Datasets:

Modalities:
Text
Formats:
parquet
Libraries:
Datasets
pandas
ami / README.md
iperbole's picture
Update README.md
74272e6 verified
|
raw
history blame
2.62 kB
metadata
dataset_info:
  - config_name: Behaviour
    features:
      - name: text
        dtype: string
      - name: choices
        sequence: string
      - name: label
        dtype: int64
    splits:
      - name: train
        num_bytes: 883966
        num_examples: 5000
      - name: test
        num_bytes: 183067
        num_examples: 1000
    download_size: 458408
    dataset_size: 1067033
  - config_name: Synth
    features:
      - name: text
        dtype: string
      - name: choices
        sequence: string
      - name: label
        dtype: int64
    splits:
      - name: train
        num_bytes: 800941
        num_examples: 7014
      - name: test
        num_bytes: 248483
        num_examples: 2908
    download_size: 502169
    dataset_size: 1049424
configs:
  - config_name: Behaviour
    data_files:
      - split: train
        path: Behaviour/train-*
      - split: test
        path: Behaviour/test-*
  - config_name: Synth
    data_files:
      - split: train
        path: Synth/train-*
      - split: test
        path: Synth/test-*

Automatic Misogyny Identification (AMI)

Original Paper: https://amievalita2020.github.io

Task presented at EVALITA-2020

This task consists of tweet classification, specifically, categorization of the level of misogyny in a given text.

We taken both subtasks, raw_dataset uploaded as Behaviour (3 class classification) and synthetic uploaded as Synth (2 class classification).

Statitics

AMI Behaviour Non Misogino Misogino Misogino Aggressivo
Training 2663 554 1783
Test 500 324 176
AMI Synth Non Misogino Misogino
Training 3670 3344
Test 1454 1454

Proposed Prompts

Here we will describe the prompt given to the model over which we will compute the perplexity score, as model's answer we will chose the prompt with lower perplexity. Moreover, for each subtask, we define a description that is prepended to the prompts, needed by the model to understand the task.

Behaviour

Description of the task: "Indica il livello di misoginia presente nei seguenti tweets."

Label (Non Misogino): "Tweet: '{{text}}'.\nIl tweet non presenta alcun elemento misogino"

Label (Misogino): "Tweet: '{{text}}'.\nIl tweet presenta caratteristiche misogine"

Label (Misogino Aggressivo): "Tweet: '{{text}}'.\nIl tweet presenta caratteristiche misogine aggressive"

Synth

Description of the task: "Indica se i seguenti tweets presentano caratteristiche o elementi misogini."

Label (Non Misogino): "Tweet: '{{text}}'.\nIl tweet non presenta alcun elemento misogino"

Label (Misogino): "Tweet: '{{text}}'.\nIl tweet presenta caratteristiche misogine"