text
stringlengths
1
2.05k
import iris.NetworkModelInitializer finally: sys.path.pop(0) self._iris_lib = iris def _convertStringToU64Array(strValue): numBytes = len(strValue) if numBytes == 0: return [] numU64 = (numBytes + 7) strExt = strValue.ljust(8 * numU64, b"\0") return struct.unpack("<{}Q".format(numU64), strExt) iris.iris.convertStringToU64Array = _convertStringToU64Array def open(self): args = ["ninja"] if self.options.get("verbose"): args.append("-v") args.append("run") env = dict(os.environ) env["ARMFVP_BIN_PATH"] = str(API_SERVER_DIR / "fvp-hack") self.proc = subprocess.Popen( args, cwd=BUILD_DIR, env=env, stdout=subprocess.PIPE, ) threading.Thread(target=self._fvp_check_stdout, daemon=True).start() self.iris_port = self._wait_for_fvp() _LOG.info("IRIS started on port %d", self.iris_port) NetworkModelInitializer = self._iris_lib.NetworkModelInitializer.NetworkModelInitializer self._model_init = NetworkModelInitializer( host="localhost", port=self.iris_port, timeout_in_ms=1000 ) self._model = self._model_init.start() self._target = self._model.get_target("component.FVP_MPS3_Corstone_SSE_300.cpu0") self._target.handle_semihost_io() self._target._stdout = BlockingStream() self._target._stdin = BlockingStream() self._model.run(blocking=False, timeout=100) self._wait_for_semihost_init() _LOG.info("IRIS semihosting initialized.") return server.TransportTimeouts( session_start_retry_timeout_sec=2.0, session_start_timeout_sec=10.0, session_established_timeout_sec=10.0, ) def _fvp_check_stdout(self): START_MSG = "Iris server started listening to port" INIT_MSG
= "microTVM Zephyr runtime - running" for line in self.proc.stdout: line = str(line, "utf-8") _LOG.info("%s", line) start_msg = re.match(START_MSG + r" ([0-9]+)\n", line) init_msg = re.match(INIT_MSG, line) if start_msg: self._queue.put((ZephyrFvpMakeResult.FVP_STARTED, int(start_msg.group(1)))) elif init_msg: self._queue.put((ZephyrFvpMakeResult.MICROTVM_API_SERVER_INIT, None)) break else: line = re.sub("[^a-zA-Z0-9 \n]", "", line) pattern = r"recipe for target (\w*) failed" if re.search(pattern, line, re.IGNORECASE): self._queue.put((ZephyrFvpMakeResult.MAKE_FAILED, None)) self._queue.put((ZephyrFvpMakeResult.EOF, None)) def _wait_for_fvp(self): """waiting for the START_MSG to appear on the stdout""" while True: try: item = self._queue.get(timeout=120) except Exception: raise TimeoutError("FVP setup timeout.") if item[0] == ZephyrFvpMakeResult.FVP_STARTED: return item[1] if item[0] in [ZephyrFvpMakeResult.MAKE_FAILED, ZephyrFvpMakeResult.EOF]: raise RuntimeError("FVP setup failed.") raise ValueError(f"{item} not expected.") def _wait_for_semihost_init(self): """waiting for the INIT_MSG to appear on the stdout""" while True: try: item = self._queue.get(timeout=240) except Exception: raise TimeoutError("semihost init timeout.") if item[0] == ZephyrFvpMakeResult.MICROTVM_API_SERVER_INIT: return raise ValueError(f"{item} not expected.") def close(self): self._model._shutdown_model() self._model.client.disconnect(force=True) parent = psutil.Process(self.proc.pid) if parent: for child in parent
.children(recursive=True): child.terminate() parent.terminate() def read(self, n, timeout_sec): return self._target.stdout.read(n, timeout_sec) def write(self, data, timeout_sec): self._target.stdin.write(data) if __name__ == "__main__": server.main(Handler())
/* * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http: * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY * KIND, either express or implied. See the License for the * specific language governing permissions and limitations * under the License. */ static uint8_t g_aot_memory[WORKSPACE_SIZE]; tvm_workspace_t app_workspace; const unsigned char CMD_WAKEUP[] = "wakeup\n"; const unsigned char CMD_READY[] = "ready\n"; const unsigned char CMD_INIT[] = "init"; const unsigned char CMD_INFER[] = "infer"; size_t TVMPlatformFormatMessage(char* out_buf, size_t out_buf_size_bytes, const char* fmt, va_list args) { return vsnprintk(out_buf, out_buf_size_bytes, fmt, args); } void TVMLogf(const char* msg, ...) { char buffer[256]; int size; va_list args; va_start(args, msg); size = vsprintf(buffer, msg, args); va_end(args); TVMPlatformWriteSerial(buffer, (uint32_t)size); } void TVMPlatformAbort(tvm_crt_error_t error) { TVMLogf("TVMPlatformAbort: %08x\n", error); sys_reboot(SYS_REBOOT_COLD); for (;;) ; } tvm_crt_error_t TVMPlatformMemoryAllocate(size_t num_bytes, DLDevice dev, void** out_ptr) { return StackMemoryManager_Allocate(&app_workspace, num_bytes, out_ptr); } tvm_crt_error_t TVMPlatformMemoryFree(void* ptr, DLDevice dev) { return StackMemoryManager_Free(&app_workspace, ptr); } void timer_expiry_function(struct k_timer* timer_id) { return; } struct k_timer g_microtvm_timer; uint32_t g_microtvm_start_time; int g_m
icrotvm_timer_running = 0; tvm_crt_error_t TVMPlatformTimerStart() { if (g_microtvm_timer_running) { TVMLogf("timer already running"); return kTvmErrorPlatformTimerBadState; } k_timer_start(&g_microtvm_timer, TIME_TIL_EXPIRY, TIME_TIL_EXPIRY); g_microtvm_start_time = k_cycle_get_32(); g_microtvm_timer_running = 1; return kTvmErrorNoError; } tvm_crt_error_t TVMPlatformTimerStop(double* elapsed_time_seconds) { if (!g_microtvm_timer_running) { TVMLogf("timer not running"); return kTvmErrorSystemErrorMask | 2; } uint32_t stop_time = k_cycle_get_32(); uint32_t cycles_spent = stop_time - g_microtvm_start_time; if (stop_time < g_microtvm_start_time) { cycles_spent = ~((uint32_t)0) - (g_microtvm_start_time - stop_time); } uint32_t ns_spent = (uint32_t)k_cyc_to_ns_floor64(cycles_spent); double hw_clock_res_us = ns_spent / 1000.0; int32_t time_remaining_ms = k_timer_remaining_get(&g_microtvm_timer); k_timer_stop(&g_microtvm_timer); if (time_remaining_ms < 0) { return kTvmErrorSystemErrorMask | 3; } uint32_t num_expiries = k_timer_status_get(&g_microtvm_timer); uint32_t timer_res_ms = ((num_expiries * MILLIS_TIL_EXPIRY) + time_remaining_ms); double approx_num_cycles = (double)k_ticks_to_cyc_floor32(1) * (double)k_ms_to_ticks_ceil32(timer_res_ms); if (approx_num_cycles > (0.5 * (~((uint32_t)0)))) { *elapsed_time_seconds = timer_res_ms / 1000.0; } else { *elapsed_time_seconds = hw_clock_res_us / 1e6; } g_microtvm_timer_running = 0; return kTvmErrorNoError; } void* TVMBackendAllocWorkspace(int device_type, int device_id, uint64_t nbytes, int dtype_code_hint, int dtype_bits_hint) { tvm_crt_error_t err = kTvmErrorNoError; void* ptr = 0; DLDevice dev = {device_type, device_id}; assert(nbytes > 0); err = TVMPlatformMemoryAllocate(nbytes, dev, &ptr); CHECK_EQ(err, kTvmErrorNoError, "TVMBackendAllocWorkspace(%d, %d, %" PRIu64 ", %d, %d) -> %" PRId32, de
vice_type, device_id, nbytes, dtype_code_hint, dtype_bits_hint, err); return ptr; } int TVMBackendFreeWorkspace(int device_type, int device_id, void* ptr) { tvm_crt_error_t err = kTvmErrorNoError; DLDevice dev = {device_type, device_id}; err = TVMPlatformMemoryFree(ptr, dev); return err; } static uint8_t main_rx_buf[128]; static uint8_t g_cmd_buf[128]; static size_t g_cmd_buf_ind; void TVMInfer() { struct tvmgen_default_inputs inputs = { .input_1 = input_data, }; struct tvmgen_default_outputs outputs = { .Identity = output_data, }; StackMemoryManager_Init(&app_workspace, g_aot_memory, WORKSPACE_SIZE); double elapsed_time = 0; TVMPlatformTimerStart(); int ret_val = tvmgen_default_run(&inputs, &outputs); TVMPlatformTimerStop(&elapsed_time); if (ret_val != 0) { TVMLogf("Error: %d\n", ret_val); TVMPlatformAbort(kTvmErrorPlatformCheckFailure); } size_t max_ind = -1; float max_val = -FLT_MAX; for (size_t i = 0; i < output_data_len; i++) { if (output_data[i] >= max_val) { max_ind = i; max_val = output_data[i]; } } TVMLogf("result:%d:%d\n", max_ind, (uint32_t)(elapsed_time * 1000)); } void command_ready(char* command) { if (strncmp(command, CMD_INIT, CMD_SIZE) == 0) { TVMPlatformWriteSerial(CMD_WAKEUP, sizeof(CMD_WAKEUP)); } else if (strncmp(command, CMD_INFER, CMD_SIZE) == 0) { TVMInfer(); } else { TVMPlatformWriteSerial(CMD_READY, sizeof(CMD_READY)); } } void serial_callback(char* message, int len_bytes) { for (int i = 0; i < len_bytes; i++) { if (message[i] == CMD_TERMINATOR) { g_cmd_buf[g_cmd_buf_ind] = (char)0; command_ready(g_cmd_buf); g_cmd_buf_ind = 0; } else { g_cmd_buf[g_cmd_buf_ind] = message[i]; g_cmd_buf_ind += 1; } } } void main(void) { g_cmd_buf_ind = 0; memset((char*)g_cmd_buf, 0, sizeof(g_cmd_buf)); TVMPlatformUARTInit(); k_timer_init(&g_microtvm_timer, NULL, NULL); while (true) { int bytes_read = TVMPlatformUartRxRead(ma
in_rx_buf, sizeof(main_rx_buf)); if (bytes_read > 0) { serial_callback(main_rx_buf, bytes_read); } } posix_exit(0); }
/* * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http: * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY * KIND, either express or implied. See the License for the * specific language governing permissions and limitations * under the License. */ static const struct device* g_microtvm_uart; RING_BUF_DECLARE(uart_rx_rbuf, RING_BUF_SIZE_BYTES); static uint8_t uart_data[8]; void uart_irq_cb(const struct device* dev, void* user_data) { while (uart_irq_update(dev) && uart_irq_is_pending(dev)) { struct ring_buf* rbuf = (struct ring_buf*)user_data; if (uart_irq_rx_ready(dev) != 0) { for (;;) { int bytes_read = uart_fifo_read(dev, uart_data, sizeof(uart_data)); if (bytes_read < 0) { TVMPlatformAbort((tvm_crt_error_t)(0xbeef1)); } else if (bytes_read == 0) { break; } int bytes_written = ring_buf_put(rbuf, uart_data, bytes_read); if (bytes_read != bytes_written) { TVMPlatformAbort((tvm_crt_error_t)(0xbeef2)); } } } } } void uart_rx_init(struct ring_buf* rbuf, const struct device* dev) { uart_irq_callback_user_data_set(dev, uart_irq_cb, (void*)rbuf); uart_irq_rx_enable(dev); } uint32_t TVMPlatformUartRxRead(uint8_t* data, uint32_t data_size_bytes) { unsigned int key = irq_lock(); uint32_t bytes_read = ring_buf_get(&uart_rx_rbuf, data, data_size_bytes); irq_unlock(key); return bytes_read; } uint32_t TVMPlatformWriteSerial(const char* data, uint32_t size)
{ for (uint32_t i = 0; i < size; i++) { uart_poll_out(g_microtvm_uart, data[i]); } return size; } void TVMPlatformUARTInit() { g_microtvm_uart = device_get_binding(DT_LABEL(DT_CHOSEN(zephyr_console))); const struct uart_config config = {.baudrate = 115200, .parity = UART_CFG_PARITY_NONE, .stop_bits = UART_CFG_STOP_BITS_1, .data_bits = UART_CFG_DATA_BITS_8, .flow_ctrl = UART_CFG_FLOW_CTRL_NONE}; uart_configure(g_microtvm_uart, &config); uart_rx_init(&uart_rx_rbuf, g_microtvm_uart); }
/* * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY * KIND, either express or implied. See the License for the * specific language governing permissions and limitations * under the License. */ #ifndef TVM_APPS_MICROTVM_ZEPHYR_AOT_STANDALONE_DEMO_ZEPHYR_UART_H_ #define TVM_APPS_MICROTVM_ZEPHYR_AOT_STANDALONE_DEMO_ZEPHYR_UART_H_ #include <stdint.h> // Used to read data from the UART. /*! * \brief Read Uart Rx buffer. * \param data Pointer to read data. * \param data_size_bytes Read request size in bytes. * * \return Number of data read in bytes. */ uint32_t TVMPlatformUartRxRead(uint8_t* data, uint32_t data_size_bytes); /*! * \brief Write data in serial. * \param data Pointer to data to write. * \param size Size of data in bytes. * * \return Number of write in bytes. */ uint32_t TVMPlatformWriteSerial(const char* data, uint32_t size); /*! * \brief Initialize Uart. */ void TVMPlatformUARTInit(); #endif /* TVM_APPS_MICROTVM_ZEPHYR_AOT_STANDALONE_DEMO_ZEPHYR_UART_H_ */
/* * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http: * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY * KIND, either express or implied. See the License for the * specific language governing permissions and limitations * under the License. */ /* * * SPDX-License-Identifier: Apache-2.0 */ int32_t stdout_fd; int32_t stdin_fd; uint32_t semihost_cmd(uint32_t opcode, void* arg) { uint32_t ret_val; __asm__ volatile( "mov r0, %[opcode]\n\t" "mov r1, %[arg]\n\t" "bkpt "mov %[ret_val], r0" : [ ret_val ] "=r"(ret_val) : [ opcode ] "r"(opcode), [ arg ] "r"(arg) : "r1", "memory"); return ret_val; } int32_t stdout_fd; int32_t stdin_fd; void init_semihosting() { struct { const char* file_name; uint32_t mode; uint32_t file_name_len; } params; params.file_name = ":tt"; params.mode = 5; params.file_name_len = 3; stdout_fd = semihost_cmd(0x01, &params); params.mode = 0; stdin_fd = semihost_cmd(0x01, &params); } ssize_t semihost_read(uint8_t* data, size_t size) { struct { uint32_t file_handle; const uint8_t* data; uint32_t size; } read_req; read_req.file_handle = stdin_fd; read_req.data = data; read_req.size = size; uint32_t ret_val = semihost_cmd(0x06, &read_req); return size - ret_val; } ssize_t semihost_write(void* unused_context, const uint8_t* data, size_t size) { struct { uint32_t file_handle; const uint8_t* data; uint32_t size; } write_req; write_req.file_handle = stdou
t_fd; write_req.data = data; write_req.size = size; uint32_t ret_val = semihost_cmd(0x05, &write_req); return size - ret_val; }
/* * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY * KIND, either express or implied. See the License for the * specific language governing permissions and limitations * under the License. */ /* * * SPDX-License-Identifier: Apache-2.0 */ #ifndef TVM_APPS_MICROTVM_ZEPHYR_HOST_DRIVEN_SEMIHOST_H_ #define TVM_APPS_MICROTVM_ZEPHYR_HOST_DRIVEN_SEMIHOST_H_ #include <kernel.h> #include <unistd.h> #include <zephyr.h> void init_semihosting(); ssize_t semihost_read(uint8_t* data, size_t size); ssize_t semihost_write(void* unused_context, const uint8_t* data, size_t size); #endif /* TVM_APPS_MICROTVM_ZEPHYR_HOST_DRIVEN_SEMIHOST_H_ */
/* * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http: * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY * KIND, either express or implied. See the License for the * specific language governing permissions and limitations * under the License. */ /* * * SPDX-License-Identifier: Apache-2.0 */ /* * This is a sample Zephyr-based application that contains the logic * needed to control a microTVM-based model via the UART. This is only * intended to be a demonstration, since typically you will want to incorporate * this logic into your own application. */ static const struct device* tvm_uart; static const struct device* led0_pin; static size_t g_num_bytes_requested = 0; static size_t g_num_bytes_written = 0; static size_t g_num_bytes_in_rx_buffer = 0; ssize_t uart_write(void* unused_context, const uint8_t* data, size_t size) { gpio_pin_set(led0_pin, LED0_PIN, 1); g_num_bytes_requested += size; for (size_t i = 0; i < size; i++) { uart_poll_out(tvm_uart, data[i]); g_num_bytes_written++; } gpio_pin_set(led0_pin, LED0_PIN, 0); return size; } ssize_t serial_write(void* unused_context, const uint8_t* data, size_t size) { return semihost_write(unused_context, data, size); return uart_write(unused_context, data, size); } void k_sys_fatal_error_handler(unsigned int reason, const z_arch_esf_t* esf) { gpio_pin_set(led0_pin, LED0_PIN, 1); for (;;) ; } size_t TVMPlatformFormatMessage(char* out_buf, size_t out_buf_size_bytes,
const char* fmt, va_list args) { return vsnprintk(out_buf, out_buf_size_bytes, fmt, args); } void TVMPlatformAbort(tvm_crt_error_t error) { TVMLogf("TVMError: 0x%x", error); sys_reboot(SYS_REBOOT_COLD); gpio_pin_set(led0_pin, LED0_PIN, 1); for (;;) ; } tvm_crt_error_t TVMPlatformGenerateRandom(uint8_t* buffer, size_t num_bytes) { uint32_t random; size_t num_full_blocks = num_bytes / sizeof(random); for (int i = 0; i < num_full_blocks; ++i) { random = sys_rand32_get(); memcpy(&buffer[i * sizeof(random)], &random, sizeof(random)); } size_t num_tail_bytes = num_bytes % sizeof(random); if (num_tail_bytes > 0) { random = sys_rand32_get(); memcpy(&buffer[num_bytes - num_tail_bytes], &random, num_tail_bytes); } return kTvmErrorNoError; } K_HEAP_DEFINE(tvm_heap, HEAP_SIZE_BYTES); tvm_crt_error_t TVMPlatformMemoryAllocate(size_t num_bytes, DLDevice dev, void** out_ptr) { *out_ptr = k_heap_alloc(&tvm_heap, num_bytes, K_NO_WAIT); return (*out_ptr == NULL) ? kTvmErrorPlatformNoMemory : kTvmErrorNoError; } tvm_crt_error_t TVMPlatformMemoryFree(void* ptr, DLDevice dev) { k_heap_free(&tvm_heap, ptr); return kTvmErrorNoError; } volatile timing_t g_microtvm_start_time, g_microtvm_end_time; int g_microtvm_timer_running = 0; tvm_crt_error_t TVMPlatformTimerStart() { if (g_microtvm_timer_running) { TVMLogf("timer already running"); return kTvmErrorPlatformTimerBadState; } gpio_pin_set(led0_pin, LED0_PIN, 1); g_microtvm_start_time = timing_counter_get(); g_microtvm_timer_running = 1; return kTvmErrorNoError; } tvm_crt_error_t TVMPlatformTimerStop(double* elapsed_time_seconds) { if (!g_microtvm_timer_running) { TVMLogf("timer not running"); return kTvmErrorSystemErrorMask | 2; } gpio_pin_set(led0_pin, LED0_PIN, 0); g_microtvm_end_time = timing_counter_get(); uint64_t cycles = timing_cycles_get(&g_microtvm_start_time, &g_microtvm_end_time); uint64_t ns_spent = timing_cycles_to_
ns(cycles); *elapsed_time_seconds = ns_spent / (double)1e9; g_microtvm_timer_running = 0; return kTvmErrorNoError; } RING_BUF_ITEM_DECLARE_SIZE(uart_rx_rbuf, RING_BUF_SIZE_BYTES); void uart_irq_cb(const struct device* dev, void* user_data) { uart_irq_update(dev); if (uart_irq_is_pending(dev)) { struct ring_buf* rbuf = (struct ring_buf*)user_data; if (uart_irq_rx_ready(dev) != 0) { uint8_t* data; uint32_t size; size = ring_buf_put_claim(rbuf, &data, RING_BUF_SIZE_BYTES); int rx_size = uart_fifo_read(dev, data, size); g_num_bytes_in_rx_buffer += rx_size; if (g_num_bytes_in_rx_buffer > RING_BUF_SIZE_BYTES) { TVMPlatformAbort((tvm_crt_error_t)0xbeef3); } if (rx_size < 0) { TVMPlatformAbort((tvm_crt_error_t)0xbeef1); } int err = ring_buf_put_finish(rbuf, rx_size); if (err != 0) { TVMPlatformAbort((tvm_crt_error_t)0xbeef2); } } } } void uart_rx_init(struct ring_buf* rbuf, const struct device* dev) { uart_irq_callback_user_data_set(dev, uart_irq_cb, (void*)rbuf); uart_irq_rx_enable(dev); } extern void __stdout_hook_install(int (*hook)(int)); void main(void) { int ret; led0_pin = device_get_binding(LED0); if (led0_pin == NULL) { for (;;) ; } ret = gpio_pin_configure(led0_pin, LED0_PIN, GPIO_OUTPUT_ACTIVE | LED0_FLAGS); if (ret < 0) { TVMPlatformAbort((tvm_crt_error_t)0xbeef4); } gpio_pin_set(led0_pin, LED0_PIN, 1); tvm_uart = device_get_binding(DT_LABEL(DT_CHOSEN(zephyr_console))); uart_rx_init(&uart_rx_rbuf, tvm_uart); timing_init(); timing_start(); init_semihosting(); for (int i = 0; i < 100; ++i) { uart_write(NULL, "dummy log...\n", 13); } uart_write(NULL, "microTVM Zephyr runtime - running\n", 34); microtvm_rpc_server_t server = MicroTVMRpcServerInit(serial_write, NULL); TVMLogf("microTVM Zephyr runtime - running"); gpio_pin_set(led0_pin, LED0_PIN, 0); while (true) {
uint8_t data[128]; uint32_t bytes_read = semihost_read(data, 128); uint8_t* data; unsigned int key = irq_lock(); uint32_t bytes_read = ring_buf_get_claim(&uart_rx_rbuf, &data, RING_BUF_SIZE_BYTES); if (bytes_read > 0) { uint8_t* ptr = data; size_t bytes_remaining = bytes_read; while (bytes_remaining > 0) { tvm_crt_error_t err = MicroTVMRpcServerLoop(server, &ptr, &bytes_remaining); if (err != kTvmErrorNoError && err != kTvmErrorFramingShortPacket) { TVMPlatformAbort(err); } } } g_num_bytes_in_rx_buffer -= bytes_read; if (g_num_bytes_written != 0 || g_num_bytes_requested != 0) { if (g_num_bytes_written != g_num_bytes_requested) { TVMPlatformAbort((tvm_crt_error_t)0xbeef5); } g_num_bytes_written = 0; g_num_bytes_requested = 0; } } int err = ring_buf_get_finish(&uart_rx_rbuf, bytes_read); if (err != 0) { TVMPlatformAbort((tvm_crt_error_t)0xbeef6); } } irq_unlock(key); } posix_exit(0); }
/* * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY * KIND, either express or implied. See the License for the * specific language governing permissions and limitations * under the License. */ /*! * \file include/crt_config.h * \brief CRT configuration for demo app. */ #ifndef TVM_RUNTIME_CRT_CONFIG_H_ #define TVM_RUNTIME_CRT_CONFIG_H_ /*! Log level of the CRT runtime */ #define TVM_CRT_LOG_LEVEL TVM_CRT_LOG_LEVEL_DEBUG /*! Support low-level debugging in MISRA-C runtime */ #define TVM_CRT_DEBUG 0 /*! Maximum supported dimension in NDArray */ #define TVM_CRT_MAX_NDIM 6 /*! Maximum supported arguments in generated functions */ #define TVM_CRT_MAX_ARGS 10 /*! Maximum supported string length in dltype, e.g. "int8", "int16", "float32" */ #define TVM_CRT_MAX_STRLEN_DLTYPE 10 /*! Maximum supported string length in function names */ #define TVM_CRT_MAX_STRLEN_FUNCTION_NAME 120 /*! Maximum supported string length in parameter names */ #define TVM_CRT_MAX_STRLEN_PARAM_NAME 80 /*! Maximum number of registered modules. */ #define TVM_CRT_MAX_REGISTERED_MODULES 2 /*! Size of the global function registry, in bytes. */ #define TVM_CRT_GLOBAL_FUNC_REGISTRY_SIZE_BYTES 512 /*! Maximum packet size, in bytes, including the length header. */ #define TVM_CRT_MAX_PACKET_SIZE_BYTES 512 #endif // TVM_RUNTIME_CRT_CONFIG_H_
import os
import pathlib
import sys
import numpy as np def create_file(name, prefix, tensor_name, tensor_data, output_path): """ This function generates a header file containing the data from the numpy array provided. """ file_path = pathlib.Path(f"{output_path}/" + name).resolve() raw_path = file_path.with_suffix(".c").resolve() with open(raw_path, "w") as header_file: header_file.write( " " f"const size_t {tensor_name}_len = {tensor_data.size};\n" f"{prefix} float {tensor_name}_storage[] = " ) header_file.write("{") for i in np.ndindex(tensor_data.shape): header_file.write(f"{tensor_data[i]}, ") header_file.write("};\n\n") def create_files(input_file, output_dir): """ This function generates C files for the input and output arrays required to run inferences """ os.makedirs(output_dir, exist_ok=True) input_data = np.loadtxt(input_file) create_file("inputs", "const", "input", input_data, output_dir) output_data = np.zeros([12], np.float32) create_file( "outputs", "", "output", output_data, output_dir, ) if __name__ == "__main__": create_files(sys.argv[1], sys.argv[2])
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import os import pathlib import sys def create_labels_header(labels_file, output_path): """ This function generates a header file containing the ImageNet labels as an array of strings """ labels_path = pathlib.Path(labels_file).resolve() file_path = pathlib.Path(f"{output_path}/labels.c").resolve() with open(labels_path) as f: labels = f.readlines() with open(file_path, "w") as header_file: header_file.write(f"char* labels[] = {{") for _, label in enumerate(labels): header_file.write(f'"{label.rstrip()}",') header_file.write("};\n") if __name__ == "__main__": create_labels_header(sys.argv[1], sys.argv[2])
/* * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http: * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY * KIND, either express or implied. See the License for the * specific language governing permissions and limitations * under the License. */ extern char* labels[12]; extern float input_storage[490]; extern float output_storage[12]; extern const size_t output_len; static uint8_t __attribute__((aligned(TVM_RUNTIME_ALLOC_ALIGNMENT_BYTES))) g_crt_workspace[TVMGEN_DEFAULT_WORKSPACE_SIZE]; tvm_workspace_t app_workspace; void TVMLogf(const char* msg, ...) { va_list args; va_start(args, msg); vfprintf(stderr, msg, args); va_end(args); } void __attribute__((noreturn)) TVMPlatformAbort(tvm_crt_error_t error_code) { fprintf(stderr, "TVMPlatformAbort: %d\n", error_code); exit(-1); } tvm_crt_error_t TVMPlatformMemoryAllocate(size_t num_bytes, DLDevice dev, void** out_ptr) { uintptr_t ret = StackMemoryManager_Allocate(&app_workspace, num_bytes, out_ptr); return ret; } tvm_crt_error_t TVMPlatformMemoryFree(void* ptr, DLDevice dev) { return StackMemoryManager_Free(&app_workspace, ptr); } void main(void) { StackMemoryManager_Init(&app_workspace, g_crt_workspace, TVMGEN_DEFAULT_WORKSPACE_SIZE); struct tvmgen_default_inputs inputs = {.input = input_storage}; struct tvmgen_default_outputs outputs = {.Identity = output_storage}; if (tvmgen_default_run(&inputs, &outputs) != 0) { printk("Model run failed\n"); exit(-1); } float max_value = 0.0; size_t max
_index = -1; for (unsigned int i = 0; i < output_len; ++i) { if (output_storage[i] > max_value) { max_value = output_storage[i]; max_index = i; } } printk("The word is '%s'!\n", labels[max_index]); exit(0); }
"""Test script for tvm torch module"""
import tempfile
import numpy as np
import torch
import torch.nn
import tvm from tvm.target.target
import Target
import tvm.testing from tvm.contrib.torch
import as_torch from tvm.script
import tir as T @as_torch def matmul(M: int, N: int, K: int, dtype: str): @T.prim_func def main(a: T.handle, b: T.handle, c: T.handle) -> None: A = T.match_buffer(a, [M, K], dtype=dtype) B = T.match_buffer(b, [N, K], dtype=dtype) C = T.match_buffer(c, [M, N], dtype=dtype) for i, j, k in T.grid(M, N, K): with T.block(): vi, vj, vk = T.axis.remap("SSR", [i, j, k]) with T.init(): C[vi, vj] = T.float32(0) C[vi, vj] = C[vi, vj] + A[vi, vk] * B[vj, vk] return main @as_torch @tvm.script.ir_module class ModuleGPU: @T.prim_func def main(A: T.Buffer[8, "float32"], B: T.Buffer[8, "float32"]) -> None: T.func_attr({"global_symbol": "main", "tir.noalias": True}) for i_0 in T.thread_binding(2, thread="blockIdx.x"): for i_2 in T.thread_binding(2, thread="threadIdx.x"): for i_1 in T.serial(2): with T.block("B"): vi = T.axis.spatial(8, i_0 * 4 + i_1 * 2 + i_2) T.reads(A[vi]) T.writes(B[vi]) B[vi] = A[vi] + T.float32(1) @as_torch @T.prim_func def func_with_part_access_region(a: T.handle, b: T.handle, c: T.handle) -> None: A = T.match_buffer(a, [128, 128]) B = T.match_buffer(b, [128, 128]) C = T.match_buffer(c, [128, 128]) with T.block(): for i, j in T.grid(128, 128): with T.block("s1"): vi, vj = T.axis.remap("SS", [i, j]) T.reads(A[vi, vj]) B[vi, vj] = A[vi, vj] + T.float32(1) for i, j in T.grid(128, 128): with T.block("s2"): vi, vj = T.axis.remap("SS", [i, j]) T.writes(C[vi, vj]) C[vi, vj] = B[vi, vj] + T.float32(1) @as_torch @tvm.script.ir_module class MyModule: @T.prim_func def main(a: T.handle, b: T.handle): T.func_attr({"global_symbol": "main", "tir.noalia
s": True}) A = T.match_buffer(a, (8,), dtype="float32") B = T.match_buffer(b, (8,), dtype="float32") for i in range(8): with T.block("B"): vi = T.axis.spatial(8, i) B[vi] = A[vi] + 1.0 @as_torch @T.prim_func def loop_split(a: T.handle, b: T.handle) -> None: A = T.match_buffer(a, [128, 128], dtype="float32") B = T.match_buffer(b, [128], dtype="float32") for i, ko in T.grid(128, 4): for ki in T.thread_binding(0, 32, thread="threadIdx.x"): with T.block("B"): vi = T.axis.S(128, i) vk = T.axis.R(128, ko * 32 + ki) T.reads([B[vi], A[vi, vk]]) T.writes([B[vi]]) with T.init(): B[vi] = T.float32(0) B[vi] = B[vi] + A[vi, vk] @as_torch def elementwise_with_root(M: int, N: int, dtype: str): @T.prim_func def f(a: T.handle, b: T.handle, c: T.handle) -> None: A = T.match_buffer(a, [M, N]) B = T.match_buffer(b, [M, N]) C = T.match_buffer(c, [M, N]) with T.block(): for i, j in T.grid(M, N): with T.block("s1"): vi, vj = T.axis.remap("SS", [i, j]) B[vi, vj] = A[vi, vj] + T.float32(1) for i, j in T.grid(M, N): with T.block("s2"): vi, vj = T.axis.remap("SS", [i, j]) C[vi, vj] = B[vi, vj] + T.float32(1) return f
class MinuesOnes(torch.nn.Module): def __init__(self): super(MinuesOnes, self).__init__() self.engine = MyModule def forward(self, *input): self.engine.forward(*input) return input[-1] - 1 def test_tvmscript_torch_matmul(): s1 = np.random.rand(128, 128).astype("float32") s2 = np.random.rand(128, 128).astype("float32") s3 = np.random.rand(128, 128).astype("float32") q1 = torch.from_numpy(s1) q2 = torch.from_numpy(s2) q3 = torch.from_numpy(s3) numpy_result = np.matmul(s1, np.transpose(s2)) nn_module = matmul(128, 128, 128, "float32") nn_module(q1, q2, q3) tvm.testing.assert_allclose(q3.numpy(), numpy_result, atol=1e-5, rtol=1e-5) def test_tvmscript_torch_decorator(): q1 = torch.arange(8).type(torch.float32) q2 = torch.zeros((8,), dtype=torch.float32) MyModule(q1, q2) tvm.testing.assert_allclose(q2.numpy(), (q1 + 1).numpy(), atol=1e-5, rtol=1e-5) def test_tvmscript_torch_gpu(): cuda0 = torch.device("cuda:0") q1 = torch.arange(8, device=cuda0).type(torch.float32) q2 = torch.zeros((8,), dtype=torch.float32, device=cuda0) with tempfile.NamedTemporaryFile(suffix=".pt") as tmp: torch.save(ModuleGPU, tmp.name) loaded_mod = torch.load(tmp.name) loaded_mod(q1, q2) tvm.testing.assert_allclose(q2.cpu().numpy(), (q1 + 1).cpu().numpy(), atol=1e-5, rtol=1e-5) def test_torch_with_tvmscript(): ref_result = np.arange(8).astype("float32") q1 = torch.arange(8).type(torch.float32) q2 = torch.zeros((8,), dtype=torch.float32) nn_module = MinuesOnes() ret = nn_module.forward(q1, q2) tvm.testing.assert_allclose(ret.numpy(), ref_result, atol=1e-5, rtol=1e-5) def test_tvmscript_torch_func_with_part_access_region(): a1 = torch.rand(128, 128) a2 = torch.zeros(128, 128) a3 = torch.zeros(128, 128) result = a1 + 2 func_with_part_access_region.tune() func_with_part_access_region(a1, a2, a3) tvm.testing.assert_allclose(a3.numpy(), r
esult.numpy(), atol=1e-5, rtol=1e-5) def test_tvmscript_torch_loop_split(): x = torch.rand(128, 128).cuda() y = torch.zeros(128).cuda() result = torch.sum(x.cpu(), dim=1).numpy() loop_split.tune( "nvidia/geforce-rtx-3070", max_trials_global=128, strategy="replay-trace", ) loop_split(x, y) tvm.testing.assert_allclose(y.cpu().numpy(), result, atol=1e-5, rtol=1e-5) def test_tvmscript_torch_elementwise_with_root(): a1 = torch.rand(128, 128) a2 = torch.zeros(128, 128) a3 = torch.zeros(128, 128) result = a1 + 2 func = elementwise_with_root(128, 128, "float32") func.tune( max_trials_global=128, strategy="replay-trace", ) func(a1, a2, a3) tvm.testing.assert_allclose(a3.numpy(), result.numpy(), atol=1e-5, rtol=1e-5) if __name__ == "__main__": test_tvmscript_torch_matmul() test_tvmscript_torch_decorator() test_tvmscript_torch_gpu() test_torch_with_tvmscript() test_tvmscript_torch_func_with_part_access_region() test_tvmscript_torch_loop_split() test_tvmscript_torch_elementwise_with_root()
"""Test script for boolean tensor support"""
import tempfile
import torch
import tvm
import tvm.testing from tvm.contrib.torch
import as_torch, optimize_torch from tvm.script
import tir as T def negate(x): return x.logical_not() def sum_up_tensor(x): return x.size(dim=0) - torch.sum(x.int()) def tensor_boolean_operation(x): arr1 = (x + 0.3).floor().bool() arr2 = (~((x + 0.7).int().bool())).bool() ret = ((arr1 & arr2).byte() + 0.5).half() return ~(ret.bool()) def test_bool_tensor_negate(): input = torch.ones(1, dtype=torch.bool) optimized_negate = optimize_torch( negate, input, ) with tempfile.NamedTemporaryFile(suffix=".pt") as tmp: torch.save(optimized_negate, tmp.name) loaded_mod = torch.load(tmp.name) output = loaded_mod(negate(input)) tvm.testing.assert_allclose(input.numpy(), output.numpy(), atol=1e-5, rtol=1e-5) def test_sum_up_tensor(): x = torch.randint(0, 2, (16,)) y = x.bool() optimized_func = optimize_torch( sum_up_tensor, (y,), ) ret1 = (x[x == 0]).size(dim=0) ret2 = optimized_func(y).numpy() tvm.testing.assert_allclose(ret1, ret2, atol=1e-5, rtol=1e-5) def test_tensor_boolean_operation(): input = torch.rand(200) model = optimize_torch( tensor_boolean_operation, input, ) ret1 = tensor_boolean_operation(input) ret2 = model(input) tvm.testing.assert_allclose(ret1, ret2, atol=1e-5, rtol=1e-5) @as_torch @T.prim_func def negate_tvmscript( X: T.Buffer[(8, 8), "bool"], Y: T.Buffer[(8, 8), "float32"], Z: T.Buffer[(8, 8), "bool"], U: T.Buffer[(8, 8), "float32"], ) -> None: for i, j in T.grid(8, 8): with T.block(): if Y[i, j] > 0.0: Z[i, j] = X[i, j] U[i, j] = Y[i, j] else: Z[i, j] = not X[i, j] U[i, j] = 0.0 - Y[i, j] def negate_vanila(x, y): z = torch.zeros(8, 8).bool() for i in range(8): for j in range(8): if y[i, j] > 0: z[i, j] = x[i, j] else: z[i, j] = ~x[i, j] return z def test_tvmscript_torch_decorator()
: q1 = (torch.rand(8, 8) + 0.5).int().bool() q2 = torch.rand(8, 8) - 0.5 q3 = torch.zeros(8, 8).bool() q4 = torch.zeros(8, 8) std1 = negate_vanila(q1, q2) std2 = torch.abs(q2) negate_tvmscript(q1, q2, q3, q4) tvm.testing.assert_allclose(std1.numpy(), q3.numpy(), atol=1e-5, rtol=1e-5) tvm.testing.assert_allclose(std2.numpy(), q4.numpy(), atol=1e-5, rtol=1e-5) if __name__ == "__main__": test_tvmscript_torch_decorator() test_bool_tensor_negate() test_sum_up_tensor() test_tensor_boolean_operation()
"""Test script for tvm torch module"""
import tempfile
import torch from torch.utils
import benchmark from torchvision.models
import resnet18
import tvm
import tvm.testing from tvm.contrib.torch
import optimize_torch from tvm.meta_schedule
import TuneConfig def test_matmul_tuning_relay(): def matmul(x, w): return torch.matmul(x, w) x = torch.randn(15, 20) w = torch.randn(20, 30) example_inputs = (x, w) rt_mod = optimize_torch(matmul, example_inputs) torch_answer = torch.matmul(x, w).numpy() tvm_answer = rt_mod(x, w).numpy() tvm.testing.assert_allclose(torch_answer, tvm_answer, atol=1e-5, rtol=1e-5)
class InnerModel(torch.nn.Module): def __init__(self): super().__init__() self.conv = torch.nn.Conv2d(1, 20, 5) def forward(self, x): return torch.nn.functional.relu(self.conv(x))
class SimpleModel(torch.nn.Module): def __init__(self): super().__init__() self.conv = torch.nn.Conv2d(20, 20, 5) self.relu = InnerModel() def forward(self, x): x = self.relu(x) return torch.nn.functional.relu(self.conv(x)) def test_nested_module(): simple_module = SimpleModel() example_input = torch.randn(20, 1, 10, 10) optimized_module = optimize_torch(simple_module, example_input) ret1 = simple_module(example_input).detach().numpy() ret2 = optimized_module(example_input).detach().numpy() tvm.testing.assert_allclose(ret1, ret2, atol=1e-5, rtol=1e-5) def test_save_load_function(): def foo(x): return 2 * x + 1 example_input = torch.rand(3) opt_foo = optimize_torch(foo, example_input) ret1 = opt_foo(example_input) with tempfile.NamedTemporaryFile(suffix=".pt") as tmp: torch.save(opt_foo, tmp.name) loaded_mod = torch.load(tmp.name) ret2 = loaded_mod(example_input) tvm.testing.assert_allclose(ret1.numpy(), ret2.numpy(), atol=1e-5, rtol=1e-5)
class MyResNet18(torch.nn.Module): def __init__(self, config, target=None): super(MyResNet18, self).__init__() self.means = torch.nn.Parameter( torch.tensor([103.939, 116.779, 123.68]).resize_(1, 3, 1, 1) ).cuda() self.resnet = optimize_torch(resnet18(), [torch.rand(1, 3, 224, 224)], config, target) def forward(self, input): return self.resnet(input - self.means)
class JitModule(torch.nn.Module): def __init__(self): super(JitModule, self).__init__() self.means = torch.nn.Parameter( torch.tensor([103.939, 116.779, 123.68]).resize_(1, 3, 1, 1) ).cuda() self.resnet = torch.jit.optimize_for_inference(torch.jit.script(resnet18().cuda().eval())) def forward(self, input): return self.resnet(input - self.means) config = TuneConfig( strategy="evolutionary", num_trials_per_iter=4, max_trials_per_task=8, max_trials_global=16, ) if torch.cuda.is_available(): target_cuda = "nvidia/geforce-rtx-3070" meta_module_resnet18 = MyResNet18(config, target_cuda) jit_module_resnet18 = JitModule() def compare_optimize_resnet18_to_torchscript(): results = [] for i in range(20): test_input = torch.rand(1, 3, 224, 224).half().cuda() sub_label = f"[test {i}]" results.append( benchmark.Timer( stmt="meta_module_resnet18(test_input)", setup="from __main__
import meta_module_resnet18", globals={"test_input": test_input}, sub_label=sub_label, description="tuning by meta", ).blocked_autorange() ) results.append( benchmark.Timer( stmt="jit_module_resnet18(test_input)", setup="from __main__
import jit_module_resnet18", globals={"test_input": test_input}, sub_label=sub_label, description="tuning by jit", ).blocked_autorange() ) compare = benchmark.Compare(results) compare.print() if __name__ == "__main__": test_matmul_tuning_relay() test_nested_module() test_save_load_function() if torch.cuda.is_available(): compare_optimize_resnet18_to_torchscript()
#!/usr/bin/env python # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Test script for torch module""" import torch import time import tvm from tvm.contrib.torch import compile class Model(torch.nn.Module): def __init__(self): super().__init__() def forward(self, x: torch.Tensor): return x * x model = Model() x = torch.rand([1, 3, 224, 224]) model_jit = torch.jit.trace(model, x) print(model_jit.graph) print("run torchscript...") for i in range(20): t = time.time() model_jit(x) print(time.time() - t) option = { "input_infos": [ ("x", (1, 3, 224, 224)), ], "default_dtype": "float16", "export_dir": "pytorch_compiled", "num_outputs": 1, "tuning_n_trials": 1, # set zero to skip tuning "tuning_log_file": "tuning.log", "target": "llvm", "device": tvm.cpu(), } pytorch_tvm_module = compile(model_jit, option) torch.jit.script(pytorch_tvm_module).save("model_tvm.pt") print("Run PyTorch...") for i in range(20): t = time.time() outputs = pytorch_tvm_module.forward([x.cpu()]) print(1000 * (time.time() - t)) print(outputs[0].shape)
#!/usr/bin/env python # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Test script for torch module""" import torch import time from torchvision.models import resnet50 import tvm from tvm.contrib.torch import compile model = resnet50().half().cuda() x = torch.rand([1, 3, 224, 224]).half().cuda() model_jit = torch.jit.trace(model, x) print(model_jit.graph) print("run torchscript...") for i in range(20): t = time.time() model_jit(x) torch.cuda.synchronize() print(time.time() - t) option = { "input_infos": [ ("x", (1, 3, 224, 224)), ], "default_dtype": "float16", "export_dir": "pytorch_compiled", "num_outputs": 1, "tuning_n_trials": 1, # set zero to skip tuning "tuning_log_file": "tuning.log", "target": "cuda", "device": tvm.cuda(0), } pytorch_tvm_module = compile(model_jit, option) torch.jit.script(pytorch_tvm_module).save("model_tvm.pt") print("Run PyTorch...") for i in range(20): t = time.time() outputs = pytorch_tvm_module.forward([x]) torch.cuda.synchronize() print(1000 * (time.time() - t)) print(outputs[0].shape)
"""Test script for torch module"""
import tempfile
import os
import logging
import torch
import numpy as np
import tvm
import tvm.testing from tvm
import te, relay
import tvm.contrib.torch from tvm.contrib
import graph_runtime TVM_ASSETS = ["mod.so", "graph.json", "params"] def test_use_pt_graph_module(): """main test function""" def build_export_graph(device): """relay build & export graph""" x = relay.var("x", shape=(10, 5)) y = relay.var("y", shape=(1, 5)) z = relay.add(x, y) z = relay.exp(z) func = relay.Function([x, y], z) x_data = np.random.rand(10, 5).astype("float32") y_data = np.random.rand(1, 5).astype("float32") params = {"y": y_data} pt_device = torch.device(device) if pt_device.type == "cuda": target = "cuda" ctx = tvm.cuda(pt_device.index) else: target = "llvm" ctx = tvm.cpu(0) graph, lib, params = relay.build(tvm.IRModule.from_expr(func), target=target, params=params) mod = graph_runtime.create(graph, lib, device=ctx) mod.set_input(**params) mod.set_input(x=x_data) mod.run() res = mod.get_output(0).asnumpy() ref_res = np.exp(y_data + x_data) tvm.testing.assert_allclose(res, ref_res, atol=1e-5, rtol=1e-5) export_dir = tempfile.mkdtemp("tvm_export") lib.export_library(os.path.join(export_dir, TVM_ASSETS[0])) with open(os.path.join(export_dir, TVM_ASSETS[1]), "w") as fout: fout.write(graph) with open(os.path.join(export_dir, TVM_ASSETS[2]), "wb") as fout: fout.write(relay.save_param_dict(params)) return export_dir def test_pt_run(device, trace=True, to_device=None): """test add lib with Pytorch wrapper""" print("\n export_dir = build_export_graph(device) engine = tvm.contrib.torch.GraphModule(num_inputs=2, num_outputs=1).to(device) x = np.random.rand(10, 5).astype("float32") y = np.random.rand(1, 5).astype("float32") expect = np.exp(y + x) def get_inputs_by_device(device): inps = [torch.Tensor(x), torch.Tensor(y)] if
device == "cpu": return inps else: device_type, device_id = device.split(":") assert device_type == "cuda" return [inp.cuda(int(device_id)) for inp in inps] assets = [os.path.join(export_dir, i) for i in TVM_ASSETS] engine.init((x.shape, y.shape), *assets) outputs = engine.forward(get_inputs_by_device(device)) tvm.testing.assert_allclose(outputs[0].cpu(), expect, atol=1e-5, rtol=1e-5) if trace: print("\n scripted = torch.jit.script(engine) scripted_dir = tempfile.mkdtemp("scripted") scripted_path = os.path.join(scripted_dir, "model.pt") scripted.save(scripted_path) loaded = torch.jit.load(scripted_path) outputs = loaded.forward(get_inputs_by_device(device)) tvm.testing.assert_allclose(outputs[0].cpu(), expect, atol=1e-5, rtol=1e-5) del scripted del loaded if to_device: print( "\n device, to_device ) ) engine = engine.to(to_device) outputs = engine.forward(get_inputs_by_device(to_device)) tvm.testing.assert_allclose(outputs[0].cpu(), expect, atol=1e-5, rtol=1e-5) del engine test_pt_run(device="cuda:0", trace=True, to_device="cuda:1") test_pt_run(device="cpu", trace=True) if __name__ == "__main__": test_use_pt_graph_module()
"""Test script for torch module"""
import os
import torch
import time
import numpy as np
import tvm
import tvm.testing
import tempfile from tvm.contrib.torch
import PyTorchTVMModule, compile
class Model(torch.nn.Module): def forward(self, x, y): return torch.matmul(x, y.softmax(1)) model = Model() model.cuda().half() x = torch.rand([1280, 2464, 4]).cuda().half() y = torch.rand([1280, 4, 1]).cuda().half() for i in range(20): t = time.time() o = model(x, y) torch.cuda.synchronize() print(1000 * (time.time() - t)) print(o.shape) model_jit = torch.jit.script(model) print(model_jit.graph) input_shapes = [("x", list(x.shape)), ("y", list(y.shape))] dtype = "float16" export_dir = tempfile.mkdtemp("pytorch_compiled") print("tmp export_dir:", export_dir) mod = PyTorchTVMModule() print("Converting...") mod.from_pytorch(model_jit, input_shapes, dtype) log_file = os.path.join(export_dir, "tuning.log") if not os.path.exists(log_file): print("Tuning...") mod.tune_tvm(log_file=log_file, n_trial=20) print("Building...") tvm_mod = mod.build_tvm(export_dir) pytorch_mod = mod.build_pytorch_module(num_inputs=2, num_outputs=1) print("Run TVM...") tvm_x = tvm.nd.array(x.cpu().numpy().astype(dtype), device=tvm.gpu(0)) tvm_y = tvm.nd.array(y.cpu().numpy().astype(dtype), device=tvm.gpu(0)) for i in range(20): t = time.time() tvm_mod.run(x=tvm_x, y=tvm_y) print(1000 * (time.time() - t)) tvm_output = tvm_mod.get_output(0) print(tvm_output.shape) print("Run PyTorch...") for i in range(20): t = time.time() outputs = pytorch_mod.forward([x, y]) torch.cuda.synchronize() print(1000 * (time.time() - t)) print(outputs[0].shape)
class EnsembleModel(torch.nn.Module): def __init__(self): super().__init__() self.layer = torch.jit.script(pytorch_mod) def forward(self, x, y, z) -> torch.Tensor: if x > 1: out = self.layer(y, z)[0] else: out = torch.ones([1280, 2464, 1]) return out print("Exporting...") scripted = torch.jit.script(EnsembleModel()) print(scripted.graph) scripted_path = os.path.join(export_dir, "model_tvm.pt") scripted.save(scripted_path)
"""Test script for torch vm module"""
import tempfile
import os
import logging
import torch
import numpy as np
import tvm from tvm.contrib.torch.pytorch_tvm
import TVM_ASSETS
import tvm.testing from tvm
import te, relay
import tvm.contrib.torch from tvm.contrib
import graph_runtime TVM_ASSETS = ["mod.so", "code.ro"] def test_use_pt_vm_module(): """main test function""" def build_export_vm(device): """relay build & export graph""" x = relay.var("x", shape=(10, 5)) y = relay.var("y", shape=(1, 5)) z = relay.add(x, y) z = relay.exp(z) func = relay.Function([x, y], z) x_data = np.random.rand(10, 5).astype("float32") y_data = np.random.rand(1, 5).astype("float32") pt_device = torch.device(device) if pt_device.type == "cuda": target = "cuda" ctx = tvm.cuda(pt_device.index) else: target = "llvm" ctx = tvm.cpu(0) exe = relay.vm.compile(tvm.IRModule.from_expr(func), target=target, params={}) code, lib = exe.save() export_dir = tempfile.mkdtemp("tvm_export") lib.export_library(os.path.join(export_dir, TVM_ASSETS[0])) with open(os.path.join(export_dir, TVM_ASSETS[1]), "wb") as fout: fout.write(code) vm = tvm.runtime.vm.VirtualMachine(exe, ctx) res = vm.run(x_data, y_data) ref_res = np.exp(y_data + x_data) tvm.testing.assert_allclose(res.numpy(), ref_res, atol=1e-5, rtol=1e-5) return export_dir def test_pt_run(device, trace=True, to_device=None, inp_on_cuda=False): """test add lib with Pytorch wrapper""" print("\n export_dir = build_export_vm(device) engine = tvm.contrib.torch.VMModule(num_inputs=2, num_outputs=1).to(device) x = np.random.rand(10, 5).astype("float32") y = np.random.rand(1, 5).astype("float32") expect = np.exp(y + x) def get_inputs_by_device(device): inps = [torch.Tensor(x), torch.Tensor(y)] if device == "cpu": return inps else: device_type, device_id = device.split(":") assert device_type == "cuda" return [inp.cuda(int(device_id)) for inp in inps]
assets = [os.path.join(export_dir, i) for i in TVM_ASSETS] engine.init((x.shape, y.shape), *assets) outputs = engine.forward(get_inputs_by_device(device)) tvm.testing.assert_allclose(outputs[0].cpu(), expect, atol=1e-5, rtol=1e-5) if trace: print("\n scripted = torch.jit.script(engine) scripted_dir = tempfile.mkdtemp("scripted") scripted_path = os.path.join(scripted_dir, "model.pt") scripted.save(scripted_path) loaded = torch.jit.load(scripted_path) outputs = loaded.forward(get_inputs_by_device(device)) tvm.testing.assert_allclose(outputs[0].cpu(), expect, atol=1e-5, rtol=1e-5) del scripted del loaded if to_device: print( "\n device, to_device ) ) engine = engine.to(to_device) outputs = engine.forward(get_inputs_by_device(to_device)) tvm.testing.assert_allclose(outputs[0].cpu(), expect, atol=1e-5, rtol=1e-5) del engine test_pt_run(device="cuda:0", trace=True, to_device="cuda:1", inp_on_cuda=True) test_pt_run(device="cpu", trace=True, inp_on_cuda=False) if __name__ == "__main__": test_use_pt_vm_module()
#!/usr/bin/env python # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Test script for torch module""" import torch import time import tvm from tvm.contrib.torch import compile, TraceTvmModule, pytorch_tvm class Model(torch.nn.Module): def __init__(self): super().__init__() def forward(self, x: torch.Tensor, y: torch.Tensor): return x * y model = Model() x = torch.rand([1, 2, 3]) y = torch.rand([1, 2, 3]) model_jit = torch.jit.script(model) option = { "input_infos": [("x", (1, 2, 3)), ("y", (1, 2, 3))], "default_dtype": "float32", "export_dir": "pytorch_compiled", "num_outputs": 1, "tuning_n_trials": 0, # set zero to skip tuning "tuning_log_file": "tuning.log", "target": "llvm", "device": tvm.cpu(), } # use TraceTvmModule to convert List[Tensor] input/output # to tuple of Tensors pytorch_tvm_module = compile(model_jit, option) scripted = torch.jit.script(pytorch_tvm_module) traced = torch.jit.trace(TraceTvmModule(scripted), (x, y)) res_traced = traced.forward(x, y) res_expected = pytorch_tvm_module.forward([x, y])[0] tvm.testing.assert_allclose(res_traced, res_expected)