayTrait, SpanTrait};\n", "\n", "use multiple_linear_regresion::datasets::aave_data::aave_x_features::aave_x_features;\n", "use multiple_linear_regresion::datasets::aave_data::aave_y_labels::aave_y_labels; \n", "use multiple_linear_regresion::datasets::user_inputs_data::aave_weth_revenue_data_input::{aave_weth_revenue_data_input }; \n", "\n", "use multiple_linear_regresion::model::multiple_linear_regression_model::{\n", " MultipleLinearRegressionModel, MultipleLinearRegression, MultipleLinearRegressionModelTrait\n", "};\n", "use multiple_linear_regresion::data_preprocessing::{Dataset, DatasetTrait};\n", "use multiple_linear_regresion::helper_functions::{get_tensor_data_by_row, transpose_tensor, calculate_mean , \n", "calculate_r_score, normalize_user_x_inputs, rescale_predictions};\n", "\n", "use orion::numbers::{FP16x16, FixedTrait};\n", "\n", "\n", "use orion::operators::tensor::{\n", " Tensor, TensorTrait, FP16x16Tensor, U32Tensor, U32TensorAdd, \n", " FP16x16TensorSub, FP16x16TensorAdd, FP16x16TensorDiv, FP16x16TensorMul};\n", "\n", " " "
fn multiple_linear_regression_test() {\n", "\n", "\n", " "\n", "let mut main_x_vals = aave_x_features();\n", "let mut main_y_vals = aave_y_labels();\n", "let mut dataset = Dataset{x_values: main_x_vals,y_values:main_y_vals};\n", "let mut normalized_dataset = dataset.normalize_dataset();\n", "let mut model = MultipleLinearRegression(normalized_dataset);\n", "let mut model_coefficients = model.coefficients;\n", "let mut reconstructed_ys = model.predict (normalized_dataset.x_values);\n", "let mut r_squared_score = calculate_r_score(normalized_dataset.y_values,reconstructed_ys);\n", "r_squared_score.print(); \n", "\n", " "assert(normalized_dataset.x_values.max_in_tensor() <= FixedTrait::new(65536, false), 'normalized x not between 0-1');\n", "assert(normalized_dataset.x_values.min_in_tensor() >= FixedTrait::new(0, false), 'normalized x not between 0-1');\n", "assert(normalized_dataset.y_values.max_in_tensor() <= FixedTrait::new(65536, false), 'normalized y not between 0-1');\n", "assert(normalized_dataset.x_values.min_in_tensor() >= FixedTrait::new(0, false), 'normalized y not between 0-1');\n", " "assert(normalized_dataset.x_values.data.len()== main_x_vals.data.len() && \n", "normalized_dataset.y_values.data.len()== main_y_vals.data.len() , 'normalized data shape mismatch');\n", " "assert(model.coefficients.data.len() == *main_x_vals.shape.at(1)+1, 'coefficient data shape mismatch');\n", " "assert(r_squared_score >= FixedTrait::new(62259, false), 'AAVE model acc. less than 95%');\n", "\n", " "let last_7_days_aave_data = aave_weth_revenue_data_input();\n", "let last_7_days_aave_data_normalized = normalize_user_x_inputs(last_7_days_aave_data, main_x_vals );\n", "let mut forecast_results = model.predict (last_7_days_aave_data_normalized); \n", "let mut rescale_forecasts = rescale_predictions(forecast_results, main_y_vals); "(*rescale_forecasts.data.at(0)).print(); \n", "(*rescale_fo
recasts.data.at(1)).print(); \n", "(*rescale_forecasts.data.at(2)).print(); \n", "(*rescale_forecasts.data.at(5)).print(); \n", "(*rescale_forecasts.data.at(6)).print(); \n", "}\n" ] }, { "cell_type": "code", "execution_count": null, "id": "4ae8fd10", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.4" } }, "nbformat": 4, "nbformat_minor": 5 }
use orion::operators::tensor::{ Tensor, TensorTrait, FP16x16Tensor, U32Tensor, U32TensorAdd, FP16x16TensorSub, FP16x16TensorAdd, FP16x16TensorDiv, FP16x16TensorMul }; use orion::numbers::{FP16x16, FixedTrait}; use linear_regresion::helper_functions::{ get_tensor_data_by_row, transpose_tensor, calculate_mean, calculate_r_score, normalize_user_x_inputs, rescale_predictions };
struct Dataset { x_values: Tensor<FP16x16>, y_values: Tensor<FP16x16>, } impl DataPreprocessing of DatasetTrait { fn normalize_dataset(ref self: Dataset) -> Dataset { let mut x_values = TensorTrait::<FP16x16>::new(array![1].span(), array![FixedTrait::new(0, false)].span()); let mut y_values = TensorTrait::<FP16x16>::new(array![1].span(), array![FixedTrait::new(0, false)].span()); if self.x_values.shape.len() > 1 { x_values = normalize_feature_data(self.x_values); y_values = normalize_label_data(self.y_values); } if self.x_values.shape.len() == 1 { x_values = normalize_label_data(self.x_values); y_values = normalize_label_data(self.y_values); } return Dataset { x_values, y_values }; } } fn normalize_feature_data(tensor_data: Tensor<FP16x16>) -> Tensor<FP16x16> { let mut x_min_array = ArrayTrait::<FP16x16>::new(); let mut x_max_array = ArrayTrait::<FP16x16>::new(); let mut x_range_array = ArrayTrait::<FP16x16>::new(); let mut normalized_array = ArrayTrait::<FP16x16>::new(); let transposed_tensor = tensor_data.transpose(axes: array![1, 0].span()); let tensor_shape = transposed_tensor.shape; let tensor_row_len = *tensor_shape.at(0); let tensor_column_len = *tensor_shape.at(1); let mut i: u32 = 0; loop { if i >= tensor_row_len { break (); } let mut transposed_tensor_row = get_tensor_data_by_row(transposed_tensor, i); x_max_array.append(transposed_tensor_row.max_in_tensor()); x_min_array.append(transposed_tensor_row.min_in_tensor()); x_range_array .append(transposed_tensor_row.max_in_tensor() - transposed_tensor_row.min_in_tensor()); i += 1; }; let mut x_min = TensorTrait::< FP16x16 >::new(shape: array![1, tensor_row_len].span(), data: x_min_array.span()); let mut x_range = TensorTrait::< FP16x16 >::new(shape
: array![1, tensor_row_len].span(), data: x_range_array.span()); let normalized_tensor = (tensor_data - x_min) / x_range; return normalized_tensor; } fn normalize_label_data(tensor_data: Tensor<FP16x16>) -> Tensor<FP16x16> { let mut tensor_data_ = tensor_data; let mut normalized_array = ArrayTrait::<FP16x16>::new(); let mut range = tensor_data.max_in_tensor() - tensor_data.min_in_tensor(); let mut i: u32 = 0; loop { match tensor_data_.data.pop_front() { Option::Some(tensor_val) => { let mut diff = *tensor_val - tensor_data.min_in_tensor(); normalized_array.append(diff / range); i += 1; }, Option::None(_) => { break; } }; }; let mut normalized_tensor = TensorTrait::< FP16x16 >::new(shape: array![tensor_data.data.len()].span(), data: normalized_array.span()); return normalized_tensor; }
mod linear_data;
mod x_feature_data; mod y_label_data;
use array::ArrayTrait; use orion::numbers::fixed_point::implementations::fp16x16::core::{FP16x16Impl, FP16x16PartialEq }; use orion::operators::tensor::{Tensor, TensorTrait, FP16x16Tensor}; use orion::numbers::{FP16x16, FixedTrait}; fn x_feature_data() -> Tensor<FP16x16> { let tensor = TensorTrait::<FP16x16>::new( shape: array![50].span(), data: array![ FixedTrait::new(90639, false ), FixedTrait::new(12581, true ), FixedTrait::new(33595, false ), FixedTrait::new(92893, false ), FixedTrait::new(64841, false ), FixedTrait::new(21784, false ), FixedTrait::new(93600, false ), FixedTrait::new(139107, false ), FixedTrait::new(46680, true ), FixedTrait::new(148678, true ), FixedTrait::new(55700, false ), FixedTrait::new(63442, false ), FixedTrait::new(16625, false ), FixedTrait::new(15088, false ), FixedTrait::new(109945, false ), FixedTrait::new(22098, false ), FixedTrait::new(28923, false ), FixedTrait::new(55032, true ), FixedTrait::new(29968, false ), FixedTrait::new(17353, false ), FixedTrait::new(126, true ), FixedTrait::new(6705, true ), FixedTrait::new(81234, true ), FixedTrait::new(38498, true ), FixedTrait::new(75536, true ), FixedTrait::new(984, true ), FixedTrait::new(45491, true ), FixedTrait::new(88496, false ), FixedTrait::new(8992, false ), FixedTrait::new(28549, false ), FixedTrait::new(61676, true ), FixedTrait::new(54096, true ), FixedTrait::new(91046, false ), FixedTrait::new(53660, false ), FixedTrait::new(6145, true ), FixedTrait::new(26994, false ), FixedTrait::new(90657, false ), FixedTrait::new(21638, true ), FixedTrait::new(50848, false ), FixedTrait::new(4550, true ), FixedTrait::new(7560, true ), FixedTrait::new(41550, false ), FixedTrait::new(200, false ), FixedTrait::new(102341, false ), FixedTrait::new(25789, false ), FixedTrait::new(9158, false ), FixedTrait::new(102276, true ), Fixe
dTrait::new(76823, true ), FixedTrait::new(69440, true ), FixedTrait::new(17547, true ), ].span() ); return tensor; }
use array::ArrayTrait; use orion::numbers::fixed_point::implementations::fp16x16::core::{FP16x16Impl, FP16x16PartialEq }; use orion::operators::tensor::{Tensor, TensorTrait, FP16x16Tensor}; use orion::numbers::{FP16x16, FixedTrait}; fn y_label_data() -> Tensor<FP16x16> { let tensor = TensorTrait::<FP16x16>::new( shape: array![50].span(), data: array![ FixedTrait::new(7282724, false ), FixedTrait::new(6435011, false ), FixedTrait::new(6662231, false ), FixedTrait::new(7271410, false ), FixedTrait::new(7099095, false ), FixedTrait::new(6751687, false ), FixedTrait::new(7403695, false ), FixedTrait::new(7831893, false ), FixedTrait::new(6135683, false ), FixedTrait::new(5448106, false ), FixedTrait::new(6992113, false ), FixedTrait::new(7129256, false ), FixedTrait::new(6678313, false ), FixedTrait::new(6524452, false ), FixedTrait::new(7538849, false ), FixedTrait::new(6685568, false ), FixedTrait::new(6749158, false ), FixedTrait::new(6149931, false ), FixedTrait::new(6876758, false ), FixedTrait::new(6623147, false ), FixedTrait::new(6679189, false ), FixedTrait::new(6578635, false ), FixedTrait::new(5894520, false ), FixedTrait::new(6161430, false ), FixedTrait::new(5887716, false ), FixedTrait::new(6440009, false ), FixedTrait::new(6209384, false ), FixedTrait::new(7208597, false ), FixedTrait::new(6679473, false ), FixedTrait::new(6809111, false ), FixedTrait::new(6068970, false ), FixedTrait::new(6089744, false ), FixedTrait::new(7360056, false ), FixedTrait::new(6971060, false ), FixedTrait::new(6419231, false ), FixedTrait::new(6780044, false ), FixedTrait::new(7279453, false ), FixedTrait::new(6350620, false ), FixedTrait::new(7023820, false ), FixedTrait::new(6568475, false ), FixedTrait::new(6528424, false ), FixedTrait::new(6936953, false ), FixedTrait::new(6511689, false ), FixedTrait::new(7367935, false ), F
ixedTrait::new(6860285, false ), FixedTrait::new(6800462, false ), FixedTrait::new(5650037, false ), FixedTrait::new(5915425, false ), FixedTrait::new(5913912, false ), FixedTrait::new(6491295, false ), ].span() ); return tensor; }
use debug::PrintTrait; use array::{ArrayTrait, SpanTrait}; use orion::operators::tensor::{ Tensor, TensorTrait, FP16x16Tensor, U32Tensor, U32TensorAdd, FP16x16TensorSub, FP16x16TensorAdd, FP16x16TensorDiv, FP16x16TensorMul }; use orion::numbers::{FP16x16, FixedTrait}; fn get_tensor_data_by_row(tensor_data: Tensor<FP16x16>, row_index: u32,) -> Tensor<FP16x16> { let column_len = *tensor_data.shape.at(1); let mut result = ArrayTrait::<FP16x16>::new(); let mut i: u32 = 0; loop { if i >= column_len { break (); } result.append(tensor_data.at(indices: array![row_index, i].span())); i += 1; }; let resultant_tensor = TensorTrait::< FP16x16 >::new(array![column_len].span(), data: result.span()); return resultant_tensor; } fn transpose_tensor(tensor_data: Tensor<FP16x16>) -> Tensor<FP16x16> { let tensor_transposed = tensor_data.transpose(axes: array![1, 0].span()); return tensor_transposed; } fn calculate_mean(tensor_data: Tensor<FP16x16>) -> FP16x16 { let tensor_size = FixedTrait::<FP16x16>::new_unscaled(tensor_data.data.len(), false); let cumulated_sum = tensor_data.cumsum(0, Option::None(()), Option::None(())); let sum_result = cumulated_sum.data[tensor_data.data.len() - 1]; let mean = *sum_result / tensor_size; return mean; } fn calculate_r_score(Y_values: Tensor<FP16x16>, Y_pred_values: Tensor<FP16x16>) -> FP16x16 { let mut Y_values_ = Y_values; let mean_y_value = calculate_mean(Y_values); let mut squared_diff_shape = array::ArrayTrait::new(); squared_diff_shape.append(Y_values.data.len()); let mut squared_diff_vals = array::ArrayTrait::new(); let mut squared_mean_diff_shape = array::ArrayTrait::new(); squared_mean_diff_shape.append(Y_values.data.len()); let mut squared_mean_diff_vals = array::ArrayTrait::new(); let mut i: u32 = 0; loop { match Y_values_.data.pop_front() { Option::Some(y_value) => {
let diff_pred = *y_value - *Y_pred_values.data.at(i); let squared_diff = diff_pred * diff_pred; squared_diff_vals.append(squared_diff); let diff_mean = *y_value - mean_y_value; let squared_mean_diff = diff_mean * diff_mean; squared_mean_diff_vals.append(squared_mean_diff); i += 1; }, Option::None(_) => { break; } } }; let squared_diff_tensor = TensorTrait::< FP16x16 >::new(squared_diff_shape.span(), squared_diff_vals.span()); let squared_mean_diff_tensor = TensorTrait::< FP16x16 >::new(squared_mean_diff_shape.span(), squared_mean_diff_vals.span()); let sum_squared_diff = squared_diff_tensor.cumsum(0, Option::None(()), Option::None(())); let sum_squared_mean_diff = squared_mean_diff_tensor .cumsum(0, Option::None(()), Option::None(())); let r_score = FixedTrait::new_unscaled(1, false) - *sum_squared_diff.data.at(Y_values.data.len() - 1) / *sum_squared_mean_diff.data.at(Y_values.data.len() - 1); return r_score; } fn normalize_user_x_inputs( x_inputs: Tensor<FP16x16>, original_x_values: Tensor<FP16x16> ) -> Tensor<FP16x16> { let mut x_inputs_normalized = TensorTrait::< FP16x16 >::new(shape: array![1].span(), data: array![FixedTrait::new(10, false)].span()); let mut x_min = ArrayTrait::<FP16x16>::new(); let mut x_max = ArrayTrait::<FP16x16>::new(); let mut x_range = ArrayTrait::<FP16x16>::new(); let mut result = ArrayTrait::<FP16x16>::new(); if original_x_values.shape.len() > 1 { let transposed_tensor = original_x_values.transpose(axes: array![1, 0].span()); let data_len = *transposed_tensor.shape.at(0); let mut i: u32 = 0; loop { if i >= data_len { break (); } let mut transposed_tensor_row = get_tensor_data_by_row(transposed_tensor, i); x_min.append(transposed_
tensor_row.min_in_tensor()); x_max.append(transposed_tensor_row.max_in_tensor()); x_range .append( transposed_tensor_row.max_in_tensor() - transposed_tensor_row.min_in_tensor() ); i += 1; }; let mut x_min_tensor = TensorTrait::new(shape: array![data_len].span(), data: x_min.span()); let mut x_max_tensor = TensorTrait::new(shape: array![data_len].span(), data: x_max.span()); let mut x_range_tensor = TensorTrait::new( shape: array![data_len].span(), data: x_range.span() ); if x_inputs.shape.len() > 1 { let mut j: u32 = 0; loop { if j >= *x_inputs.shape.at(0) { break (); }; let mut row_data = get_tensor_data_by_row(x_inputs, j); let mut norm_row_data = (row_data - x_min_tensor) / x_range_tensor; let mut k: u32 = 0; loop { if k >= norm_row_data.data.len() { break (); }; result.append(*norm_row_data.data.at(k)); k += 1; }; j += 1; }; x_inputs_normalized = TensorTrait::< FP16x16 >::new( array![*x_inputs.shape.at(0), *x_inputs.shape.at(1)].span(), data: result.span() ); }; if x_inputs.shape.len() == 1 { x_inputs_normalized = (x_inputs - x_min_tensor) / x_range_tensor; }; } if original_x_values.shape.len() == 1 { let mut x_min_tensor = TensorTrait::< FP16x16 >::new(shape: array![1].span(), data: array![original_x_values.min_in_tensor()].span()); let mut x_max_tensor = TensorTrait::< FP16x16 >::new(shape: array![1].span(), data: array![original_x_values.max_in_tensor()].span()
); let mut x_range_tensor = TensorTrait::< FP16x16 >::new( shape: array![1].span(), data: array![original_x_values.max_in_tensor() - original_x_values.min_in_tensor()] .span() ); let mut diff = ((x_inputs - x_min_tensor)); x_inputs_normalized = ((x_inputs - x_min_tensor)) / x_range_tensor; }; return x_inputs_normalized; } fn rescale_predictions( prediction_result: Tensor<FP16x16>, y_values: Tensor<FP16x16> ) -> Tensor<FP16x16> { let mut rescale_predictions = TensorTrait::< FP16x16 >::new(shape: array![1].span(), data: array![FixedTrait::new(10, false)].span()); let mut y_min_array = ArrayTrait::<FP16x16>::new(); let mut y_max_array = ArrayTrait::<FP16x16>::new(); let mut y_range_array = ArrayTrait::<FP16x16>::new(); let mut y_max = y_values.max_in_tensor(); let mut y_min = y_values.min_in_tensor(); let mut y_range = y_values.max_in_tensor() - y_values.min_in_tensor(); let y_min_tensor = TensorTrait::< FP16x16 >::new(shape: array![1].span(), data: array![y_min].span()); let y_max_tensor = TensorTrait::< FP16x16 >::new(shape: array![1].span(), data: array![y_max].span()); let y_range_tensor = TensorTrait::< FP16x16 >::new(shape: array![1].span(), data: array![y_range].span()); rescale_predictions = (prediction_result * y_range_tensor) + y_min_tensor; return rescale_predictions; }
mod test; mod data_preprocessing; mod helper_functions; mod datasets; mod model;
mod linear_regression_model;
use orion::operators::tensor::{ Tensor, TensorTrait, FP16x16Tensor, U32Tensor, U32TensorAdd, FP16x16TensorSub, FP16x16TensorAdd, FP16x16TensorDiv, FP16x16TensorMul }; use orion::numbers::{FP16x16, FixedTrait}; use linear_regresion::data_preprocessing::{Dataset, DatasetTrait}; use linear_regresion::helper_functions::{ get_tensor_data_by_row, transpose_tensor, calculate_mean, calculate_r_score, normalize_user_x_inputs, rescale_predictions };
struct LinearRegressionModel { gradient: Tensor<FP16x16>, bias: Tensor<FP16x16> } impl RegressionOperation of LinearRegressionModelTrait { fn predict(ref self: LinearRegressionModel, x_input: Tensor<FP16x16>) -> Tensor<FP16x16> { let gradient = self.gradient; let bias = self.bias; let mut prediction = (gradient * x_input) + bias; return prediction; } } fn LinearRegression(dataset: Dataset) -> LinearRegressionModel { let gradient = compute_gradient(dataset); let bias = compute_bias(dataset); return LinearRegressionModel { gradient, bias }; } fn compute_mean(tensor_data: Tensor<FP16x16>) -> Tensor<FP16x16> { let tensor_size = FixedTrait::<FP16x16>::new_unscaled(tensor_data.data.len(), false); let cumulated_sum = tensor_data.cumsum(0, Option::None(()), Option::None(())); let sum_result = cumulated_sum.data[tensor_data.data.len() - 1]; let mean = *sum_result / tensor_size; let mut result_tensor = TensorTrait::< FP16x16 >::new(shape: array![1].span(), data: array![mean].span()); return result_tensor; } fn deviation_from_mean(tensor_data: Tensor<FP16x16>) -> Tensor<FP16x16> { let mut tensor_data_ = tensor_data; let mean_value = calculate_mean(tensor_data); let mut tensor_shape = array::ArrayTrait::new(); tensor_shape.append(tensor_data.data.len()); let mut deviation_values = array::ArrayTrait::new(); let mut i: u32 = 0; loop { match tensor_data_.data.pop_front() { Option::Some(tensor_val) => { let distance_from_mean = *tensor_val - mean_value; deviation_values.append(distance_from_mean); i += 1; }, Option::None(_) => { break; } }; }; let distance_from_mean_tensor = TensorTrait::< FP16x16 >::new(tensor_shape.span(), deviation_values.span()); return distance_from_mean_tensor; } fn compute_gradient(dataset: Dataset) -> Tensor<FP16x16> { let x_deviation = deviati
on_from_mean(dataset.x_values); let y_deviation = deviation_from_mean(dataset.y_values); let x_y_covariance = x_deviation.matmul(@y_deviation); let x_variance = x_deviation.matmul(@x_deviation); let beta_value = x_y_covariance / x_variance; return beta_value; } fn compute_bias(dataset: Dataset) -> Tensor<FP16x16> { let x_mean = compute_mean(dataset.x_values); let y_mean = compute_mean(dataset.y_values); let gradient = compute_gradient(dataset); let mx = gradient * x_mean; let intercept = y_mean - mx; return intercept; }
use debug::PrintTrait; use array::{ArrayTrait, SpanTrait}; use linear_regresion::datasets::linear_data::x_feature_data::x_feature_data; use linear_regresion::datasets::linear_data::y_label_data::y_label_data; use orion::numbers::{FP16x16, FixedTrait}; use linear_regresion::model::linear_regression_model::{ LinearRegressionModel, compute_mean, LinearRegression, LinearRegressionModelTrait }; use linear_regresion::data_preprocessing::{Dataset, DatasetTrait}; use linear_regresion::helper_functions::{get_tensor_data_by_row, transpose_tensor, calculate_mean , calculate_r_score, normalize_user_x_inputs, rescale_predictions}; use orion::operators::tensor::{ Tensor, TensorTrait, FP16x16Tensor, U32Tensor, U32TensorAdd, FP16x16TensorSub, FP16x16TensorAdd, FP16x16TensorDiv, FP16x16TensorMul};
fn multiple_linear_regression_test() { let mut main_x_vals = x_feature_data(); let mut main_y_vals = y_label_data(); let dataset = Dataset{x_values: main_x_vals,y_values:main_y_vals}; let mut model = LinearRegression(dataset); let gradient = model.gradient; let mut reconstructed_ys = model.predict(main_x_vals); let mut r_squared_score = calculate_r_score(main_y_vals,reconstructed_ys); r_squared_score.print(); assert(model.gradient.data.len() == 1, 'gradient data shape mismatch'); assert(model.bias.data.len() == 1, 'bias data shape mismatch'); assert(r_squared_score >= FixedTrait::new(62259, false), 'Linear model acc. less than 95%'); let mut user_value = TensorTrait::<FP16x16>::new(shape: array![2].span(), data: array![FixedTrait::new(65536, false), FixedTrait::new(65536, true)].span()); let mut prediction_results = model.predict(user_value); (*prediction_results.data.at(0)).print(); (*prediction_results.data.at(1)).print(); }
use orion::operators::tensor::{ Tensor, TensorTrait, FP16x16Tensor, U32Tensor, U32TensorAdd, FP16x16TensorSub, FP16x16TensorAdd, FP16x16TensorDiv, FP16x16TensorMul }; use orion::numbers::{FP16x16, FixedTrait}; use multiple_linear_regresion::helper_functions::{ get_tensor_data_by_row, transpose_tensor, calculate_mean, calculate_r_score, normalize_user_x_inputs, rescale_predictions };
struct Dataset { x_values: Tensor<FP16x16>, y_values: Tensor<FP16x16>, } impl DataPreprocessing of DatasetTrait { fn normalize_dataset(ref self: Dataset) -> Dataset { let mut x_values = TensorTrait::<FP16x16>::new(array![1].span(), array![FixedTrait::new(0, false)].span()); let mut y_values = TensorTrait::<FP16x16>::new(array![1].span(), array![FixedTrait::new(0, false)].span()); if self.x_values.shape.len() > 1 { x_values = normalize_feature_data(self.x_values); y_values = normalize_label_data(self.y_values); } if self.x_values.shape.len() == 1 { x_values = normalize_label_data(self.x_values); y_values = normalize_label_data(self.y_values); } return Dataset { x_values, y_values }; } } fn normalize_feature_data(tensor_data: Tensor<FP16x16>) -> Tensor<FP16x16> { let mut x_min_array = ArrayTrait::<FP16x16>::new(); let mut x_max_array = ArrayTrait::<FP16x16>::new(); let mut x_range_array = ArrayTrait::<FP16x16>::new(); let mut normalized_array = ArrayTrait::<FP16x16>::new(); let transposed_tensor = tensor_data.transpose(axes: array![1, 0].span()); let tensor_shape = transposed_tensor.shape; let tensor_row_len = *tensor_shape.at(0); let tensor_column_len = *tensor_shape.at(1); let mut i: u32 = 0; loop { if i >= tensor_row_len { break (); } let mut transposed_tensor_row = get_tensor_data_by_row(transposed_tensor, i); x_max_array.append(transposed_tensor_row.max_in_tensor()); x_min_array.append(transposed_tensor_row.min_in_tensor()); x_range_array .append(transposed_tensor_row.max_in_tensor() - transposed_tensor_row.min_in_tensor()); i += 1; }; let mut x_min = TensorTrait::< FP16x16 >::new(shape: array![1, tensor_row_len].span(), data: x_min_array.span()); let mut x_range = TensorTrait::< FP16x16 >::new(shape
: array![1, tensor_row_len].span(), data: x_range_array.span()); let normalized_tensor = (tensor_data - x_min) / x_range; return normalized_tensor; } fn normalize_label_data(tensor_data: Tensor<FP16x16>) -> Tensor<FP16x16> { let mut tensor_data_ = tensor_data; let mut normalized_array = ArrayTrait::<FP16x16>::new(); let mut range = tensor_data.max_in_tensor() - tensor_data.min_in_tensor(); let mut i: u32 = 0; loop { match tensor_data_.data.pop_front() { Option::Some(tensor_val) => { let mut diff = *tensor_val - tensor_data.min_in_tensor(); normalized_array.append(diff / range); i += 1; }, Option::None(_) => { break; } }; }; let mut normalized_tensor = TensorTrait::< FP16x16 >::new(shape: array![tensor_data.data.len()].span(), data: normalized_array.span()); return normalized_tensor; }
mod aave_data; mod user_inputs_data;
mod aave_x_features; mod aave_y_labels;
use array::ArrayTrait; use orion::numbers::fixed_point::implementations::fp16x16::core::{FP16x16Impl, FP16x16PartialEq }; use orion::operators::tensor::{Tensor, TensorTrait, FP16x16Tensor}; use orion::numbers::{FP16x16, FixedTrait}; fn aave_x_features() -> Tensor<FP16x16> { let tensor = TensorTrait::<FP16x16>::new( shape: array![24,9].span(), data: array![ FixedTrait::new(61, false ), FixedTrait::new(484966, false ), FixedTrait::new(812646, false ), FixedTrait::new(13369344, false ), FixedTrait::new(3604, false ), FixedTrait::new(7798784, false ), FixedTrait::new(1880883, false ), FixedTrait::new(5006950, false ), FixedTrait::new(220856320, false ), FixedTrait::new(87, false ), FixedTrait::new(488243, false ), FixedTrait::new(812646, false ), FixedTrait::new(13434880, false ), FixedTrait::new(3604, false ), FixedTrait::new(7798784, false ), FixedTrait::new(1880883, false ), FixedTrait::new(5006950, false ), FixedTrait::new(220856320, false ), FixedTrait::new(114, false ), FixedTrait::new(525598, false ), FixedTrait::new(812646, false ), FixedTrait::new(13565952, false ), FixedTrait::new(3604, false ), FixedTrait::new(7798784, false ), FixedTrait::new(1887436, false ), FixedTrait::new(5013504, false ), FixedTrait::new(217579519, false ), FixedTrait::new(138, false ), FixedTrait::new(628490, false ), FixedTrait::new(838860, false ), FixedTrait::new(13893632, false ), FixedTrait::new(3604, false ), FixedTrait::new(8126463, false ), FixedTrait::new(1874329, false ), FixedTrait::new(5046272, false ), FixedTrait::new(208404480, false ), FixedTrait::new(1, false ), FixedTrait::new(655360, false ), FixedTrait::new(924057, false ), FixedTrait::new(14090240, false ), FixedTrait::new(3768, false ), FixedTrait::new(8388608, false ), FixedTrait::new(1880883, false ), FixedTrait::new(5065932, false ), FixedTrait::new(206438400, false
), FixedTrait::new(25, false ), FixedTrait::new(688128, false ), FixedTrait::new(924057, false ), FixedTrait::new(14155776, false ), FixedTrait::new(3768, false ), FixedTrait::new(8454144, false ), FixedTrait::new(1893990, false ), FixedTrait::new(5065932, false ), FixedTrait::new(204472320, false ), FixedTrait::new(50, false ), FixedTrait::new(681574, false ), FixedTrait::new(924057, false ), FixedTrait::new(14286848, false ), FixedTrait::new(3768, false ), FixedTrait::new(8585216, false ), FixedTrait::new(1900544, false ), FixedTrait::new(5072486, false ), FixedTrait::new(205127680, false ), FixedTrait::new(76, false ), FixedTrait::new(640942, false ), FixedTrait::new(924057, false ), FixedTrait::new(14352384, false ), FixedTrait::new(3768, false ), FixedTrait::new(8650752, false ), FixedTrait::new(1933312, false ), FixedTrait::new(5072486, false ), FixedTrait::new(209059840, false ), FixedTrait::new(100, false ), FixedTrait::new(747110, false ), FixedTrait::new(924057, false ), FixedTrait::new(14483456, false ), FixedTrait::new(3768, false ), FixedTrait::new(8716288, false ), FixedTrait::new(1939865, false ), FixedTrait::new(5072486, false ), FixedTrait::new(201195519, false ), FixedTrait::new(126, false ), FixedTrait::new(650117, false ), FixedTrait::new(989593, false ), FixedTrait::new(14614528, false ), FixedTrait::new(3768, false ), FixedTrait::new(8781824, false ), FixedTrait::new(1966080, false ), FixedTrait::new(5079040, false ), FixedTrait::new(209059840, false ), FixedTrait::new(152, false ), FixedTrait::new(645529, false ), FixedTrait::new(989593, false ), FixedTrait::new(14876672, false ), FixedTrait::new(3768, false ), FixedTrait::new(8978432, false ), FixedTrait::new(1979187, false ), FixedTrait::new(5085593, false ), FixedTrait::new(209715200, false ), FixedTrait::new(1, false ),
FixedTrait::new(653393, false ), FixedTrait::new(1002700, false ), FixedTrait::new(14876672, false ), FixedTrait::new(3951, false ), FixedTrait::new(8978432, false ), FixedTrait::new(1959526, false ), FixedTrait::new(5111808, false ), FixedTrait::new(209059840, false ), FixedTrait::new(26, false ), FixedTrait::new(614072, false ), FixedTrait::new(1009254, false ), FixedTrait::new(15007744, false ), FixedTrait::new(3951, false ), FixedTrait::new(9043968, false ), FixedTrait::new(1926758, false ), FixedTrait::new(5157683, false ), FixedTrait::new(211025919, false ), FixedTrait::new(54, false ), FixedTrait::new(523632, false ), FixedTrait::new(1009254, false ), FixedTrait::new(15073280, false ), FixedTrait::new(3951, false ), FixedTrait::new(9043968, false ), FixedTrait::new(2011955, false ), FixedTrait::new(5203558, false ), FixedTrait::new(220856320, false ), FixedTrait::new(78, false ), FixedTrait::new(688128, false ), FixedTrait::new(1009254, false ), FixedTrait::new(15138816, false ), FixedTrait::new(3951, false ), FixedTrait::new(9109504, false ), FixedTrait::new(1861222, false ), FixedTrait::new(5360844, false ), FixedTrait::new(203816960, false ), FixedTrait::new(102, false ), FixedTrait::new(688128, false ), FixedTrait::new(1028915, false ), FixedTrait::new(15204352, false ), FixedTrait::new(3951, false ), FixedTrait::new(9109504, false ), FixedTrait::new(1861222, false ), FixedTrait::new(5367398, false ), FixedTrait::new(203816960, false ), FixedTrait::new(126, false ), FixedTrait::new(694681, false ), FixedTrait::new(1028915, false ), FixedTrait::new(15204352, false ), FixedTrait::new(3951, false ), FixedTrait::new(9109504, false ), FixedTrait::new(1861222, false ), FixedTrait::new(5367398, false ), FixedTrait::new(203161600, false ), FixedTrait::new(151, false ), FixedTrait::new(681574,
false ), FixedTrait::new(1028915, false ), FixedTrait::new(15466496, false ), FixedTrait::new(3951, false ), FixedTrait::new(9371648, false ), FixedTrait::new(1848115, false ), FixedTrait::new(5452595, false ), FixedTrait::new(203161600, false ), FixedTrait::new(1, false ), FixedTrait::new(591790, false ), FixedTrait::new(1048576, false ), FixedTrait::new(15663104, false ), FixedTrait::new(4128, false ), FixedTrait::new(9568256, false ), FixedTrait::new(1985740, false ), FixedTrait::new(5485363, false ), FixedTrait::new(214302719, false ), FixedTrait::new(29, false ), FixedTrait::new(565575, false ), FixedTrait::new(1048576, false ), FixedTrait::new(15859712, false ), FixedTrait::new(4128, false ), FixedTrait::new(9764864, false ), FixedTrait::new(2025062, false ), FixedTrait::new(5505024, false ), FixedTrait::new(217579519, false ), FixedTrait::new(57, false ), FixedTrait::new(681574, false ), FixedTrait::new(1048576, false ), FixedTrait::new(16187392, false ), FixedTrait::new(4128, false ), FixedTrait::new(9961472, false ), FixedTrait::new(1979187, false ), FixedTrait::new(5583667, false ), FixedTrait::new(207093760, false ), FixedTrait::new(83, false ), FixedTrait::new(547225, false ), FixedTrait::new(1048576, false ), FixedTrait::new(16580607, false ), FixedTrait::new(4128, false ), FixedTrait::new(10223616, false ), FixedTrait::new(1998848, false ), FixedTrait::new(5681971, false ), FixedTrait::new(218234879, false ), FixedTrait::new(110, false ), FixedTrait::new(753664, false ), FixedTrait::new(1048576, false ), FixedTrait::new(16777216, false ), FixedTrait::new(4128, false ), FixedTrait::new(10289152, false ), FixedTrait::new(1966080, false ), FixedTrait::new(5754060, false ), FixedTrait::new(201195519, false ), FixedTrait::new(135, false ), FixedTrait::new(747110, false ), FixedTrait::new(
1048576, false ), FixedTrait::new(16842752, false ), FixedTrait::new(4128, false ), FixedTrait::new(10289152, false ), FixedTrait::new(1992294, false ), FixedTrait::new(5780275, false ), FixedTrait::new(202506239, false ), ].span() ); return tensor; }
use array::ArrayTrait; use orion::numbers::fixed_point::implementations::fp16x16::core::{FP16x16Impl, FP16x16PartialEq }; use orion::operators::tensor::{Tensor, TensorTrait, FP16x16Tensor}; use orion::numbers::{FP16x16, FixedTrait}; fn aave_y_labels() -> Tensor<FP16x16> { let tensor = TensorTrait::<FP16x16>::new( shape: array![24].span(), data: array![ FixedTrait::new(5072486, false ), FixedTrait::new(5072486, false ), FixedTrait::new(5079040, false ), FixedTrait::new(5085593, false ), FixedTrait::new(5111808, false ), FixedTrait::new(5157683, false ), FixedTrait::new(5203558, false ), FixedTrait::new(5360844, false ), FixedTrait::new(5367398, false ), FixedTrait::new(5367398, false ), FixedTrait::new(5452595, false ), FixedTrait::new(5485363, false ), FixedTrait::new(5505024, false ), FixedTrait::new(5583667, false ), FixedTrait::new(5681971, false ), FixedTrait::new(5754060, false ), FixedTrait::new(5780275, false ), FixedTrait::new(5852364, false ), FixedTrait::new(5891686, false ), FixedTrait::new(5963776, false ), FixedTrait::new(6035865, false ), FixedTrait::new(6134169, false ), FixedTrait::new(6153830, false ), FixedTrait::new(6180044, false ), ].span() ); return tensor; }
mod aave_weth_revenue_data_input;
use array::ArrayTrait; use orion::numbers::fixed_point::implementations::fp16x16::core::{FP16x16Impl, FP16x16PartialEq }; use orion::operators::tensor::{Tensor, TensorTrait, FP16x16Tensor}; use orion::numbers::{FP16x16, FixedTrait}; fn aave_weth_revenue_data_input() -> Tensor<FP16x16> { let tensor = TensorTrait::<FP16x16>::new( shape: array![7,9].span(), data: array![ FixedTrait::new(160, false ), FixedTrait::new(786432, false ), FixedTrait::new(1048576, false ), FixedTrait::new(16973824, false ), FixedTrait::new(4128, false ), FixedTrait::new(10354688, false ), FixedTrait::new(1952972, false ), FixedTrait::new(5852364, false ), FixedTrait::new(198574079, false ), FixedTrait::new(185, false ), FixedTrait::new(681574, false ), FixedTrait::new(1048576, false ), FixedTrait::new(17170432, false ), FixedTrait::new(4128, false ), FixedTrait::new(10420224, false ), FixedTrait::new(1959526, false ), FixedTrait::new(5891686, false ), FixedTrait::new(207093760, false ), FixedTrait::new(211, false ), FixedTrait::new(688128, false ), FixedTrait::new(1055129, false ), FixedTrait::new(17301504, false ), FixedTrait::new(4128, false ), FixedTrait::new(10420224, false ), FixedTrait::new(1952972, false ), FixedTrait::new(5963776, false ), FixedTrait::new(206438400, false ), FixedTrait::new(236, false ), FixedTrait::new(707788, false ), FixedTrait::new(1055129, false ), FixedTrait::new(17367040, false ), FixedTrait::new(4128, false ), FixedTrait::new(10420224, false ), FixedTrait::new(1907097, false ), FixedTrait::new(6035865, false ), FixedTrait::new(203161600, false ), FixedTrait::new(261, false ), FixedTrait::new(792985, false ), FixedTrait::new(1061683, false ), FixedTrait::new(17432576, false ), FixedTrait::new(4128, false ), FixedTrait::new(10420224, false ), FixedTrait::new(1880883, false ), FixedTrait::new(6134169, false ), FixedT
rait::new(195952639, false ), FixedTrait::new(285, false ), FixedTrait::new(792985, false ), FixedTrait::new(1061683, false ), FixedTrait::new(17432576, false ), FixedTrait::new(4128, false ), FixedTrait::new(10420224, false ), FixedTrait::new(1880883, false ), FixedTrait::new(6153830, false ), FixedTrait::new(195952639, false ), FixedTrait::new(308, false ), FixedTrait::new(792985, false ), FixedTrait::new(1061683, false ), FixedTrait::new(17498112, false ), FixedTrait::new(4128, false ), FixedTrait::new(10420224, false ), FixedTrait::new(1887436, false ), FixedTrait::new(6180044, false ), FixedTrait::new(196607999, false ), ].span() ); return tensor; }
use debug::PrintTrait; use array::{ArrayTrait, SpanTrait}; use orion::operators::tensor::{ Tensor, TensorTrait, FP16x16Tensor, U32Tensor, U32TensorAdd, FP16x16TensorSub, FP16x16TensorAdd, FP16x16TensorDiv, FP16x16TensorMul }; use orion::numbers::{FP16x16, FixedTrait}; fn get_tensor_data_by_row(tensor_data: Tensor<FP16x16>, row_index: u32,) -> Tensor<FP16x16> { let column_len = *tensor_data.shape.at(1); let mut result = ArrayTrait::<FP16x16>::new(); let mut i: u32 = 0; loop { if i >= column_len { break (); } result.append(tensor_data.at(indices: array![row_index, i].span())); i += 1; }; let resultant_tensor = TensorTrait::< FP16x16 >::new(array![column_len].span(), data: result.span()); return resultant_tensor; } fn transpose_tensor(tensor_data: Tensor<FP16x16>) -> Tensor<FP16x16> { let tensor_transposed = tensor_data.transpose(axes: array![1, 0].span()); return tensor_transposed; } fn calculate_mean(tensor_data: Tensor<FP16x16>) -> FP16x16 { let tensor_size = FixedTrait::<FP16x16>::new_unscaled(tensor_data.data.len(), false); let cumulated_sum = tensor_data.cumsum(0, Option::None(()), Option::None(())); let sum_result = cumulated_sum.data[tensor_data.data.len() - 1]; let mean = *sum_result / tensor_size; return mean; } fn calculate_r_score(Y_values: Tensor<FP16x16>, Y_pred_values: Tensor<FP16x16>) -> FP16x16 { let mut Y_values_ = Y_values; let mean_y_value = calculate_mean(Y_values); let mut squared_diff_shape = array::ArrayTrait::new(); squared_diff_shape.append(Y_values.data.len()); let mut squared_diff_vals = array::ArrayTrait::new(); let mut squared_mean_diff_shape = array::ArrayTrait::new(); squared_mean_diff_shape.append(Y_values.data.len()); let mut squared_mean_diff_vals = array::ArrayTrait::new(); let mut i: u32 = 0; loop { match Y_values_.data.pop_front() { Option::Some(y_value) => {
let diff_pred = *y_value - *Y_pred_values.data.at(i); let squared_diff = diff_pred * diff_pred; squared_diff_vals.append(squared_diff); let diff_mean = *y_value - mean_y_value; let squared_mean_diff = diff_mean * diff_mean; squared_mean_diff_vals.append(squared_mean_diff); i += 1; }, Option::None(_) => { break; } } }; let squared_diff_tensor = TensorTrait::< FP16x16 >::new(squared_diff_shape.span(), squared_diff_vals.span()); let squared_mean_diff_tensor = TensorTrait::< FP16x16 >::new(squared_mean_diff_shape.span(), squared_mean_diff_vals.span()); let sum_squared_diff = squared_diff_tensor.cumsum(0, Option::None(()), Option::None(())); let sum_squared_mean_diff = squared_mean_diff_tensor .cumsum(0, Option::None(()), Option::None(())); let r_score = FixedTrait::new_unscaled(1, false) - *sum_squared_diff.data.at(Y_values.data.len() - 1) / *sum_squared_mean_diff.data.at(Y_values.data.len() - 1); return r_score; } fn normalize_user_x_inputs( x_inputs: Tensor<FP16x16>, original_x_values: Tensor<FP16x16> ) -> Tensor<FP16x16> { let mut x_inputs_normalized = TensorTrait::< FP16x16 >::new(shape: array![1].span(), data: array![FixedTrait::new(10, false)].span()); let mut x_min = ArrayTrait::<FP16x16>::new(); let mut x_max = ArrayTrait::<FP16x16>::new(); let mut x_range = ArrayTrait::<FP16x16>::new(); let mut result = ArrayTrait::<FP16x16>::new(); if original_x_values.shape.len() > 1 { let transposed_tensor = original_x_values.transpose(axes: array![1, 0].span()); let data_len = *transposed_tensor.shape.at(0); let mut i: u32 = 0; loop { if i >= data_len { break (); } let mut transposed_tensor_row = get_tensor_data_by_row(transposed_tensor, i); x_min.append(transposed_
tensor_row.min_in_tensor()); x_max.append(transposed_tensor_row.max_in_tensor()); x_range .append( transposed_tensor_row.max_in_tensor() - transposed_tensor_row.min_in_tensor() ); i += 1; }; let mut x_min_tensor = TensorTrait::new(shape: array![data_len].span(), data: x_min.span()); let mut x_max_tensor = TensorTrait::new(shape: array![data_len].span(), data: x_max.span()); let mut x_range_tensor = TensorTrait::new( shape: array![data_len].span(), data: x_range.span() ); if x_inputs.shape.len() > 1 { let mut j: u32 = 0; loop { if j >= *x_inputs.shape.at(0) { break (); }; let mut row_data = get_tensor_data_by_row(x_inputs, j); let mut norm_row_data = (row_data - x_min_tensor) / x_range_tensor; let mut k: u32 = 0; loop { if k >= norm_row_data.data.len() { break (); }; result.append(*norm_row_data.data.at(k)); k += 1; }; j += 1; }; x_inputs_normalized = TensorTrait::< FP16x16 >::new( array![*x_inputs.shape.at(0), *x_inputs.shape.at(1)].span(), data: result.span() ); }; if x_inputs.shape.len() == 1 { x_inputs_normalized = (x_inputs - x_min_tensor) / x_range_tensor; }; } if original_x_values.shape.len() == 1 { let mut x_min_tensor = TensorTrait::< FP16x16 >::new(shape: array![1].span(), data: array![original_x_values.min_in_tensor()].span()); let mut x_max_tensor = TensorTrait::< FP16x16 >::new(shape: array![1].span(), data: array![original_x_values.max_in_tensor()].span()
); let mut x_range_tensor = TensorTrait::< FP16x16 >::new( shape: array![1].span(), data: array![original_x_values.max_in_tensor() - original_x_values.min_in_tensor()] .span() ); let mut diff = ((x_inputs - x_min_tensor)); x_inputs_normalized = ((x_inputs - x_min_tensor)) / x_range_tensor; }; return x_inputs_normalized; } fn rescale_predictions( prediction_result: Tensor<FP16x16>, y_values: Tensor<FP16x16> ) -> Tensor<FP16x16> { let mut rescale_predictions = TensorTrait::< FP16x16 >::new(shape: array![1].span(), data: array![FixedTrait::new(10, false)].span()); let mut y_min_array = ArrayTrait::<FP16x16>::new(); let mut y_max_array = ArrayTrait::<FP16x16>::new(); let mut y_range_array = ArrayTrait::<FP16x16>::new(); let mut y_max = y_values.max_in_tensor(); let mut y_min = y_values.min_in_tensor(); let mut y_range = y_values.max_in_tensor() - y_values.min_in_tensor(); let y_min_tensor = TensorTrait::< FP16x16 >::new(shape: array![1].span(), data: array![y_min].span()); let y_max_tensor = TensorTrait::< FP16x16 >::new(shape: array![1].span(), data: array![y_max].span()); let y_range_tensor = TensorTrait::< FP16x16 >::new(shape: array![1].span(), data: array![y_range].span()); rescale_predictions = (prediction_result * y_range_tensor) + y_min_tensor; return rescale_predictions; }
mod test; mod data_preprocessing; mod helper_functions; mod datasets; mod model;
mod multiple_linear_regression_model;
use orion::operators::tensor::{ Tensor, TensorTrait, FP16x16Tensor, U32Tensor, U32TensorAdd, FP16x16TensorSub, FP16x16TensorAdd, FP16x16TensorDiv, FP16x16TensorMul }; use orion::numbers::{FP16x16, FixedTrait}; use multiple_linear_regresion::data_preprocessing::{Dataset, DatasetTrait}; use multiple_linear_regresion::helper_functions::{ get_tensor_data_by_row, transpose_tensor, calculate_mean, calculate_r_score, normalize_user_x_inputs, rescale_predictions };
struct MultipleLinearRegressionModel { coefficients: Tensor<FP16x16> } impl RegressionOperation of MultipleLinearRegressionModelTrait { fn predict( ref self: MultipleLinearRegressionModel, feature_inputs: Tensor<FP16x16> ) -> Tensor<FP16x16> { let mut prediction_result = TensorTrait::< FP16x16 >::new(shape: array![1].span(), data: array![FixedTrait::new(10, false)].span()); let mut result = ArrayTrait::<FP16x16>::new(); if feature_inputs.shape.len() > 1 { let feature_values = add_bias_term(feature_inputs, 1); let mut data_len: u32 = *feature_values.shape.at(0); let mut i: u32 = 0; loop { if i >= data_len { break (); } let feature_row_values = get_tensor_data_by_row(feature_values, i); let predicted_values = feature_row_values.matmul(@self.coefficients); result.append(*predicted_values.data.at(0)); i += 1; }; prediction_result = TensorTrait::< FP16x16 >::new(shape: array![result.len()].span(), data: result.span()); } if feature_inputs.shape.len() == 1 && self.coefficients.data.len() > 1 { let feature_values = add_bias_term(feature_inputs, 1); prediction_result = feature_values.matmul(@self.coefficients); } return prediction_result; } } fn MultipleLinearRegression(dataset: Dataset) -> MultipleLinearRegressionModel { let x_values_tranposed = transpose_tensor(dataset.x_values); let x_values_tranposed_with_bias = add_bias_term(x_values_tranposed, 0); let decorrelated_x_features = decorrelate_x_features(x_values_tranposed_with_bias); let coefficients = compute_gradients( decorrelated_x_features, dataset.y_values, x_values_tranposed_with_bias ); return MultipleLinearRegressionModel { coefficien
ts }; } fn add_bias_term(x_feature: Tensor<FP16x16>, axis: u32) -> Tensor<FP16x16> { let mut x_feature_ = x_feature; let mut tensor_with_bias = TensorTrait::< FP16x16 >::new(shape: array![1].span(), data: array![FixedTrait::new(10, false)].span()); let mut result = ArrayTrait::<FP16x16>::new(); if x_feature.shape.len() > 1 { let mut index: u32 = 0; if axis == 1 { index = 0; } else { index = 1; } let data_len = *x_feature.shape.at(index); let mut i: u32 = 0; loop { if i >= data_len { break (); } result .append(FixedTrait::new(65536, false)); i += 1; }; if axis == 0 { let res_tensor = TensorTrait::new( shape: array![1, data_len].span(), data: result.span() ); tensor_with_bias = TensorTrait::concat(tensors: array![x_feature, res_tensor].span(), axis: axis); } else { let res_tensor = TensorTrait::new( shape: array![data_len, 1].span(), data: result.span() ); tensor_with_bias = TensorTrait::concat(tensors: array![x_feature, res_tensor].span(), axis: axis); } } if x_feature.shape.len() == 1 { let mut j: u32 = 0; loop { match x_feature_.data.pop_front() { Option::Some(x_val) => { result.append(*x_val); j += 1; }, Option::None(_) => { break; } }; }; result.append(FixedTrait::new(65536, false)); tensor_with_bias = TensorTrait::<FP16x16>::new(shape: array![result.len()].span(), data: result.span()); } return tensor_with_bias; } fn decorrelate_x_features(x_feature_data: Tensor<FP16x16>) -> Tensor<FP16x16> { let mut input_tensor = x_feature_data; let mut i: u32 = 0; loo
p { if i >= *x_feature_data.shape.at(0) { break (); } let mut placeholder = ArrayTrait::<FP16x16>::new(); let mut feature_row_values = get_tensor_data_by_row(input_tensor, i); let mut feature_squared = feature_row_values.matmul(@feature_row_values); if *feature_squared.data.at(0) == FixedTrait::new(0, false) { feature_squared = TensorTrait::< FP16x16 >::new(shape: array![1].span(), data: array![FixedTrait::new(10, false)].span()); } let mut j: u32 = i + 1; loop { if j >= *x_feature_data.shape.at(0) { break (); } let mut remaining_tensor_values = get_tensor_data_by_row(input_tensor, j); let feature_cross_product = feature_row_values.matmul(@remaining_tensor_values); let feature_gradients = feature_cross_product / feature_squared; remaining_tensor_values = remaining_tensor_values - (feature_row_values * feature_gradients); let mut k: u32 = 0; loop { if k >= remaining_tensor_values.data.len() { break (); } placeholder.append(*remaining_tensor_values.data.at(k)); k += 1; }; j += 1; }; let mut decorrelated_tensor = TensorTrait::new( shape: array![*x_feature_data.shape.at(0) - 1 - i, *x_feature_data.shape.at(1)].span(), data: placeholder.span() ); let mut original_tensor = input_tensor .slice( starts: array![0, 0].span(), ends: array![i + 1, *x_feature_data.shape.at(1)].span(), axes: Option::None(()), steps: Option::Some(array![1, 1].span()) ); input_tensor = TensorTrait::concat( tensors: array![original_
tensor, decorrelated_tensor].span(), axis: 0 ); i += 1; }; return input_tensor; } fn compute_gradients( decorrelated_x_features: Tensor<FP16x16>, y_values: Tensor<FP16x16>, original_x_tensor_values: Tensor<FP16x16> ) -> Tensor<FP16x16> { let mut gradient_values_flipped = TensorTrait::< FP16x16 >::new(shape: array![1].span(), data: array![FixedTrait::new(10, false)].span()); let mut result = ArrayTrait::<FP16x16>::new(); let mut tensor_y_vals = y_values; let mut i: u32 = *decorrelated_x_features.shape.at(0); loop { if i <= 0 { break (); } let index_val = i - 1; let mut decorelated_feature_row_values = get_tensor_data_by_row( decorrelated_x_features, index_val ); let mut decorelated_features_squared = decorelated_feature_row_values .matmul(@decorelated_feature_row_values); let mut feature_label_cross_product = tensor_y_vals .matmul(@decorelated_feature_row_values); if *decorelated_features_squared.data.at(0) == FixedTrait::new(0, false) { decorelated_features_squared = TensorTrait::< FP16x16 >::new(shape: array![1].span(), data: array![FixedTrait::new(10, false)].span()); } let mut single_gradient_value = feature_label_cross_product / decorelated_features_squared; result.append(*single_gradient_value.data.at(0)); let mut original_x_tensor_row_values = get_tensor_data_by_row( original_x_tensor_values, index_val ); tensor_y_vals = tensor_y_vals - (original_x_tensor_row_values * single_gradient_value); i -= 1; }; let final_gradients = TensorTrait::new( shape: array![*decorrelated_x_features.shape.at(0)].span(), data: result.span() ); let mut reverse_grad_array = ArrayTrait::<FP16x16>::new(); let m
ut data_len: u32 = final_gradients.data.len(); loop { if data_len <= 0 { break (); } let temp_val = data_len - 1; reverse_grad_array.append(*final_gradients.data.at(temp_val)); data_len -= 1; }; let gradient_values_flipped = TensorTrait::< FP16x16 >::new(shape: array![reverse_grad_array.len()].span(), data: reverse_grad_array.span()); return gradient_values_flipped; }
use debug::PrintTrait; use array::{ArrayTrait, SpanTrait}; use multiple_linear_regresion::datasets::aave_data::aave_x_features::aave_x_features; use multiple_linear_regresion::datasets::aave_data::aave_y_labels::aave_y_labels; use multiple_linear_regresion::datasets::user_inputs_data::aave_weth_revenue_data_input::{aave_weth_revenue_data_input }; use multiple_linear_regresion::model::multiple_linear_regression_model::{ MultipleLinearRegressionModel, MultipleLinearRegression, MultipleLinearRegressionModelTrait }; use multiple_linear_regresion::data_preprocessing::{Dataset, DatasetTrait}; use multiple_linear_regresion::helper_functions::{get_tensor_data_by_row, transpose_tensor, calculate_mean , calculate_r_score, normalize_user_x_inputs, rescale_predictions}; use orion::numbers::{FP16x16, FixedTrait}; use orion::operators::tensor::{ Tensor, TensorTrait, FP16x16Tensor, U32Tensor, U32TensorAdd, FP16x16TensorSub, FP16x16TensorAdd, FP16x16TensorDiv, FP16x16TensorMul};
fn multiple_linear_regression_test() { let mut main_x_vals = aave_x_features(); let mut main_y_vals = aave_y_labels(); let mut dataset = Dataset{x_values: main_x_vals,y_values:main_y_vals}; let mut normalized_dataset = dataset.normalize_dataset(); let mut model = MultipleLinearRegression(normalized_dataset); let mut model_coefficients = model.coefficients; let mut reconstructed_ys = model.predict (normalized_dataset.x_values); let mut r_squared_score = calculate_r_score(normalized_dataset.y_values,reconstructed_ys); r_squared_score.print(); assert(normalized_dataset.x_values.max_in_tensor() <= FixedTrait::new(65536, false), 'normalized x not between 0-1'); assert(normalized_dataset.x_values.min_in_tensor() >= FixedTrait::new(0, false), 'normalized x not between 0-1'); assert(normalized_dataset.y_values.max_in_tensor() <= FixedTrait::new(65536, false), 'normalized y not between 0-1'); assert(normalized_dataset.x_values.min_in_tensor() >= FixedTrait::new(0, false), 'normalized y not between 0-1'); assert(normalized_dataset.x_values.data.len()== main_x_vals.data.len() && normalized_dataset.y_values.data.len()== main_y_vals.data.len() , 'normalized data shape mismatch'); assert(model.coefficients.data.len() == *main_x_vals.shape.at(1)+1, 'coefficient data shape mismatch'); assert(r_squared_score >= FixedTrait::new(62259, false), 'AAVE model acc. less than 95%'); let last_7_days_aave_data = aave_weth_revenue_data_input(); let last_7_days_aave_data_normalized = normalize_user_x_inputs(last_7_days_aave_data, main_x_vals ); let mut forecast_results = model.predict (last_7_days_aave_data_normalized); let mut rescale_forecasts = rescale_predictions(forecast_results, main_y_vals); (*rescale_forecasts.data.at(0)).print(); (*rescale_forecasts.data.at(1)).print(); (*rescale_forecasts.data.at(2)).print(); (*rescale_forecasts.data.at(5)).print(); (*rescale_forecasts.data.at(6)).print(); }
use orion::operators::tensor::{ Tensor, TensorTrait, FP16x16Tensor, U32Tensor, U32TensorAdd, FP16x16TensorSub, FP16x16TensorAdd, FP16x16TensorDiv, FP16x16TensorMul }; use orion::numbers::{FP16x16, FixedTrait}; use multiple_linear_regresion::helper_functions::{ get_tensor_data_by_row, transpose_tensor, calculate_mean, calculate_r_score, normalize_user_x_inputs, rescale_predictions };
struct Dataset { x_values: Tensor<FP16x16>, y_values: Tensor<FP16x16>, } impl DataPreprocessing of DatasetTrait { fn normalize_dataset(ref self: Dataset) -> Dataset { let mut x_values = TensorTrait::<FP16x16>::new(array![1].span(), array![FixedTrait::new(0, false)].span()); let mut y_values = TensorTrait::<FP16x16>::new(array![1].span(), array![FixedTrait::new(0, false)].span()); if self.x_values.shape.len() > 1 { x_values = normalize_feature_data(self.x_values); y_values = normalize_label_data(self.y_values); } if self.x_values.shape.len() == 1 { x_values = normalize_label_data(self.x_values); y_values = normalize_label_data(self.y_values); } return Dataset { x_values, y_values }; } } fn normalize_feature_data(tensor_data: Tensor<FP16x16>) -> Tensor<FP16x16> { let mut x_min_array = ArrayTrait::<FP16x16>::new(); let mut x_max_array = ArrayTrait::<FP16x16>::new(); let mut x_range_array = ArrayTrait::<FP16x16>::new(); let mut normalized_array = ArrayTrait::<FP16x16>::new(); let transposed_tensor = tensor_data.transpose(axes: array![1, 0].span()); let tensor_shape = transposed_tensor.shape; let tensor_row_len = *tensor_shape.at(0); let tensor_column_len = *tensor_shape.at(1); let mut i: u32 = 0; loop { if i >= tensor_row_len { break (); } let mut transposed_tensor_row = get_tensor_data_by_row(transposed_tensor, i); x_max_array.append(transposed_tensor_row.max_in_tensor()); x_min_array.append(transposed_tensor_row.min_in_tensor()); x_range_array .append(transposed_tensor_row.max_in_tensor() - transposed_tensor_row.min_in_tensor()); i += 1; }; let mut x_min = TensorTrait::< FP16x16 >::new(shape: array![1, tensor_row_len].span(), data: x_min_array.span()); let mut x_range = TensorTrait::< FP16x16 >::new(shape
: array![1, tensor_row_len].span(), data: x_range_array.span()); let normalized_tensor = (tensor_data - x_min) / x_range; return normalized_tensor; } fn normalize_label_data(tensor_data: Tensor<FP16x16>) -> Tensor<FP16x16> { let mut tensor_data_ = tensor_data; let mut normalized_array = ArrayTrait::<FP16x16>::new(); let mut range = tensor_data.max_in_tensor() - tensor_data.min_in_tensor(); let mut i: u32 = 0; loop { match tensor_data_.data.pop_front() { Option::Some(tensor_val) => { let mut diff = *tensor_val - tensor_data.min_in_tensor(); normalized_array.append(diff / range); i += 1; }, Option::None(_) => { break; } }; }; let mut normalized_tensor = TensorTrait::< FP16x16 >::new(shape: array![tensor_data.data.len()].span(), data: normalized_array.span()); return normalized_tensor; }
mod boston_data; mod user_inputs_data;
mod boston_x_features; mod boston_y_labels;
use array::ArrayTrait; use orion::numbers::fixed_point::implementations::fp16x16::core::{FP16x16Impl, FP16x16PartialEq }; use orion::operators::tensor::{Tensor, TensorTrait, FP16x16Tensor}; use orion::numbers::{FP16x16, FixedTrait}; fn boston_x_features() -> Tensor<FP16x16> { let tensor = TensorTrait::<FP16x16>::new( shape: array![50,11].span(), data: array![ FixedTrait::new(26719, false ), FixedTrait::new(0, false ), FixedTrait::new(406323, false ), FixedTrait::new(65536, false ), FixedTrait::new(33226, false ), FixedTrait::new(403963, false ), FixedTrait::new(5983436, false ), FixedTrait::new(199753, false ), FixedTrait::new(524288, false ), FixedTrait::new(20119552, false ), FixedTrait::new(1140326, false ), FixedTrait::new(17588, false ), FixedTrait::new(0, false ), FixedTrait::new(635043, false ), FixedTrait::new(0, false ), FixedTrait::new(38338, false ), FixedTrait::new(379715, false ), FixedTrait::new(4626841, false ), FixedTrait::new(189575, false ), FixedTrait::new(393216, false ), FixedTrait::new(25624576, false ), FixedTrait::new(1258291, false ), FixedTrait::new(3512, false ), FixedTrait::new(1376256, false ), FixedTrait::new(369623, false ), FixedTrait::new(0, false ), FixedTrait::new(28770, false ), FixedTrait::new(426704, false ), FixedTrait::new(1382809, false ), FixedTrait::new(446608, false ), FixedTrait::new(262144, false ), FixedTrait::new(15925248, false ), FixedTrait::new(1101004, false ), FixedTrait::new(731407, false ), FixedTrait::new(0, false ), FixedTrait::new(1186201, false ), FixedTrait::new(0, false ), FixedTrait::new(48496, false ), FixedTrait::new(434438, false ), FixedTrait::new(6199705, false ), FixedTrait::new(139244, false ), FixedTrait::new(1572864, false ), FixedTrait::new(43646976, false ), FixedTrait::new(1323827, false ), FixedTrait::new(151643, false ), FixedTrait::new(0, f
alse ), FixedTrait::new(1283194, false ), FixedTrait::new(0, false ), FixedTrait::new(39649, false ), FixedTrait::new(385351, false ), FixedTrait::new(6376652, false ), FixedTrait::new(156545, false ), FixedTrait::new(327680, false ), FixedTrait::new(26411008, false ), FixedTrait::new(963379, false ), FixedTrait::new(637283, false ), FixedTrait::new(0, false ), FixedTrait::new(1186201, false ), FixedTrait::new(0, false ), FixedTrait::new(48496, false ), FixedTrait::new(419823, false ), FixedTrait::new(6370099, false ), FixedTrait::new(135338, false ), FixedTrait::new(1572864, false ), FixedTrait::new(43646976, false ), FixedTrait::new(1323827, false ), FixedTrait::new(6860, false ), FixedTrait::new(2621440, false ), FixedTrait::new(420085, false ), FixedTrait::new(65536, false ), FixedTrait::new(29294, false ), FixedTrait::new(476250, false ), FixedTrait::new(3211264, false ), FixedTrait::new(313733, false ), FixedTrait::new(262144, false ), FixedTrait::new(16646144, false ), FixedTrait::new(1153433, false ), FixedTrait::new(1598672, false ), FixedTrait::new(0, false ), FixedTrait::new(1186201, false ), FixedTrait::new(0, false ), FixedTrait::new(45875, false ), FixedTrait::new(304873, false ), FixedTrait::new(6553600, false ), FixedTrait::new(96154, false ), FixedTrait::new(1572864, false ), FixedTrait::new(43646976, false ), FixedTrait::new(1323827, false ), FixedTrait::new(264661, false ), FixedTrait::new(0, false ), FixedTrait::new(1186201, false ), FixedTrait::new(0, false ), FixedTrait::new(34865, false ), FixedTrait::new(408223, false ), FixedTrait::new(5944115, false ), FixedTrait::new(203115, false ), FixedTrait::new(1572864, false ), FixedTrait::new(43646976, false ), FixedTrait::new(1323827, false ), FixedTrait::new(10624, false ), FixedTrait::new(1310720, false ), FixedTrait::new(4
56130, false ), FixedTrait::new(0, false ), FixedTrait::new(30408, false ), FixedTrait::new(408944, false ), FixedTrait::new(1068236, false ), FixedTrait::new(290258, false ), FixedTrait::new(196608, false ), FixedTrait::new(14614528, false ), FixedTrait::new(1218969, false ), FixedTrait::new(6768, false ), FixedTrait::new(1638400, false ), FixedTrait::new(336199, false ), FixedTrait::new(0, false ), FixedTrait::new(29687, false ), FixedTrait::new(388431, false ), FixedTrait::new(3093299, false ), FixedTrait::new(454295, false ), FixedTrait::new(524288, false ), FixedTrait::new(18612224, false ), FixedTrait::new(1291059, false ), FixedTrait::new(40077, false ), FixedTrait::new(1310720, false ), FixedTrait::new(260177, false ), FixedTrait::new(0, false ), FixedTrait::new(42401, false ), FixedTrait::new(570425, false ), FixedTrait::new(5695078, false ), FixedTrait::new(118030, false ), FixedTrait::new(327680, false ), FixedTrait::new(17301504, false ), FixedTrait::new(851968, false ), FixedTrait::new(527944, false ), FixedTrait::new(0, false ), FixedTrait::new(1186201, false ), FixedTrait::new(0, false ), FixedTrait::new(38273, false ), FixedTrait::new(355663, false ), FixedTrait::new(6252134, false ), FixedTrait::new(159239, false ), FixedTrait::new(1572864, false ), FixedTrait::new(43646976, false ), FixedTrait::new(1323827, false ), FixedTrait::new(14030, false ), FixedTrait::new(1441792, false ), FixedTrait::new(384040, false ), FixedTrait::new(0, false ), FixedTrait::new(28246, false ), FixedTrait::new(421920, false ), FixedTrait::new(583270, false ), FixedTrait::new(484750, false ), FixedTrait::new(458752, false ), FixedTrait::new(21626880, false ), FixedTrait::new(1251737, false ), FixedTrait::new(22353, false ), FixedTrait::new(0, false ), FixedTrait::new(483655, false ), FixedTrait::new
(0, false ), FixedTrait::new(32309, false ), FixedTrait::new(420413, false ), FixedTrait::new(2627993, false ), FixedTrait::new(309402, false ), FixedTrait::new(327680, false ), FixedTrait::new(18808832, false ), FixedTrait::new(1284505, false ), FixedTrait::new(51800, false ), FixedTrait::new(0, false ), FixedTrait::new(648806, false ), FixedTrait::new(0, false ), FixedTrait::new(35651, false ), FixedTrait::new(401211, false ), FixedTrait::new(3460300, false ), FixedTrait::new(173034, false ), FixedTrait::new(262144, false ), FixedTrait::new(19922944, false ), FixedTrait::new(1205862, false ), FixedTrait::new(1998, false ), FixedTrait::new(3604480, false ), FixedTrait::new(247726, false ), FixedTrait::new(0, false ), FixedTrait::new(31719, false ), FixedTrait::new(450494, false ), FixedTrait::new(1841561, false ), FixedTrait::new(423716, false ), FixedTrait::new(327680, false ), FixedTrait::new(24248320, false ), FixedTrait::new(1153433, false ), FixedTrait::new(22898, false ), FixedTrait::new(0, false ), FixedTrait::new(648806, false ), FixedTrait::new(0, false ), FixedTrait::new(35651, false ), FixedTrait::new(391380, false ), FixedTrait::new(5026611, false ), FixedTrait::new(203325, false ), FixedTrait::new(262144, false ), FixedTrait::new(19922944, false ), FixedTrait::new(1205862, false ), FixedTrait::new(24195, false ), FixedTrait::new(0, false ), FixedTrait::new(648806, false ), FixedTrait::new(0, false ), FixedTrait::new(35651, false ), FixedTrait::new(430374, false ), FixedTrait::new(5721292, false ), FixedTrait::new(236080, false ), FixedTrait::new(262144, false ), FixedTrait::new(19922944, false ), FixedTrait::new(1205862, false ), FixedTrait::new(623485, false ), FixedTrait::new(0, false ), FixedTrait::new(1186201, false ), FixedTrait::new(0, false ), FixedTrait::new(46727, false
), FixedTrait::new(440926, false ), FixedTrait::new(6166937, false ), FixedTrait::new(163584, false ), FixedTrait::new(1572864, false ), FixedTrait::new(43646976, false ), FixedTrait::new(1323827, false ), FixedTrait::new(52606, false ), FixedTrait::new(0, false ), FixedTrait::new(533463, false ), FixedTrait::new(0, false ), FixedTrait::new(35258, false ), FixedTrait::new(357564, false ), FixedTrait::new(2398617, false ), FixedTrait::new(248807, false ), FixedTrait::new(262144, false ), FixedTrait::new(20119552, false ), FixedTrait::new(1376256, false ), FixedTrait::new(3709, false ), FixedTrait::new(0, false ), FixedTrait::new(223477, false ), FixedTrait::new(0, false ), FixedTrait::new(32047, false ), FixedTrait::new(459210, false ), FixedTrait::new(5655756, false ), FixedTrait::new(224244, false ), FixedTrait::new(131072, false ), FixedTrait::new(17694720, false ), FixedTrait::new(1166540, false ), FixedTrait::new(28554, false ), FixedTrait::new(0, false ), FixedTrait::new(694026, false ), FixedTrait::new(65536, false ), FixedTrait::new(32047, false ), FixedTrait::new(350224, false ), FixedTrait::new(6553600, false ), FixedTrait::new(253952, false ), FixedTrait::new(262144, false ), FixedTrait::new(18153472, false ), FixedTrait::new(1218969, false ), FixedTrait::new(34087, false ), FixedTrait::new(1310720, false ), FixedTrait::new(260177, false ), FixedTrait::new(0, false ), FixedTrait::new(42401, false ), FixedTrait::new(550371, false ), FixedTrait::new(5996544, false ), FixedTrait::new(149979, false ), FixedTrait::new(327680, false ), FixedTrait::new(17301504, false ), FixedTrait::new(851968, false ), FixedTrait::new(802632, false ), FixedTrait::new(0, false ), FixedTrait::new(1186201, false ), FixedTrait::new(0, false ), FixedTrait::new(38273, false ), FixedTrait::new(382533, false ),
FixedTrait::new(3912499, false ), FixedTrait::new(130914, false ), FixedTrait::new(1572864, false ), FixedTrait::new(43646976, false ), FixedTrait::new(1323827, false ), FixedTrait::new(17654, false ), FixedTrait::new(0, false ), FixedTrait::new(648806, false ), FixedTrait::new(0, false ), FixedTrait::new(35651, false ), FixedTrait::new(410648, false ), FixedTrait::new(5426380, false ), FixedTrait::new(213830, false ), FixedTrait::new(262144, false ), FixedTrait::new(19922944, false ), FixedTrait::new(1205862, false ), FixedTrait::new(2988, false ), FixedTrait::new(0, false ), FixedTrait::new(910295, false ), FixedTrait::new(65536, false ), FixedTrait::new(36044, false ), FixedTrait::new(385875, false ), FixedTrait::new(3670016, false ), FixedTrait::new(203954, false ), FixedTrait::new(327680, false ), FixedTrait::new(18087936, false ), FixedTrait::new(1074790, false ), FixedTrait::new(3787, false ), FixedTrait::new(0, false ), FixedTrait::new(161218, false ), FixedTrait::new(0, false ), FixedTrait::new(31981, false ), FixedTrait::new(457441, false ), FixedTrait::new(3827302, false ), FixedTrait::new(185401, false ), FixedTrait::new(196608, false ), FixedTrait::new(12648448, false ), FixedTrait::new(1166540, false ), FixedTrait::new(54084, false ), FixedTrait::new(1310720, false ), FixedTrait::new(260177, false ), FixedTrait::new(0, false ), FixedTrait::new(42401, false ), FixedTrait::new(480182, false ), FixedTrait::new(6193152, false ), FixedTrait::new(136236, false ), FixedTrait::new(327680, false ), FixedTrait::new(17301504, false ), FixedTrait::new(851968, false ), FixedTrait::new(227690, false ), FixedTrait::new(0, false ), FixedTrait::new(1186201, false ), FixedTrait::new(65536, false ), FixedTrait::new(47054, false ), FixedTrait::new(575406, false ), FixedTrait::new(5432934, false ),
FixedTrait::new(124826, false ), FixedTrait::new(1572864, false ), FixedTrait::new(43646976, false ), FixedTrait::new(1323827, false ), FixedTrait::new(35685, false ), FixedTrait::new(0, false ), FixedTrait::new(1434583, false ), FixedTrait::new(0, false ), FixedTrait::new(40894, false ), FixedTrait::new(403111, false ), FixedTrait::new(6415974, false ), FixedTrait::new(109359, false ), FixedTrait::new(262144, false ), FixedTrait::new(28639232, false ), FixedTrait::new(1389363, false ), FixedTrait::new(9209, false ), FixedTrait::new(0, false ), FixedTrait::new(694026, false ), FixedTrait::new(0, false ), FixedTrait::new(32047, false ), FixedTrait::new(417792, false ), FixedTrait::new(2116812, false ), FixedTrait::new(258565, false ), FixedTrait::new(262144, false ), FixedTrait::new(18153472, false ), FixedTrait::new(1218969, false ), FixedTrait::new(3069, false ), FixedTrait::new(0, false ), FixedTrait::new(223477, false ), FixedTrait::new(0, false ), FixedTrait::new(32047, false ), FixedTrait::new(420544, false ), FixedTrait::new(4331929, false ), FixedTrait::new(202656, false ), FixedTrait::new(131072, false ), FixedTrait::new(17694720, false ), FixedTrait::new(1166540, false ), FixedTrait::new(4016, false ), FixedTrait::new(1310720, false ), FixedTrait::new(218234, false ), FixedTrait::new(65536, false ), FixedTrait::new(29025, false ), FixedTrait::new(501022, false ), FixedTrait::new(3257139, false ), FixedTrait::new(341567, false ), FixedTrait::new(327680, false ), FixedTrait::new(14155776, false ), FixedTrait::new(976486, false ), FixedTrait::new(63974, false ), FixedTrait::new(0, false ), FixedTrait::new(1434583, false ), FixedTrait::new(0, false ), FixedTrait::new(40894, false ), FixedTrait::new(377290, false ), FixedTrait::new(6448742, false ), FixedTrait::new(153747, false ), FixedT
rait::new(262144, false ), FixedTrait::new(28639232, false ), FixedTrait::new(1389363, false ), FixedTrait::new(14556, false ), FixedTrait::new(0, false ), FixedTrait::new(656015, false ), FixedTrait::new(0, false ), FixedTrait::new(35848, false ), FixedTrait::new(399245, false ), FixedTrait::new(6252134, false ), FixedTrait::new(166985, false ), FixedTrait::new(393216, false ), FixedTrait::new(28311552, false ), FixedTrait::new(1166540, false ), FixedTrait::new(11358, false ), FixedTrait::new(0, false ), FixedTrait::new(635043, false ), FixedTrait::new(0, false ), FixedTrait::new(38338, false ), FixedTrait::new(374013, false ), FixedTrait::new(3538944, false ), FixedTrait::new(156087, false ), FixedTrait::new(393216, false ), FixedTrait::new(25624576, false ), FixedTrait::new(1258291, false ), FixedTrait::new(3758, false ), FixedTrait::new(0, false ), FixedTrait::new(294256, false ), FixedTrait::new(0, false ), FixedTrait::new(29425, false ), FixedTrait::new(434503, false ), FixedTrait::new(3676569, false ), FixedTrait::new(290829, false ), FixedTrait::new(196608, false ), FixedTrait::new(16187392, false ), FixedTrait::new(1212416, false ), FixedTrait::new(11143, false ), FixedTrait::new(819200, false ), FixedTrait::new(515768, false ), FixedTrait::new(0, false ), FixedTrait::new(34340, false ), FixedTrait::new(393478, false ), FixedTrait::new(5629542, false ), FixedTrait::new(432019, false ), FixedTrait::new(327680, false ), FixedTrait::new(20381696, false ), FixedTrait::new(996147, false ), FixedTrait::new(2121, false ), FixedTrait::new(0, false ), FixedTrait::new(142868, false ), FixedTrait::new(0, false ), FixedTrait::new(30015, false ), FixedTrait::new(458620, false ), FixedTrait::new(3001548, false ), FixedTrait::new(397292, false ), FixedTrait::new(196608, false ), FixedTrait::new(1454
8992, false ), FixedTrait::new(1225523, false ), FixedTrait::new(10443, false ), FixedTrait::new(0, false ), FixedTrait::new(452853, false ), FixedTrait::new(0, false ), FixedTrait::new(29360, false ), FixedTrait::new(407044, false ), FixedTrait::new(425984, false ), FixedTrait::new(374924, false ), FixedTrait::new(196608, false ), FixedTrait::new(15269888, false ), FixedTrait::new(1173094, false ), FixedTrait::new(3057, false ), FixedTrait::new(5242880, false ), FixedTrait::new(99614, false ), FixedTrait::new(0, false ), FixedTrait::new(26476, false ), FixedTrait::new(465764, false ), FixedTrait::new(2398617, false ), FixedTrait::new(479002, false ), FixedTrait::new(131072, false ), FixedTrait::new(21561344, false ), FixedTrait::new(825753, false ), FixedTrait::new(2325, false ), FixedTrait::new(5242880, false ), FixedTrait::new(238551, false ), FixedTrait::new(0, false ), FixedTrait::new(25690, false ), FixedTrait::new(385089, false ), FixedTrait::new(1251737, false ), FixedTrait::new(604261, false ), FixedTrait::new(65536, false ), FixedTrait::new(20643840, false ), FixedTrait::new(1074790, false ), FixedTrait::new(4601, false ), FixedTrait::new(0, false ), FixedTrait::new(265420, false ), FixedTrait::new(0, false ), FixedTrait::new(33423, false ), FixedTrait::new(394526, false ), FixedTrait::new(3093299, false ), FixedTrait::new(232973, false ), FixedTrait::new(327680, false ), FixedTrait::new(19398656, false ), FixedTrait::new(1087897, false ), FixedTrait::new(2816, false ), FixedTrait::new(3440640, false ), FixedTrait::new(348651, false ), FixedTrait::new(0, false ), FixedTrait::new(26542, false ), FixedTrait::new(430243, false ), FixedTrait::new(1500774, false ), FixedTrait::new(479540, false ), FixedTrait::new(393216, false ), FixedTrait::new(19202048, false ), FixedTrait::new(1087897,
false ), FixedTrait::new(90963, false ), FixedTrait::new(0, false ), FixedTrait::new(533463, false ), FixedTrait::new(0, false ), FixedTrait::new(35258, false ), FixedTrait::new(389939, false ), FixedTrait::new(5373952, false ), FixedTrait::new(261488, false ), FixedTrait::new(262144, false ), FixedTrait::new(20119552, false ), FixedTrait::new(1376256, false ), FixedTrait::new(12499, false ), FixedTrait::new(1441792, false ), FixedTrait::new(384040, false ), FixedTrait::new(0, false ), FixedTrait::new(28246, false ), FixedTrait::new(440270, false ), FixedTrait::new(1146880, false ), FixedTrait::new(512917, false ), FixedTrait::new(458752, false ), FixedTrait::new(21626880, false ), FixedTrait::new(1251737, false ), FixedTrait::new(12805, false ), FixedTrait::new(0, false ), FixedTrait::new(708444, false ), FixedTrait::new(0, false ), FixedTrait::new(27066, false ), FixedTrait::new(409272, false ), FixedTrait::new(406323, false ), FixedTrait::new(346508, false ), FixedTrait::new(262144, false ), FixedTrait::new(19988480, false ), FixedTrait::new(1258291, false ), FixedTrait::new(758769, false ), FixedTrait::new(0, false ), FixedTrait::new(1186201, false ), FixedTrait::new(0, false ), FixedTrait::new(45875, false ), FixedTrait::new(330039, false ), FixedTrait::new(6356992, false ), FixedTrait::new(115998, false ), FixedTrait::new(1572864, false ), FixedTrait::new(43646976, false ), FixedTrait::new(1323827, false ), FixedTrait::new(2369, false ), FixedTrait::new(5242880, false ), FixedTrait::new(324403, false ), FixedTrait::new(0, false ), FixedTrait::new(26935, false ), FixedTrait::new(434503, false ), FixedTrait::new(1533542, false ), FixedTrait::new(335328, false ), FixedTrait::new(262144, false ), FixedTrait::new(16056320, false ), FixedTrait::new(1258291, false ), ].span() ); return tensor;
}
use array::ArrayTrait; use orion::numbers::fixed_point::implementations::fp16x16::core::{FP16x16Impl, FP16x16PartialEq }; use orion::operators::tensor::{Tensor, TensorTrait, FP16x16Tensor}; use orion::numbers::{FP16x16, FixedTrait}; fn boston_y_labels() -> Tensor<FP16x16> { let tensor = TensorTrait::<FP16x16>::new( shape: array![50].span(), data: array![ FixedTrait::new(1422131, false ), FixedTrait::new(1199308, false ), FixedTrait::new(1638400, false ), FixedTrait::new(878182, false ), FixedTrait::new(1251737, false ), FixedTrait::new(1120665, false ), FixedTrait::new(2175795, false ), FixedTrait::new(688128, false ), FixedTrait::new(1284505, false ), FixedTrait::new(1651507, false ), FixedTrait::new(1284505, false ), FixedTrait::new(3276800, false ), FixedTrait::new(904396, false ), FixedTrait::new(1625292, false ), FixedTrait::new(1638400, false ), FixedTrait::new(1448345, false ), FixedTrait::new(2044723, false ), FixedTrait::new(1330380, false ), FixedTrait::new(1559756, false ), FixedTrait::new(976486, false ), FixedTrait::new(1323827, false ), FixedTrait::new(1546649, false ), FixedTrait::new(1310720, false ), FixedTrait::new(3198156, false ), FixedTrait::new(668467, false ), FixedTrait::new(1415577, false ), FixedTrait::new(1526988, false ), FixedTrait::new(2437939, false ), FixedTrait::new(2031616, false ), FixedTrait::new(1435238, false ), FixedTrait::new(1166540, false ), FixedTrait::new(1841561, false ), FixedTrait::new(1481113, false ), FixedTrait::new(3014656, false ), FixedTrait::new(1022361, false ), FixedTrait::new(1225523, false ), FixedTrait::new(1428684, false ), FixedTrait::new(1743257, false ), FixedTrait::new(1238630, false ), FixedTrait::new(2188902, false ), FixedTrait::new(1618739, false ), FixedTrait::new(1985740, false ), FixedTrait::new(1369702, false ), FixedTrait::new(1520435, false ), Fix
edTrait::new(1625292, false ), FixedTrait::new(865075, false ), FixedTrait::new(1717043, false ), FixedTrait::new(1533542, false ), FixedTrait::new(635699, false ), FixedTrait::new(1828454, false ), ].span() ); return tensor; }
mod user_inputs_boston_data;
use array::ArrayTrait; use orion::numbers::fixed_point::implementations::fp16x16::core::{FP16x16Impl, FP16x16PartialEq }; use orion::operators::tensor::{Tensor, TensorTrait, FP16x16Tensor}; use orion::numbers::{FP16x16, FixedTrait}; fn user_inputs_boston_data() -> Tensor<FP16x16> { let tensor = TensorTrait::<FP16x16>::new( shape: array![11].span(), data: array![ FixedTrait::new(26719, false ), FixedTrait::new(0, false ), FixedTrait::new(406323, false ), FixedTrait::new(65536, false ), FixedTrait::new(33226, false ), FixedTrait::new(403963, false ), FixedTrait::new(5983436, false ), FixedTrait::new(199753, false ), FixedTrait::new(524288, false ), FixedTrait::new(20119552, false ), FixedTrait::new(1140326, false ), ].span() ); return tensor; }
use debug::PrintTrait; use array::{ArrayTrait, SpanTrait}; use orion::operators::tensor::{ Tensor, TensorTrait, FP16x16Tensor, U32Tensor, U32TensorAdd, FP16x16TensorSub, FP16x16TensorAdd, FP16x16TensorDiv, FP16x16TensorMul }; use orion::numbers::{FP16x16, FixedTrait}; fn get_tensor_data_by_row(tensor_data: Tensor<FP16x16>, row_index: u32,) -> Tensor<FP16x16> { let column_len = *tensor_data.shape.at(1); let mut result = ArrayTrait::<FP16x16>::new(); let mut i: u32 = 0; loop { if i >= column_len { break (); } result.append(tensor_data.at(indices: array![row_index, i].span())); i += 1; }; let resultant_tensor = TensorTrait::< FP16x16 >::new(array![column_len].span(), data: result.span()); return resultant_tensor; } fn transpose_tensor(tensor_data: Tensor<FP16x16>) -> Tensor<FP16x16> { let tensor_transposed = tensor_data.transpose(axes: array![1, 0].span()); return tensor_transposed; } fn calculate_mean(tensor_data: Tensor<FP16x16>) -> FP16x16 { let tensor_size = FixedTrait::<FP16x16>::new_unscaled(tensor_data.data.len(), false); let cumulated_sum = tensor_data.cumsum(0, Option::None(()), Option::None(())); let sum_result = cumulated_sum.data[tensor_data.data.len() - 1]; let mean = *sum_result / tensor_size; return mean; } fn calculate_r_score(Y_values: Tensor<FP16x16>, Y_pred_values: Tensor<FP16x16>) -> FP16x16 { let mut Y_values_ = Y_values; let mean_y_value = calculate_mean(Y_values); let mut squared_diff_shape = array::ArrayTrait::new(); squared_diff_shape.append(Y_values.data.len()); let mut squared_diff_vals = array::ArrayTrait::new(); let mut squared_mean_diff_shape = array::ArrayTrait::new(); squared_mean_diff_shape.append(Y_values.data.len()); let mut squared_mean_diff_vals = array::ArrayTrait::new(); let mut i: u32 = 0; loop { match Y_values_.data.pop_front() { Option::Some(y_value) => {
let diff_pred = *y_value - *Y_pred_values.data.at(i); let squared_diff = diff_pred * diff_pred; squared_diff_vals.append(squared_diff); let diff_mean = *y_value - mean_y_value; let squared_mean_diff = diff_mean * diff_mean; squared_mean_diff_vals.append(squared_mean_diff); i += 1; }, Option::None(_) => { break; } } }; let squared_diff_tensor = TensorTrait::< FP16x16 >::new(squared_diff_shape.span(), squared_diff_vals.span()); let squared_mean_diff_tensor = TensorTrait::< FP16x16 >::new(squared_mean_diff_shape.span(), squared_mean_diff_vals.span()); let sum_squared_diff = squared_diff_tensor.cumsum(0, Option::None(()), Option::None(())); let sum_squared_mean_diff = squared_mean_diff_tensor .cumsum(0, Option::None(()), Option::None(())); let r_score = FixedTrait::new_unscaled(1, false) - *sum_squared_diff.data.at(Y_values.data.len() - 1) / *sum_squared_mean_diff.data.at(Y_values.data.len() - 1); return r_score; } fn normalize_user_x_inputs( x_inputs: Tensor<FP16x16>, original_x_values: Tensor<FP16x16> ) -> Tensor<FP16x16> { let mut x_inputs_normalized = TensorTrait::< FP16x16 >::new(shape: array![1].span(), data: array![FixedTrait::new(10, false)].span()); let mut x_min = ArrayTrait::<FP16x16>::new(); let mut x_max = ArrayTrait::<FP16x16>::new(); let mut x_range = ArrayTrait::<FP16x16>::new(); let mut result = ArrayTrait::<FP16x16>::new(); if original_x_values.shape.len() > 1 { let transposed_tensor = original_x_values.transpose(axes: array![1, 0].span()); let data_len = *transposed_tensor.shape.at(0); let mut i: u32 = 0; loop { if i >= data_len { break (); } let mut transposed_tensor_row = get_tensor_data_by_row(transposed_tensor, i); x_min.append(transposed_
tensor_row.min_in_tensor()); x_max.append(transposed_tensor_row.max_in_tensor()); x_range .append( transposed_tensor_row.max_in_tensor() - transposed_tensor_row.min_in_tensor() ); i += 1; }; let mut x_min_tensor = TensorTrait::new(shape: array![data_len].span(), data: x_min.span()); let mut x_max_tensor = TensorTrait::new(shape: array![data_len].span(), data: x_max.span()); let mut x_range_tensor = TensorTrait::new( shape: array![data_len].span(), data: x_range.span() ); if x_inputs.shape.len() > 1 { let mut j: u32 = 0; loop { if j >= *x_inputs.shape.at(0) { break (); }; let mut row_data = get_tensor_data_by_row(x_inputs, j); let mut norm_row_data = (row_data - x_min_tensor) / x_range_tensor; let mut k: u32 = 0; loop { if k >= norm_row_data.data.len() { break (); }; result.append(*norm_row_data.data.at(k)); k += 1; }; j += 1; }; x_inputs_normalized = TensorTrait::< FP16x16 >::new( array![*x_inputs.shape.at(0), *x_inputs.shape.at(1)].span(), data: result.span() ); }; if x_inputs.shape.len() == 1 { x_inputs_normalized = (x_inputs - x_min_tensor) / x_range_tensor; }; } if original_x_values.shape.len() == 1 { let mut x_min_tensor = TensorTrait::< FP16x16 >::new(shape: array![1].span(), data: array![original_x_values.min_in_tensor()].span()); let mut x_max_tensor = TensorTrait::< FP16x16 >::new(shape: array![1].span(), data: array![original_x_values.max_in_tensor()].span()
); let mut x_range_tensor = TensorTrait::< FP16x16 >::new( shape: array![1].span(), data: array![original_x_values.max_in_tensor() - original_x_values.min_in_tensor()] .span() ); let mut diff = ((x_inputs - x_min_tensor)); x_inputs_normalized = ((x_inputs - x_min_tensor)) / x_range_tensor; }; return x_inputs_normalized; } fn rescale_predictions( prediction_result: Tensor<FP16x16>, y_values: Tensor<FP16x16> ) -> Tensor<FP16x16> { let mut rescale_predictions = TensorTrait::< FP16x16 >::new(shape: array![1].span(), data: array![FixedTrait::new(10, false)].span()); let mut y_min_array = ArrayTrait::<FP16x16>::new(); let mut y_max_array = ArrayTrait::<FP16x16>::new(); let mut y_range_array = ArrayTrait::<FP16x16>::new(); let mut y_max = y_values.max_in_tensor(); let mut y_min = y_values.min_in_tensor(); let mut y_range = y_values.max_in_tensor() - y_values.min_in_tensor(); let y_min_tensor = TensorTrait::< FP16x16 >::new(shape: array![1].span(), data: array![y_min].span()); let y_max_tensor = TensorTrait::< FP16x16 >::new(shape: array![1].span(), data: array![y_max].span()); let y_range_tensor = TensorTrait::< FP16x16 >::new(shape: array![1].span(), data: array![y_range].span()); rescale_predictions = (prediction_result * y_range_tensor) + y_min_tensor; return rescale_predictions; }
mod test; mod data_preprocessing; mod helper_functions; mod datasets; mod model;
mod multiple_linear_regression_model;
use orion::operators::tensor::{ Tensor, TensorTrait, FP16x16Tensor, U32Tensor, U32TensorAdd, FP16x16TensorSub, FP16x16TensorAdd, FP16x16TensorDiv, FP16x16TensorMul }; use orion::numbers::{FP16x16, FixedTrait}; use multiple_linear_regresion::data_preprocessing::{Dataset, DatasetTrait}; use multiple_linear_regresion::helper_functions::{ get_tensor_data_by_row, transpose_tensor, calculate_mean, calculate_r_score, normalize_user_x_inputs, rescale_predictions };
struct MultipleLinearRegressionModel { coefficients: Tensor<FP16x16> } impl RegressionOperation of MultipleLinearRegressionModelTrait { fn predict( ref self: MultipleLinearRegressionModel, feature_inputs: Tensor<FP16x16> ) -> Tensor<FP16x16> { let mut prediction_result = TensorTrait::< FP16x16 >::new(shape: array![1].span(), data: array![FixedTrait::new(10, false)].span()); let mut result = ArrayTrait::<FP16x16>::new(); if feature_inputs.shape.len() > 1 { let feature_values = add_bias_term(feature_inputs, 1); let mut data_len: u32 = *feature_values.shape.at(0); let mut i: u32 = 0; loop { if i >= data_len { break (); } let feature_row_values = get_tensor_data_by_row(feature_values, i); let predicted_values = feature_row_values.matmul(@self.coefficients); result.append(*predicted_values.data.at(0)); i += 1; }; prediction_result = TensorTrait::< FP16x16 >::new(shape: array![result.len()].span(), data: result.span()); } if feature_inputs.shape.len() == 1 && self.coefficients.data.len() > 1 { let feature_values = add_bias_term(feature_inputs, 1); prediction_result = feature_values.matmul(@self.coefficients); } return prediction_result; } } fn MultipleLinearRegression(dataset: Dataset) -> MultipleLinearRegressionModel { let x_values_tranposed = transpose_tensor(dataset.x_values); let x_values_tranposed_with_bias = add_bias_term(x_values_tranposed, 0); let decorrelated_x_features = decorrelate_x_features(x_values_tranposed_with_bias); let coefficients = compute_gradients( decorrelated_x_features, dataset.y_values, x_values_tranposed_with_bias ); return MultipleLinearRegressionModel { coefficien
ts }; } fn add_bias_term(x_feature: Tensor<FP16x16>, axis: u32) -> Tensor<FP16x16> { let mut x_feature_ = x_feature; let mut tensor_with_bias = TensorTrait::< FP16x16 >::new(shape: array![1].span(), data: array![FixedTrait::new(10, false)].span()); let mut result = ArrayTrait::<FP16x16>::new(); if x_feature.shape.len() > 1 { let mut index: u32 = 0; if axis == 1 { index = 0; } else { index = 1; } let data_len = *x_feature.shape.at(index); let mut i: u32 = 0; loop { if i >= data_len { break (); } result .append(FixedTrait::new(65536, false)); i += 1; }; if axis == 0 { let res_tensor = TensorTrait::new( shape: array![1, data_len].span(), data: result.span() ); tensor_with_bias = TensorTrait::concat(tensors: array![x_feature, res_tensor].span(), axis: axis); } else { let res_tensor = TensorTrait::new( shape: array![data_len, 1].span(), data: result.span() ); tensor_with_bias = TensorTrait::concat(tensors: array![x_feature, res_tensor].span(), axis: axis); } } if x_feature.shape.len() == 1 { let mut j: u32 = 0; loop { match x_feature_.data.pop_front() { Option::Some(x_val) => { result.append(*x_val); j += 1; }, Option::None(_) => { break; } }; }; result.append(FixedTrait::new(65536, false)); tensor_with_bias = TensorTrait::<FP16x16>::new(shape: array![result.len()].span(), data: result.span()); } return tensor_with_bias; } fn decorrelate_x_features(x_feature_data: Tensor<FP16x16>) -> Tensor<FP16x16> { let mut input_tensor = x_feature_data; let mut i: u32 = 0; loo
p { if i >= *x_feature_data.shape.at(0) { break (); } let mut placeholder = ArrayTrait::<FP16x16>::new(); let mut feature_row_values = get_tensor_data_by_row(input_tensor, i); let mut feature_squared = feature_row_values.matmul(@feature_row_values); if *feature_squared.data.at(0) == FixedTrait::new(0, false) { feature_squared = TensorTrait::< FP16x16 >::new(shape: array![1].span(), data: array![FixedTrait::new(10, false)].span()); } let mut j: u32 = i + 1; loop { if j >= *x_feature_data.shape.at(0) { break (); } let mut remaining_tensor_values = get_tensor_data_by_row(input_tensor, j); let feature_cross_product = feature_row_values.matmul(@remaining_tensor_values); let feature_gradients = feature_cross_product / feature_squared; remaining_tensor_values = remaining_tensor_values - (feature_row_values * feature_gradients); let mut k: u32 = 0; loop { if k >= remaining_tensor_values.data.len() { break (); } placeholder.append(*remaining_tensor_values.data.at(k)); k += 1; }; j += 1; }; let mut decorrelated_tensor = TensorTrait::new( shape: array![*x_feature_data.shape.at(0) - 1 - i, *x_feature_data.shape.at(1)].span(), data: placeholder.span() ); let mut original_tensor = input_tensor .slice( starts: array![0, 0].span(), ends: array![i + 1, *x_feature_data.shape.at(1)].span(), axes: Option::None(()), steps: Option::Some(array![1, 1].span()) ); input_tensor = TensorTrait::concat( tensors: array![original_
tensor, decorrelated_tensor].span(), axis: 0 ); i += 1; }; return input_tensor; } fn compute_gradients( decorrelated_x_features: Tensor<FP16x16>, y_values: Tensor<FP16x16>, original_x_tensor_values: Tensor<FP16x16> ) -> Tensor<FP16x16> { let mut gradient_values_flipped = TensorTrait::< FP16x16 >::new(shape: array![1].span(), data: array![FixedTrait::new(10, false)].span()); let mut result = ArrayTrait::<FP16x16>::new(); let mut tensor_y_vals = y_values; let mut i: u32 = *decorrelated_x_features.shape.at(0); loop { if i <= 0 { break (); } let index_val = i - 1; let mut decorelated_feature_row_values = get_tensor_data_by_row( decorrelated_x_features, index_val ); let mut decorelated_features_squared = decorelated_feature_row_values .matmul(@decorelated_feature_row_values); let mut feature_label_cross_product = tensor_y_vals .matmul(@decorelated_feature_row_values); if *decorelated_features_squared.data.at(0) == FixedTrait::new(0, false) { decorelated_features_squared = TensorTrait::< FP16x16 >::new(shape: array![1].span(), data: array![FixedTrait::new(10, false)].span()); } let mut single_gradient_value = feature_label_cross_product / decorelated_features_squared; result.append(*single_gradient_value.data.at(0)); let mut original_x_tensor_row_values = get_tensor_data_by_row( original_x_tensor_values, index_val ); tensor_y_vals = tensor_y_vals - (original_x_tensor_row_values * single_gradient_value); i -= 1; }; let final_gradients = TensorTrait::new( shape: array![*decorrelated_x_features.shape.at(0)].span(), data: result.span() ); let mut reverse_grad_array = ArrayTrait::<FP16x16>::new(); let m
ut data_len: u32 = final_gradients.data.len(); loop { if data_len <= 0 { break (); } let temp_val = data_len - 1; reverse_grad_array.append(*final_gradients.data.at(temp_val)); data_len -= 1; }; let gradient_values_flipped = TensorTrait::< FP16x16 >::new(shape: array![reverse_grad_array.len()].span(), data: reverse_grad_array.span()); return gradient_values_flipped; }
use debug::PrintTrait; use array::{ArrayTrait, SpanTrait}; use multiple_linear_regresion::datasets::boston_data::boston_x_features::boston_x_features; use multiple_linear_regresion::datasets::boston_data::boston_y_labels::boston_y_labels; use multiple_linear_regresion::datasets::user_inputs_data::user_inputs_boston_data::user_inputs_boston_data; use orion::numbers::{FP16x16, FixedTrait}; use multiple_linear_regresion::model::multiple_linear_regression_model::{ MultipleLinearRegressionModel, MultipleLinearRegression, MultipleLinearRegressionModelTrait }; use multiple_linear_regresion::data_preprocessing::{Dataset, DatasetTrait}; use multiple_linear_regresion::helper_functions::{get_tensor_data_by_row, transpose_tensor, calculate_mean , calculate_r_score, normalize_user_x_inputs, rescale_predictions}; use orion::operators::tensor::{ Tensor, TensorTrait, FP16x16Tensor, U32Tensor, U32TensorAdd, FP16x16TensorSub, FP16x16TensorAdd, FP16x16TensorDiv, FP16x16TensorMul};
fn multiple_linear_regression_test() { let mut main_x_vals = boston_x_features(); let mut main_y_vals = boston_y_labels(); let mut dataset = Dataset{x_values: main_x_vals,y_values:main_y_vals}; let mut normalized_dataset = dataset.normalize_dataset(); let mut model = MultipleLinearRegression(normalized_dataset); let mut model_coefficients = model.coefficients; let mut reconstructed_ys = model.predict (normalized_dataset.x_values); let mut r_squared_score = calculate_r_score(normalized_dataset.y_values,reconstructed_ys); r_squared_score.print(); assert(normalized_dataset.x_values.max_in_tensor() <= FixedTrait::new(65536, false), 'normalized x not between 0-1'); assert(normalized_dataset.x_values.min_in_tensor() >= FixedTrait::new(0, false), 'normalized x not between 0-1'); assert(normalized_dataset.y_values.max_in_tensor() <= FixedTrait::new(65536, false), 'normalized y not between 0-1'); assert(normalized_dataset.x_values.min_in_tensor() >= FixedTrait::new(0, false), 'normalized y not between 0-1'); assert(normalized_dataset.x_values.data.len()== main_x_vals.data.len() && normalized_dataset.y_values.data.len()== main_y_vals.data.len() , 'normalized data shape mismatch'); assert(model.coefficients.data.len() == *main_x_vals.shape.at(1)+1, 'coefficient data shape mismatch'); assert(r_squared_score >= FixedTrait::new(55699, false), 'Boston model acc. less than 84%'); let user_input = user_inputs_boston_data(); let mut normalized_user_x_inputs = normalize_user_x_inputs(user_input, main_x_vals) ; let mut prediction_result = model.predict (normalized_user_x_inputs); let mut rescale_prediction = rescale_predictions(prediction_result, main_y_vals); (*rescale_prediction.data.at(0)).print(); }
use orion::operators::tensor::{ Tensor, TensorTrait, FP16x16Tensor, U32Tensor, U32TensorAdd, FP16x16TensorSub, FP16x16TensorAdd, FP16x16TensorDiv, FP16x16TensorMul }; use orion::numbers::{FP16x16, FixedTrait}; use multiple_linear_regresion::helper_functions::{ get_tensor_data_by_row, transpose_tensor, calculate_mean, calculate_r_score, normalize_user_x_inputs, rescale_predictions };
struct Dataset { x_values: Tensor<FP16x16>, y_values: Tensor<FP16x16>, } impl DataPreprocessing of DatasetTrait { fn normalize_dataset(ref self: Dataset) -> Dataset { let mut x_values = TensorTrait::<FP16x16>::new(array![1].span(), array![FixedTrait::new(0, false)].span()); let mut y_values = TensorTrait::<FP16x16>::new(array![1].span(), array![FixedTrait::new(0, false)].span()); if self.x_values.shape.len() > 1 { x_values = normalize_feature_data(self.x_values); y_values = normalize_label_data(self.y_values); } if self.x_values.shape.len() == 1 { x_values = normalize_label_data(self.x_values); y_values = normalize_label_data(self.y_values); } return Dataset { x_values, y_values }; } } fn normalize_feature_data(tensor_data: Tensor<FP16x16>) -> Tensor<FP16x16> { let mut x_min_array = ArrayTrait::<FP16x16>::new(); let mut x_max_array = ArrayTrait::<FP16x16>::new(); let mut x_range_array = ArrayTrait::<FP16x16>::new(); let mut normalized_array = ArrayTrait::<FP16x16>::new(); let transposed_tensor = tensor_data.transpose(axes: array![1, 0].span()); let tensor_shape = transposed_tensor.shape; let tensor_row_len = *tensor_shape.at(0); let tensor_column_len = *tensor_shape.at(1); let mut i: u32 = 0; loop { if i >= tensor_row_len { break (); } let mut transposed_tensor_row = get_tensor_data_by_row(transposed_tensor, i); x_max_array.append(transposed_tensor_row.max_in_tensor()); x_min_array.append(transposed_tensor_row.min_in_tensor()); x_range_array .append(transposed_tensor_row.max_in_tensor() - transposed_tensor_row.min_in_tensor()); i += 1; }; let mut x_min = TensorTrait::< FP16x16 >::new(shape: array![1, tensor_row_len].span(), data: x_min_array.span()); let mut x_range = TensorTrait::< FP16x16 >::new(shape
: array![1, tensor_row_len].span(), data: x_range_array.span()); let normalized_tensor = (tensor_data - x_min) / x_range; return normalized_tensor; } fn normalize_label_data(tensor_data: Tensor<FP16x16>) -> Tensor<FP16x16> { let mut tensor_data_ = tensor_data; let mut normalized_array = ArrayTrait::<FP16x16>::new(); let mut range = tensor_data.max_in_tensor() - tensor_data.min_in_tensor(); let mut i: u32 = 0; loop { match tensor_data_.data.pop_front() { Option::Some(tensor_val) => { let mut diff = *tensor_val - tensor_data.min_in_tensor(); normalized_array.append(diff / range); i += 1; }, Option::None(_) => { break; } }; }; let mut normalized_tensor = TensorTrait::< FP16x16 >::new(shape: array![tensor_data.data.len()].span(), data: normalized_array.span()); return normalized_tensor; }
mod aave_data; mod boston_data; mod linear_data; mod user_inputs_data;
mod aave_x_features; mod aave_y_labels;
use array::ArrayTrait; use orion::numbers::fixed_point::implementations::fp16x16::core::{FP16x16Impl, FP16x16PartialEq}; use orion::operators::tensor::{Tensor, TensorTrait, FP16x16Tensor}; use orion::numbers::{FP16x16, FixedTrait}; fn aave_x_features() -> Tensor<FP16x16> { let tensor = TensorTrait::< FP16x16 >::new( shape: array![24, 9].span(), data: array![ FixedTrait::new(61, false), FixedTrait::new(484966, false), FixedTrait::new(812646, false), FixedTrait::new(13369344, false), FixedTrait::new(3604, false), FixedTrait::new(7798784, false), FixedTrait::new(1880883, false), FixedTrait::new(5006950, false), FixedTrait::new(220856320, false), FixedTrait::new(87, false), FixedTrait::new(488243, false), FixedTrait::new(812646, false), FixedTrait::new(13434880, false), FixedTrait::new(3604, false), FixedTrait::new(7798784, false), FixedTrait::new(1880883, false), FixedTrait::new(5006950, false), FixedTrait::new(220856320, false), FixedTrait::new(114, false), FixedTrait::new(525598, false), FixedTrait::new(812646, false), FixedTrait::new(13565952, false), FixedTrait::new(3604, false), FixedTrait::new(7798784, false), FixedTrait::new(1887436, false), FixedTrait::new(5013504, false), FixedTrait::new(217579519, false), FixedTrait::new(138, false), FixedTrait::new(628490, false), FixedTrait::new(838860, false), FixedTrait::new(13893632, false), FixedTrait::new(3604, false), FixedTrait::new(8126463, false), FixedTrait::new(1874329, false), FixedTrait::new(5046272, false), FixedTrait::new(208404480, false), FixedTrait::new(1, false), FixedTrai