output
stringlengths
52
181k
instruction
stringlengths
296
182k
#include <bits/stdc++.h> const int N = 100005, mo = 1000000007; int f[N][2], a[N], q[N], fi[N], v[N], tot = 0; struct Edge { int to, ne; } e[N << 1]; void add(int x, int y) { e[++tot].to = y; e[tot].ne = fi[x]; fi[x] = tot; } void dfs(int x, int fa) { f[x][0] = 1; for (int i = fi[x]; i; i = e[i].ne) if (e[i].to != fa) { int y = e[i].to; dfs(y, x); f[x][0] = 1ll * f[x][0] * f[y][0] % mo; } if (v[x]) { f[x][1] = f[x][0]; return; } int t = 0, z = 1; a[0] = 1; for (int i = fi[x]; i; i = e[i].ne) if (e[i].to != fa) { q[++t] = e[i].to; a[t] = 1ll * a[t - 1] * f[q[t]][0] % mo; } for (int i = t; i >= 1; i--) { f[x][1] = (f[x][1] + 1ll * z * a[i - 1] % mo * f[q[i]][1]) % mo; z = 1ll * z * f[q[i]][0] % mo; } (f[x][0] += f[x][1]) %= mo; } int main() { int n; scanf("%d\n", &n); for (int i = 1; i < n; i++) { int x; scanf("%d", &x); add(x, i); add(i, x); } for (int i = 0; i < n; i++) scanf("%d", &v[i]); dfs(0, -1); printf("%d\n", f[0][1]); }
### Prompt Construct a cpp code solution to the problem outlined: Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other vertices are colored white. Consider a set consisting of k (0 ≀ k < n) edges of Appleman's tree. If Appleman deletes these edges from the tree, then it will split into (k + 1) parts. Note, that each part will be a tree with colored vertices. Now Appleman wonders, what is the number of sets splitting the tree in such a way that each resulting part will have exactly one black vertex? Find this number modulo 1000000007 (109 + 7). Input The first line contains an integer n (2 ≀ n ≀ 105) β€” the number of tree vertices. The second line contains the description of the tree: n - 1 integers p0, p1, ..., pn - 2 (0 ≀ pi ≀ i). Where pi means that there is an edge connecting vertex (i + 1) of the tree and vertex pi. Consider tree vertices are numbered from 0 to n - 1. The third line contains the description of the colors of the vertices: n integers x0, x1, ..., xn - 1 (xi is either 0 or 1). If xi is equal to 1, vertex i is colored black. Otherwise, vertex i is colored white. Output Output a single integer β€” the number of ways to split the tree modulo 1000000007 (109 + 7). Examples Input 3 0 0 0 1 1 Output 2 Input 6 0 1 1 0 4 1 1 0 0 1 0 Output 1 Input 10 0 1 2 1 4 4 4 0 8 0 0 0 1 0 1 1 0 0 1 Output 27 ### Response ```cpp #include <bits/stdc++.h> const int N = 100005, mo = 1000000007; int f[N][2], a[N], q[N], fi[N], v[N], tot = 0; struct Edge { int to, ne; } e[N << 1]; void add(int x, int y) { e[++tot].to = y; e[tot].ne = fi[x]; fi[x] = tot; } void dfs(int x, int fa) { f[x][0] = 1; for (int i = fi[x]; i; i = e[i].ne) if (e[i].to != fa) { int y = e[i].to; dfs(y, x); f[x][0] = 1ll * f[x][0] * f[y][0] % mo; } if (v[x]) { f[x][1] = f[x][0]; return; } int t = 0, z = 1; a[0] = 1; for (int i = fi[x]; i; i = e[i].ne) if (e[i].to != fa) { q[++t] = e[i].to; a[t] = 1ll * a[t - 1] * f[q[t]][0] % mo; } for (int i = t; i >= 1; i--) { f[x][1] = (f[x][1] + 1ll * z * a[i - 1] % mo * f[q[i]][1]) % mo; z = 1ll * z * f[q[i]][0] % mo; } (f[x][0] += f[x][1]) %= mo; } int main() { int n; scanf("%d\n", &n); for (int i = 1; i < n; i++) { int x; scanf("%d", &x); add(x, i); add(i, x); } for (int i = 0; i < n; i++) scanf("%d", &v[i]); dfs(0, -1); printf("%d\n", f[0][1]); } ```
#include <bits/stdc++.h> using namespace std; const int N = 100001, MOD = 1e9 + 7; int n, clr[N]; long long dp[N][2]; vector<vector<int> > g; void dfs(int u, int p) { if (clr[u] == 0) { dp[u][0] = 1; dp[u][1] = 0; for (int i = 0; i < g[u].size(); i++) if (g[u][i] != p) { dfs(g[u][i], u); dp[u][1] = (dp[u][1] * dp[g[u][i]][0]) % MOD; dp[u][1] = (dp[u][1] + (dp[g[u][i]][1] * dp[u][0]) % MOD) % MOD; dp[u][0] = (dp[u][0] * dp[g[u][i]][0]) % MOD; } } else { dp[u][1] = 1; for (int i = 0; i < g[u].size(); i++) if (g[u][i] != p) { dfs(g[u][i], u); dp[u][1] = (dp[u][1] * dp[g[u][i]][0]) % MOD; } } dp[u][0] = (dp[u][0] + dp[u][1]) % MOD; } int main() { std::ios::sync_with_stdio(false); scanf("%d", &n); g.resize(n); for (int i = 1; i < n; i++) { int p; scanf("%d", &p); g[i].push_back(p); g[p].push_back(i); } for (int i = 0; i < n; i++) scanf("%d", clr + i); dfs(0, -1); printf("%d\n", dp[0][1]); return 0; }
### Prompt Create a solution in cpp for the following problem: Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other vertices are colored white. Consider a set consisting of k (0 ≀ k < n) edges of Appleman's tree. If Appleman deletes these edges from the tree, then it will split into (k + 1) parts. Note, that each part will be a tree with colored vertices. Now Appleman wonders, what is the number of sets splitting the tree in such a way that each resulting part will have exactly one black vertex? Find this number modulo 1000000007 (109 + 7). Input The first line contains an integer n (2 ≀ n ≀ 105) β€” the number of tree vertices. The second line contains the description of the tree: n - 1 integers p0, p1, ..., pn - 2 (0 ≀ pi ≀ i). Where pi means that there is an edge connecting vertex (i + 1) of the tree and vertex pi. Consider tree vertices are numbered from 0 to n - 1. The third line contains the description of the colors of the vertices: n integers x0, x1, ..., xn - 1 (xi is either 0 or 1). If xi is equal to 1, vertex i is colored black. Otherwise, vertex i is colored white. Output Output a single integer β€” the number of ways to split the tree modulo 1000000007 (109 + 7). Examples Input 3 0 0 0 1 1 Output 2 Input 6 0 1 1 0 4 1 1 0 0 1 0 Output 1 Input 10 0 1 2 1 4 4 4 0 8 0 0 0 1 0 1 1 0 0 1 Output 27 ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int N = 100001, MOD = 1e9 + 7; int n, clr[N]; long long dp[N][2]; vector<vector<int> > g; void dfs(int u, int p) { if (clr[u] == 0) { dp[u][0] = 1; dp[u][1] = 0; for (int i = 0; i < g[u].size(); i++) if (g[u][i] != p) { dfs(g[u][i], u); dp[u][1] = (dp[u][1] * dp[g[u][i]][0]) % MOD; dp[u][1] = (dp[u][1] + (dp[g[u][i]][1] * dp[u][0]) % MOD) % MOD; dp[u][0] = (dp[u][0] * dp[g[u][i]][0]) % MOD; } } else { dp[u][1] = 1; for (int i = 0; i < g[u].size(); i++) if (g[u][i] != p) { dfs(g[u][i], u); dp[u][1] = (dp[u][1] * dp[g[u][i]][0]) % MOD; } } dp[u][0] = (dp[u][0] + dp[u][1]) % MOD; } int main() { std::ios::sync_with_stdio(false); scanf("%d", &n); g.resize(n); for (int i = 1; i < n; i++) { int p; scanf("%d", &p); g[i].push_back(p); g[p].push_back(i); } for (int i = 0; i < n; i++) scanf("%d", clr + i); dfs(0, -1); printf("%d\n", dp[0][1]); return 0; } ```
#include <bits/stdc++.h> using namespace std; int n; vector<int> a[100010]; int color[100010]; long long dp[100010][2]; bool past[100010]; void DFS(int u) { if (color[u]) dp[u][1] = 1; else dp[u][0] = 1; past[u] = 1; for (int i = 0; i < (int)a[u].size(); i++) { int v = a[u][i]; if (!past[v]) { DFS(v); dp[u][1] = dp[u][1] * (dp[v][0] + dp[v][1]) % 1000000007; dp[u][1] = (dp[u][1] + dp[u][0] * dp[v][1]) % 1000000007; dp[u][0] = dp[u][0] * (dp[v][0] + dp[v][1]) % 1000000007; } } } int main() { scanf("%d", &n); int x; for (int i = 1; i <= n - 1; i++) { scanf("%d", &x); a[i].push_back(x); a[x].push_back(i); } for (int i = 0; i <= n - 1; i++) scanf("%d", &color[i]); DFS(0); printf("%I64d", dp[0][1]); return 0; }
### Prompt Create a solution in cpp for the following problem: Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other vertices are colored white. Consider a set consisting of k (0 ≀ k < n) edges of Appleman's tree. If Appleman deletes these edges from the tree, then it will split into (k + 1) parts. Note, that each part will be a tree with colored vertices. Now Appleman wonders, what is the number of sets splitting the tree in such a way that each resulting part will have exactly one black vertex? Find this number modulo 1000000007 (109 + 7). Input The first line contains an integer n (2 ≀ n ≀ 105) β€” the number of tree vertices. The second line contains the description of the tree: n - 1 integers p0, p1, ..., pn - 2 (0 ≀ pi ≀ i). Where pi means that there is an edge connecting vertex (i + 1) of the tree and vertex pi. Consider tree vertices are numbered from 0 to n - 1. The third line contains the description of the colors of the vertices: n integers x0, x1, ..., xn - 1 (xi is either 0 or 1). If xi is equal to 1, vertex i is colored black. Otherwise, vertex i is colored white. Output Output a single integer β€” the number of ways to split the tree modulo 1000000007 (109 + 7). Examples Input 3 0 0 0 1 1 Output 2 Input 6 0 1 1 0 4 1 1 0 0 1 0 Output 1 Input 10 0 1 2 1 4 4 4 0 8 0 0 0 1 0 1 1 0 0 1 Output 27 ### Response ```cpp #include <bits/stdc++.h> using namespace std; int n; vector<int> a[100010]; int color[100010]; long long dp[100010][2]; bool past[100010]; void DFS(int u) { if (color[u]) dp[u][1] = 1; else dp[u][0] = 1; past[u] = 1; for (int i = 0; i < (int)a[u].size(); i++) { int v = a[u][i]; if (!past[v]) { DFS(v); dp[u][1] = dp[u][1] * (dp[v][0] + dp[v][1]) % 1000000007; dp[u][1] = (dp[u][1] + dp[u][0] * dp[v][1]) % 1000000007; dp[u][0] = dp[u][0] * (dp[v][0] + dp[v][1]) % 1000000007; } } } int main() { scanf("%d", &n); int x; for (int i = 1; i <= n - 1; i++) { scanf("%d", &x); a[i].push_back(x); a[x].push_back(i); } for (int i = 0; i <= n - 1; i++) scanf("%d", &color[i]); DFS(0); printf("%I64d", dp[0][1]); return 0; } ```
#include <bits/stdc++.h> using namespace std; const int N = 1e5 + 3; long long n, m, i, j, k, l, s, t, d, u, ii, jj, x, y, z, h[N], hh[N][2]; vector<long long> V[N]; void f(int x) { int i, u = V[x].size(); for (i = 0; i < u; i++) { f(V[x][i]); hh[x][1] = (hh[x][1] * (hh[V[x][i]][1] + hh[V[x][i]][0]) + hh[x][0] * hh[V[x][i]][1]) % 1000000007; hh[x][0] = hh[x][0] * (hh[V[x][i]][0] + hh[V[x][i]][1]) % 1000000007; } } int main() { cin >> n; for (i = 2; i <= n; i++) { scanf("%lld", &x); V[x + 1].push_back(i); } for (i = 1; i <= n; i++) { scanf("%lld", &x); hh[i][x] = 1; } f(1); cout << hh[1][1] << '\n'; }
### Prompt Please provide a Cpp coded solution to the problem described below: Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other vertices are colored white. Consider a set consisting of k (0 ≀ k < n) edges of Appleman's tree. If Appleman deletes these edges from the tree, then it will split into (k + 1) parts. Note, that each part will be a tree with colored vertices. Now Appleman wonders, what is the number of sets splitting the tree in such a way that each resulting part will have exactly one black vertex? Find this number modulo 1000000007 (109 + 7). Input The first line contains an integer n (2 ≀ n ≀ 105) β€” the number of tree vertices. The second line contains the description of the tree: n - 1 integers p0, p1, ..., pn - 2 (0 ≀ pi ≀ i). Where pi means that there is an edge connecting vertex (i + 1) of the tree and vertex pi. Consider tree vertices are numbered from 0 to n - 1. The third line contains the description of the colors of the vertices: n integers x0, x1, ..., xn - 1 (xi is either 0 or 1). If xi is equal to 1, vertex i is colored black. Otherwise, vertex i is colored white. Output Output a single integer β€” the number of ways to split the tree modulo 1000000007 (109 + 7). Examples Input 3 0 0 0 1 1 Output 2 Input 6 0 1 1 0 4 1 1 0 0 1 0 Output 1 Input 10 0 1 2 1 4 4 4 0 8 0 0 0 1 0 1 1 0 0 1 Output 27 ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int N = 1e5 + 3; long long n, m, i, j, k, l, s, t, d, u, ii, jj, x, y, z, h[N], hh[N][2]; vector<long long> V[N]; void f(int x) { int i, u = V[x].size(); for (i = 0; i < u; i++) { f(V[x][i]); hh[x][1] = (hh[x][1] * (hh[V[x][i]][1] + hh[V[x][i]][0]) + hh[x][0] * hh[V[x][i]][1]) % 1000000007; hh[x][0] = hh[x][0] * (hh[V[x][i]][0] + hh[V[x][i]][1]) % 1000000007; } } int main() { cin >> n; for (i = 2; i <= n; i++) { scanf("%lld", &x); V[x + 1].push_back(i); } for (i = 1; i <= n; i++) { scanf("%lld", &x); hh[i][x] = 1; } f(1); cout << hh[1][1] << '\n'; } ```
#include <bits/stdc++.h> using namespace std; const long long int mod = 1e9 + 7; const long long int mod2 = 1e9 + 9; const long long int maxn = 1e6 + 10; const long long inf = 1e18 + 18; double pie = 3.1415926535; long long int col[maxn], dp[maxn][2]; vector<long long int> a[maxn]; void dfs(long long int s, long long int par) { dp[s][0] = 1 - col[s]; dp[s][1] = col[s]; long long int i, old0, old1, node; for (i = 0; i < int(a[s].size()); i++) { node = a[s][i]; if (node == par) continue; old0 = dp[s][0]; old1 = dp[s][1]; dp[s][0] = dp[s][1] = 0; dfs(node, s); dp[s][1] += ((dp[node][1] * old0) % mod + (dp[node][0] * old1) % mod) % mod; dp[s][0] += old0 * dp[node][0]; dp[s][0] %= mod; dp[s][1] += dp[node][1] * old1; dp[s][1] %= mod; dp[s][0] += dp[node][1] * old0; dp[s][0] %= mod; } } int main() { ios_base::sync_with_stdio(false); cin.tie(NULL); cout.tie(NULL); long long int n, x, i; cin >> n; for (i = 2; i <= n; i++) { cin >> x; a[x + 1].push_back(i); a[i].push_back(x + 1); } for (i = 1; i <= n; i++) { cin >> col[i]; } dfs(1, -1); cout << dp[1][1] << endl; }
### Prompt Generate a CPP solution to the following problem: Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other vertices are colored white. Consider a set consisting of k (0 ≀ k < n) edges of Appleman's tree. If Appleman deletes these edges from the tree, then it will split into (k + 1) parts. Note, that each part will be a tree with colored vertices. Now Appleman wonders, what is the number of sets splitting the tree in such a way that each resulting part will have exactly one black vertex? Find this number modulo 1000000007 (109 + 7). Input The first line contains an integer n (2 ≀ n ≀ 105) β€” the number of tree vertices. The second line contains the description of the tree: n - 1 integers p0, p1, ..., pn - 2 (0 ≀ pi ≀ i). Where pi means that there is an edge connecting vertex (i + 1) of the tree and vertex pi. Consider tree vertices are numbered from 0 to n - 1. The third line contains the description of the colors of the vertices: n integers x0, x1, ..., xn - 1 (xi is either 0 or 1). If xi is equal to 1, vertex i is colored black. Otherwise, vertex i is colored white. Output Output a single integer β€” the number of ways to split the tree modulo 1000000007 (109 + 7). Examples Input 3 0 0 0 1 1 Output 2 Input 6 0 1 1 0 4 1 1 0 0 1 0 Output 1 Input 10 0 1 2 1 4 4 4 0 8 0 0 0 1 0 1 1 0 0 1 Output 27 ### Response ```cpp #include <bits/stdc++.h> using namespace std; const long long int mod = 1e9 + 7; const long long int mod2 = 1e9 + 9; const long long int maxn = 1e6 + 10; const long long inf = 1e18 + 18; double pie = 3.1415926535; long long int col[maxn], dp[maxn][2]; vector<long long int> a[maxn]; void dfs(long long int s, long long int par) { dp[s][0] = 1 - col[s]; dp[s][1] = col[s]; long long int i, old0, old1, node; for (i = 0; i < int(a[s].size()); i++) { node = a[s][i]; if (node == par) continue; old0 = dp[s][0]; old1 = dp[s][1]; dp[s][0] = dp[s][1] = 0; dfs(node, s); dp[s][1] += ((dp[node][1] * old0) % mod + (dp[node][0] * old1) % mod) % mod; dp[s][0] += old0 * dp[node][0]; dp[s][0] %= mod; dp[s][1] += dp[node][1] * old1; dp[s][1] %= mod; dp[s][0] += dp[node][1] * old0; dp[s][0] %= mod; } } int main() { ios_base::sync_with_stdio(false); cin.tie(NULL); cout.tie(NULL); long long int n, x, i; cin >> n; for (i = 2; i <= n; i++) { cin >> x; a[x + 1].push_back(i); a[i].push_back(x + 1); } for (i = 1; i <= n; i++) { cin >> col[i]; } dfs(1, -1); cout << dp[1][1] << endl; } ```
#include <bits/stdc++.h> using namespace std; const long long int MOD = 1000000007, MaxN = 100001; long long int f[MaxN], g[MaxN], C[MaxN], A, B; vector<int> ady[MaxN]; long long int mcd(long long int a, long long int b) { if (!b) { A = 1, B = 0; return a; } long long int gcd = mcd(b, a % b), x, y; x = A, y = B; A = y, B = x - y * (a / b); return gcd; } long long int inverse(long long int a) { mcd(a, MOD); return (A + MOD * 5) % MOD; } void DFS(int x, int past) { long long int s = 1, i, j, p, q, T = 1; for (i = 0; i < ady[x].size(); i++) { if (ady[x][i] == past) continue; p = ady[x][i], DFS(p, x); T = (T * (g[p] + f[p]) % MOD) % MOD; } if (C[x]) { f[x] = T; g[x] = 0; } else { for (i = 0; i < ady[x].size(); i++) { if (ady[x][i] == past) continue; p = ady[x][i]; f[x] = (f[x] + ((T * f[p]) % MOD) * inverse((f[p] + g[p]) % MOD)) % MOD; } g[x] = T; } } int main() { long long int i, j, p, q, N; cin >> N; for (i = 1; i < N; i++) { cin >> p; ady[p].push_back(i); ady[i].push_back(p); } for (i = 0; i < N; i++) cin >> C[i]; DFS(0, 0); cout << f[0] << "\n"; }
### Prompt Please formulate a Cpp solution to the following problem: Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other vertices are colored white. Consider a set consisting of k (0 ≀ k < n) edges of Appleman's tree. If Appleman deletes these edges from the tree, then it will split into (k + 1) parts. Note, that each part will be a tree with colored vertices. Now Appleman wonders, what is the number of sets splitting the tree in such a way that each resulting part will have exactly one black vertex? Find this number modulo 1000000007 (109 + 7). Input The first line contains an integer n (2 ≀ n ≀ 105) β€” the number of tree vertices. The second line contains the description of the tree: n - 1 integers p0, p1, ..., pn - 2 (0 ≀ pi ≀ i). Where pi means that there is an edge connecting vertex (i + 1) of the tree and vertex pi. Consider tree vertices are numbered from 0 to n - 1. The third line contains the description of the colors of the vertices: n integers x0, x1, ..., xn - 1 (xi is either 0 or 1). If xi is equal to 1, vertex i is colored black. Otherwise, vertex i is colored white. Output Output a single integer β€” the number of ways to split the tree modulo 1000000007 (109 + 7). Examples Input 3 0 0 0 1 1 Output 2 Input 6 0 1 1 0 4 1 1 0 0 1 0 Output 1 Input 10 0 1 2 1 4 4 4 0 8 0 0 0 1 0 1 1 0 0 1 Output 27 ### Response ```cpp #include <bits/stdc++.h> using namespace std; const long long int MOD = 1000000007, MaxN = 100001; long long int f[MaxN], g[MaxN], C[MaxN], A, B; vector<int> ady[MaxN]; long long int mcd(long long int a, long long int b) { if (!b) { A = 1, B = 0; return a; } long long int gcd = mcd(b, a % b), x, y; x = A, y = B; A = y, B = x - y * (a / b); return gcd; } long long int inverse(long long int a) { mcd(a, MOD); return (A + MOD * 5) % MOD; } void DFS(int x, int past) { long long int s = 1, i, j, p, q, T = 1; for (i = 0; i < ady[x].size(); i++) { if (ady[x][i] == past) continue; p = ady[x][i], DFS(p, x); T = (T * (g[p] + f[p]) % MOD) % MOD; } if (C[x]) { f[x] = T; g[x] = 0; } else { for (i = 0; i < ady[x].size(); i++) { if (ady[x][i] == past) continue; p = ady[x][i]; f[x] = (f[x] + ((T * f[p]) % MOD) * inverse((f[p] + g[p]) % MOD)) % MOD; } g[x] = T; } } int main() { long long int i, j, p, q, N; cin >> N; for (i = 1; i < N; i++) { cin >> p; ady[p].push_back(i); ady[i].push_back(p); } for (i = 0; i < N; i++) cin >> C[i]; DFS(0, 0); cout << f[0] << "\n"; } ```
#include <bits/stdc++.h> using namespace std; const int mxmx = 1e5 + 10; const long long int mod = 1e9 + 7; long long int n; vector<long long int> adj[mxmx]; bool color[mxmx]; long long int dp[2][mxmx]; long long int power(long long int a, long long int b) { if (b == 0) return 1; if (b == 1) return a; long long int ANS; ANS = power(a, b / 2); ANS *= ANS; ANS %= mod; ANS *= power(a, b % 2); ANS %= mod; return ANS; } void go(long long int v) { if (color[v] == 0) { dp[1][v] = 0; dp[0][v] = 1; } else { dp[0][v] = 0; dp[1][v] = 1; } long long int next; long long int zarb = 1; for (long long int i = 0; i < adj[v].size(); i++) { next = adj[v][i]; go(next); zarb *= ((dp[0][next] + dp[1][next]) % mod); zarb %= mod; } long long int A, B; for (long long int i = 0; i < adj[v].size(); i++) { next = adj[v][i]; if (color[v] == 0) { dp[0][v] *= ((dp[1][next] + dp[0][next]) % mod); dp[0][v] %= mod; A = (zarb * dp[1][next]) % mod; B = (dp[0][next] + dp[1][next]) % mod; dp[1][v] += (A * power(B, mod - 2)) % mod; dp[1][v] %= mod; } else { dp[0][v] = 0; dp[1][v] *= ((dp[1][next] + dp[0][next]) % mod); dp[1][v] %= mod; } } } int main() { ios::sync_with_stdio(0); cin.tie(0); cin >> n; for (long long int i = 1, p; i < n; i++) { cin >> p; adj[p].push_back(i); } for (long long int i = 0; i < n; i++) { cin >> color[i]; } go(0); cout << dp[1][0]; }
### Prompt Please create a solution in Cpp to the following problem: Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other vertices are colored white. Consider a set consisting of k (0 ≀ k < n) edges of Appleman's tree. If Appleman deletes these edges from the tree, then it will split into (k + 1) parts. Note, that each part will be a tree with colored vertices. Now Appleman wonders, what is the number of sets splitting the tree in such a way that each resulting part will have exactly one black vertex? Find this number modulo 1000000007 (109 + 7). Input The first line contains an integer n (2 ≀ n ≀ 105) β€” the number of tree vertices. The second line contains the description of the tree: n - 1 integers p0, p1, ..., pn - 2 (0 ≀ pi ≀ i). Where pi means that there is an edge connecting vertex (i + 1) of the tree and vertex pi. Consider tree vertices are numbered from 0 to n - 1. The third line contains the description of the colors of the vertices: n integers x0, x1, ..., xn - 1 (xi is either 0 or 1). If xi is equal to 1, vertex i is colored black. Otherwise, vertex i is colored white. Output Output a single integer β€” the number of ways to split the tree modulo 1000000007 (109 + 7). Examples Input 3 0 0 0 1 1 Output 2 Input 6 0 1 1 0 4 1 1 0 0 1 0 Output 1 Input 10 0 1 2 1 4 4 4 0 8 0 0 0 1 0 1 1 0 0 1 Output 27 ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int mxmx = 1e5 + 10; const long long int mod = 1e9 + 7; long long int n; vector<long long int> adj[mxmx]; bool color[mxmx]; long long int dp[2][mxmx]; long long int power(long long int a, long long int b) { if (b == 0) return 1; if (b == 1) return a; long long int ANS; ANS = power(a, b / 2); ANS *= ANS; ANS %= mod; ANS *= power(a, b % 2); ANS %= mod; return ANS; } void go(long long int v) { if (color[v] == 0) { dp[1][v] = 0; dp[0][v] = 1; } else { dp[0][v] = 0; dp[1][v] = 1; } long long int next; long long int zarb = 1; for (long long int i = 0; i < adj[v].size(); i++) { next = adj[v][i]; go(next); zarb *= ((dp[0][next] + dp[1][next]) % mod); zarb %= mod; } long long int A, B; for (long long int i = 0; i < adj[v].size(); i++) { next = adj[v][i]; if (color[v] == 0) { dp[0][v] *= ((dp[1][next] + dp[0][next]) % mod); dp[0][v] %= mod; A = (zarb * dp[1][next]) % mod; B = (dp[0][next] + dp[1][next]) % mod; dp[1][v] += (A * power(B, mod - 2)) % mod; dp[1][v] %= mod; } else { dp[0][v] = 0; dp[1][v] *= ((dp[1][next] + dp[0][next]) % mod); dp[1][v] %= mod; } } } int main() { ios::sync_with_stdio(0); cin.tie(0); cin >> n; for (long long int i = 1, p; i < n; i++) { cin >> p; adj[p].push_back(i); } for (long long int i = 0; i < n; i++) { cin >> color[i]; } go(0); cout << dp[1][0]; } ```
#include <bits/stdc++.h> using namespace std; vector<int> adj[200000]; int a[200000]; long long dp[200000][2]; void dfs(int v) { dp[v][0] = 1; dp[v][1] = 0; for (int i = 0; i < adj[v].size(); i++) { int u = adj[v][i]; dfs(u); dp[v][1] = (dp[v][1] * dp[u][0]) % 1000000007; dp[v][1] = (dp[v][1] + ((dp[v][0] * dp[u][1]) % 1000000007)) % 1000000007; dp[v][0] = (dp[v][0] * dp[u][0]) % 1000000007; } if (a[v] == 1) dp[v][1] = dp[v][0]; else dp[v][0] = (dp[v][0] + dp[v][1]) % 1000000007; } int main() { int n; scanf("%d", &n); for (int i = 1; i < n; i++) { int b; scanf(" %d", &b); adj[b].push_back(i); } for (int i = 0; i < n; i++) scanf(" %d", &a[i]); dfs(0); printf("%d\n", dp[0][1] % 1000000007); }
### Prompt Generate a cpp solution to the following problem: Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other vertices are colored white. Consider a set consisting of k (0 ≀ k < n) edges of Appleman's tree. If Appleman deletes these edges from the tree, then it will split into (k + 1) parts. Note, that each part will be a tree with colored vertices. Now Appleman wonders, what is the number of sets splitting the tree in such a way that each resulting part will have exactly one black vertex? Find this number modulo 1000000007 (109 + 7). Input The first line contains an integer n (2 ≀ n ≀ 105) β€” the number of tree vertices. The second line contains the description of the tree: n - 1 integers p0, p1, ..., pn - 2 (0 ≀ pi ≀ i). Where pi means that there is an edge connecting vertex (i + 1) of the tree and vertex pi. Consider tree vertices are numbered from 0 to n - 1. The third line contains the description of the colors of the vertices: n integers x0, x1, ..., xn - 1 (xi is either 0 or 1). If xi is equal to 1, vertex i is colored black. Otherwise, vertex i is colored white. Output Output a single integer β€” the number of ways to split the tree modulo 1000000007 (109 + 7). Examples Input 3 0 0 0 1 1 Output 2 Input 6 0 1 1 0 4 1 1 0 0 1 0 Output 1 Input 10 0 1 2 1 4 4 4 0 8 0 0 0 1 0 1 1 0 0 1 Output 27 ### Response ```cpp #include <bits/stdc++.h> using namespace std; vector<int> adj[200000]; int a[200000]; long long dp[200000][2]; void dfs(int v) { dp[v][0] = 1; dp[v][1] = 0; for (int i = 0; i < adj[v].size(); i++) { int u = adj[v][i]; dfs(u); dp[v][1] = (dp[v][1] * dp[u][0]) % 1000000007; dp[v][1] = (dp[v][1] + ((dp[v][0] * dp[u][1]) % 1000000007)) % 1000000007; dp[v][0] = (dp[v][0] * dp[u][0]) % 1000000007; } if (a[v] == 1) dp[v][1] = dp[v][0]; else dp[v][0] = (dp[v][0] + dp[v][1]) % 1000000007; } int main() { int n; scanf("%d", &n); for (int i = 1; i < n; i++) { int b; scanf(" %d", &b); adj[b].push_back(i); } for (int i = 0; i < n; i++) scanf(" %d", &a[i]); dfs(0); printf("%d\n", dp[0][1] % 1000000007); } ```
#include <bits/stdc++.h> using namespace std; static const long long PRIME = 1e9 + 7; long long add(long long a, long long b) { return (a + b) % PRIME; } long long mul(long long a, long long b) { return (a * b) % PRIME; } long long inv(long long n) { n = n % PRIME; long long r = 1; long long pow = PRIME - 2; while (pow > 0) { if (pow & 1) { r = mul(r, n); } pow = pow >> 1; n = mul(n, n); } return r; } template <typename T> struct two { long long n, m; vector<T> arr; two(long long x, long long y) : n(x), m(y), arr(x * y) {} T& at(long long x, long long y) { return arr[x + n * y]; } }; struct solve { long long n; two<long long> dp; two<unsigned char> marked; vector<vector<long long>> children; vector<long long> colors; solve(long long nodes, const vector<vector<long long>>& ch, const vector<long long>& col) : n(nodes), dp(2, n), marked(2, n), children(ch), colors(col) {} long long get(long long a, long long b) { long long result; if (marked.at(a, b)) { result = dp.at(a, b); } else if (a == 0 && colors[b] == 1) { result = 0; } else if (a == 0 && colors[b] == 0 && children[b].size() == 0) { result = 1; } else if (a == 0 && colors[b] == 0 && children[b].size() > 0) { result = 1; for (const long long& child : children[b]) { result = mul(add(get(0, child), get(1, child)), result); } } else if (a == 1 && colors[b] == 1 && children[b].size() == 0) { result = 1; } else if (a == 1 && colors[b] == 1 && children[b].size() > 0) { result = 1; for (const long long& child : children[b]) { result = mul(add(get(0, child), get(1, child)), result); } } else if (a == 1 && colors[b] == 0 && children[b].size() == 0) { result = 0; } else if (a == 1 && colors[b] == 0 && children[b].size() > 0) { vector<long long> d1list; vector<long long> pairlist; bool zeroden = false; long long zeroindex; for (const long long& i : children[b]) { long long d0 = get(0, i); long long d1 = get(1, i); long long pair = add(d0, d1); d1list.push_back(d1); pairlist.push_back(pair); if (pair == 0) { zeroden = true; zeroindex = i; } } if (!zeroden) { long long prod = 1; long long sum = 0; for (long long i = 0; i < children[b].size(); i++) { prod = mul(prod, pairlist[i]); long long term = mul(d1list[i], inv(pairlist[i])); sum = add(sum, term); } result = mul(sum, prod); } else { long long prod = 1; for (const long long& j : children[b]) { if (j != zeroindex) { prod = mul(prod, pairlist[j]); } else { prod = mul(prod, d1list[j]); } } result = prod; } } else { assert(false); } dp.at(a, b) = result; marked.at(a, b) = true; return result; } }; int main(int argc, char const* argv[]) { ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0); long long n; { scanf("%lld", &n); } vector<vector<long long>> children(n); { for (long long i = 1; i < n; i++) { long long v; scanf("%lld", &v); children[v].push_back(i); } } vector<long long> colors(n); { for (long long i = 0; i < n; i++) { scanf("%lld", &colors[i]); } } solve solution(n, children, colors); printf("%lld\n", solution.get(1, 0)); return 0; }
### Prompt Construct a CPP code solution to the problem outlined: Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other vertices are colored white. Consider a set consisting of k (0 ≀ k < n) edges of Appleman's tree. If Appleman deletes these edges from the tree, then it will split into (k + 1) parts. Note, that each part will be a tree with colored vertices. Now Appleman wonders, what is the number of sets splitting the tree in such a way that each resulting part will have exactly one black vertex? Find this number modulo 1000000007 (109 + 7). Input The first line contains an integer n (2 ≀ n ≀ 105) β€” the number of tree vertices. The second line contains the description of the tree: n - 1 integers p0, p1, ..., pn - 2 (0 ≀ pi ≀ i). Where pi means that there is an edge connecting vertex (i + 1) of the tree and vertex pi. Consider tree vertices are numbered from 0 to n - 1. The third line contains the description of the colors of the vertices: n integers x0, x1, ..., xn - 1 (xi is either 0 or 1). If xi is equal to 1, vertex i is colored black. Otherwise, vertex i is colored white. Output Output a single integer β€” the number of ways to split the tree modulo 1000000007 (109 + 7). Examples Input 3 0 0 0 1 1 Output 2 Input 6 0 1 1 0 4 1 1 0 0 1 0 Output 1 Input 10 0 1 2 1 4 4 4 0 8 0 0 0 1 0 1 1 0 0 1 Output 27 ### Response ```cpp #include <bits/stdc++.h> using namespace std; static const long long PRIME = 1e9 + 7; long long add(long long a, long long b) { return (a + b) % PRIME; } long long mul(long long a, long long b) { return (a * b) % PRIME; } long long inv(long long n) { n = n % PRIME; long long r = 1; long long pow = PRIME - 2; while (pow > 0) { if (pow & 1) { r = mul(r, n); } pow = pow >> 1; n = mul(n, n); } return r; } template <typename T> struct two { long long n, m; vector<T> arr; two(long long x, long long y) : n(x), m(y), arr(x * y) {} T& at(long long x, long long y) { return arr[x + n * y]; } }; struct solve { long long n; two<long long> dp; two<unsigned char> marked; vector<vector<long long>> children; vector<long long> colors; solve(long long nodes, const vector<vector<long long>>& ch, const vector<long long>& col) : n(nodes), dp(2, n), marked(2, n), children(ch), colors(col) {} long long get(long long a, long long b) { long long result; if (marked.at(a, b)) { result = dp.at(a, b); } else if (a == 0 && colors[b] == 1) { result = 0; } else if (a == 0 && colors[b] == 0 && children[b].size() == 0) { result = 1; } else if (a == 0 && colors[b] == 0 && children[b].size() > 0) { result = 1; for (const long long& child : children[b]) { result = mul(add(get(0, child), get(1, child)), result); } } else if (a == 1 && colors[b] == 1 && children[b].size() == 0) { result = 1; } else if (a == 1 && colors[b] == 1 && children[b].size() > 0) { result = 1; for (const long long& child : children[b]) { result = mul(add(get(0, child), get(1, child)), result); } } else if (a == 1 && colors[b] == 0 && children[b].size() == 0) { result = 0; } else if (a == 1 && colors[b] == 0 && children[b].size() > 0) { vector<long long> d1list; vector<long long> pairlist; bool zeroden = false; long long zeroindex; for (const long long& i : children[b]) { long long d0 = get(0, i); long long d1 = get(1, i); long long pair = add(d0, d1); d1list.push_back(d1); pairlist.push_back(pair); if (pair == 0) { zeroden = true; zeroindex = i; } } if (!zeroden) { long long prod = 1; long long sum = 0; for (long long i = 0; i < children[b].size(); i++) { prod = mul(prod, pairlist[i]); long long term = mul(d1list[i], inv(pairlist[i])); sum = add(sum, term); } result = mul(sum, prod); } else { long long prod = 1; for (const long long& j : children[b]) { if (j != zeroindex) { prod = mul(prod, pairlist[j]); } else { prod = mul(prod, d1list[j]); } } result = prod; } } else { assert(false); } dp.at(a, b) = result; marked.at(a, b) = true; return result; } }; int main(int argc, char const* argv[]) { ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0); long long n; { scanf("%lld", &n); } vector<vector<long long>> children(n); { for (long long i = 1; i < n; i++) { long long v; scanf("%lld", &v); children[v].push_back(i); } } vector<long long> colors(n); { for (long long i = 0; i < n; i++) { scanf("%lld", &colors[i]); } } solve solution(n, children, colors); printf("%lld\n", solution.get(1, 0)); return 0; } ```
#include <bits/stdc++.h> using namespace std; const int maxn = 100010; long long dp[maxn][2]; int num[maxn]; vector<int> g[maxn]; long long q_mod(long long a, long long b, long long n) { long long ret = 1; long long tmp = a; while (b) { if (b & 0x1) ret = ret * tmp % n; tmp = tmp * tmp % n; b >>= 1; } return ret; } long long Del(long long x, long long y, long long z) { x = x * z; x = x % 1000000007; x = x * q_mod(y, 1000000007 - 2, 1000000007); x = x % 1000000007; return x; } void dfs(int x) { int flag = 0; long long sum = 1; int n = g[x].size(); for (int i = 0; i < n; i++) { int y = g[x][i]; dfs(y); flag = 1; sum *= dp[y][0]; sum %= 1000000007; } if (!flag) { if (num[x]) { dp[x][0] = 1; dp[x][1] = 1; } else { dp[x][0] = 1; dp[x][1] = 0; } return; } if (num[x]) { dp[x][1] = sum; dp[x][0] = sum; } else { dp[x][0] = sum; dp[x][1] = 0; for (int i = 0; i < n; i++) { int y = g[x][i]; dp[x][1] += Del(sum, dp[y][0], dp[y][1]); dp[x][1] %= 1000000007; } dp[x][0] += dp[x][1]; dp[x][0] %= 1000000007; } return; } int main() { int n; while (cin >> n) { int x; for (int i = 0; i <= n; i++) g[i].clear(); for (int i = 1; i < n; i++) { scanf("%d", &x); g[x].push_back(i); } for (int i = 0; i < n; i++) scanf("%d", &num[i]); memset(dp, 0, sizeof(dp)); dfs(0); cout << dp[0][1] << endl; } return 0; }
### Prompt Please create a solution in cpp to the following problem: Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other vertices are colored white. Consider a set consisting of k (0 ≀ k < n) edges of Appleman's tree. If Appleman deletes these edges from the tree, then it will split into (k + 1) parts. Note, that each part will be a tree with colored vertices. Now Appleman wonders, what is the number of sets splitting the tree in such a way that each resulting part will have exactly one black vertex? Find this number modulo 1000000007 (109 + 7). Input The first line contains an integer n (2 ≀ n ≀ 105) β€” the number of tree vertices. The second line contains the description of the tree: n - 1 integers p0, p1, ..., pn - 2 (0 ≀ pi ≀ i). Where pi means that there is an edge connecting vertex (i + 1) of the tree and vertex pi. Consider tree vertices are numbered from 0 to n - 1. The third line contains the description of the colors of the vertices: n integers x0, x1, ..., xn - 1 (xi is either 0 or 1). If xi is equal to 1, vertex i is colored black. Otherwise, vertex i is colored white. Output Output a single integer β€” the number of ways to split the tree modulo 1000000007 (109 + 7). Examples Input 3 0 0 0 1 1 Output 2 Input 6 0 1 1 0 4 1 1 0 0 1 0 Output 1 Input 10 0 1 2 1 4 4 4 0 8 0 0 0 1 0 1 1 0 0 1 Output 27 ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int maxn = 100010; long long dp[maxn][2]; int num[maxn]; vector<int> g[maxn]; long long q_mod(long long a, long long b, long long n) { long long ret = 1; long long tmp = a; while (b) { if (b & 0x1) ret = ret * tmp % n; tmp = tmp * tmp % n; b >>= 1; } return ret; } long long Del(long long x, long long y, long long z) { x = x * z; x = x % 1000000007; x = x * q_mod(y, 1000000007 - 2, 1000000007); x = x % 1000000007; return x; } void dfs(int x) { int flag = 0; long long sum = 1; int n = g[x].size(); for (int i = 0; i < n; i++) { int y = g[x][i]; dfs(y); flag = 1; sum *= dp[y][0]; sum %= 1000000007; } if (!flag) { if (num[x]) { dp[x][0] = 1; dp[x][1] = 1; } else { dp[x][0] = 1; dp[x][1] = 0; } return; } if (num[x]) { dp[x][1] = sum; dp[x][0] = sum; } else { dp[x][0] = sum; dp[x][1] = 0; for (int i = 0; i < n; i++) { int y = g[x][i]; dp[x][1] += Del(sum, dp[y][0], dp[y][1]); dp[x][1] %= 1000000007; } dp[x][0] += dp[x][1]; dp[x][0] %= 1000000007; } return; } int main() { int n; while (cin >> n) { int x; for (int i = 0; i <= n; i++) g[i].clear(); for (int i = 1; i < n; i++) { scanf("%d", &x); g[x].push_back(i); } for (int i = 0; i < n; i++) scanf("%d", &num[i]); memset(dp, 0, sizeof(dp)); dfs(0); cout << dp[0][1] << endl; } return 0; } ```
#include <bits/stdc++.h> using namespace std; int p[100010]; long long d[100010][2]; int main() { int n, xi; scanf("%d", &n); for (int i = 0; i < n - 1; ++i) { scanf("%d", &p[i + 1]); } for (int i = 0; i < n; ++i) { scanf("%d", &xi); d[i][xi] = 1; } for (int i = n - 1; i > 0; --i) { d[p[i]][1] = (d[p[i]][1] * (d[i][0] + d[i][1]) + d[p[i]][0] * d[i][1]) % 1000000007; d[p[i]][0] = (d[p[i]][0] * (d[i][0] + d[i][1])) % 1000000007; } printf("%I64d\n", d[0][1]); return 0; }
### Prompt Generate a cpp solution to the following problem: Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other vertices are colored white. Consider a set consisting of k (0 ≀ k < n) edges of Appleman's tree. If Appleman deletes these edges from the tree, then it will split into (k + 1) parts. Note, that each part will be a tree with colored vertices. Now Appleman wonders, what is the number of sets splitting the tree in such a way that each resulting part will have exactly one black vertex? Find this number modulo 1000000007 (109 + 7). Input The first line contains an integer n (2 ≀ n ≀ 105) β€” the number of tree vertices. The second line contains the description of the tree: n - 1 integers p0, p1, ..., pn - 2 (0 ≀ pi ≀ i). Where pi means that there is an edge connecting vertex (i + 1) of the tree and vertex pi. Consider tree vertices are numbered from 0 to n - 1. The third line contains the description of the colors of the vertices: n integers x0, x1, ..., xn - 1 (xi is either 0 or 1). If xi is equal to 1, vertex i is colored black. Otherwise, vertex i is colored white. Output Output a single integer β€” the number of ways to split the tree modulo 1000000007 (109 + 7). Examples Input 3 0 0 0 1 1 Output 2 Input 6 0 1 1 0 4 1 1 0 0 1 0 Output 1 Input 10 0 1 2 1 4 4 4 0 8 0 0 0 1 0 1 1 0 0 1 Output 27 ### Response ```cpp #include <bits/stdc++.h> using namespace std; int p[100010]; long long d[100010][2]; int main() { int n, xi; scanf("%d", &n); for (int i = 0; i < n - 1; ++i) { scanf("%d", &p[i + 1]); } for (int i = 0; i < n; ++i) { scanf("%d", &xi); d[i][xi] = 1; } for (int i = n - 1; i > 0; --i) { d[p[i]][1] = (d[p[i]][1] * (d[i][0] + d[i][1]) + d[p[i]][0] * d[i][1]) % 1000000007; d[p[i]][0] = (d[p[i]][0] * (d[i][0] + d[i][1])) % 1000000007; } printf("%I64d\n", d[0][1]); return 0; } ```
#include <bits/stdc++.h> using namespace std; const int max_n = 111111, inf = 1000000007; int n, col[max_n]; long long dp[max_n][2]; vector<int> g[max_n]; long long power(long long a, long long b) { if (b == 0) { return 1; } if (b % 2 == 0) { return power((a * a) % inf, b / 2); } return (a * power(a, b - 1)) % inf; } void dfs(int v, int p) { for (int i = 0; i < g[v].size(); ++i) { if (g[v][i] != p) { dfs(g[v][i], v); } } if (g[v].size() == 1 && v) { dp[v][0] = 1; dp[v][1] = 1; if (col[v] == 0) { dp[v][1] = 0; } return; } if (col[v] == 1) { dp[v][1] = 1; for (int i = 0; i < g[v].size(); ++i) { if (g[v][i] != p) { dp[v][1] = (dp[v][1] * dp[g[v][i]][0]) % inf; } } } else { vector<long long> a, b; int f = 0, poz; for (int i = 0; i < g[v].size(); ++i) { if (g[v][i] != p) { a.push_back(dp[g[v][i]][0]); b.push_back(dp[g[v][i]][1]); } } for (int i = 0; i < a.size(); ++i) { if (a[i] == 0) { ++f; poz = i; } } if (f >= 2) { dp[v][1] = 0; } else if (f == 1) { long long x = b[poz]; for (int i = 0; i < poz; ++i) { if (g[v][i] != p) x = (x * a[i]) % inf; } for (int i = poz + 1; i < a.size(); ++i) { if (g[v][i] != p) x = (x * a[i]) % inf; } dp[v][1] = x; } else { long long x = 1; for (int i = 0; i < a.size(); ++i) { x = (x * a[i]) % inf; } dp[v][1] = 0; for (int i = 0; i < a.size(); ++i) { dp[v][1] = (dp[v][1] + ((x * power(a[i], inf - 2)) % inf * b[i]) % inf) % inf; } } } dp[v][0] = dp[v][1]; if (col[v] == 0) { long long x = 1; for (int i = 0; i < g[v].size(); ++i) { if (g[v][i] != p) { x = (x * dp[g[v][i]][0]) % inf; } } dp[v][0] = (dp[v][0] + x) % inf; } } int main() { scanf("%d", &n); for (int i = 1; i < n; ++i) { int p; scanf("%d", &p); g[i].push_back(p); g[p].push_back(i); } for (int i = 0; i < n; ++i) { scanf("%d", &col[i]); } dfs(0, -1); printf("%d\n", dp[0][1] % inf); return 0; }
### Prompt Please formulate a cpp solution to the following problem: Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other vertices are colored white. Consider a set consisting of k (0 ≀ k < n) edges of Appleman's tree. If Appleman deletes these edges from the tree, then it will split into (k + 1) parts. Note, that each part will be a tree with colored vertices. Now Appleman wonders, what is the number of sets splitting the tree in such a way that each resulting part will have exactly one black vertex? Find this number modulo 1000000007 (109 + 7). Input The first line contains an integer n (2 ≀ n ≀ 105) β€” the number of tree vertices. The second line contains the description of the tree: n - 1 integers p0, p1, ..., pn - 2 (0 ≀ pi ≀ i). Where pi means that there is an edge connecting vertex (i + 1) of the tree and vertex pi. Consider tree vertices are numbered from 0 to n - 1. The third line contains the description of the colors of the vertices: n integers x0, x1, ..., xn - 1 (xi is either 0 or 1). If xi is equal to 1, vertex i is colored black. Otherwise, vertex i is colored white. Output Output a single integer β€” the number of ways to split the tree modulo 1000000007 (109 + 7). Examples Input 3 0 0 0 1 1 Output 2 Input 6 0 1 1 0 4 1 1 0 0 1 0 Output 1 Input 10 0 1 2 1 4 4 4 0 8 0 0 0 1 0 1 1 0 0 1 Output 27 ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int max_n = 111111, inf = 1000000007; int n, col[max_n]; long long dp[max_n][2]; vector<int> g[max_n]; long long power(long long a, long long b) { if (b == 0) { return 1; } if (b % 2 == 0) { return power((a * a) % inf, b / 2); } return (a * power(a, b - 1)) % inf; } void dfs(int v, int p) { for (int i = 0; i < g[v].size(); ++i) { if (g[v][i] != p) { dfs(g[v][i], v); } } if (g[v].size() == 1 && v) { dp[v][0] = 1; dp[v][1] = 1; if (col[v] == 0) { dp[v][1] = 0; } return; } if (col[v] == 1) { dp[v][1] = 1; for (int i = 0; i < g[v].size(); ++i) { if (g[v][i] != p) { dp[v][1] = (dp[v][1] * dp[g[v][i]][0]) % inf; } } } else { vector<long long> a, b; int f = 0, poz; for (int i = 0; i < g[v].size(); ++i) { if (g[v][i] != p) { a.push_back(dp[g[v][i]][0]); b.push_back(dp[g[v][i]][1]); } } for (int i = 0; i < a.size(); ++i) { if (a[i] == 0) { ++f; poz = i; } } if (f >= 2) { dp[v][1] = 0; } else if (f == 1) { long long x = b[poz]; for (int i = 0; i < poz; ++i) { if (g[v][i] != p) x = (x * a[i]) % inf; } for (int i = poz + 1; i < a.size(); ++i) { if (g[v][i] != p) x = (x * a[i]) % inf; } dp[v][1] = x; } else { long long x = 1; for (int i = 0; i < a.size(); ++i) { x = (x * a[i]) % inf; } dp[v][1] = 0; for (int i = 0; i < a.size(); ++i) { dp[v][1] = (dp[v][1] + ((x * power(a[i], inf - 2)) % inf * b[i]) % inf) % inf; } } } dp[v][0] = dp[v][1]; if (col[v] == 0) { long long x = 1; for (int i = 0; i < g[v].size(); ++i) { if (g[v][i] != p) { x = (x * dp[g[v][i]][0]) % inf; } } dp[v][0] = (dp[v][0] + x) % inf; } } int main() { scanf("%d", &n); for (int i = 1; i < n; ++i) { int p; scanf("%d", &p); g[i].push_back(p); g[p].push_back(i); } for (int i = 0; i < n; ++i) { scanf("%d", &col[i]); } dfs(0, -1); printf("%d\n", dp[0][1] % inf); return 0; } ```
#include <bits/stdc++.h> using namespace std; const long long MOD = 1000000007; const int INF = 2e9; const long long INFLL = 1e18; const int MAX_N = 100000; int N; int p[MAX_N + 1]; int c[MAX_N + 1]; vector<int> gp[MAX_N + 1]; long long dp[MAX_N + 1][2]; long long multi(long long x, long long y) { if (y == 1) return x; long long m = multi(x, y / 2); if (y % 2) { return (((m * m) % MOD) * x) % MOD; } else { return (m * m) % MOD; } } long long inv(long long x) { return multi(x, MOD - 2); } void dfs(int x) { for (int i : gp[x]) { dfs(i); } if (c[x] == 0) { dp[x][0] = 1; for (int i : gp[x]) { dp[x][0] = (dp[x][0] * dp[i][0]) % MOD; } for (int i : gp[x]) { dp[x][1] = (dp[x][1] + ((dp[x][0] * inv(dp[i][0])) % MOD * dp[i][1]) % MOD) % MOD; } } else { dp[x][0] = 0; dp[x][1] = 1; for (int i : gp[x]) { dp[x][1] = dp[x][1] * dp[i][0] % MOD; } } dp[x][0] = (dp[x][0] + dp[x][1]) % MOD; if (0) cout << x << " " << dp[x][0] << " " << dp[x][1] << endl; } int main() { scanf("%d", &N); for (int i = 1; i < N; i++) { int x; scanf("%d", &x); gp[x].push_back(i); p[i] = x; } for (int i = 0; i < N; i++) { scanf("%d", &c[i]); } dfs(0); cout << dp[0][1]; return 0; }
### Prompt Your challenge is to write a CPP solution to the following problem: Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other vertices are colored white. Consider a set consisting of k (0 ≀ k < n) edges of Appleman's tree. If Appleman deletes these edges from the tree, then it will split into (k + 1) parts. Note, that each part will be a tree with colored vertices. Now Appleman wonders, what is the number of sets splitting the tree in such a way that each resulting part will have exactly one black vertex? Find this number modulo 1000000007 (109 + 7). Input The first line contains an integer n (2 ≀ n ≀ 105) β€” the number of tree vertices. The second line contains the description of the tree: n - 1 integers p0, p1, ..., pn - 2 (0 ≀ pi ≀ i). Where pi means that there is an edge connecting vertex (i + 1) of the tree and vertex pi. Consider tree vertices are numbered from 0 to n - 1. The third line contains the description of the colors of the vertices: n integers x0, x1, ..., xn - 1 (xi is either 0 or 1). If xi is equal to 1, vertex i is colored black. Otherwise, vertex i is colored white. Output Output a single integer β€” the number of ways to split the tree modulo 1000000007 (109 + 7). Examples Input 3 0 0 0 1 1 Output 2 Input 6 0 1 1 0 4 1 1 0 0 1 0 Output 1 Input 10 0 1 2 1 4 4 4 0 8 0 0 0 1 0 1 1 0 0 1 Output 27 ### Response ```cpp #include <bits/stdc++.h> using namespace std; const long long MOD = 1000000007; const int INF = 2e9; const long long INFLL = 1e18; const int MAX_N = 100000; int N; int p[MAX_N + 1]; int c[MAX_N + 1]; vector<int> gp[MAX_N + 1]; long long dp[MAX_N + 1][2]; long long multi(long long x, long long y) { if (y == 1) return x; long long m = multi(x, y / 2); if (y % 2) { return (((m * m) % MOD) * x) % MOD; } else { return (m * m) % MOD; } } long long inv(long long x) { return multi(x, MOD - 2); } void dfs(int x) { for (int i : gp[x]) { dfs(i); } if (c[x] == 0) { dp[x][0] = 1; for (int i : gp[x]) { dp[x][0] = (dp[x][0] * dp[i][0]) % MOD; } for (int i : gp[x]) { dp[x][1] = (dp[x][1] + ((dp[x][0] * inv(dp[i][0])) % MOD * dp[i][1]) % MOD) % MOD; } } else { dp[x][0] = 0; dp[x][1] = 1; for (int i : gp[x]) { dp[x][1] = dp[x][1] * dp[i][0] % MOD; } } dp[x][0] = (dp[x][0] + dp[x][1]) % MOD; if (0) cout << x << " " << dp[x][0] << " " << dp[x][1] << endl; } int main() { scanf("%d", &N); for (int i = 1; i < N; i++) { int x; scanf("%d", &x); gp[x].push_back(i); p[i] = x; } for (int i = 0; i < N; i++) { scanf("%d", &c[i]); } dfs(0); cout << dp[0][1]; return 0; } ```
#include <bits/stdc++.h> const double PI = 3.141592653589793238460; const int dx4[] = {0, 0, -1, 1}; const int dy4[] = {1, -1, 0, 0}; const int dx8[] = {-1, 1, 0, 0, -1, -1, 1, 1}; const int dy8[] = {0, 0, -1, 1, -1, 1, -1, 1}; void input() {} using namespace std; vector<int> g[100005]; bool f[100005]; long long dp[100005][2]; void dfs(int v, int par) { dp[v][f[v]] = 1; for (auto ch : g[v]) { if (ch != par) { int u = ch; dfs(ch, v); long long x0 = dp[v][0]; long long x1 = dp[v][1]; long long y0 = dp[u][0]; long long y1 = dp[u][1]; dp[v][0] = (x0 * y0 + x0 * y1) % 1000000007; dp[v][1] = (x1 * y1 + x0 * y1 + x1 * y0) % 1000000007; } } } void solve1() { int n, i, a; cin >> n; for (int i = 0; i < n - 1; i++) cin >> a, g[a].push_back(i + 1); for (i = 0; i < n; i++) cin >> a, f[i] = a; dfs(0, -1); printf("%d\n", dp[0][1]); } int main() { ios_base::sync_with_stdio(false), cin.tie(0), cout.tie(0); input(); solve1(); return 0; }
### Prompt Your task is to create a cpp solution to the following problem: Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other vertices are colored white. Consider a set consisting of k (0 ≀ k < n) edges of Appleman's tree. If Appleman deletes these edges from the tree, then it will split into (k + 1) parts. Note, that each part will be a tree with colored vertices. Now Appleman wonders, what is the number of sets splitting the tree in such a way that each resulting part will have exactly one black vertex? Find this number modulo 1000000007 (109 + 7). Input The first line contains an integer n (2 ≀ n ≀ 105) β€” the number of tree vertices. The second line contains the description of the tree: n - 1 integers p0, p1, ..., pn - 2 (0 ≀ pi ≀ i). Where pi means that there is an edge connecting vertex (i + 1) of the tree and vertex pi. Consider tree vertices are numbered from 0 to n - 1. The third line contains the description of the colors of the vertices: n integers x0, x1, ..., xn - 1 (xi is either 0 or 1). If xi is equal to 1, vertex i is colored black. Otherwise, vertex i is colored white. Output Output a single integer β€” the number of ways to split the tree modulo 1000000007 (109 + 7). Examples Input 3 0 0 0 1 1 Output 2 Input 6 0 1 1 0 4 1 1 0 0 1 0 Output 1 Input 10 0 1 2 1 4 4 4 0 8 0 0 0 1 0 1 1 0 0 1 Output 27 ### Response ```cpp #include <bits/stdc++.h> const double PI = 3.141592653589793238460; const int dx4[] = {0, 0, -1, 1}; const int dy4[] = {1, -1, 0, 0}; const int dx8[] = {-1, 1, 0, 0, -1, -1, 1, 1}; const int dy8[] = {0, 0, -1, 1, -1, 1, -1, 1}; void input() {} using namespace std; vector<int> g[100005]; bool f[100005]; long long dp[100005][2]; void dfs(int v, int par) { dp[v][f[v]] = 1; for (auto ch : g[v]) { if (ch != par) { int u = ch; dfs(ch, v); long long x0 = dp[v][0]; long long x1 = dp[v][1]; long long y0 = dp[u][0]; long long y1 = dp[u][1]; dp[v][0] = (x0 * y0 + x0 * y1) % 1000000007; dp[v][1] = (x1 * y1 + x0 * y1 + x1 * y0) % 1000000007; } } } void solve1() { int n, i, a; cin >> n; for (int i = 0; i < n - 1; i++) cin >> a, g[a].push_back(i + 1); for (i = 0; i < n; i++) cin >> a, f[i] = a; dfs(0, -1); printf("%d\n", dp[0][1]); } int main() { ios_base::sync_with_stdio(false), cin.tie(0), cout.tie(0); input(); solve1(); return 0; } ```
#include <bits/stdc++.h> using namespace std; const int N = 100005; const long long MOD = 1000000007; int n, node[N]; vector<int> g[N]; long long dp[N][2]; long long pow_mod(long long x, long long k) { long long ans = 1; while (k) { if (k & 1) ans = ans * x % MOD; x = x * x % MOD; k >>= 1; } return ans; } long long inv(long long x) { return pow_mod(x, MOD - 2); } void init() { scanf("%d", &n); int u; for (int i = 1; i < n; i++) { scanf("%d", &u); g[u].push_back(i); } for (int i = 0; i < n; i++) scanf("%d", &node[i]); } void dfs(int u) { if (g[u].size() == 0) { dp[u][node[u]] = 1; return; } for (int i = 0; i < g[u].size(); i++) dfs(g[u][i]); dp[u][0] = dp[u][1] = 1; if (node[u]) { dp[u][0] = 0; for (int i = 0; i < g[u].size(); i++) { int v = g[u][i]; dp[u][1] = dp[u][1] * (dp[v][0] + dp[v][1]) % MOD; } } else { long long cnt = 0; long long mul = 1; for (int i = 0; i < g[u].size(); i++) { int v = g[u][i]; dp[u][0] = dp[u][0] * (dp[v][0] + dp[v][1]) % MOD; mul = mul * (dp[v][0] + dp[v][1]) % MOD; } dp[u][1] = 0; for (int i = 0; i < g[u].size(); i++) { int v = g[u][i]; dp[u][1] = (dp[u][1] + mul * inv((dp[v][0] + dp[v][1]) % MOD) % MOD * dp[v][1]) % MOD; } } } int main() { init(); dfs(0); printf("%I64d\n", dp[0][1] % MOD); return 0; }
### Prompt Please provide a cpp coded solution to the problem described below: Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other vertices are colored white. Consider a set consisting of k (0 ≀ k < n) edges of Appleman's tree. If Appleman deletes these edges from the tree, then it will split into (k + 1) parts. Note, that each part will be a tree with colored vertices. Now Appleman wonders, what is the number of sets splitting the tree in such a way that each resulting part will have exactly one black vertex? Find this number modulo 1000000007 (109 + 7). Input The first line contains an integer n (2 ≀ n ≀ 105) β€” the number of tree vertices. The second line contains the description of the tree: n - 1 integers p0, p1, ..., pn - 2 (0 ≀ pi ≀ i). Where pi means that there is an edge connecting vertex (i + 1) of the tree and vertex pi. Consider tree vertices are numbered from 0 to n - 1. The third line contains the description of the colors of the vertices: n integers x0, x1, ..., xn - 1 (xi is either 0 or 1). If xi is equal to 1, vertex i is colored black. Otherwise, vertex i is colored white. Output Output a single integer β€” the number of ways to split the tree modulo 1000000007 (109 + 7). Examples Input 3 0 0 0 1 1 Output 2 Input 6 0 1 1 0 4 1 1 0 0 1 0 Output 1 Input 10 0 1 2 1 4 4 4 0 8 0 0 0 1 0 1 1 0 0 1 Output 27 ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int N = 100005; const long long MOD = 1000000007; int n, node[N]; vector<int> g[N]; long long dp[N][2]; long long pow_mod(long long x, long long k) { long long ans = 1; while (k) { if (k & 1) ans = ans * x % MOD; x = x * x % MOD; k >>= 1; } return ans; } long long inv(long long x) { return pow_mod(x, MOD - 2); } void init() { scanf("%d", &n); int u; for (int i = 1; i < n; i++) { scanf("%d", &u); g[u].push_back(i); } for (int i = 0; i < n; i++) scanf("%d", &node[i]); } void dfs(int u) { if (g[u].size() == 0) { dp[u][node[u]] = 1; return; } for (int i = 0; i < g[u].size(); i++) dfs(g[u][i]); dp[u][0] = dp[u][1] = 1; if (node[u]) { dp[u][0] = 0; for (int i = 0; i < g[u].size(); i++) { int v = g[u][i]; dp[u][1] = dp[u][1] * (dp[v][0] + dp[v][1]) % MOD; } } else { long long cnt = 0; long long mul = 1; for (int i = 0; i < g[u].size(); i++) { int v = g[u][i]; dp[u][0] = dp[u][0] * (dp[v][0] + dp[v][1]) % MOD; mul = mul * (dp[v][0] + dp[v][1]) % MOD; } dp[u][1] = 0; for (int i = 0; i < g[u].size(); i++) { int v = g[u][i]; dp[u][1] = (dp[u][1] + mul * inv((dp[v][0] + dp[v][1]) % MOD) % MOD * dp[v][1]) % MOD; } } } int main() { init(); dfs(0); printf("%I64d\n", dp[0][1] % MOD); return 0; } ```
#include <bits/stdc++.h> using namespace std; void dout() { cerr << endl; } template <typename Head, typename... Tail> void dout(Head H, Tail... T) { cerr << H << ' '; dout(T...); } long long MOD = 1000000000 + 7; int color[100000]; vector<int> g[100000]; int n, p; long long dp[100000][2]; int was[100000][2]; long long pw(long long a, long long p) { if (p == 0) return 1; if (p % 2 == 0) { long long ans = pw(a, p / 2); return ans * ans % MOD; } return a * pw(a, p - 1) % MOD; } long long inv(long long a) { return pw(a, MOD - 2); } long long get(int v, int was_b, int p) { if (was[v][was_b]) return dp[v][was_b]; was[v][was_b] = 1; if (color[v] == 1 && !was_b) return 0; if (color[v] == 1 || was_b == 0) { long long ans = 0; long long product = 1; for (int i = 0; i < g[v].size(); ++i) { if (g[v][i] == p) continue; product *= get(g[v][i], 0, v) + get(g[v][i], 1, v); product %= MOD; } ans = product; return dp[v][was_b] = ans; } if (was_b) { long long ans = 0; long long all = 1; for (int i = 0; i < g[v].size(); ++i) { if (g[v][i] == p) continue; all *= get(g[v][i], 0, v) + get(g[v][i], 1, v); all %= MOD; } for (int i = 0; i < g[v].size(); ++i) { if (g[v][i] == p) continue; long long prod = (all * inv(get(g[v][i], 1, v) + get(g[v][i], 0, v)) % MOD) * get(g[v][i], 1, v) % MOD; ans += prod; ans %= MOD; } return dp[v][was_b] = ans; } return 0; } int main() { scanf("%d", &n); for (int i = 0; i < n - 1; ++i) { scanf("%d", &p); g[i + 1].push_back(p), g[p].push_back(i + 1); } for (int i = 0; i < n; ++i) scanf("%d", &color[i]); printf("%I64d", get(0, 1, -1)); return 0; }
### Prompt Please provide a CPP coded solution to the problem described below: Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other vertices are colored white. Consider a set consisting of k (0 ≀ k < n) edges of Appleman's tree. If Appleman deletes these edges from the tree, then it will split into (k + 1) parts. Note, that each part will be a tree with colored vertices. Now Appleman wonders, what is the number of sets splitting the tree in such a way that each resulting part will have exactly one black vertex? Find this number modulo 1000000007 (109 + 7). Input The first line contains an integer n (2 ≀ n ≀ 105) β€” the number of tree vertices. The second line contains the description of the tree: n - 1 integers p0, p1, ..., pn - 2 (0 ≀ pi ≀ i). Where pi means that there is an edge connecting vertex (i + 1) of the tree and vertex pi. Consider tree vertices are numbered from 0 to n - 1. The third line contains the description of the colors of the vertices: n integers x0, x1, ..., xn - 1 (xi is either 0 or 1). If xi is equal to 1, vertex i is colored black. Otherwise, vertex i is colored white. Output Output a single integer β€” the number of ways to split the tree modulo 1000000007 (109 + 7). Examples Input 3 0 0 0 1 1 Output 2 Input 6 0 1 1 0 4 1 1 0 0 1 0 Output 1 Input 10 0 1 2 1 4 4 4 0 8 0 0 0 1 0 1 1 0 0 1 Output 27 ### Response ```cpp #include <bits/stdc++.h> using namespace std; void dout() { cerr << endl; } template <typename Head, typename... Tail> void dout(Head H, Tail... T) { cerr << H << ' '; dout(T...); } long long MOD = 1000000000 + 7; int color[100000]; vector<int> g[100000]; int n, p; long long dp[100000][2]; int was[100000][2]; long long pw(long long a, long long p) { if (p == 0) return 1; if (p % 2 == 0) { long long ans = pw(a, p / 2); return ans * ans % MOD; } return a * pw(a, p - 1) % MOD; } long long inv(long long a) { return pw(a, MOD - 2); } long long get(int v, int was_b, int p) { if (was[v][was_b]) return dp[v][was_b]; was[v][was_b] = 1; if (color[v] == 1 && !was_b) return 0; if (color[v] == 1 || was_b == 0) { long long ans = 0; long long product = 1; for (int i = 0; i < g[v].size(); ++i) { if (g[v][i] == p) continue; product *= get(g[v][i], 0, v) + get(g[v][i], 1, v); product %= MOD; } ans = product; return dp[v][was_b] = ans; } if (was_b) { long long ans = 0; long long all = 1; for (int i = 0; i < g[v].size(); ++i) { if (g[v][i] == p) continue; all *= get(g[v][i], 0, v) + get(g[v][i], 1, v); all %= MOD; } for (int i = 0; i < g[v].size(); ++i) { if (g[v][i] == p) continue; long long prod = (all * inv(get(g[v][i], 1, v) + get(g[v][i], 0, v)) % MOD) * get(g[v][i], 1, v) % MOD; ans += prod; ans %= MOD; } return dp[v][was_b] = ans; } return 0; } int main() { scanf("%d", &n); for (int i = 0; i < n - 1; ++i) { scanf("%d", &p); g[i + 1].push_back(p), g[p].push_back(i + 1); } for (int i = 0; i < n; ++i) scanf("%d", &color[i]); printf("%I64d", get(0, 1, -1)); return 0; } ```
#include <bits/stdc++.h> using namespace std; const int MOD = 1e9 + 7; int n; vector<int> x; vector<vector<int>> g; vector<vector<long long>> dp; long long BinPow(long long x, int n) { if (n == 0) return 1; if (n % 2 == 0) return BinPow(x * x % MOD, n / 2); return x * BinPow(x, n - 1) % MOD; } long long Rev(long long x) { return BinPow(x, MOD - 2); } void DFS(int u) { for (int v : g[u]) DFS(v); if (x[u] == 0) { dp[u][0] = 1; for (int v : g[u]) { dp[u][0] *= (dp[v][0] + dp[v][1]) % MOD; dp[u][0] %= MOD; } long long s = 1; for (int v : g[u]) { s *= (dp[v][0] + dp[v][1]) % MOD; s %= MOD; } dp[u][1] = 0; for (int v : g[u]) { dp[u][1] += ((dp[v][2] * s) % MOD) * Rev(dp[v][0] + dp[v][1]) % MOD; dp[u][1] %= MOD; } dp[u][2] = 0; for (int v : g[u]) { dp[u][2] += ((dp[v][2] * s) % MOD) * Rev(dp[v][0] + dp[v][1]) % MOD; dp[u][2] %= MOD; } } if (x[u] == 1) { dp[u][0] = 0; dp[u][1] = 1; for (int v : g[u]) { dp[u][1] *= (dp[v][0] + dp[v][1]) % MOD; dp[u][1] %= MOD; } dp[u][2] = 1; for (int v : g[u]) { dp[u][2] *= (dp[v][0] + dp[v][1]) % MOD; dp[u][2] %= MOD; } } } int main() { ios_base::sync_with_stdio(false); cin >> n; g.resize(n); for (int i = 1; i < n; ++i) { int p; cin >> p; g[p].push_back(i); } x.resize(n); for (int i = 0; i < n; ++i) cin >> x[i]; dp.resize(n, vector<long long>(3, 0)); DFS(0); cout << dp[0][1] << endl; return 0; }
### Prompt Generate a CPP solution to the following problem: Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other vertices are colored white. Consider a set consisting of k (0 ≀ k < n) edges of Appleman's tree. If Appleman deletes these edges from the tree, then it will split into (k + 1) parts. Note, that each part will be a tree with colored vertices. Now Appleman wonders, what is the number of sets splitting the tree in such a way that each resulting part will have exactly one black vertex? Find this number modulo 1000000007 (109 + 7). Input The first line contains an integer n (2 ≀ n ≀ 105) β€” the number of tree vertices. The second line contains the description of the tree: n - 1 integers p0, p1, ..., pn - 2 (0 ≀ pi ≀ i). Where pi means that there is an edge connecting vertex (i + 1) of the tree and vertex pi. Consider tree vertices are numbered from 0 to n - 1. The third line contains the description of the colors of the vertices: n integers x0, x1, ..., xn - 1 (xi is either 0 or 1). If xi is equal to 1, vertex i is colored black. Otherwise, vertex i is colored white. Output Output a single integer β€” the number of ways to split the tree modulo 1000000007 (109 + 7). Examples Input 3 0 0 0 1 1 Output 2 Input 6 0 1 1 0 4 1 1 0 0 1 0 Output 1 Input 10 0 1 2 1 4 4 4 0 8 0 0 0 1 0 1 1 0 0 1 Output 27 ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int MOD = 1e9 + 7; int n; vector<int> x; vector<vector<int>> g; vector<vector<long long>> dp; long long BinPow(long long x, int n) { if (n == 0) return 1; if (n % 2 == 0) return BinPow(x * x % MOD, n / 2); return x * BinPow(x, n - 1) % MOD; } long long Rev(long long x) { return BinPow(x, MOD - 2); } void DFS(int u) { for (int v : g[u]) DFS(v); if (x[u] == 0) { dp[u][0] = 1; for (int v : g[u]) { dp[u][0] *= (dp[v][0] + dp[v][1]) % MOD; dp[u][0] %= MOD; } long long s = 1; for (int v : g[u]) { s *= (dp[v][0] + dp[v][1]) % MOD; s %= MOD; } dp[u][1] = 0; for (int v : g[u]) { dp[u][1] += ((dp[v][2] * s) % MOD) * Rev(dp[v][0] + dp[v][1]) % MOD; dp[u][1] %= MOD; } dp[u][2] = 0; for (int v : g[u]) { dp[u][2] += ((dp[v][2] * s) % MOD) * Rev(dp[v][0] + dp[v][1]) % MOD; dp[u][2] %= MOD; } } if (x[u] == 1) { dp[u][0] = 0; dp[u][1] = 1; for (int v : g[u]) { dp[u][1] *= (dp[v][0] + dp[v][1]) % MOD; dp[u][1] %= MOD; } dp[u][2] = 1; for (int v : g[u]) { dp[u][2] *= (dp[v][0] + dp[v][1]) % MOD; dp[u][2] %= MOD; } } } int main() { ios_base::sync_with_stdio(false); cin >> n; g.resize(n); for (int i = 1; i < n; ++i) { int p; cin >> p; g[p].push_back(i); } x.resize(n); for (int i = 0; i < n; ++i) cin >> x[i]; dp.resize(n, vector<long long>(3, 0)); DFS(0); cout << dp[0][1] << endl; return 0; } ```
#include <bits/stdc++.h> using namespace std; ; const int M = 100005; const int mod = 1e9 + 7; vector<int> adj[M]; int n, color[M]; long long dp[M][3]; void dfs(int node, int p) { dp[node][1] = color[node]; dp[node][0] = (color[node] == 0); for (auto i : adj[node]) { if (i == p) continue; dfs(i, node); dp[node][1] = dp[node][1] * dp[i][0] + dp[node][0] * dp[i][1] + dp[node][1] * dp[i][1]; dp[node][1] %= mod; dp[node][0] = dp[node][0] * dp[i][0] + dp[node][0] * dp[i][1]; dp[node][0] %= mod; } return; } int main() { ios::sync_with_stdio(0); cin.tie(0); cout.tie(0); cin >> n; for (int i = 2; i <= n; ++i) { int a; cin >> a; adj[a + 1].push_back(i); adj[i].push_back(a + 1); } for (int i = 1; i <= n; ++i) cin >> color[i]; dfs(1, 0); cout << dp[1][1] << "\n"; return 0; }
### Prompt Your task is to create a CPP solution to the following problem: Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other vertices are colored white. Consider a set consisting of k (0 ≀ k < n) edges of Appleman's tree. If Appleman deletes these edges from the tree, then it will split into (k + 1) parts. Note, that each part will be a tree with colored vertices. Now Appleman wonders, what is the number of sets splitting the tree in such a way that each resulting part will have exactly one black vertex? Find this number modulo 1000000007 (109 + 7). Input The first line contains an integer n (2 ≀ n ≀ 105) β€” the number of tree vertices. The second line contains the description of the tree: n - 1 integers p0, p1, ..., pn - 2 (0 ≀ pi ≀ i). Where pi means that there is an edge connecting vertex (i + 1) of the tree and vertex pi. Consider tree vertices are numbered from 0 to n - 1. The third line contains the description of the colors of the vertices: n integers x0, x1, ..., xn - 1 (xi is either 0 or 1). If xi is equal to 1, vertex i is colored black. Otherwise, vertex i is colored white. Output Output a single integer β€” the number of ways to split the tree modulo 1000000007 (109 + 7). Examples Input 3 0 0 0 1 1 Output 2 Input 6 0 1 1 0 4 1 1 0 0 1 0 Output 1 Input 10 0 1 2 1 4 4 4 0 8 0 0 0 1 0 1 1 0 0 1 Output 27 ### Response ```cpp #include <bits/stdc++.h> using namespace std; ; const int M = 100005; const int mod = 1e9 + 7; vector<int> adj[M]; int n, color[M]; long long dp[M][3]; void dfs(int node, int p) { dp[node][1] = color[node]; dp[node][0] = (color[node] == 0); for (auto i : adj[node]) { if (i == p) continue; dfs(i, node); dp[node][1] = dp[node][1] * dp[i][0] + dp[node][0] * dp[i][1] + dp[node][1] * dp[i][1]; dp[node][1] %= mod; dp[node][0] = dp[node][0] * dp[i][0] + dp[node][0] * dp[i][1]; dp[node][0] %= mod; } return; } int main() { ios::sync_with_stdio(0); cin.tie(0); cout.tie(0); cin >> n; for (int i = 2; i <= n; ++i) { int a; cin >> a; adj[a + 1].push_back(i); adj[i].push_back(a + 1); } for (int i = 1; i <= n; ++i) cin >> color[i]; dfs(1, 0); cout << dp[1][1] << "\n"; return 0; } ```
#include <bits/stdc++.h> using namespace std; vector<int> edge[100005]; long long dp[100005][2]; int c[100005], n; void dfs(int u) { dp[u][0] = 1; dp[u][1] = 0; for (unsigned int i = 0; i < edge[u].size(); i++) { int v = edge[u][i]; dfs(v); dp[u][1] = dp[u][1] * dp[v][0] + dp[u][0] * dp[v][1]; dp[u][1] %= (1000000000 + 7); dp[u][0] *= dp[v][0]; dp[u][0] %= (1000000000 + 7); } if (c[u]) dp[u][1] = dp[u][0]; else { dp[u][0] += dp[u][1]; dp[u][0] %= (1000000000 + 7); } } int main() { scanf("%d", &n); for (int i = 1; i < n; i++) { int p; scanf("%d", &p); edge[p].push_back(i); } for (int i = 0; i < n; i++) scanf("%d", &c[i]); dfs(0); printf("%I64d\n", dp[0][1]); return 0; }
### Prompt Your task is to create a Cpp solution to the following problem: Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other vertices are colored white. Consider a set consisting of k (0 ≀ k < n) edges of Appleman's tree. If Appleman deletes these edges from the tree, then it will split into (k + 1) parts. Note, that each part will be a tree with colored vertices. Now Appleman wonders, what is the number of sets splitting the tree in such a way that each resulting part will have exactly one black vertex? Find this number modulo 1000000007 (109 + 7). Input The first line contains an integer n (2 ≀ n ≀ 105) β€” the number of tree vertices. The second line contains the description of the tree: n - 1 integers p0, p1, ..., pn - 2 (0 ≀ pi ≀ i). Where pi means that there is an edge connecting vertex (i + 1) of the tree and vertex pi. Consider tree vertices are numbered from 0 to n - 1. The third line contains the description of the colors of the vertices: n integers x0, x1, ..., xn - 1 (xi is either 0 or 1). If xi is equal to 1, vertex i is colored black. Otherwise, vertex i is colored white. Output Output a single integer β€” the number of ways to split the tree modulo 1000000007 (109 + 7). Examples Input 3 0 0 0 1 1 Output 2 Input 6 0 1 1 0 4 1 1 0 0 1 0 Output 1 Input 10 0 1 2 1 4 4 4 0 8 0 0 0 1 0 1 1 0 0 1 Output 27 ### Response ```cpp #include <bits/stdc++.h> using namespace std; vector<int> edge[100005]; long long dp[100005][2]; int c[100005], n; void dfs(int u) { dp[u][0] = 1; dp[u][1] = 0; for (unsigned int i = 0; i < edge[u].size(); i++) { int v = edge[u][i]; dfs(v); dp[u][1] = dp[u][1] * dp[v][0] + dp[u][0] * dp[v][1]; dp[u][1] %= (1000000000 + 7); dp[u][0] *= dp[v][0]; dp[u][0] %= (1000000000 + 7); } if (c[u]) dp[u][1] = dp[u][0]; else { dp[u][0] += dp[u][1]; dp[u][0] %= (1000000000 + 7); } } int main() { scanf("%d", &n); for (int i = 1; i < n; i++) { int p; scanf("%d", &p); edge[p].push_back(i); } for (int i = 0; i < n; i++) scanf("%d", &c[i]); dfs(0); printf("%I64d\n", dp[0][1]); return 0; } ```
#include <bits/stdc++.h> using namespace std; vector<int> G[100000 + 5]; int n, cor[100000 + 5]; long long dp[100000 + 5][2]; void dfs(int u) { if (cor[u]) { dp[u][1] = 1; } else { dp[u][0] = 1; } for (auto v : G[u]) { dfs(v); dp[u][1] = (dp[u][1] * (dp[v][0] + dp[v][1]) % 1000000007 + dp[u][0] * dp[v][1] % 1000000007) % 1000000007; dp[u][0] = dp[u][0] * (dp[v][0] + dp[v][1]) % 1000000007; } } void read_and_parse() { scanf("%d", &n); for (int i = 2, fa; i <= n; i++) { scanf("%d", &fa); fa++; G[fa].push_back(i); } for (int i = 1; i <= n; i++) scanf("%d", &cor[i]); } void solve() { dfs(1); cout << dp[1][1] << endl; } int main() { read_and_parse(); solve(); return 0; }
### Prompt Develop a solution in Cpp to the problem described below: Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other vertices are colored white. Consider a set consisting of k (0 ≀ k < n) edges of Appleman's tree. If Appleman deletes these edges from the tree, then it will split into (k + 1) parts. Note, that each part will be a tree with colored vertices. Now Appleman wonders, what is the number of sets splitting the tree in such a way that each resulting part will have exactly one black vertex? Find this number modulo 1000000007 (109 + 7). Input The first line contains an integer n (2 ≀ n ≀ 105) β€” the number of tree vertices. The second line contains the description of the tree: n - 1 integers p0, p1, ..., pn - 2 (0 ≀ pi ≀ i). Where pi means that there is an edge connecting vertex (i + 1) of the tree and vertex pi. Consider tree vertices are numbered from 0 to n - 1. The third line contains the description of the colors of the vertices: n integers x0, x1, ..., xn - 1 (xi is either 0 or 1). If xi is equal to 1, vertex i is colored black. Otherwise, vertex i is colored white. Output Output a single integer β€” the number of ways to split the tree modulo 1000000007 (109 + 7). Examples Input 3 0 0 0 1 1 Output 2 Input 6 0 1 1 0 4 1 1 0 0 1 0 Output 1 Input 10 0 1 2 1 4 4 4 0 8 0 0 0 1 0 1 1 0 0 1 Output 27 ### Response ```cpp #include <bits/stdc++.h> using namespace std; vector<int> G[100000 + 5]; int n, cor[100000 + 5]; long long dp[100000 + 5][2]; void dfs(int u) { if (cor[u]) { dp[u][1] = 1; } else { dp[u][0] = 1; } for (auto v : G[u]) { dfs(v); dp[u][1] = (dp[u][1] * (dp[v][0] + dp[v][1]) % 1000000007 + dp[u][0] * dp[v][1] % 1000000007) % 1000000007; dp[u][0] = dp[u][0] * (dp[v][0] + dp[v][1]) % 1000000007; } } void read_and_parse() { scanf("%d", &n); for (int i = 2, fa; i <= n; i++) { scanf("%d", &fa); fa++; G[fa].push_back(i); } for (int i = 1; i <= n; i++) scanf("%d", &cor[i]); } void solve() { dfs(1); cout << dp[1][1] << endl; } int main() { read_and_parse(); solve(); return 0; } ```
#include <bits/stdc++.h> using namespace std; const int maxn = 111111; const int maxm = 111111; const int mod = 1000000007; int n; vector<int> a[maxn]; int col[maxn]; int s[maxn]; int num; int v[maxn]; long long dp[maxn][2]; void dfs(int x) { v[x] = 1; int len = a[x].size(); for (int i = 0; i < len; i++) if (!v[a[x][i]]) { dfs(a[x][i]); } s[num++] = x; } void solve() { num = 0; int t; memset(v, 0, sizeof(v)); for (int i = 0; i <= n; i++) { a[i].clear(); } for (int i = 0; i < n - 1; i++) { scanf("%d", &t); a[i + 1].push_back(t); a[t].push_back(i + 1); } for (int i = 0; i < n; i++) { scanf("%d", &col[i]); } dfs(0); int len; memset(v, 0, sizeof(v)); for (int i = 0; i < num; i++) { t = s[i]; v[t] = 1; if (col[t] == 1) { dp[t][0] = 0; dp[t][1] = 1; len = a[t].size(); for (int i = 0; i < len; i++) if (v[a[t][i]]) { dp[t][1] = dp[t][1] * (dp[a[t][i]][1] + dp[a[t][i]][0]) % mod; } } else { dp[t][0] = 1; dp[t][1] = 0; len = a[t].size(); for (int i = 0; i < len; i++) if (v[a[t][i]]) { dp[t][1] = (dp[t][1] * (dp[a[t][i]][1] + dp[a[t][i]][0]) + dp[t][0] * dp[a[t][i]][1]) % mod; dp[t][0] = dp[t][0] * (dp[a[t][i]][1] + dp[a[t][i]][0]) % mod; } } } cout << dp[0][1] << endl; } int main() { int t; while (~scanf("%d", &n)) { solve(); } return 0; }
### Prompt Please formulate a cpp solution to the following problem: Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other vertices are colored white. Consider a set consisting of k (0 ≀ k < n) edges of Appleman's tree. If Appleman deletes these edges from the tree, then it will split into (k + 1) parts. Note, that each part will be a tree with colored vertices. Now Appleman wonders, what is the number of sets splitting the tree in such a way that each resulting part will have exactly one black vertex? Find this number modulo 1000000007 (109 + 7). Input The first line contains an integer n (2 ≀ n ≀ 105) β€” the number of tree vertices. The second line contains the description of the tree: n - 1 integers p0, p1, ..., pn - 2 (0 ≀ pi ≀ i). Where pi means that there is an edge connecting vertex (i + 1) of the tree and vertex pi. Consider tree vertices are numbered from 0 to n - 1. The third line contains the description of the colors of the vertices: n integers x0, x1, ..., xn - 1 (xi is either 0 or 1). If xi is equal to 1, vertex i is colored black. Otherwise, vertex i is colored white. Output Output a single integer β€” the number of ways to split the tree modulo 1000000007 (109 + 7). Examples Input 3 0 0 0 1 1 Output 2 Input 6 0 1 1 0 4 1 1 0 0 1 0 Output 1 Input 10 0 1 2 1 4 4 4 0 8 0 0 0 1 0 1 1 0 0 1 Output 27 ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int maxn = 111111; const int maxm = 111111; const int mod = 1000000007; int n; vector<int> a[maxn]; int col[maxn]; int s[maxn]; int num; int v[maxn]; long long dp[maxn][2]; void dfs(int x) { v[x] = 1; int len = a[x].size(); for (int i = 0; i < len; i++) if (!v[a[x][i]]) { dfs(a[x][i]); } s[num++] = x; } void solve() { num = 0; int t; memset(v, 0, sizeof(v)); for (int i = 0; i <= n; i++) { a[i].clear(); } for (int i = 0; i < n - 1; i++) { scanf("%d", &t); a[i + 1].push_back(t); a[t].push_back(i + 1); } for (int i = 0; i < n; i++) { scanf("%d", &col[i]); } dfs(0); int len; memset(v, 0, sizeof(v)); for (int i = 0; i < num; i++) { t = s[i]; v[t] = 1; if (col[t] == 1) { dp[t][0] = 0; dp[t][1] = 1; len = a[t].size(); for (int i = 0; i < len; i++) if (v[a[t][i]]) { dp[t][1] = dp[t][1] * (dp[a[t][i]][1] + dp[a[t][i]][0]) % mod; } } else { dp[t][0] = 1; dp[t][1] = 0; len = a[t].size(); for (int i = 0; i < len; i++) if (v[a[t][i]]) { dp[t][1] = (dp[t][1] * (dp[a[t][i]][1] + dp[a[t][i]][0]) + dp[t][0] * dp[a[t][i]][1]) % mod; dp[t][0] = dp[t][0] * (dp[a[t][i]][1] + dp[a[t][i]][0]) % mod; } } } cout << dp[0][1] << endl; } int main() { int t; while (~scanf("%d", &n)) { solve(); } return 0; } ```
#include <bits/stdc++.h> using namespace std; const int V = 100100; const int P = 1000000007; struct Edge { int v, ne; } e[V * 2]; int p[V], K; void add(int u, int v) { e[K].v = v; e[K].ne = p[u]; p[u] = K++; } int col[V], dp[V][2]; void dfs(int u) { dp[u][0] = dp[u][1] = 0; if (col[u] == 1) dp[u][1] = 1; else dp[u][0] = 1; for (int i = p[u]; i != -1; i = e[i].ne) { int v = e[i].v; dfs(v); int tmp0 = (long long)dp[u][0] * (dp[v][0] + dp[v][1]) % P; int tmp1 = ((long long)(dp[u][0] + dp[u][1]) * dp[v][1] % P + (long long)dp[u][1] * dp[v][0] % P) % P; dp[u][0] = tmp0; dp[u][1] = tmp1; } } int n, x; int main() { while (~scanf("%d", &n)) { memset(p, -1, sizeof(p)); K = 0; for (int i = 1; i < n; i++) { scanf("%d", &x); add(x, i); } for (int i = 0; i < n; i++) scanf("%d", &col[i]); dfs(0); printf("%d\n", dp[0][1]); } return 0; }
### Prompt In Cpp, your task is to solve the following problem: Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other vertices are colored white. Consider a set consisting of k (0 ≀ k < n) edges of Appleman's tree. If Appleman deletes these edges from the tree, then it will split into (k + 1) parts. Note, that each part will be a tree with colored vertices. Now Appleman wonders, what is the number of sets splitting the tree in such a way that each resulting part will have exactly one black vertex? Find this number modulo 1000000007 (109 + 7). Input The first line contains an integer n (2 ≀ n ≀ 105) β€” the number of tree vertices. The second line contains the description of the tree: n - 1 integers p0, p1, ..., pn - 2 (0 ≀ pi ≀ i). Where pi means that there is an edge connecting vertex (i + 1) of the tree and vertex pi. Consider tree vertices are numbered from 0 to n - 1. The third line contains the description of the colors of the vertices: n integers x0, x1, ..., xn - 1 (xi is either 0 or 1). If xi is equal to 1, vertex i is colored black. Otherwise, vertex i is colored white. Output Output a single integer β€” the number of ways to split the tree modulo 1000000007 (109 + 7). Examples Input 3 0 0 0 1 1 Output 2 Input 6 0 1 1 0 4 1 1 0 0 1 0 Output 1 Input 10 0 1 2 1 4 4 4 0 8 0 0 0 1 0 1 1 0 0 1 Output 27 ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int V = 100100; const int P = 1000000007; struct Edge { int v, ne; } e[V * 2]; int p[V], K; void add(int u, int v) { e[K].v = v; e[K].ne = p[u]; p[u] = K++; } int col[V], dp[V][2]; void dfs(int u) { dp[u][0] = dp[u][1] = 0; if (col[u] == 1) dp[u][1] = 1; else dp[u][0] = 1; for (int i = p[u]; i != -1; i = e[i].ne) { int v = e[i].v; dfs(v); int tmp0 = (long long)dp[u][0] * (dp[v][0] + dp[v][1]) % P; int tmp1 = ((long long)(dp[u][0] + dp[u][1]) * dp[v][1] % P + (long long)dp[u][1] * dp[v][0] % P) % P; dp[u][0] = tmp0; dp[u][1] = tmp1; } } int n, x; int main() { while (~scanf("%d", &n)) { memset(p, -1, sizeof(p)); K = 0; for (int i = 1; i < n; i++) { scanf("%d", &x); add(x, i); } for (int i = 0; i < n; i++) scanf("%d", &col[i]); dfs(0); printf("%d\n", dp[0][1]); } return 0; } ```
#include <bits/stdc++.h> const int mod = (int)1e9 + 7; int add(int a, int b) { return (a += b) >= mod ? a -= mod : a; } int sub(int a, int b) { return add(a, mod - b); } int mul(int a, int b) { return int(1LL * a * b % mod); } int pow(int a, int64_t n) { int res = 1; while (n > 0) { if (n & 1) { res = mul(res, a); } a = mul(a, a); n >>= 1; } return res; } int inv(int a) { return pow(a, mod - 2); } int divmod(int a, int b) { return mul(a, inv(b)); } int main() { std::ios_base::sync_with_stdio(false); std::cin.tie(0); for (int n; std::cin >> n;) { std::vector<std::vector<int> > next(n); for (int u = 1, p; u < n; ++u) { std::cin >> p; next[p].push_back(u); next[u].push_back(p); } std::vector<int> color(n); for (int i = 0; i < n; ++i) { std::cin >> color[i]; } std::vector<int> cnt0(n, -1), cnt1(n); std::function<void(int, int)> dfs = [&](int u, int p) { if (color[u] == 1) { cnt0[u] = 0; cnt1[u] = 1; return; } cnt0[u] = 1; cnt1[u] = 0; for (int v : next[u]) { if (v == p) { continue; } dfs(v, u); cnt0[u] = mul(cnt0[u], add(cnt0[v], cnt1[v])); cnt1[u] = add(cnt1[u], divmod(cnt1[v], add(cnt0[v], cnt1[v]))); } cnt1[u] = mul(cnt1[u], cnt0[u]); }; int answ = 1; for (int u = 0; u < n; ++u) { if (cnt0[u] == -1 && color[u] == 0) { dfs(u, -1); answ = mul(answ, cnt1[u]); } } std::cout << answ << std::endl; } return 0; }
### Prompt Develop a solution in cpp to the problem described below: Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other vertices are colored white. Consider a set consisting of k (0 ≀ k < n) edges of Appleman's tree. If Appleman deletes these edges from the tree, then it will split into (k + 1) parts. Note, that each part will be a tree with colored vertices. Now Appleman wonders, what is the number of sets splitting the tree in such a way that each resulting part will have exactly one black vertex? Find this number modulo 1000000007 (109 + 7). Input The first line contains an integer n (2 ≀ n ≀ 105) β€” the number of tree vertices. The second line contains the description of the tree: n - 1 integers p0, p1, ..., pn - 2 (0 ≀ pi ≀ i). Where pi means that there is an edge connecting vertex (i + 1) of the tree and vertex pi. Consider tree vertices are numbered from 0 to n - 1. The third line contains the description of the colors of the vertices: n integers x0, x1, ..., xn - 1 (xi is either 0 or 1). If xi is equal to 1, vertex i is colored black. Otherwise, vertex i is colored white. Output Output a single integer β€” the number of ways to split the tree modulo 1000000007 (109 + 7). Examples Input 3 0 0 0 1 1 Output 2 Input 6 0 1 1 0 4 1 1 0 0 1 0 Output 1 Input 10 0 1 2 1 4 4 4 0 8 0 0 0 1 0 1 1 0 0 1 Output 27 ### Response ```cpp #include <bits/stdc++.h> const int mod = (int)1e9 + 7; int add(int a, int b) { return (a += b) >= mod ? a -= mod : a; } int sub(int a, int b) { return add(a, mod - b); } int mul(int a, int b) { return int(1LL * a * b % mod); } int pow(int a, int64_t n) { int res = 1; while (n > 0) { if (n & 1) { res = mul(res, a); } a = mul(a, a); n >>= 1; } return res; } int inv(int a) { return pow(a, mod - 2); } int divmod(int a, int b) { return mul(a, inv(b)); } int main() { std::ios_base::sync_with_stdio(false); std::cin.tie(0); for (int n; std::cin >> n;) { std::vector<std::vector<int> > next(n); for (int u = 1, p; u < n; ++u) { std::cin >> p; next[p].push_back(u); next[u].push_back(p); } std::vector<int> color(n); for (int i = 0; i < n; ++i) { std::cin >> color[i]; } std::vector<int> cnt0(n, -1), cnt1(n); std::function<void(int, int)> dfs = [&](int u, int p) { if (color[u] == 1) { cnt0[u] = 0; cnt1[u] = 1; return; } cnt0[u] = 1; cnt1[u] = 0; for (int v : next[u]) { if (v == p) { continue; } dfs(v, u); cnt0[u] = mul(cnt0[u], add(cnt0[v], cnt1[v])); cnt1[u] = add(cnt1[u], divmod(cnt1[v], add(cnt0[v], cnt1[v]))); } cnt1[u] = mul(cnt1[u], cnt0[u]); }; int answ = 1; for (int u = 0; u < n; ++u) { if (cnt0[u] == -1 && color[u] == 0) { dfs(u, -1); answ = mul(answ, cnt1[u]); } } std::cout << answ << std::endl; } return 0; } ```
#include <bits/stdc++.h> using namespace std; long long visited[100005] = {false}; vector<int> g[100005]; long long n, x, b[100005], dp[100005][2]; void dfs(int v) { dp[v][0] = 1 - b[v]; dp[v][1] = b[v]; int old[2]; for (int i = 0; i < g[v].size(); ++i) { int u = g[v][i]; old[0] = dp[v][0]; old[1] = dp[v][1]; dp[v][0] = dp[v][1] = 0; dfs(u); dp[v][0] = (dp[v][0] + old[0] * dp[u][1]) % 1000000007; dp[v][1] = (dp[v][1] + old[1] * dp[u][1]) % 1000000007; dp[v][1] = (dp[v][1] + old[0] * dp[u][1]) % 1000000007; dp[v][1] = (dp[v][1] + old[1] * dp[u][0]) % 1000000007; dp[v][0] = (dp[v][0] + old[0] * dp[u][0]) % 1000000007; } } int main() { cin >> n; for (int i = 0; i < n - 1; ++i) { cin >> x; g[x].push_back(i + 1); } for (int i = 0; i < n; ++i) cin >> b[i]; dfs(0); cout << dp[0][1] % 1000000007 << endl; return 0; }
### Prompt Your task is to create a CPP solution to the following problem: Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other vertices are colored white. Consider a set consisting of k (0 ≀ k < n) edges of Appleman's tree. If Appleman deletes these edges from the tree, then it will split into (k + 1) parts. Note, that each part will be a tree with colored vertices. Now Appleman wonders, what is the number of sets splitting the tree in such a way that each resulting part will have exactly one black vertex? Find this number modulo 1000000007 (109 + 7). Input The first line contains an integer n (2 ≀ n ≀ 105) β€” the number of tree vertices. The second line contains the description of the tree: n - 1 integers p0, p1, ..., pn - 2 (0 ≀ pi ≀ i). Where pi means that there is an edge connecting vertex (i + 1) of the tree and vertex pi. Consider tree vertices are numbered from 0 to n - 1. The third line contains the description of the colors of the vertices: n integers x0, x1, ..., xn - 1 (xi is either 0 or 1). If xi is equal to 1, vertex i is colored black. Otherwise, vertex i is colored white. Output Output a single integer β€” the number of ways to split the tree modulo 1000000007 (109 + 7). Examples Input 3 0 0 0 1 1 Output 2 Input 6 0 1 1 0 4 1 1 0 0 1 0 Output 1 Input 10 0 1 2 1 4 4 4 0 8 0 0 0 1 0 1 1 0 0 1 Output 27 ### Response ```cpp #include <bits/stdc++.h> using namespace std; long long visited[100005] = {false}; vector<int> g[100005]; long long n, x, b[100005], dp[100005][2]; void dfs(int v) { dp[v][0] = 1 - b[v]; dp[v][1] = b[v]; int old[2]; for (int i = 0; i < g[v].size(); ++i) { int u = g[v][i]; old[0] = dp[v][0]; old[1] = dp[v][1]; dp[v][0] = dp[v][1] = 0; dfs(u); dp[v][0] = (dp[v][0] + old[0] * dp[u][1]) % 1000000007; dp[v][1] = (dp[v][1] + old[1] * dp[u][1]) % 1000000007; dp[v][1] = (dp[v][1] + old[0] * dp[u][1]) % 1000000007; dp[v][1] = (dp[v][1] + old[1] * dp[u][0]) % 1000000007; dp[v][0] = (dp[v][0] + old[0] * dp[u][0]) % 1000000007; } } int main() { cin >> n; for (int i = 0; i < n - 1; ++i) { cin >> x; g[x].push_back(i + 1); } for (int i = 0; i < n; ++i) cin >> b[i]; dfs(0); cout << dp[0][1] % 1000000007 << endl; return 0; } ```
#include <bits/stdc++.h> using namespace std; const double PI = acos(-1); const int N = 1e5 + 10; const int MOD = 1e9 + 7; long long in[N], ex[N], col[N]; vector<int> child[N]; long long fex(int r); long long fin(int r) { if (in[r] != -1) return in[r]; if (col[r]) { in[r] = 1LL; for (long long i = 0; i < (child[r].size()); i++) in[r] = in[r] * ((fin(child[r][i]) + fex(child[r][i])) % MOD) % MOD; } else { in[r] = 0; long long mul = 1LL; for (long long i = 0; i < (child[r].size()); i++) { long long param = (fin(child[r][i]) + fex(child[r][i])) % MOD; in[r] = (in[r] * param % MOD + mul * fin(child[r][i]) % MOD) % MOD; mul = mul * param % MOD; } } return in[r]; } long long fex(int r) { if (ex[r] != -1) return ex[r]; if (col[r]) return ex[r] = 0; ex[r] = 1LL; for (long long i = 0; i < (child[r].size()); i++) ex[r] = ex[r] * ((fin(child[r][i]) + fex(child[r][i])) % MOD) % MOD; return ex[r]; } int main() { ios::sync_with_stdio(false); int n; cin >> n; memset(col, 0, sizeof(col)); memset(in, -1, sizeof(in)); memset(ex, -1, sizeof(ex)); for (long long i = 0; i < (n - 1); i++) { int p; cin >> p; child[p].push_back(i + 1); } for (long long i = 0; i < (n); i++) cin >> col[i]; cout << fin(0) << endl; }
### Prompt Develop a solution in Cpp to the problem described below: Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other vertices are colored white. Consider a set consisting of k (0 ≀ k < n) edges of Appleman's tree. If Appleman deletes these edges from the tree, then it will split into (k + 1) parts. Note, that each part will be a tree with colored vertices. Now Appleman wonders, what is the number of sets splitting the tree in such a way that each resulting part will have exactly one black vertex? Find this number modulo 1000000007 (109 + 7). Input The first line contains an integer n (2 ≀ n ≀ 105) β€” the number of tree vertices. The second line contains the description of the tree: n - 1 integers p0, p1, ..., pn - 2 (0 ≀ pi ≀ i). Where pi means that there is an edge connecting vertex (i + 1) of the tree and vertex pi. Consider tree vertices are numbered from 0 to n - 1. The third line contains the description of the colors of the vertices: n integers x0, x1, ..., xn - 1 (xi is either 0 or 1). If xi is equal to 1, vertex i is colored black. Otherwise, vertex i is colored white. Output Output a single integer β€” the number of ways to split the tree modulo 1000000007 (109 + 7). Examples Input 3 0 0 0 1 1 Output 2 Input 6 0 1 1 0 4 1 1 0 0 1 0 Output 1 Input 10 0 1 2 1 4 4 4 0 8 0 0 0 1 0 1 1 0 0 1 Output 27 ### Response ```cpp #include <bits/stdc++.h> using namespace std; const double PI = acos(-1); const int N = 1e5 + 10; const int MOD = 1e9 + 7; long long in[N], ex[N], col[N]; vector<int> child[N]; long long fex(int r); long long fin(int r) { if (in[r] != -1) return in[r]; if (col[r]) { in[r] = 1LL; for (long long i = 0; i < (child[r].size()); i++) in[r] = in[r] * ((fin(child[r][i]) + fex(child[r][i])) % MOD) % MOD; } else { in[r] = 0; long long mul = 1LL; for (long long i = 0; i < (child[r].size()); i++) { long long param = (fin(child[r][i]) + fex(child[r][i])) % MOD; in[r] = (in[r] * param % MOD + mul * fin(child[r][i]) % MOD) % MOD; mul = mul * param % MOD; } } return in[r]; } long long fex(int r) { if (ex[r] != -1) return ex[r]; if (col[r]) return ex[r] = 0; ex[r] = 1LL; for (long long i = 0; i < (child[r].size()); i++) ex[r] = ex[r] * ((fin(child[r][i]) + fex(child[r][i])) % MOD) % MOD; return ex[r]; } int main() { ios::sync_with_stdio(false); int n; cin >> n; memset(col, 0, sizeof(col)); memset(in, -1, sizeof(in)); memset(ex, -1, sizeof(ex)); for (long long i = 0; i < (n - 1); i++) { int p; cin >> p; child[p].push_back(i + 1); } for (long long i = 0; i < (n); i++) cin >> col[i]; cout << fin(0) << endl; } ```
#include <bits/stdc++.h> using namespace std; template <typename Arg1> void __f(const char* name, Arg1&& arg1) { cerr << name << " : " << arg1 << "\n"; } template <typename Arg1, typename... Args> void __f(const char* na, Arg1&& arg1, Args&&... args) { const char* c = strchr(na + 1, ','); cerr.write(na, c - na) << " : " << arg1 << " , "; __f(c + 1, args...); } const int MOD = 1e9 + 7; const int inf = 1e9; const double EPS = 1e-9; const double PI = acos(-1.0); const long long INF = 1e18; const int N = 1e5 + 5; int col[N]; vector<int> graph[N]; long long int dp[N][2]; void dfs(int s, int p) { dp[s][0] = 1; dp[s][1] = 0; for (auto x : graph[s]) { if (x == p) continue; dfs(x, s); dp[s][1] = (dp[s][1] % MOD * dp[x][0] % MOD) % MOD; dp[s][1] = (dp[s][1] % MOD + (dp[s][0] % MOD * dp[x][1] % MOD) % MOD) % MOD; dp[s][0] = (dp[s][0] % MOD * dp[x][0] % MOD) % MOD; } if (col[s] == 1) dp[s][1] = dp[s][0] % MOD; else dp[s][0] = (dp[s][0] % MOD + dp[s][1] % MOD) % MOD; } int main() { ios_base::sync_with_stdio(0); cin.tie(0); cout.tie(0); ; int n; cin >> n; for (int i = 1; i < n; i++) { int u; cin >> u; graph[u].push_back(i); graph[i].push_back(u); } for (int i = 0; i < n; i++) cin >> col[i]; dfs(0, -1); cout << dp[0][1] % MOD << "\n"; return 0; }
### Prompt Please create a solution in CPP to the following problem: Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other vertices are colored white. Consider a set consisting of k (0 ≀ k < n) edges of Appleman's tree. If Appleman deletes these edges from the tree, then it will split into (k + 1) parts. Note, that each part will be a tree with colored vertices. Now Appleman wonders, what is the number of sets splitting the tree in such a way that each resulting part will have exactly one black vertex? Find this number modulo 1000000007 (109 + 7). Input The first line contains an integer n (2 ≀ n ≀ 105) β€” the number of tree vertices. The second line contains the description of the tree: n - 1 integers p0, p1, ..., pn - 2 (0 ≀ pi ≀ i). Where pi means that there is an edge connecting vertex (i + 1) of the tree and vertex pi. Consider tree vertices are numbered from 0 to n - 1. The third line contains the description of the colors of the vertices: n integers x0, x1, ..., xn - 1 (xi is either 0 or 1). If xi is equal to 1, vertex i is colored black. Otherwise, vertex i is colored white. Output Output a single integer β€” the number of ways to split the tree modulo 1000000007 (109 + 7). Examples Input 3 0 0 0 1 1 Output 2 Input 6 0 1 1 0 4 1 1 0 0 1 0 Output 1 Input 10 0 1 2 1 4 4 4 0 8 0 0 0 1 0 1 1 0 0 1 Output 27 ### Response ```cpp #include <bits/stdc++.h> using namespace std; template <typename Arg1> void __f(const char* name, Arg1&& arg1) { cerr << name << " : " << arg1 << "\n"; } template <typename Arg1, typename... Args> void __f(const char* na, Arg1&& arg1, Args&&... args) { const char* c = strchr(na + 1, ','); cerr.write(na, c - na) << " : " << arg1 << " , "; __f(c + 1, args...); } const int MOD = 1e9 + 7; const int inf = 1e9; const double EPS = 1e-9; const double PI = acos(-1.0); const long long INF = 1e18; const int N = 1e5 + 5; int col[N]; vector<int> graph[N]; long long int dp[N][2]; void dfs(int s, int p) { dp[s][0] = 1; dp[s][1] = 0; for (auto x : graph[s]) { if (x == p) continue; dfs(x, s); dp[s][1] = (dp[s][1] % MOD * dp[x][0] % MOD) % MOD; dp[s][1] = (dp[s][1] % MOD + (dp[s][0] % MOD * dp[x][1] % MOD) % MOD) % MOD; dp[s][0] = (dp[s][0] % MOD * dp[x][0] % MOD) % MOD; } if (col[s] == 1) dp[s][1] = dp[s][0] % MOD; else dp[s][0] = (dp[s][0] % MOD + dp[s][1] % MOD) % MOD; } int main() { ios_base::sync_with_stdio(0); cin.tie(0); cout.tie(0); ; int n; cin >> n; for (int i = 1; i < n; i++) { int u; cin >> u; graph[u].push_back(i); graph[i].push_back(u); } for (int i = 0; i < n; i++) cin >> col[i]; dfs(0, -1); cout << dp[0][1] % MOD << "\n"; return 0; } ```
#include <bits/stdc++.h> using namespace std; const int MAXN = 1e5 + 5; int n, dp[MAXN][2], mod = 1e9 + 7; bool A[MAXN]; vector<int> g[MAXN]; int plu(int a, int b) { return (a + b) % mod; } int mul(int a, int b) { return ((long long)a * b) % (long long)mod; } void dfs(int u, int p) { dp[u][0] = 1, dp[u][1] = 0; for (auto v : g[u]) if (v != p) { dfs(v, u); dp[u][1] = plu(mul(dp[u][1], dp[v][0]), mul(dp[u][0], dp[v][1])); dp[u][0] = mul(dp[u][0], dp[v][0]); } if (A[u]) dp[u][1] = dp[u][0]; else dp[u][0] = plu(dp[u][0], dp[u][1]); } int main() { scanf("%d", &n); for (int i = 1; i < n; ++i) { int v; scanf("%d", &v); g[i].emplace_back(v), g[v].emplace_back(i); } for (int i = 0; i < n; ++i) scanf("%d", A + i); dfs(0, -1); printf("%d\n", dp[0][1]); }
### Prompt Generate a CPP solution to the following problem: Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other vertices are colored white. Consider a set consisting of k (0 ≀ k < n) edges of Appleman's tree. If Appleman deletes these edges from the tree, then it will split into (k + 1) parts. Note, that each part will be a tree with colored vertices. Now Appleman wonders, what is the number of sets splitting the tree in such a way that each resulting part will have exactly one black vertex? Find this number modulo 1000000007 (109 + 7). Input The first line contains an integer n (2 ≀ n ≀ 105) β€” the number of tree vertices. The second line contains the description of the tree: n - 1 integers p0, p1, ..., pn - 2 (0 ≀ pi ≀ i). Where pi means that there is an edge connecting vertex (i + 1) of the tree and vertex pi. Consider tree vertices are numbered from 0 to n - 1. The third line contains the description of the colors of the vertices: n integers x0, x1, ..., xn - 1 (xi is either 0 or 1). If xi is equal to 1, vertex i is colored black. Otherwise, vertex i is colored white. Output Output a single integer β€” the number of ways to split the tree modulo 1000000007 (109 + 7). Examples Input 3 0 0 0 1 1 Output 2 Input 6 0 1 1 0 4 1 1 0 0 1 0 Output 1 Input 10 0 1 2 1 4 4 4 0 8 0 0 0 1 0 1 1 0 0 1 Output 27 ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int MAXN = 1e5 + 5; int n, dp[MAXN][2], mod = 1e9 + 7; bool A[MAXN]; vector<int> g[MAXN]; int plu(int a, int b) { return (a + b) % mod; } int mul(int a, int b) { return ((long long)a * b) % (long long)mod; } void dfs(int u, int p) { dp[u][0] = 1, dp[u][1] = 0; for (auto v : g[u]) if (v != p) { dfs(v, u); dp[u][1] = plu(mul(dp[u][1], dp[v][0]), mul(dp[u][0], dp[v][1])); dp[u][0] = mul(dp[u][0], dp[v][0]); } if (A[u]) dp[u][1] = dp[u][0]; else dp[u][0] = plu(dp[u][0], dp[u][1]); } int main() { scanf("%d", &n); for (int i = 1; i < n; ++i) { int v; scanf("%d", &v); g[i].emplace_back(v), g[v].emplace_back(i); } for (int i = 0; i < n; ++i) scanf("%d", A + i); dfs(0, -1); printf("%d\n", dp[0][1]); } ```
#include <bits/stdc++.h> using namespace std; struct node { node *next; int where; } * first[100001], a[1000001]; int n, l, w[100001], c[100001]; const int p = 1000000007; long long f[100001][2], g[2]; inline void makelist(int x, int y) { a[++l].where = y; a[l].next = first[x]; first[x] = &a[l]; } int main() { scanf("%d", &n); memset(first, 0, sizeof(first)); l = 0; for (int i = 2; i <= n; i++) { int x; scanf("%d", &x); ++x; makelist(x, i); } for (int i = 1; i <= n; i++) scanf("%d", &w[i]); memset(f, 0, sizeof(f)); for (int i = n; i; --i) { if (w[i]) { f[i][0] = 0; f[i][1] = 1; for (node *x = first[i]; x; x = x->next) f[i][1] *= (f[x->where][0] + f[x->where][1]) % p, f[i][1] %= p; } else { f[i][0] = 1; g[0] = 1; g[1] = 0; for (node *x = first[i]; x; x = x->next) { f[i][0] *= (f[x->where][0] + f[x->where][1]) % p, f[i][0] %= p; g[1] = g[0] * f[x->where][1] % p + g[1] * (f[x->where][0] + f[x->where][1]) % p; g[1] %= p; g[0] *= (f[x->where][0] + f[x->where][1]); g[0] %= p; } f[i][1] = g[1]; } } cout << f[1][1] << endl; }
### Prompt Generate a Cpp solution to the following problem: Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other vertices are colored white. Consider a set consisting of k (0 ≀ k < n) edges of Appleman's tree. If Appleman deletes these edges from the tree, then it will split into (k + 1) parts. Note, that each part will be a tree with colored vertices. Now Appleman wonders, what is the number of sets splitting the tree in such a way that each resulting part will have exactly one black vertex? Find this number modulo 1000000007 (109 + 7). Input The first line contains an integer n (2 ≀ n ≀ 105) β€” the number of tree vertices. The second line contains the description of the tree: n - 1 integers p0, p1, ..., pn - 2 (0 ≀ pi ≀ i). Where pi means that there is an edge connecting vertex (i + 1) of the tree and vertex pi. Consider tree vertices are numbered from 0 to n - 1. The third line contains the description of the colors of the vertices: n integers x0, x1, ..., xn - 1 (xi is either 0 or 1). If xi is equal to 1, vertex i is colored black. Otherwise, vertex i is colored white. Output Output a single integer β€” the number of ways to split the tree modulo 1000000007 (109 + 7). Examples Input 3 0 0 0 1 1 Output 2 Input 6 0 1 1 0 4 1 1 0 0 1 0 Output 1 Input 10 0 1 2 1 4 4 4 0 8 0 0 0 1 0 1 1 0 0 1 Output 27 ### Response ```cpp #include <bits/stdc++.h> using namespace std; struct node { node *next; int where; } * first[100001], a[1000001]; int n, l, w[100001], c[100001]; const int p = 1000000007; long long f[100001][2], g[2]; inline void makelist(int x, int y) { a[++l].where = y; a[l].next = first[x]; first[x] = &a[l]; } int main() { scanf("%d", &n); memset(first, 0, sizeof(first)); l = 0; for (int i = 2; i <= n; i++) { int x; scanf("%d", &x); ++x; makelist(x, i); } for (int i = 1; i <= n; i++) scanf("%d", &w[i]); memset(f, 0, sizeof(f)); for (int i = n; i; --i) { if (w[i]) { f[i][0] = 0; f[i][1] = 1; for (node *x = first[i]; x; x = x->next) f[i][1] *= (f[x->where][0] + f[x->where][1]) % p, f[i][1] %= p; } else { f[i][0] = 1; g[0] = 1; g[1] = 0; for (node *x = first[i]; x; x = x->next) { f[i][0] *= (f[x->where][0] + f[x->where][1]) % p, f[i][0] %= p; g[1] = g[0] * f[x->where][1] % p + g[1] * (f[x->where][0] + f[x->where][1]) % p; g[1] %= p; g[0] *= (f[x->where][0] + f[x->where][1]); g[0] %= p; } f[i][1] = g[1]; } } cout << f[1][1] << endl; } ```
#include <bits/stdc++.h> using namespace std; const int MOD = 1000 * 1000 * 1000 + 7; int power(int b, int n) { if (n == 1) { return b % MOD; } else if (n % 2 == 0) { int t = power(b, n / 2); return (1LL * t * t) % MOD; } else { return (1LL * b * power(b, n - 1)) % MOD; } } int MODdivide(int a, int b) { return (1LL * a * power(b, MOD - 2)) % MOD; } void dfs(int curr, const vector<vector<int>>& gr, vector<pair<int, int>>& dp, vector<int>& color, int parent = -1) { int sum = 1; for (int next : gr[curr]) { if (next == parent) { continue; } dfs(next, gr, dp, color, curr); sum = (1LL * sum * (dp[next].first + dp[next].second)) % MOD; } if (gr[curr].size() == 1 && curr > 0) { dp[curr].first = (color[curr] == 0 ? 1 : 0); dp[curr].second = (color[curr] == 1 ? 1 : 0); return; } if (color[curr] == 1) { dp[curr].first = 0; dp[curr].second = sum; } else { dp[curr].first = sum; for (int next : gr[curr]) { if (next == parent) { continue; } dp[curr].second = (1LL * dp[curr].second + 1LL * dp[next].second * MODdivide(sum, dp[next].first + dp[next].second)) % MOD; } } return; } int main() { int n; cin >> n; vector<vector<int>> gr(n); for (int i = 0; i < n - 1; ++i) { int p; cin >> p; gr[p].push_back(i + 1); gr[i + 1].push_back(p); } vector<int> color(n); for (int i = 0; i < n; ++i) { cin >> color[i]; } vector<pair<int, int>> dp(n, {0, 0}); dfs(0, gr, dp, color); cout << dp[0].second << endl; return 0; }
### Prompt Construct a Cpp code solution to the problem outlined: Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other vertices are colored white. Consider a set consisting of k (0 ≀ k < n) edges of Appleman's tree. If Appleman deletes these edges from the tree, then it will split into (k + 1) parts. Note, that each part will be a tree with colored vertices. Now Appleman wonders, what is the number of sets splitting the tree in such a way that each resulting part will have exactly one black vertex? Find this number modulo 1000000007 (109 + 7). Input The first line contains an integer n (2 ≀ n ≀ 105) β€” the number of tree vertices. The second line contains the description of the tree: n - 1 integers p0, p1, ..., pn - 2 (0 ≀ pi ≀ i). Where pi means that there is an edge connecting vertex (i + 1) of the tree and vertex pi. Consider tree vertices are numbered from 0 to n - 1. The third line contains the description of the colors of the vertices: n integers x0, x1, ..., xn - 1 (xi is either 0 or 1). If xi is equal to 1, vertex i is colored black. Otherwise, vertex i is colored white. Output Output a single integer β€” the number of ways to split the tree modulo 1000000007 (109 + 7). Examples Input 3 0 0 0 1 1 Output 2 Input 6 0 1 1 0 4 1 1 0 0 1 0 Output 1 Input 10 0 1 2 1 4 4 4 0 8 0 0 0 1 0 1 1 0 0 1 Output 27 ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int MOD = 1000 * 1000 * 1000 + 7; int power(int b, int n) { if (n == 1) { return b % MOD; } else if (n % 2 == 0) { int t = power(b, n / 2); return (1LL * t * t) % MOD; } else { return (1LL * b * power(b, n - 1)) % MOD; } } int MODdivide(int a, int b) { return (1LL * a * power(b, MOD - 2)) % MOD; } void dfs(int curr, const vector<vector<int>>& gr, vector<pair<int, int>>& dp, vector<int>& color, int parent = -1) { int sum = 1; for (int next : gr[curr]) { if (next == parent) { continue; } dfs(next, gr, dp, color, curr); sum = (1LL * sum * (dp[next].first + dp[next].second)) % MOD; } if (gr[curr].size() == 1 && curr > 0) { dp[curr].first = (color[curr] == 0 ? 1 : 0); dp[curr].second = (color[curr] == 1 ? 1 : 0); return; } if (color[curr] == 1) { dp[curr].first = 0; dp[curr].second = sum; } else { dp[curr].first = sum; for (int next : gr[curr]) { if (next == parent) { continue; } dp[curr].second = (1LL * dp[curr].second + 1LL * dp[next].second * MODdivide(sum, dp[next].first + dp[next].second)) % MOD; } } return; } int main() { int n; cin >> n; vector<vector<int>> gr(n); for (int i = 0; i < n - 1; ++i) { int p; cin >> p; gr[p].push_back(i + 1); gr[i + 1].push_back(p); } vector<int> color(n); for (int i = 0; i < n; ++i) { cin >> color[i]; } vector<pair<int, int>> dp(n, {0, 0}); dfs(0, gr, dp, color); cout << dp[0].second << endl; return 0; } ```
#include <bits/stdc++.h> using namespace std; const long long MAXN = 1e5 + 5, MOD = 1e9 + 7; long long n; long long par[MAXN]; long long cnt1[MAXN]; long long cnt2[MAXN]; long long dp1[MAXN]; long long dp2[MAXN]; long long color[MAXN]; bool subtree[MAXN]; vector<long long> G[MAXN]; void dfs_up1(long long v = 0) { for (long long i = 0; i < G[v].size(); i++) { dfs_up1(G[v][i]); subtree[v] |= subtree[G[v][i]]; } subtree[v] |= color[v]; } void dfs_up2(long long v = 0) { for (long long i = 0; i < G[v].size(); i++) dfs_up2(G[v][i]); if (!subtree[v]) { dp1[v] = 0; dp2[v] = 1; return; } if (color[v]) { dp1[v] = 1; for (long long i = 0; i < G[v].size(); i++) if (subtree[G[v][i]]) { if (color[G[v][i]]) dp1[v] = (dp1[v] * dp1[G[v][i]]) % MOD; if (!color[G[v][i]]) dp1[v] = (dp1[v] * (dp1[G[v][i]] + dp2[G[v][i]])) % MOD; } dp2[v] = 0; return; } long long bu = 1, num = 0; for (long long i = 0; i < G[v].size(); i++) if (subtree[G[v][i]]) { if (color[G[v][i]]) { num++; bu = (bu * dp1[G[v][i]]) % MOD; } if (!color[G[v][i]]) bu = (bu * (dp1[G[v][i]] + dp2[G[v][i]])) % MOD; } dp1[v] = num * bu % MOD; bu = 1; num = 0; for (long long i = 0; i < G[v].size(); i++) if (subtree[G[v][i]]) { if (color[G[v][i]]) bu = (bu * dp1[G[v][i]]) % MOD; if (!color[G[v][i]]) { cnt1[num] = ((num ? cnt1[num - 1] : 1) * (dp1[G[v][i]] + dp2[G[v][i]])) % MOD; num++; } } long long ind = num - 1; for (long long i = G[v].size() - 1; ~i; i--) if (subtree[G[v][i]]) { if (!color[G[v][i]]) { cnt2[ind] = ((ind != num - 1 ? cnt2[ind + 1] : 1) * (dp1[G[v][i]] + dp2[G[v][i]])) % MOD; ind--; } } ind = 0; for (long long i = 0; i < G[v].size(); i++) if (subtree[G[v][i]]) { if (!color[G[v][i]]) { dp1[v] = (dp1[v] + bu * (ind ? cnt1[ind - 1] : 1) % MOD * (ind + 1 != num ? cnt2[ind + 1] : 1) % MOD * dp1[G[v][i]]) % MOD; ind++; } } dp2[v] = 1; for (long long i = 0; i < G[v].size(); i++) if (subtree[G[v][i]]) { if (color[G[v][i]]) dp2[v] = (dp2[v] * dp1[G[v][i]]) % MOD; if (!color[G[v][i]]) dp2[v] = (dp2[v] * (dp1[G[v][i]] + dp2[G[v][i]])) % MOD; } } int main() { scanf("%lld", &n); for (long long i = 1; i < n; i++) { scanf("%lld", &par[i]); G[par[i]].push_back(i); } for (long long i = 0; i < n; i++) scanf("%lld", &color[i]); dfs_up1(); dfs_up2(); printf("%lld\n", dp1[0]); return 0; }
### Prompt Your task is to create a cpp solution to the following problem: Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other vertices are colored white. Consider a set consisting of k (0 ≀ k < n) edges of Appleman's tree. If Appleman deletes these edges from the tree, then it will split into (k + 1) parts. Note, that each part will be a tree with colored vertices. Now Appleman wonders, what is the number of sets splitting the tree in such a way that each resulting part will have exactly one black vertex? Find this number modulo 1000000007 (109 + 7). Input The first line contains an integer n (2 ≀ n ≀ 105) β€” the number of tree vertices. The second line contains the description of the tree: n - 1 integers p0, p1, ..., pn - 2 (0 ≀ pi ≀ i). Where pi means that there is an edge connecting vertex (i + 1) of the tree and vertex pi. Consider tree vertices are numbered from 0 to n - 1. The third line contains the description of the colors of the vertices: n integers x0, x1, ..., xn - 1 (xi is either 0 or 1). If xi is equal to 1, vertex i is colored black. Otherwise, vertex i is colored white. Output Output a single integer β€” the number of ways to split the tree modulo 1000000007 (109 + 7). Examples Input 3 0 0 0 1 1 Output 2 Input 6 0 1 1 0 4 1 1 0 0 1 0 Output 1 Input 10 0 1 2 1 4 4 4 0 8 0 0 0 1 0 1 1 0 0 1 Output 27 ### Response ```cpp #include <bits/stdc++.h> using namespace std; const long long MAXN = 1e5 + 5, MOD = 1e9 + 7; long long n; long long par[MAXN]; long long cnt1[MAXN]; long long cnt2[MAXN]; long long dp1[MAXN]; long long dp2[MAXN]; long long color[MAXN]; bool subtree[MAXN]; vector<long long> G[MAXN]; void dfs_up1(long long v = 0) { for (long long i = 0; i < G[v].size(); i++) { dfs_up1(G[v][i]); subtree[v] |= subtree[G[v][i]]; } subtree[v] |= color[v]; } void dfs_up2(long long v = 0) { for (long long i = 0; i < G[v].size(); i++) dfs_up2(G[v][i]); if (!subtree[v]) { dp1[v] = 0; dp2[v] = 1; return; } if (color[v]) { dp1[v] = 1; for (long long i = 0; i < G[v].size(); i++) if (subtree[G[v][i]]) { if (color[G[v][i]]) dp1[v] = (dp1[v] * dp1[G[v][i]]) % MOD; if (!color[G[v][i]]) dp1[v] = (dp1[v] * (dp1[G[v][i]] + dp2[G[v][i]])) % MOD; } dp2[v] = 0; return; } long long bu = 1, num = 0; for (long long i = 0; i < G[v].size(); i++) if (subtree[G[v][i]]) { if (color[G[v][i]]) { num++; bu = (bu * dp1[G[v][i]]) % MOD; } if (!color[G[v][i]]) bu = (bu * (dp1[G[v][i]] + dp2[G[v][i]])) % MOD; } dp1[v] = num * bu % MOD; bu = 1; num = 0; for (long long i = 0; i < G[v].size(); i++) if (subtree[G[v][i]]) { if (color[G[v][i]]) bu = (bu * dp1[G[v][i]]) % MOD; if (!color[G[v][i]]) { cnt1[num] = ((num ? cnt1[num - 1] : 1) * (dp1[G[v][i]] + dp2[G[v][i]])) % MOD; num++; } } long long ind = num - 1; for (long long i = G[v].size() - 1; ~i; i--) if (subtree[G[v][i]]) { if (!color[G[v][i]]) { cnt2[ind] = ((ind != num - 1 ? cnt2[ind + 1] : 1) * (dp1[G[v][i]] + dp2[G[v][i]])) % MOD; ind--; } } ind = 0; for (long long i = 0; i < G[v].size(); i++) if (subtree[G[v][i]]) { if (!color[G[v][i]]) { dp1[v] = (dp1[v] + bu * (ind ? cnt1[ind - 1] : 1) % MOD * (ind + 1 != num ? cnt2[ind + 1] : 1) % MOD * dp1[G[v][i]]) % MOD; ind++; } } dp2[v] = 1; for (long long i = 0; i < G[v].size(); i++) if (subtree[G[v][i]]) { if (color[G[v][i]]) dp2[v] = (dp2[v] * dp1[G[v][i]]) % MOD; if (!color[G[v][i]]) dp2[v] = (dp2[v] * (dp1[G[v][i]] + dp2[G[v][i]])) % MOD; } } int main() { scanf("%lld", &n); for (long long i = 1; i < n; i++) { scanf("%lld", &par[i]); G[par[i]].push_back(i); } for (long long i = 0; i < n; i++) scanf("%lld", &color[i]); dfs_up1(); dfs_up2(); printf("%lld\n", dp1[0]); return 0; } ```
#include <bits/stdc++.h> using namespace std; long long n, u, col[300005], dp[300005][2]; vector<long long> graph[300005]; void dfs(long long u) { dp[u][col[u]] = 1; for (long long i = 0; i < graph[u].size(); i++) { long long v = graph[u][i]; dfs(v); dp[u][1] = (((dp[u][1] * dp[v][0]) % 1000000007 + (dp[u][0] * dp[v][1]) % 1000000007) % 1000000007 + (dp[u][1] * dp[v][1]) % 1000000007) % 1000000007; dp[u][0] = (dp[u][0] * ((dp[v][0] + dp[v][1]) % 1000000007)) % 1000000007; } } int main() { scanf("%lld", &n); for (long long i = 1; i < n; i++) { scanf("%lld", &u); graph[u].push_back(i); } for (long long i = 0; i < n; i++) scanf("%lld", &col[i]); dfs(0); printf("%lld\n", dp[0][1]); return 0; }
### Prompt Please create a solution in cpp to the following problem: Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other vertices are colored white. Consider a set consisting of k (0 ≀ k < n) edges of Appleman's tree. If Appleman deletes these edges from the tree, then it will split into (k + 1) parts. Note, that each part will be a tree with colored vertices. Now Appleman wonders, what is the number of sets splitting the tree in such a way that each resulting part will have exactly one black vertex? Find this number modulo 1000000007 (109 + 7). Input The first line contains an integer n (2 ≀ n ≀ 105) β€” the number of tree vertices. The second line contains the description of the tree: n - 1 integers p0, p1, ..., pn - 2 (0 ≀ pi ≀ i). Where pi means that there is an edge connecting vertex (i + 1) of the tree and vertex pi. Consider tree vertices are numbered from 0 to n - 1. The third line contains the description of the colors of the vertices: n integers x0, x1, ..., xn - 1 (xi is either 0 or 1). If xi is equal to 1, vertex i is colored black. Otherwise, vertex i is colored white. Output Output a single integer β€” the number of ways to split the tree modulo 1000000007 (109 + 7). Examples Input 3 0 0 0 1 1 Output 2 Input 6 0 1 1 0 4 1 1 0 0 1 0 Output 1 Input 10 0 1 2 1 4 4 4 0 8 0 0 0 1 0 1 1 0 0 1 Output 27 ### Response ```cpp #include <bits/stdc++.h> using namespace std; long long n, u, col[300005], dp[300005][2]; vector<long long> graph[300005]; void dfs(long long u) { dp[u][col[u]] = 1; for (long long i = 0; i < graph[u].size(); i++) { long long v = graph[u][i]; dfs(v); dp[u][1] = (((dp[u][1] * dp[v][0]) % 1000000007 + (dp[u][0] * dp[v][1]) % 1000000007) % 1000000007 + (dp[u][1] * dp[v][1]) % 1000000007) % 1000000007; dp[u][0] = (dp[u][0] * ((dp[v][0] + dp[v][1]) % 1000000007)) % 1000000007; } } int main() { scanf("%lld", &n); for (long long i = 1; i < n; i++) { scanf("%lld", &u); graph[u].push_back(i); } for (long long i = 0; i < n; i++) scanf("%lld", &col[i]); dfs(0); printf("%lld\n", dp[0][1]); return 0; } ```
#include <bits/stdc++.h> using namespace std; const int maxn = 1e5 + 5; const int M = maxn * 100; const int mod = 1e9 + 7; vector<int> E[maxn]; long long ans; long long dp[maxn][2]; int n, v; int vis[maxn]; void dfs(int u, int fa) { dp[u][vis[u]] = 1; for (int i = 0; i < E[u].size(); i++) { int v = E[u][i]; if (v == fa) continue; dfs(v, u); dp[u][1] = ((dp[u][1] * (dp[v][1] + dp[v][0])) + dp[u][0] * dp[v][1]) % mod; dp[u][0] = (dp[u][0] * (dp[v][1] + dp[v][0])) % mod; } } int main() { scanf("%d", &n); for (int i = 1; i < n; i++) { scanf("%d", &v); E[v].push_back(i); E[i].push_back(v); } for (int i = 0; i < n; i++) scanf("%d", &vis[i]); dfs(0, -1); cout << dp[0][1] << endl; }
### Prompt Please provide a Cpp coded solution to the problem described below: Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other vertices are colored white. Consider a set consisting of k (0 ≀ k < n) edges of Appleman's tree. If Appleman deletes these edges from the tree, then it will split into (k + 1) parts. Note, that each part will be a tree with colored vertices. Now Appleman wonders, what is the number of sets splitting the tree in such a way that each resulting part will have exactly one black vertex? Find this number modulo 1000000007 (109 + 7). Input The first line contains an integer n (2 ≀ n ≀ 105) β€” the number of tree vertices. The second line contains the description of the tree: n - 1 integers p0, p1, ..., pn - 2 (0 ≀ pi ≀ i). Where pi means that there is an edge connecting vertex (i + 1) of the tree and vertex pi. Consider tree vertices are numbered from 0 to n - 1. The third line contains the description of the colors of the vertices: n integers x0, x1, ..., xn - 1 (xi is either 0 or 1). If xi is equal to 1, vertex i is colored black. Otherwise, vertex i is colored white. Output Output a single integer β€” the number of ways to split the tree modulo 1000000007 (109 + 7). Examples Input 3 0 0 0 1 1 Output 2 Input 6 0 1 1 0 4 1 1 0 0 1 0 Output 1 Input 10 0 1 2 1 4 4 4 0 8 0 0 0 1 0 1 1 0 0 1 Output 27 ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int maxn = 1e5 + 5; const int M = maxn * 100; const int mod = 1e9 + 7; vector<int> E[maxn]; long long ans; long long dp[maxn][2]; int n, v; int vis[maxn]; void dfs(int u, int fa) { dp[u][vis[u]] = 1; for (int i = 0; i < E[u].size(); i++) { int v = E[u][i]; if (v == fa) continue; dfs(v, u); dp[u][1] = ((dp[u][1] * (dp[v][1] + dp[v][0])) + dp[u][0] * dp[v][1]) % mod; dp[u][0] = (dp[u][0] * (dp[v][1] + dp[v][0])) % mod; } } int main() { scanf("%d", &n); for (int i = 1; i < n; i++) { scanf("%d", &v); E[v].push_back(i); E[i].push_back(v); } for (int i = 0; i < n; i++) scanf("%d", &vis[i]); dfs(0, -1); cout << dp[0][1] << endl; } ```
#include <bits/stdc++.h> using namespace std; vector<vector<int>> g; vector<bool> black; vector<long long> memblack, memwhite; const long long mod = 1e9 + 7; long long calcblack(int x); long long calcwhite(int x) { if (black[x]) return 0; if (memwhite[x] != -1) return memwhite[x]; long long res = 1; for (int y : g[x]) { res *= calcwhite(y) + calcblack(y); res %= mod; } memwhite[x] = res; return res; } long long calcblack(int x) { if (memblack[x] != -1) return memblack[x]; if (black[x]) { long long res = 1; for (int y : g[x]) { res *= calcwhite(y) + calcblack(y); res %= mod; } memblack[x] = res; return res; } vector<long long> prod(g[x].size() + 1, 1); for (int i = g[x].size() - 1; i >= 0; i--) prod[i] = (prod[i + 1] * (calcwhite(g[x][i]) + calcblack(g[x][i]))) % mod; long long res = 0; long long res2 = 1; for (int i = 0; i < g[x].size(); i++) { int y = g[x][i]; res += calcblack(y) * ((res2 * prod[i + 1]) % mod); res %= mod; res2 *= calcwhite(y) + calcblack(y); res2 %= mod; } memblack[x] = res; return res; } int main() { int n; cin >> n; g.resize(n); memblack = memwhite = vector<long long>(n, -1); for (int i = 1; i < n; i++) { int j; cin >> j; g[j].push_back(i); } black.resize(n); for (int i = 0; i < n; i++) { int x; cin >> x; black[i] = x == 1; } cout << calcblack(0) << endl; }
### Prompt In cpp, your task is to solve the following problem: Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other vertices are colored white. Consider a set consisting of k (0 ≀ k < n) edges of Appleman's tree. If Appleman deletes these edges from the tree, then it will split into (k + 1) parts. Note, that each part will be a tree with colored vertices. Now Appleman wonders, what is the number of sets splitting the tree in such a way that each resulting part will have exactly one black vertex? Find this number modulo 1000000007 (109 + 7). Input The first line contains an integer n (2 ≀ n ≀ 105) β€” the number of tree vertices. The second line contains the description of the tree: n - 1 integers p0, p1, ..., pn - 2 (0 ≀ pi ≀ i). Where pi means that there is an edge connecting vertex (i + 1) of the tree and vertex pi. Consider tree vertices are numbered from 0 to n - 1. The third line contains the description of the colors of the vertices: n integers x0, x1, ..., xn - 1 (xi is either 0 or 1). If xi is equal to 1, vertex i is colored black. Otherwise, vertex i is colored white. Output Output a single integer β€” the number of ways to split the tree modulo 1000000007 (109 + 7). Examples Input 3 0 0 0 1 1 Output 2 Input 6 0 1 1 0 4 1 1 0 0 1 0 Output 1 Input 10 0 1 2 1 4 4 4 0 8 0 0 0 1 0 1 1 0 0 1 Output 27 ### Response ```cpp #include <bits/stdc++.h> using namespace std; vector<vector<int>> g; vector<bool> black; vector<long long> memblack, memwhite; const long long mod = 1e9 + 7; long long calcblack(int x); long long calcwhite(int x) { if (black[x]) return 0; if (memwhite[x] != -1) return memwhite[x]; long long res = 1; for (int y : g[x]) { res *= calcwhite(y) + calcblack(y); res %= mod; } memwhite[x] = res; return res; } long long calcblack(int x) { if (memblack[x] != -1) return memblack[x]; if (black[x]) { long long res = 1; for (int y : g[x]) { res *= calcwhite(y) + calcblack(y); res %= mod; } memblack[x] = res; return res; } vector<long long> prod(g[x].size() + 1, 1); for (int i = g[x].size() - 1; i >= 0; i--) prod[i] = (prod[i + 1] * (calcwhite(g[x][i]) + calcblack(g[x][i]))) % mod; long long res = 0; long long res2 = 1; for (int i = 0; i < g[x].size(); i++) { int y = g[x][i]; res += calcblack(y) * ((res2 * prod[i + 1]) % mod); res %= mod; res2 *= calcwhite(y) + calcblack(y); res2 %= mod; } memblack[x] = res; return res; } int main() { int n; cin >> n; g.resize(n); memblack = memwhite = vector<long long>(n, -1); for (int i = 1; i < n; i++) { int j; cin >> j; g[j].push_back(i); } black.resize(n); for (int i = 0; i < n; i++) { int x; cin >> x; black[i] = x == 1; } cout << calcblack(0) << endl; } ```
#include <bits/stdc++.h> using namespace std; const long long maxinput = 1e5 + 4; long long n, col[maxinput], parent[maxinput]; vector<long long> adj[maxinput]; long long dp[maxinput][2]; long long expo(long long base, long long exponent, long long mod) { long long ans = 1; while (exponent != 0) { if ((exponent & 1) == 1) { ans = ans * base; ans = ans % mod; } base = base * base; base %= mod; exponent >>= 1; } return ans % mod; } long long inv(long long x) { return expo(x, 1000000007 - 2, 1000000007); } void dfs(long long u) { long long v; dp[u][0] = 0LL; dp[u][1] = 0LL; long long prod = 1LL; long long temp_sum = 0LL; for (long long j = 0; j < adj[u].size(); j++) { v = adj[u][j]; if (v != parent[u]) { parent[v] = u; dfs(v); prod *= (dp[v][0] + dp[v][1]); prod %= 1000000007; temp_sum += (dp[v][1] * inv(dp[v][0] + dp[v][1])); temp_sum %= 1000000007; } } temp_sum = (temp_sum * prod) % 1000000007; if ((adj[u].size() == 1) && adj[u][0] == parent[u]) { if (col[u] == 1) dp[u][1] = 1LL; else dp[u][0] = 1LL; return; } if (col[u] == 0) { dp[u][0] = prod; dp[u][0] %= 1000000007; dp[u][1] = temp_sum; dp[u][1] %= 1000000007; } else { dp[u][0] = 0; dp[u][1] = prod; dp[u][1] %= 1000000007; } } int main() { cin >> n; long long u, v; for (long long i = 1; i < n; i++) { cin >> u; adj[u].push_back(i); adj[i].push_back(u); } for (long long i = 0; i < n; i++) cin >> col[i]; parent[0] = -1; dfs(0); cout << dp[0][1] << endl; }
### Prompt Construct a cpp code solution to the problem outlined: Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other vertices are colored white. Consider a set consisting of k (0 ≀ k < n) edges of Appleman's tree. If Appleman deletes these edges from the tree, then it will split into (k + 1) parts. Note, that each part will be a tree with colored vertices. Now Appleman wonders, what is the number of sets splitting the tree in such a way that each resulting part will have exactly one black vertex? Find this number modulo 1000000007 (109 + 7). Input The first line contains an integer n (2 ≀ n ≀ 105) β€” the number of tree vertices. The second line contains the description of the tree: n - 1 integers p0, p1, ..., pn - 2 (0 ≀ pi ≀ i). Where pi means that there is an edge connecting vertex (i + 1) of the tree and vertex pi. Consider tree vertices are numbered from 0 to n - 1. The third line contains the description of the colors of the vertices: n integers x0, x1, ..., xn - 1 (xi is either 0 or 1). If xi is equal to 1, vertex i is colored black. Otherwise, vertex i is colored white. Output Output a single integer β€” the number of ways to split the tree modulo 1000000007 (109 + 7). Examples Input 3 0 0 0 1 1 Output 2 Input 6 0 1 1 0 4 1 1 0 0 1 0 Output 1 Input 10 0 1 2 1 4 4 4 0 8 0 0 0 1 0 1 1 0 0 1 Output 27 ### Response ```cpp #include <bits/stdc++.h> using namespace std; const long long maxinput = 1e5 + 4; long long n, col[maxinput], parent[maxinput]; vector<long long> adj[maxinput]; long long dp[maxinput][2]; long long expo(long long base, long long exponent, long long mod) { long long ans = 1; while (exponent != 0) { if ((exponent & 1) == 1) { ans = ans * base; ans = ans % mod; } base = base * base; base %= mod; exponent >>= 1; } return ans % mod; } long long inv(long long x) { return expo(x, 1000000007 - 2, 1000000007); } void dfs(long long u) { long long v; dp[u][0] = 0LL; dp[u][1] = 0LL; long long prod = 1LL; long long temp_sum = 0LL; for (long long j = 0; j < adj[u].size(); j++) { v = adj[u][j]; if (v != parent[u]) { parent[v] = u; dfs(v); prod *= (dp[v][0] + dp[v][1]); prod %= 1000000007; temp_sum += (dp[v][1] * inv(dp[v][0] + dp[v][1])); temp_sum %= 1000000007; } } temp_sum = (temp_sum * prod) % 1000000007; if ((adj[u].size() == 1) && adj[u][0] == parent[u]) { if (col[u] == 1) dp[u][1] = 1LL; else dp[u][0] = 1LL; return; } if (col[u] == 0) { dp[u][0] = prod; dp[u][0] %= 1000000007; dp[u][1] = temp_sum; dp[u][1] %= 1000000007; } else { dp[u][0] = 0; dp[u][1] = prod; dp[u][1] %= 1000000007; } } int main() { cin >> n; long long u, v; for (long long i = 1; i < n; i++) { cin >> u; adj[u].push_back(i); adj[i].push_back(u); } for (long long i = 0; i < n; i++) cin >> col[i]; parent[0] = -1; dfs(0); cout << dp[0][1] << endl; } ```
#include <bits/stdc++.h> using namespace std; long long int Pow(long long int a, long long int b, long long int md, long long int ans = 1) { for (; b; b >>= 1, a = a * a % md) if (b & 1) ans = ans * a % md; return ans % md; } const long long int MAXN = 1e6 + 10; const long long int INF = 8e18; const long long int MOD = 1e9 + 7; long long int A[MAXN], dp[2][MAXN], n; vector<long long int> adj[MAXN]; long long int inv(long long int x) { return Pow(x, MOD - 2, MOD); } void DFS(long long int v) { if ((long long int)adj[v].size() == 0) { if (A[v]) dp[0][v] = 1; else dp[1][v] = 1; return; } long long int sum = 1; for (long long int u : adj[v]) { DFS(u); sum = sum * (dp[0][u] + dp[1][u]) % MOD; } if (A[v] == 0) dp[1][v] = sum; else { dp[0][v] = sum; return; } for (long long int u : adj[v]) { long long int x = sum * inv((dp[0][u] + dp[1][u]) % MOD) % MOD; dp[0][v] = (dp[0][v] + x * dp[0][u] % MOD) % MOD; } } int main() { scanf("%lld", &n); for (long long int i = 2, p; i <= n; i++) { scanf("%lld", &p); adj[p + 1].push_back(i); } for (long long int i = 1; i <= n; i++) scanf("%lld", &A[i]); DFS(1); printf("%lld\n", dp[0][1]); return 0; }
### Prompt Develop a solution in cpp to the problem described below: Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other vertices are colored white. Consider a set consisting of k (0 ≀ k < n) edges of Appleman's tree. If Appleman deletes these edges from the tree, then it will split into (k + 1) parts. Note, that each part will be a tree with colored vertices. Now Appleman wonders, what is the number of sets splitting the tree in such a way that each resulting part will have exactly one black vertex? Find this number modulo 1000000007 (109 + 7). Input The first line contains an integer n (2 ≀ n ≀ 105) β€” the number of tree vertices. The second line contains the description of the tree: n - 1 integers p0, p1, ..., pn - 2 (0 ≀ pi ≀ i). Where pi means that there is an edge connecting vertex (i + 1) of the tree and vertex pi. Consider tree vertices are numbered from 0 to n - 1. The third line contains the description of the colors of the vertices: n integers x0, x1, ..., xn - 1 (xi is either 0 or 1). If xi is equal to 1, vertex i is colored black. Otherwise, vertex i is colored white. Output Output a single integer β€” the number of ways to split the tree modulo 1000000007 (109 + 7). Examples Input 3 0 0 0 1 1 Output 2 Input 6 0 1 1 0 4 1 1 0 0 1 0 Output 1 Input 10 0 1 2 1 4 4 4 0 8 0 0 0 1 0 1 1 0 0 1 Output 27 ### Response ```cpp #include <bits/stdc++.h> using namespace std; long long int Pow(long long int a, long long int b, long long int md, long long int ans = 1) { for (; b; b >>= 1, a = a * a % md) if (b & 1) ans = ans * a % md; return ans % md; } const long long int MAXN = 1e6 + 10; const long long int INF = 8e18; const long long int MOD = 1e9 + 7; long long int A[MAXN], dp[2][MAXN], n; vector<long long int> adj[MAXN]; long long int inv(long long int x) { return Pow(x, MOD - 2, MOD); } void DFS(long long int v) { if ((long long int)adj[v].size() == 0) { if (A[v]) dp[0][v] = 1; else dp[1][v] = 1; return; } long long int sum = 1; for (long long int u : adj[v]) { DFS(u); sum = sum * (dp[0][u] + dp[1][u]) % MOD; } if (A[v] == 0) dp[1][v] = sum; else { dp[0][v] = sum; return; } for (long long int u : adj[v]) { long long int x = sum * inv((dp[0][u] + dp[1][u]) % MOD) % MOD; dp[0][v] = (dp[0][v] + x * dp[0][u] % MOD) % MOD; } } int main() { scanf("%lld", &n); for (long long int i = 2, p; i <= n; i++) { scanf("%lld", &p); adj[p + 1].push_back(i); } for (long long int i = 1; i <= n; i++) scanf("%lld", &A[i]); DFS(1); printf("%lld\n", dp[0][1]); return 0; } ```
#include <bits/stdc++.h> using namespace std; void exgcd(long long a, long long b, long long& d, long long& x, long long& y) { if (!b) d = a, x = 1LL, y = 0LL; else exgcd(b, a % b, d, y, x), y -= x * (a / b); } long long inv(long long a, long long m) { long long d, x, y; exgcd(a, m, d, x, y); return d == 1LL ? (x + m) % m : -1LL; } vector<int> vc[100010]; long long dp[100010][2], MOD = 1000000007; int root, vis[100010], col[100010]; void dfs(int u) { int i, j, k, len = vc[u].size(); if (col[u] == 1) { dp[u][1] = 1; for (i = 0; i < len; i++) { dfs(vc[u][i]); if (col[vc[u][i]] == 1) dp[u][1] *= dp[vc[u][i]][1]; else dp[u][1] *= (dp[vc[u][i]][0] + dp[vc[u][i]][1]); dp[u][1] %= MOD; } } else if (col[u] == 0) { dp[u][0] = 1; for (i = 0; i < len; i++) { dfs(vc[u][i]); if (col[vc[u][i]] == 1) dp[u][0] *= dp[vc[u][i]][1]; else dp[u][0] *= (dp[vc[u][i]][0] + dp[vc[u][i]][1]); dp[u][0] %= MOD; } for (i = 0; i < len; i++) { if (col[vc[u][i]] == 1) dp[u][1] += dp[u][0] * inv(dp[vc[u][i]][1], MOD) % MOD * dp[vc[u][i]][1]; else dp[u][1] += dp[u][0] * inv(dp[vc[u][i]][0] + dp[vc[u][i]][1], MOD) % MOD * dp[vc[u][i]][1]; dp[u][1] %= MOD; } } dp[u][1] %= MOD; dp[u][0] %= MOD; } void solve() { int T, t, n, m, i, j, k = 0, u; scanf("%d", &n); for (i = 1; i < n; i++) { scanf("%d", &u); vc[u].push_back(i); } for (i = 0; i < n; i++) { scanf("%d", &col[i]); k += col[i]; } if (k == 0) { printf("0\n"); return; } if (k == 1) { printf("1\n"); return; } dfs(0); printf("%I64d\n", dp[0][1]); } int main() { solve(); return 0; }
### Prompt Your task is to create a CPP solution to the following problem: Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other vertices are colored white. Consider a set consisting of k (0 ≀ k < n) edges of Appleman's tree. If Appleman deletes these edges from the tree, then it will split into (k + 1) parts. Note, that each part will be a tree with colored vertices. Now Appleman wonders, what is the number of sets splitting the tree in such a way that each resulting part will have exactly one black vertex? Find this number modulo 1000000007 (109 + 7). Input The first line contains an integer n (2 ≀ n ≀ 105) β€” the number of tree vertices. The second line contains the description of the tree: n - 1 integers p0, p1, ..., pn - 2 (0 ≀ pi ≀ i). Where pi means that there is an edge connecting vertex (i + 1) of the tree and vertex pi. Consider tree vertices are numbered from 0 to n - 1. The third line contains the description of the colors of the vertices: n integers x0, x1, ..., xn - 1 (xi is either 0 or 1). If xi is equal to 1, vertex i is colored black. Otherwise, vertex i is colored white. Output Output a single integer β€” the number of ways to split the tree modulo 1000000007 (109 + 7). Examples Input 3 0 0 0 1 1 Output 2 Input 6 0 1 1 0 4 1 1 0 0 1 0 Output 1 Input 10 0 1 2 1 4 4 4 0 8 0 0 0 1 0 1 1 0 0 1 Output 27 ### Response ```cpp #include <bits/stdc++.h> using namespace std; void exgcd(long long a, long long b, long long& d, long long& x, long long& y) { if (!b) d = a, x = 1LL, y = 0LL; else exgcd(b, a % b, d, y, x), y -= x * (a / b); } long long inv(long long a, long long m) { long long d, x, y; exgcd(a, m, d, x, y); return d == 1LL ? (x + m) % m : -1LL; } vector<int> vc[100010]; long long dp[100010][2], MOD = 1000000007; int root, vis[100010], col[100010]; void dfs(int u) { int i, j, k, len = vc[u].size(); if (col[u] == 1) { dp[u][1] = 1; for (i = 0; i < len; i++) { dfs(vc[u][i]); if (col[vc[u][i]] == 1) dp[u][1] *= dp[vc[u][i]][1]; else dp[u][1] *= (dp[vc[u][i]][0] + dp[vc[u][i]][1]); dp[u][1] %= MOD; } } else if (col[u] == 0) { dp[u][0] = 1; for (i = 0; i < len; i++) { dfs(vc[u][i]); if (col[vc[u][i]] == 1) dp[u][0] *= dp[vc[u][i]][1]; else dp[u][0] *= (dp[vc[u][i]][0] + dp[vc[u][i]][1]); dp[u][0] %= MOD; } for (i = 0; i < len; i++) { if (col[vc[u][i]] == 1) dp[u][1] += dp[u][0] * inv(dp[vc[u][i]][1], MOD) % MOD * dp[vc[u][i]][1]; else dp[u][1] += dp[u][0] * inv(dp[vc[u][i]][0] + dp[vc[u][i]][1], MOD) % MOD * dp[vc[u][i]][1]; dp[u][1] %= MOD; } } dp[u][1] %= MOD; dp[u][0] %= MOD; } void solve() { int T, t, n, m, i, j, k = 0, u; scanf("%d", &n); for (i = 1; i < n; i++) { scanf("%d", &u); vc[u].push_back(i); } for (i = 0; i < n; i++) { scanf("%d", &col[i]); k += col[i]; } if (k == 0) { printf("0\n"); return; } if (k == 1) { printf("1\n"); return; } dfs(0); printf("%I64d\n", dp[0][1]); } int main() { solve(); return 0; } ```
#include <bits/stdc++.h> using namespace std; const long long mod = 1000000007; struct dpi { long long zero; long long black; }; int n; vector<vector<int> > edges; vector<int> colors; vector<dpi> dp; vector<int> was; void recalc(int v, int parent) { long long last_dp = 1; pair<long long, long long> last = make_pair(!colors[v], colors[v]); pair<long long, long long> nlast; for (int i = 0; i < (int)edges[v].size(); ++i) { if (edges[v][i] != parent) { long long newval = (last_dp * (dp[edges[v][i]].zero + dp[edges[v][i]].black)) % mod; last_dp = newval; dp[v].zero = last_dp; nlast.first = (last.first * (dp[edges[v][i]].zero + dp[edges[v][i]].black)) % mod; nlast.second = (last.second * (dp[edges[v][i]].zero + dp[edges[v][i]].black)) % mod + (last.first * dp[edges[v][i]].black) % mod; nlast.second %= mod; last = nlast; dp[v].zero = last.first; dp[v].black = last.second; } } } void dfs(int v, int parent = -1) { bool have_son = true; was[v] = true; for (int i = 0; i < (int)edges[v].size(); ++i) { if ((!was[edges[v][i]]) && (edges[v][i] != parent)) { dfs(edges[v][i], v); have_son = false; } } if (have_son) { if (colors[v]) { dp[v].black = 1; dp[v].zero = 0; } else { dp[v].black = 0; dp[v].zero = 1; } } else { recalc(v, parent); } } int main() { cin >> n; edges.resize(n); colors.resize(n); dp.resize(n); was.resize(n); for (int i = 1; i < n; ++i) { int dest; cin >> dest; edges[i].push_back(dest); edges[dest].push_back(i); } for (int i = 0; i < n; ++i) { cin >> colors[i]; } dfs(0); cout << dp[0].black << "\n"; return 0; }
### Prompt Your task is to create a CPP solution to the following problem: Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other vertices are colored white. Consider a set consisting of k (0 ≀ k < n) edges of Appleman's tree. If Appleman deletes these edges from the tree, then it will split into (k + 1) parts. Note, that each part will be a tree with colored vertices. Now Appleman wonders, what is the number of sets splitting the tree in such a way that each resulting part will have exactly one black vertex? Find this number modulo 1000000007 (109 + 7). Input The first line contains an integer n (2 ≀ n ≀ 105) β€” the number of tree vertices. The second line contains the description of the tree: n - 1 integers p0, p1, ..., pn - 2 (0 ≀ pi ≀ i). Where pi means that there is an edge connecting vertex (i + 1) of the tree and vertex pi. Consider tree vertices are numbered from 0 to n - 1. The third line contains the description of the colors of the vertices: n integers x0, x1, ..., xn - 1 (xi is either 0 or 1). If xi is equal to 1, vertex i is colored black. Otherwise, vertex i is colored white. Output Output a single integer β€” the number of ways to split the tree modulo 1000000007 (109 + 7). Examples Input 3 0 0 0 1 1 Output 2 Input 6 0 1 1 0 4 1 1 0 0 1 0 Output 1 Input 10 0 1 2 1 4 4 4 0 8 0 0 0 1 0 1 1 0 0 1 Output 27 ### Response ```cpp #include <bits/stdc++.h> using namespace std; const long long mod = 1000000007; struct dpi { long long zero; long long black; }; int n; vector<vector<int> > edges; vector<int> colors; vector<dpi> dp; vector<int> was; void recalc(int v, int parent) { long long last_dp = 1; pair<long long, long long> last = make_pair(!colors[v], colors[v]); pair<long long, long long> nlast; for (int i = 0; i < (int)edges[v].size(); ++i) { if (edges[v][i] != parent) { long long newval = (last_dp * (dp[edges[v][i]].zero + dp[edges[v][i]].black)) % mod; last_dp = newval; dp[v].zero = last_dp; nlast.first = (last.first * (dp[edges[v][i]].zero + dp[edges[v][i]].black)) % mod; nlast.second = (last.second * (dp[edges[v][i]].zero + dp[edges[v][i]].black)) % mod + (last.first * dp[edges[v][i]].black) % mod; nlast.second %= mod; last = nlast; dp[v].zero = last.first; dp[v].black = last.second; } } } void dfs(int v, int parent = -1) { bool have_son = true; was[v] = true; for (int i = 0; i < (int)edges[v].size(); ++i) { if ((!was[edges[v][i]]) && (edges[v][i] != parent)) { dfs(edges[v][i], v); have_son = false; } } if (have_son) { if (colors[v]) { dp[v].black = 1; dp[v].zero = 0; } else { dp[v].black = 0; dp[v].zero = 1; } } else { recalc(v, parent); } } int main() { cin >> n; edges.resize(n); colors.resize(n); dp.resize(n); was.resize(n); for (int i = 1; i < n; ++i) { int dest; cin >> dest; edges[i].push_back(dest); edges[dest].push_back(i); } for (int i = 0; i < n; ++i) { cin >> colors[i]; } dfs(0); cout << dp[0].black << "\n"; return 0; } ```
#include <bits/stdc++.h> using namespace std; const int N = 1e5 + 11; const int Mod = 1e9 + 7; struct Edge { int next, to; Edge() {} Edge(int a, int b) : next(a), to(b) {} }; int head[N]; Edge err[N << 1]; int nedge; int isb[N]; long long dp[N][2]; int n; void add_edge(int a, int b) { err[++nedge] = Edge(head[a], b); head[a] = nedge; err[++nedge] = Edge(head[b], a); head[b] = nedge; } long long inv(long long x, long long p) { long long ret = 1; for (int i = p - 2; i; i >>= 1, x = (x * x) % p) { if (i & 1) ret = (ret * x) % p; } return ret; } void dfs(int u, int fa) { if (isb[u]) dp[u][0] = 0, dp[u][1] = 1; else dp[u][0] = 1, dp[u][1] = 0; long long ss = 1, xx = 0; for (int i = head[u]; i != -1; i = err[i].next) { int v = err[i].to; if (v != fa) { dfs(v, u); ss *= (dp[v][0] + dp[v][1]); ss %= Mod; } } for (int i = head[u]; i != -1; i = err[i].next) { int v = err[i].to; if (v != fa) { xx += ((ss * inv(dp[v][0] + dp[v][1], Mod)) % Mod * dp[v][1]) % Mod; xx %= Mod; } } if (isb[u]) dp[u][0] = 0, dp[u][1] = ss; else dp[u][0] = ss, dp[u][1] = xx; } int main() { scanf("%d", &n); memset(head, -1, sizeof(head)); nedge = -1; for (int i = 1; i < n; ++i) { int x; scanf("%d", &x); add_edge(i, x); } for (int i = 0; i < n; ++i) scanf("%d", &isb[i]); dfs(0, -1); printf("%lld\n", dp[0][1]); }
### Prompt Develop a solution in CPP to the problem described below: Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other vertices are colored white. Consider a set consisting of k (0 ≀ k < n) edges of Appleman's tree. If Appleman deletes these edges from the tree, then it will split into (k + 1) parts. Note, that each part will be a tree with colored vertices. Now Appleman wonders, what is the number of sets splitting the tree in such a way that each resulting part will have exactly one black vertex? Find this number modulo 1000000007 (109 + 7). Input The first line contains an integer n (2 ≀ n ≀ 105) β€” the number of tree vertices. The second line contains the description of the tree: n - 1 integers p0, p1, ..., pn - 2 (0 ≀ pi ≀ i). Where pi means that there is an edge connecting vertex (i + 1) of the tree and vertex pi. Consider tree vertices are numbered from 0 to n - 1. The third line contains the description of the colors of the vertices: n integers x0, x1, ..., xn - 1 (xi is either 0 or 1). If xi is equal to 1, vertex i is colored black. Otherwise, vertex i is colored white. Output Output a single integer β€” the number of ways to split the tree modulo 1000000007 (109 + 7). Examples Input 3 0 0 0 1 1 Output 2 Input 6 0 1 1 0 4 1 1 0 0 1 0 Output 1 Input 10 0 1 2 1 4 4 4 0 8 0 0 0 1 0 1 1 0 0 1 Output 27 ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int N = 1e5 + 11; const int Mod = 1e9 + 7; struct Edge { int next, to; Edge() {} Edge(int a, int b) : next(a), to(b) {} }; int head[N]; Edge err[N << 1]; int nedge; int isb[N]; long long dp[N][2]; int n; void add_edge(int a, int b) { err[++nedge] = Edge(head[a], b); head[a] = nedge; err[++nedge] = Edge(head[b], a); head[b] = nedge; } long long inv(long long x, long long p) { long long ret = 1; for (int i = p - 2; i; i >>= 1, x = (x * x) % p) { if (i & 1) ret = (ret * x) % p; } return ret; } void dfs(int u, int fa) { if (isb[u]) dp[u][0] = 0, dp[u][1] = 1; else dp[u][0] = 1, dp[u][1] = 0; long long ss = 1, xx = 0; for (int i = head[u]; i != -1; i = err[i].next) { int v = err[i].to; if (v != fa) { dfs(v, u); ss *= (dp[v][0] + dp[v][1]); ss %= Mod; } } for (int i = head[u]; i != -1; i = err[i].next) { int v = err[i].to; if (v != fa) { xx += ((ss * inv(dp[v][0] + dp[v][1], Mod)) % Mod * dp[v][1]) % Mod; xx %= Mod; } } if (isb[u]) dp[u][0] = 0, dp[u][1] = ss; else dp[u][0] = ss, dp[u][1] = xx; } int main() { scanf("%d", &n); memset(head, -1, sizeof(head)); nedge = -1; for (int i = 1; i < n; ++i) { int x; scanf("%d", &x); add_edge(i, x); } for (int i = 0; i < n; ++i) scanf("%d", &isb[i]); dfs(0, -1); printf("%lld\n", dp[0][1]); } ```
#include <bits/stdc++.h> using namespace std; char string_in_buffer[(int)260]; void fast_scan(int &first) { scanf("%d", &first); } void fast_scan(long long &first) { scanf("%lld", &first); } void fast_scan(unsigned long long &first) { scanf("%llu", &first); } void fast_scan(double &first) { scanf("%lf", &first); } void fast_scan(long double &first) { scanf("%Lf", &first); } void fast_scan(char &first) { scanf("%c", &first); if (first == '\n') { fast_scan(first); } } void fast_scan(string &first) { scanf("%s", string_in_buffer); first = string(string_in_buffer); } template <class TFirst, class TSecond> void fast_scan(pair<TFirst, TSecond> &p) { fast_scan(p.first); fast_scan(p.second); } template <class T> void fast_scan(vector<T> &v) { for (auto &first : v) fast_scan(first); } void fast_print(const int &first) { printf("%d", first); } void fast_print(const unsigned int &first) { printf("%u", first); } void fast_print(const long long &first) { printf("%lld", first); } void fast_print(const unsigned long long &first) { printf("%llu", first); } void fast_print(const double &first) { printf("%.15lf", first); } void fast_print(const long double &first) { printf("%.15Lf", first); } void fast_print(const char &first) { printf("%c", first); }; void fast_print(const string &first) { printf("%s", first.c_str()); } void fast_print(const char v[]) { fast_print((string)v); } template <class TFirst, class TSecond> void fast_print(const pair<TFirst, TSecond> &p) { fast_print(p.first); fast_print(' '); fast_print(p.second); } template <class T> void fast_print(const vector<T> &v) { if (v.empty()) return; fast_print(v[0]); for (int i = 1; i < v.size(); i++) { fast_print(' '); fast_print(v[i]); } } template <class T> void fast_print(const vector<vector<T>> &v) { if (v.empty()) return; fast_print(v[0]); for (int i = 1; i < v.size(); i++) { fast_print('\n'); fast_print(v[i]); } } template <class T> void fast_print(const T &v) { for (const auto &first : v) { fast_print(first); fast_print(' '); } } using namespace std; namespace smart_io { string print_start = ""; string sep = " "; bool first_print = false; void precall_print() { fast_print(print_start); print_start = "\n"; first_print = true; } void _print(deque<string>) {} template <class T, class... Args> void _print(deque<string> names, T elem, Args... args) { if (!first_print) { fast_print("\n"); } else { first_print = false; } fast_print(names.front()); fast_print(" = "); fast_print(elem); names.pop_front(); _print(names, args...); } } // namespace smart_io template <class T> ostream &operator,(ostream &os, const T &object) { if (!smart_io::first_print) { fast_print(smart_io::sep); } else { smart_io::first_print = false; } fast_print(object); return os; } template <class T> istream &operator,(istream &is, T &object) { fast_scan(object); return is; } namespace std::chrono { long long get_time_ms() { return duration_cast<milliseconds>(system_clock::now().time_since_epoch()) .count(); } }; // namespace std::chrono namespace typedefs {} namespace numbers_operation { template <class T> T floor_mod(T a, T b) { if (a % b == 0) return 0; if (a >= 0 && b >= 0) return a % b; if (a <= 0 && b <= 0) return a % b; return abs(b) - (abs(a) % abs(b)); } } // namespace numbers_operation using namespace numbers_operation; using namespace typedefs; const long long MOD = 1e9 + 7; long long fast_pow(long long first, long long p) { if (p == 0) return 1; if (p & 1) { return (fast_pow(first, p - 1) * first) % MOD; } else { long long sub = fast_pow(first, p / 2); return (sub * sub) % MOD; } } long long n; vector<vector<long long>> g; vector<long long> black; vector<vector<long long>> mem(3e5, vector<long long>(2, -1)); long long dp(long long v, long long emp) { if (mem[v][emp] != -1) return mem[v][emp]; long long cnt = 1; for (long long sub : g[v]) { cnt *= dp(sub, 1); cnt %= MOD; } long long rez = 0; if (emp) { if (black[v]) { rez += cnt; } else { rez += cnt; for (long long sub : g[v]) { rez += ((cnt * fast_pow(dp(sub, 1), MOD - 2)) % MOD) * dp(sub, 0); rez %= MOD; } } } else { if (black[v]) { rez += cnt; } else { for (long long sub : g[v]) { rez += ((cnt * fast_pow(dp(sub, 1), MOD - 2)) % MOD) * dp(sub, 0); rez %= MOD; } } } return mem[v][emp] = rez % MOD; } signed main(signed argc, char *argv[]) { cin, n; g.resize(n); for (long long i = 0; i < (n - 1); i++) { long long p; cin, p; g[p].push_back(i + 1); } black.resize(n); cin, black; smart_io::precall_print(); cout, dp(0, 0); }
### Prompt Please formulate a cpp solution to the following problem: Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other vertices are colored white. Consider a set consisting of k (0 ≀ k < n) edges of Appleman's tree. If Appleman deletes these edges from the tree, then it will split into (k + 1) parts. Note, that each part will be a tree with colored vertices. Now Appleman wonders, what is the number of sets splitting the tree in such a way that each resulting part will have exactly one black vertex? Find this number modulo 1000000007 (109 + 7). Input The first line contains an integer n (2 ≀ n ≀ 105) β€” the number of tree vertices. The second line contains the description of the tree: n - 1 integers p0, p1, ..., pn - 2 (0 ≀ pi ≀ i). Where pi means that there is an edge connecting vertex (i + 1) of the tree and vertex pi. Consider tree vertices are numbered from 0 to n - 1. The third line contains the description of the colors of the vertices: n integers x0, x1, ..., xn - 1 (xi is either 0 or 1). If xi is equal to 1, vertex i is colored black. Otherwise, vertex i is colored white. Output Output a single integer β€” the number of ways to split the tree modulo 1000000007 (109 + 7). Examples Input 3 0 0 0 1 1 Output 2 Input 6 0 1 1 0 4 1 1 0 0 1 0 Output 1 Input 10 0 1 2 1 4 4 4 0 8 0 0 0 1 0 1 1 0 0 1 Output 27 ### Response ```cpp #include <bits/stdc++.h> using namespace std; char string_in_buffer[(int)260]; void fast_scan(int &first) { scanf("%d", &first); } void fast_scan(long long &first) { scanf("%lld", &first); } void fast_scan(unsigned long long &first) { scanf("%llu", &first); } void fast_scan(double &first) { scanf("%lf", &first); } void fast_scan(long double &first) { scanf("%Lf", &first); } void fast_scan(char &first) { scanf("%c", &first); if (first == '\n') { fast_scan(first); } } void fast_scan(string &first) { scanf("%s", string_in_buffer); first = string(string_in_buffer); } template <class TFirst, class TSecond> void fast_scan(pair<TFirst, TSecond> &p) { fast_scan(p.first); fast_scan(p.second); } template <class T> void fast_scan(vector<T> &v) { for (auto &first : v) fast_scan(first); } void fast_print(const int &first) { printf("%d", first); } void fast_print(const unsigned int &first) { printf("%u", first); } void fast_print(const long long &first) { printf("%lld", first); } void fast_print(const unsigned long long &first) { printf("%llu", first); } void fast_print(const double &first) { printf("%.15lf", first); } void fast_print(const long double &first) { printf("%.15Lf", first); } void fast_print(const char &first) { printf("%c", first); }; void fast_print(const string &first) { printf("%s", first.c_str()); } void fast_print(const char v[]) { fast_print((string)v); } template <class TFirst, class TSecond> void fast_print(const pair<TFirst, TSecond> &p) { fast_print(p.first); fast_print(' '); fast_print(p.second); } template <class T> void fast_print(const vector<T> &v) { if (v.empty()) return; fast_print(v[0]); for (int i = 1; i < v.size(); i++) { fast_print(' '); fast_print(v[i]); } } template <class T> void fast_print(const vector<vector<T>> &v) { if (v.empty()) return; fast_print(v[0]); for (int i = 1; i < v.size(); i++) { fast_print('\n'); fast_print(v[i]); } } template <class T> void fast_print(const T &v) { for (const auto &first : v) { fast_print(first); fast_print(' '); } } using namespace std; namespace smart_io { string print_start = ""; string sep = " "; bool first_print = false; void precall_print() { fast_print(print_start); print_start = "\n"; first_print = true; } void _print(deque<string>) {} template <class T, class... Args> void _print(deque<string> names, T elem, Args... args) { if (!first_print) { fast_print("\n"); } else { first_print = false; } fast_print(names.front()); fast_print(" = "); fast_print(elem); names.pop_front(); _print(names, args...); } } // namespace smart_io template <class T> ostream &operator,(ostream &os, const T &object) { if (!smart_io::first_print) { fast_print(smart_io::sep); } else { smart_io::first_print = false; } fast_print(object); return os; } template <class T> istream &operator,(istream &is, T &object) { fast_scan(object); return is; } namespace std::chrono { long long get_time_ms() { return duration_cast<milliseconds>(system_clock::now().time_since_epoch()) .count(); } }; // namespace std::chrono namespace typedefs {} namespace numbers_operation { template <class T> T floor_mod(T a, T b) { if (a % b == 0) return 0; if (a >= 0 && b >= 0) return a % b; if (a <= 0 && b <= 0) return a % b; return abs(b) - (abs(a) % abs(b)); } } // namespace numbers_operation using namespace numbers_operation; using namespace typedefs; const long long MOD = 1e9 + 7; long long fast_pow(long long first, long long p) { if (p == 0) return 1; if (p & 1) { return (fast_pow(first, p - 1) * first) % MOD; } else { long long sub = fast_pow(first, p / 2); return (sub * sub) % MOD; } } long long n; vector<vector<long long>> g; vector<long long> black; vector<vector<long long>> mem(3e5, vector<long long>(2, -1)); long long dp(long long v, long long emp) { if (mem[v][emp] != -1) return mem[v][emp]; long long cnt = 1; for (long long sub : g[v]) { cnt *= dp(sub, 1); cnt %= MOD; } long long rez = 0; if (emp) { if (black[v]) { rez += cnt; } else { rez += cnt; for (long long sub : g[v]) { rez += ((cnt * fast_pow(dp(sub, 1), MOD - 2)) % MOD) * dp(sub, 0); rez %= MOD; } } } else { if (black[v]) { rez += cnt; } else { for (long long sub : g[v]) { rez += ((cnt * fast_pow(dp(sub, 1), MOD - 2)) % MOD) * dp(sub, 0); rez %= MOD; } } } return mem[v][emp] = rez % MOD; } signed main(signed argc, char *argv[]) { cin, n; g.resize(n); for (long long i = 0; i < (n - 1); i++) { long long p; cin, p; g[p].push_back(i + 1); } black.resize(n); cin, black; smart_io::precall_print(); cout, dp(0, 0); } ```
#include <bits/stdc++.h> using namespace std; template <typename Arg1> void __f(const char* name, Arg1&& arg1) { std::cerr << name << " : " << arg1 << '\n'; } template <typename Arg1, typename... Args> void __f(const char* names, Arg1&& arg1, Args&&... args) { const char* comma = strchr(names + 1, ','); std::cerr.write(names, comma - names) << " : " << arg1 << " | "; __f(comma + 1, args...); } template <typename T, typename U> static inline void amin(T& x, U y) { if (y < x) x = y; } template <typename T, typename U> static inline void amax(T& x, U y) { if (x < y) x = y; } long long max(long long a, long long b) { return (a > b) ? a : b; } long long min(long long a, long long b) { return (a < b) ? a : b; } const long long N = 1e5 + 10; vector<long long> adj[N]; long long inv[N]; long long mark[N]; void modularInverse(long long n, long long prime) { inv[0] = inv[1] = 1; for (long long i = 2; i <= n; i++) inv[i] = inv[prime % i] * (prime - prime / i) % prime; } long long power(long long x, unsigned long long y, unsigned long long m) { if (y == 0) return 1; long long p = power(x, y / 2, m) % m; p = (p * p) % m; return (y % 2 == 0) ? p : (x * p) % m; } long long dp[N][2]; void dfs(long long v, long long p) { for (auto i : adj[v]) { if (i == p) continue; dfs(i, v); } if (mark[v]) { dp[v][0] = 0; dp[v][1] = 1; for (auto i : adj[v]) { if (i == p) continue; dp[v][1] *= (dp[i][0] + dp[i][1]); dp[v][1] %= 1000000007; } } else { dp[v][0] = 1; for (auto i : adj[v]) { if (i == p) continue; dp[v][0] *= (dp[i][0] + dp[i][1]); dp[v][0] %= 1000000007; } for (auto i : adj[v]) { if (i == p) continue; dp[v][1] += (((dp[v][0] * power(dp[i][0] + dp[i][1], 1000000007 - 2, 1000000007)) % 1000000007) * dp[i][1]) % 1000000007; dp[v][1] %= 1000000007; } } } long long solve() { long long n; cin >> n; for (long long i = 2; i <= n; i++) { long long x; cin >> x; x++; adj[x].push_back(i); adj[i].push_back(x); } for (long long i = 1; i <= n; i++) { long long x; cin >> x; mark[i] = x; } dfs(1, 0); cout << dp[1][1]; return 0; } signed main() { ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0); long long t = 1; modularInverse(N - 1, 1000000007); while (t--) { solve(); } return 0; }
### Prompt Your challenge is to write a Cpp solution to the following problem: Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other vertices are colored white. Consider a set consisting of k (0 ≀ k < n) edges of Appleman's tree. If Appleman deletes these edges from the tree, then it will split into (k + 1) parts. Note, that each part will be a tree with colored vertices. Now Appleman wonders, what is the number of sets splitting the tree in such a way that each resulting part will have exactly one black vertex? Find this number modulo 1000000007 (109 + 7). Input The first line contains an integer n (2 ≀ n ≀ 105) β€” the number of tree vertices. The second line contains the description of the tree: n - 1 integers p0, p1, ..., pn - 2 (0 ≀ pi ≀ i). Where pi means that there is an edge connecting vertex (i + 1) of the tree and vertex pi. Consider tree vertices are numbered from 0 to n - 1. The third line contains the description of the colors of the vertices: n integers x0, x1, ..., xn - 1 (xi is either 0 or 1). If xi is equal to 1, vertex i is colored black. Otherwise, vertex i is colored white. Output Output a single integer β€” the number of ways to split the tree modulo 1000000007 (109 + 7). Examples Input 3 0 0 0 1 1 Output 2 Input 6 0 1 1 0 4 1 1 0 0 1 0 Output 1 Input 10 0 1 2 1 4 4 4 0 8 0 0 0 1 0 1 1 0 0 1 Output 27 ### Response ```cpp #include <bits/stdc++.h> using namespace std; template <typename Arg1> void __f(const char* name, Arg1&& arg1) { std::cerr << name << " : " << arg1 << '\n'; } template <typename Arg1, typename... Args> void __f(const char* names, Arg1&& arg1, Args&&... args) { const char* comma = strchr(names + 1, ','); std::cerr.write(names, comma - names) << " : " << arg1 << " | "; __f(comma + 1, args...); } template <typename T, typename U> static inline void amin(T& x, U y) { if (y < x) x = y; } template <typename T, typename U> static inline void amax(T& x, U y) { if (x < y) x = y; } long long max(long long a, long long b) { return (a > b) ? a : b; } long long min(long long a, long long b) { return (a < b) ? a : b; } const long long N = 1e5 + 10; vector<long long> adj[N]; long long inv[N]; long long mark[N]; void modularInverse(long long n, long long prime) { inv[0] = inv[1] = 1; for (long long i = 2; i <= n; i++) inv[i] = inv[prime % i] * (prime - prime / i) % prime; } long long power(long long x, unsigned long long y, unsigned long long m) { if (y == 0) return 1; long long p = power(x, y / 2, m) % m; p = (p * p) % m; return (y % 2 == 0) ? p : (x * p) % m; } long long dp[N][2]; void dfs(long long v, long long p) { for (auto i : adj[v]) { if (i == p) continue; dfs(i, v); } if (mark[v]) { dp[v][0] = 0; dp[v][1] = 1; for (auto i : adj[v]) { if (i == p) continue; dp[v][1] *= (dp[i][0] + dp[i][1]); dp[v][1] %= 1000000007; } } else { dp[v][0] = 1; for (auto i : adj[v]) { if (i == p) continue; dp[v][0] *= (dp[i][0] + dp[i][1]); dp[v][0] %= 1000000007; } for (auto i : adj[v]) { if (i == p) continue; dp[v][1] += (((dp[v][0] * power(dp[i][0] + dp[i][1], 1000000007 - 2, 1000000007)) % 1000000007) * dp[i][1]) % 1000000007; dp[v][1] %= 1000000007; } } } long long solve() { long long n; cin >> n; for (long long i = 2; i <= n; i++) { long long x; cin >> x; x++; adj[x].push_back(i); adj[i].push_back(x); } for (long long i = 1; i <= n; i++) { long long x; cin >> x; mark[i] = x; } dfs(1, 0); cout << dp[1][1]; return 0; } signed main() { ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0); long long t = 1; modularInverse(N - 1, 1000000007); while (t--) { solve(); } return 0; } ```
#include <bits/stdc++.h> using namespace std; using ll = long long; using ld = long double; using P = pair<ll, ll>; constexpr ll inf = 1000000000; constexpr ll mod = 1000000007; constexpr long double eps = 1e-6; template <typename T1, typename T2> ostream& operator<<(ostream& os, pair<T1, T2> p) { os << to_string(p.first) << " " << to_string(p.second); return os; } template <typename T> ostream& operator<<(ostream& os, vector<T>& v) { for (ll i = (0); i < (ll)(v.size()); i++) { if (i) os << " "; os << v[i]; } return os; } struct modint { ll n; public: modint(const ll n = 0) : n((n % mod + mod) % mod) {} static modint pow(modint a, int m) { modint r = 1; while (m > 0) { if (m & 1) { r *= a; } a = (a * a); m /= 2; } return r; } modint& operator++() { *this += 1; return *this; } modint& operator--() { *this -= 1; return *this; } modint operator++(int) { modint ret = *this; *this += 1; return ret; } modint operator--(int) { modint ret = *this; *this -= 1; return ret; } modint operator~() const { return (this->pow(n, mod - 2)); } friend bool operator==(const modint& lhs, const modint& rhs) { return lhs.n == rhs.n; } friend bool operator<(const modint& lhs, const modint& rhs) { return lhs.n < rhs.n; } friend bool operator>(const modint& lhs, const modint& rhs) { return lhs.n > rhs.n; } friend modint& operator+=(modint& lhs, const modint& rhs) { lhs.n += rhs.n; if (lhs.n >= mod) lhs.n -= mod; return lhs; } friend modint& operator-=(modint& lhs, const modint& rhs) { lhs.n -= rhs.n; if (lhs.n < 0) lhs.n += mod; return lhs; } friend modint& operator*=(modint& lhs, const modint& rhs) { lhs.n = (lhs.n * rhs.n) % mod; return lhs; } friend modint& operator/=(modint& lhs, const modint& rhs) { lhs.n = (lhs.n * (~rhs).n) % mod; return lhs; } friend modint operator+(const modint& lhs, const modint& rhs) { return modint(lhs.n + rhs.n); } friend modint operator-(const modint& lhs, const modint& rhs) { return modint(lhs.n - rhs.n); } friend modint operator*(const modint& lhs, const modint& rhs) { return modint(lhs.n * rhs.n); } friend modint operator/(const modint& lhs, const modint& rhs) { return modint(lhs.n * (~rhs).n); } }; istream& operator>>(istream& is, modint m) { is >> m.n; return is; } ostream& operator<<(ostream& os, modint m) { os << m.n; return os; } long long extgcd(long long a, long long b, long long& x, long long& y) { long long d = a; if (b != 0) { d = extgcd(b, a % b, y, x); y -= (a / b) * x; } else { x = 1; y = 0; } return d; } long long mod_inverse(long long a, long long m) { long long x, y; if (extgcd(a, m, x, y) == 1) return (m + x % m) % m; else return -1; } vector<long long> fact(1010101 + 1, inf); long long mod_fact(long long n, long long& e) { if (fact[0] == inf) { fact[0] = 1; if (1010101 != 0) fact[1] = 1; for (ll i = 2; i <= 1010101; ++i) { fact[i] = (fact[i - 1] * i) % mod; } } e = 0; if (n == 0) return 1; long long res = mod_fact(n / mod, e); e += n / mod; if ((n / mod) % 2 != 0) return (res * (mod - fact[n % mod])) % mod; return (res * fact[n % mod]) % mod; } long long mod_comb(long long n, long long k) { if (n < 0 || k < 0 || n < k) return 0; long long e1, e2, e3; long long a1 = mod_fact(n, e1), a2 = mod_fact(k, e2), a3 = mod_fact(n - k, e3); if (e1 > e2 + e3) return 0; return (a1 * mod_inverse((a2 * a3) % mod, mod)) % mod; } using mi = modint; mi mod_pow(mi a, ll n) { mi ret = 1; mi tmp = a; while (n > 0) { if (n % 2) ret *= tmp; tmp = tmp * tmp; n /= 2; } return ret; } ll gcd(ll a, ll b) { if (b == 0) return a; return gcd(b, a % b); } int n; vector<vector<int>> t; vector<int> x; pair<mi, mi> dfs(int v, int p) { pair<mi, mi> ret; ret.first = 0; ret.second = 0; vector<pair<mi, mi>> vec; for (auto adj : t[v]) { if (adj == p) continue; auto tmp = dfs(adj, v); vec.push_back(tmp); } if (vec.empty()) { if (x[v] == 1) return {1, 0}; else return {0, 1}; } if (x[v] == 1) { ret.first = 1; for (auto elm : vec) { ret.first *= (elm.first + elm.second); } return ret; } else { ret.first = 0; ret.second = 1; mi sum = 1; for (auto elm : vec) { ret.second *= (elm.first + elm.second); sum *= elm.first + elm.second; } for (auto elm : vec) { ret.first += (sum / (elm.first + elm.second)) * elm.first; } return ret; } return ret; } int main() { cin.tie(0); ios::sync_with_stdio(false); cin >> n; t.resize(n); x.resize(n); for (ll i = (0); i < (ll)(n - 1); i++) { int p; cin >> p; t[i + 1].push_back(p); t[p].push_back(i + 1); } for (ll i = (0); i < (ll)(n); i++) cin >> x[i]; auto ans = dfs(0, -1); cout << ans.first << endl; return 0; }
### Prompt Develop a solution in cpp to the problem described below: Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other vertices are colored white. Consider a set consisting of k (0 ≀ k < n) edges of Appleman's tree. If Appleman deletes these edges from the tree, then it will split into (k + 1) parts. Note, that each part will be a tree with colored vertices. Now Appleman wonders, what is the number of sets splitting the tree in such a way that each resulting part will have exactly one black vertex? Find this number modulo 1000000007 (109 + 7). Input The first line contains an integer n (2 ≀ n ≀ 105) β€” the number of tree vertices. The second line contains the description of the tree: n - 1 integers p0, p1, ..., pn - 2 (0 ≀ pi ≀ i). Where pi means that there is an edge connecting vertex (i + 1) of the tree and vertex pi. Consider tree vertices are numbered from 0 to n - 1. The third line contains the description of the colors of the vertices: n integers x0, x1, ..., xn - 1 (xi is either 0 or 1). If xi is equal to 1, vertex i is colored black. Otherwise, vertex i is colored white. Output Output a single integer β€” the number of ways to split the tree modulo 1000000007 (109 + 7). Examples Input 3 0 0 0 1 1 Output 2 Input 6 0 1 1 0 4 1 1 0 0 1 0 Output 1 Input 10 0 1 2 1 4 4 4 0 8 0 0 0 1 0 1 1 0 0 1 Output 27 ### Response ```cpp #include <bits/stdc++.h> using namespace std; using ll = long long; using ld = long double; using P = pair<ll, ll>; constexpr ll inf = 1000000000; constexpr ll mod = 1000000007; constexpr long double eps = 1e-6; template <typename T1, typename T2> ostream& operator<<(ostream& os, pair<T1, T2> p) { os << to_string(p.first) << " " << to_string(p.second); return os; } template <typename T> ostream& operator<<(ostream& os, vector<T>& v) { for (ll i = (0); i < (ll)(v.size()); i++) { if (i) os << " "; os << v[i]; } return os; } struct modint { ll n; public: modint(const ll n = 0) : n((n % mod + mod) % mod) {} static modint pow(modint a, int m) { modint r = 1; while (m > 0) { if (m & 1) { r *= a; } a = (a * a); m /= 2; } return r; } modint& operator++() { *this += 1; return *this; } modint& operator--() { *this -= 1; return *this; } modint operator++(int) { modint ret = *this; *this += 1; return ret; } modint operator--(int) { modint ret = *this; *this -= 1; return ret; } modint operator~() const { return (this->pow(n, mod - 2)); } friend bool operator==(const modint& lhs, const modint& rhs) { return lhs.n == rhs.n; } friend bool operator<(const modint& lhs, const modint& rhs) { return lhs.n < rhs.n; } friend bool operator>(const modint& lhs, const modint& rhs) { return lhs.n > rhs.n; } friend modint& operator+=(modint& lhs, const modint& rhs) { lhs.n += rhs.n; if (lhs.n >= mod) lhs.n -= mod; return lhs; } friend modint& operator-=(modint& lhs, const modint& rhs) { lhs.n -= rhs.n; if (lhs.n < 0) lhs.n += mod; return lhs; } friend modint& operator*=(modint& lhs, const modint& rhs) { lhs.n = (lhs.n * rhs.n) % mod; return lhs; } friend modint& operator/=(modint& lhs, const modint& rhs) { lhs.n = (lhs.n * (~rhs).n) % mod; return lhs; } friend modint operator+(const modint& lhs, const modint& rhs) { return modint(lhs.n + rhs.n); } friend modint operator-(const modint& lhs, const modint& rhs) { return modint(lhs.n - rhs.n); } friend modint operator*(const modint& lhs, const modint& rhs) { return modint(lhs.n * rhs.n); } friend modint operator/(const modint& lhs, const modint& rhs) { return modint(lhs.n * (~rhs).n); } }; istream& operator>>(istream& is, modint m) { is >> m.n; return is; } ostream& operator<<(ostream& os, modint m) { os << m.n; return os; } long long extgcd(long long a, long long b, long long& x, long long& y) { long long d = a; if (b != 0) { d = extgcd(b, a % b, y, x); y -= (a / b) * x; } else { x = 1; y = 0; } return d; } long long mod_inverse(long long a, long long m) { long long x, y; if (extgcd(a, m, x, y) == 1) return (m + x % m) % m; else return -1; } vector<long long> fact(1010101 + 1, inf); long long mod_fact(long long n, long long& e) { if (fact[0] == inf) { fact[0] = 1; if (1010101 != 0) fact[1] = 1; for (ll i = 2; i <= 1010101; ++i) { fact[i] = (fact[i - 1] * i) % mod; } } e = 0; if (n == 0) return 1; long long res = mod_fact(n / mod, e); e += n / mod; if ((n / mod) % 2 != 0) return (res * (mod - fact[n % mod])) % mod; return (res * fact[n % mod]) % mod; } long long mod_comb(long long n, long long k) { if (n < 0 || k < 0 || n < k) return 0; long long e1, e2, e3; long long a1 = mod_fact(n, e1), a2 = mod_fact(k, e2), a3 = mod_fact(n - k, e3); if (e1 > e2 + e3) return 0; return (a1 * mod_inverse((a2 * a3) % mod, mod)) % mod; } using mi = modint; mi mod_pow(mi a, ll n) { mi ret = 1; mi tmp = a; while (n > 0) { if (n % 2) ret *= tmp; tmp = tmp * tmp; n /= 2; } return ret; } ll gcd(ll a, ll b) { if (b == 0) return a; return gcd(b, a % b); } int n; vector<vector<int>> t; vector<int> x; pair<mi, mi> dfs(int v, int p) { pair<mi, mi> ret; ret.first = 0; ret.second = 0; vector<pair<mi, mi>> vec; for (auto adj : t[v]) { if (adj == p) continue; auto tmp = dfs(adj, v); vec.push_back(tmp); } if (vec.empty()) { if (x[v] == 1) return {1, 0}; else return {0, 1}; } if (x[v] == 1) { ret.first = 1; for (auto elm : vec) { ret.first *= (elm.first + elm.second); } return ret; } else { ret.first = 0; ret.second = 1; mi sum = 1; for (auto elm : vec) { ret.second *= (elm.first + elm.second); sum *= elm.first + elm.second; } for (auto elm : vec) { ret.first += (sum / (elm.first + elm.second)) * elm.first; } return ret; } return ret; } int main() { cin.tie(0); ios::sync_with_stdio(false); cin >> n; t.resize(n); x.resize(n); for (ll i = (0); i < (ll)(n - 1); i++) { int p; cin >> p; t[i + 1].push_back(p); t[p].push_back(i + 1); } for (ll i = (0); i < (ll)(n); i++) cin >> x[i]; auto ans = dfs(0, -1); cout << ans.first << endl; return 0; } ```
#include <bits/stdc++.h> using namespace std; const int N = 100005; long long mod = 1e9 + 7; vector<int> g[N]; int color[N]; long long dp[N][2]; bool vis[N]; void dfs(int src) { vis[src] = 1; if (color[src] == 1) { dp[src][1] = 1; dp[src][0] = 0; } else { dp[src][0] = 1; dp[src][1] = 0; } for (auto nbr : g[src]) { if (vis[nbr]) continue; dfs(nbr); if (color[src] == 1) { dp[src][1] *= (dp[nbr][0] + dp[nbr][1]) % mod; dp[src][1] %= mod; } else { dp[src][1] *= (dp[nbr][0] + dp[nbr][1]) % mod; dp[src][1] %= mod; dp[src][1] += (dp[src][0] * dp[nbr][1]) % mod; dp[src][1] %= mod; dp[src][0] *= (dp[nbr][0] + dp[nbr][1]) % mod; dp[src][0] %= mod; } } } int main() { ios_base::sync_with_stdio(false); cin.tie(NULL); int n; cin >> n; for (int i = 1; i < n; i++) { int v; cin >> v; g[v].push_back(i); g[i].push_back(v); } for (int i = 0; i < n; i++) cin >> color[i]; dfs(0); cout << dp[0][1] % mod; return 0; }
### Prompt Please provide a CPP coded solution to the problem described below: Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other vertices are colored white. Consider a set consisting of k (0 ≀ k < n) edges of Appleman's tree. If Appleman deletes these edges from the tree, then it will split into (k + 1) parts. Note, that each part will be a tree with colored vertices. Now Appleman wonders, what is the number of sets splitting the tree in such a way that each resulting part will have exactly one black vertex? Find this number modulo 1000000007 (109 + 7). Input The first line contains an integer n (2 ≀ n ≀ 105) β€” the number of tree vertices. The second line contains the description of the tree: n - 1 integers p0, p1, ..., pn - 2 (0 ≀ pi ≀ i). Where pi means that there is an edge connecting vertex (i + 1) of the tree and vertex pi. Consider tree vertices are numbered from 0 to n - 1. The third line contains the description of the colors of the vertices: n integers x0, x1, ..., xn - 1 (xi is either 0 or 1). If xi is equal to 1, vertex i is colored black. Otherwise, vertex i is colored white. Output Output a single integer β€” the number of ways to split the tree modulo 1000000007 (109 + 7). Examples Input 3 0 0 0 1 1 Output 2 Input 6 0 1 1 0 4 1 1 0 0 1 0 Output 1 Input 10 0 1 2 1 4 4 4 0 8 0 0 0 1 0 1 1 0 0 1 Output 27 ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int N = 100005; long long mod = 1e9 + 7; vector<int> g[N]; int color[N]; long long dp[N][2]; bool vis[N]; void dfs(int src) { vis[src] = 1; if (color[src] == 1) { dp[src][1] = 1; dp[src][0] = 0; } else { dp[src][0] = 1; dp[src][1] = 0; } for (auto nbr : g[src]) { if (vis[nbr]) continue; dfs(nbr); if (color[src] == 1) { dp[src][1] *= (dp[nbr][0] + dp[nbr][1]) % mod; dp[src][1] %= mod; } else { dp[src][1] *= (dp[nbr][0] + dp[nbr][1]) % mod; dp[src][1] %= mod; dp[src][1] += (dp[src][0] * dp[nbr][1]) % mod; dp[src][1] %= mod; dp[src][0] *= (dp[nbr][0] + dp[nbr][1]) % mod; dp[src][0] %= mod; } } } int main() { ios_base::sync_with_stdio(false); cin.tie(NULL); int n; cin >> n; for (int i = 1; i < n; i++) { int v; cin >> v; g[v].push_back(i); g[i].push_back(v); } for (int i = 0; i < n; i++) cin >> color[i]; dfs(0); cout << dp[0][1] % mod; return 0; } ```
#include <bits/stdc++.h> using namespace std; vector<vector<long long int>> adj(100005); vector<long long int> color(100005); vector<vector<long long int>> dp(100005, vector<long long int>(2, 0)); long long int power(long long int x) { long long int res = 1; x %= 1000000007ll; long long int y = 1000000007ll - 2; while (y > 0) { if (y & 1) { res = (res * x) % 1000000007ll; } x = (x * x) % 1000000007ll; y = y >> 1; } return res; } void dfs(long long int v, long long int p) { long long int total = 1; for (auto child : adj[v]) { if (child == p) { continue; } dfs(child, v); total = (total * ((dp[child][0] + dp[child][1]) % 1000000007ll)) % 1000000007ll; } if (color[v] == 1) { dp[v][0] = 0; dp[v][1] = total; } if (color[v] == 0) { dp[v][0] = total; long long int sum = 0; for (auto child : adj[v]) { if (child == p) { continue; } sum = (sum + ((total * power((dp[child][0] + dp[child][1]) % 1000000007ll)) % 1000000007ll * dp[child][1]) % 1000000007ll) % 1000000007ll; } dp[v][1] = sum; } } int main() { ios_base::sync_with_stdio(0); cin.tie(NULL); long long int n; cin >> n; long long int v; for (long long int i = 0; i < n - 1; i++) { cin >> v; adj[v].push_back(i + 1); adj[i + 1].push_back(v); } for (long long int i = 0; i < n; i++) { cin >> color[i]; } dfs(0, -1); cout << dp[0][1]; }
### Prompt Please provide a cpp coded solution to the problem described below: Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other vertices are colored white. Consider a set consisting of k (0 ≀ k < n) edges of Appleman's tree. If Appleman deletes these edges from the tree, then it will split into (k + 1) parts. Note, that each part will be a tree with colored vertices. Now Appleman wonders, what is the number of sets splitting the tree in such a way that each resulting part will have exactly one black vertex? Find this number modulo 1000000007 (109 + 7). Input The first line contains an integer n (2 ≀ n ≀ 105) β€” the number of tree vertices. The second line contains the description of the tree: n - 1 integers p0, p1, ..., pn - 2 (0 ≀ pi ≀ i). Where pi means that there is an edge connecting vertex (i + 1) of the tree and vertex pi. Consider tree vertices are numbered from 0 to n - 1. The third line contains the description of the colors of the vertices: n integers x0, x1, ..., xn - 1 (xi is either 0 or 1). If xi is equal to 1, vertex i is colored black. Otherwise, vertex i is colored white. Output Output a single integer β€” the number of ways to split the tree modulo 1000000007 (109 + 7). Examples Input 3 0 0 0 1 1 Output 2 Input 6 0 1 1 0 4 1 1 0 0 1 0 Output 1 Input 10 0 1 2 1 4 4 4 0 8 0 0 0 1 0 1 1 0 0 1 Output 27 ### Response ```cpp #include <bits/stdc++.h> using namespace std; vector<vector<long long int>> adj(100005); vector<long long int> color(100005); vector<vector<long long int>> dp(100005, vector<long long int>(2, 0)); long long int power(long long int x) { long long int res = 1; x %= 1000000007ll; long long int y = 1000000007ll - 2; while (y > 0) { if (y & 1) { res = (res * x) % 1000000007ll; } x = (x * x) % 1000000007ll; y = y >> 1; } return res; } void dfs(long long int v, long long int p) { long long int total = 1; for (auto child : adj[v]) { if (child == p) { continue; } dfs(child, v); total = (total * ((dp[child][0] + dp[child][1]) % 1000000007ll)) % 1000000007ll; } if (color[v] == 1) { dp[v][0] = 0; dp[v][1] = total; } if (color[v] == 0) { dp[v][0] = total; long long int sum = 0; for (auto child : adj[v]) { if (child == p) { continue; } sum = (sum + ((total * power((dp[child][0] + dp[child][1]) % 1000000007ll)) % 1000000007ll * dp[child][1]) % 1000000007ll) % 1000000007ll; } dp[v][1] = sum; } } int main() { ios_base::sync_with_stdio(0); cin.tie(NULL); long long int n; cin >> n; long long int v; for (long long int i = 0; i < n - 1; i++) { cin >> v; adj[v].push_back(i + 1); adj[i + 1].push_back(v); } for (long long int i = 0; i < n; i++) { cin >> color[i]; } dfs(0, -1); cout << dp[0][1]; } ```
#include <bits/stdc++.h> using namespace std; const int MOD = 1e9 + 7; int n, i, j, mark[100005]; long long dp[2][100005]; vector<int> edge[100005]; void solve(int id, int p) { for (int k = 0; k < edge[id].size(); k++) { int to = edge[id][k]; if (to == p) continue; solve(to, id); } if (mark[id]) { long long pd = 1LL; for (int k = 0; k < edge[id].size(); k++) { int to = edge[id][k]; if (to == p) continue; pd = (pd * dp[0][to]) % MOD; } dp[1][id] = pd; dp[0][id] = 0; } else { long long pd = 1LL; vector<long long> num; vector<long long> l; vector<long long> r; for (int k = 0; k < edge[id].size(); k++) { int to = edge[id][k]; if (to == p) continue; pd = (pd * dp[0][to]) % MOD; num.push_back(dp[1][to]); l.push_back(dp[0][to]); r.push_back(dp[0][to]); } dp[0][id] = pd; for (int k = 1; k < l.size(); k++) l[k] = (l[k] * l[k - 1]) % MOD; for (int k = r.size() - 2; k >= 0; k--) r[k] = (r[k] * r[k + 1]) % MOD; for (int k = 0; k < l.size(); k++) { long long now = num[k]; if (k - 1 >= 0) now = (now * l[k - 1]) % MOD; if (k + 1 < r.size()) now = (now * r[k + 1]) % MOD; dp[1][id] = (dp[1][id] + now) % MOD; } } if (p != -1) dp[0][id] = (dp[0][id] + dp[1][id]) % MOD; } int main() { scanf("%d", &n); for (i = 1; i < n; i++) { int x; scanf("%d", &x); edge[x].push_back(i); edge[i].push_back(x); } for (i = 0; i < n; i++) scanf("%d", &mark[i]); solve(0, -1); printf("%lld\n", dp[1][0]); }
### Prompt Please create a solution in CPP to the following problem: Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other vertices are colored white. Consider a set consisting of k (0 ≀ k < n) edges of Appleman's tree. If Appleman deletes these edges from the tree, then it will split into (k + 1) parts. Note, that each part will be a tree with colored vertices. Now Appleman wonders, what is the number of sets splitting the tree in such a way that each resulting part will have exactly one black vertex? Find this number modulo 1000000007 (109 + 7). Input The first line contains an integer n (2 ≀ n ≀ 105) β€” the number of tree vertices. The second line contains the description of the tree: n - 1 integers p0, p1, ..., pn - 2 (0 ≀ pi ≀ i). Where pi means that there is an edge connecting vertex (i + 1) of the tree and vertex pi. Consider tree vertices are numbered from 0 to n - 1. The third line contains the description of the colors of the vertices: n integers x0, x1, ..., xn - 1 (xi is either 0 or 1). If xi is equal to 1, vertex i is colored black. Otherwise, vertex i is colored white. Output Output a single integer β€” the number of ways to split the tree modulo 1000000007 (109 + 7). Examples Input 3 0 0 0 1 1 Output 2 Input 6 0 1 1 0 4 1 1 0 0 1 0 Output 1 Input 10 0 1 2 1 4 4 4 0 8 0 0 0 1 0 1 1 0 0 1 Output 27 ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int MOD = 1e9 + 7; int n, i, j, mark[100005]; long long dp[2][100005]; vector<int> edge[100005]; void solve(int id, int p) { for (int k = 0; k < edge[id].size(); k++) { int to = edge[id][k]; if (to == p) continue; solve(to, id); } if (mark[id]) { long long pd = 1LL; for (int k = 0; k < edge[id].size(); k++) { int to = edge[id][k]; if (to == p) continue; pd = (pd * dp[0][to]) % MOD; } dp[1][id] = pd; dp[0][id] = 0; } else { long long pd = 1LL; vector<long long> num; vector<long long> l; vector<long long> r; for (int k = 0; k < edge[id].size(); k++) { int to = edge[id][k]; if (to == p) continue; pd = (pd * dp[0][to]) % MOD; num.push_back(dp[1][to]); l.push_back(dp[0][to]); r.push_back(dp[0][to]); } dp[0][id] = pd; for (int k = 1; k < l.size(); k++) l[k] = (l[k] * l[k - 1]) % MOD; for (int k = r.size() - 2; k >= 0; k--) r[k] = (r[k] * r[k + 1]) % MOD; for (int k = 0; k < l.size(); k++) { long long now = num[k]; if (k - 1 >= 0) now = (now * l[k - 1]) % MOD; if (k + 1 < r.size()) now = (now * r[k + 1]) % MOD; dp[1][id] = (dp[1][id] + now) % MOD; } } if (p != -1) dp[0][id] = (dp[0][id] + dp[1][id]) % MOD; } int main() { scanf("%d", &n); for (i = 1; i < n; i++) { int x; scanf("%d", &x); edge[x].push_back(i); edge[i].push_back(x); } for (i = 0; i < n; i++) scanf("%d", &mark[i]); solve(0, -1); printf("%lld\n", dp[1][0]); } ```
#include <bits/stdc++.h> const int M = 100010, mod = 1e9 + 7; int n; int fa[M], col[M]; template <typename T> inline void read(T &x) { x = 0; char ch = getchar(); int f = 1; for (; ch < '0' || ch > '9'; ch = getchar()) if (ch == '-') f = -1; for (; ch >= '0' && ch <= '9'; ch = getchar()) x = x * 10 + ch - '0'; x *= f; } int head[M], tot = 0; struct edge { int to, next; } e[M]; inline void add(int u, int v) { e[++tot] = (edge){v, head[u]}; head[u] = tot; } long long dp[M][2]; void dfs(int pos) { if (col[pos] == 1) dp[pos][1] = 1; else dp[pos][0] = 1; for (int i = head[pos], v; i; i = e[i].next) if ((v = e[i].to) != fa[pos]) { dfs(v); dp[pos][1] = (dp[pos][1] * (dp[v][0] + dp[v][1]) % mod + dp[pos][0] * dp[v][1] % mod) % mod; dp[pos][0] = dp[pos][0] * (dp[v][0] + dp[v][1]) % mod; } } int main() { read(n); for (int i = 2; i <= n; i++) read(fa[i]), fa[i]++, add(fa[i], i); for (int i = 1; i <= n; i++) read(col[i]); dfs(1); printf("%d\n", dp[1][1]); return 0; }
### Prompt Develop a solution in Cpp to the problem described below: Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other vertices are colored white. Consider a set consisting of k (0 ≀ k < n) edges of Appleman's tree. If Appleman deletes these edges from the tree, then it will split into (k + 1) parts. Note, that each part will be a tree with colored vertices. Now Appleman wonders, what is the number of sets splitting the tree in such a way that each resulting part will have exactly one black vertex? Find this number modulo 1000000007 (109 + 7). Input The first line contains an integer n (2 ≀ n ≀ 105) β€” the number of tree vertices. The second line contains the description of the tree: n - 1 integers p0, p1, ..., pn - 2 (0 ≀ pi ≀ i). Where pi means that there is an edge connecting vertex (i + 1) of the tree and vertex pi. Consider tree vertices are numbered from 0 to n - 1. The third line contains the description of the colors of the vertices: n integers x0, x1, ..., xn - 1 (xi is either 0 or 1). If xi is equal to 1, vertex i is colored black. Otherwise, vertex i is colored white. Output Output a single integer β€” the number of ways to split the tree modulo 1000000007 (109 + 7). Examples Input 3 0 0 0 1 1 Output 2 Input 6 0 1 1 0 4 1 1 0 0 1 0 Output 1 Input 10 0 1 2 1 4 4 4 0 8 0 0 0 1 0 1 1 0 0 1 Output 27 ### Response ```cpp #include <bits/stdc++.h> const int M = 100010, mod = 1e9 + 7; int n; int fa[M], col[M]; template <typename T> inline void read(T &x) { x = 0; char ch = getchar(); int f = 1; for (; ch < '0' || ch > '9'; ch = getchar()) if (ch == '-') f = -1; for (; ch >= '0' && ch <= '9'; ch = getchar()) x = x * 10 + ch - '0'; x *= f; } int head[M], tot = 0; struct edge { int to, next; } e[M]; inline void add(int u, int v) { e[++tot] = (edge){v, head[u]}; head[u] = tot; } long long dp[M][2]; void dfs(int pos) { if (col[pos] == 1) dp[pos][1] = 1; else dp[pos][0] = 1; for (int i = head[pos], v; i; i = e[i].next) if ((v = e[i].to) != fa[pos]) { dfs(v); dp[pos][1] = (dp[pos][1] * (dp[v][0] + dp[v][1]) % mod + dp[pos][0] * dp[v][1] % mod) % mod; dp[pos][0] = dp[pos][0] * (dp[v][0] + dp[v][1]) % mod; } } int main() { read(n); for (int i = 2; i <= n; i++) read(fa[i]), fa[i]++, add(fa[i], i); for (int i = 1; i <= n; i++) read(col[i]); dfs(1); printf("%d\n", dp[1][1]); return 0; } ```
#include <bits/stdc++.h> using namespace std; const int MOD = 1000000007; vector<int> adj[100005]; int n, num, colors[100005]; long long int dp0[100005], dp1[100005]; void dfs(int v, int pv) { dp0[v] = 1 - colors[v]; dp1[v] = colors[v]; for (auto u : adj[v]) { if (u == pv) continue; dfs(u, v); long long int temp = dp1[v]; dp1[v] = (temp * dp0[u]) % MOD + (dp1[u] * temp) % MOD + (dp0[v] * dp1[u]) % MOD; if (dp1[v] >= MOD) dp1[v] %= MOD; temp = dp0[v]; dp0[v] = (temp * dp0[u]) % MOD + (dp1[u] * temp) % MOD; if (dp0[v] >= MOD) dp0[v] %= MOD; } } int main() { cin >> n; for (int i = 2; i <= n; i++) { cin >> num; adj[i].push_back(num + 1); adj[num + 1].push_back(i); } for (int i = 1; i <= n; i++) cin >> colors[i]; dfs(1, 0); cout << dp1[1] << endl; return 0; }
### Prompt Generate a cpp solution to the following problem: Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other vertices are colored white. Consider a set consisting of k (0 ≀ k < n) edges of Appleman's tree. If Appleman deletes these edges from the tree, then it will split into (k + 1) parts. Note, that each part will be a tree with colored vertices. Now Appleman wonders, what is the number of sets splitting the tree in such a way that each resulting part will have exactly one black vertex? Find this number modulo 1000000007 (109 + 7). Input The first line contains an integer n (2 ≀ n ≀ 105) β€” the number of tree vertices. The second line contains the description of the tree: n - 1 integers p0, p1, ..., pn - 2 (0 ≀ pi ≀ i). Where pi means that there is an edge connecting vertex (i + 1) of the tree and vertex pi. Consider tree vertices are numbered from 0 to n - 1. The third line contains the description of the colors of the vertices: n integers x0, x1, ..., xn - 1 (xi is either 0 or 1). If xi is equal to 1, vertex i is colored black. Otherwise, vertex i is colored white. Output Output a single integer β€” the number of ways to split the tree modulo 1000000007 (109 + 7). Examples Input 3 0 0 0 1 1 Output 2 Input 6 0 1 1 0 4 1 1 0 0 1 0 Output 1 Input 10 0 1 2 1 4 4 4 0 8 0 0 0 1 0 1 1 0 0 1 Output 27 ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int MOD = 1000000007; vector<int> adj[100005]; int n, num, colors[100005]; long long int dp0[100005], dp1[100005]; void dfs(int v, int pv) { dp0[v] = 1 - colors[v]; dp1[v] = colors[v]; for (auto u : adj[v]) { if (u == pv) continue; dfs(u, v); long long int temp = dp1[v]; dp1[v] = (temp * dp0[u]) % MOD + (dp1[u] * temp) % MOD + (dp0[v] * dp1[u]) % MOD; if (dp1[v] >= MOD) dp1[v] %= MOD; temp = dp0[v]; dp0[v] = (temp * dp0[u]) % MOD + (dp1[u] * temp) % MOD; if (dp0[v] >= MOD) dp0[v] %= MOD; } } int main() { cin >> n; for (int i = 2; i <= n; i++) { cin >> num; adj[i].push_back(num + 1); adj[num + 1].push_back(i); } for (int i = 1; i <= n; i++) cin >> colors[i]; dfs(1, 0); cout << dp1[1] << endl; return 0; } ```
#include <bits/stdc++.h> using namespace std; vector<int> adj[300005]; long long dp[300005][2]; int color[300005]; long long modex(long long a, int b) { long long ans = 1; while (b) { if (b & 1) ans = ans * a % 1000000007; a = a * a % 1000000007; b >>= 1; } return ans; } long long inv(long long a) { return modex(a, 1000000007 - 2); } void dfs(int u) { dp[u][0] = 1; for (int j = 0; j < (int)adj[u].size(); ++j) { int v = adj[u][j]; dfs(v); dp[u][0] *= (dp[v][0] + dp[v][1]); dp[u][0] %= 1000000007; } for (int j = 0; j < (int)adj[u].size(); ++j) { int v = adj[u][j]; dp[u][1] += (dp[v][1] * dp[u][0] % 1000000007) * inv(dp[v][0] + dp[v][1]); dp[u][1] %= 1000000007; } if (color[u] == 1) { dp[u][1] = dp[u][0]; dp[u][0] = 0; } } int main() { int n, v; cin >> n; for (int i = 1; i < n; ++i) { scanf("%d", &v); adj[v].push_back(i); } for (int i = 0; i < n; ++i) scanf("%d", &color[i]); dfs(0); cout << dp[0][1] << endl; return 0; }
### Prompt Please formulate a CPP solution to the following problem: Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other vertices are colored white. Consider a set consisting of k (0 ≀ k < n) edges of Appleman's tree. If Appleman deletes these edges from the tree, then it will split into (k + 1) parts. Note, that each part will be a tree with colored vertices. Now Appleman wonders, what is the number of sets splitting the tree in such a way that each resulting part will have exactly one black vertex? Find this number modulo 1000000007 (109 + 7). Input The first line contains an integer n (2 ≀ n ≀ 105) β€” the number of tree vertices. The second line contains the description of the tree: n - 1 integers p0, p1, ..., pn - 2 (0 ≀ pi ≀ i). Where pi means that there is an edge connecting vertex (i + 1) of the tree and vertex pi. Consider tree vertices are numbered from 0 to n - 1. The third line contains the description of the colors of the vertices: n integers x0, x1, ..., xn - 1 (xi is either 0 or 1). If xi is equal to 1, vertex i is colored black. Otherwise, vertex i is colored white. Output Output a single integer β€” the number of ways to split the tree modulo 1000000007 (109 + 7). Examples Input 3 0 0 0 1 1 Output 2 Input 6 0 1 1 0 4 1 1 0 0 1 0 Output 1 Input 10 0 1 2 1 4 4 4 0 8 0 0 0 1 0 1 1 0 0 1 Output 27 ### Response ```cpp #include <bits/stdc++.h> using namespace std; vector<int> adj[300005]; long long dp[300005][2]; int color[300005]; long long modex(long long a, int b) { long long ans = 1; while (b) { if (b & 1) ans = ans * a % 1000000007; a = a * a % 1000000007; b >>= 1; } return ans; } long long inv(long long a) { return modex(a, 1000000007 - 2); } void dfs(int u) { dp[u][0] = 1; for (int j = 0; j < (int)adj[u].size(); ++j) { int v = adj[u][j]; dfs(v); dp[u][0] *= (dp[v][0] + dp[v][1]); dp[u][0] %= 1000000007; } for (int j = 0; j < (int)adj[u].size(); ++j) { int v = adj[u][j]; dp[u][1] += (dp[v][1] * dp[u][0] % 1000000007) * inv(dp[v][0] + dp[v][1]); dp[u][1] %= 1000000007; } if (color[u] == 1) { dp[u][1] = dp[u][0]; dp[u][0] = 0; } } int main() { int n, v; cin >> n; for (int i = 1; i < n; ++i) { scanf("%d", &v); adj[v].push_back(i); } for (int i = 0; i < n; ++i) scanf("%d", &color[i]); dfs(0); cout << dp[0][1] << endl; return 0; } ```
#include <bits/stdc++.h> using namespace std; const int MAXN = 1000 * 100 + 10; vector<int> vec[MAXN]; int c[MAXN]; long long dp[2][MAXN]; void dfs(int v) { vector<int> temp; long long all = 1; for (int i = 0; i < (int)vec[v].size(); i++) { int u = vec[v][i]; dfs(u); temp.push_back(all); all = (all * (dp[0][u] + dp[1][u])) % (1000 * 1000 * 1000 + 7); } if (c[v]) { dp[1][v] = all; dp[0][v] = 0; } else { dp[0][v] = all; all = 1; for (int i = (int)vec[v].size() - 1; i >= 0; i--) { int u = vec[v][i]; dp[1][v] = (dp[1][v] + (((temp[i] * all) % (1000 * 1000 * 1000 + 7)) * dp[1][u]) % (1000 * 1000 * 1000 + 7)) % (1000 * 1000 * 1000 + 7); all = (all * (dp[0][u] + dp[1][u])) % (1000 * 1000 * 1000 + 7); } } } int main() { int n; cin >> n; for (int i = 1; i < n; i++) { int a; cin >> a; vec[a].push_back(i); } for (int i = 0; i < n; i++) cin >> c[i]; dfs(0); cout << dp[1][0] << endl; return 0; }
### Prompt In Cpp, your task is to solve the following problem: Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other vertices are colored white. Consider a set consisting of k (0 ≀ k < n) edges of Appleman's tree. If Appleman deletes these edges from the tree, then it will split into (k + 1) parts. Note, that each part will be a tree with colored vertices. Now Appleman wonders, what is the number of sets splitting the tree in such a way that each resulting part will have exactly one black vertex? Find this number modulo 1000000007 (109 + 7). Input The first line contains an integer n (2 ≀ n ≀ 105) β€” the number of tree vertices. The second line contains the description of the tree: n - 1 integers p0, p1, ..., pn - 2 (0 ≀ pi ≀ i). Where pi means that there is an edge connecting vertex (i + 1) of the tree and vertex pi. Consider tree vertices are numbered from 0 to n - 1. The third line contains the description of the colors of the vertices: n integers x0, x1, ..., xn - 1 (xi is either 0 or 1). If xi is equal to 1, vertex i is colored black. Otherwise, vertex i is colored white. Output Output a single integer β€” the number of ways to split the tree modulo 1000000007 (109 + 7). Examples Input 3 0 0 0 1 1 Output 2 Input 6 0 1 1 0 4 1 1 0 0 1 0 Output 1 Input 10 0 1 2 1 4 4 4 0 8 0 0 0 1 0 1 1 0 0 1 Output 27 ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int MAXN = 1000 * 100 + 10; vector<int> vec[MAXN]; int c[MAXN]; long long dp[2][MAXN]; void dfs(int v) { vector<int> temp; long long all = 1; for (int i = 0; i < (int)vec[v].size(); i++) { int u = vec[v][i]; dfs(u); temp.push_back(all); all = (all * (dp[0][u] + dp[1][u])) % (1000 * 1000 * 1000 + 7); } if (c[v]) { dp[1][v] = all; dp[0][v] = 0; } else { dp[0][v] = all; all = 1; for (int i = (int)vec[v].size() - 1; i >= 0; i--) { int u = vec[v][i]; dp[1][v] = (dp[1][v] + (((temp[i] * all) % (1000 * 1000 * 1000 + 7)) * dp[1][u]) % (1000 * 1000 * 1000 + 7)) % (1000 * 1000 * 1000 + 7); all = (all * (dp[0][u] + dp[1][u])) % (1000 * 1000 * 1000 + 7); } } } int main() { int n; cin >> n; for (int i = 1; i < n; i++) { int a; cin >> a; vec[a].push_back(i); } for (int i = 0; i < n; i++) cin >> c[i]; dfs(0); cout << dp[1][0] << endl; return 0; } ```
#include <bits/stdc++.h> using namespace std; const int M = 200000; int x[M]; long long dp[M][2]; vector<int> vt[M]; int n; const int mod = 1000000007; void dfs(int v) { dp[v][x[v]] = 1; for (int i = 0; i < vt[v].size(); i++) { int u = vt[v][i]; dfs(u); dp[v][1] = ((dp[v][1] * dp[u][0]) % mod + (dp[v][1] * dp[u][1]) % mod + (dp[v][0] * dp[u][1]) % mod) % mod; dp[v][0] = ((dp[v][0] * dp[u][0]) % mod + (dp[v][0] * dp[u][1]) % mod) % mod; } } int main() { int i, j, k; while (~scanf("%d", &n)) { for (i = 0; i <= n; i++) vt[i].clear(); int u, v; for (i = 1; i < n; i++) { scanf("%d", &u); vt[u].push_back(i); } for (i = 0; i < n; i++) scanf("%d", &x[i]); memset(dp, 0, sizeof(dp)); dfs(0); cout << dp[0][1] << endl; } return 0; }
### Prompt Develop a solution in cpp to the problem described below: Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other vertices are colored white. Consider a set consisting of k (0 ≀ k < n) edges of Appleman's tree. If Appleman deletes these edges from the tree, then it will split into (k + 1) parts. Note, that each part will be a tree with colored vertices. Now Appleman wonders, what is the number of sets splitting the tree in such a way that each resulting part will have exactly one black vertex? Find this number modulo 1000000007 (109 + 7). Input The first line contains an integer n (2 ≀ n ≀ 105) β€” the number of tree vertices. The second line contains the description of the tree: n - 1 integers p0, p1, ..., pn - 2 (0 ≀ pi ≀ i). Where pi means that there is an edge connecting vertex (i + 1) of the tree and vertex pi. Consider tree vertices are numbered from 0 to n - 1. The third line contains the description of the colors of the vertices: n integers x0, x1, ..., xn - 1 (xi is either 0 or 1). If xi is equal to 1, vertex i is colored black. Otherwise, vertex i is colored white. Output Output a single integer β€” the number of ways to split the tree modulo 1000000007 (109 + 7). Examples Input 3 0 0 0 1 1 Output 2 Input 6 0 1 1 0 4 1 1 0 0 1 0 Output 1 Input 10 0 1 2 1 4 4 4 0 8 0 0 0 1 0 1 1 0 0 1 Output 27 ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int M = 200000; int x[M]; long long dp[M][2]; vector<int> vt[M]; int n; const int mod = 1000000007; void dfs(int v) { dp[v][x[v]] = 1; for (int i = 0; i < vt[v].size(); i++) { int u = vt[v][i]; dfs(u); dp[v][1] = ((dp[v][1] * dp[u][0]) % mod + (dp[v][1] * dp[u][1]) % mod + (dp[v][0] * dp[u][1]) % mod) % mod; dp[v][0] = ((dp[v][0] * dp[u][0]) % mod + (dp[v][0] * dp[u][1]) % mod) % mod; } } int main() { int i, j, k; while (~scanf("%d", &n)) { for (i = 0; i <= n; i++) vt[i].clear(); int u, v; for (i = 1; i < n; i++) { scanf("%d", &u); vt[u].push_back(i); } for (i = 0; i < n; i++) scanf("%d", &x[i]); memset(dp, 0, sizeof(dp)); dfs(0); cout << dp[0][1] << endl; } return 0; } ```
#include <bits/stdc++.h> using namespace std; vector<int> graph[100000]; bool colour[100000]; long long dp[100000][2]; void dfs(int vertex, int parent) { int i, child; dp[vertex][1] = colour[vertex]; dp[vertex][0] = 1 - colour[vertex]; for (i = 0; i < graph[vertex].size(); i++) { child = graph[vertex][i]; if (child == parent) continue; dfs(child, vertex); if (colour[vertex]) { dp[vertex][1] *= ((dp[child][0] + dp[child][1]) % 1000000007); dp[vertex][1] = (dp[vertex][1]) % 1000000007; } else { dp[vertex][1] *= ((dp[child][0] + dp[child][1]) % 1000000007); dp[vertex][1] = (dp[vertex][1]) % 1000000007; dp[vertex][1] += ((dp[vertex][0] * dp[child][1]) % 1000000007); dp[vertex][1] = (dp[vertex][1]) % 1000000007; dp[vertex][0] *= ((dp[child][0] + dp[child][1]) % 1000000007); dp[vertex][0] = (dp[vertex][0]) % 1000000007; } } } int main() { int n; int i; int vertex; scanf("%d", &n); for (i = 1; i < n; i++) { scanf("%d", &vertex); graph[i].push_back(vertex); graph[vertex].push_back(i); } for (i = 0; i < n; i++) scanf("%d", &colour[i]); dfs(0, -1); printf("%I64d\n", dp[0][1]); return 0; }
### Prompt Please create a solution in Cpp to the following problem: Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other vertices are colored white. Consider a set consisting of k (0 ≀ k < n) edges of Appleman's tree. If Appleman deletes these edges from the tree, then it will split into (k + 1) parts. Note, that each part will be a tree with colored vertices. Now Appleman wonders, what is the number of sets splitting the tree in such a way that each resulting part will have exactly one black vertex? Find this number modulo 1000000007 (109 + 7). Input The first line contains an integer n (2 ≀ n ≀ 105) β€” the number of tree vertices. The second line contains the description of the tree: n - 1 integers p0, p1, ..., pn - 2 (0 ≀ pi ≀ i). Where pi means that there is an edge connecting vertex (i + 1) of the tree and vertex pi. Consider tree vertices are numbered from 0 to n - 1. The third line contains the description of the colors of the vertices: n integers x0, x1, ..., xn - 1 (xi is either 0 or 1). If xi is equal to 1, vertex i is colored black. Otherwise, vertex i is colored white. Output Output a single integer β€” the number of ways to split the tree modulo 1000000007 (109 + 7). Examples Input 3 0 0 0 1 1 Output 2 Input 6 0 1 1 0 4 1 1 0 0 1 0 Output 1 Input 10 0 1 2 1 4 4 4 0 8 0 0 0 1 0 1 1 0 0 1 Output 27 ### Response ```cpp #include <bits/stdc++.h> using namespace std; vector<int> graph[100000]; bool colour[100000]; long long dp[100000][2]; void dfs(int vertex, int parent) { int i, child; dp[vertex][1] = colour[vertex]; dp[vertex][0] = 1 - colour[vertex]; for (i = 0; i < graph[vertex].size(); i++) { child = graph[vertex][i]; if (child == parent) continue; dfs(child, vertex); if (colour[vertex]) { dp[vertex][1] *= ((dp[child][0] + dp[child][1]) % 1000000007); dp[vertex][1] = (dp[vertex][1]) % 1000000007; } else { dp[vertex][1] *= ((dp[child][0] + dp[child][1]) % 1000000007); dp[vertex][1] = (dp[vertex][1]) % 1000000007; dp[vertex][1] += ((dp[vertex][0] * dp[child][1]) % 1000000007); dp[vertex][1] = (dp[vertex][1]) % 1000000007; dp[vertex][0] *= ((dp[child][0] + dp[child][1]) % 1000000007); dp[vertex][0] = (dp[vertex][0]) % 1000000007; } } } int main() { int n; int i; int vertex; scanf("%d", &n); for (i = 1; i < n; i++) { scanf("%d", &vertex); graph[i].push_back(vertex); graph[vertex].push_back(i); } for (i = 0; i < n; i++) scanf("%d", &colour[i]); dfs(0, -1); printf("%I64d\n", dp[0][1]); return 0; } ```
#include <bits/stdc++.h> using namespace std; const long long MOD = 1000000007; const int N = 100000; int n, root; vector<vector<int> > a; bool is_dist[N]; long long dp[N][2]; void read_input() { scanf("%d ", &n); a.resize(n); for (int i = 0; i < n - 1; i++) { int p; scanf("%d ", &p); a[i + 1].push_back(p); a[p].push_back(i + 1); } root = -1; for (int i = 0; i < n; i++) { int is_dist_int; scanf("%d ", &is_dist_int); is_dist[i] = is_dist_int == 1; if (root == -1 && is_dist[i]) root = i; } } long long binary_exp(long long x, long long m) { if (m == 0) return 1; else if (m % 2 == 1) return (binary_exp(x, m - 1) * x) % MOD; else { long long val = binary_exp(x, m / 2); return (val * val) % MOD; } } inline long long mod_inv(long long x) { return binary_exp(x, MOD - 2); } void dfs(int u, int parent) { if (is_dist[u]) { dp[u][0] = 0; dp[u][1] = 1; for (int v : a[u]) { if (v == parent) continue; dfs(v, u); dp[u][1] = (dp[u][1] * ((dp[v][0] + dp[v][1]) % MOD)) % MOD; } } else { dp[u][0] = 1; dp[u][1] = 0; long long zero_mul = 1; for (int v : a[u]) { if (v == parent) continue; dfs(v, u); dp[u][0] = (dp[u][0] * (dp[v][0] + dp[v][1])) % MOD; zero_mul = (zero_mul * (dp[v][0] + dp[v][1])) % MOD; } for (int v : a[u]) { if (v == parent) continue; dp[u][1] = (dp[u][1] + (zero_mul * ((dp[v][1] * mod_inv(dp[v][0] + dp[v][1])) % MOD)) % MOD) % MOD; } } } void solve() { if (root == -1) { printf("0\n"); return; } dfs(root, -1); printf("%lld\n", dp[root][1]); } int main() { read_input(); solve(); return 0; }
### Prompt Generate a Cpp solution to the following problem: Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other vertices are colored white. Consider a set consisting of k (0 ≀ k < n) edges of Appleman's tree. If Appleman deletes these edges from the tree, then it will split into (k + 1) parts. Note, that each part will be a tree with colored vertices. Now Appleman wonders, what is the number of sets splitting the tree in such a way that each resulting part will have exactly one black vertex? Find this number modulo 1000000007 (109 + 7). Input The first line contains an integer n (2 ≀ n ≀ 105) β€” the number of tree vertices. The second line contains the description of the tree: n - 1 integers p0, p1, ..., pn - 2 (0 ≀ pi ≀ i). Where pi means that there is an edge connecting vertex (i + 1) of the tree and vertex pi. Consider tree vertices are numbered from 0 to n - 1. The third line contains the description of the colors of the vertices: n integers x0, x1, ..., xn - 1 (xi is either 0 or 1). If xi is equal to 1, vertex i is colored black. Otherwise, vertex i is colored white. Output Output a single integer β€” the number of ways to split the tree modulo 1000000007 (109 + 7). Examples Input 3 0 0 0 1 1 Output 2 Input 6 0 1 1 0 4 1 1 0 0 1 0 Output 1 Input 10 0 1 2 1 4 4 4 0 8 0 0 0 1 0 1 1 0 0 1 Output 27 ### Response ```cpp #include <bits/stdc++.h> using namespace std; const long long MOD = 1000000007; const int N = 100000; int n, root; vector<vector<int> > a; bool is_dist[N]; long long dp[N][2]; void read_input() { scanf("%d ", &n); a.resize(n); for (int i = 0; i < n - 1; i++) { int p; scanf("%d ", &p); a[i + 1].push_back(p); a[p].push_back(i + 1); } root = -1; for (int i = 0; i < n; i++) { int is_dist_int; scanf("%d ", &is_dist_int); is_dist[i] = is_dist_int == 1; if (root == -1 && is_dist[i]) root = i; } } long long binary_exp(long long x, long long m) { if (m == 0) return 1; else if (m % 2 == 1) return (binary_exp(x, m - 1) * x) % MOD; else { long long val = binary_exp(x, m / 2); return (val * val) % MOD; } } inline long long mod_inv(long long x) { return binary_exp(x, MOD - 2); } void dfs(int u, int parent) { if (is_dist[u]) { dp[u][0] = 0; dp[u][1] = 1; for (int v : a[u]) { if (v == parent) continue; dfs(v, u); dp[u][1] = (dp[u][1] * ((dp[v][0] + dp[v][1]) % MOD)) % MOD; } } else { dp[u][0] = 1; dp[u][1] = 0; long long zero_mul = 1; for (int v : a[u]) { if (v == parent) continue; dfs(v, u); dp[u][0] = (dp[u][0] * (dp[v][0] + dp[v][1])) % MOD; zero_mul = (zero_mul * (dp[v][0] + dp[v][1])) % MOD; } for (int v : a[u]) { if (v == parent) continue; dp[u][1] = (dp[u][1] + (zero_mul * ((dp[v][1] * mod_inv(dp[v][0] + dp[v][1])) % MOD)) % MOD) % MOD; } } } void solve() { if (root == -1) { printf("0\n"); return; } dfs(root, -1); printf("%lld\n", dp[root][1]); } int main() { read_input(); solve(); return 0; } ```
#include <bits/stdc++.h> using namespace std; const int MX = 2 * 1e5 + 11; int N, M, k; char s[MX]; long long dp[MX][2]; vector<int> G[MX]; int arr[MX]; long long md = 1e9 + 7; void dfs(int x, int p) { dp[x][0] = arr[x] == 0; dp[x][1] = arr[x] == 1; for (int i = 0; i < G[x].size(); i++) { int ch = G[x][i]; if (ch == p) continue; dfs(ch, x); dp[x][1] = dp[x][1] * (dp[ch][1] + dp[ch][0]); dp[x][1] %= md; dp[x][1] += dp[x][0] * dp[ch][1]; dp[x][1] %= md; dp[x][0] = dp[x][0] * (dp[ch][0] + dp[ch][1]); dp[x][0] %= md; } } int main() { cin >> N; for (int i = 2; i <= N; i++) { int a; scanf("%d", &a); G[i].push_back(++a); G[a].push_back(i); } for (int i = 1; i <= N; i++) scanf("%d", &arr[i]); dfs(1, -1); cout << dp[1][1] << "\n"; }
### Prompt Construct a Cpp code solution to the problem outlined: Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other vertices are colored white. Consider a set consisting of k (0 ≀ k < n) edges of Appleman's tree. If Appleman deletes these edges from the tree, then it will split into (k + 1) parts. Note, that each part will be a tree with colored vertices. Now Appleman wonders, what is the number of sets splitting the tree in such a way that each resulting part will have exactly one black vertex? Find this number modulo 1000000007 (109 + 7). Input The first line contains an integer n (2 ≀ n ≀ 105) β€” the number of tree vertices. The second line contains the description of the tree: n - 1 integers p0, p1, ..., pn - 2 (0 ≀ pi ≀ i). Where pi means that there is an edge connecting vertex (i + 1) of the tree and vertex pi. Consider tree vertices are numbered from 0 to n - 1. The third line contains the description of the colors of the vertices: n integers x0, x1, ..., xn - 1 (xi is either 0 or 1). If xi is equal to 1, vertex i is colored black. Otherwise, vertex i is colored white. Output Output a single integer β€” the number of ways to split the tree modulo 1000000007 (109 + 7). Examples Input 3 0 0 0 1 1 Output 2 Input 6 0 1 1 0 4 1 1 0 0 1 0 Output 1 Input 10 0 1 2 1 4 4 4 0 8 0 0 0 1 0 1 1 0 0 1 Output 27 ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int MX = 2 * 1e5 + 11; int N, M, k; char s[MX]; long long dp[MX][2]; vector<int> G[MX]; int arr[MX]; long long md = 1e9 + 7; void dfs(int x, int p) { dp[x][0] = arr[x] == 0; dp[x][1] = arr[x] == 1; for (int i = 0; i < G[x].size(); i++) { int ch = G[x][i]; if (ch == p) continue; dfs(ch, x); dp[x][1] = dp[x][1] * (dp[ch][1] + dp[ch][0]); dp[x][1] %= md; dp[x][1] += dp[x][0] * dp[ch][1]; dp[x][1] %= md; dp[x][0] = dp[x][0] * (dp[ch][0] + dp[ch][1]); dp[x][0] %= md; } } int main() { cin >> N; for (int i = 2; i <= N; i++) { int a; scanf("%d", &a); G[i].push_back(++a); G[a].push_back(i); } for (int i = 1; i <= N; i++) scanf("%d", &arr[i]); dfs(1, -1); cout << dp[1][1] << "\n"; } ```
#include <bits/stdc++.h> using namespace std; const long long nax = 100005, mod = 1e9 + 7; vector<long long> g[nax]; long long c[nax], dp[nax][2] = {{0}}; long long mod_expo(long long a, long long b) { long long tans = 1; a = a % mod; while (b != 0) { if (b & 1) tans = (1LL * tans * a) % mod; a = (1LL * a * a) % mod; b /= 2; } return tans; } long long mod_inv(long long a) { return mod_expo(a, mod - 2); } long long sum(long long a, long long b) { return (a + b) % mod; } long long mul(long long a, long long b) { return (a * b) % mod; } long long divm(long long a, long long b) { return (a * mod_inv(b)) % mod; } void dfs(long long u, long long p) { for (auto &k : g[u]) if (k != p) dfs(k, u); if (c[u] == 0) { dp[u][0] = 1; for (auto &k : g[u]) if (k != p) dp[u][0] = (dp[u][0] * (dp[k][0] + dp[k][1])) % mod; dp[u][1] = 0; long long zpi = 1; for (auto &k : g[u]) if (k != p) zpi = (zpi * (dp[k][0] + dp[k][1])) % mod; for (auto &k : g[u]) if (k != p) dp[u][1] = sum(dp[u][1], mul(divm(zpi, (dp[k][0] + dp[k][1])), dp[k][1])); } else { dp[u][0] = 0; dp[u][1] = 1; for (auto &k : g[u]) if (k != p) dp[u][1] = (dp[u][1] * (dp[k][0] + dp[k][1])) % mod; } } int32_t main() { ios::sync_with_stdio(false); cin.tie(0); long long n; cin >> n; for (long long i = 0; i < n - 1; i++) { long long x; cin >> x; g[i + 1].push_back(x); g[x].push_back(i + 1); } for (long long i = 0; i < n; i++) cin >> c[i]; dfs(0, 0); cout << dp[0][1] << endl; }
### Prompt Your task is to create a cpp solution to the following problem: Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other vertices are colored white. Consider a set consisting of k (0 ≀ k < n) edges of Appleman's tree. If Appleman deletes these edges from the tree, then it will split into (k + 1) parts. Note, that each part will be a tree with colored vertices. Now Appleman wonders, what is the number of sets splitting the tree in such a way that each resulting part will have exactly one black vertex? Find this number modulo 1000000007 (109 + 7). Input The first line contains an integer n (2 ≀ n ≀ 105) β€” the number of tree vertices. The second line contains the description of the tree: n - 1 integers p0, p1, ..., pn - 2 (0 ≀ pi ≀ i). Where pi means that there is an edge connecting vertex (i + 1) of the tree and vertex pi. Consider tree vertices are numbered from 0 to n - 1. The third line contains the description of the colors of the vertices: n integers x0, x1, ..., xn - 1 (xi is either 0 or 1). If xi is equal to 1, vertex i is colored black. Otherwise, vertex i is colored white. Output Output a single integer β€” the number of ways to split the tree modulo 1000000007 (109 + 7). Examples Input 3 0 0 0 1 1 Output 2 Input 6 0 1 1 0 4 1 1 0 0 1 0 Output 1 Input 10 0 1 2 1 4 4 4 0 8 0 0 0 1 0 1 1 0 0 1 Output 27 ### Response ```cpp #include <bits/stdc++.h> using namespace std; const long long nax = 100005, mod = 1e9 + 7; vector<long long> g[nax]; long long c[nax], dp[nax][2] = {{0}}; long long mod_expo(long long a, long long b) { long long tans = 1; a = a % mod; while (b != 0) { if (b & 1) tans = (1LL * tans * a) % mod; a = (1LL * a * a) % mod; b /= 2; } return tans; } long long mod_inv(long long a) { return mod_expo(a, mod - 2); } long long sum(long long a, long long b) { return (a + b) % mod; } long long mul(long long a, long long b) { return (a * b) % mod; } long long divm(long long a, long long b) { return (a * mod_inv(b)) % mod; } void dfs(long long u, long long p) { for (auto &k : g[u]) if (k != p) dfs(k, u); if (c[u] == 0) { dp[u][0] = 1; for (auto &k : g[u]) if (k != p) dp[u][0] = (dp[u][0] * (dp[k][0] + dp[k][1])) % mod; dp[u][1] = 0; long long zpi = 1; for (auto &k : g[u]) if (k != p) zpi = (zpi * (dp[k][0] + dp[k][1])) % mod; for (auto &k : g[u]) if (k != p) dp[u][1] = sum(dp[u][1], mul(divm(zpi, (dp[k][0] + dp[k][1])), dp[k][1])); } else { dp[u][0] = 0; dp[u][1] = 1; for (auto &k : g[u]) if (k != p) dp[u][1] = (dp[u][1] * (dp[k][0] + dp[k][1])) % mod; } } int32_t main() { ios::sync_with_stdio(false); cin.tie(0); long long n; cin >> n; for (long long i = 0; i < n - 1; i++) { long long x; cin >> x; g[i + 1].push_back(x); g[x].push_back(i + 1); } for (long long i = 0; i < n; i++) cin >> c[i]; dfs(0, 0); cout << dp[0][1] << endl; } ```
#include <bits/stdc++.h> using namespace std; const int maxn = 2 * 100 * 1000 + 100; const long long delta = 1000 * 1000 * 1000 + 7; int n, col[maxn]; vector<int> adj[maxn]; long long dp[2][maxn]; bool dfsmark[maxn]; void inp(); void dfs(int v); int main() { ios ::sync_with_stdio(false); cin.tie(0); inp(); dfs(0); cout << dp[1][0] << '\n'; return 0; } void inp() { cin >> n; for (int i = 0; i < n - 1; i++) { int u = i + 1, v; cin >> v; adj[v].push_back(u); adj[u].push_back(v); } for (int i = 0; i < n; i++) cin >> col[i]; } void dfs(int v) { dfsmark[v] = true; vector<int> cnt; for (int i = 0; i < adj[v].size(); i++) { int u = adj[v][i]; if (!dfsmark[u]) { dfs(u); cnt.push_back(u); } } if (!cnt.size()) { dp[0][v] = !col[v]; dp[1][v] = col[v]; return; } if (col[v]) { dp[0][v] = 0; long long res1 = 1; for (int i = 0; i < cnt.size(); i++) { int u = cnt[i]; res1 = (res1 * (dp[0][u] + dp[1][u])) % delta; } dp[1][v] = res1; return; } long long res0 = 1; for (int i = 0; i < cnt.size(); i++) { int u = cnt[i]; res0 = (res0 * (dp[0][u] + dp[1][u])) % delta; } dp[0][v] = res0; long long p = 1, res1 = 0; for (int i = 0; i < cnt.size(); i++) { int u = cnt[i]; long long tmp = 0; tmp = (res1 * (dp[0][u] + dp[1][u])) % delta; tmp = (tmp + p * dp[1][u]) % delta; res1 = tmp; p = (p * (dp[0][u] + dp[1][u])) % delta; } dp[1][v] = res1; }
### Prompt Please create a solution in CPP to the following problem: Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other vertices are colored white. Consider a set consisting of k (0 ≀ k < n) edges of Appleman's tree. If Appleman deletes these edges from the tree, then it will split into (k + 1) parts. Note, that each part will be a tree with colored vertices. Now Appleman wonders, what is the number of sets splitting the tree in such a way that each resulting part will have exactly one black vertex? Find this number modulo 1000000007 (109 + 7). Input The first line contains an integer n (2 ≀ n ≀ 105) β€” the number of tree vertices. The second line contains the description of the tree: n - 1 integers p0, p1, ..., pn - 2 (0 ≀ pi ≀ i). Where pi means that there is an edge connecting vertex (i + 1) of the tree and vertex pi. Consider tree vertices are numbered from 0 to n - 1. The third line contains the description of the colors of the vertices: n integers x0, x1, ..., xn - 1 (xi is either 0 or 1). If xi is equal to 1, vertex i is colored black. Otherwise, vertex i is colored white. Output Output a single integer β€” the number of ways to split the tree modulo 1000000007 (109 + 7). Examples Input 3 0 0 0 1 1 Output 2 Input 6 0 1 1 0 4 1 1 0 0 1 0 Output 1 Input 10 0 1 2 1 4 4 4 0 8 0 0 0 1 0 1 1 0 0 1 Output 27 ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int maxn = 2 * 100 * 1000 + 100; const long long delta = 1000 * 1000 * 1000 + 7; int n, col[maxn]; vector<int> adj[maxn]; long long dp[2][maxn]; bool dfsmark[maxn]; void inp(); void dfs(int v); int main() { ios ::sync_with_stdio(false); cin.tie(0); inp(); dfs(0); cout << dp[1][0] << '\n'; return 0; } void inp() { cin >> n; for (int i = 0; i < n - 1; i++) { int u = i + 1, v; cin >> v; adj[v].push_back(u); adj[u].push_back(v); } for (int i = 0; i < n; i++) cin >> col[i]; } void dfs(int v) { dfsmark[v] = true; vector<int> cnt; for (int i = 0; i < adj[v].size(); i++) { int u = adj[v][i]; if (!dfsmark[u]) { dfs(u); cnt.push_back(u); } } if (!cnt.size()) { dp[0][v] = !col[v]; dp[1][v] = col[v]; return; } if (col[v]) { dp[0][v] = 0; long long res1 = 1; for (int i = 0; i < cnt.size(); i++) { int u = cnt[i]; res1 = (res1 * (dp[0][u] + dp[1][u])) % delta; } dp[1][v] = res1; return; } long long res0 = 1; for (int i = 0; i < cnt.size(); i++) { int u = cnt[i]; res0 = (res0 * (dp[0][u] + dp[1][u])) % delta; } dp[0][v] = res0; long long p = 1, res1 = 0; for (int i = 0; i < cnt.size(); i++) { int u = cnt[i]; long long tmp = 0; tmp = (res1 * (dp[0][u] + dp[1][u])) % delta; tmp = (tmp + p * dp[1][u]) % delta; res1 = tmp; p = (p * (dp[0][u] + dp[1][u])) % delta; } dp[1][v] = res1; } ```
#include <bits/stdc++.h> using namespace std; const int INF = 1e9; const long long LINF = 1e17; const double DINF = numeric_limits<double>::max(); const int ITER = 300; const int MOD = 1e9 + 7; const double EPS = 1e-10; const int MAXN = 1e5 + 10; int n; vector<int> g[MAXN]; int B[MAXN]; int dp[MAXN][2]; void mod(int v) { for (int i = 0; i < 2; i++) dp[v][i] %= MOD; } void dfs(int v) { dp[v][0] = 1 - B[v]; dp[v][1] = B[v]; for (int u : g[v]) { int old[2]; old[0] = dp[v][0]; old[1] = dp[v][1]; dp[v][0] = dp[v][1] = 0; dfs(u); dp[v][0] += (1ll * old[0] * dp[u][1]) % MOD; dp[v][1] += (1ll * old[1] * dp[u][1]) % MOD; mod(v); dp[v][1] += (1ll * old[1] * dp[u][0]) % MOD; mod(v); dp[v][1] += (1ll * old[0] * dp[u][1]) % MOD; mod(v); dp[v][0] += (1ll * old[0] * dp[u][0]) % MOD; mod(v); } } void solve() { cin >> n; for (int i = 1; i < n; i++) { int p; cin >> p; g[p].push_back(i); } for (int i = 0; i < n; i++) { cin >> B[i]; } dfs(0); cout << dp[0][1] << endl; } int main() { cout << setprecision(12) << fixed; ios_base::sync_with_stdio(0); cin.tie(0); cout.tie(0); int t = 1; while (t--) { solve(); } }
### Prompt Please formulate a Cpp solution to the following problem: Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other vertices are colored white. Consider a set consisting of k (0 ≀ k < n) edges of Appleman's tree. If Appleman deletes these edges from the tree, then it will split into (k + 1) parts. Note, that each part will be a tree with colored vertices. Now Appleman wonders, what is the number of sets splitting the tree in such a way that each resulting part will have exactly one black vertex? Find this number modulo 1000000007 (109 + 7). Input The first line contains an integer n (2 ≀ n ≀ 105) β€” the number of tree vertices. The second line contains the description of the tree: n - 1 integers p0, p1, ..., pn - 2 (0 ≀ pi ≀ i). Where pi means that there is an edge connecting vertex (i + 1) of the tree and vertex pi. Consider tree vertices are numbered from 0 to n - 1. The third line contains the description of the colors of the vertices: n integers x0, x1, ..., xn - 1 (xi is either 0 or 1). If xi is equal to 1, vertex i is colored black. Otherwise, vertex i is colored white. Output Output a single integer β€” the number of ways to split the tree modulo 1000000007 (109 + 7). Examples Input 3 0 0 0 1 1 Output 2 Input 6 0 1 1 0 4 1 1 0 0 1 0 Output 1 Input 10 0 1 2 1 4 4 4 0 8 0 0 0 1 0 1 1 0 0 1 Output 27 ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int INF = 1e9; const long long LINF = 1e17; const double DINF = numeric_limits<double>::max(); const int ITER = 300; const int MOD = 1e9 + 7; const double EPS = 1e-10; const int MAXN = 1e5 + 10; int n; vector<int> g[MAXN]; int B[MAXN]; int dp[MAXN][2]; void mod(int v) { for (int i = 0; i < 2; i++) dp[v][i] %= MOD; } void dfs(int v) { dp[v][0] = 1 - B[v]; dp[v][1] = B[v]; for (int u : g[v]) { int old[2]; old[0] = dp[v][0]; old[1] = dp[v][1]; dp[v][0] = dp[v][1] = 0; dfs(u); dp[v][0] += (1ll * old[0] * dp[u][1]) % MOD; dp[v][1] += (1ll * old[1] * dp[u][1]) % MOD; mod(v); dp[v][1] += (1ll * old[1] * dp[u][0]) % MOD; mod(v); dp[v][1] += (1ll * old[0] * dp[u][1]) % MOD; mod(v); dp[v][0] += (1ll * old[0] * dp[u][0]) % MOD; mod(v); } } void solve() { cin >> n; for (int i = 1; i < n; i++) { int p; cin >> p; g[p].push_back(i); } for (int i = 0; i < n; i++) { cin >> B[i]; } dfs(0); cout << dp[0][1] << endl; } int main() { cout << setprecision(12) << fixed; ios_base::sync_with_stdio(0); cin.tie(0); cout.tie(0); int t = 1; while (t--) { solve(); } } ```
#include <bits/stdc++.h> using namespace std; const long long mod = 1000000007; int n; vector<vector<int> > sou; vector<int> bl; vector<long long> c, b; void dfs(int v, int f = -1); int main() { scanf("%d", &n); sou.resize(n); bl.resize(n); for (int i = 0; i < n - 1; i++) { int p; scanf("%d", &p); sou[i + 1].push_back(p); sou[p].push_back(i + 1); } for (int i = 0; i < n; i++) scanf("%d", &bl[i]); c.resize(n); b.resize(n); dfs(0); printf("%d\n", (int)(c[0])); return 0; } void euc(long long a, long long b, long long &x, long long &y) { if (a < b) { euc(b, a, y, x); return; } if (b == 0) { x = 1; y = 0; return; } long long xx, yy; euc(b, a % b, xx, yy); x = yy; y = xx - (a / b) * yy; while (y < 0) { x -= b; y += a; } } void dfs(int v, int f) { if (sou[v].size() == 1 && sou[v][0] == f) { if (bl[v]) { c[v] = 1; b[v] = 0; } else { c[v] = 0; b[v] = 1; } } else { if (bl[v]) { b[v] = 0; c[v] = 1; for (int i = 0; i < sou[v].size(); i++) { int s = sou[v][i]; if (s == f) continue; dfs(s, v); c[v] = (c[v] * (b[s] + c[s])) % mod; } } else { b[v] = 1; c[v] = 0; long long prod = 1; for (int i = 0; i < sou[v].size(); i++) { int s = sou[v][i]; if (s == f) continue; dfs(s, v); prod = (prod * (b[s] + c[s])) % mod; } for (int i = 0; i < sou[v].size(); i++) { int s = sou[v][i]; if (s == f) continue; b[v] = (b[v] * (b[s] + c[s])) % mod; long long t, trash; euc((b[s] + c[s]) % mod, mod, t, trash); t = (t * prod) % mod; t = (t * c[s]) % mod; c[v] = (c[v] + t) % mod; } } } }
### Prompt Your challenge is to write a cpp solution to the following problem: Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other vertices are colored white. Consider a set consisting of k (0 ≀ k < n) edges of Appleman's tree. If Appleman deletes these edges from the tree, then it will split into (k + 1) parts. Note, that each part will be a tree with colored vertices. Now Appleman wonders, what is the number of sets splitting the tree in such a way that each resulting part will have exactly one black vertex? Find this number modulo 1000000007 (109 + 7). Input The first line contains an integer n (2 ≀ n ≀ 105) β€” the number of tree vertices. The second line contains the description of the tree: n - 1 integers p0, p1, ..., pn - 2 (0 ≀ pi ≀ i). Where pi means that there is an edge connecting vertex (i + 1) of the tree and vertex pi. Consider tree vertices are numbered from 0 to n - 1. The third line contains the description of the colors of the vertices: n integers x0, x1, ..., xn - 1 (xi is either 0 or 1). If xi is equal to 1, vertex i is colored black. Otherwise, vertex i is colored white. Output Output a single integer β€” the number of ways to split the tree modulo 1000000007 (109 + 7). Examples Input 3 0 0 0 1 1 Output 2 Input 6 0 1 1 0 4 1 1 0 0 1 0 Output 1 Input 10 0 1 2 1 4 4 4 0 8 0 0 0 1 0 1 1 0 0 1 Output 27 ### Response ```cpp #include <bits/stdc++.h> using namespace std; const long long mod = 1000000007; int n; vector<vector<int> > sou; vector<int> bl; vector<long long> c, b; void dfs(int v, int f = -1); int main() { scanf("%d", &n); sou.resize(n); bl.resize(n); for (int i = 0; i < n - 1; i++) { int p; scanf("%d", &p); sou[i + 1].push_back(p); sou[p].push_back(i + 1); } for (int i = 0; i < n; i++) scanf("%d", &bl[i]); c.resize(n); b.resize(n); dfs(0); printf("%d\n", (int)(c[0])); return 0; } void euc(long long a, long long b, long long &x, long long &y) { if (a < b) { euc(b, a, y, x); return; } if (b == 0) { x = 1; y = 0; return; } long long xx, yy; euc(b, a % b, xx, yy); x = yy; y = xx - (a / b) * yy; while (y < 0) { x -= b; y += a; } } void dfs(int v, int f) { if (sou[v].size() == 1 && sou[v][0] == f) { if (bl[v]) { c[v] = 1; b[v] = 0; } else { c[v] = 0; b[v] = 1; } } else { if (bl[v]) { b[v] = 0; c[v] = 1; for (int i = 0; i < sou[v].size(); i++) { int s = sou[v][i]; if (s == f) continue; dfs(s, v); c[v] = (c[v] * (b[s] + c[s])) % mod; } } else { b[v] = 1; c[v] = 0; long long prod = 1; for (int i = 0; i < sou[v].size(); i++) { int s = sou[v][i]; if (s == f) continue; dfs(s, v); prod = (prod * (b[s] + c[s])) % mod; } for (int i = 0; i < sou[v].size(); i++) { int s = sou[v][i]; if (s == f) continue; b[v] = (b[v] * (b[s] + c[s])) % mod; long long t, trash; euc((b[s] + c[s]) % mod, mod, t, trash); t = (t * prod) % mod; t = (t * c[s]) % mod; c[v] = (c[v] + t) % mod; } } } } ```
#include <bits/stdc++.h> using namespace std; vector<int> adj[100010]; long long int col[100010]; long long int dp[100010][2]; void dfs(int x, int f) { if (col[x] == 1) { dp[x][0] = 0; dp[x][1] = 1; } else { dp[x][0] = 1; dp[x][1] = 0; } for (int i = 0; i < adj[x].size(); i++) { int y = adj[x][i]; if (y != f) { dfs(y, x); long long int no_black = dp[x][0]; long long int one_black = dp[x][1]; dp[x][0] = dp[x][1] = 0; if (dp[y][1] > 0) { dp[x][1] += one_black * dp[y][1]; dp[x][1] += no_black * dp[y][1]; dp[x][0] += no_black * dp[y][1]; } if (dp[y][0] > 0) { dp[x][1] += one_black * dp[y][0]; dp[x][0] += no_black * dp[y][0]; } dp[x][0] = dp[x][0] % 1000000007; dp[x][1] = dp[x][1] % 1000000007; } } return; } int main() { int n, x; cin >> n; for (int i = 1; i <= n - 1; i++) { cin >> x; adj[i].push_back(x); adj[x].push_back(i); } for (int i = 0; i < n; i++) cin >> col[i]; dfs(0, -1); cout << dp[0][1] << endl; return 0; }
### Prompt Your challenge is to write a cpp solution to the following problem: Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other vertices are colored white. Consider a set consisting of k (0 ≀ k < n) edges of Appleman's tree. If Appleman deletes these edges from the tree, then it will split into (k + 1) parts. Note, that each part will be a tree with colored vertices. Now Appleman wonders, what is the number of sets splitting the tree in such a way that each resulting part will have exactly one black vertex? Find this number modulo 1000000007 (109 + 7). Input The first line contains an integer n (2 ≀ n ≀ 105) β€” the number of tree vertices. The second line contains the description of the tree: n - 1 integers p0, p1, ..., pn - 2 (0 ≀ pi ≀ i). Where pi means that there is an edge connecting vertex (i + 1) of the tree and vertex pi. Consider tree vertices are numbered from 0 to n - 1. The third line contains the description of the colors of the vertices: n integers x0, x1, ..., xn - 1 (xi is either 0 or 1). If xi is equal to 1, vertex i is colored black. Otherwise, vertex i is colored white. Output Output a single integer β€” the number of ways to split the tree modulo 1000000007 (109 + 7). Examples Input 3 0 0 0 1 1 Output 2 Input 6 0 1 1 0 4 1 1 0 0 1 0 Output 1 Input 10 0 1 2 1 4 4 4 0 8 0 0 0 1 0 1 1 0 0 1 Output 27 ### Response ```cpp #include <bits/stdc++.h> using namespace std; vector<int> adj[100010]; long long int col[100010]; long long int dp[100010][2]; void dfs(int x, int f) { if (col[x] == 1) { dp[x][0] = 0; dp[x][1] = 1; } else { dp[x][0] = 1; dp[x][1] = 0; } for (int i = 0; i < adj[x].size(); i++) { int y = adj[x][i]; if (y != f) { dfs(y, x); long long int no_black = dp[x][0]; long long int one_black = dp[x][1]; dp[x][0] = dp[x][1] = 0; if (dp[y][1] > 0) { dp[x][1] += one_black * dp[y][1]; dp[x][1] += no_black * dp[y][1]; dp[x][0] += no_black * dp[y][1]; } if (dp[y][0] > 0) { dp[x][1] += one_black * dp[y][0]; dp[x][0] += no_black * dp[y][0]; } dp[x][0] = dp[x][0] % 1000000007; dp[x][1] = dp[x][1] % 1000000007; } } return; } int main() { int n, x; cin >> n; for (int i = 1; i <= n - 1; i++) { cin >> x; adj[i].push_back(x); adj[x].push_back(i); } for (int i = 0; i < n; i++) cin >> col[i]; dfs(0, -1); cout << dp[0][1] << endl; return 0; } ```
#include <bits/stdc++.h> using namespace std; int parent[100100] = {0}; vector<int> child[100100]; int color[100100] = {0}; long long dyn_black[100100] = {0}; long long dyn_white[100100] = {0}; int run(int x, int par) { if (color[x] == 0) { dyn_white[x] = 1; dyn_black[x] = 0; } else { dyn_white[x] = 0; dyn_black[x] = 1; } for (int i = 0; i < child[x].size(); i++) run(child[x][i], x); if (par == -1) return dyn_black[x]; long long parBlack = dyn_black[par]; long long parWhite = dyn_white[par]; dyn_black[par] = parWhite * dyn_black[x] + parBlack * dyn_white[x]; dyn_white[par] = parWhite * dyn_white[x]; dyn_white[par] += parWhite * dyn_black[x]; dyn_black[par] += parBlack * dyn_black[x]; dyn_black[par] %= 1000000007; dyn_white[par] %= 1000000007; } int main() { int n; scanf("%d", &n); for (int i = 1; i < n; i++) { scanf("%d", &parent[i]); child[parent[i]].push_back(i); } for (int i = 0; i < n; i++) scanf("%d", &color[i]); printf("%lld", run(0, -1)); }
### Prompt Construct a CPP code solution to the problem outlined: Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other vertices are colored white. Consider a set consisting of k (0 ≀ k < n) edges of Appleman's tree. If Appleman deletes these edges from the tree, then it will split into (k + 1) parts. Note, that each part will be a tree with colored vertices. Now Appleman wonders, what is the number of sets splitting the tree in such a way that each resulting part will have exactly one black vertex? Find this number modulo 1000000007 (109 + 7). Input The first line contains an integer n (2 ≀ n ≀ 105) β€” the number of tree vertices. The second line contains the description of the tree: n - 1 integers p0, p1, ..., pn - 2 (0 ≀ pi ≀ i). Where pi means that there is an edge connecting vertex (i + 1) of the tree and vertex pi. Consider tree vertices are numbered from 0 to n - 1. The third line contains the description of the colors of the vertices: n integers x0, x1, ..., xn - 1 (xi is either 0 or 1). If xi is equal to 1, vertex i is colored black. Otherwise, vertex i is colored white. Output Output a single integer β€” the number of ways to split the tree modulo 1000000007 (109 + 7). Examples Input 3 0 0 0 1 1 Output 2 Input 6 0 1 1 0 4 1 1 0 0 1 0 Output 1 Input 10 0 1 2 1 4 4 4 0 8 0 0 0 1 0 1 1 0 0 1 Output 27 ### Response ```cpp #include <bits/stdc++.h> using namespace std; int parent[100100] = {0}; vector<int> child[100100]; int color[100100] = {0}; long long dyn_black[100100] = {0}; long long dyn_white[100100] = {0}; int run(int x, int par) { if (color[x] == 0) { dyn_white[x] = 1; dyn_black[x] = 0; } else { dyn_white[x] = 0; dyn_black[x] = 1; } for (int i = 0; i < child[x].size(); i++) run(child[x][i], x); if (par == -1) return dyn_black[x]; long long parBlack = dyn_black[par]; long long parWhite = dyn_white[par]; dyn_black[par] = parWhite * dyn_black[x] + parBlack * dyn_white[x]; dyn_white[par] = parWhite * dyn_white[x]; dyn_white[par] += parWhite * dyn_black[x]; dyn_black[par] += parBlack * dyn_black[x]; dyn_black[par] %= 1000000007; dyn_white[par] %= 1000000007; } int main() { int n; scanf("%d", &n); for (int i = 1; i < n; i++) { scanf("%d", &parent[i]); child[parent[i]].push_back(i); } for (int i = 0; i < n; i++) scanf("%d", &color[i]); printf("%lld", run(0, -1)); } ```
#include <bits/stdc++.h> using namespace std; const int MOD = 1e9 + 7; const int N = 1e5 + 10; long long fast_pow(long long a, long long b) { long long res = 1, p = a; while (b) { if (b & 1) (res *= p) %= MOD; b >>= 1; (p *= p) %= MOD; } return res; } vector<int> V[N]; pair<int, int> val[N]; bool has[N]; void dfs(int No, int par) { long long s1 = 1, s2 = 0; int chi = 0; for (auto k : V[No]) { if (k == par) continue; dfs(k, No); if (val[k].first != -1) { (s1 *= val[k].first) %= MOD; chi++; } } for (auto k : V[No]) { if (k == par) continue; if (val[k].first != -1) { (s2 += (s1 * fast_pow(val[k].first, MOD - 2)) % MOD * val[k].second % MOD) %= MOD; } } if (chi == 0) { val[No] = {1, 1}; if (!has[No]) val[No].first = -1; return; } if (has[No]) val[No] = {s1, s1}; else val[No] = {s1 + s2, s2}; } int main() { int n, x; scanf("%d", &n); for (int i = 0; i < n - 1; i++) { scanf("%d", &x); V[i + 1].push_back(x); V[x].push_back(i + 1); } for (int i = 0; i < n; i++) scanf("%d", &has[i]); dfs(0, -1); cout << val[0].second << '\n'; }
### Prompt Your task is to create a CPP solution to the following problem: Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other vertices are colored white. Consider a set consisting of k (0 ≀ k < n) edges of Appleman's tree. If Appleman deletes these edges from the tree, then it will split into (k + 1) parts. Note, that each part will be a tree with colored vertices. Now Appleman wonders, what is the number of sets splitting the tree in such a way that each resulting part will have exactly one black vertex? Find this number modulo 1000000007 (109 + 7). Input The first line contains an integer n (2 ≀ n ≀ 105) β€” the number of tree vertices. The second line contains the description of the tree: n - 1 integers p0, p1, ..., pn - 2 (0 ≀ pi ≀ i). Where pi means that there is an edge connecting vertex (i + 1) of the tree and vertex pi. Consider tree vertices are numbered from 0 to n - 1. The third line contains the description of the colors of the vertices: n integers x0, x1, ..., xn - 1 (xi is either 0 or 1). If xi is equal to 1, vertex i is colored black. Otherwise, vertex i is colored white. Output Output a single integer β€” the number of ways to split the tree modulo 1000000007 (109 + 7). Examples Input 3 0 0 0 1 1 Output 2 Input 6 0 1 1 0 4 1 1 0 0 1 0 Output 1 Input 10 0 1 2 1 4 4 4 0 8 0 0 0 1 0 1 1 0 0 1 Output 27 ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int MOD = 1e9 + 7; const int N = 1e5 + 10; long long fast_pow(long long a, long long b) { long long res = 1, p = a; while (b) { if (b & 1) (res *= p) %= MOD; b >>= 1; (p *= p) %= MOD; } return res; } vector<int> V[N]; pair<int, int> val[N]; bool has[N]; void dfs(int No, int par) { long long s1 = 1, s2 = 0; int chi = 0; for (auto k : V[No]) { if (k == par) continue; dfs(k, No); if (val[k].first != -1) { (s1 *= val[k].first) %= MOD; chi++; } } for (auto k : V[No]) { if (k == par) continue; if (val[k].first != -1) { (s2 += (s1 * fast_pow(val[k].first, MOD - 2)) % MOD * val[k].second % MOD) %= MOD; } } if (chi == 0) { val[No] = {1, 1}; if (!has[No]) val[No].first = -1; return; } if (has[No]) val[No] = {s1, s1}; else val[No] = {s1 + s2, s2}; } int main() { int n, x; scanf("%d", &n); for (int i = 0; i < n - 1; i++) { scanf("%d", &x); V[i + 1].push_back(x); V[x].push_back(i + 1); } for (int i = 0; i < n; i++) scanf("%d", &has[i]); dfs(0, -1); cout << val[0].second << '\n'; } ```
#include <bits/stdc++.h> using namespace std; const long long mod = 1e9 + 7; long long dp[100006][2]; long long a[100006]; vector<int> lista[100005]; void dfs(int nod, int daddy) { dp[nod][0] = 1; dp[nod][1] = 0; for (int i = 0; i < lista[nod].size(); i++) { int x = lista[nod][i]; if (x == daddy) continue; dfs(x, nod); dp[nod][1] = (dp[nod][1] * dp[x][0] + dp[nod][0] * dp[x][1]) % mod; dp[nod][0] = (dp[x][0] * dp[nod][0]) % mod; } if (a[nod]) dp[nod][1] = dp[nod][0]; else dp[nod][0] = (dp[nod][1] + dp[nod][0]) % mod; } int main() { long long t, n, i, nr; cin >> n; for (i = 1; i < n; i++) { cin >> nr; lista[i].push_back(nr); lista[nr].push_back(i); } for (i = 0; i < n; i++) cin >> a[i]; dfs(0, -1); cout << dp[0][1]; return 0; }
### Prompt Your challenge is to write a Cpp solution to the following problem: Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other vertices are colored white. Consider a set consisting of k (0 ≀ k < n) edges of Appleman's tree. If Appleman deletes these edges from the tree, then it will split into (k + 1) parts. Note, that each part will be a tree with colored vertices. Now Appleman wonders, what is the number of sets splitting the tree in such a way that each resulting part will have exactly one black vertex? Find this number modulo 1000000007 (109 + 7). Input The first line contains an integer n (2 ≀ n ≀ 105) β€” the number of tree vertices. The second line contains the description of the tree: n - 1 integers p0, p1, ..., pn - 2 (0 ≀ pi ≀ i). Where pi means that there is an edge connecting vertex (i + 1) of the tree and vertex pi. Consider tree vertices are numbered from 0 to n - 1. The third line contains the description of the colors of the vertices: n integers x0, x1, ..., xn - 1 (xi is either 0 or 1). If xi is equal to 1, vertex i is colored black. Otherwise, vertex i is colored white. Output Output a single integer β€” the number of ways to split the tree modulo 1000000007 (109 + 7). Examples Input 3 0 0 0 1 1 Output 2 Input 6 0 1 1 0 4 1 1 0 0 1 0 Output 1 Input 10 0 1 2 1 4 4 4 0 8 0 0 0 1 0 1 1 0 0 1 Output 27 ### Response ```cpp #include <bits/stdc++.h> using namespace std; const long long mod = 1e9 + 7; long long dp[100006][2]; long long a[100006]; vector<int> lista[100005]; void dfs(int nod, int daddy) { dp[nod][0] = 1; dp[nod][1] = 0; for (int i = 0; i < lista[nod].size(); i++) { int x = lista[nod][i]; if (x == daddy) continue; dfs(x, nod); dp[nod][1] = (dp[nod][1] * dp[x][0] + dp[nod][0] * dp[x][1]) % mod; dp[nod][0] = (dp[x][0] * dp[nod][0]) % mod; } if (a[nod]) dp[nod][1] = dp[nod][0]; else dp[nod][0] = (dp[nod][1] + dp[nod][0]) % mod; } int main() { long long t, n, i, nr; cin >> n; for (i = 1; i < n; i++) { cin >> nr; lista[i].push_back(nr); lista[nr].push_back(i); } for (i = 0; i < n; i++) cin >> a[i]; dfs(0, -1); cout << dp[0][1]; return 0; } ```
#include <bits/stdc++.h> using namespace std; const long long N = 100100; const long long Mod = 1e9 + 7; long long Rec(long long i, long long j, long long c); long long p[N]; long long x[N]; vector<long long> Adj[N]; vector<long long> Dp[N][2]; int main() { long long n; cin >> n; for (long long i = 2; i <= n; i++) scanf("%I64d", p + i), Adj[++p[i]].push_back(i); for (long long i = 1; i <= n; i++) scanf("%I64d", x + i); for (long long i = 0; i < N; i++) Dp[i][0] = Dp[i][1] = vector<long long>(Adj[i].size(), -1); cout << Rec(1, 0, 0); } long long Rec(long long i, long long j, long long c) { if (j == 0) c += x[i]; if (c > 1) return 0; if (j == Adj[i].size()) return c; if (Dp[i][c][j] + 1) return Dp[i][c][j]; long long Res1 = (Rec(i, j + 1, c) * Rec(Adj[i][j], 0, 0)) % Mod; long long Res2 = (c ? Rec(i, j + 1, 1) * Rec(Adj[i][j], 0, 1) : 0) % Mod; long long Res3 = (!c ? (Rec(i, j + 1, 1) * Rec(Adj[i][j], 0, 0)) % Mod + (Rec(i, j + 1, 0) * Rec(Adj[i][j], 0, 1)) % Mod : 0) % Mod; return Dp[i][c][j] = (Res1 + Res2 + Res3) % Mod; }
### Prompt Your challenge is to write a cpp solution to the following problem: Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other vertices are colored white. Consider a set consisting of k (0 ≀ k < n) edges of Appleman's tree. If Appleman deletes these edges from the tree, then it will split into (k + 1) parts. Note, that each part will be a tree with colored vertices. Now Appleman wonders, what is the number of sets splitting the tree in such a way that each resulting part will have exactly one black vertex? Find this number modulo 1000000007 (109 + 7). Input The first line contains an integer n (2 ≀ n ≀ 105) β€” the number of tree vertices. The second line contains the description of the tree: n - 1 integers p0, p1, ..., pn - 2 (0 ≀ pi ≀ i). Where pi means that there is an edge connecting vertex (i + 1) of the tree and vertex pi. Consider tree vertices are numbered from 0 to n - 1. The third line contains the description of the colors of the vertices: n integers x0, x1, ..., xn - 1 (xi is either 0 or 1). If xi is equal to 1, vertex i is colored black. Otherwise, vertex i is colored white. Output Output a single integer β€” the number of ways to split the tree modulo 1000000007 (109 + 7). Examples Input 3 0 0 0 1 1 Output 2 Input 6 0 1 1 0 4 1 1 0 0 1 0 Output 1 Input 10 0 1 2 1 4 4 4 0 8 0 0 0 1 0 1 1 0 0 1 Output 27 ### Response ```cpp #include <bits/stdc++.h> using namespace std; const long long N = 100100; const long long Mod = 1e9 + 7; long long Rec(long long i, long long j, long long c); long long p[N]; long long x[N]; vector<long long> Adj[N]; vector<long long> Dp[N][2]; int main() { long long n; cin >> n; for (long long i = 2; i <= n; i++) scanf("%I64d", p + i), Adj[++p[i]].push_back(i); for (long long i = 1; i <= n; i++) scanf("%I64d", x + i); for (long long i = 0; i < N; i++) Dp[i][0] = Dp[i][1] = vector<long long>(Adj[i].size(), -1); cout << Rec(1, 0, 0); } long long Rec(long long i, long long j, long long c) { if (j == 0) c += x[i]; if (c > 1) return 0; if (j == Adj[i].size()) return c; if (Dp[i][c][j] + 1) return Dp[i][c][j]; long long Res1 = (Rec(i, j + 1, c) * Rec(Adj[i][j], 0, 0)) % Mod; long long Res2 = (c ? Rec(i, j + 1, 1) * Rec(Adj[i][j], 0, 1) : 0) % Mod; long long Res3 = (!c ? (Rec(i, j + 1, 1) * Rec(Adj[i][j], 0, 0)) % Mod + (Rec(i, j + 1, 0) * Rec(Adj[i][j], 0, 1)) % Mod : 0) % Mod; return Dp[i][c][j] = (Res1 + Res2 + Res3) % Mod; } ```
#include <bits/stdc++.h> using namespace std; const long long MOD = 1000000007; void dfs(int akt, int oj, vector<vector<int> >& T, vector<int>& col, vector<vector<long long> >& dp) { for (int i = 0; i < T[akt].size(); ++i) if (T[akt][i] != oj) dfs(T[akt][i], akt, T, col, dp); if (T[akt].size() == 1 && akt != 0) { if (col[akt] == 0) { dp[akt][0] = 1; dp[akt][1] = 0; } else { dp[akt][0] = 0; dp[akt][1] = 1; } } else { int sa = T[akt].size(); vector<long long> pref(sa), suf(sa); if (T[akt][0] == oj) pref[0] = 1; else pref[0] = dp[T[akt][0]][0] + dp[T[akt][0]][1]; for (int i = 1; i < sa; ++i) { pref[i] = pref[i - 1]; if (T[akt][i] != oj) pref[i] = (pref[i] * (dp[T[akt][i]][0] + dp[T[akt][i]][1])) % MOD; } if (T[akt][sa - 1] == oj) suf[sa - 1] = 1; else suf[sa - 1] = dp[T[akt][sa - 1]][0] + dp[T[akt][sa - 1]][1]; for (int i = sa - 2; i >= 0; --i) { suf[i] = suf[i + 1]; if (T[akt][i] != oj) suf[i] = (suf[i] * (dp[T[akt][i]][0] + dp[T[akt][i]][1])) % MOD; } if (col[akt] == 0) { dp[akt][1] = 0; for (int i = 0; i < sa; ++i) { if (T[akt][i] != oj) { long long resz = 1; if (i != 0) resz *= pref[i - 1]; if (i != sa - 1) resz *= suf[i + 1]; resz %= MOD; resz *= dp[T[akt][i]][1]; resz %= MOD; dp[akt][1] = (dp[akt][1] + resz) % MOD; } } dp[akt][0] = pref[sa - 1]; } else { dp[akt][1] = pref[sa - 1]; dp[akt][0] = 0; } } } int main() { ios_base::sync_with_stdio(0); int n; cin >> n; vector<vector<int> > T(n); for (int i = 0; i < n - 1; ++i) { int p; cin >> p; T[i + 1].push_back(p); T[p].push_back(i + 1); } vector<int> col(n); for (int i = 0; i < n; ++i) cin >> col[i]; vector<vector<long long> > dp(n, vector<long long>(2)); dfs(0, -1, T, col, dp); cout << dp[0][1]; return 0; }
### Prompt Construct a CPP code solution to the problem outlined: Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other vertices are colored white. Consider a set consisting of k (0 ≀ k < n) edges of Appleman's tree. If Appleman deletes these edges from the tree, then it will split into (k + 1) parts. Note, that each part will be a tree with colored vertices. Now Appleman wonders, what is the number of sets splitting the tree in such a way that each resulting part will have exactly one black vertex? Find this number modulo 1000000007 (109 + 7). Input The first line contains an integer n (2 ≀ n ≀ 105) β€” the number of tree vertices. The second line contains the description of the tree: n - 1 integers p0, p1, ..., pn - 2 (0 ≀ pi ≀ i). Where pi means that there is an edge connecting vertex (i + 1) of the tree and vertex pi. Consider tree vertices are numbered from 0 to n - 1. The third line contains the description of the colors of the vertices: n integers x0, x1, ..., xn - 1 (xi is either 0 or 1). If xi is equal to 1, vertex i is colored black. Otherwise, vertex i is colored white. Output Output a single integer β€” the number of ways to split the tree modulo 1000000007 (109 + 7). Examples Input 3 0 0 0 1 1 Output 2 Input 6 0 1 1 0 4 1 1 0 0 1 0 Output 1 Input 10 0 1 2 1 4 4 4 0 8 0 0 0 1 0 1 1 0 0 1 Output 27 ### Response ```cpp #include <bits/stdc++.h> using namespace std; const long long MOD = 1000000007; void dfs(int akt, int oj, vector<vector<int> >& T, vector<int>& col, vector<vector<long long> >& dp) { for (int i = 0; i < T[akt].size(); ++i) if (T[akt][i] != oj) dfs(T[akt][i], akt, T, col, dp); if (T[akt].size() == 1 && akt != 0) { if (col[akt] == 0) { dp[akt][0] = 1; dp[akt][1] = 0; } else { dp[akt][0] = 0; dp[akt][1] = 1; } } else { int sa = T[akt].size(); vector<long long> pref(sa), suf(sa); if (T[akt][0] == oj) pref[0] = 1; else pref[0] = dp[T[akt][0]][0] + dp[T[akt][0]][1]; for (int i = 1; i < sa; ++i) { pref[i] = pref[i - 1]; if (T[akt][i] != oj) pref[i] = (pref[i] * (dp[T[akt][i]][0] + dp[T[akt][i]][1])) % MOD; } if (T[akt][sa - 1] == oj) suf[sa - 1] = 1; else suf[sa - 1] = dp[T[akt][sa - 1]][0] + dp[T[akt][sa - 1]][1]; for (int i = sa - 2; i >= 0; --i) { suf[i] = suf[i + 1]; if (T[akt][i] != oj) suf[i] = (suf[i] * (dp[T[akt][i]][0] + dp[T[akt][i]][1])) % MOD; } if (col[akt] == 0) { dp[akt][1] = 0; for (int i = 0; i < sa; ++i) { if (T[akt][i] != oj) { long long resz = 1; if (i != 0) resz *= pref[i - 1]; if (i != sa - 1) resz *= suf[i + 1]; resz %= MOD; resz *= dp[T[akt][i]][1]; resz %= MOD; dp[akt][1] = (dp[akt][1] + resz) % MOD; } } dp[akt][0] = pref[sa - 1]; } else { dp[akt][1] = pref[sa - 1]; dp[akt][0] = 0; } } } int main() { ios_base::sync_with_stdio(0); int n; cin >> n; vector<vector<int> > T(n); for (int i = 0; i < n - 1; ++i) { int p; cin >> p; T[i + 1].push_back(p); T[p].push_back(i + 1); } vector<int> col(n); for (int i = 0; i < n; ++i) cin >> col[i]; vector<vector<long long> > dp(n, vector<long long>(2)); dfs(0, -1, T, col, dp); cout << dp[0][1]; return 0; } ```
#include <bits/stdc++.h> using namespace std; const long long M = 1000000007; class IO { static const int BUF_MB = 1; char buf[BUF_MB * 1024 * 1024]; char *END; char *pos; int readfile() { pos = buf; END = fread(buf, 1, sizeof(buf), stdin) + buf; return END - buf; } public: IO() { END = pos = buf; } int nextInt(int &ret) { ret = 0; while (true) { while (pos < END && !isdigit(*pos)) pos++; if (pos == END && readfile() == 0) return -1; else if (pos != END) break; } while (true) { while (pos < END && isdigit(*pos)) { ret = ret * 10 + (*pos) - '0'; pos++; } if (pos != END || readfile() == 0) break; } return 1; } } io; int cl[100005]; int dp[100005][2]; int to[100005]; int main() { int n; io.nextInt(n); for (int i = 0; i < n; i++) { dp[i][0] = 1; dp[i][1] = 0; } for (int i = 1; i < n; i++) { io.nextInt(to[i]); } for (int i = 0; i < n; i++) { io.nextInt(cl[i]); } for (int i = n - 1; i >= 0; --i) { if (cl[i] == 1) { dp[i][1] = dp[i][0]; dp[i][0] = 0; } if (i == 0) { continue; } int nxt = to[i]; dp[nxt][1] = (1ll * dp[nxt][1] * (dp[i][1] + dp[i][0]) + 1ll * dp[nxt][0] * dp[i][1]) % M; dp[nxt][0] = 1ll * dp[nxt][0] * (dp[i][1] + dp[i][0]) % M; } cout << dp[0][1] << "\n"; return 0; }
### Prompt Your challenge is to write a cpp solution to the following problem: Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other vertices are colored white. Consider a set consisting of k (0 ≀ k < n) edges of Appleman's tree. If Appleman deletes these edges from the tree, then it will split into (k + 1) parts. Note, that each part will be a tree with colored vertices. Now Appleman wonders, what is the number of sets splitting the tree in such a way that each resulting part will have exactly one black vertex? Find this number modulo 1000000007 (109 + 7). Input The first line contains an integer n (2 ≀ n ≀ 105) β€” the number of tree vertices. The second line contains the description of the tree: n - 1 integers p0, p1, ..., pn - 2 (0 ≀ pi ≀ i). Where pi means that there is an edge connecting vertex (i + 1) of the tree and vertex pi. Consider tree vertices are numbered from 0 to n - 1. The third line contains the description of the colors of the vertices: n integers x0, x1, ..., xn - 1 (xi is either 0 or 1). If xi is equal to 1, vertex i is colored black. Otherwise, vertex i is colored white. Output Output a single integer β€” the number of ways to split the tree modulo 1000000007 (109 + 7). Examples Input 3 0 0 0 1 1 Output 2 Input 6 0 1 1 0 4 1 1 0 0 1 0 Output 1 Input 10 0 1 2 1 4 4 4 0 8 0 0 0 1 0 1 1 0 0 1 Output 27 ### Response ```cpp #include <bits/stdc++.h> using namespace std; const long long M = 1000000007; class IO { static const int BUF_MB = 1; char buf[BUF_MB * 1024 * 1024]; char *END; char *pos; int readfile() { pos = buf; END = fread(buf, 1, sizeof(buf), stdin) + buf; return END - buf; } public: IO() { END = pos = buf; } int nextInt(int &ret) { ret = 0; while (true) { while (pos < END && !isdigit(*pos)) pos++; if (pos == END && readfile() == 0) return -1; else if (pos != END) break; } while (true) { while (pos < END && isdigit(*pos)) { ret = ret * 10 + (*pos) - '0'; pos++; } if (pos != END || readfile() == 0) break; } return 1; } } io; int cl[100005]; int dp[100005][2]; int to[100005]; int main() { int n; io.nextInt(n); for (int i = 0; i < n; i++) { dp[i][0] = 1; dp[i][1] = 0; } for (int i = 1; i < n; i++) { io.nextInt(to[i]); } for (int i = 0; i < n; i++) { io.nextInt(cl[i]); } for (int i = n - 1; i >= 0; --i) { if (cl[i] == 1) { dp[i][1] = dp[i][0]; dp[i][0] = 0; } if (i == 0) { continue; } int nxt = to[i]; dp[nxt][1] = (1ll * dp[nxt][1] * (dp[i][1] + dp[i][0]) + 1ll * dp[nxt][0] * dp[i][1]) % M; dp[nxt][0] = 1ll * dp[nxt][0] * (dp[i][1] + dp[i][0]) % M; } cout << dp[0][1] << "\n"; return 0; } ```
#include <bits/stdc++.h> using namespace std; vector<int> g[100010]; bitset<100010> coler; long long ans; const int mod = 1e9 + 7; long long d[100010][2]; void dfs(int x, int p) { for (int i = 0; i < g[x].size(); i++) { if (g[x][i] != p) dfs(g[x][i], x); } d[x][coler.test(x)] = 1; for (int i = 0; i < g[x].size(); i++) { if (g[x][i] == p) continue; d[x][1] = d[g[x][i]][1] * d[x][0] + d[g[x][i]][0] * d[x][1]; d[x][0] = d[g[x][i]][0] * d[x][0]; d[x][0] %= mod; d[x][1] %= mod; } d[x][0] += d[x][1]; d[x][0] %= mod; d[x][1] %= mod; return; } int main() { int n; while (cin >> n) { ans = 1; coler.reset(); memset(d, 0, sizeof(d)); for (int i = 0; i < n; i++) g[i].clear(); int v; for (int i = 1; i < n; i++) { scanf("%d", &v); g[i].push_back(v); g[v].push_back(i); } for (int i = 0; i < n; i++) { scanf("%d", &v); if (v == 1) { coler.set(i); } } dfs(0, 0); cout << d[0][1] << endl; } return 0; }
### Prompt Construct a CPP code solution to the problem outlined: Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other vertices are colored white. Consider a set consisting of k (0 ≀ k < n) edges of Appleman's tree. If Appleman deletes these edges from the tree, then it will split into (k + 1) parts. Note, that each part will be a tree with colored vertices. Now Appleman wonders, what is the number of sets splitting the tree in such a way that each resulting part will have exactly one black vertex? Find this number modulo 1000000007 (109 + 7). Input The first line contains an integer n (2 ≀ n ≀ 105) β€” the number of tree vertices. The second line contains the description of the tree: n - 1 integers p0, p1, ..., pn - 2 (0 ≀ pi ≀ i). Where pi means that there is an edge connecting vertex (i + 1) of the tree and vertex pi. Consider tree vertices are numbered from 0 to n - 1. The third line contains the description of the colors of the vertices: n integers x0, x1, ..., xn - 1 (xi is either 0 or 1). If xi is equal to 1, vertex i is colored black. Otherwise, vertex i is colored white. Output Output a single integer β€” the number of ways to split the tree modulo 1000000007 (109 + 7). Examples Input 3 0 0 0 1 1 Output 2 Input 6 0 1 1 0 4 1 1 0 0 1 0 Output 1 Input 10 0 1 2 1 4 4 4 0 8 0 0 0 1 0 1 1 0 0 1 Output 27 ### Response ```cpp #include <bits/stdc++.h> using namespace std; vector<int> g[100010]; bitset<100010> coler; long long ans; const int mod = 1e9 + 7; long long d[100010][2]; void dfs(int x, int p) { for (int i = 0; i < g[x].size(); i++) { if (g[x][i] != p) dfs(g[x][i], x); } d[x][coler.test(x)] = 1; for (int i = 0; i < g[x].size(); i++) { if (g[x][i] == p) continue; d[x][1] = d[g[x][i]][1] * d[x][0] + d[g[x][i]][0] * d[x][1]; d[x][0] = d[g[x][i]][0] * d[x][0]; d[x][0] %= mod; d[x][1] %= mod; } d[x][0] += d[x][1]; d[x][0] %= mod; d[x][1] %= mod; return; } int main() { int n; while (cin >> n) { ans = 1; coler.reset(); memset(d, 0, sizeof(d)); for (int i = 0; i < n; i++) g[i].clear(); int v; for (int i = 1; i < n; i++) { scanf("%d", &v); g[i].push_back(v); g[v].push_back(i); } for (int i = 0; i < n; i++) { scanf("%d", &v); if (v == 1) { coler.set(i); } } dfs(0, 0); cout << d[0][1] << endl; } return 0; } ```
#include <bits/stdc++.h> using namespace std; long long dp[100005][2]; int color[100005], par[100005]; bool notLeaf[100005]; int main() { int n; scanf("%d", &n); for (int i = 1; i < n; i++) { scanf("%d", par + i); notLeaf[par[i]] = true; } for (int i = 0; i < n; i++) scanf("%d", color + i); for (int i = 0; i < n; i++) { dp[i][0] = 1; dp[i][1] = color[i]; } for (int i = n - 1; i > 0; i--) { if (!notLeaf[i]) { dp[i][color[i]] = 1; dp[i][color[i] ^ 1] = 0; } if (color[par[i]] == 1) { dp[par[i]][1] *= dp[i][1] + dp[i][0]; dp[par[i]][1] %= 1000000007LL; dp[par[i]][0] = 0; } else { dp[par[i]][1] *= dp[i][1] + dp[i][0]; dp[par[i]][1] %= 1000000007LL; dp[par[i]][1] += dp[i][1] * dp[par[i]][0]; dp[par[i]][1] %= 1000000007LL; dp[par[i]][0] *= dp[i][1] + dp[i][0]; dp[par[i]][0] %= 1000000007LL; } } printf("%I64d\n", dp[0][1]); return 0; }
### Prompt In CPP, your task is to solve the following problem: Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other vertices are colored white. Consider a set consisting of k (0 ≀ k < n) edges of Appleman's tree. If Appleman deletes these edges from the tree, then it will split into (k + 1) parts. Note, that each part will be a tree with colored vertices. Now Appleman wonders, what is the number of sets splitting the tree in such a way that each resulting part will have exactly one black vertex? Find this number modulo 1000000007 (109 + 7). Input The first line contains an integer n (2 ≀ n ≀ 105) β€” the number of tree vertices. The second line contains the description of the tree: n - 1 integers p0, p1, ..., pn - 2 (0 ≀ pi ≀ i). Where pi means that there is an edge connecting vertex (i + 1) of the tree and vertex pi. Consider tree vertices are numbered from 0 to n - 1. The third line contains the description of the colors of the vertices: n integers x0, x1, ..., xn - 1 (xi is either 0 or 1). If xi is equal to 1, vertex i is colored black. Otherwise, vertex i is colored white. Output Output a single integer β€” the number of ways to split the tree modulo 1000000007 (109 + 7). Examples Input 3 0 0 0 1 1 Output 2 Input 6 0 1 1 0 4 1 1 0 0 1 0 Output 1 Input 10 0 1 2 1 4 4 4 0 8 0 0 0 1 0 1 1 0 0 1 Output 27 ### Response ```cpp #include <bits/stdc++.h> using namespace std; long long dp[100005][2]; int color[100005], par[100005]; bool notLeaf[100005]; int main() { int n; scanf("%d", &n); for (int i = 1; i < n; i++) { scanf("%d", par + i); notLeaf[par[i]] = true; } for (int i = 0; i < n; i++) scanf("%d", color + i); for (int i = 0; i < n; i++) { dp[i][0] = 1; dp[i][1] = color[i]; } for (int i = n - 1; i > 0; i--) { if (!notLeaf[i]) { dp[i][color[i]] = 1; dp[i][color[i] ^ 1] = 0; } if (color[par[i]] == 1) { dp[par[i]][1] *= dp[i][1] + dp[i][0]; dp[par[i]][1] %= 1000000007LL; dp[par[i]][0] = 0; } else { dp[par[i]][1] *= dp[i][1] + dp[i][0]; dp[par[i]][1] %= 1000000007LL; dp[par[i]][1] += dp[i][1] * dp[par[i]][0]; dp[par[i]][1] %= 1000000007LL; dp[par[i]][0] *= dp[i][1] + dp[i][0]; dp[par[i]][0] %= 1000000007LL; } } printf("%I64d\n", dp[0][1]); return 0; } ```
#include <bits/stdc++.h> using namespace std; bool checkbit(int x, int y) { return (x & (1 << y)); } int setbit(int x, int y) { return (x ^ (1 << y)); } const int dirs[4][2] = {{1, 0}, {0, 1}, {-1, 0}, {0, -1}}; const int mod = (1e9 + 7); const int INF = (0x7fffffff); const int maxn = 1e5 + 7; vector<int> e[maxn]; bitset<maxn> c; bitset<maxn> vis; long long dp[maxn][2]; void dfs(int u) { vis[u] = 1; dp[u][1] = c[u]; dp[u][0] = 1 - c[u]; for (auto v : e[u]) { if (vis[v]) continue; dfs(v); long long old[2]; old[0] = dp[u][0]; old[1] = dp[u][1]; dp[u][0] = (old[0] * dp[v][0]); dp[u][0] = (dp[u][0] + old[0] * dp[v][1]) % mod; dp[u][1] = (old[1] * dp[v][0]); dp[u][1] = (dp[u][1] + old[1] * dp[v][1]) % mod; dp[u][1] = (dp[u][1] + old[0] * dp[v][1]) % mod; } } int main() { vis.reset(); int n; scanf("%d", &n); for (int i = (1); i < (n); i++) { int p; scanf("%d", &p); e[p].push_back(i); } for (int i = (0); i < (n); i++) { int clr; scanf("%d", &clr); c[i] = (clr == 1); } dfs(0); printf("%I64d\n", dp[0][1]); return 0; }
### Prompt Generate a CPP solution to the following problem: Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other vertices are colored white. Consider a set consisting of k (0 ≀ k < n) edges of Appleman's tree. If Appleman deletes these edges from the tree, then it will split into (k + 1) parts. Note, that each part will be a tree with colored vertices. Now Appleman wonders, what is the number of sets splitting the tree in such a way that each resulting part will have exactly one black vertex? Find this number modulo 1000000007 (109 + 7). Input The first line contains an integer n (2 ≀ n ≀ 105) β€” the number of tree vertices. The second line contains the description of the tree: n - 1 integers p0, p1, ..., pn - 2 (0 ≀ pi ≀ i). Where pi means that there is an edge connecting vertex (i + 1) of the tree and vertex pi. Consider tree vertices are numbered from 0 to n - 1. The third line contains the description of the colors of the vertices: n integers x0, x1, ..., xn - 1 (xi is either 0 or 1). If xi is equal to 1, vertex i is colored black. Otherwise, vertex i is colored white. Output Output a single integer β€” the number of ways to split the tree modulo 1000000007 (109 + 7). Examples Input 3 0 0 0 1 1 Output 2 Input 6 0 1 1 0 4 1 1 0 0 1 0 Output 1 Input 10 0 1 2 1 4 4 4 0 8 0 0 0 1 0 1 1 0 0 1 Output 27 ### Response ```cpp #include <bits/stdc++.h> using namespace std; bool checkbit(int x, int y) { return (x & (1 << y)); } int setbit(int x, int y) { return (x ^ (1 << y)); } const int dirs[4][2] = {{1, 0}, {0, 1}, {-1, 0}, {0, -1}}; const int mod = (1e9 + 7); const int INF = (0x7fffffff); const int maxn = 1e5 + 7; vector<int> e[maxn]; bitset<maxn> c; bitset<maxn> vis; long long dp[maxn][2]; void dfs(int u) { vis[u] = 1; dp[u][1] = c[u]; dp[u][0] = 1 - c[u]; for (auto v : e[u]) { if (vis[v]) continue; dfs(v); long long old[2]; old[0] = dp[u][0]; old[1] = dp[u][1]; dp[u][0] = (old[0] * dp[v][0]); dp[u][0] = (dp[u][0] + old[0] * dp[v][1]) % mod; dp[u][1] = (old[1] * dp[v][0]); dp[u][1] = (dp[u][1] + old[1] * dp[v][1]) % mod; dp[u][1] = (dp[u][1] + old[0] * dp[v][1]) % mod; } } int main() { vis.reset(); int n; scanf("%d", &n); for (int i = (1); i < (n); i++) { int p; scanf("%d", &p); e[p].push_back(i); } for (int i = (0); i < (n); i++) { int clr; scanf("%d", &clr); c[i] = (clr == 1); } dfs(0); printf("%I64d\n", dp[0][1]); return 0; } ```
#include <bits/stdc++.h> using namespace std; vector<long long> G[100010], ter; long long n, root, c[100010], par[100010], dt[100010][2], ans; void dfs(int v, int pv) { dt[v][0] = 1; dt[v][1] = 0; for (int w : G[v]) if (w != pv) { dfs(w, v); dt[v][1] *= dt[w][0]; dt[v][1] += dt[v][0] * dt[w][1]; dt[v][0] *= dt[w][0]; dt[v][1] %= 1000000007, dt[v][0] %= 1000000007; } if (c[v] == 1) dt[v][1] = dt[v][0]; else dt[v][0] += dt[v][1]; } int main() { ios::sync_with_stdio(0); cin >> n; for (int i = 1, t; i < n; i++) { cin >> t; G[i].push_back(t), G[t].push_back(i); } for (int i = 0; i < n; i++) cin >> c[i]; dfs(0, 0); cout << dt[0][1] << endl; return 0; }
### Prompt Construct a Cpp code solution to the problem outlined: Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other vertices are colored white. Consider a set consisting of k (0 ≀ k < n) edges of Appleman's tree. If Appleman deletes these edges from the tree, then it will split into (k + 1) parts. Note, that each part will be a tree with colored vertices. Now Appleman wonders, what is the number of sets splitting the tree in such a way that each resulting part will have exactly one black vertex? Find this number modulo 1000000007 (109 + 7). Input The first line contains an integer n (2 ≀ n ≀ 105) β€” the number of tree vertices. The second line contains the description of the tree: n - 1 integers p0, p1, ..., pn - 2 (0 ≀ pi ≀ i). Where pi means that there is an edge connecting vertex (i + 1) of the tree and vertex pi. Consider tree vertices are numbered from 0 to n - 1. The third line contains the description of the colors of the vertices: n integers x0, x1, ..., xn - 1 (xi is either 0 or 1). If xi is equal to 1, vertex i is colored black. Otherwise, vertex i is colored white. Output Output a single integer β€” the number of ways to split the tree modulo 1000000007 (109 + 7). Examples Input 3 0 0 0 1 1 Output 2 Input 6 0 1 1 0 4 1 1 0 0 1 0 Output 1 Input 10 0 1 2 1 4 4 4 0 8 0 0 0 1 0 1 1 0 0 1 Output 27 ### Response ```cpp #include <bits/stdc++.h> using namespace std; vector<long long> G[100010], ter; long long n, root, c[100010], par[100010], dt[100010][2], ans; void dfs(int v, int pv) { dt[v][0] = 1; dt[v][1] = 0; for (int w : G[v]) if (w != pv) { dfs(w, v); dt[v][1] *= dt[w][0]; dt[v][1] += dt[v][0] * dt[w][1]; dt[v][0] *= dt[w][0]; dt[v][1] %= 1000000007, dt[v][0] %= 1000000007; } if (c[v] == 1) dt[v][1] = dt[v][0]; else dt[v][0] += dt[v][1]; } int main() { ios::sync_with_stdio(0); cin >> n; for (int i = 1, t; i < n; i++) { cin >> t; G[i].push_back(t), G[t].push_back(i); } for (int i = 0; i < n; i++) cin >> c[i]; dfs(0, 0); cout << dt[0][1] << endl; return 0; } ```
#include <bits/stdc++.h> using namespace std; const long long md = 1000000007; struct node { long long white, black; } tree[100010]; int type[100010]; int n, fa[100010]; void output() { printf("\n-----------------------------\n"); for (int i = 1; i <= n; ++i) { printf("tree[%d]: white=%lld, black=%lld\n", i, tree[i].white, tree[i].black); } printf("\n-----------------------------\n"); return; } void run() { for (int i = n; i >= 2; --i) { int t = fa[i]; long long bl = tree[i].black * tree[t].white % md; bl = (bl + ((tree[i].black + tree[i].white) % md) * tree[t].black % md) % md; long long wh = (((tree[i].black + tree[i].white) % md) * tree[t].white) % md; tree[t].black = bl; tree[t].white = wh; } cout << tree[1].black; return; } void init() { cin >> n; memset(type, 0, sizeof(type)); int top = 0, a, b; for (int i = 2; i <= n; ++i) { scanf("%d", &fa[i]); ++fa[i]; } for (int i = 1; i <= n; ++i) { scanf("%d", &type[i]); if (type[i]) { tree[i].white = 0; tree[i].black = 1; } else { tree[i].white = 1; tree[i].black = 0; } } run(); return; } int main() { init(); return 0; }
### Prompt Construct a Cpp code solution to the problem outlined: Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other vertices are colored white. Consider a set consisting of k (0 ≀ k < n) edges of Appleman's tree. If Appleman deletes these edges from the tree, then it will split into (k + 1) parts. Note, that each part will be a tree with colored vertices. Now Appleman wonders, what is the number of sets splitting the tree in such a way that each resulting part will have exactly one black vertex? Find this number modulo 1000000007 (109 + 7). Input The first line contains an integer n (2 ≀ n ≀ 105) β€” the number of tree vertices. The second line contains the description of the tree: n - 1 integers p0, p1, ..., pn - 2 (0 ≀ pi ≀ i). Where pi means that there is an edge connecting vertex (i + 1) of the tree and vertex pi. Consider tree vertices are numbered from 0 to n - 1. The third line contains the description of the colors of the vertices: n integers x0, x1, ..., xn - 1 (xi is either 0 or 1). If xi is equal to 1, vertex i is colored black. Otherwise, vertex i is colored white. Output Output a single integer β€” the number of ways to split the tree modulo 1000000007 (109 + 7). Examples Input 3 0 0 0 1 1 Output 2 Input 6 0 1 1 0 4 1 1 0 0 1 0 Output 1 Input 10 0 1 2 1 4 4 4 0 8 0 0 0 1 0 1 1 0 0 1 Output 27 ### Response ```cpp #include <bits/stdc++.h> using namespace std; const long long md = 1000000007; struct node { long long white, black; } tree[100010]; int type[100010]; int n, fa[100010]; void output() { printf("\n-----------------------------\n"); for (int i = 1; i <= n; ++i) { printf("tree[%d]: white=%lld, black=%lld\n", i, tree[i].white, tree[i].black); } printf("\n-----------------------------\n"); return; } void run() { for (int i = n; i >= 2; --i) { int t = fa[i]; long long bl = tree[i].black * tree[t].white % md; bl = (bl + ((tree[i].black + tree[i].white) % md) * tree[t].black % md) % md; long long wh = (((tree[i].black + tree[i].white) % md) * tree[t].white) % md; tree[t].black = bl; tree[t].white = wh; } cout << tree[1].black; return; } void init() { cin >> n; memset(type, 0, sizeof(type)); int top = 0, a, b; for (int i = 2; i <= n; ++i) { scanf("%d", &fa[i]); ++fa[i]; } for (int i = 1; i <= n; ++i) { scanf("%d", &type[i]); if (type[i]) { tree[i].white = 0; tree[i].black = 1; } else { tree[i].white = 1; tree[i].black = 0; } } run(); return; } int main() { init(); return 0; } ```
#include <bits/stdc++.h> using namespace std; vector<int> e[100000]; long long f[100000][2]; int val[100000]; void dfs(int v) { f[v][val[v]] = 1; for (auto i : e[v]) { dfs(i); f[v][1] = (f[v][0] * f[i][1] + f[v][1] * (f[i][0] + f[i][1])) % 1000000007; f[v][0] = (f[v][0] * f[i][1] + f[v][0] * f[i][0]) % 1000000007; } } int main() { int n; cin >> n; for (int i = 1; i < n; ++i) { int c; cin >> c; e[c].push_back(i); } for (int i = 0; i < n; ++i) cin >> val[i]; dfs(0); cout << f[0][1] << endl; return 0; }
### Prompt Construct a cpp code solution to the problem outlined: Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other vertices are colored white. Consider a set consisting of k (0 ≀ k < n) edges of Appleman's tree. If Appleman deletes these edges from the tree, then it will split into (k + 1) parts. Note, that each part will be a tree with colored vertices. Now Appleman wonders, what is the number of sets splitting the tree in such a way that each resulting part will have exactly one black vertex? Find this number modulo 1000000007 (109 + 7). Input The first line contains an integer n (2 ≀ n ≀ 105) β€” the number of tree vertices. The second line contains the description of the tree: n - 1 integers p0, p1, ..., pn - 2 (0 ≀ pi ≀ i). Where pi means that there is an edge connecting vertex (i + 1) of the tree and vertex pi. Consider tree vertices are numbered from 0 to n - 1. The third line contains the description of the colors of the vertices: n integers x0, x1, ..., xn - 1 (xi is either 0 or 1). If xi is equal to 1, vertex i is colored black. Otherwise, vertex i is colored white. Output Output a single integer β€” the number of ways to split the tree modulo 1000000007 (109 + 7). Examples Input 3 0 0 0 1 1 Output 2 Input 6 0 1 1 0 4 1 1 0 0 1 0 Output 1 Input 10 0 1 2 1 4 4 4 0 8 0 0 0 1 0 1 1 0 0 1 Output 27 ### Response ```cpp #include <bits/stdc++.h> using namespace std; vector<int> e[100000]; long long f[100000][2]; int val[100000]; void dfs(int v) { f[v][val[v]] = 1; for (auto i : e[v]) { dfs(i); f[v][1] = (f[v][0] * f[i][1] + f[v][1] * (f[i][0] + f[i][1])) % 1000000007; f[v][0] = (f[v][0] * f[i][1] + f[v][0] * f[i][0]) % 1000000007; } } int main() { int n; cin >> n; for (int i = 1; i < n; ++i) { int c; cin >> c; e[c].push_back(i); } for (int i = 0; i < n; ++i) cin >> val[i]; dfs(0); cout << f[0][1] << endl; return 0; } ```
#include <bits/stdc++.h> using namespace std; int n, son[1000005], cnt = 0; long long f[1000005][2]; int read() { int x = 0, f = 1; char h = getchar(); for (; !isdigit(h); h = getchar()) if (h == '-') f = -1; for (; isdigit(h); h = getchar()) x = (x << 3) + (x << 1) + h - 48; return x * f; } int main() { n = read(); memset(f, 0, sizeof(f)); for (int i = 1; i < n; i++) son[i] = read(); for (int i = 0; i < n; i++) f[i][read()] = 1; for (int i = n - 1; i; i--) (f[son[i]][1] = f[son[i]][0] * f[i][1] % 1000000007 + f[son[i]][1] * (f[i][0] + f[i][1]) % 1000000007) %= 1000000007, (f[son[i]][0] = f[son[i]][0] * (f[i][0] + f[i][1])) %= 1000000007; cout << f[0][1]; return 0; }
### Prompt Please create a solution in CPP to the following problem: Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other vertices are colored white. Consider a set consisting of k (0 ≀ k < n) edges of Appleman's tree. If Appleman deletes these edges from the tree, then it will split into (k + 1) parts. Note, that each part will be a tree with colored vertices. Now Appleman wonders, what is the number of sets splitting the tree in such a way that each resulting part will have exactly one black vertex? Find this number modulo 1000000007 (109 + 7). Input The first line contains an integer n (2 ≀ n ≀ 105) β€” the number of tree vertices. The second line contains the description of the tree: n - 1 integers p0, p1, ..., pn - 2 (0 ≀ pi ≀ i). Where pi means that there is an edge connecting vertex (i + 1) of the tree and vertex pi. Consider tree vertices are numbered from 0 to n - 1. The third line contains the description of the colors of the vertices: n integers x0, x1, ..., xn - 1 (xi is either 0 or 1). If xi is equal to 1, vertex i is colored black. Otherwise, vertex i is colored white. Output Output a single integer β€” the number of ways to split the tree modulo 1000000007 (109 + 7). Examples Input 3 0 0 0 1 1 Output 2 Input 6 0 1 1 0 4 1 1 0 0 1 0 Output 1 Input 10 0 1 2 1 4 4 4 0 8 0 0 0 1 0 1 1 0 0 1 Output 27 ### Response ```cpp #include <bits/stdc++.h> using namespace std; int n, son[1000005], cnt = 0; long long f[1000005][2]; int read() { int x = 0, f = 1; char h = getchar(); for (; !isdigit(h); h = getchar()) if (h == '-') f = -1; for (; isdigit(h); h = getchar()) x = (x << 3) + (x << 1) + h - 48; return x * f; } int main() { n = read(); memset(f, 0, sizeof(f)); for (int i = 1; i < n; i++) son[i] = read(); for (int i = 0; i < n; i++) f[i][read()] = 1; for (int i = n - 1; i; i--) (f[son[i]][1] = f[son[i]][0] * f[i][1] % 1000000007 + f[son[i]][1] * (f[i][0] + f[i][1]) % 1000000007) %= 1000000007, (f[son[i]][0] = f[son[i]][0] * (f[i][0] + f[i][1])) %= 1000000007; cout << f[0][1]; return 0; } ```
#include <bits/stdc++.h> using namespace std; const double inf = 0x3f3f3f3f3f3f; const int maxn = 1e5 + 105; const int mod = 1e9 + 7; int a[maxn]; std::vector<int> vv[maxn]; long long dp[maxn][2]; void dfs(int x) { dp[x][a[x]] = 1; dp[x][a[x] ^ 1] = 0; for (int i = 0; i < vv[x].size(); i++) { int v = vv[x][i]; dfs(v); dp[x][1] = dp[x][1] * (dp[v][0] + dp[v][1]) % mod + dp[x][0] * dp[v][1] % mod; dp[x][1] %= mod; dp[x][0] = dp[x][0] * (dp[v][0] + dp[v][1]) % mod; } } int main() { int n; scanf("%d", &n); for (int i = 2; i <= n; i++) { int p; scanf("%d", &p); p++; vv[p].push_back(i); } for (int i = 1; i <= n; i++) scanf("%d", &a[i]); dfs(1); printf("%lld\n", dp[1][1] % mod); }
### Prompt Construct a CPP code solution to the problem outlined: Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other vertices are colored white. Consider a set consisting of k (0 ≀ k < n) edges of Appleman's tree. If Appleman deletes these edges from the tree, then it will split into (k + 1) parts. Note, that each part will be a tree with colored vertices. Now Appleman wonders, what is the number of sets splitting the tree in such a way that each resulting part will have exactly one black vertex? Find this number modulo 1000000007 (109 + 7). Input The first line contains an integer n (2 ≀ n ≀ 105) β€” the number of tree vertices. The second line contains the description of the tree: n - 1 integers p0, p1, ..., pn - 2 (0 ≀ pi ≀ i). Where pi means that there is an edge connecting vertex (i + 1) of the tree and vertex pi. Consider tree vertices are numbered from 0 to n - 1. The third line contains the description of the colors of the vertices: n integers x0, x1, ..., xn - 1 (xi is either 0 or 1). If xi is equal to 1, vertex i is colored black. Otherwise, vertex i is colored white. Output Output a single integer β€” the number of ways to split the tree modulo 1000000007 (109 + 7). Examples Input 3 0 0 0 1 1 Output 2 Input 6 0 1 1 0 4 1 1 0 0 1 0 Output 1 Input 10 0 1 2 1 4 4 4 0 8 0 0 0 1 0 1 1 0 0 1 Output 27 ### Response ```cpp #include <bits/stdc++.h> using namespace std; const double inf = 0x3f3f3f3f3f3f; const int maxn = 1e5 + 105; const int mod = 1e9 + 7; int a[maxn]; std::vector<int> vv[maxn]; long long dp[maxn][2]; void dfs(int x) { dp[x][a[x]] = 1; dp[x][a[x] ^ 1] = 0; for (int i = 0; i < vv[x].size(); i++) { int v = vv[x][i]; dfs(v); dp[x][1] = dp[x][1] * (dp[v][0] + dp[v][1]) % mod + dp[x][0] * dp[v][1] % mod; dp[x][1] %= mod; dp[x][0] = dp[x][0] * (dp[v][0] + dp[v][1]) % mod; } } int main() { int n; scanf("%d", &n); for (int i = 2; i <= n; i++) { int p; scanf("%d", &p); p++; vv[p].push_back(i); } for (int i = 1; i <= n; i++) scanf("%d", &a[i]); dfs(1); printf("%lld\n", dp[1][1] % mod); } ```
#include <bits/stdc++.h> using namespace std; vector<int> q[100010]; long long dp[100010][2]; int N, color[100010], x; void dfs(int x, int y) { dp[x][color[x]] = 1; for (int i = 0; i < q[x].size(); i++) { int temp = q[x][i]; if (temp == y) continue; dfs(temp, x); dp[x][1] = (dp[x][1] * dp[temp][0] % 1000000007 + dp[x][1] * dp[temp][1] % 1000000007 + dp[x][0] * dp[temp][1] % 1000000007) % 1000000007; dp[x][0] = (dp[x][0] * dp[temp][0] % 1000000007 + dp[x][0] * dp[temp][1] % 1000000007) % 1000000007; } } int main() { scanf("%d", &N); for (int i = 1; i < N; i++) { scanf("%d", &x); q[i].push_back(x); q[x].push_back(i); } for (int i = 0; i < N; i++) scanf("%d", &color[i]); dfs(0, 0); printf("%I64d\n", dp[0][1]); return 0; }
### Prompt Please create a solution in CPP to the following problem: Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other vertices are colored white. Consider a set consisting of k (0 ≀ k < n) edges of Appleman's tree. If Appleman deletes these edges from the tree, then it will split into (k + 1) parts. Note, that each part will be a tree with colored vertices. Now Appleman wonders, what is the number of sets splitting the tree in such a way that each resulting part will have exactly one black vertex? Find this number modulo 1000000007 (109 + 7). Input The first line contains an integer n (2 ≀ n ≀ 105) β€” the number of tree vertices. The second line contains the description of the tree: n - 1 integers p0, p1, ..., pn - 2 (0 ≀ pi ≀ i). Where pi means that there is an edge connecting vertex (i + 1) of the tree and vertex pi. Consider tree vertices are numbered from 0 to n - 1. The third line contains the description of the colors of the vertices: n integers x0, x1, ..., xn - 1 (xi is either 0 or 1). If xi is equal to 1, vertex i is colored black. Otherwise, vertex i is colored white. Output Output a single integer β€” the number of ways to split the tree modulo 1000000007 (109 + 7). Examples Input 3 0 0 0 1 1 Output 2 Input 6 0 1 1 0 4 1 1 0 0 1 0 Output 1 Input 10 0 1 2 1 4 4 4 0 8 0 0 0 1 0 1 1 0 0 1 Output 27 ### Response ```cpp #include <bits/stdc++.h> using namespace std; vector<int> q[100010]; long long dp[100010][2]; int N, color[100010], x; void dfs(int x, int y) { dp[x][color[x]] = 1; for (int i = 0; i < q[x].size(); i++) { int temp = q[x][i]; if (temp == y) continue; dfs(temp, x); dp[x][1] = (dp[x][1] * dp[temp][0] % 1000000007 + dp[x][1] * dp[temp][1] % 1000000007 + dp[x][0] * dp[temp][1] % 1000000007) % 1000000007; dp[x][0] = (dp[x][0] * dp[temp][0] % 1000000007 + dp[x][0] * dp[temp][1] % 1000000007) % 1000000007; } } int main() { scanf("%d", &N); for (int i = 1; i < N; i++) { scanf("%d", &x); q[i].push_back(x); q[x].push_back(i); } for (int i = 0; i < N; i++) scanf("%d", &color[i]); dfs(0, 0); printf("%I64d\n", dp[0][1]); return 0; } ```
#include <bits/stdc++.h> using namespace std; const int maxn = (int)1e5 + 10; ; const int MOD = (int)1e9 + 7; ; vector<long long> num[maxn]; long long dpb[maxn], dpw[maxn], n; bool isb[maxn]; long long po(long long a, long long b) { if (!b) return 1; long long t = po(a, b / 2); t = (t * t) % MOD; if (b & 1) t = (t * a) % MOD; return t; } void dfs(int v, int pr) { for (int i = 0; i < num[v].size(); i++) if (num[v][i] != pr) dfs(num[v][i], v); if (isb[v]) { dpw[v] = 0; dpb[v] = 1; for (int i = 0; i < num[v].size(); i++) if (num[v][i] != pr) { dpb[v] *= dpb[num[v][i]] + dpw[num[v][i]]; dpb[v] %= MOD; } } else { dpw[v] = 1; for (int i = 0; i < num[v].size(); i++) if (num[v][i] != pr) { dpw[v] *= dpb[num[v][i]] + dpw[num[v][i]]; dpw[v] %= MOD; } dpb[v] = 0; for (int i = 0; i < num[v].size(); i++) if (num[v][i] != pr) { dpb[v] += (dpw[v] * po(dpb[num[v][i]] + dpw[num[v][i]], MOD - 2)) % MOD * dpb[num[v][i]]; dpb[v] %= MOD; } } } int main() { ios_base::sync_with_stdio(0); cin.tie(0); cin >> n; for (int i = 0; i < n - 1; i++) { long long t; cin >> t; num[i + 1].push_back(t); num[t].push_back(i + 1); } for (int i = 0; i < n; i++) cin >> isb[i]; dfs(0, -1); cout << dpb[0]; }
### Prompt Please formulate a cpp solution to the following problem: Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other vertices are colored white. Consider a set consisting of k (0 ≀ k < n) edges of Appleman's tree. If Appleman deletes these edges from the tree, then it will split into (k + 1) parts. Note, that each part will be a tree with colored vertices. Now Appleman wonders, what is the number of sets splitting the tree in such a way that each resulting part will have exactly one black vertex? Find this number modulo 1000000007 (109 + 7). Input The first line contains an integer n (2 ≀ n ≀ 105) β€” the number of tree vertices. The second line contains the description of the tree: n - 1 integers p0, p1, ..., pn - 2 (0 ≀ pi ≀ i). Where pi means that there is an edge connecting vertex (i + 1) of the tree and vertex pi. Consider tree vertices are numbered from 0 to n - 1. The third line contains the description of the colors of the vertices: n integers x0, x1, ..., xn - 1 (xi is either 0 or 1). If xi is equal to 1, vertex i is colored black. Otherwise, vertex i is colored white. Output Output a single integer β€” the number of ways to split the tree modulo 1000000007 (109 + 7). Examples Input 3 0 0 0 1 1 Output 2 Input 6 0 1 1 0 4 1 1 0 0 1 0 Output 1 Input 10 0 1 2 1 4 4 4 0 8 0 0 0 1 0 1 1 0 0 1 Output 27 ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int maxn = (int)1e5 + 10; ; const int MOD = (int)1e9 + 7; ; vector<long long> num[maxn]; long long dpb[maxn], dpw[maxn], n; bool isb[maxn]; long long po(long long a, long long b) { if (!b) return 1; long long t = po(a, b / 2); t = (t * t) % MOD; if (b & 1) t = (t * a) % MOD; return t; } void dfs(int v, int pr) { for (int i = 0; i < num[v].size(); i++) if (num[v][i] != pr) dfs(num[v][i], v); if (isb[v]) { dpw[v] = 0; dpb[v] = 1; for (int i = 0; i < num[v].size(); i++) if (num[v][i] != pr) { dpb[v] *= dpb[num[v][i]] + dpw[num[v][i]]; dpb[v] %= MOD; } } else { dpw[v] = 1; for (int i = 0; i < num[v].size(); i++) if (num[v][i] != pr) { dpw[v] *= dpb[num[v][i]] + dpw[num[v][i]]; dpw[v] %= MOD; } dpb[v] = 0; for (int i = 0; i < num[v].size(); i++) if (num[v][i] != pr) { dpb[v] += (dpw[v] * po(dpb[num[v][i]] + dpw[num[v][i]], MOD - 2)) % MOD * dpb[num[v][i]]; dpb[v] %= MOD; } } } int main() { ios_base::sync_with_stdio(0); cin.tie(0); cin >> n; for (int i = 0; i < n - 1; i++) { long long t; cin >> t; num[i + 1].push_back(t); num[t].push_back(i + 1); } for (int i = 0; i < n; i++) cin >> isb[i]; dfs(0, -1); cout << dpb[0]; } ```
#include <bits/stdc++.h> using namespace std; const int mod = 1e9 + 7, lim = 1e6 + 10; inline long long pwr(long long a, long long n, long long m = mod) { long long ans(1); while (n) { if (n & 1) ans = ans * a % m; n >>= 1; a = a * a % m; } return ans; } vector<int> t[lim]; int a[lim], x[lim], y[lim], temp; inline void bfs(int v, int par) { bool is_leaf = true; for (int ch : t[v]) if (ch != par) bfs(ch, v), is_leaf = false; if (is_leaf) { x[v] = 1; y[v] = a[v]; return; } temp = 1; for (int ch : t[v]) if (ch != par) temp = (long long)temp * x[ch] % mod; x[v] = y[v] = temp; if (!a[v]) { temp = 0; for (int ch : t[v]) if (ch != par) temp = (temp + (long long)pwr(x[ch], mod - 2) * y[ch]) % mod; y[v] = (long long)y[v] * temp % mod; x[v] = (x[v] + y[v]) % mod; } } int main() { int n; cin >> n; for (long long i = 0, _n = (n - 1); i < _n; i++) cin >> temp, t[temp].emplace_back(i + 1), t[i + 1].emplace_back(temp); for (long long i = 0, _n = (n); i < _n; i++) cin >> a[i]; bfs(0, 0); cout << y[0]; return 0; }
### Prompt Please create a solution in CPP to the following problem: Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other vertices are colored white. Consider a set consisting of k (0 ≀ k < n) edges of Appleman's tree. If Appleman deletes these edges from the tree, then it will split into (k + 1) parts. Note, that each part will be a tree with colored vertices. Now Appleman wonders, what is the number of sets splitting the tree in such a way that each resulting part will have exactly one black vertex? Find this number modulo 1000000007 (109 + 7). Input The first line contains an integer n (2 ≀ n ≀ 105) β€” the number of tree vertices. The second line contains the description of the tree: n - 1 integers p0, p1, ..., pn - 2 (0 ≀ pi ≀ i). Where pi means that there is an edge connecting vertex (i + 1) of the tree and vertex pi. Consider tree vertices are numbered from 0 to n - 1. The third line contains the description of the colors of the vertices: n integers x0, x1, ..., xn - 1 (xi is either 0 or 1). If xi is equal to 1, vertex i is colored black. Otherwise, vertex i is colored white. Output Output a single integer β€” the number of ways to split the tree modulo 1000000007 (109 + 7). Examples Input 3 0 0 0 1 1 Output 2 Input 6 0 1 1 0 4 1 1 0 0 1 0 Output 1 Input 10 0 1 2 1 4 4 4 0 8 0 0 0 1 0 1 1 0 0 1 Output 27 ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int mod = 1e9 + 7, lim = 1e6 + 10; inline long long pwr(long long a, long long n, long long m = mod) { long long ans(1); while (n) { if (n & 1) ans = ans * a % m; n >>= 1; a = a * a % m; } return ans; } vector<int> t[lim]; int a[lim], x[lim], y[lim], temp; inline void bfs(int v, int par) { bool is_leaf = true; for (int ch : t[v]) if (ch != par) bfs(ch, v), is_leaf = false; if (is_leaf) { x[v] = 1; y[v] = a[v]; return; } temp = 1; for (int ch : t[v]) if (ch != par) temp = (long long)temp * x[ch] % mod; x[v] = y[v] = temp; if (!a[v]) { temp = 0; for (int ch : t[v]) if (ch != par) temp = (temp + (long long)pwr(x[ch], mod - 2) * y[ch]) % mod; y[v] = (long long)y[v] * temp % mod; x[v] = (x[v] + y[v]) % mod; } } int main() { int n; cin >> n; for (long long i = 0, _n = (n - 1); i < _n; i++) cin >> temp, t[temp].emplace_back(i + 1), t[i + 1].emplace_back(temp); for (long long i = 0, _n = (n); i < _n; i++) cin >> a[i]; bfs(0, 0); cout << y[0]; return 0; } ```
#include <bits/stdc++.h> using namespace std; const long long mod = 1000000007, M = 1e5 + 7; long long powe(long long x, long long y) { x = x % mod; long long ans = 1; while (y > 0) { if (y & 1) { ans = (1ll * x * ans) % mod; } y >>= 1; x = (1ll * x * x) % mod; } return ans; } vector<int> edg[M]; bool col[M], vis[M]; long long s0[M], s1[M]; void dfs(int i) { vis[i] = true; if (col[i]) s1[i] = 1; else s0[i] = 1; for (auto x : edg[i]) { if (vis[x]) continue; dfs(x); s1[i] = (((s1[i] * s0[x])) % mod + (s0[i] * s1[x]) % mod + (s1[i] * s1[x]) % mod) % mod; s0[i] = ((s0[i] * s0[x]) % mod + (s0[i] * s1[x]) % mod) % mod; } } int main() { ios::sync_with_stdio(0); cin.tie(0); cout.tie(0); ; int n, a; cin >> n; for (int i = 1; i < n; i++) { cin >> a; edg[i].push_back(a); edg[a].push_back(i); } for (int i = 0; i < n; i++) cin >> col[i]; dfs(0); cout << s1[0]; return 0; }
### Prompt Your task is to create a cpp solution to the following problem: Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other vertices are colored white. Consider a set consisting of k (0 ≀ k < n) edges of Appleman's tree. If Appleman deletes these edges from the tree, then it will split into (k + 1) parts. Note, that each part will be a tree with colored vertices. Now Appleman wonders, what is the number of sets splitting the tree in such a way that each resulting part will have exactly one black vertex? Find this number modulo 1000000007 (109 + 7). Input The first line contains an integer n (2 ≀ n ≀ 105) β€” the number of tree vertices. The second line contains the description of the tree: n - 1 integers p0, p1, ..., pn - 2 (0 ≀ pi ≀ i). Where pi means that there is an edge connecting vertex (i + 1) of the tree and vertex pi. Consider tree vertices are numbered from 0 to n - 1. The third line contains the description of the colors of the vertices: n integers x0, x1, ..., xn - 1 (xi is either 0 or 1). If xi is equal to 1, vertex i is colored black. Otherwise, vertex i is colored white. Output Output a single integer β€” the number of ways to split the tree modulo 1000000007 (109 + 7). Examples Input 3 0 0 0 1 1 Output 2 Input 6 0 1 1 0 4 1 1 0 0 1 0 Output 1 Input 10 0 1 2 1 4 4 4 0 8 0 0 0 1 0 1 1 0 0 1 Output 27 ### Response ```cpp #include <bits/stdc++.h> using namespace std; const long long mod = 1000000007, M = 1e5 + 7; long long powe(long long x, long long y) { x = x % mod; long long ans = 1; while (y > 0) { if (y & 1) { ans = (1ll * x * ans) % mod; } y >>= 1; x = (1ll * x * x) % mod; } return ans; } vector<int> edg[M]; bool col[M], vis[M]; long long s0[M], s1[M]; void dfs(int i) { vis[i] = true; if (col[i]) s1[i] = 1; else s0[i] = 1; for (auto x : edg[i]) { if (vis[x]) continue; dfs(x); s1[i] = (((s1[i] * s0[x])) % mod + (s0[i] * s1[x]) % mod + (s1[i] * s1[x]) % mod) % mod; s0[i] = ((s0[i] * s0[x]) % mod + (s0[i] * s1[x]) % mod) % mod; } } int main() { ios::sync_with_stdio(0); cin.tie(0); cout.tie(0); ; int n, a; cin >> n; for (int i = 1; i < n; i++) { cin >> a; edg[i].push_back(a); edg[a].push_back(i); } for (int i = 0; i < n; i++) cin >> col[i]; dfs(0); cout << s1[0]; return 0; } ```
#include <bits/stdc++.h> using namespace std; const int MOD = 1e9 + 7; int n; vector<int> g[100000]; int b[100000]; vector<pair<int, int> > t[100000]; long long P(long long a, long long b) { long long ret = 1; while (b) { if (b & 1) ret = (ret * a) % MOD; a = (a * a) % MOD; b >>= 1; } return ret; } long long D(long long a, long long b) { return (a * P(b, MOD - 2)) % MOD; } pair<int, int> dfs(int v) { if (b[v]) { long long ret = 1; for (int to : g[v]) { pair<int, int> tmp = dfs(to); ret = (ret * (tmp.first + tmp.second)) % MOD; } return make_pair(0, (int)ret); } else { long long ret = 1, ret2 = 0; for (int to : g[v]) { pair<int, int> tmp = dfs(to); t[v].push_back(tmp); ret = (ret * (tmp.first + tmp.second)) % MOD; } for (pair<int, int> z : t[v]) ret2 = (ret2 + D(ret, z.first + z.second) * z.second) % MOD; return make_pair((int)ret, (int)ret2); } } int main() { ios_base::sync_with_stdio(false); cin >> n; for (int i = 1; i < n; ++i) { int x; cin >> x; g[x].push_back(i); } for (int i = 0; i < (int)(n); i++) cin >> b[i]; cout << dfs(0).second << '\n'; return 0; }
### Prompt Develop a solution in Cpp to the problem described below: Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other vertices are colored white. Consider a set consisting of k (0 ≀ k < n) edges of Appleman's tree. If Appleman deletes these edges from the tree, then it will split into (k + 1) parts. Note, that each part will be a tree with colored vertices. Now Appleman wonders, what is the number of sets splitting the tree in such a way that each resulting part will have exactly one black vertex? Find this number modulo 1000000007 (109 + 7). Input The first line contains an integer n (2 ≀ n ≀ 105) β€” the number of tree vertices. The second line contains the description of the tree: n - 1 integers p0, p1, ..., pn - 2 (0 ≀ pi ≀ i). Where pi means that there is an edge connecting vertex (i + 1) of the tree and vertex pi. Consider tree vertices are numbered from 0 to n - 1. The third line contains the description of the colors of the vertices: n integers x0, x1, ..., xn - 1 (xi is either 0 or 1). If xi is equal to 1, vertex i is colored black. Otherwise, vertex i is colored white. Output Output a single integer β€” the number of ways to split the tree modulo 1000000007 (109 + 7). Examples Input 3 0 0 0 1 1 Output 2 Input 6 0 1 1 0 4 1 1 0 0 1 0 Output 1 Input 10 0 1 2 1 4 4 4 0 8 0 0 0 1 0 1 1 0 0 1 Output 27 ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int MOD = 1e9 + 7; int n; vector<int> g[100000]; int b[100000]; vector<pair<int, int> > t[100000]; long long P(long long a, long long b) { long long ret = 1; while (b) { if (b & 1) ret = (ret * a) % MOD; a = (a * a) % MOD; b >>= 1; } return ret; } long long D(long long a, long long b) { return (a * P(b, MOD - 2)) % MOD; } pair<int, int> dfs(int v) { if (b[v]) { long long ret = 1; for (int to : g[v]) { pair<int, int> tmp = dfs(to); ret = (ret * (tmp.first + tmp.second)) % MOD; } return make_pair(0, (int)ret); } else { long long ret = 1, ret2 = 0; for (int to : g[v]) { pair<int, int> tmp = dfs(to); t[v].push_back(tmp); ret = (ret * (tmp.first + tmp.second)) % MOD; } for (pair<int, int> z : t[v]) ret2 = (ret2 + D(ret, z.first + z.second) * z.second) % MOD; return make_pair((int)ret, (int)ret2); } } int main() { ios_base::sync_with_stdio(false); cin >> n; for (int i = 1; i < n; ++i) { int x; cin >> x; g[x].push_back(i); } for (int i = 0; i < (int)(n); i++) cin >> b[i]; cout << dfs(0).second << '\n'; return 0; } ```
#include <bits/stdc++.h> using namespace std; const int N = 1e5 + 10, P = 1000000007; long long n; vector<long long> adj[N]; long long c[N], l[N], r[N]; int mul(long long a, long long b) { return (a * b) % P; } int sum(long long a, long long b) { return (a + b) % P; } pair<long long, long long> dfs(long long u, long long p) { vector<long long> a, b; for (auto x : adj[u]) { if (x != p) { auto k = dfs(x, u); a.push_back(k.first); b.push_back(k.second); } else { a.push_back(1); b.push_back(1); } } if (a.size() == 0) { if (c[u] == 0) { return {0, 1}; } else { return {1, 1}; } } if (c[u] == 0) { int k = adj[u].size(); l[0] = 1; r[k - 1] = 1; for (int i = 1; i < k; i++) l[i] = mul(l[i - 1], b[i - 1]); for (int i = k - 2; i >= 0; i--) r[i] = mul(r[i + 1], b[i + 1]); long long ans = 0; for (int i = 0; i < k; i++) if (adj[u][i] != p) { long long res = mul(mul(l[i], r[i]), a[i]); ans = sum(ans, res); } long long ans2 = sum(ans, mul(l[k - 1], b[k - 1])); return {ans, ans2}; } else { long long ans = 1; for (auto x : b) ans = mul(ans, x); return {ans, ans}; } } int main() { cin >> n; for (int i = 0; i < n - 1; i++) { long long a; cin >> a; adj[a].push_back(i + 1); adj[i + 1].push_back(a); } for (int i = 0; i < n; i++) cin >> c[i]; cout << dfs(0, 0).first; }
### Prompt Please formulate a CPP solution to the following problem: Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other vertices are colored white. Consider a set consisting of k (0 ≀ k < n) edges of Appleman's tree. If Appleman deletes these edges from the tree, then it will split into (k + 1) parts. Note, that each part will be a tree with colored vertices. Now Appleman wonders, what is the number of sets splitting the tree in such a way that each resulting part will have exactly one black vertex? Find this number modulo 1000000007 (109 + 7). Input The first line contains an integer n (2 ≀ n ≀ 105) β€” the number of tree vertices. The second line contains the description of the tree: n - 1 integers p0, p1, ..., pn - 2 (0 ≀ pi ≀ i). Where pi means that there is an edge connecting vertex (i + 1) of the tree and vertex pi. Consider tree vertices are numbered from 0 to n - 1. The third line contains the description of the colors of the vertices: n integers x0, x1, ..., xn - 1 (xi is either 0 or 1). If xi is equal to 1, vertex i is colored black. Otherwise, vertex i is colored white. Output Output a single integer β€” the number of ways to split the tree modulo 1000000007 (109 + 7). Examples Input 3 0 0 0 1 1 Output 2 Input 6 0 1 1 0 4 1 1 0 0 1 0 Output 1 Input 10 0 1 2 1 4 4 4 0 8 0 0 0 1 0 1 1 0 0 1 Output 27 ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int N = 1e5 + 10, P = 1000000007; long long n; vector<long long> adj[N]; long long c[N], l[N], r[N]; int mul(long long a, long long b) { return (a * b) % P; } int sum(long long a, long long b) { return (a + b) % P; } pair<long long, long long> dfs(long long u, long long p) { vector<long long> a, b; for (auto x : adj[u]) { if (x != p) { auto k = dfs(x, u); a.push_back(k.first); b.push_back(k.second); } else { a.push_back(1); b.push_back(1); } } if (a.size() == 0) { if (c[u] == 0) { return {0, 1}; } else { return {1, 1}; } } if (c[u] == 0) { int k = adj[u].size(); l[0] = 1; r[k - 1] = 1; for (int i = 1; i < k; i++) l[i] = mul(l[i - 1], b[i - 1]); for (int i = k - 2; i >= 0; i--) r[i] = mul(r[i + 1], b[i + 1]); long long ans = 0; for (int i = 0; i < k; i++) if (adj[u][i] != p) { long long res = mul(mul(l[i], r[i]), a[i]); ans = sum(ans, res); } long long ans2 = sum(ans, mul(l[k - 1], b[k - 1])); return {ans, ans2}; } else { long long ans = 1; for (auto x : b) ans = mul(ans, x); return {ans, ans}; } } int main() { cin >> n; for (int i = 0; i < n - 1; i++) { long long a; cin >> a; adj[a].push_back(i + 1); adj[i + 1].push_back(a); } for (int i = 0; i < n; i++) cin >> c[i]; cout << dfs(0, 0).first; } ```
#include <bits/stdc++.h> using namespace std; const int inf = 1e9 + 5; const long long linf = 1e18 + 5; const int N = 1e5 + 5; const int mod = 1e9 + 7; int n, x, dp[N][2], a[N]; vector<int> v[N]; int f(int x, bool w) { int &r = dp[x][w]; if (r != -1) return r; if (a[x]) { r = 1; for (__typeof((v[x]).begin()) it = (v[x]).begin(); it != (v[x]).end(); it++) r = ((long long)r * f(*it, 0)) % mod; return r; } if (v[x].empty()) return r = !w; r = 0; vector<int> lp, rp; lp.resize(v[x].size() + 1); rp.resize(v[x].size() + 1); lp[0] = 1; for (int i = 0; i <= v[x].size() - 1; i++) lp[i + 1] = ((long long)lp[i] * f(v[x][i], 0)) % mod; rp[v[x].size()] = 1; for (int i = v[x].size() - 1; i >= 0; i--) rp[i] = ((long long)rp[i + 1] * f(v[x][i], 0)) % mod; for (int i = 0; i <= v[x].size() - 1; i++) r = (r + (long long)lp[i] * rp[i + 1] % mod * f(v[x][i], 1) % mod) % mod; if (!w) { int cur = 1; for (__typeof((v[x]).begin()) it = (v[x]).begin(); it != (v[x]).end(); it++) cur = ((long long)cur * f(*it, 0)) % mod; r = (r + cur) % mod; } return r; } int main() { ios ::sync_with_stdio(0); memset(dp, -1, sizeof(dp)); cin >> n; for (int i = 2; i <= n; i++) { cin >> x; v[x + 1].push_back(i); } for (int i = 1; i <= n; i++) cin >> a[i]; cout << f(1, 1) << '\n'; return 0; }
### Prompt Please formulate a cpp solution to the following problem: Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other vertices are colored white. Consider a set consisting of k (0 ≀ k < n) edges of Appleman's tree. If Appleman deletes these edges from the tree, then it will split into (k + 1) parts. Note, that each part will be a tree with colored vertices. Now Appleman wonders, what is the number of sets splitting the tree in such a way that each resulting part will have exactly one black vertex? Find this number modulo 1000000007 (109 + 7). Input The first line contains an integer n (2 ≀ n ≀ 105) β€” the number of tree vertices. The second line contains the description of the tree: n - 1 integers p0, p1, ..., pn - 2 (0 ≀ pi ≀ i). Where pi means that there is an edge connecting vertex (i + 1) of the tree and vertex pi. Consider tree vertices are numbered from 0 to n - 1. The third line contains the description of the colors of the vertices: n integers x0, x1, ..., xn - 1 (xi is either 0 or 1). If xi is equal to 1, vertex i is colored black. Otherwise, vertex i is colored white. Output Output a single integer β€” the number of ways to split the tree modulo 1000000007 (109 + 7). Examples Input 3 0 0 0 1 1 Output 2 Input 6 0 1 1 0 4 1 1 0 0 1 0 Output 1 Input 10 0 1 2 1 4 4 4 0 8 0 0 0 1 0 1 1 0 0 1 Output 27 ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int inf = 1e9 + 5; const long long linf = 1e18 + 5; const int N = 1e5 + 5; const int mod = 1e9 + 7; int n, x, dp[N][2], a[N]; vector<int> v[N]; int f(int x, bool w) { int &r = dp[x][w]; if (r != -1) return r; if (a[x]) { r = 1; for (__typeof((v[x]).begin()) it = (v[x]).begin(); it != (v[x]).end(); it++) r = ((long long)r * f(*it, 0)) % mod; return r; } if (v[x].empty()) return r = !w; r = 0; vector<int> lp, rp; lp.resize(v[x].size() + 1); rp.resize(v[x].size() + 1); lp[0] = 1; for (int i = 0; i <= v[x].size() - 1; i++) lp[i + 1] = ((long long)lp[i] * f(v[x][i], 0)) % mod; rp[v[x].size()] = 1; for (int i = v[x].size() - 1; i >= 0; i--) rp[i] = ((long long)rp[i + 1] * f(v[x][i], 0)) % mod; for (int i = 0; i <= v[x].size() - 1; i++) r = (r + (long long)lp[i] * rp[i + 1] % mod * f(v[x][i], 1) % mod) % mod; if (!w) { int cur = 1; for (__typeof((v[x]).begin()) it = (v[x]).begin(); it != (v[x]).end(); it++) cur = ((long long)cur * f(*it, 0)) % mod; r = (r + cur) % mod; } return r; } int main() { ios ::sync_with_stdio(0); memset(dp, -1, sizeof(dp)); cin >> n; for (int i = 2; i <= n; i++) { cin >> x; v[x + 1].push_back(i); } for (int i = 1; i <= n; i++) cin >> a[i]; cout << f(1, 1) << '\n'; return 0; } ```
#include <bits/stdc++.h> using namespace std; const int MAX = 1e5 + 5, MOD = 1e9 + 7; int n, c[MAX], f[MAX], g[MAX], pref[MAX], suff[MAX]; vector<int> tmp, gt[MAX]; void dfs(int x, int p) { if (x > 0 && gt[x].size() == 1) { f[x] = !c[x]; g[x] = c[x]; return; } if (c[x] == 0) { f[x] = 1; g[x] = 0; for (int i = 0; i < gt[x].size(); i++) { int y = gt[x][i]; if (y == p) continue; dfs(y, x); f[x] = (f[x] * 1LL * (f[y] + g[y])) % MOD; } } else { f[x] = 0; g[x] = 1; for (int i = 0; i < gt[x].size(); i++) { int y = gt[x][i]; if (y == p) continue; dfs(y, x); g[x] = (g[x] * 1LL * (f[y] + g[y])) % MOD; } for (int i = 0; i < gt[x].size(); i++) { int y = gt[x][i]; if (y == p) continue; tmp.push_back(y); } for (int i = 0; i < tmp.size(); i++) { int y = tmp[i]; pref[i] = (f[y] + g[y]) % MOD; if (i > 0) pref[i] = (pref[i] * 1LL * pref[i - 1]) % MOD; } for (int i = tmp.size() - 1; i >= 0; i--) { int y = tmp[i]; suff[i] = (f[y] + g[y]) % MOD; if (i < tmp.size() - 1) suff[i] = (suff[i] * 1LL * suff[i + 1]) % MOD; int ans = f[y]; if (i > 0) ans = (ans * 1LL * pref[i - 1]) % MOD; if (i < tmp.size() - 1) ans = (ans * 1LL * suff[i + 1]) % MOD; f[x] = (f[x] + ans) % MOD; } for (int i = 0; i < tmp.size(); i++) { int y = tmp[i]; pref[y] = suff[y] = 0; } tmp.clear(); } } int main() { scanf("%d", &n); for (int i = 1; i < n; i++) { int x; scanf("%d", &x); gt[x].push_back(i); gt[i].push_back(x); } for (int i = 0; i < n; i++) { scanf("%d", &c[i]); c[i] = !c[i]; } dfs(0, -1); printf("%d\n", f[0]); return 0; }
### Prompt Generate a Cpp solution to the following problem: Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other vertices are colored white. Consider a set consisting of k (0 ≀ k < n) edges of Appleman's tree. If Appleman deletes these edges from the tree, then it will split into (k + 1) parts. Note, that each part will be a tree with colored vertices. Now Appleman wonders, what is the number of sets splitting the tree in such a way that each resulting part will have exactly one black vertex? Find this number modulo 1000000007 (109 + 7). Input The first line contains an integer n (2 ≀ n ≀ 105) β€” the number of tree vertices. The second line contains the description of the tree: n - 1 integers p0, p1, ..., pn - 2 (0 ≀ pi ≀ i). Where pi means that there is an edge connecting vertex (i + 1) of the tree and vertex pi. Consider tree vertices are numbered from 0 to n - 1. The third line contains the description of the colors of the vertices: n integers x0, x1, ..., xn - 1 (xi is either 0 or 1). If xi is equal to 1, vertex i is colored black. Otherwise, vertex i is colored white. Output Output a single integer β€” the number of ways to split the tree modulo 1000000007 (109 + 7). Examples Input 3 0 0 0 1 1 Output 2 Input 6 0 1 1 0 4 1 1 0 0 1 0 Output 1 Input 10 0 1 2 1 4 4 4 0 8 0 0 0 1 0 1 1 0 0 1 Output 27 ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int MAX = 1e5 + 5, MOD = 1e9 + 7; int n, c[MAX], f[MAX], g[MAX], pref[MAX], suff[MAX]; vector<int> tmp, gt[MAX]; void dfs(int x, int p) { if (x > 0 && gt[x].size() == 1) { f[x] = !c[x]; g[x] = c[x]; return; } if (c[x] == 0) { f[x] = 1; g[x] = 0; for (int i = 0; i < gt[x].size(); i++) { int y = gt[x][i]; if (y == p) continue; dfs(y, x); f[x] = (f[x] * 1LL * (f[y] + g[y])) % MOD; } } else { f[x] = 0; g[x] = 1; for (int i = 0; i < gt[x].size(); i++) { int y = gt[x][i]; if (y == p) continue; dfs(y, x); g[x] = (g[x] * 1LL * (f[y] + g[y])) % MOD; } for (int i = 0; i < gt[x].size(); i++) { int y = gt[x][i]; if (y == p) continue; tmp.push_back(y); } for (int i = 0; i < tmp.size(); i++) { int y = tmp[i]; pref[i] = (f[y] + g[y]) % MOD; if (i > 0) pref[i] = (pref[i] * 1LL * pref[i - 1]) % MOD; } for (int i = tmp.size() - 1; i >= 0; i--) { int y = tmp[i]; suff[i] = (f[y] + g[y]) % MOD; if (i < tmp.size() - 1) suff[i] = (suff[i] * 1LL * suff[i + 1]) % MOD; int ans = f[y]; if (i > 0) ans = (ans * 1LL * pref[i - 1]) % MOD; if (i < tmp.size() - 1) ans = (ans * 1LL * suff[i + 1]) % MOD; f[x] = (f[x] + ans) % MOD; } for (int i = 0; i < tmp.size(); i++) { int y = tmp[i]; pref[y] = suff[y] = 0; } tmp.clear(); } } int main() { scanf("%d", &n); for (int i = 1; i < n; i++) { int x; scanf("%d", &x); gt[x].push_back(i); gt[i].push_back(x); } for (int i = 0; i < n; i++) { scanf("%d", &c[i]); c[i] = !c[i]; } dfs(0, -1); printf("%d\n", f[0]); return 0; } ```
#include <bits/stdc++.h> using namespace std; int countBits(long long mask) { int res = 0; while (mask) mask &= (mask - 1), ++res; return res; } string toString(long long n) { stringstream ss; ss << n; return ss.str(); } long long toNumber(string s) { stringstream ss; long long n; ss << s; ss >> n; return n; } long long dp[100010][2]; bool black[100010]; vector<vector<int> > adjList; long long mod_inverse(long long n, long long p) { if (!p) return 1; if (p == 1) return n; long long res = mod_inverse(n, p / 2); res = (res * res) % 1000000007; if (p & 1) res = (res * n) % 1000000007; return res; } long long rec(int node, bool has_black_ancestor, int parent) { if (adjList[node].size() == 1 && parent != -1) return black[node] || has_black_ancestor; long long &res = dp[node][has_black_ancestor]; if (res != -1) return res; res = 0; long long all_ok = 1; for (int i = (int)(0), _m = (int)(adjList[node].size()); i < _m; ++i) { int child = adjList[node][i]; if (child == parent) continue; all_ok = (all_ok * rec(child, 1, node)) % 1000000007; } if (black[node] || has_black_ancestor) res = all_ok; if (!black[node]) { for (int i = (int)(0), _m = (int)(adjList[node].size()); i < _m; ++i) { int child = adjList[node][i]; if (child == parent) continue; long long all_but_this = (all_ok * mod_inverse(rec(child, 1, node), 1000000007 - 2)) % 1000000007; res += (all_but_this * rec(child, 0, node)) % 1000000007; res %= 1000000007; } } return res; } int main() { int n, p; while (cin >> n) { adjList.clear(); adjList.resize(n); for (int i = (int)(1), _m = (int)(n); i < _m; ++i) { cin >> p; adjList[p].push_back(i); adjList[i].push_back(p); } for (int i = (int)(0), _m = (int)(n); i < _m; ++i) cin >> black[i]; memset(dp, -1, sizeof dp); cout << rec(0, 0, -1) << endl; } }
### Prompt Please formulate a cpp solution to the following problem: Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other vertices are colored white. Consider a set consisting of k (0 ≀ k < n) edges of Appleman's tree. If Appleman deletes these edges from the tree, then it will split into (k + 1) parts. Note, that each part will be a tree with colored vertices. Now Appleman wonders, what is the number of sets splitting the tree in such a way that each resulting part will have exactly one black vertex? Find this number modulo 1000000007 (109 + 7). Input The first line contains an integer n (2 ≀ n ≀ 105) β€” the number of tree vertices. The second line contains the description of the tree: n - 1 integers p0, p1, ..., pn - 2 (0 ≀ pi ≀ i). Where pi means that there is an edge connecting vertex (i + 1) of the tree and vertex pi. Consider tree vertices are numbered from 0 to n - 1. The third line contains the description of the colors of the vertices: n integers x0, x1, ..., xn - 1 (xi is either 0 or 1). If xi is equal to 1, vertex i is colored black. Otherwise, vertex i is colored white. Output Output a single integer β€” the number of ways to split the tree modulo 1000000007 (109 + 7). Examples Input 3 0 0 0 1 1 Output 2 Input 6 0 1 1 0 4 1 1 0 0 1 0 Output 1 Input 10 0 1 2 1 4 4 4 0 8 0 0 0 1 0 1 1 0 0 1 Output 27 ### Response ```cpp #include <bits/stdc++.h> using namespace std; int countBits(long long mask) { int res = 0; while (mask) mask &= (mask - 1), ++res; return res; } string toString(long long n) { stringstream ss; ss << n; return ss.str(); } long long toNumber(string s) { stringstream ss; long long n; ss << s; ss >> n; return n; } long long dp[100010][2]; bool black[100010]; vector<vector<int> > adjList; long long mod_inverse(long long n, long long p) { if (!p) return 1; if (p == 1) return n; long long res = mod_inverse(n, p / 2); res = (res * res) % 1000000007; if (p & 1) res = (res * n) % 1000000007; return res; } long long rec(int node, bool has_black_ancestor, int parent) { if (adjList[node].size() == 1 && parent != -1) return black[node] || has_black_ancestor; long long &res = dp[node][has_black_ancestor]; if (res != -1) return res; res = 0; long long all_ok = 1; for (int i = (int)(0), _m = (int)(adjList[node].size()); i < _m; ++i) { int child = adjList[node][i]; if (child == parent) continue; all_ok = (all_ok * rec(child, 1, node)) % 1000000007; } if (black[node] || has_black_ancestor) res = all_ok; if (!black[node]) { for (int i = (int)(0), _m = (int)(adjList[node].size()); i < _m; ++i) { int child = adjList[node][i]; if (child == parent) continue; long long all_but_this = (all_ok * mod_inverse(rec(child, 1, node), 1000000007 - 2)) % 1000000007; res += (all_but_this * rec(child, 0, node)) % 1000000007; res %= 1000000007; } } return res; } int main() { int n, p; while (cin >> n) { adjList.clear(); adjList.resize(n); for (int i = (int)(1), _m = (int)(n); i < _m; ++i) { cin >> p; adjList[p].push_back(i); adjList[i].push_back(p); } for (int i = (int)(0), _m = (int)(n); i < _m; ++i) cin >> black[i]; memset(dp, -1, sizeof dp); cout << rec(0, 0, -1) << endl; } } ```
#include <bits/stdc++.h> using namespace std; class disjointSet { int *parent; int *rank; int cs, ms; public: disjointSet(int ms = int(1e5 + 5)) { this->ms = ms; cs = 0; parent = new int[ms]; rank = new int[ms]; } void MakeSet(int x) { if (cs == ms) return; parent[x] = x; rank[x] = 0; cs++; } int Find(int x) { if (parent[x] != x) parent[x] = Find(parent[x]); return parent[x]; } void Union(int x, int y) { int px = Find(x); int py = Find(y); if (px == py) return; if (rank[px] > rank[py]) parent[py] = px; else { parent[px] = py; if (rank[px] == rank[py]) rank[py]++; } } }; int n; vector<vector<int> > g; bitset<int(int(1e5 + 5))> color; long long dp[int(1e5 + 5)][2]; void dfs(int u) { dp[u][0] = 1; dp[u][1] = 0; for (int v : g[u]) { dfs(v); dp[u][1] = ((dp[u][1] * dp[v][0]) % int(1e9 + 7) + (dp[u][0] * dp[v][1]) % int(1e9 + 7)) % int(1e9 + 7); dp[u][0] = (dp[u][0] * dp[v][0]) % int(1e9 + 7); } if (color[u]) dp[u][1] = dp[u][0]; else dp[u][0] = (dp[u][0] + dp[u][1]) % int(1e9 + 7); } void solve() { dfs(0); cout << dp[0][1] << "\n"; } int main() { ios_base::sync_with_stdio(0); cin.tie(0); cout.tie(0); cin >> n; int u; g.assign(n, vector<int>()); for (int v = 1; v < n; v++) { cin >> u; g[u].push_back(v); } for (int u = 0; u < n; u++) { int c; cin >> c; color[u] = c; } solve(); }
### Prompt Your challenge is to write a cpp solution to the following problem: Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other vertices are colored white. Consider a set consisting of k (0 ≀ k < n) edges of Appleman's tree. If Appleman deletes these edges from the tree, then it will split into (k + 1) parts. Note, that each part will be a tree with colored vertices. Now Appleman wonders, what is the number of sets splitting the tree in such a way that each resulting part will have exactly one black vertex? Find this number modulo 1000000007 (109 + 7). Input The first line contains an integer n (2 ≀ n ≀ 105) β€” the number of tree vertices. The second line contains the description of the tree: n - 1 integers p0, p1, ..., pn - 2 (0 ≀ pi ≀ i). Where pi means that there is an edge connecting vertex (i + 1) of the tree and vertex pi. Consider tree vertices are numbered from 0 to n - 1. The third line contains the description of the colors of the vertices: n integers x0, x1, ..., xn - 1 (xi is either 0 or 1). If xi is equal to 1, vertex i is colored black. Otherwise, vertex i is colored white. Output Output a single integer β€” the number of ways to split the tree modulo 1000000007 (109 + 7). Examples Input 3 0 0 0 1 1 Output 2 Input 6 0 1 1 0 4 1 1 0 0 1 0 Output 1 Input 10 0 1 2 1 4 4 4 0 8 0 0 0 1 0 1 1 0 0 1 Output 27 ### Response ```cpp #include <bits/stdc++.h> using namespace std; class disjointSet { int *parent; int *rank; int cs, ms; public: disjointSet(int ms = int(1e5 + 5)) { this->ms = ms; cs = 0; parent = new int[ms]; rank = new int[ms]; } void MakeSet(int x) { if (cs == ms) return; parent[x] = x; rank[x] = 0; cs++; } int Find(int x) { if (parent[x] != x) parent[x] = Find(parent[x]); return parent[x]; } void Union(int x, int y) { int px = Find(x); int py = Find(y); if (px == py) return; if (rank[px] > rank[py]) parent[py] = px; else { parent[px] = py; if (rank[px] == rank[py]) rank[py]++; } } }; int n; vector<vector<int> > g; bitset<int(int(1e5 + 5))> color; long long dp[int(1e5 + 5)][2]; void dfs(int u) { dp[u][0] = 1; dp[u][1] = 0; for (int v : g[u]) { dfs(v); dp[u][1] = ((dp[u][1] * dp[v][0]) % int(1e9 + 7) + (dp[u][0] * dp[v][1]) % int(1e9 + 7)) % int(1e9 + 7); dp[u][0] = (dp[u][0] * dp[v][0]) % int(1e9 + 7); } if (color[u]) dp[u][1] = dp[u][0]; else dp[u][0] = (dp[u][0] + dp[u][1]) % int(1e9 + 7); } void solve() { dfs(0); cout << dp[0][1] << "\n"; } int main() { ios_base::sync_with_stdio(0); cin.tie(0); cout.tie(0); cin >> n; int u; g.assign(n, vector<int>()); for (int v = 1; v < n; v++) { cin >> u; g[u].push_back(v); } for (int u = 0; u < n; u++) { int c; cin >> c; color[u] = c; } solve(); } ```
#include <bits/stdc++.h> const int MOD = 1e9 + 7, MAXN = 1e5 + 50; using namespace std; int p[MAXN], x[MAXN]; vector<int> adj[MAXN]; long long dp[MAXN][2]; void dfs(int u) { dp[u][0] = 1; dp[u][1] = 0; for (int v : adj[u]) { dfs(v); dp[u][1] = (dp[u][1] * dp[v][0]) % MOD; dp[u][1] = (dp[u][1] + dp[u][0] * dp[v][1]) % MOD; dp[u][0] = (dp[u][0] * dp[v][0]) % MOD; } if (x[u]) dp[u][1] = dp[u][0]; else dp[u][0] += dp[u][1]; } int main() { int n; scanf("%d", &n); for (int i = 1; i < n; i++) { scanf("%d", p + i); adj[p[i]].push_back(i); } p[0] = -1; for (int i = 0; i < n; i++) scanf("%d", x + i); dfs(0); printf("%I64d\n", dp[0][1] % MOD); return 0; }
### Prompt Construct a cpp code solution to the problem outlined: Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other vertices are colored white. Consider a set consisting of k (0 ≀ k < n) edges of Appleman's tree. If Appleman deletes these edges from the tree, then it will split into (k + 1) parts. Note, that each part will be a tree with colored vertices. Now Appleman wonders, what is the number of sets splitting the tree in such a way that each resulting part will have exactly one black vertex? Find this number modulo 1000000007 (109 + 7). Input The first line contains an integer n (2 ≀ n ≀ 105) β€” the number of tree vertices. The second line contains the description of the tree: n - 1 integers p0, p1, ..., pn - 2 (0 ≀ pi ≀ i). Where pi means that there is an edge connecting vertex (i + 1) of the tree and vertex pi. Consider tree vertices are numbered from 0 to n - 1. The third line contains the description of the colors of the vertices: n integers x0, x1, ..., xn - 1 (xi is either 0 or 1). If xi is equal to 1, vertex i is colored black. Otherwise, vertex i is colored white. Output Output a single integer β€” the number of ways to split the tree modulo 1000000007 (109 + 7). Examples Input 3 0 0 0 1 1 Output 2 Input 6 0 1 1 0 4 1 1 0 0 1 0 Output 1 Input 10 0 1 2 1 4 4 4 0 8 0 0 0 1 0 1 1 0 0 1 Output 27 ### Response ```cpp #include <bits/stdc++.h> const int MOD = 1e9 + 7, MAXN = 1e5 + 50; using namespace std; int p[MAXN], x[MAXN]; vector<int> adj[MAXN]; long long dp[MAXN][2]; void dfs(int u) { dp[u][0] = 1; dp[u][1] = 0; for (int v : adj[u]) { dfs(v); dp[u][1] = (dp[u][1] * dp[v][0]) % MOD; dp[u][1] = (dp[u][1] + dp[u][0] * dp[v][1]) % MOD; dp[u][0] = (dp[u][0] * dp[v][0]) % MOD; } if (x[u]) dp[u][1] = dp[u][0]; else dp[u][0] += dp[u][1]; } int main() { int n; scanf("%d", &n); for (int i = 1; i < n; i++) { scanf("%d", p + i); adj[p[i]].push_back(i); } p[0] = -1; for (int i = 0; i < n; i++) scanf("%d", x + i); dfs(0); printf("%I64d\n", dp[0][1] % MOD); return 0; } ```
#include <bits/stdc++.h> using namespace std; int n, kq = 0; vector<int> a[100100]; int x[100100], dd[100100]; long long g[100100], first[100100]; int d[100100][3]; void nhap() { cin >> n; int c; for (int i = 0; i <= n - 2; i++) { scanf("%d", &c); a[c].push_back(i + 1); a[i + 1].push_back(c); } for (int i = 0; i <= n - 1; i++) scanf("%d", &x[i]); } void chuanbi() { memset(g, 0, sizeof(g)); memset(first, 0, sizeof(first)); memset(dd, 0, sizeof(dd)); } void dfs(int v) { dd[v] = 1; if (!x[v]) first[v] = 1; else g[v] = 1; for (int i = 0; i < a[v].size(); i++) { int u = a[v][i]; if (!dd[u]) { dfs(u); g[v] = (g[v] * (first[u] + g[u]) % 1000000007 + first[v] * g[u] % 1000000007) % 1000000007; first[v] = first[v] * (first[u] + g[u]) % 1000000007; } } } void xuli() { dfs(1); cout << g[1]; } void ghikq() {} int main() { nhap(); chuanbi(); xuli(); ghikq(); }
### Prompt Your task is to create a Cpp solution to the following problem: Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other vertices are colored white. Consider a set consisting of k (0 ≀ k < n) edges of Appleman's tree. If Appleman deletes these edges from the tree, then it will split into (k + 1) parts. Note, that each part will be a tree with colored vertices. Now Appleman wonders, what is the number of sets splitting the tree in such a way that each resulting part will have exactly one black vertex? Find this number modulo 1000000007 (109 + 7). Input The first line contains an integer n (2 ≀ n ≀ 105) β€” the number of tree vertices. The second line contains the description of the tree: n - 1 integers p0, p1, ..., pn - 2 (0 ≀ pi ≀ i). Where pi means that there is an edge connecting vertex (i + 1) of the tree and vertex pi. Consider tree vertices are numbered from 0 to n - 1. The third line contains the description of the colors of the vertices: n integers x0, x1, ..., xn - 1 (xi is either 0 or 1). If xi is equal to 1, vertex i is colored black. Otherwise, vertex i is colored white. Output Output a single integer β€” the number of ways to split the tree modulo 1000000007 (109 + 7). Examples Input 3 0 0 0 1 1 Output 2 Input 6 0 1 1 0 4 1 1 0 0 1 0 Output 1 Input 10 0 1 2 1 4 4 4 0 8 0 0 0 1 0 1 1 0 0 1 Output 27 ### Response ```cpp #include <bits/stdc++.h> using namespace std; int n, kq = 0; vector<int> a[100100]; int x[100100], dd[100100]; long long g[100100], first[100100]; int d[100100][3]; void nhap() { cin >> n; int c; for (int i = 0; i <= n - 2; i++) { scanf("%d", &c); a[c].push_back(i + 1); a[i + 1].push_back(c); } for (int i = 0; i <= n - 1; i++) scanf("%d", &x[i]); } void chuanbi() { memset(g, 0, sizeof(g)); memset(first, 0, sizeof(first)); memset(dd, 0, sizeof(dd)); } void dfs(int v) { dd[v] = 1; if (!x[v]) first[v] = 1; else g[v] = 1; for (int i = 0; i < a[v].size(); i++) { int u = a[v][i]; if (!dd[u]) { dfs(u); g[v] = (g[v] * (first[u] + g[u]) % 1000000007 + first[v] * g[u] % 1000000007) % 1000000007; first[v] = first[v] * (first[u] + g[u]) % 1000000007; } } } void xuli() { dfs(1); cout << g[1]; } void ghikq() {} int main() { nhap(); chuanbi(); xuli(); ghikq(); } ```
#include <bits/stdc++.h> using namespace std; vector<int> g[100005]; long long n, mod = 1e9 + 7, dp[100005], a[100005], b[100005]; void dfs(int x) { dp[x] = b[x]; a[x] = 1 - dp[x]; for (int i = 0; i < g[x].size(); i++) { int v = g[x][i]; dfs(v); dp[x] = ((dp[x] * a[v]) % mod + (dp[v] * a[x]) % mod + (dp[x] * dp[v]) % mod) % mod; a[x] = ((a[x] * dp[v]) % mod + (a[x] * a[v]) % mod) % mod; } return; } int main() { ios::sync_with_stdio(false); cin >> n; for (int i = 1; i < n; i++) { int x; cin >> x; g[x].push_back(i); } for (int i = 0; i < n; i++) cin >> b[i]; dfs(0); cout << dp[0]; return 0; }
### Prompt Please create a solution in Cpp to the following problem: Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other vertices are colored white. Consider a set consisting of k (0 ≀ k < n) edges of Appleman's tree. If Appleman deletes these edges from the tree, then it will split into (k + 1) parts. Note, that each part will be a tree with colored vertices. Now Appleman wonders, what is the number of sets splitting the tree in such a way that each resulting part will have exactly one black vertex? Find this number modulo 1000000007 (109 + 7). Input The first line contains an integer n (2 ≀ n ≀ 105) β€” the number of tree vertices. The second line contains the description of the tree: n - 1 integers p0, p1, ..., pn - 2 (0 ≀ pi ≀ i). Where pi means that there is an edge connecting vertex (i + 1) of the tree and vertex pi. Consider tree vertices are numbered from 0 to n - 1. The third line contains the description of the colors of the vertices: n integers x0, x1, ..., xn - 1 (xi is either 0 or 1). If xi is equal to 1, vertex i is colored black. Otherwise, vertex i is colored white. Output Output a single integer β€” the number of ways to split the tree modulo 1000000007 (109 + 7). Examples Input 3 0 0 0 1 1 Output 2 Input 6 0 1 1 0 4 1 1 0 0 1 0 Output 1 Input 10 0 1 2 1 4 4 4 0 8 0 0 0 1 0 1 1 0 0 1 Output 27 ### Response ```cpp #include <bits/stdc++.h> using namespace std; vector<int> g[100005]; long long n, mod = 1e9 + 7, dp[100005], a[100005], b[100005]; void dfs(int x) { dp[x] = b[x]; a[x] = 1 - dp[x]; for (int i = 0; i < g[x].size(); i++) { int v = g[x][i]; dfs(v); dp[x] = ((dp[x] * a[v]) % mod + (dp[v] * a[x]) % mod + (dp[x] * dp[v]) % mod) % mod; a[x] = ((a[x] * dp[v]) % mod + (a[x] * a[v]) % mod) % mod; } return; } int main() { ios::sync_with_stdio(false); cin >> n; for (int i = 1; i < n; i++) { int x; cin >> x; g[x].push_back(i); } for (int i = 0; i < n; i++) cin >> b[i]; dfs(0); cout << dp[0]; return 0; } ```
#include <bits/stdc++.h> using namespace std; const int Max = 100005; const long long mod = 1e9 + 7; vector<int> edge[Max]; int is[Max]; long long dp[Max][2]; long long inv(long long x) { long long res = 1; for (int k = mod - 2; k; k >>= 1) { if (k & 1) res = res * x % mod; x = x * x % mod; } return res; } void dfs(int u, int f) { int v, m = edge[u].size(); long long tot = 1; long long tmp; for (int i = 0; i < m; i++) { v = edge[u][i]; if (v == f) continue; dfs(v, u); tot = tot * (dp[v][0] + dp[v][1]) % mod; } if (is[u]) dp[u][0] = 0; else dp[u][0] = tot; if (is[u]) dp[u][1] = tot; else { dp[u][1] = 0; for (int i = 0; i < m; i++) { v = edge[u][i]; if (v == f) continue; tmp = (tot * dp[v][1] % mod) * inv(dp[v][0] + dp[v][1]) % mod; dp[u][1] = (dp[u][1] + tmp) % mod; } } } int main() { int n, p; scanf("%d", &n); for (int i = 1; i < n; i++) { scanf("%d", &p); edge[i].push_back(p); edge[p].push_back(i); } for (int i = 0; i < n; i++) { scanf("%d", &is[i]); } dfs(0, -1); cout << dp[0][1] << endl; return 0; }
### Prompt In cpp, your task is to solve the following problem: Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other vertices are colored white. Consider a set consisting of k (0 ≀ k < n) edges of Appleman's tree. If Appleman deletes these edges from the tree, then it will split into (k + 1) parts. Note, that each part will be a tree with colored vertices. Now Appleman wonders, what is the number of sets splitting the tree in such a way that each resulting part will have exactly one black vertex? Find this number modulo 1000000007 (109 + 7). Input The first line contains an integer n (2 ≀ n ≀ 105) β€” the number of tree vertices. The second line contains the description of the tree: n - 1 integers p0, p1, ..., pn - 2 (0 ≀ pi ≀ i). Where pi means that there is an edge connecting vertex (i + 1) of the tree and vertex pi. Consider tree vertices are numbered from 0 to n - 1. The third line contains the description of the colors of the vertices: n integers x0, x1, ..., xn - 1 (xi is either 0 or 1). If xi is equal to 1, vertex i is colored black. Otherwise, vertex i is colored white. Output Output a single integer β€” the number of ways to split the tree modulo 1000000007 (109 + 7). Examples Input 3 0 0 0 1 1 Output 2 Input 6 0 1 1 0 4 1 1 0 0 1 0 Output 1 Input 10 0 1 2 1 4 4 4 0 8 0 0 0 1 0 1 1 0 0 1 Output 27 ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int Max = 100005; const long long mod = 1e9 + 7; vector<int> edge[Max]; int is[Max]; long long dp[Max][2]; long long inv(long long x) { long long res = 1; for (int k = mod - 2; k; k >>= 1) { if (k & 1) res = res * x % mod; x = x * x % mod; } return res; } void dfs(int u, int f) { int v, m = edge[u].size(); long long tot = 1; long long tmp; for (int i = 0; i < m; i++) { v = edge[u][i]; if (v == f) continue; dfs(v, u); tot = tot * (dp[v][0] + dp[v][1]) % mod; } if (is[u]) dp[u][0] = 0; else dp[u][0] = tot; if (is[u]) dp[u][1] = tot; else { dp[u][1] = 0; for (int i = 0; i < m; i++) { v = edge[u][i]; if (v == f) continue; tmp = (tot * dp[v][1] % mod) * inv(dp[v][0] + dp[v][1]) % mod; dp[u][1] = (dp[u][1] + tmp) % mod; } } } int main() { int n, p; scanf("%d", &n); for (int i = 1; i < n; i++) { scanf("%d", &p); edge[i].push_back(p); edge[p].push_back(i); } for (int i = 0; i < n; i++) { scanf("%d", &is[i]); } dfs(0, -1); cout << dp[0][1] << endl; return 0; } ```
#include <bits/stdc++.h> using namespace std; queue<int> tree[100000]; int colour[100000]; long long int DP[2][100000]; void generateAnswer(int root) { if (tree[root].size() == 0) { if (colour[root] == 1) { DP[1][root] = DP[0][root]; } return; } while (!tree[root].empty()) { int curr = tree[root].front(); generateAnswer(curr); tree[root].pop(); DP[1][root] = (DP[1][root] * DP[0][curr]) % 1000000007; DP[1][root] += (DP[0][root] * DP[1][curr]) % 1000000007; DP[0][root] = (DP[0][root] * DP[0][curr]) % 1000000007; } if (colour[root] == 1) { DP[1][root] = DP[0][root]; } else { DP[0][root] = (DP[0][root] + DP[1][root]) % 1000000007; } return; } int main() { int n; cin >> n; for (int i = 0; i < 100000; i++) { colour[i] = -1; DP[0][i] = 1; DP[1][i] = 0; } for (int i = 0; i < n - 1; i++) { int from; cin >> from; tree[from].push(i + 1); } for (int i = 0; i < n; i++) { scanf("%d", &colour[i]); } generateAnswer(0); printf("%lld", DP[1][0] % 1000000007); return 0; }
### Prompt Construct a CPP code solution to the problem outlined: Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other vertices are colored white. Consider a set consisting of k (0 ≀ k < n) edges of Appleman's tree. If Appleman deletes these edges from the tree, then it will split into (k + 1) parts. Note, that each part will be a tree with colored vertices. Now Appleman wonders, what is the number of sets splitting the tree in such a way that each resulting part will have exactly one black vertex? Find this number modulo 1000000007 (109 + 7). Input The first line contains an integer n (2 ≀ n ≀ 105) β€” the number of tree vertices. The second line contains the description of the tree: n - 1 integers p0, p1, ..., pn - 2 (0 ≀ pi ≀ i). Where pi means that there is an edge connecting vertex (i + 1) of the tree and vertex pi. Consider tree vertices are numbered from 0 to n - 1. The third line contains the description of the colors of the vertices: n integers x0, x1, ..., xn - 1 (xi is either 0 or 1). If xi is equal to 1, vertex i is colored black. Otherwise, vertex i is colored white. Output Output a single integer β€” the number of ways to split the tree modulo 1000000007 (109 + 7). Examples Input 3 0 0 0 1 1 Output 2 Input 6 0 1 1 0 4 1 1 0 0 1 0 Output 1 Input 10 0 1 2 1 4 4 4 0 8 0 0 0 1 0 1 1 0 0 1 Output 27 ### Response ```cpp #include <bits/stdc++.h> using namespace std; queue<int> tree[100000]; int colour[100000]; long long int DP[2][100000]; void generateAnswer(int root) { if (tree[root].size() == 0) { if (colour[root] == 1) { DP[1][root] = DP[0][root]; } return; } while (!tree[root].empty()) { int curr = tree[root].front(); generateAnswer(curr); tree[root].pop(); DP[1][root] = (DP[1][root] * DP[0][curr]) % 1000000007; DP[1][root] += (DP[0][root] * DP[1][curr]) % 1000000007; DP[0][root] = (DP[0][root] * DP[0][curr]) % 1000000007; } if (colour[root] == 1) { DP[1][root] = DP[0][root]; } else { DP[0][root] = (DP[0][root] + DP[1][root]) % 1000000007; } return; } int main() { int n; cin >> n; for (int i = 0; i < 100000; i++) { colour[i] = -1; DP[0][i] = 1; DP[1][i] = 0; } for (int i = 0; i < n - 1; i++) { int from; cin >> from; tree[from].push(i + 1); } for (int i = 0; i < n; i++) { scanf("%d", &colour[i]); } generateAnswer(0); printf("%lld", DP[1][0] % 1000000007); return 0; } ```
#include <bits/stdc++.h> using namespace std; const int mod = 1e9 + 7; struct Mint { long long v; explicit operator long long() const { return v; } Mint() { v = 0; } Mint(long long _v) { v = (-mod < _v && _v < mod) ? _v : _v % mod; if (v < 0) v += mod; } friend bool operator==(const Mint& a, const Mint& b) { return a.v == b.v; } friend bool operator!=(const Mint& a, const Mint& b) { return !(a == b); } friend bool operator<(const Mint& a, const Mint& b) { return a.v < b.v; } Mint& operator+=(const Mint& m) { if ((v += m.v) >= mod) v -= mod; return *this; } Mint& operator-=(const Mint& m) { if ((v -= m.v) < 0) v += mod; return *this; } Mint& operator*=(const Mint& m) { v = v * m.v % mod; return *this; } Mint& operator/=(const Mint& m) { return (*this) *= inv(m); } friend Mint pow(Mint a, long long p) { Mint ans = 1; assert(p >= 0); for (; p; p /= 2, a *= a) if (p & 1) ans *= a; return ans; } friend Mint inv(const Mint& a) { assert(a.v != 0); return pow(a, mod - 2); } Mint operator-() const { return Mint(-v); } Mint& operator++() { return *this += 1; } Mint& operator--() { return *this -= 1; } Mint operator++(int) { Mint temp; temp.v = v++; return temp; } Mint operator--(int) { Mint temp; temp.v = v--; return temp; } friend Mint operator+(Mint a, const Mint& b) { return a += b; } friend Mint operator-(Mint a, const Mint& b) { return a -= b; } friend Mint operator*(Mint a, const Mint& b) { return a *= b; } friend Mint operator/(Mint a, const Mint& b) { return a /= b; } friend ostream& operator<<(ostream& os, const Mint& m) { os << m.v; return os; } friend istream& operator>>(istream& is, Mint& m) { long long x; is >> x; m.v = x; return is; } }; void solve() { int n; cin >> n; vector<vector<int>> adj(n); for (int i = 1; i < n; i++) { int p; cin >> p; adj[i].push_back(p); adj[p].push_back(i); } vector<int> col(n); for (int i = 0; i < n; i++) cin >> col[i]; vector<array<Mint, 2>> dp(n); function<void(int, int)> dfs = [&](int node, int par) { dp[node][col[node]] = 1; for (int nxt : adj[node]) { if (nxt != par) { dfs(nxt, node); array<Mint, 2> ndp; ndp[0] += dp[node][0] * dp[nxt][0]; ndp[1] += dp[node][1] * dp[nxt][0] + dp[node][0] * dp[nxt][1]; ndp[0] += dp[node][0] * dp[nxt][1]; ndp[1] += dp[node][1] * dp[nxt][1]; dp[node] = ndp; } } }; dfs(0, 0); cout << dp[0][1] << "\n"; } int main() { ios_base::sync_with_stdio(false); cin.tie(NULL); cout.tie(NULL); ; cout << fixed << setprecision(20); ; int t = 1; for (int i = 1; i <= t; i++) { solve(); } }
### Prompt Construct a Cpp code solution to the problem outlined: Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other vertices are colored white. Consider a set consisting of k (0 ≀ k < n) edges of Appleman's tree. If Appleman deletes these edges from the tree, then it will split into (k + 1) parts. Note, that each part will be a tree with colored vertices. Now Appleman wonders, what is the number of sets splitting the tree in such a way that each resulting part will have exactly one black vertex? Find this number modulo 1000000007 (109 + 7). Input The first line contains an integer n (2 ≀ n ≀ 105) β€” the number of tree vertices. The second line contains the description of the tree: n - 1 integers p0, p1, ..., pn - 2 (0 ≀ pi ≀ i). Where pi means that there is an edge connecting vertex (i + 1) of the tree and vertex pi. Consider tree vertices are numbered from 0 to n - 1. The third line contains the description of the colors of the vertices: n integers x0, x1, ..., xn - 1 (xi is either 0 or 1). If xi is equal to 1, vertex i is colored black. Otherwise, vertex i is colored white. Output Output a single integer β€” the number of ways to split the tree modulo 1000000007 (109 + 7). Examples Input 3 0 0 0 1 1 Output 2 Input 6 0 1 1 0 4 1 1 0 0 1 0 Output 1 Input 10 0 1 2 1 4 4 4 0 8 0 0 0 1 0 1 1 0 0 1 Output 27 ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int mod = 1e9 + 7; struct Mint { long long v; explicit operator long long() const { return v; } Mint() { v = 0; } Mint(long long _v) { v = (-mod < _v && _v < mod) ? _v : _v % mod; if (v < 0) v += mod; } friend bool operator==(const Mint& a, const Mint& b) { return a.v == b.v; } friend bool operator!=(const Mint& a, const Mint& b) { return !(a == b); } friend bool operator<(const Mint& a, const Mint& b) { return a.v < b.v; } Mint& operator+=(const Mint& m) { if ((v += m.v) >= mod) v -= mod; return *this; } Mint& operator-=(const Mint& m) { if ((v -= m.v) < 0) v += mod; return *this; } Mint& operator*=(const Mint& m) { v = v * m.v % mod; return *this; } Mint& operator/=(const Mint& m) { return (*this) *= inv(m); } friend Mint pow(Mint a, long long p) { Mint ans = 1; assert(p >= 0); for (; p; p /= 2, a *= a) if (p & 1) ans *= a; return ans; } friend Mint inv(const Mint& a) { assert(a.v != 0); return pow(a, mod - 2); } Mint operator-() const { return Mint(-v); } Mint& operator++() { return *this += 1; } Mint& operator--() { return *this -= 1; } Mint operator++(int) { Mint temp; temp.v = v++; return temp; } Mint operator--(int) { Mint temp; temp.v = v--; return temp; } friend Mint operator+(Mint a, const Mint& b) { return a += b; } friend Mint operator-(Mint a, const Mint& b) { return a -= b; } friend Mint operator*(Mint a, const Mint& b) { return a *= b; } friend Mint operator/(Mint a, const Mint& b) { return a /= b; } friend ostream& operator<<(ostream& os, const Mint& m) { os << m.v; return os; } friend istream& operator>>(istream& is, Mint& m) { long long x; is >> x; m.v = x; return is; } }; void solve() { int n; cin >> n; vector<vector<int>> adj(n); for (int i = 1; i < n; i++) { int p; cin >> p; adj[i].push_back(p); adj[p].push_back(i); } vector<int> col(n); for (int i = 0; i < n; i++) cin >> col[i]; vector<array<Mint, 2>> dp(n); function<void(int, int)> dfs = [&](int node, int par) { dp[node][col[node]] = 1; for (int nxt : adj[node]) { if (nxt != par) { dfs(nxt, node); array<Mint, 2> ndp; ndp[0] += dp[node][0] * dp[nxt][0]; ndp[1] += dp[node][1] * dp[nxt][0] + dp[node][0] * dp[nxt][1]; ndp[0] += dp[node][0] * dp[nxt][1]; ndp[1] += dp[node][1] * dp[nxt][1]; dp[node] = ndp; } } }; dfs(0, 0); cout << dp[0][1] << "\n"; } int main() { ios_base::sync_with_stdio(false); cin.tie(NULL); cout.tie(NULL); ; cout << fixed << setprecision(20); ; int t = 1; for (int i = 1; i <= t; i++) { solve(); } } ```
#include <bits/stdc++.h> using namespace std; const int MOD = 1e9 + 7; const int N = 1e5; vector<int> g[N]; int dp[N][2], col[N], l[N], r[N]; void dfs(int v) { int sz = g[v].size(); for (int i = 0; i < sz; i++) dfs(g[v][i]); if (col[v]) { int add = 1; for (int i = 0; i < sz; i++) add = (add * 1ll * (dp[g[v][i]][0] + dp[g[v][i]][1])) % MOD; dp[v][1] = (dp[v][1] + add) % MOD; } else { int add = 1; for (int i = 0; i < sz; i++) add = (add * 1ll * (dp[g[v][i]][0] + dp[g[v][i]][1])) % MOD; dp[v][0] = (dp[v][0] + add) % MOD; if (sz) { l[0] = (dp[g[v][0]][0] + dp[g[v][0]][1]) % MOD; r[sz - 1] = (dp[g[v][sz - 1]][0] + dp[g[v][sz - 1]][1]) % MOD; } for (int i = 1; i < sz; i++) l[i] = (l[i - 1] * 1ll * (dp[g[v][i]][0] + dp[g[v][i]][1])) % MOD; for (int i = sz - 2; i >= 0; i--) r[i] = (r[i + 1] * 1ll * (dp[g[v][i]][0] + dp[g[v][i]][1])) % MOD; for (int i = 0; i < sz; i++) { add = 1; add = (add * 1ll * (i ? l[i - 1] : 1) * (i != sz - 1 ? r[i + 1] : 1)) % MOD; add = (add * 1ll * dp[g[v][i]][1]) % MOD; dp[v][1] = (dp[v][1] + add) % MOD; } } } int main() { int n; cin >> n; for (int i = 1; i < n; i++) { int p; cin >> p; g[p].push_back(i); } for (int i = 0; i < n; i++) cin >> col[i]; dfs(0); cout << dp[0][1] << endl; return 0; }
### Prompt Please create a solution in cpp to the following problem: Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other vertices are colored white. Consider a set consisting of k (0 ≀ k < n) edges of Appleman's tree. If Appleman deletes these edges from the tree, then it will split into (k + 1) parts. Note, that each part will be a tree with colored vertices. Now Appleman wonders, what is the number of sets splitting the tree in such a way that each resulting part will have exactly one black vertex? Find this number modulo 1000000007 (109 + 7). Input The first line contains an integer n (2 ≀ n ≀ 105) β€” the number of tree vertices. The second line contains the description of the tree: n - 1 integers p0, p1, ..., pn - 2 (0 ≀ pi ≀ i). Where pi means that there is an edge connecting vertex (i + 1) of the tree and vertex pi. Consider tree vertices are numbered from 0 to n - 1. The third line contains the description of the colors of the vertices: n integers x0, x1, ..., xn - 1 (xi is either 0 or 1). If xi is equal to 1, vertex i is colored black. Otherwise, vertex i is colored white. Output Output a single integer β€” the number of ways to split the tree modulo 1000000007 (109 + 7). Examples Input 3 0 0 0 1 1 Output 2 Input 6 0 1 1 0 4 1 1 0 0 1 0 Output 1 Input 10 0 1 2 1 4 4 4 0 8 0 0 0 1 0 1 1 0 0 1 Output 27 ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int MOD = 1e9 + 7; const int N = 1e5; vector<int> g[N]; int dp[N][2], col[N], l[N], r[N]; void dfs(int v) { int sz = g[v].size(); for (int i = 0; i < sz; i++) dfs(g[v][i]); if (col[v]) { int add = 1; for (int i = 0; i < sz; i++) add = (add * 1ll * (dp[g[v][i]][0] + dp[g[v][i]][1])) % MOD; dp[v][1] = (dp[v][1] + add) % MOD; } else { int add = 1; for (int i = 0; i < sz; i++) add = (add * 1ll * (dp[g[v][i]][0] + dp[g[v][i]][1])) % MOD; dp[v][0] = (dp[v][0] + add) % MOD; if (sz) { l[0] = (dp[g[v][0]][0] + dp[g[v][0]][1]) % MOD; r[sz - 1] = (dp[g[v][sz - 1]][0] + dp[g[v][sz - 1]][1]) % MOD; } for (int i = 1; i < sz; i++) l[i] = (l[i - 1] * 1ll * (dp[g[v][i]][0] + dp[g[v][i]][1])) % MOD; for (int i = sz - 2; i >= 0; i--) r[i] = (r[i + 1] * 1ll * (dp[g[v][i]][0] + dp[g[v][i]][1])) % MOD; for (int i = 0; i < sz; i++) { add = 1; add = (add * 1ll * (i ? l[i - 1] : 1) * (i != sz - 1 ? r[i + 1] : 1)) % MOD; add = (add * 1ll * dp[g[v][i]][1]) % MOD; dp[v][1] = (dp[v][1] + add) % MOD; } } } int main() { int n; cin >> n; for (int i = 1; i < n; i++) { int p; cin >> p; g[p].push_back(i); } for (int i = 0; i < n; i++) cin >> col[i]; dfs(0); cout << dp[0][1] << endl; return 0; } ```
#include <bits/stdc++.h> using namespace std; int mod_inv(int a) { int pw = 1000000007 - 2; int res = 1; while (pw) { if (pw & 1) res = 1ll * res * a % 1000000007; a = 1ll * a * a % 1000000007; pw >>= 1; } return res; } void solver(vector<int> *arr, int n, int id, int prev, int *districts, long long **dp) { if (districts[id] == 1) { dp[id][0] = 0; long long prod = 1; for (auto &i : arr[id]) { if (i != prev) { solver(arr, n, i, id, districts, dp); prod = ((prod % 1000000007) * ((dp[i][1] % 1000000007) + (dp[i][0] % 1000000007)) % 1000000007) % 1000000007; } } dp[id][1] = prod; return; } long long sum = 0; long long prod = 1; for (auto &i : arr[id]) { if (i != prev) { solver(arr, n, i, id, districts, dp); prod = ((prod % 1000000007) * ((dp[i][0] % 1000000007) + (dp[i][1] % 1000000007)) % 1000000007) % 1000000007; } } dp[id][0] = prod; for (auto &i : arr[id]) { if (i != prev) { sum = (sum + (1ll * dp[i][1] * (1ll * dp[id][0] * mod_inv(dp[i][0] + dp[i][1]) % 1000000007) % 1000000007)) % 1000000007; } } dp[id][1] = sum; return; } int main() { int n; cin >> n; vector<int> *arr = new vector<int>[n]; for (int i = 0; i < n - 1; i++) { int p; cin >> p; arr[i + 1].push_back(p); arr[p].push_back(i + 1); } int *districts = new int[n]; int count = 0; for (int i = 0; i < n; i++) { int b; cin >> b; count += b; districts[i] = b; } if (count == 0) { cout << 0 << endl; return 0; } long long **dp = new long long *[n]; for (int i = 0; i < n; i++) { dp[i] = new long long[2]; } solver(arr, n, 0, -1, districts, dp); cout << (dp[0][1] % 1000000007) << endl; for (int i = 0; i < n; i++) { delete[] dp[i]; } delete[] dp; delete[] districts; delete[] arr; return 0; }
### Prompt Your task is to create a Cpp solution to the following problem: Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other vertices are colored white. Consider a set consisting of k (0 ≀ k < n) edges of Appleman's tree. If Appleman deletes these edges from the tree, then it will split into (k + 1) parts. Note, that each part will be a tree with colored vertices. Now Appleman wonders, what is the number of sets splitting the tree in such a way that each resulting part will have exactly one black vertex? Find this number modulo 1000000007 (109 + 7). Input The first line contains an integer n (2 ≀ n ≀ 105) β€” the number of tree vertices. The second line contains the description of the tree: n - 1 integers p0, p1, ..., pn - 2 (0 ≀ pi ≀ i). Where pi means that there is an edge connecting vertex (i + 1) of the tree and vertex pi. Consider tree vertices are numbered from 0 to n - 1. The third line contains the description of the colors of the vertices: n integers x0, x1, ..., xn - 1 (xi is either 0 or 1). If xi is equal to 1, vertex i is colored black. Otherwise, vertex i is colored white. Output Output a single integer β€” the number of ways to split the tree modulo 1000000007 (109 + 7). Examples Input 3 0 0 0 1 1 Output 2 Input 6 0 1 1 0 4 1 1 0 0 1 0 Output 1 Input 10 0 1 2 1 4 4 4 0 8 0 0 0 1 0 1 1 0 0 1 Output 27 ### Response ```cpp #include <bits/stdc++.h> using namespace std; int mod_inv(int a) { int pw = 1000000007 - 2; int res = 1; while (pw) { if (pw & 1) res = 1ll * res * a % 1000000007; a = 1ll * a * a % 1000000007; pw >>= 1; } return res; } void solver(vector<int> *arr, int n, int id, int prev, int *districts, long long **dp) { if (districts[id] == 1) { dp[id][0] = 0; long long prod = 1; for (auto &i : arr[id]) { if (i != prev) { solver(arr, n, i, id, districts, dp); prod = ((prod % 1000000007) * ((dp[i][1] % 1000000007) + (dp[i][0] % 1000000007)) % 1000000007) % 1000000007; } } dp[id][1] = prod; return; } long long sum = 0; long long prod = 1; for (auto &i : arr[id]) { if (i != prev) { solver(arr, n, i, id, districts, dp); prod = ((prod % 1000000007) * ((dp[i][0] % 1000000007) + (dp[i][1] % 1000000007)) % 1000000007) % 1000000007; } } dp[id][0] = prod; for (auto &i : arr[id]) { if (i != prev) { sum = (sum + (1ll * dp[i][1] * (1ll * dp[id][0] * mod_inv(dp[i][0] + dp[i][1]) % 1000000007) % 1000000007)) % 1000000007; } } dp[id][1] = sum; return; } int main() { int n; cin >> n; vector<int> *arr = new vector<int>[n]; for (int i = 0; i < n - 1; i++) { int p; cin >> p; arr[i + 1].push_back(p); arr[p].push_back(i + 1); } int *districts = new int[n]; int count = 0; for (int i = 0; i < n; i++) { int b; cin >> b; count += b; districts[i] = b; } if (count == 0) { cout << 0 << endl; return 0; } long long **dp = new long long *[n]; for (int i = 0; i < n; i++) { dp[i] = new long long[2]; } solver(arr, n, 0, -1, districts, dp); cout << (dp[0][1] % 1000000007) << endl; for (int i = 0; i < n; i++) { delete[] dp[i]; } delete[] dp; delete[] districts; delete[] arr; return 0; } ```
#include <bits/stdc++.h> const double EPS = 1e-24; const long long int MOD = 1000000007ll; const double PI = 3.14159265359; int INF = 2147483645; long long int INFINF = 9223372036854775807; template <class T> T Max2(T a, T b) { return a < b ? b : a; } template <class T> T Min2(T a, T b) { return a < b ? a : b; } template <class T> T Max3(T a, T b, T c) { return Max2(Max2(a, b), c); } template <class T> T Min3(T a, T b, T c) { return Min2(Min2(a, b), c); } template <class T> T Max4(T a, T b, T c, T d) { return Max2(Max2(a, b), Max2(c, d)); } template <class T> T Min4(T a, T b, T c, T d) { return Min2(Min2(a, b), Max2(c, d)); } using namespace std; long long int N; vector<long long int> G[100010]; long long int dp[100010][2]; bool vis[100010]; long long int color[100010]; void dfs(long long int u) { vis[u] = true; if (color[u]) { dp[u][0] = 0; dp[u][1] = 1; } else { dp[u][0] = 1; dp[u][1] = 0; } for (long long int v : G[u]) { if (!vis[v]) { dfs(v); long long int temp[2]; temp[0] = dp[u][0]; temp[1] = dp[u][0]; temp[1] = (dp[u][1] * dp[v][1]) % MOD; temp[1] = (temp[1] + dp[u][0] * dp[v][1]) % MOD; temp[1] = (temp[1] + dp[u][1] * dp[v][0]) % MOD; temp[0] = (dp[u][0] * dp[v][1]) % MOD; temp[0] = (temp[0] + dp[u][0] * dp[v][0]) % MOD; dp[u][0] = temp[0]; dp[u][1] = temp[1]; } } } int main() { std::ios::sync_with_stdio(false); cin.tie(NULL); cin >> N; for (int i = 1; i <= N - 1; i++) { long long int x; cin >> x; G[x].push_back(i); G[i].push_back(x); } for (int i = 0; i < N; i++) cin >> color[i]; dfs(0); cout << dp[0][1] << "\n"; return 0; }
### Prompt Please provide a Cpp coded solution to the problem described below: Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other vertices are colored white. Consider a set consisting of k (0 ≀ k < n) edges of Appleman's tree. If Appleman deletes these edges from the tree, then it will split into (k + 1) parts. Note, that each part will be a tree with colored vertices. Now Appleman wonders, what is the number of sets splitting the tree in such a way that each resulting part will have exactly one black vertex? Find this number modulo 1000000007 (109 + 7). Input The first line contains an integer n (2 ≀ n ≀ 105) β€” the number of tree vertices. The second line contains the description of the tree: n - 1 integers p0, p1, ..., pn - 2 (0 ≀ pi ≀ i). Where pi means that there is an edge connecting vertex (i + 1) of the tree and vertex pi. Consider tree vertices are numbered from 0 to n - 1. The third line contains the description of the colors of the vertices: n integers x0, x1, ..., xn - 1 (xi is either 0 or 1). If xi is equal to 1, vertex i is colored black. Otherwise, vertex i is colored white. Output Output a single integer β€” the number of ways to split the tree modulo 1000000007 (109 + 7). Examples Input 3 0 0 0 1 1 Output 2 Input 6 0 1 1 0 4 1 1 0 0 1 0 Output 1 Input 10 0 1 2 1 4 4 4 0 8 0 0 0 1 0 1 1 0 0 1 Output 27 ### Response ```cpp #include <bits/stdc++.h> const double EPS = 1e-24; const long long int MOD = 1000000007ll; const double PI = 3.14159265359; int INF = 2147483645; long long int INFINF = 9223372036854775807; template <class T> T Max2(T a, T b) { return a < b ? b : a; } template <class T> T Min2(T a, T b) { return a < b ? a : b; } template <class T> T Max3(T a, T b, T c) { return Max2(Max2(a, b), c); } template <class T> T Min3(T a, T b, T c) { return Min2(Min2(a, b), c); } template <class T> T Max4(T a, T b, T c, T d) { return Max2(Max2(a, b), Max2(c, d)); } template <class T> T Min4(T a, T b, T c, T d) { return Min2(Min2(a, b), Max2(c, d)); } using namespace std; long long int N; vector<long long int> G[100010]; long long int dp[100010][2]; bool vis[100010]; long long int color[100010]; void dfs(long long int u) { vis[u] = true; if (color[u]) { dp[u][0] = 0; dp[u][1] = 1; } else { dp[u][0] = 1; dp[u][1] = 0; } for (long long int v : G[u]) { if (!vis[v]) { dfs(v); long long int temp[2]; temp[0] = dp[u][0]; temp[1] = dp[u][0]; temp[1] = (dp[u][1] * dp[v][1]) % MOD; temp[1] = (temp[1] + dp[u][0] * dp[v][1]) % MOD; temp[1] = (temp[1] + dp[u][1] * dp[v][0]) % MOD; temp[0] = (dp[u][0] * dp[v][1]) % MOD; temp[0] = (temp[0] + dp[u][0] * dp[v][0]) % MOD; dp[u][0] = temp[0]; dp[u][1] = temp[1]; } } } int main() { std::ios::sync_with_stdio(false); cin.tie(NULL); cin >> N; for (int i = 1; i <= N - 1; i++) { long long int x; cin >> x; G[x].push_back(i); G[i].push_back(x); } for (int i = 0; i < N; i++) cin >> color[i]; dfs(0); cout << dp[0][1] << "\n"; return 0; } ```
#include <bits/stdc++.h> using namespace std; const long long mod = 1000000007; const int maxn = 110000; vector<int> tree[maxn]; bool vis[maxn]; int color[maxn]; long long f[maxn][2]; long long t1, t2; void dfs(int root) { vis[root] = true; int siz = tree[root].size(); if (color[root] == 1) { f[root][1] = 1; f[root][0] = 0; } else { f[root][0] = 1; f[root][1] = 0; } for (int i = 0; i < siz; ++i) { int v = tree[root][i]; if (!vis[tree[root][i]]) { dfs(tree[root][i]); if (color[root] == 1) { f[root][1] = f[root][1] * (f[v][0] + f[v][1]) % mod; } else { t1 = f[root][0] * (f[v][0] + f[v][1]); t2 = f[root][1] * (f[v][0] + f[v][1]) + f[root][0] * f[v][1]; f[root][1] = t2 % mod; f[root][0] = t1 % mod; } } } } int main(int argc, char* argv[]) { int n, p; scanf("%d", &n); for (int i = 1; i < n; ++i) { scanf("%d", &p); tree[i].push_back(p); tree[p].push_back(i); } for (int i = 0; i < n; ++i) scanf("%d", &color[i]); dfs(0); printf("%I64d\n", f[0][1]); return 0; }
### Prompt Develop a solution in CPP to the problem described below: Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other vertices are colored white. Consider a set consisting of k (0 ≀ k < n) edges of Appleman's tree. If Appleman deletes these edges from the tree, then it will split into (k + 1) parts. Note, that each part will be a tree with colored vertices. Now Appleman wonders, what is the number of sets splitting the tree in such a way that each resulting part will have exactly one black vertex? Find this number modulo 1000000007 (109 + 7). Input The first line contains an integer n (2 ≀ n ≀ 105) β€” the number of tree vertices. The second line contains the description of the tree: n - 1 integers p0, p1, ..., pn - 2 (0 ≀ pi ≀ i). Where pi means that there is an edge connecting vertex (i + 1) of the tree and vertex pi. Consider tree vertices are numbered from 0 to n - 1. The third line contains the description of the colors of the vertices: n integers x0, x1, ..., xn - 1 (xi is either 0 or 1). If xi is equal to 1, vertex i is colored black. Otherwise, vertex i is colored white. Output Output a single integer β€” the number of ways to split the tree modulo 1000000007 (109 + 7). Examples Input 3 0 0 0 1 1 Output 2 Input 6 0 1 1 0 4 1 1 0 0 1 0 Output 1 Input 10 0 1 2 1 4 4 4 0 8 0 0 0 1 0 1 1 0 0 1 Output 27 ### Response ```cpp #include <bits/stdc++.h> using namespace std; const long long mod = 1000000007; const int maxn = 110000; vector<int> tree[maxn]; bool vis[maxn]; int color[maxn]; long long f[maxn][2]; long long t1, t2; void dfs(int root) { vis[root] = true; int siz = tree[root].size(); if (color[root] == 1) { f[root][1] = 1; f[root][0] = 0; } else { f[root][0] = 1; f[root][1] = 0; } for (int i = 0; i < siz; ++i) { int v = tree[root][i]; if (!vis[tree[root][i]]) { dfs(tree[root][i]); if (color[root] == 1) { f[root][1] = f[root][1] * (f[v][0] + f[v][1]) % mod; } else { t1 = f[root][0] * (f[v][0] + f[v][1]); t2 = f[root][1] * (f[v][0] + f[v][1]) + f[root][0] * f[v][1]; f[root][1] = t2 % mod; f[root][0] = t1 % mod; } } } } int main(int argc, char* argv[]) { int n, p; scanf("%d", &n); for (int i = 1; i < n; ++i) { scanf("%d", &p); tree[i].push_back(p); tree[p].push_back(i); } for (int i = 0; i < n; ++i) scanf("%d", &color[i]); dfs(0); printf("%I64d\n", f[0][1]); return 0; } ```
#include <bits/stdc++.h> using namespace std; int n, x, kk, dp[2000005][2], col[2000005], head[2000005]; struct Tree { int nxt, to; } e[2000005]; inline void link(int x, int y) { e[++kk].nxt = head[x]; e[kk].to = y; head[x] = kk; } void dfs1(int u, int fa) { dp[u][col[u]] = 1; dp[u][col[u] ^ 1] = 0; for (int i = head[u]; i; i = e[i].nxt) { int v = e[i].to; if (v == fa) continue; dfs1(v, u); dp[u][1] = 1ll * (1ll * dp[u][1] * (dp[v][0] + dp[v][1]) % 1000000007 + 1ll * dp[u][0] * dp[v][1] % 1000000007) % 1000000007; dp[u][0] = 1ll * (1ll * dp[u][0] * dp[v][0] % 1000000007 + 1ll * dp[u][0] * dp[v][1] % 1000000007) % 1000000007; } } int main() { scanf("%d", &n); for (int i = 2; i <= n; i++) { scanf("%d", &x); x++; link(x, i); } for (int i = 1; i <= n; i++) scanf("%d", &col[i]); dfs1(1, -1); printf("%d\n", (dp[1][1]) % 1000000007); return 0; }
### Prompt Develop a solution in Cpp to the problem described below: Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other vertices are colored white. Consider a set consisting of k (0 ≀ k < n) edges of Appleman's tree. If Appleman deletes these edges from the tree, then it will split into (k + 1) parts. Note, that each part will be a tree with colored vertices. Now Appleman wonders, what is the number of sets splitting the tree in such a way that each resulting part will have exactly one black vertex? Find this number modulo 1000000007 (109 + 7). Input The first line contains an integer n (2 ≀ n ≀ 105) β€” the number of tree vertices. The second line contains the description of the tree: n - 1 integers p0, p1, ..., pn - 2 (0 ≀ pi ≀ i). Where pi means that there is an edge connecting vertex (i + 1) of the tree and vertex pi. Consider tree vertices are numbered from 0 to n - 1. The third line contains the description of the colors of the vertices: n integers x0, x1, ..., xn - 1 (xi is either 0 or 1). If xi is equal to 1, vertex i is colored black. Otherwise, vertex i is colored white. Output Output a single integer β€” the number of ways to split the tree modulo 1000000007 (109 + 7). Examples Input 3 0 0 0 1 1 Output 2 Input 6 0 1 1 0 4 1 1 0 0 1 0 Output 1 Input 10 0 1 2 1 4 4 4 0 8 0 0 0 1 0 1 1 0 0 1 Output 27 ### Response ```cpp #include <bits/stdc++.h> using namespace std; int n, x, kk, dp[2000005][2], col[2000005], head[2000005]; struct Tree { int nxt, to; } e[2000005]; inline void link(int x, int y) { e[++kk].nxt = head[x]; e[kk].to = y; head[x] = kk; } void dfs1(int u, int fa) { dp[u][col[u]] = 1; dp[u][col[u] ^ 1] = 0; for (int i = head[u]; i; i = e[i].nxt) { int v = e[i].to; if (v == fa) continue; dfs1(v, u); dp[u][1] = 1ll * (1ll * dp[u][1] * (dp[v][0] + dp[v][1]) % 1000000007 + 1ll * dp[u][0] * dp[v][1] % 1000000007) % 1000000007; dp[u][0] = 1ll * (1ll * dp[u][0] * dp[v][0] % 1000000007 + 1ll * dp[u][0] * dp[v][1] % 1000000007) % 1000000007; } } int main() { scanf("%d", &n); for (int i = 2; i <= n; i++) { scanf("%d", &x); x++; link(x, i); } for (int i = 1; i <= n; i++) scanf("%d", &col[i]); dfs1(1, -1); printf("%d\n", (dp[1][1]) % 1000000007); return 0; } ```
#include <bits/stdc++.h> using namespace std; const int N = 3e5 + 9; const int mod = 1e9 + 7; int col[N]; vector<int> ed[N]; long long dp[N][2]; long long rev(long long n) { long long r = 1; int b = mod - 2; while (b > 0) { if (b & 1) { r = (r * n) % mod; } n = (n * n) % mod; b >>= 1; } return r; } void dfs(int cur, int p) { bool leaf = true; long long zero = 1; for (vector<int>::iterator vit = ed[cur].begin(); vit != ed[cur].end(); ++vit) { if ((*vit) != p) { leaf = false; dfs(*vit, cur); zero = (zero * (dp[*vit][0] + dp[*vit][1])) % mod; } } if (leaf) { dp[cur][col[cur]] = 1; return; } if (!col[cur]) { dp[cur][0] = zero; for (vector<int>::iterator vit = ed[cur].begin(); vit != ed[cur].end(); ++vit) { if ((*vit) != p) { dp[cur][1] = (dp[cur][1] + ((zero * rev(dp[*vit][0] + dp[*vit][1])) % mod) * dp[*vit][1]) % mod; dp[cur][1] %= mod; } } } else { dp[cur][1] = zero; } } int main() { int i, j, n, k; while (cin >> n) { for (i = 0; i < n; ++i) { ed[i].clear(); } for (i = 1; i < n; ++i) { cin >> k; ed[i].push_back(k); ed[k].push_back(i); } for (i = 0; i < n; ++i) { cin >> col[i]; } memset(dp, 0, sizeof(dp)); dfs(0, -1); cout << dp[0][1] << endl; } return 0; }
### Prompt Create a solution in Cpp for the following problem: Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other vertices are colored white. Consider a set consisting of k (0 ≀ k < n) edges of Appleman's tree. If Appleman deletes these edges from the tree, then it will split into (k + 1) parts. Note, that each part will be a tree with colored vertices. Now Appleman wonders, what is the number of sets splitting the tree in such a way that each resulting part will have exactly one black vertex? Find this number modulo 1000000007 (109 + 7). Input The first line contains an integer n (2 ≀ n ≀ 105) β€” the number of tree vertices. The second line contains the description of the tree: n - 1 integers p0, p1, ..., pn - 2 (0 ≀ pi ≀ i). Where pi means that there is an edge connecting vertex (i + 1) of the tree and vertex pi. Consider tree vertices are numbered from 0 to n - 1. The third line contains the description of the colors of the vertices: n integers x0, x1, ..., xn - 1 (xi is either 0 or 1). If xi is equal to 1, vertex i is colored black. Otherwise, vertex i is colored white. Output Output a single integer β€” the number of ways to split the tree modulo 1000000007 (109 + 7). Examples Input 3 0 0 0 1 1 Output 2 Input 6 0 1 1 0 4 1 1 0 0 1 0 Output 1 Input 10 0 1 2 1 4 4 4 0 8 0 0 0 1 0 1 1 0 0 1 Output 27 ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int N = 3e5 + 9; const int mod = 1e9 + 7; int col[N]; vector<int> ed[N]; long long dp[N][2]; long long rev(long long n) { long long r = 1; int b = mod - 2; while (b > 0) { if (b & 1) { r = (r * n) % mod; } n = (n * n) % mod; b >>= 1; } return r; } void dfs(int cur, int p) { bool leaf = true; long long zero = 1; for (vector<int>::iterator vit = ed[cur].begin(); vit != ed[cur].end(); ++vit) { if ((*vit) != p) { leaf = false; dfs(*vit, cur); zero = (zero * (dp[*vit][0] + dp[*vit][1])) % mod; } } if (leaf) { dp[cur][col[cur]] = 1; return; } if (!col[cur]) { dp[cur][0] = zero; for (vector<int>::iterator vit = ed[cur].begin(); vit != ed[cur].end(); ++vit) { if ((*vit) != p) { dp[cur][1] = (dp[cur][1] + ((zero * rev(dp[*vit][0] + dp[*vit][1])) % mod) * dp[*vit][1]) % mod; dp[cur][1] %= mod; } } } else { dp[cur][1] = zero; } } int main() { int i, j, n, k; while (cin >> n) { for (i = 0; i < n; ++i) { ed[i].clear(); } for (i = 1; i < n; ++i) { cin >> k; ed[i].push_back(k); ed[k].push_back(i); } for (i = 0; i < n; ++i) { cin >> col[i]; } memset(dp, 0, sizeof(dp)); dfs(0, -1); cout << dp[0][1] << endl; } return 0; } ```
#include <bits/stdc++.h> using namespace std; const int N = 1e5 + 100; const int Mod = 1e9 + 7; int Color[N]; long long Dp[N][2]; vector<int> Tree[N]; void DFS(int u) { Dp[u][Color[u]] = 1; for (auto v : Tree[u]) { DFS(v); Dp[u][1] = (Dp[u][1] * Dp[v][1] % Mod + Dp[u][1] * Dp[v][0] % Mod + Dp[u][0] * Dp[v][1] % Mod) % Mod; Dp[u][0] = (Dp[u][0] * Dp[v][0] % Mod + Dp[u][0] * Dp[v][1] % Mod) % Mod; } } int main() { int n; scanf("%d", &n); for (int i = 1; i < n; i++) { int p; scanf("%d", &p); Tree[p].push_back(i); } for (int i = 0; i < n; i++) scanf("%d", Color + i); DFS(0); printf("%I64d\n", Dp[0][1]); return 0; }
### Prompt Your challenge is to write a CPP solution to the following problem: Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other vertices are colored white. Consider a set consisting of k (0 ≀ k < n) edges of Appleman's tree. If Appleman deletes these edges from the tree, then it will split into (k + 1) parts. Note, that each part will be a tree with colored vertices. Now Appleman wonders, what is the number of sets splitting the tree in such a way that each resulting part will have exactly one black vertex? Find this number modulo 1000000007 (109 + 7). Input The first line contains an integer n (2 ≀ n ≀ 105) β€” the number of tree vertices. The second line contains the description of the tree: n - 1 integers p0, p1, ..., pn - 2 (0 ≀ pi ≀ i). Where pi means that there is an edge connecting vertex (i + 1) of the tree and vertex pi. Consider tree vertices are numbered from 0 to n - 1. The third line contains the description of the colors of the vertices: n integers x0, x1, ..., xn - 1 (xi is either 0 or 1). If xi is equal to 1, vertex i is colored black. Otherwise, vertex i is colored white. Output Output a single integer β€” the number of ways to split the tree modulo 1000000007 (109 + 7). Examples Input 3 0 0 0 1 1 Output 2 Input 6 0 1 1 0 4 1 1 0 0 1 0 Output 1 Input 10 0 1 2 1 4 4 4 0 8 0 0 0 1 0 1 1 0 0 1 Output 27 ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int N = 1e5 + 100; const int Mod = 1e9 + 7; int Color[N]; long long Dp[N][2]; vector<int> Tree[N]; void DFS(int u) { Dp[u][Color[u]] = 1; for (auto v : Tree[u]) { DFS(v); Dp[u][1] = (Dp[u][1] * Dp[v][1] % Mod + Dp[u][1] * Dp[v][0] % Mod + Dp[u][0] * Dp[v][1] % Mod) % Mod; Dp[u][0] = (Dp[u][0] * Dp[v][0] % Mod + Dp[u][0] * Dp[v][1] % Mod) % Mod; } } int main() { int n; scanf("%d", &n); for (int i = 1; i < n; i++) { int p; scanf("%d", &p); Tree[p].push_back(i); } for (int i = 0; i < n; i++) scanf("%d", Color + i); DFS(0); printf("%I64d\n", Dp[0][1]); return 0; } ```
#include <bits/stdc++.h> using namespace std; const int N = 1e5 + 5; const int mod = 1e9 + 7; const int inf = 1e9 + 7; int n, i, x; int dp[N][2], A[N]; vector<int> V[N]; int f(int x, int k) { int &r = dp[x][k], i; if (r != -1) return r; if (A[x]) { r = 1; for (i = 0; i < V[x].size(); i++) r = (long long)r * f(V[x][i], 0) % mod; return r; } if (!V[x].size()) return r = !k; vector<int> pre, suf; pre.resize(V[x].size() + 5); suf.resize(V[x].size() + 5); pre[0] = suf[V[x].size()] = 1; for (i = 0; i < V[x].size(); i++) pre[i + 1] = (long long)pre[i] * f(V[x][i], 0) % mod; for (i = V[x].size() - 1; i >= 0; i--) suf[i] = (long long)suf[i + 1] * f(V[x][i], 0) % mod; r = 0; for (i = 0; i < V[x].size(); i++) r = (r + (long long)f(V[x][i], 1) * pre[i] % mod * suf[i + 1] % mod) % mod; if (!k) r = ((long long)r + suf[0]) % mod; return r; } int main() { scanf("%d", &n); for (i = 2; i <= n; i++) { scanf("%d", &x); V[x + 1].push_back(i); } for (i = 1; i <= n; i++) { scanf("%d", &x); A[i] = x; } memset(dp, -1, sizeof dp); cout << f(1, 1) << endl; }
### Prompt Generate a cpp solution to the following problem: Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other vertices are colored white. Consider a set consisting of k (0 ≀ k < n) edges of Appleman's tree. If Appleman deletes these edges from the tree, then it will split into (k + 1) parts. Note, that each part will be a tree with colored vertices. Now Appleman wonders, what is the number of sets splitting the tree in such a way that each resulting part will have exactly one black vertex? Find this number modulo 1000000007 (109 + 7). Input The first line contains an integer n (2 ≀ n ≀ 105) β€” the number of tree vertices. The second line contains the description of the tree: n - 1 integers p0, p1, ..., pn - 2 (0 ≀ pi ≀ i). Where pi means that there is an edge connecting vertex (i + 1) of the tree and vertex pi. Consider tree vertices are numbered from 0 to n - 1. The third line contains the description of the colors of the vertices: n integers x0, x1, ..., xn - 1 (xi is either 0 or 1). If xi is equal to 1, vertex i is colored black. Otherwise, vertex i is colored white. Output Output a single integer β€” the number of ways to split the tree modulo 1000000007 (109 + 7). Examples Input 3 0 0 0 1 1 Output 2 Input 6 0 1 1 0 4 1 1 0 0 1 0 Output 1 Input 10 0 1 2 1 4 4 4 0 8 0 0 0 1 0 1 1 0 0 1 Output 27 ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int N = 1e5 + 5; const int mod = 1e9 + 7; const int inf = 1e9 + 7; int n, i, x; int dp[N][2], A[N]; vector<int> V[N]; int f(int x, int k) { int &r = dp[x][k], i; if (r != -1) return r; if (A[x]) { r = 1; for (i = 0; i < V[x].size(); i++) r = (long long)r * f(V[x][i], 0) % mod; return r; } if (!V[x].size()) return r = !k; vector<int> pre, suf; pre.resize(V[x].size() + 5); suf.resize(V[x].size() + 5); pre[0] = suf[V[x].size()] = 1; for (i = 0; i < V[x].size(); i++) pre[i + 1] = (long long)pre[i] * f(V[x][i], 0) % mod; for (i = V[x].size() - 1; i >= 0; i--) suf[i] = (long long)suf[i + 1] * f(V[x][i], 0) % mod; r = 0; for (i = 0; i < V[x].size(); i++) r = (r + (long long)f(V[x][i], 1) * pre[i] % mod * suf[i + 1] % mod) % mod; if (!k) r = ((long long)r + suf[0]) % mod; return r; } int main() { scanf("%d", &n); for (i = 2; i <= n; i++) { scanf("%d", &x); V[x + 1].push_back(i); } for (i = 1; i <= n; i++) { scanf("%d", &x); A[i] = x; } memset(dp, -1, sizeof dp); cout << f(1, 1) << endl; } ```
#include <bits/stdc++.h> using namespace std; const long long MOD = 1000000007; const int MN = 100111; long long f[2][MN]; vector<int> ke[MN]; int n, col[MN]; void init() { for (int i = (1), _b = (n); i <= _b; i++) ke[i].clear(); memset(f, 0, sizeof f); } void dfs(int u) { if (ke[u].size() == 0) { if (col[u] == 0) { f[0][u] = 1; f[1][u] = 0; } else { f[0][u] = 0; f[1][u] = 1; } return; } vector<long long> f0; vector<long long> f1; vector<long long> left, right; int k = ke[u].size(); f0.resize(k); f1.resize(k); left.resize(k); right.resize(k); for (int i = 0, _a = (k); i < _a; i++) { int v = ke[u][i]; dfs(v); f0[i] = f[0][v]; f1[i] = f[1][v]; } for (int i = 0, _a = (k); i < _a; i++) { if (i == 0) { left[i] = (f0[i] + f1[i]) % MOD; } else { left[i] = (left[i - 1] * f0[i] + left[i - 1] * f1[i]) % MOD; } } for (int i = (k - 1), _b = (0); i >= _b; i--) { if (i == k - 1) { right[i] = (f0[i] + f1[i]) % MOD; } else { right[i] = (right[i + 1] * (f0[i] + f1[i])) % MOD; } } if (col[u] == 0) { f[0][u] = left[k - 1]; for (int i = 0, _a = (k); i < _a; i++) { f[1][u] = (f[1][u] + f1[i] * ((i > 0) ? left[i - 1] : 1) % MOD * ((i < k - 1) ? right[i + 1] : 1)) % MOD; } } else { f[0][u] = 0; f[1][u] = left[k - 1]; } } int main() { ios ::sync_with_stdio(false); while (cin >> n) { init(); for (int i = (2), _b = (n); i <= _b; i++) { int fi; cin >> fi; ++fi; ke[fi].push_back(i); } for (int i = (1), _b = (n); i <= _b; i++) cin >> col[i]; dfs(1); cout << f[1][1] << endl; } return 0; }
### Prompt Your task is to create a CPP solution to the following problem: Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other vertices are colored white. Consider a set consisting of k (0 ≀ k < n) edges of Appleman's tree. If Appleman deletes these edges from the tree, then it will split into (k + 1) parts. Note, that each part will be a tree with colored vertices. Now Appleman wonders, what is the number of sets splitting the tree in such a way that each resulting part will have exactly one black vertex? Find this number modulo 1000000007 (109 + 7). Input The first line contains an integer n (2 ≀ n ≀ 105) β€” the number of tree vertices. The second line contains the description of the tree: n - 1 integers p0, p1, ..., pn - 2 (0 ≀ pi ≀ i). Where pi means that there is an edge connecting vertex (i + 1) of the tree and vertex pi. Consider tree vertices are numbered from 0 to n - 1. The third line contains the description of the colors of the vertices: n integers x0, x1, ..., xn - 1 (xi is either 0 or 1). If xi is equal to 1, vertex i is colored black. Otherwise, vertex i is colored white. Output Output a single integer β€” the number of ways to split the tree modulo 1000000007 (109 + 7). Examples Input 3 0 0 0 1 1 Output 2 Input 6 0 1 1 0 4 1 1 0 0 1 0 Output 1 Input 10 0 1 2 1 4 4 4 0 8 0 0 0 1 0 1 1 0 0 1 Output 27 ### Response ```cpp #include <bits/stdc++.h> using namespace std; const long long MOD = 1000000007; const int MN = 100111; long long f[2][MN]; vector<int> ke[MN]; int n, col[MN]; void init() { for (int i = (1), _b = (n); i <= _b; i++) ke[i].clear(); memset(f, 0, sizeof f); } void dfs(int u) { if (ke[u].size() == 0) { if (col[u] == 0) { f[0][u] = 1; f[1][u] = 0; } else { f[0][u] = 0; f[1][u] = 1; } return; } vector<long long> f0; vector<long long> f1; vector<long long> left, right; int k = ke[u].size(); f0.resize(k); f1.resize(k); left.resize(k); right.resize(k); for (int i = 0, _a = (k); i < _a; i++) { int v = ke[u][i]; dfs(v); f0[i] = f[0][v]; f1[i] = f[1][v]; } for (int i = 0, _a = (k); i < _a; i++) { if (i == 0) { left[i] = (f0[i] + f1[i]) % MOD; } else { left[i] = (left[i - 1] * f0[i] + left[i - 1] * f1[i]) % MOD; } } for (int i = (k - 1), _b = (0); i >= _b; i--) { if (i == k - 1) { right[i] = (f0[i] + f1[i]) % MOD; } else { right[i] = (right[i + 1] * (f0[i] + f1[i])) % MOD; } } if (col[u] == 0) { f[0][u] = left[k - 1]; for (int i = 0, _a = (k); i < _a; i++) { f[1][u] = (f[1][u] + f1[i] * ((i > 0) ? left[i - 1] : 1) % MOD * ((i < k - 1) ? right[i + 1] : 1)) % MOD; } } else { f[0][u] = 0; f[1][u] = left[k - 1]; } } int main() { ios ::sync_with_stdio(false); while (cin >> n) { init(); for (int i = (2), _b = (n); i <= _b; i++) { int fi; cin >> fi; ++fi; ke[fi].push_back(i); } for (int i = (1), _b = (n); i <= _b; i++) cin >> col[i]; dfs(1); cout << f[1][1] << endl; } return 0; } ```
#include <bits/stdc++.h> using namespace std; long long int power(long long int a, long long int b, long long int m) { long long int ans = 1; while (b) { if (b & 1) ans = (ans * a) % m; b /= 2; a = (a * a) % m; } return ans; } long long int modInverse(long long int num) { num = power(num, 1000000007 - 2, 1000000007); return num; } long long int dp[300009][2]; long long int c[300009]; vector<long long int> v[300009]; void dfs(long long int num, long long int par) { long long int tot = 1; for (auto it : v[num]) { if (it == par) continue; dfs(it, num); tot *= (dp[it][0] + dp[it][1]); tot %= 1000000007; } if (c[num]) { dp[num][1] = tot; dp[num][0] = 0; } else { dp[num][0] = tot; long long int ans = 0; for (auto it : v[num]) { if (it == par) continue; ans += ((dp[it][1] * (modInverse(dp[it][0] + dp[it][1]))) % 1000000007 * tot) % 1000000007; ans %= 1000000007; } dp[num][1] = ans; } } int main() { ios_base::sync_with_stdio(false); cin.tie(NULL); cout.tie(NULL); long long int n; cin >> n; for (long long int i = 0; i < n - 1; i++) { long long int x; cin >> x; v[i + 1].push_back(x); v[x].push_back(i + 1); } for (long long int i = 0; i < n; i++) cin >> c[i]; dfs(0, -1); cout << dp[0][1] << endl; }
### Prompt Your challenge is to write a CPP solution to the following problem: Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other vertices are colored white. Consider a set consisting of k (0 ≀ k < n) edges of Appleman's tree. If Appleman deletes these edges from the tree, then it will split into (k + 1) parts. Note, that each part will be a tree with colored vertices. Now Appleman wonders, what is the number of sets splitting the tree in such a way that each resulting part will have exactly one black vertex? Find this number modulo 1000000007 (109 + 7). Input The first line contains an integer n (2 ≀ n ≀ 105) β€” the number of tree vertices. The second line contains the description of the tree: n - 1 integers p0, p1, ..., pn - 2 (0 ≀ pi ≀ i). Where pi means that there is an edge connecting vertex (i + 1) of the tree and vertex pi. Consider tree vertices are numbered from 0 to n - 1. The third line contains the description of the colors of the vertices: n integers x0, x1, ..., xn - 1 (xi is either 0 or 1). If xi is equal to 1, vertex i is colored black. Otherwise, vertex i is colored white. Output Output a single integer β€” the number of ways to split the tree modulo 1000000007 (109 + 7). Examples Input 3 0 0 0 1 1 Output 2 Input 6 0 1 1 0 4 1 1 0 0 1 0 Output 1 Input 10 0 1 2 1 4 4 4 0 8 0 0 0 1 0 1 1 0 0 1 Output 27 ### Response ```cpp #include <bits/stdc++.h> using namespace std; long long int power(long long int a, long long int b, long long int m) { long long int ans = 1; while (b) { if (b & 1) ans = (ans * a) % m; b /= 2; a = (a * a) % m; } return ans; } long long int modInverse(long long int num) { num = power(num, 1000000007 - 2, 1000000007); return num; } long long int dp[300009][2]; long long int c[300009]; vector<long long int> v[300009]; void dfs(long long int num, long long int par) { long long int tot = 1; for (auto it : v[num]) { if (it == par) continue; dfs(it, num); tot *= (dp[it][0] + dp[it][1]); tot %= 1000000007; } if (c[num]) { dp[num][1] = tot; dp[num][0] = 0; } else { dp[num][0] = tot; long long int ans = 0; for (auto it : v[num]) { if (it == par) continue; ans += ((dp[it][1] * (modInverse(dp[it][0] + dp[it][1]))) % 1000000007 * tot) % 1000000007; ans %= 1000000007; } dp[num][1] = ans; } } int main() { ios_base::sync_with_stdio(false); cin.tie(NULL); cout.tie(NULL); long long int n; cin >> n; for (long long int i = 0; i < n - 1; i++) { long long int x; cin >> x; v[i + 1].push_back(x); v[x].push_back(i + 1); } for (long long int i = 0; i < n; i++) cin >> c[i]; dfs(0, -1); cout << dp[0][1] << endl; } ```
#include <bits/stdc++.h> using namespace std; const long long MOD = 1e9 + 7; vector<int> colour; vector<vector<int>> g; vector<long long> dp0, dp1; void dfs(int v) { dp0[v] = 1; dp1[v] = 0; for (int u : g[v]) { dfs(u); dp1[v] = dp1[v] * dp0[u] % MOD; dp1[v] = (dp1[v] + dp0[v] * dp1[u]) % MOD; dp0[v] = (dp0[v] * dp0[u]) % MOD; } if (colour[v]) dp1[v] = dp0[v]; else dp0[v] = (dp1[v] + dp0[v]) % MOD; } int main() { int n; cin >> n; g.resize(n); for (int v = 1; v < n; v++) { int u; cin >> u; g[u].push_back(v); } colour.resize(n); for (int v = 0; v < n; v++) cin >> colour[v]; dp0.resize(n), dp1.resize(n); dfs(0); cout << dp1[0] << '\n'; return 0; }
### Prompt In Cpp, your task is to solve the following problem: Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other vertices are colored white. Consider a set consisting of k (0 ≀ k < n) edges of Appleman's tree. If Appleman deletes these edges from the tree, then it will split into (k + 1) parts. Note, that each part will be a tree with colored vertices. Now Appleman wonders, what is the number of sets splitting the tree in such a way that each resulting part will have exactly one black vertex? Find this number modulo 1000000007 (109 + 7). Input The first line contains an integer n (2 ≀ n ≀ 105) β€” the number of tree vertices. The second line contains the description of the tree: n - 1 integers p0, p1, ..., pn - 2 (0 ≀ pi ≀ i). Where pi means that there is an edge connecting vertex (i + 1) of the tree and vertex pi. Consider tree vertices are numbered from 0 to n - 1. The third line contains the description of the colors of the vertices: n integers x0, x1, ..., xn - 1 (xi is either 0 or 1). If xi is equal to 1, vertex i is colored black. Otherwise, vertex i is colored white. Output Output a single integer β€” the number of ways to split the tree modulo 1000000007 (109 + 7). Examples Input 3 0 0 0 1 1 Output 2 Input 6 0 1 1 0 4 1 1 0 0 1 0 Output 1 Input 10 0 1 2 1 4 4 4 0 8 0 0 0 1 0 1 1 0 0 1 Output 27 ### Response ```cpp #include <bits/stdc++.h> using namespace std; const long long MOD = 1e9 + 7; vector<int> colour; vector<vector<int>> g; vector<long long> dp0, dp1; void dfs(int v) { dp0[v] = 1; dp1[v] = 0; for (int u : g[v]) { dfs(u); dp1[v] = dp1[v] * dp0[u] % MOD; dp1[v] = (dp1[v] + dp0[v] * dp1[u]) % MOD; dp0[v] = (dp0[v] * dp0[u]) % MOD; } if (colour[v]) dp1[v] = dp0[v]; else dp0[v] = (dp1[v] + dp0[v]) % MOD; } int main() { int n; cin >> n; g.resize(n); for (int v = 1; v < n; v++) { int u; cin >> u; g[u].push_back(v); } colour.resize(n); for (int v = 0; v < n; v++) cin >> colour[v]; dp0.resize(n), dp1.resize(n); dfs(0); cout << dp1[0] << '\n'; return 0; } ```
#include <bits/stdc++.h> using namespace std; using ii = pair<int, int>; using ll = long long; constexpr int MAXN = 5 + 200000; constexpr int MOD = 7 + 1e9; int c[MAXN], nodes, cnt[MAXN]; vector<int> g[MAXN], newt[MAXN]; int add(int a, int b) { int ans = a + b; if (ans >= MOD) ans -= MOD; return ans; } int mul(int a, int b) { return (int)((1LL * a * b) % MOD); } void dfs(int u, int p) { if (p != -1) { g[u].erase(find(g[u].begin(), g[u].end(), p)); } for (int v : g[u]) { dfs(v, u); } } int n; int dfs2(int u) { cnt[u] = (u < n && c[u] == 1); for (int v : newt[u]) { cnt[u] += dfs2(v); } return cnt[u]; } void mbin(int u, vector<int>::iterator s, vector<int>::iterator e) { int dist = distance(s, e); if (dist <= 2) { while (s != e) { newt[u].push_back(*s); mbin(*s, g[*s].begin(), g[*s].end()); s++; } } else { newt[u].push_back(*s); mbin(*s, g[*s].begin(), g[*s].end()); newt[u].push_back(nodes++); mbin(newt[u].back(), 1 + s, e); } } int memo[MAXN][2]; int dp(int u, int f) { int& ans = memo[u][f]; if (ans != -1) return ans; int l = -1, r = -1; bool leaf = newt[u].empty(); if (!leaf) l = newt[u][0], r = newt[u][1]; assert(leaf || (int)newt[u].size() == 2); ans = 0; if (cnt[u] == 0 && f == 0) { return ans = 1; } if (u < n) { if (c[u] == 1) { if (f) { ans = dp(u, 0); } else { if (!leaf) { ans = mul(dp(l, cnt[l] >= 1), dp(r, cnt[r] >= 1)); } else { ans = 1; } } } else { if (f) { assert(!leaf); ans = dp(u, 0); int m = 1; if (cnt[l] >= 1) m = mul(m, dp(l, 1)); if (cnt[r] >= 1) m = mul(m, dp(r, 1)); ans = add(ans, m); } else { if (!leaf) { if (cnt[l] >= 1 && cnt[r] >= 1) { ans = mul(dp(l, 0), dp(r, 1)); ans = add(ans, mul(dp(l, 1), dp(r, 0))); } else if (cnt[l] >= 1) { ans = dp(l, 0); } else if (cnt[r] >= 1) { ans = dp(r, 0); } else { assert(false); } } } } } else { assert(!leaf); if (f) { if (cnt[l] >= 1 && cnt[r] >= 1) { ans = mul(dp(l, 1), dp(r, 1)); } else if (cnt[l] >= 1) { ans = dp(l, 1); } else if (cnt[r] >= 1) { ans = dp(r, 1); } else assert(false); } else { if (cnt[l] >= 1 && cnt[r] >= 1) { ans = mul(dp(l, 0), dp(r, 1)); ans = add(ans, mul(dp(l, 1), dp(r, 0))); } else if (cnt[l] >= 1) { ans = dp(l, 0); } else if (cnt[r] >= 1) { ans = dp(r, 0); } } } return ans; } int main() { ios::sync_with_stdio(false); cin.tie(nullptr); cout.tie(nullptr); cin >> n; for (int i = 1; i < n; ++i) { int v; cin >> v; g[i].push_back(v); g[v].push_back(i); } for (int i = 0; i < n; ++i) { cin >> c[i]; } dfs(0, -1); nodes = n; mbin(0, g[0].begin(), g[0].end()); dfs2(0); for (int i = 0; i < nodes; ++i) { if (!newt[i].empty()) { while ((int)newt[i].size() < 2) { newt[i].push_back(MAXN - 1); } } } memset(memo, -1, sizeof memo); cout << dp(0, 0) << '\n'; return 0; }
### Prompt Please provide a CPP coded solution to the problem described below: Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other vertices are colored white. Consider a set consisting of k (0 ≀ k < n) edges of Appleman's tree. If Appleman deletes these edges from the tree, then it will split into (k + 1) parts. Note, that each part will be a tree with colored vertices. Now Appleman wonders, what is the number of sets splitting the tree in such a way that each resulting part will have exactly one black vertex? Find this number modulo 1000000007 (109 + 7). Input The first line contains an integer n (2 ≀ n ≀ 105) β€” the number of tree vertices. The second line contains the description of the tree: n - 1 integers p0, p1, ..., pn - 2 (0 ≀ pi ≀ i). Where pi means that there is an edge connecting vertex (i + 1) of the tree and vertex pi. Consider tree vertices are numbered from 0 to n - 1. The third line contains the description of the colors of the vertices: n integers x0, x1, ..., xn - 1 (xi is either 0 or 1). If xi is equal to 1, vertex i is colored black. Otherwise, vertex i is colored white. Output Output a single integer β€” the number of ways to split the tree modulo 1000000007 (109 + 7). Examples Input 3 0 0 0 1 1 Output 2 Input 6 0 1 1 0 4 1 1 0 0 1 0 Output 1 Input 10 0 1 2 1 4 4 4 0 8 0 0 0 1 0 1 1 0 0 1 Output 27 ### Response ```cpp #include <bits/stdc++.h> using namespace std; using ii = pair<int, int>; using ll = long long; constexpr int MAXN = 5 + 200000; constexpr int MOD = 7 + 1e9; int c[MAXN], nodes, cnt[MAXN]; vector<int> g[MAXN], newt[MAXN]; int add(int a, int b) { int ans = a + b; if (ans >= MOD) ans -= MOD; return ans; } int mul(int a, int b) { return (int)((1LL * a * b) % MOD); } void dfs(int u, int p) { if (p != -1) { g[u].erase(find(g[u].begin(), g[u].end(), p)); } for (int v : g[u]) { dfs(v, u); } } int n; int dfs2(int u) { cnt[u] = (u < n && c[u] == 1); for (int v : newt[u]) { cnt[u] += dfs2(v); } return cnt[u]; } void mbin(int u, vector<int>::iterator s, vector<int>::iterator e) { int dist = distance(s, e); if (dist <= 2) { while (s != e) { newt[u].push_back(*s); mbin(*s, g[*s].begin(), g[*s].end()); s++; } } else { newt[u].push_back(*s); mbin(*s, g[*s].begin(), g[*s].end()); newt[u].push_back(nodes++); mbin(newt[u].back(), 1 + s, e); } } int memo[MAXN][2]; int dp(int u, int f) { int& ans = memo[u][f]; if (ans != -1) return ans; int l = -1, r = -1; bool leaf = newt[u].empty(); if (!leaf) l = newt[u][0], r = newt[u][1]; assert(leaf || (int)newt[u].size() == 2); ans = 0; if (cnt[u] == 0 && f == 0) { return ans = 1; } if (u < n) { if (c[u] == 1) { if (f) { ans = dp(u, 0); } else { if (!leaf) { ans = mul(dp(l, cnt[l] >= 1), dp(r, cnt[r] >= 1)); } else { ans = 1; } } } else { if (f) { assert(!leaf); ans = dp(u, 0); int m = 1; if (cnt[l] >= 1) m = mul(m, dp(l, 1)); if (cnt[r] >= 1) m = mul(m, dp(r, 1)); ans = add(ans, m); } else { if (!leaf) { if (cnt[l] >= 1 && cnt[r] >= 1) { ans = mul(dp(l, 0), dp(r, 1)); ans = add(ans, mul(dp(l, 1), dp(r, 0))); } else if (cnt[l] >= 1) { ans = dp(l, 0); } else if (cnt[r] >= 1) { ans = dp(r, 0); } else { assert(false); } } } } } else { assert(!leaf); if (f) { if (cnt[l] >= 1 && cnt[r] >= 1) { ans = mul(dp(l, 1), dp(r, 1)); } else if (cnt[l] >= 1) { ans = dp(l, 1); } else if (cnt[r] >= 1) { ans = dp(r, 1); } else assert(false); } else { if (cnt[l] >= 1 && cnt[r] >= 1) { ans = mul(dp(l, 0), dp(r, 1)); ans = add(ans, mul(dp(l, 1), dp(r, 0))); } else if (cnt[l] >= 1) { ans = dp(l, 0); } else if (cnt[r] >= 1) { ans = dp(r, 0); } } } return ans; } int main() { ios::sync_with_stdio(false); cin.tie(nullptr); cout.tie(nullptr); cin >> n; for (int i = 1; i < n; ++i) { int v; cin >> v; g[i].push_back(v); g[v].push_back(i); } for (int i = 0; i < n; ++i) { cin >> c[i]; } dfs(0, -1); nodes = n; mbin(0, g[0].begin(), g[0].end()); dfs2(0); for (int i = 0; i < nodes; ++i) { if (!newt[i].empty()) { while ((int)newt[i].size() < 2) { newt[i].push_back(MAXN - 1); } } } memset(memo, -1, sizeof memo); cout << dp(0, 0) << '\n'; return 0; } ```
#include <bits/stdc++.h> using namespace std; int mod = 1000000007; vector<int> g[100005]; int color[100005]; int dp[2][100005]; int mPow(int a, int x) { int ret = 1; while (x > 0) { if (x & 1) ret = 1LL * ret * a % mod; x >>= 1; a = 1LL * a * a % mod; } return ret; } int ml[100005], mr[100005]; int solve(int v, int has, int par = -1) { if (dp[has][v] != -1) return dp[has][v]; int ret = 1; for (int u : g[v]) { if (u == par) continue; solve(u, 0, v); solve(u, 1, v); } ml[0] = 1; for (int i = 0; i < g[v].size(); ++i) { int u = g[v][i]; if (u == par) { ml[i + 1] = ml[i]; } else { ml[i + 1] = 1LL * ml[i] * (dp[0][u] + dp[1][u]) % mod; } } mr[g[v].size() + 1] = 1; for (int i = (int)g[v].size() - 1; i >= 0; --i) { int u = g[v][i]; if (u == par) { mr[i + 1] = mr[i + 2]; } else { mr[i + 1] = 1LL * mr[i + 2] * (dp[0][u] + dp[1][u]) % mod; } } ret = mr[1]; if (has == 0) { if (color[v] == 1) return dp[has][v] = 0; return dp[has][v] = ret; } int ans = 0; if (color[v] == 1) { ans = ret; } else { for (int i = 0; i < g[v].size(); ++i) { int u = g[v][i]; if (u == par) continue; ans += 1LL * ml[i] * mr[i + 2] % mod * dp[1][u] % mod; if (ans >= mod) ans -= mod; } } return dp[has][v] = ans; } int main() { int n, p; scanf("%d", &n); for (int i = 1; i < n; ++i) { scanf("%d", &p); g[i].push_back(p); g[p].push_back(i); } for (int i = 0; i < n; ++i) { scanf("%d", &color[i]); } memset(dp, -1, sizeof(dp)); for (int i = 0; i < n; ++i) if (color[i] == 1) { printf("%d\n", solve(i, 1)); break; } return 0; }
### Prompt Construct a Cpp code solution to the problem outlined: Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other vertices are colored white. Consider a set consisting of k (0 ≀ k < n) edges of Appleman's tree. If Appleman deletes these edges from the tree, then it will split into (k + 1) parts. Note, that each part will be a tree with colored vertices. Now Appleman wonders, what is the number of sets splitting the tree in such a way that each resulting part will have exactly one black vertex? Find this number modulo 1000000007 (109 + 7). Input The first line contains an integer n (2 ≀ n ≀ 105) β€” the number of tree vertices. The second line contains the description of the tree: n - 1 integers p0, p1, ..., pn - 2 (0 ≀ pi ≀ i). Where pi means that there is an edge connecting vertex (i + 1) of the tree and vertex pi. Consider tree vertices are numbered from 0 to n - 1. The third line contains the description of the colors of the vertices: n integers x0, x1, ..., xn - 1 (xi is either 0 or 1). If xi is equal to 1, vertex i is colored black. Otherwise, vertex i is colored white. Output Output a single integer β€” the number of ways to split the tree modulo 1000000007 (109 + 7). Examples Input 3 0 0 0 1 1 Output 2 Input 6 0 1 1 0 4 1 1 0 0 1 0 Output 1 Input 10 0 1 2 1 4 4 4 0 8 0 0 0 1 0 1 1 0 0 1 Output 27 ### Response ```cpp #include <bits/stdc++.h> using namespace std; int mod = 1000000007; vector<int> g[100005]; int color[100005]; int dp[2][100005]; int mPow(int a, int x) { int ret = 1; while (x > 0) { if (x & 1) ret = 1LL * ret * a % mod; x >>= 1; a = 1LL * a * a % mod; } return ret; } int ml[100005], mr[100005]; int solve(int v, int has, int par = -1) { if (dp[has][v] != -1) return dp[has][v]; int ret = 1; for (int u : g[v]) { if (u == par) continue; solve(u, 0, v); solve(u, 1, v); } ml[0] = 1; for (int i = 0; i < g[v].size(); ++i) { int u = g[v][i]; if (u == par) { ml[i + 1] = ml[i]; } else { ml[i + 1] = 1LL * ml[i] * (dp[0][u] + dp[1][u]) % mod; } } mr[g[v].size() + 1] = 1; for (int i = (int)g[v].size() - 1; i >= 0; --i) { int u = g[v][i]; if (u == par) { mr[i + 1] = mr[i + 2]; } else { mr[i + 1] = 1LL * mr[i + 2] * (dp[0][u] + dp[1][u]) % mod; } } ret = mr[1]; if (has == 0) { if (color[v] == 1) return dp[has][v] = 0; return dp[has][v] = ret; } int ans = 0; if (color[v] == 1) { ans = ret; } else { for (int i = 0; i < g[v].size(); ++i) { int u = g[v][i]; if (u == par) continue; ans += 1LL * ml[i] * mr[i + 2] % mod * dp[1][u] % mod; if (ans >= mod) ans -= mod; } } return dp[has][v] = ans; } int main() { int n, p; scanf("%d", &n); for (int i = 1; i < n; ++i) { scanf("%d", &p); g[i].push_back(p); g[p].push_back(i); } for (int i = 0; i < n; ++i) { scanf("%d", &color[i]); } memset(dp, -1, sizeof(dp)); for (int i = 0; i < n; ++i) if (color[i] == 1) { printf("%d\n", solve(i, 1)); break; } return 0; } ```