text
stringlengths 1
2.05k
|
---|
return out
def ReLUInt(nRows, nCols, nChannels, input):
out = [[[str(max(int(input[i][j][k]), 0)) for k in range(nChannels)] for j in range(nCols)] for i in range(nRows)]
return out
def ArgMaxInt(input):
return [input.index(str(max(int(input[i]) for i in range(len(input)))))] |
""" Transpile a Keras model to a CIRCOM circuit.
Usage:
main.py <model.h5> [-o <output>] [--raw] [-d <decimals>]
main.py (-h | --help)
Options:
-h --help Show this screen.
-o <output> --output=<output> Output directory [default: output].
--raw Output raw model outputs instead of the argmax of outputs [default: False].
-d <decimals> --decimals=<decimals> Number of decimals for model precision [default: 18].
"""
from docopt import docopt
from keras2circom import circom, transpiler
def main():
""" Main entry point of the app """
args = docopt(__doc__)
circom.dir_parse('node_modules/circomlib-ml/circuits/', skips=['util.circom', 'circomlib-matrix', 'circomlib', 'crypto'])
transpiler.transpile(args['<model.h5>'], args['--output'], args['--raw'], args['--decimals'])
if __name__ == "__main__":
""" This is executed when run from the command line """
main() |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"
"from tensorflow.keras.layers |
import (\n",
" Input,\n",
" Activation,\n",
" AveragePooling2D,\n",
" BatchNormalization,\n",
" Conv2D,\n",
" Dense,\n",
" Dropout,\n",
" Flatten,\n",
" GlobalAveragePooling2D,\n",
" GlobalMaxPooling2D,\n",
" MaxPooling2D,\n",
" ReLU,\n",
" Softmax,\n",
" )\n",
"from tensorflow.keras |
import Model\n",
"from tensorflow.keras.datasets |
import mnist\n",
"from tensorflow.keras.utils |
import to_categorical\n",
" |
import numpy as np\n",
" |
import matplotlib.pyplot as plt\n",
" |
import tensorflow as tf"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"
"(X_train, y_train), (X_test, y_test) = mnist.load_data()"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"
"y_train = to_categorical(y_train)\n",
"y_test = to_categorical(y_test)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"
"X_train = X_train.reshape(X_train.shape[0], 28, 28, 1)\n",
"X_test = X_test.reshape(X_test.shape[0], 28, 28, 1)\n",
"\n",
"
"X_train = X_train.astype('float32')\n",
"X_test = X_test.astype('float32')\n",
"X_train /= 255.0\n",
"X_test /= 255.0"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"inputs = Input(shape=(28,28,1))\n",
"out = Conv2D(4, 3, use_bias=False)(inputs)\n",
"out = BatchNormalization()(out)\n",
"out = Activation('relu')(out)\n",
"out = MaxPooling2D()(out)\n",
"out = Conv2D(8, 3, use_bias=True, strides=2)(out)\n",
"out = ReLU()(out)\n",
"out = AveragePooling2D()(out)\n",
"out = Flatten()(out)\n",
"
"out = Dense(10, activation=\"softmax\")(out)\n",
"model = Model(inputs, out)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Model: \"model\"\n",
"_________________________________________________________________\n",
" Layer (type) Output Shape Param
"=================================================================\n",
" input_1 (InputLayer) [(None, 28, 28, 1)] 0 \n",
" \n",
" conv2d (Conv2D) (None, 26, 26, 4) 36 \n",
" |
\n",
" batch_normalization (BatchN (None, 26, 26, 4) 16 \n",
" ormalization) \n",
" \n",
" activation (Activation) (None, 26, 26, 4) 0 \n",
" \n",
" max_pooling2d (MaxPooling2D (None, 13, 13, 4) 0 \n",
" ) \n",
" \n",
" conv2d_1 (Conv2D) (None, 6, 6, 8) 296 \n",
" \n",
" re_lu (ReLU) (None, 6, 6, 8) 0 \n",
" \n",
" average_pooling2d (AverageP (None, 3, 3, 8) 0 \n",
" ooling2D) \n",
" \n",
" flatten (Flatten) (None, 72) 0 \n",
" \n",
" dense (Dense) (None, 10) 730 \n",
" \n",
"=================================================================\n",
"Total params: 1,078\n",
"Trainable params: 1,070\n",
"Non-trainable params: 8\n",
"_________________________________________________________________\n"
]
}
],
"source": [
"model.summary()"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"model.compile(\n",
" loss='categorical_crossentropy',\n",
" optimizer='adam',\ |
n",
" metrics=['acc']\n",
" )"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Epoch 1/15\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"2023-11-26 21:47:52.776729: W tensorflow/core/platform/profile_utils/cpu_utils.cc:128] Failed to get CPU frequency: 0 Hz\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"1875/1875 [==============================] - 11s 6ms/step - loss: 0.5203 - acc: 0.8386 - val_loss: 0.2099 - val_acc: 0.9363\n",
"Epoch 2/15\n",
"1875/1875 [==============================] - 11s 6ms/step - loss: 0.1926 - acc: 0.9419 - val_loss: 0.1497 - val_acc: 0.9543\n",
"Epoch 3/15\n",
"1875/1875 [==============================] - 10s 5ms/step - loss: 0.1551 - acc: 0.9522 - val_loss: 0.1263 - val_acc: 0.9591\n",
"Epoch 4/15\n",
"1875/1875 [==============================] - 10s 5ms/step - loss: 0.1361 - acc: 0.9580 - val_loss: 0.1139 - val_acc: 0.9628\n",
"Epoch 5/15\n",
"1875/1875 [==============================] - 10s 5ms/step - loss: 0.1253 - acc: 0.9617 - val_loss: 0.1031 - val_acc: 0.9679\n",
"Epoch 6/15\n",
"1875/1875 [==============================] - 11s 6ms/step - loss: 0.1168 - acc: 0.9636 - val_loss: 0.0976 - val_acc: 0.9697\n",
"Epoch 7/15\n",
"1875/1875 [==============================] - 10s 5ms/step - loss: 0.1113 - acc: 0.9650 - val_loss: 0.0923 - val_acc: 0.9711\n",
"Epoch 8/15\n",
"1875/1875 [==============================] - 10s 5ms/step - loss: 0.1072 - acc: 0.9673 - val_loss: 0.0884 - val_acc: 0.9732\n",
"Epoch 9/15\n",
"1875/1875 [==============================] - 12s 7ms/step - loss: 0.1026 - acc: 0.9683 - val_loss: 0.0879 - val_acc: 0.9725\n",
"Epoch 10/15\n",
"1875/1875 [==============================] - 11s 6ms/step - loss: 0.0999 - acc: 0. |
9691 - val_loss: 0.0928 - val_acc: 0.9719\n",
"Epoch 11/15\n",
"1875/1875 [==============================] - 10s 5ms/step - loss: 0.0968 - acc: 0.9702 - val_loss: 0.0954 - val_acc: 0.9699\n",
"Epoch 12/15\n",
"1875/1875 [==============================] - 10s 5ms/step - loss: 0.0945 - acc: 0.9706 - val_loss: 0.0841 - val_acc: 0.9740\n",
"Epoch 13/15\n",
"1875/1875 [==============================] - 10s 5ms/step - loss: 0.0926 - acc: 0.9718 - val_loss: 0.0826 - val_acc: 0.9748\n",
"Epoch 14/15\n",
"1875/1875 [==============================] - 10s 5ms/step - loss: 0.0893 - acc: 0.9723 - val_loss: 0.0803 - val_acc: 0.9751\n",
"Epoch 15/15\n",
"1875/1875 [==============================] - 10s 5ms/step - loss: 0.0892 - acc: 0.9723 - val_loss: 0.0767 - val_acc: 0.9757\n"
]
},
{
"data": {
"text/plain": [
"<keras.callbacks.History at 0x177842d60>"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"model.fit(X_train, y_train, epochs=15, batch_size=32, validation_data=(X_test, y_test))"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
"model.save('model.h5')"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "keras2circom",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.13"
},
"orig_nbformat": 4,
"vscode": {
"interpreter": {
"hash": "71414dc221f26c27f268040756e42b4f7499507456a67f7434828e3314a20678"
}
}
},
"nbformat": 4,
"nbformat_minor": 2
} |
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"!cd .. && python main.py models/model.h5"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
" |
import sys\n",
" |
import os\n",
"
"sys.path.append(os.path.dirname((os.getcwd())))\n",
"from output.circuit |
import inference\n",
" |
import json"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"with open('../output/circuit.json') as f:\n",
" circuit = json.load(f)\n",
"\n",
"with open('y_test.json') as f:\n",
" y_test = json.load(f)"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
" |
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
" |
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
" |
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
" |
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
" |
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
" |
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
" |
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
" |
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
" |
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
" |
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
" |
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
" |
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
" |
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
" |
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
" |
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
" |
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
" |
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
" |
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
" |
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
" |
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
" |
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
" |
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
" |
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
" |
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
" |
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
" |
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
" |
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
" |
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
" |
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
" |
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
" |
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
" |
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
" |
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
" |
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
" |
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
" |
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
" |
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
" |
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
" |
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
]
}
],
"source": [
"correct = 0\n",
"for i in range(10000):\n",
" with open(f\"X_test/{i}.json\", \"r\") as f:\n",
" input = json.load(f)\n",
" out, _ = inference(input, circuit)\n",
" correct += 1 if out[0] == y_test[i] else 0\n",
" print(f\"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "keras2circom",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.13"
}
},
"nbformat": 4,
"nbformat_minor": 2
} |
const chai = require('chai');
const fs = require('fs');
const wasm_tester = require('circom_tester').wasm;
const F1Field = require('ffjavascript').F1Field;
const Scalar = require('ffjavascript').Scalar;
exports.p = Scalar.fromString('21888242871839275222246405745257275088548364400416034343698204186575808495617');
const Fr = new F1Field(exports.p);
const assert = chai.assert;
const exec = require('await-exec');
const input = require('../test/X_test/0.json');
describe('keras2circom test', function () {
this.timeout(100000000);
describe('softmax output', async () => {
it('softmax output test', async () => {
await exec('python main.py models/model.h5 && python output/circuit.py output/circuit.json test/X_test/0.json');
const model = JSON.parse(fs.readFileSync('./output/circuit.json'));
const output = JSON.parse(fs.readFileSync('./output/output.json'));
const INPUT = {...model, ...input, ...output};
const circuit = await wasm_tester('./output/circuit.circom');
const witness = await circuit.calculateWitness(INPUT, true);
assert(Fr.eq(Fr.e(witness[0]),Fr.e(1)));
assert(Fr.eq(Fr.e(witness[1]),Fr.e(7)));
});
});
describe('raw output', async () => {
it('raw output test', async () => {
await exec('python main.py models/model.h5 --raw && python output/circuit.py output/circuit.json test/X_test/0.json');
const model = JSON.parse(fs.readFileSync('./output/circuit.json'));
const output = JSON.parse(fs.readFileSync('./output/output.json'));
const INPUT = {...model, ...input, ...output};
const circuit = await wasm_tester('./output/circuit.circom');
const witness = await circuit.calculateWitness(INPUT, true);
assert(Fr.eq(Fr.e(witness[0]),Fr.e(1)));
});
});
}); |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"from tensorflow.keras.datasets import mnist\n",
"import json\n",
"import numpy as np"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"# load MNIST dataset\n",
"_, (X_test, y_test) = mnist.load_data()"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"#normalizing\n",
"X_test = X_test.astype('float32')\n",
"X_test /= 255.0"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"for i in range(len(X_test)):\n",
" X = [str(int(x * float(10**18))) for x in X_test[i].flatten().tolist()]\n",
" X = np.array(X).reshape(28, 28, 1).tolist()\n",
" with open(f'X_test/{i}.json', 'w') as f:\n",
" json.dump({\"in\": X}, f)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"with open('y_test.json', 'w') as f:\n",
" json.dump(y_test.tolist(), f)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "keras2circom",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.13"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|
// from 0xZKML/zk-mnist
pragma circom 2.0.0;
include "./circomlib/comparators.circom";
include "./circomlib/switcher.circom";
template ArgMax (n) {
signal input in[n];
signal input out;
assert (out < n);
component gts[n]; // store comparators
component switchers[n+1]; // switcher for comparing maxs
component aswitchers[n+1]; // switcher for arg max
signal maxs[n+1];
signal amaxs[n+1];
maxs[0] <== in[0];
amaxs[0] <== 0;
for(var i = 0; i < n; i++) {
gts[i] = GreaterThan(252); // changed to 252 (maximum) for better compatibility
switchers[i+1] = Switcher();
aswitchers[i+1] = Switcher();
gts[i].in[1] <== maxs[i];
gts[i].in[0] <== in[i];
switchers[i+1].sel <== gts[i].out;
switchers[i+1].L <== maxs[i];
switchers[i+1].R <== in[i];
aswitchers[i+1].sel <== gts[i].out;
aswitchers[i+1].L <== amaxs[i];
aswitchers[i+1].R <== i;
amaxs[i+1] <== aswitchers[i+1].outL;
maxs[i+1] <== switchers[i+1].outL;
}
out === amaxs[n];
}
// component main { public [ out ] } = ArgMax(5);
/* INPUT = {
"in": ["2","3","1","5","4"],
"out": "3"
} */ |
pragma circom 2.0.0;
include "./SumPooling2D.circom";
// AveragePooling2D layer, poolSize is required to be equal for both dimensions, might lose precision compared to SumPooling2D
template AveragePooling2D (nRows, nCols, nChannels, poolSize, strides) {
signal input in[nRows][nCols][nChannels];
signal input out[(nRows-poolSize)\strides+1][(nCols-poolSize)\strides+1][nChannels];
signal input remainder[(nRows-poolSize)\strides+1][(nCols-poolSize)\strides+1][nChannels];
component sumPooling2D = SumPooling2D (nRows, nCols, nChannels, poolSize, strides);
for (var i=0; i<nRows; i++) {
for (var j=0; j<nCols; j++) {
for (var k=0; k<nChannels; k++) {
sumPooling2D.in[i][j][k] <== in[i][j][k];
}
}
}
for (var i=0; i<(nRows-poolSize)\strides+1; i++) {
for (var j=0; j<(nCols-poolSize)\strides+1; j++) {
for (var k=0; k<nChannels; k++) {
assert(remainder[i][j][k] < poolSize * poolSize);
out[i][j][k] * poolSize * poolSize + remainder[i][j][k] === sumPooling2D.out[i][j][k];
}
}
}
} |
pragma circom 2.0.0;
// BatchNormalization layer for 2D inputs
// a = gamma/(moving_var+epsilon)**.5
// b = beta-gamma*moving_mean/(moving_var+epsilon)**.5
// n = 10 to the power of the number of decimal places
template BatchNormalization2D(nRows, nCols, nChannels, n) {
signal input in[nRows][nCols][nChannels];
signal input a[nChannels];
signal input b[nChannels];
signal input out[nRows][nCols][nChannels];
signal input remainder[nRows][nCols][nChannels];
for (var i=0; i<nRows; i++) {
for (var j=0; j<nCols; j++) {
for (var k=0; k<nChannels; k++) {
assert(remainder[i][j][k] < n);
out[i][j][k] * n + remainder[i][j][k] === a[k]*in[i][j][k]+b[k];
}
}
}
}
// component main { public [ out ] } = BatchNormalization2D(1, 1, 1, 1000);
/* INPUT = {
"in": ["123"],
"a": ["234"],
"b": ["345678"],
"out": ["374"],
"remainder": ["460"]
} */ |
pragma circom 2.0.0;
include "./circomlib-matrix/matElemMul.circom";
include "./circomlib-matrix/matElemSum.circom";
include "./util.circom";
// Conv1D layer with valid padding
// n = 10 to the power of the number of decimal places
template Conv1D (nInputs, nChannels, nFilters, kernelSize, strides, n) {
signal input in[nInputs][nChannels];
signal input weights[kernelSize][nChannels][nFilters];
signal input bias[nFilters];
signal input out[(nInputs-kernelSize)\strides+1][nFilters];
signal input remainder[(nInputs-kernelSize)\strides+1][nFilters];
component mul[(nInputs-kernelSize)\strides+1][nChannels][nFilters];
component elemSum[(nInputs-kernelSize)\strides+1][nChannels][nFilters];
component sum[(nInputs-kernelSize)\strides+1][nFilters];
for (var i=0; i<(nInputs-kernelSize)\strides+1; i++) {
for (var j=0; j<nChannels; j++) {
for (var k=0; k<nFilters; k++) {
mul[i][j][k] = matElemMul(kernelSize,1);
for (var x=0; x<kernelSize; x++) {
mul[i][j][k].a[x][0] <== in[i*strides+x][j];
mul[i][j][k].b[x][0] <== weights[x][j][k];
}
elemSum[i][j][k] = matElemSum(kernelSize,1);
for (var x=0; x<kernelSize; x++) {
elemSum[i][j][k].a[x][0] <== mul[i][j][k].out[x][0];
}
}
}
for (var k=0; k<nFilters; k++) {
assert (remainder[i][k] < n);
sum[i][k] = Sum(nChannels);
for (var j=0; j<nChannels; j++) {
sum[i][k].in[j] <== elemSum[i][j][k].out;
}
out[i][k] * n + remainder[i][k] === sum[i][k].out + bias[k];
}
}
} |
pragma circom 2.0.0; |
include "./circomlib-matrix/matElemMul.circom"; |
include "./circomlib-matrix/matElemSum.circom"; |
include "./util.circom";
template Conv2D (nRows, nCols, nChannels, nFilters, kernelSize, strides, n) {
signal input in[nRows][nCols][nChannels];
signal input weights[kernelSize][kernelSize][nChannels][nFilters];
signal input bias[nFilters];
signal input out[(nRows-kernelSize)\strides+1][(nCols-kernelSize)\strides+1][nFilters];
signal input remainder[(nRows-kernelSize)\strides+1][(nCols-kernelSize)\strides+1][nFilters];
component mul[(nRows-kernelSize)\strides+1][(nCols-kernelSize)\strides+1][nChannels][nFilters];
component elemSum[(nRows-kernelSize)\strides+1][(nCols-kernelSize)\strides+1][nChannels][nFilters];
component sum[(nRows-kernelSize)\strides+1][(nCols-kernelSize)\strides+1][nFilters];
for (var i=0; i<(nRows-kernelSize)\strides+1; i++) {
for (var j=0; j<(nCols-kernelSize)\strides+1; j++) {
for (var k=0; k<nChannels; k++) {
for (var m=0; m<nFilters; m++) {
mul[i][j][k][m] = matElemMul(kernelSize,kernelSize);
for (var x=0; x<kernelSize; x++) {
for (var y=0; y<kernelSize; y++) {
mul[i][j][k][m].a[x][y] <== in[i*strides+x][j*strides+y][k];
mul[i][j][k][m].b[x][y] <== weights[x][y][k][m];
}
}
elemSum[i][j][k][m] = matElemSum(kernelSize,kernelSize);
for (var x=0; x<kernelSize; x++) {
for (var y=0; y<kernelSize; y++) {
elemSum[i][j][k][m].a[x][y] <== mul[i][j][k][m].out[x][y];
}
}
}
}
for (var m=0; m<nFilters; m++) {
assert (remainder[i][j][m] < n);
sum[i][j][m] = Sum(nChannels);
for (var k=0; k<nChannels; k++) {
sum[i][j][m].in[k] <== elemSum[i][j][k][m].out;
}
out[i][j][m] * n + remainder[i][j][m] === |
sum[i][j][m].out + bias[m];
}
}
}
} |
pragma circom 2.0.0; |
include "./Conv2D.circom";
template Conv2Dsame (nRows, nCols, nChannels, nFilters, kernelSize, strides, n) {
signal input in[nRows][nCols][nChannels];
signal input weights[kernelSize][kernelSize][nChannels][nFilters];
signal input bias[nFilters];
var rowPadding, colPadding;
if (nRows % strides == 0) {
rowPadding = (kernelSize - strides) > 0 ? (kernelSize - strides) : 0;
} else {
rowPadding = (kernelSize - (nRows % strides)) > 0 ? (kernelSize - (nRows % strides)) : 0;
}
if (nCols % strides == 0) {
colPadding = (kernelSize - strides) > 0 ? (kernelSize - strides) : 0;
} else {
colPadding = (kernelSize - (nCols % strides)) > 0 ? (kernelSize - (nCols % strides)) : 0;
}
signal input out[(nRows+rowPadding-kernelSize)\strides+1][(nCols+colPadding-kernelSize)\strides+1][nFilters];
signal input remainder[(nRows+rowPadding-kernelSize)\strides+1][(nCols+colPadding-kernelSize)\strides+1][nFilters];
component conv2d = Conv2D(nRows+rowPadding, nCols+colPadding, nChannels, nFilters, kernelSize, strides, n);
for (var i = rowPadding\2; i < rowPadding\2+nRows; i++) {
for (var j = colPadding\2; j < colPadding\2+nCols; j++) {
for (var k = 0; k < nChannels; k++) {
conv2d.in[i][j][k] <== in[i-rowPadding\2][j-colPadding\2][k];
}
}
}
for (var i = 0; i< rowPadding\2; i++) {
for (var j = 0; j < nCols+colPadding; j++) {
for (var k = 0; k < nChannels; k++) {
conv2d.in[i][j][k] <== 0;
}
}
}
for (var i = nRows+rowPadding\2; i < nRows+rowPadding; i++) {
for (var j = 0; j < nCols+colPadding; j++) {
for (var k = 0; k < nChannels; k++) {
conv2d.in[i][j][k] <== 0;
}
}
}
for (var i = rowPadding\2; i < nRows+rowPadding\2; i++) {
for (var j = 0; j < colPadding\2; j++) {
for (var k = 0; k < nChannels; k++) {
conv2d.in[i][j][k] <== 0 |
;
}
}
}
for (var i = rowPadding\2; i < nRows+rowPadding\2; i++) {
for (var j = nCols+colPadding\2; j < nCols+colPadding; j++) {
for (var k = 0; k < nChannels; k++) {
conv2d.in[i][j][k] <== 0;
}
}
}
for (var i = 0; i < kernelSize; i++) {
for (var j = 0; j < kernelSize; j++) {
for (var k = 0; k < nChannels; k++) {
for (var l = 0; l < nFilters; l++) {
conv2d.weights[i][j][k][l] <== weights[i][j][k][l];
}
}
}
}
for (var i = 0; i < nFilters; i++) {
conv2d.bias[i] <== bias[i];
}
for (var i = 0; i < (nRows+rowPadding-kernelSize)\strides+1; i++) {
for (var j = 0; j < (nCols+colPadding-kernelSize)\strides+1; j++) {
for (var k = 0; k < nFilters; k++) {
conv2d.out[i][j][k] <== out[i][j][k];
conv2d.remainder[i][j][k] <== remainder[i][j][k];
}
}
}
} |
pragma circom 2.0.0;
include "./circomlib-matrix/matMul.circom";
// Dense layer
// n = 10 to the power of the number of decimal places
template Dense (nInputs, nOutputs, n) {
signal input in[nInputs];
signal input weights[nInputs][nOutputs];
signal input bias[nOutputs];
signal input out[nOutputs];
signal input remainder[nOutputs];
component dot[nOutputs];
for (var i=0; i<nOutputs; i++) {
assert (remainder[i] < n);
dot[i] = matMul(1,nInputs,1);
for (var j=0; j<nInputs; j++) {
dot[i].a[0][j] <== in[j];
dot[i].b[j][0] <== weights[j][i];
}
out[i] * n + remainder[i] === dot[i].out[0][0] + bias[i];
}
} |
pragma circom 2.1.1; |
include "./circomlib/sign.circom"; |
include "./circomlib/bitify.circom"; |
include "./circomlib/comparators.circom"; |
include "./circomlib-matrix/matElemMul.circom"; |
include "./circomlib-matrix/matElemSum.circom"; |
include "./util.circom";
template DepthwiseConv2D (nRows, nCols, nChannels, nFilters, kernelSize, strides, n) {
var outRows = (nRows-kernelSize)\strides+1;
var outCols = (nCols-kernelSize)\strides+1;
signal input in[nRows][nCols][nChannels];
signal input weights[kernelSize][kernelSize][nFilters];
signal input bias[nFilters];
signal input remainder[outRows][outCols][nFilters];
signal input out[outRows][outCols][nFilters];
component mul[outRows][outCols][nFilters];
component elemSum[outRows][outCols][nFilters];
var valid_groups = nFilters % nChannels;
var filtersPerChannel = nFilters / nChannels;
signal groups;
groups <== valid_groups;
component is_zero = IsZero();
is_zero.in <== groups;
is_zero.out === 1;
for (var row=0; row<outRows; row++) {
for (var col=0; col<outCols; col++) {
for (var filterMultiplier=1; filterMultiplier<=filtersPerChannel; filterMultiplier++) {
for (var channel=0; channel<nChannels; channel++) {
var filter = filterMultiplier*channel;
mul[row][col][filter] = matElemMul(kernelSize,kernelSize);
for (var x=0; x<kernelSize; x++) {
for (var y=0; y<kernelSize; y++) {
mul[row][col][filter].a[x][y] <== in[row*strides+x][col*strides+y][channel];
mul[row][col][filter].b[x][y] <== weights[x][y][filter];
}
}
elemSum[row][col][filter] = matElemSum(kernelSize,kernelSize);
for (var x=0; x<kernelSize; x++) {
for (var y=0; y<kernelSize; y++) {
elemSum[row][col][filter].a[x][y] <== mul[row][col][filter].out[x][y];
}
}
out[row][col][filter] * n + remainder[row][col][filter] === elemSum[row][col][filter].out + bias[filter];
}
} |
}
}
} |
pragma circom 2.0.0;
// Flatten layer with that accepts a 2D input
template Flatten2D (nRows, nCols, nChannels) {
signal input in[nRows][nCols][nChannels];
signal input out[nRows*nCols*nChannels];
var idx = 0;
for (var i=0; i<nRows; i++) {
for (var j=0; j<nCols; j++) {
for (var k=0; k<nChannels; k++) {
out[idx] === in[i][j][k];
idx++;
}
}
}
} |
pragma circom 2.0.0;
include "./GlobalSumPooling2D.circom";
// GlobalAveragePooling2D layer, might lose precision compared to GlobalSumPooling2D
template GlobalAveragePooling2D (nRows, nCols, nChannels) {
signal input in[nRows][nCols][nChannels];
signal input out[nChannels];
signal input remainder[nChannels];
component globalSumPooling2D = GlobalSumPooling2D (nRows, nCols, nChannels);
for (var i=0; i<nRows; i++) {
for (var j=0; j<nCols; j++) {
for (var k=0; k<nChannels; k++) {
globalSumPooling2D.in[i][j][k] <== in[i][j][k];
}
}
}
for (var k=0; k<nChannels; k++) {
assert (remainder[k] < nRows*nCols);
out[k] * nRows * nCols + remainder[k] === globalSumPooling2D.out[k];
}
} |
pragma circom 2.0.0;
include "./util.circom";
// GlobalMaxPooling2D layer
template GlobalMaxPooling2D (nRows, nCols, nChannels) {
signal input in[nRows][nCols][nChannels];
signal input out[nChannels];
component max[nChannels];
for (var k=0; k<nChannels; k++) {
max[k] = Max(nRows*nCols);
for (var i=0; i<nRows; i++) {
for (var j=0; j<nCols; j++) {
max[k].in[i*nCols+j] <== in[i][j][k];
}
}
out[k] === max[k].out;
}
} |
pragma circom 2.0.0;
include "./circomlib-matrix/matElemSum.circom";
include "./util.circom";
// GlobalSumPooling2D layer, basically GlobalAveragePooling2D layer with a constant scaling, more optimized for circom
template GlobalSumPooling2D (nRows, nCols, nChannels) {
signal input in[nRows][nCols][nChannels];
signal output out[nChannels];
component elemSum[nChannels];
for (var k=0; k<nChannels; k++) {
elemSum[k] = matElemSum(nRows,nCols);
for (var i=0; i<nRows; i++) {
for (var j=0; j<nCols; j++) {
elemSum[k].a[i][j] <== in[i][j][k];
}
}
out[k] <== elemSum[k].out;
}
} |
pragma circom 2.0.0;
include "./util.circom";
// LeakyReLU layer
template LeakyReLU (alpha) { // alpha is 10 times the actual alpha, since usual alpha is 0.2, 0.3, etc.
signal input in;
signal input out;
signal input remainder;
component isNegative = IsNegative();
isNegative.in <== in;
signal neg;
neg <== isNegative.out * alpha * in;
out * 10 + remainder === neg + 10 * in * (1 - isNegative.out);
} |
pragma circom 2.0.0;
include "./util.circom";
// MaxPooling2D layer
template MaxPooling2D (nRows, nCols, nChannels, poolSize, strides) {
signal input in[nRows][nCols][nChannels];
signal input out[(nRows-poolSize)\strides+1][(nCols-poolSize)\strides+1][nChannels];
component max[(nRows-poolSize)\strides+1][(nCols-poolSize)\strides+1][nChannels];
for (var i=0; i<(nRows-poolSize)\strides+1; i++) {
for (var j=0; j<(nCols-poolSize)\strides+1; j++) {
for (var k=0; k<nChannels; k++) {
max[i][j][k] = Max(poolSize*poolSize);
for (var x=0; x<poolSize; x++) {
for (var y=0; y<poolSize; y++) {
max[i][j][k].in[x*poolSize+y] <== in[i*strides+x][j*strides+y][k];
}
}
out[i][j][k] === max[i][j][k].out;
}
}
}
} |
pragma circom 2.0.0; |
include "./MaxPooling2D.circom";
template MaxPooling2Dsame (nRows, nCols, nChannels, poolSize, strides) {
signal input in[nRows][nCols][nChannels];
var rowPadding, colPadding;
if (nRows % strides == 0) {
rowPadding = (poolSize - strides) > 0 ? (poolSize - strides) : 0;
} else {
rowPadding = (poolSize - (nRows % strides)) > 0 ? (poolSize - (nRows % strides)) : 0;
}
if (nCols % strides == 0) {
colPadding = (poolSize - strides) > 0 ? (poolSize - strides) : 0;
} else {
colPadding = (poolSize - (nCols % strides)) > 0 ? (poolSize - (nCols % strides)) : 0;
}
signal input out[(nRows+rowPadding-poolSize)\strides+1][(nCols+colPadding-poolSize)\strides+1][nChannels];
component max2d = MaxPooling2D(nRows+rowPadding, nCols+colPadding, nChannels, poolSize, strides);
for (var i = rowPadding\2; i < rowPadding\2+nRows; i++) {
for (var j = colPadding\2; j < colPadding\2+nCols; j++) {
for (var k = 0; k < nChannels; k++) {
max2d.in[i][j][k] <== in[i-rowPadding\2][j-colPadding\2][k];
}
}
}
for (var i = 0; i< rowPadding\2; i++) {
for (var j = 0; j < nCols+colPadding; j++) {
for (var k = 0; k < nChannels; k++) {
max2d.in[i][j][k] <== 0;
}
}
}
for (var i = nRows+rowPadding\2; i< nRows+rowPadding; i++) {
for (var j = 0; j < nCols+colPadding; j++) {
for (var k = 0; k < nChannels; k++) {
max2d.in[i][j][k] <== 0;
}
}
}
for (var i = rowPadding\2; i < nRows+rowPadding\2; i++) {
for (var j = 0; j < colPadding\2; j++) {
for (var k = 0; k < nChannels; k++) {
max2d.in[i][j][k] <== 0;
}
}
}
for (var i = rowPadding\2; i < nRows+rowPadding\2; i++) {
for (var j = nCols+colPadding\2; j < nCols+colPadding; j++) {
for (var k = 0; k < nChannels; k++) {
max2d.in[i][j][k] <== 0; |
}
}
}
for (var i = 0; i < (nRows+rowPadding-poolSize)\strides+1; i++) {
for (var j = 0; j < (nCols+colPadding-poolSize)\strides+1; j++) {
for (var k = 0; k < nChannels; k++) {
max2d.out[i][j][k] <== out[i][j][k];
}
}
}
} |
pragma circom 2.1.1;
// include "./Conv2D.circom";
include "./circomlib/sign.circom";
include "./circomlib/bitify.circom";
include "./circomlib/comparators.circom";
include "./circomlib-matrix/matElemMul.circom";
include "./circomlib-matrix/matElemSum.circom";
include "./util.circom";
// Pointwise Convolution layer
// Note that nFilters must be a multiple of nChannels
template PointwiseConv2D (nRows, nCols, nChannels, nFilters, n) {
var outRows = nRows; // kernel size and strides are 1
var outCols = nCols;
signal input in[nRows][nCols][nChannels];
signal input weights[nChannels][nFilters]; // weights are 2d because kernel_size is 1
signal input bias[nFilters];
signal input out[outRows][outCols][nFilters];
signal input remainder[outRows][outCols][nFilters];
component sum[outRows][outCols][nFilters];
for (var row=0; row<outRows; row++) {
for (var col=0; col<outCols; col++) {
for (var filter=0; filter<nFilters; filter++) {
sum[row][col][filter] = Sum(nChannels);
for (var channel=0; channel<nChannels; channel++) {
sum[row][col][filter].in[channel] <== in[row][col][channel] * weights[channel][filter];
}
out[row][col][filter] * n + remainder[row][col][filter] === sum[row][col][filter].out + bias[filter];
}
}
}
}
// component main = PointwiseConv2D(32, 32, 8, 16);
|
pragma circom 2.0.0;
include "./util.circom";
// ReLU layer
template ReLU () {
signal input in;
signal input out;
component isPositive = IsPositive();
isPositive.in <== in;
out === in * isPositive.out;
} |
pragma circom 2.0.0;
// Reshape layer with that accepts a 1D input
template Reshape2D (nRows, nCols, nChannels) {
signal input in[nRows*nCols*nChannels];
signal input out[nRows][nCols][nChannels];
for (var i=0; i<nRows; i++) {
for (var j=0; j<nCols; j++) {
for (var k=0; k<nChannels; k++) {
out[i][j][k] === in[i*nCols*nChannels + j*nChannels + k];
}
}
}
} |
pragma circom 2.1.1; |
include "./PointwiseConv2D.circom"; |
include "./DepthwiseConv2D.circom";
template SeparableConv2D (nRows, nCols, nChannels, nDepthFilters, nPointFilters, depthKernelSize, strides, n) {
var outRows = (nRows-depthKernelSize)\strides+1;
var outCols = (nCols-depthKernelSize)\strides+1;
signal input in[nRows][nCols][nChannels];
signal input depthWeights[depthKernelSize][depthKernelSize][nDepthFilters];
signal input depthBias[nDepthFilters];
signal input depthRemainder[outRows][outCols][nDepthFilters];
signal input depthOut[outRows][outCols][nDepthFilters];
signal input pointWeights[nChannels][nPointFilters];
signal input pointBias[nPointFilters];
signal input pointRemainder[outRows][outCols][nPointFilters];
signal input pointOut[outRows][outCols][nPointFilters];
component depthConv = DepthwiseConv2D(nRows, nCols, nChannels, nDepthFilters, depthKernelSize, strides, n);
component pointConv = PointwiseConv2D(outRows, outCols, nDepthFilters, nPointFilters, n);
for (var filter=0; filter<nDepthFilters; filter++) {
for (var x=0; x<depthKernelSize; x++) {
for (var y=0; y<depthKernelSize; y++) {
depthConv.weights[x][y][filter] <== depthWeights[x][y][filter];
}
}
depthConv.bias[filter] <== depthBias[filter];
}
for (var row=0; row < nRows; row++) {
for (var col=0; col < nCols; col++) {
for (var channel=0; channel < nChannels; channel++) {
depthConv.in[row][col][channel] <== in[row][col][channel];
}
}
}
for (var row=0; row < outRows; row++) {
for (var col=0; col < outCols; col++) {
for (var filter=0; filter < nDepthFilters; filter++) {
depthConv.remainder[row][col][filter] <== depthRemainder[row][col][filter];
depthConv.out[row][col][filter] <== depthOut[row][col][filter];
pointConv.in[row][col][filter] <== depthOut[row][col][filter];
}
}
}
for (var filter=0; filter < nPo |
intFilters; filter++) {
for (var channel=0; channel < nChannels; channel++) {
pointConv.weights[channel][filter] <== pointWeights[channel][filter];
}
pointConv.bias[filter] <== pointBias[filter];
}
for (var row=0; row < outRows; row++) {
for (var col=0; col < outCols; col++) {
for (var filter=0; filter < nPointFilters; filter++) {
pointConv.remainder[row][col][filter] <== pointRemainder[row][col][filter];
pointConv.out[row][col][filter] <== pointOut[row][col][filter];
}
}
}
} |
pragma circom 2.0.0;
include "./circomlib-matrix/matElemSum.circom";
include "./util.circom";
// SumPooling2D layer, basically AveragePooling2D layer with a constant scaling, more optimized for circom
template SumPooling2D (nRows, nCols, nChannels, poolSize, strides) {
signal input in[nRows][nCols][nChannels];
signal output out[(nRows-poolSize)\strides+1][(nCols-poolSize)\strides+1][nChannels];
component elemSum[(nRows-poolSize)\strides+1][(nCols-poolSize)\strides+1][nChannels];
for (var i=0; i<(nRows-poolSize)\strides+1; i++) {
for (var j=0; j<(nCols-poolSize)\strides+1; j++) {
for (var k=0; k<nChannels; k++) {
elemSum[i][j][k] = matElemSum(poolSize,poolSize);
for (var x=0; x<poolSize; x++) {
for (var y=0; y<poolSize; y++) {
elemSum[i][j][k].a[x][y] <== in[i*strides+x][j*strides+y][k];
}
}
out[i][j][k] <== elemSum[i][j][k].out;
}
}
}
} |
pragma circom 2.0.0;
template UpSampling2D(nRows, nCols, nChannels, size) {
signal input in[nRows][nCols][nChannels];
signal input out[nRows * size][nCols * size][nChannels];
// nearest neighbor interpolation
for (var i = 0; i < nRows; i++) {
for (var j = 0; j < nCols; j++) {
for (var c = 0; c < nChannels; c++) {
for (var k = 0; k < size; k++) {
for (var l = 0; l < size; l++) {
out[i * size + k][j * size + l][c] === in[i][j][c];
}
}
}
}
}
} |
pragma circom 2.0.0;
// Polynomial approximation for the tanh layer
// 0.006769816 + 0.554670504 * x - 0.009411195 * x**2 - 0.014187547 * x**3
// 6769816 + 554670504 * x - 9411195 * x**2 - 14187547 * x**3
// 6769816 + x * (554670504 - 9411195 * x - 14187547 * x**2)
// n = 10 to the power of the number of decimal places
// out and remainder are from division by n**2 so out has the same number of decimal places as in
template Zanh (n) {
signal input in;
signal input out;
signal input remainder;
assert(remainder < (n**2) * (10**9));
signal tmp;
tmp <== 554670504 * n**2 - 9411195 * n * in - 14187547 * in * in;
// log(6769816 * n**3 + in * tmp);
out * (n**2) * (10**9) + remainder === 6769816 * n**3 + in * tmp;
}
// component main { public [ out ] } = Zanh(10**9);
/* INPUT = {
"in": "123456789",
"out": "750775175",
"remainder": "35162208611038149371400257"
} */ |
pragma circom 2.0.0;
// Poly activation layer: https://arxiv.org/abs/2011.05530
// n = 10 to the power of the number of decimal places
// out and remainder are from division by n so out has the same number of decimal places as in
template ZeLU (n) {
signal input in;
signal input out;
signal input remainder;
assert(remainder < n);
signal tmp;
tmp <== in * in + n*in;
out * n + remainder === tmp;
}
// component main { public [ out ] } = ZeLU(10**9);
/* INPUT = {
"in": "123456789",
"out": "138698367",
"remainder": "750190521"
} */ |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.