dataset_info:
- config_name: Behaviour
features:
- name: text
dtype: string
- name: label
dtype: int64
splits:
- name: train
num_bytes: 608966
num_examples: 5000
- name: test
num_bytes: 128067
num_examples: 1000
download_size: 455378
dataset_size: 737033
- config_name: Synth
features:
- name: text
dtype: string
- name: label
dtype: int64
splits:
- name: train
num_bytes: 681703
num_examples: 7014
- name: test
num_bytes: 199047
num_examples: 2908
download_size: 498443
dataset_size: 880750
configs:
- config_name: Behaviour
data_files:
- split: train
path: Behaviour/train-*
- split: test
path: Behaviour/test-*
- config_name: Synth
data_files:
- split: train
path: Synth/train-*
- split: test
path: Synth/test-*
Automatic Misogyny Identification (AMI)
Original Paper: https://amievalita2020.github.io
Task presented at EVALITA-2020
This task consists of tweet classification, specifically, categorization of the level of misogyny in a given text.
We taken both subtasks, raw_dataset uploaded as Behaviour (3 class classification) and synthetic uploaded as Synth (2 class classification).
Example
Here you can see the structure of the single sample in the present dataset.
Behaviour
{
"text": string, # text of the tweet
"label": int, # 0: Non Misogino, 1: Misogino, 2: Misogino Aggressivo
}
Synth
{
"text": string, # text of the tweet
"label": int, # 0: Non Misogino, 1: Misogino
}
Statitics
AMI Behaviour | Non Misogino | Misogino | Misogino Aggressivo |
---|---|---|---|
Training | 2663 | 554 | 1783 |
Test | 500 | 324 | 176 |
AMI Synth | Non Misogino | Misogino |
---|---|---|
Training | 3670 | 3344 |
Test | 1454 | 1454 |
Proposed Prompts
Here we will describe the prompt given to the model over which we will compute the perplexity score, as model's answer we will chose the prompt with lower perplexity. Moreover, for each subtask, we define a description that is prepended to the prompts, needed by the model to understand the task.
Behaviour
Description of the task: "Indica il livello di misoginia presente nei seguenti tweet.\n\n"
Cloze Style:
Label (Non Misogino): "Tweet: '{{text}}'.\nIl tweet non presenta caratteristiche misogine."
Label (Misogino): "Tweet: '{{text}}'.\nIl tweet presenta caratteristiche misogine."
Label (Misogino Aggressivo): "Tweet: '{{text}}'.\nIl tweet presenta caratteristiche misogine aggressive."
MCQA Style:
Tweet: '{{text}}'.\nDomanda: che livello di misoginia è presente nel tweet?\nA. Nessuno\nB. Misogino\nC. Misogino Aggressivo\nRisposta:
Synth
Description of the task: "Indica se i seguenti tweet presentano caratteristiche misogine.\n\n"
Cloze Style:
Label (Non Misogino): "Tweet: '{{text}}'.\nIl tweet non presenta caratteristiche misogine."
Label (Misogino): "Tweet: '{{text}}'.\nIl tweet presenta caratteristiche misogine."
MCQA Style:
Tweet: '{{text}}'.\nDomanda: Il tweet contiene elementi misogini? Rispondi sì o no:
Results
The following results are given by the Cloze-style prompting over some english and italian-adapted LLMs.
AMI Synth | ACCURACY (5-shots) |
---|---|
Gemma-2B | 53.78 |
QWEN2-1.5B | 60.72 |
Mistral-7B | 71.59 |
ZEFIRO | 74.69 |
Llama-3-8B | 74.55 |
Llama-3-8B-IT | 78.47 |
ANITA | 82.66 |
Acknowledge
We would like to thank the authors of this resource for publicly releasing such an intriguing benchmark.
Additionally, we extend our gratitude to the students of the MNLP-2024 course, whose first homework explored various interesting prompting strategies.
The original dataset is freely available for download link.
License
The data come under license Creative Commons Attribution Non Commercial Share Alike 4.0 International.