output
stringlengths
52
181k
instruction
stringlengths
296
182k
#include <bits/stdc++.h> using namespace std; int const N = 11; int v[N][N]; int main() { int n; cin >> n; for (int i = 0; i < n; i++) v[0][i] = 1; for (int i = 1; i < n; i++) { v[i][0] = 1; for (int j = 1; j < n; j++) v[i][j] = v[i][j - 1] + v[i - 1][j]; } cout << v[n - 1][n - 1]; }
### Prompt Please formulate a Cpp solution to the following problem: An n Γ— n table a is defined as follows: * The first row and the first column contain ones, that is: ai, 1 = a1, i = 1 for all i = 1, 2, ..., n. * Each of the remaining numbers in the table is equal to the sum of the number above it and the number to the left of it. In other words, the remaining elements are defined by the formula ai, j = ai - 1, j + ai, j - 1. These conditions define all the values in the table. You are given a number n. You need to determine the maximum value in the n Γ— n table defined by the rules above. Input The only line of input contains a positive integer n (1 ≀ n ≀ 10) β€” the number of rows and columns of the table. Output Print a single line containing a positive integer m β€” the maximum value in the table. Examples Input 1 Output 1 Input 5 Output 70 Note In the second test the rows of the table look as follows: {1, 1, 1, 1, 1}, {1, 2, 3, 4, 5}, {1, 3, 6, 10, 15}, {1, 4, 10, 20, 35}, {1, 5, 15, 35, 70}. ### Response ```cpp #include <bits/stdc++.h> using namespace std; int const N = 11; int v[N][N]; int main() { int n; cin >> n; for (int i = 0; i < n; i++) v[0][i] = 1; for (int i = 1; i < n; i++) { v[i][0] = 1; for (int j = 1; j < n; j++) v[i][j] = v[i][j - 1] + v[i - 1][j]; } cout << v[n - 1][n - 1]; } ```
#include <bits/stdc++.h> using namespace std; long long int fact(long long int n) { if (n == 1) return 1; else return n * fact(n - 1); } int main() { ios_base::sync_with_stdio(false); cin.tie(NULL); long long int n, a, b; cin >> n; if (n == 1) { cout << 1 << "\n"; return 0; } a = fact(2 * n - 2); b = fact(n - 1); a /= (b * b); cout << a << "\n"; }
### Prompt Your task is to create a Cpp solution to the following problem: An n Γ— n table a is defined as follows: * The first row and the first column contain ones, that is: ai, 1 = a1, i = 1 for all i = 1, 2, ..., n. * Each of the remaining numbers in the table is equal to the sum of the number above it and the number to the left of it. In other words, the remaining elements are defined by the formula ai, j = ai - 1, j + ai, j - 1. These conditions define all the values in the table. You are given a number n. You need to determine the maximum value in the n Γ— n table defined by the rules above. Input The only line of input contains a positive integer n (1 ≀ n ≀ 10) β€” the number of rows and columns of the table. Output Print a single line containing a positive integer m β€” the maximum value in the table. Examples Input 1 Output 1 Input 5 Output 70 Note In the second test the rows of the table look as follows: {1, 1, 1, 1, 1}, {1, 2, 3, 4, 5}, {1, 3, 6, 10, 15}, {1, 4, 10, 20, 35}, {1, 5, 15, 35, 70}. ### Response ```cpp #include <bits/stdc++.h> using namespace std; long long int fact(long long int n) { if (n == 1) return 1; else return n * fact(n - 1); } int main() { ios_base::sync_with_stdio(false); cin.tie(NULL); long long int n, a, b; cin >> n; if (n == 1) { cout << 1 << "\n"; return 0; } a = fact(2 * n - 2); b = fact(n - 1); a /= (b * b); cout << a << "\n"; } ```
#include <bits/stdc++.h> using namespace std; int n, a[11][11]; int main() { cin >> n; for (int i = 1; i <= n; ++i) a[1][i] = a[i][1] = 1; for (int i = 2; i <= n; ++i) for (int j = 2; j <= n; ++j) a[i][j] = a[i - 1][j] + a[i][j - 1]; cout << a[n][n] << endl; }
### Prompt Your challenge is to write a CPP solution to the following problem: An n Γ— n table a is defined as follows: * The first row and the first column contain ones, that is: ai, 1 = a1, i = 1 for all i = 1, 2, ..., n. * Each of the remaining numbers in the table is equal to the sum of the number above it and the number to the left of it. In other words, the remaining elements are defined by the formula ai, j = ai - 1, j + ai, j - 1. These conditions define all the values in the table. You are given a number n. You need to determine the maximum value in the n Γ— n table defined by the rules above. Input The only line of input contains a positive integer n (1 ≀ n ≀ 10) β€” the number of rows and columns of the table. Output Print a single line containing a positive integer m β€” the maximum value in the table. Examples Input 1 Output 1 Input 5 Output 70 Note In the second test the rows of the table look as follows: {1, 1, 1, 1, 1}, {1, 2, 3, 4, 5}, {1, 3, 6, 10, 15}, {1, 4, 10, 20, 35}, {1, 5, 15, 35, 70}. ### Response ```cpp #include <bits/stdc++.h> using namespace std; int n, a[11][11]; int main() { cin >> n; for (int i = 1; i <= n; ++i) a[1][i] = a[i][1] = 1; for (int i = 2; i <= n; ++i) for (int j = 2; j <= n; ++j) a[i][j] = a[i - 1][j] + a[i][j - 1]; cout << a[n][n] << endl; } ```
#include <bits/stdc++.h> using namespace std; int a[12][12]; int main() { int n, m, i, j, sum; while (scanf("%d", &n) != EOF) { a[0][0] = 1; for (i = 0; i < n; ++i) a[i][0] = a[0][i] = 1; for (i = 1; i < n; ++i) for (j = 1; j < n; ++j) a[i][j] = a[i - 1][j] + a[i][j - 1]; printf("%d\n", a[n - 1][n - 1]); } return 0; }
### Prompt Develop a solution in Cpp to the problem described below: An n Γ— n table a is defined as follows: * The first row and the first column contain ones, that is: ai, 1 = a1, i = 1 for all i = 1, 2, ..., n. * Each of the remaining numbers in the table is equal to the sum of the number above it and the number to the left of it. In other words, the remaining elements are defined by the formula ai, j = ai - 1, j + ai, j - 1. These conditions define all the values in the table. You are given a number n. You need to determine the maximum value in the n Γ— n table defined by the rules above. Input The only line of input contains a positive integer n (1 ≀ n ≀ 10) β€” the number of rows and columns of the table. Output Print a single line containing a positive integer m β€” the maximum value in the table. Examples Input 1 Output 1 Input 5 Output 70 Note In the second test the rows of the table look as follows: {1, 1, 1, 1, 1}, {1, 2, 3, 4, 5}, {1, 3, 6, 10, 15}, {1, 4, 10, 20, 35}, {1, 5, 15, 35, 70}. ### Response ```cpp #include <bits/stdc++.h> using namespace std; int a[12][12]; int main() { int n, m, i, j, sum; while (scanf("%d", &n) != EOF) { a[0][0] = 1; for (i = 0; i < n; ++i) a[i][0] = a[0][i] = 1; for (i = 1; i < n; ++i) for (j = 1; j < n; ++j) a[i][j] = a[i - 1][j] + a[i][j - 1]; printf("%d\n", a[n - 1][n - 1]); } return 0; } ```
#include <bits/stdc++.h> using namespace std; const int kMaxN = 11; int n, a[kMaxN][kMaxN], ans; int main() { cin >> n; for (int i = 1; i <= n; i++) { for (int j = 1; j <= n; j++) { if (i == 1 || j == 1) { a[i][j] = 1; } else { a[i][j] = a[i - 1][j] + a[i][j - 1]; } } } for (int i = 1; i <= n; i++) { ans = max(ans, a[n][i]); } cout << ans; return 0; }
### Prompt Your challenge is to write a cpp solution to the following problem: An n Γ— n table a is defined as follows: * The first row and the first column contain ones, that is: ai, 1 = a1, i = 1 for all i = 1, 2, ..., n. * Each of the remaining numbers in the table is equal to the sum of the number above it and the number to the left of it. In other words, the remaining elements are defined by the formula ai, j = ai - 1, j + ai, j - 1. These conditions define all the values in the table. You are given a number n. You need to determine the maximum value in the n Γ— n table defined by the rules above. Input The only line of input contains a positive integer n (1 ≀ n ≀ 10) β€” the number of rows and columns of the table. Output Print a single line containing a positive integer m β€” the maximum value in the table. Examples Input 1 Output 1 Input 5 Output 70 Note In the second test the rows of the table look as follows: {1, 1, 1, 1, 1}, {1, 2, 3, 4, 5}, {1, 3, 6, 10, 15}, {1, 4, 10, 20, 35}, {1, 5, 15, 35, 70}. ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int kMaxN = 11; int n, a[kMaxN][kMaxN], ans; int main() { cin >> n; for (int i = 1; i <= n; i++) { for (int j = 1; j <= n; j++) { if (i == 1 || j == 1) { a[i][j] = 1; } else { a[i][j] = a[i - 1][j] + a[i][j - 1]; } } } for (int i = 1; i <= n; i++) { ans = max(ans, a[n][i]); } cout << ans; return 0; } ```
#include <bits/stdc++.h> using namespace std; int main() { int n, i, j, k, x, y; cin >> n; if (n == 1) { cout << 1; return 0; } else if (n == 2) { cout << 2; return 0; } else { int ar[n + 1][n + 1]; for (i = 1; i <= n; i++) { ar[i][1] = 1; ar[1][i] = 1; } x = 2; y = 2; while (1) { if (x == n && y == n) { ar[x][y] = ar[x - 1][y] + ar[x][y - 1]; cout << ar[x][y]; return 0; } ar[x][y] = ar[x - 1][y] + ar[x][y - 1]; for (i = x + 1; i <= n; i++) { ar[i][y] = ar[i - 1][y] + ar[i][y - 1]; ar[x][i] = ar[i][y]; } x++; y++; } } }
### Prompt Please formulate a cpp solution to the following problem: An n Γ— n table a is defined as follows: * The first row and the first column contain ones, that is: ai, 1 = a1, i = 1 for all i = 1, 2, ..., n. * Each of the remaining numbers in the table is equal to the sum of the number above it and the number to the left of it. In other words, the remaining elements are defined by the formula ai, j = ai - 1, j + ai, j - 1. These conditions define all the values in the table. You are given a number n. You need to determine the maximum value in the n Γ— n table defined by the rules above. Input The only line of input contains a positive integer n (1 ≀ n ≀ 10) β€” the number of rows and columns of the table. Output Print a single line containing a positive integer m β€” the maximum value in the table. Examples Input 1 Output 1 Input 5 Output 70 Note In the second test the rows of the table look as follows: {1, 1, 1, 1, 1}, {1, 2, 3, 4, 5}, {1, 3, 6, 10, 15}, {1, 4, 10, 20, 35}, {1, 5, 15, 35, 70}. ### Response ```cpp #include <bits/stdc++.h> using namespace std; int main() { int n, i, j, k, x, y; cin >> n; if (n == 1) { cout << 1; return 0; } else if (n == 2) { cout << 2; return 0; } else { int ar[n + 1][n + 1]; for (i = 1; i <= n; i++) { ar[i][1] = 1; ar[1][i] = 1; } x = 2; y = 2; while (1) { if (x == n && y == n) { ar[x][y] = ar[x - 1][y] + ar[x][y - 1]; cout << ar[x][y]; return 0; } ar[x][y] = ar[x - 1][y] + ar[x][y - 1]; for (i = x + 1; i <= n; i++) { ar[i][y] = ar[i - 1][y] + ar[i][y - 1]; ar[x][i] = ar[i][y]; } x++; y++; } } } ```
#include <bits/stdc++.h> using namespace std; bool qf = false; long long n, i, j, a[12][12]; int main() { scanf("%lld", &n); for (i = 1; i <= n; i++) a[1][i] = a[i][1] = 1; for (i = 2; i <= n; i++) { for (j = 2; j <= n; j++) a[i][j] = a[i - 1][j] + a[i][j - 1]; } printf("%lld", a[n][n]); return 0; }
### Prompt Please create a solution in Cpp to the following problem: An n Γ— n table a is defined as follows: * The first row and the first column contain ones, that is: ai, 1 = a1, i = 1 for all i = 1, 2, ..., n. * Each of the remaining numbers in the table is equal to the sum of the number above it and the number to the left of it. In other words, the remaining elements are defined by the formula ai, j = ai - 1, j + ai, j - 1. These conditions define all the values in the table. You are given a number n. You need to determine the maximum value in the n Γ— n table defined by the rules above. Input The only line of input contains a positive integer n (1 ≀ n ≀ 10) β€” the number of rows and columns of the table. Output Print a single line containing a positive integer m β€” the maximum value in the table. Examples Input 1 Output 1 Input 5 Output 70 Note In the second test the rows of the table look as follows: {1, 1, 1, 1, 1}, {1, 2, 3, 4, 5}, {1, 3, 6, 10, 15}, {1, 4, 10, 20, 35}, {1, 5, 15, 35, 70}. ### Response ```cpp #include <bits/stdc++.h> using namespace std; bool qf = false; long long n, i, j, a[12][12]; int main() { scanf("%lld", &n); for (i = 1; i <= n; i++) a[1][i] = a[i][1] = 1; for (i = 2; i <= n; i++) { for (j = 2; j <= n; j++) a[i][j] = a[i - 1][j] + a[i][j - 1]; } printf("%lld", a[n][n]); return 0; } ```
#include <bits/stdc++.h> using namespace std; long long fac(int n) { if (n == 0) return 1; return n * fac(n - 1); } int main() { int n; cin >> n; n = (n - 1) * 2; cout << fac(n) / (fac(n / 2) * fac(n / 2)); }
### Prompt Your challenge is to write a CPP solution to the following problem: An n Γ— n table a is defined as follows: * The first row and the first column contain ones, that is: ai, 1 = a1, i = 1 for all i = 1, 2, ..., n. * Each of the remaining numbers in the table is equal to the sum of the number above it and the number to the left of it. In other words, the remaining elements are defined by the formula ai, j = ai - 1, j + ai, j - 1. These conditions define all the values in the table. You are given a number n. You need to determine the maximum value in the n Γ— n table defined by the rules above. Input The only line of input contains a positive integer n (1 ≀ n ≀ 10) β€” the number of rows and columns of the table. Output Print a single line containing a positive integer m β€” the maximum value in the table. Examples Input 1 Output 1 Input 5 Output 70 Note In the second test the rows of the table look as follows: {1, 1, 1, 1, 1}, {1, 2, 3, 4, 5}, {1, 3, 6, 10, 15}, {1, 4, 10, 20, 35}, {1, 5, 15, 35, 70}. ### Response ```cpp #include <bits/stdc++.h> using namespace std; long long fac(int n) { if (n == 0) return 1; return n * fac(n - 1); } int main() { int n; cin >> n; n = (n - 1) * 2; cout << fac(n) / (fac(n / 2) * fac(n / 2)); } ```
#include <bits/stdc++.h> using namespace std; int main() { int map[12][12]; int n, m, i, j; for (i = 0; i < 12; i++) map[0][i] = 1; for (i = 0; i < 12; i++) map[i][0] = 1; for (i = 1; i < 12; i++) { for (j = 1; j < 12; j++) { map[i][j] = map[i - 1][j] + map[i][j - 1]; } } scanf("%d", &n); printf("%d\n", map[n - 1][n - 1]); }
### Prompt Construct a Cpp code solution to the problem outlined: An n Γ— n table a is defined as follows: * The first row and the first column contain ones, that is: ai, 1 = a1, i = 1 for all i = 1, 2, ..., n. * Each of the remaining numbers in the table is equal to the sum of the number above it and the number to the left of it. In other words, the remaining elements are defined by the formula ai, j = ai - 1, j + ai, j - 1. These conditions define all the values in the table. You are given a number n. You need to determine the maximum value in the n Γ— n table defined by the rules above. Input The only line of input contains a positive integer n (1 ≀ n ≀ 10) β€” the number of rows and columns of the table. Output Print a single line containing a positive integer m β€” the maximum value in the table. Examples Input 1 Output 1 Input 5 Output 70 Note In the second test the rows of the table look as follows: {1, 1, 1, 1, 1}, {1, 2, 3, 4, 5}, {1, 3, 6, 10, 15}, {1, 4, 10, 20, 35}, {1, 5, 15, 35, 70}. ### Response ```cpp #include <bits/stdc++.h> using namespace std; int main() { int map[12][12]; int n, m, i, j; for (i = 0; i < 12; i++) map[0][i] = 1; for (i = 0; i < 12; i++) map[i][0] = 1; for (i = 1; i < 12; i++) { for (j = 1; j < 12; j++) { map[i][j] = map[i - 1][j] + map[i][j - 1]; } } scanf("%d", &n); printf("%d\n", map[n - 1][n - 1]); } ```
#include <bits/stdc++.h> using namespace std; int a[12][12]; int main() { int n, i, j; while (scanf("%d", &n) != EOF) { int maxi = 1; for (i = 1; i <= n; i++) a[i][1] = a[1][i] = 1; for (i = 2; i <= n; i++) { for (j = 2; j <= n; j++) { a[i][j] = a[i - 1][j] + a[i][j - 1]; maxi = max(maxi, a[i][j]); } } cout << maxi << endl; } return 0; }
### Prompt Your task is to create a Cpp solution to the following problem: An n Γ— n table a is defined as follows: * The first row and the first column contain ones, that is: ai, 1 = a1, i = 1 for all i = 1, 2, ..., n. * Each of the remaining numbers in the table is equal to the sum of the number above it and the number to the left of it. In other words, the remaining elements are defined by the formula ai, j = ai - 1, j + ai, j - 1. These conditions define all the values in the table. You are given a number n. You need to determine the maximum value in the n Γ— n table defined by the rules above. Input The only line of input contains a positive integer n (1 ≀ n ≀ 10) β€” the number of rows and columns of the table. Output Print a single line containing a positive integer m β€” the maximum value in the table. Examples Input 1 Output 1 Input 5 Output 70 Note In the second test the rows of the table look as follows: {1, 1, 1, 1, 1}, {1, 2, 3, 4, 5}, {1, 3, 6, 10, 15}, {1, 4, 10, 20, 35}, {1, 5, 15, 35, 70}. ### Response ```cpp #include <bits/stdc++.h> using namespace std; int a[12][12]; int main() { int n, i, j; while (scanf("%d", &n) != EOF) { int maxi = 1; for (i = 1; i <= n; i++) a[i][1] = a[1][i] = 1; for (i = 2; i <= n; i++) { for (j = 2; j <= n; j++) { a[i][j] = a[i - 1][j] + a[i][j - 1]; maxi = max(maxi, a[i][j]); } } cout << maxi << endl; } return 0; } ```
#include <bits/stdc++.h> using namespace std; int main() { int n, arr[10][10]; cin >> n; for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { if (i == 0) { arr[i][j] = 1; } else if (j == 0) { arr[i][j] = 1; } else { arr[i][j] = arr[i - 1][j] + arr[i][j - 1]; } } } cout << arr[n - 1][n - 1]; return 0; }
### Prompt Generate a cpp solution to the following problem: An n Γ— n table a is defined as follows: * The first row and the first column contain ones, that is: ai, 1 = a1, i = 1 for all i = 1, 2, ..., n. * Each of the remaining numbers in the table is equal to the sum of the number above it and the number to the left of it. In other words, the remaining elements are defined by the formula ai, j = ai - 1, j + ai, j - 1. These conditions define all the values in the table. You are given a number n. You need to determine the maximum value in the n Γ— n table defined by the rules above. Input The only line of input contains a positive integer n (1 ≀ n ≀ 10) β€” the number of rows and columns of the table. Output Print a single line containing a positive integer m β€” the maximum value in the table. Examples Input 1 Output 1 Input 5 Output 70 Note In the second test the rows of the table look as follows: {1, 1, 1, 1, 1}, {1, 2, 3, 4, 5}, {1, 3, 6, 10, 15}, {1, 4, 10, 20, 35}, {1, 5, 15, 35, 70}. ### Response ```cpp #include <bits/stdc++.h> using namespace std; int main() { int n, arr[10][10]; cin >> n; for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { if (i == 0) { arr[i][j] = 1; } else if (j == 0) { arr[i][j] = 1; } else { arr[i][j] = arr[i - 1][j] + arr[i][j - 1]; } } } cout << arr[n - 1][n - 1]; return 0; } ```
#include <bits/stdc++.h> using namespace std; vector<vector<int> > board; int main() { int n; cin >> n; if (n == 1) cout << "1"; if (n == 2) cout << "2"; if (n == 3) cout << "6"; if (n == 4) cout << "20"; if (n == 5) cout << "70"; if (n == 6) cout << "252"; if (n == 7) cout << "924"; if (n == 8) cout << "3432"; if (n == 9) cout << "12870"; if (n == 10) cout << "48620"; }
### Prompt Your challenge is to write a cpp solution to the following problem: An n Γ— n table a is defined as follows: * The first row and the first column contain ones, that is: ai, 1 = a1, i = 1 for all i = 1, 2, ..., n. * Each of the remaining numbers in the table is equal to the sum of the number above it and the number to the left of it. In other words, the remaining elements are defined by the formula ai, j = ai - 1, j + ai, j - 1. These conditions define all the values in the table. You are given a number n. You need to determine the maximum value in the n Γ— n table defined by the rules above. Input The only line of input contains a positive integer n (1 ≀ n ≀ 10) β€” the number of rows and columns of the table. Output Print a single line containing a positive integer m β€” the maximum value in the table. Examples Input 1 Output 1 Input 5 Output 70 Note In the second test the rows of the table look as follows: {1, 1, 1, 1, 1}, {1, 2, 3, 4, 5}, {1, 3, 6, 10, 15}, {1, 4, 10, 20, 35}, {1, 5, 15, 35, 70}. ### Response ```cpp #include <bits/stdc++.h> using namespace std; vector<vector<int> > board; int main() { int n; cin >> n; if (n == 1) cout << "1"; if (n == 2) cout << "2"; if (n == 3) cout << "6"; if (n == 4) cout << "20"; if (n == 5) cout << "70"; if (n == 6) cout << "252"; if (n == 7) cout << "924"; if (n == 8) cout << "3432"; if (n == 9) cout << "12870"; if (n == 10) cout << "48620"; } ```
#include <bits/stdc++.h> using namespace std; long long nCr(long long n, long long r) { long long sum = 1, mn = min(r, (n - r)); for (long long i = n, j = 1; j <= mn; i--, j++) sum = (sum * i) / j; return sum; } int main() { long long n; cin >> n; long long ans = nCr(2 * (n - 1), (n - 1)); cout << ans << "\n"; return 0; }
### Prompt Construct a cpp code solution to the problem outlined: An n Γ— n table a is defined as follows: * The first row and the first column contain ones, that is: ai, 1 = a1, i = 1 for all i = 1, 2, ..., n. * Each of the remaining numbers in the table is equal to the sum of the number above it and the number to the left of it. In other words, the remaining elements are defined by the formula ai, j = ai - 1, j + ai, j - 1. These conditions define all the values in the table. You are given a number n. You need to determine the maximum value in the n Γ— n table defined by the rules above. Input The only line of input contains a positive integer n (1 ≀ n ≀ 10) β€” the number of rows and columns of the table. Output Print a single line containing a positive integer m β€” the maximum value in the table. Examples Input 1 Output 1 Input 5 Output 70 Note In the second test the rows of the table look as follows: {1, 1, 1, 1, 1}, {1, 2, 3, 4, 5}, {1, 3, 6, 10, 15}, {1, 4, 10, 20, 35}, {1, 5, 15, 35, 70}. ### Response ```cpp #include <bits/stdc++.h> using namespace std; long long nCr(long long n, long long r) { long long sum = 1, mn = min(r, (n - r)); for (long long i = n, j = 1; j <= mn; i--, j++) sum = (sum * i) / j; return sum; } int main() { long long n; cin >> n; long long ans = nCr(2 * (n - 1), (n - 1)); cout << ans << "\n"; return 0; } ```
#include <bits/stdc++.h> using namespace std; int main() { int a[11][11] = {0}, n; cin >> n; for (int i = 0; i < n; i++) { a[0][i] = 1; a[i][0] = 1; } for (int i = 1; i < n; i++) { for (int j = 1; j < n; j++) { a[i][j] = a[i - 1][j] + a[i][j - 1]; } } cout << a[n - 1][n - 1] << "\n"; return 0; }
### Prompt Please provide a CPP coded solution to the problem described below: An n Γ— n table a is defined as follows: * The first row and the first column contain ones, that is: ai, 1 = a1, i = 1 for all i = 1, 2, ..., n. * Each of the remaining numbers in the table is equal to the sum of the number above it and the number to the left of it. In other words, the remaining elements are defined by the formula ai, j = ai - 1, j + ai, j - 1. These conditions define all the values in the table. You are given a number n. You need to determine the maximum value in the n Γ— n table defined by the rules above. Input The only line of input contains a positive integer n (1 ≀ n ≀ 10) β€” the number of rows and columns of the table. Output Print a single line containing a positive integer m β€” the maximum value in the table. Examples Input 1 Output 1 Input 5 Output 70 Note In the second test the rows of the table look as follows: {1, 1, 1, 1, 1}, {1, 2, 3, 4, 5}, {1, 3, 6, 10, 15}, {1, 4, 10, 20, 35}, {1, 5, 15, 35, 70}. ### Response ```cpp #include <bits/stdc++.h> using namespace std; int main() { int a[11][11] = {0}, n; cin >> n; for (int i = 0; i < n; i++) { a[0][i] = 1; a[i][0] = 1; } for (int i = 1; i < n; i++) { for (int j = 1; j < n; j++) { a[i][j] = a[i - 1][j] + a[i][j - 1]; } } cout << a[n - 1][n - 1] << "\n"; return 0; } ```
#include <bits/stdc++.h> using namespace std; int main() { int i, j, n; int a[11][11]; cin >> n; if (n == 1) { cout << "1" << endl; return 0; } for (i = 0; i < n; i++) for (j = 0; j < n; j++) { if (i == 0 || j == 0) a[i][j] = 1; else { a[i][j] = a[i][j - 1] + a[i - 1][j]; } } cout << a[n - 1][n - 1] << endl; return 0; }
### Prompt Construct a Cpp code solution to the problem outlined: An n Γ— n table a is defined as follows: * The first row and the first column contain ones, that is: ai, 1 = a1, i = 1 for all i = 1, 2, ..., n. * Each of the remaining numbers in the table is equal to the sum of the number above it and the number to the left of it. In other words, the remaining elements are defined by the formula ai, j = ai - 1, j + ai, j - 1. These conditions define all the values in the table. You are given a number n. You need to determine the maximum value in the n Γ— n table defined by the rules above. Input The only line of input contains a positive integer n (1 ≀ n ≀ 10) β€” the number of rows and columns of the table. Output Print a single line containing a positive integer m β€” the maximum value in the table. Examples Input 1 Output 1 Input 5 Output 70 Note In the second test the rows of the table look as follows: {1, 1, 1, 1, 1}, {1, 2, 3, 4, 5}, {1, 3, 6, 10, 15}, {1, 4, 10, 20, 35}, {1, 5, 15, 35, 70}. ### Response ```cpp #include <bits/stdc++.h> using namespace std; int main() { int i, j, n; int a[11][11]; cin >> n; if (n == 1) { cout << "1" << endl; return 0; } for (i = 0; i < n; i++) for (j = 0; j < n; j++) { if (i == 0 || j == 0) a[i][j] = 1; else { a[i][j] = a[i][j - 1] + a[i - 1][j]; } } cout << a[n - 1][n - 1] << endl; return 0; } ```
#include <bits/stdc++.h> using namespace std; int main() { int n, sum = 0; scanf("%d", &n); if (n == 1) { puts("1"); return 0; } if (n == 2) { puts("2"); return 0; } if (n == 3) { puts("6"); return 0; } if (n == 4) { puts("20"); return 0; } if (n == 5) { puts("70"); return 0; } if (n == 6) { puts("252"); return 0; } if (n == 7) { puts("924"); return 0; } if (n == 8) { puts("3432"); return 0; } if (n == 9) { puts("12870"); return 0; } if (n == 10) { puts("48620"); return 0; } return 0; }
### Prompt Generate a cpp solution to the following problem: An n Γ— n table a is defined as follows: * The first row and the first column contain ones, that is: ai, 1 = a1, i = 1 for all i = 1, 2, ..., n. * Each of the remaining numbers in the table is equal to the sum of the number above it and the number to the left of it. In other words, the remaining elements are defined by the formula ai, j = ai - 1, j + ai, j - 1. These conditions define all the values in the table. You are given a number n. You need to determine the maximum value in the n Γ— n table defined by the rules above. Input The only line of input contains a positive integer n (1 ≀ n ≀ 10) β€” the number of rows and columns of the table. Output Print a single line containing a positive integer m β€” the maximum value in the table. Examples Input 1 Output 1 Input 5 Output 70 Note In the second test the rows of the table look as follows: {1, 1, 1, 1, 1}, {1, 2, 3, 4, 5}, {1, 3, 6, 10, 15}, {1, 4, 10, 20, 35}, {1, 5, 15, 35, 70}. ### Response ```cpp #include <bits/stdc++.h> using namespace std; int main() { int n, sum = 0; scanf("%d", &n); if (n == 1) { puts("1"); return 0; } if (n == 2) { puts("2"); return 0; } if (n == 3) { puts("6"); return 0; } if (n == 4) { puts("20"); return 0; } if (n == 5) { puts("70"); return 0; } if (n == 6) { puts("252"); return 0; } if (n == 7) { puts("924"); return 0; } if (n == 8) { puts("3432"); return 0; } if (n == 9) { puts("12870"); return 0; } if (n == 10) { puts("48620"); return 0; } return 0; } ```
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; int a[n][n]; for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { if (j == 0 || i == 0) { a[i][j] = 1; } else { a[i][j] = a[i - 1][j] + a[i][j - 1]; } } } cout << a[n - 1][n - 1] << endl; }
### Prompt Your task is to create a Cpp solution to the following problem: An n Γ— n table a is defined as follows: * The first row and the first column contain ones, that is: ai, 1 = a1, i = 1 for all i = 1, 2, ..., n. * Each of the remaining numbers in the table is equal to the sum of the number above it and the number to the left of it. In other words, the remaining elements are defined by the formula ai, j = ai - 1, j + ai, j - 1. These conditions define all the values in the table. You are given a number n. You need to determine the maximum value in the n Γ— n table defined by the rules above. Input The only line of input contains a positive integer n (1 ≀ n ≀ 10) β€” the number of rows and columns of the table. Output Print a single line containing a positive integer m β€” the maximum value in the table. Examples Input 1 Output 1 Input 5 Output 70 Note In the second test the rows of the table look as follows: {1, 1, 1, 1, 1}, {1, 2, 3, 4, 5}, {1, 3, 6, 10, 15}, {1, 4, 10, 20, 35}, {1, 5, 15, 35, 70}. ### Response ```cpp #include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; int a[n][n]; for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { if (j == 0 || i == 0) { a[i][j] = 1; } else { a[i][j] = a[i - 1][j] + a[i][j - 1]; } } } cout << a[n - 1][n - 1] << endl; } ```
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; switch (n) { case 1: cout << 1; break; case 2: cout << 2; break; case 3: cout << 6; break; case 4: cout << 20; break; case 5: cout << 70; break; case 6: cout << 252; break; case 7: cout << 924; break; case 8: cout << 3432; break; case 9: cout << 12870; break; case 10: cout << 48620; break; } return 0; }
### Prompt Develop a solution in cpp to the problem described below: An n Γ— n table a is defined as follows: * The first row and the first column contain ones, that is: ai, 1 = a1, i = 1 for all i = 1, 2, ..., n. * Each of the remaining numbers in the table is equal to the sum of the number above it and the number to the left of it. In other words, the remaining elements are defined by the formula ai, j = ai - 1, j + ai, j - 1. These conditions define all the values in the table. You are given a number n. You need to determine the maximum value in the n Γ— n table defined by the rules above. Input The only line of input contains a positive integer n (1 ≀ n ≀ 10) β€” the number of rows and columns of the table. Output Print a single line containing a positive integer m β€” the maximum value in the table. Examples Input 1 Output 1 Input 5 Output 70 Note In the second test the rows of the table look as follows: {1, 1, 1, 1, 1}, {1, 2, 3, 4, 5}, {1, 3, 6, 10, 15}, {1, 4, 10, 20, 35}, {1, 5, 15, 35, 70}. ### Response ```cpp #include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; switch (n) { case 1: cout << 1; break; case 2: cout << 2; break; case 3: cout << 6; break; case 4: cout << 20; break; case 5: cout << 70; break; case 6: cout << 252; break; case 7: cout << 924; break; case 8: cout << 3432; break; case 9: cout << 12870; break; case 10: cout << 48620; break; } return 0; } ```
#include <bits/stdc++.h> using namespace std; int main() { long long int i, j, t, k, c, cnt, n, d, d1, cnt1, l, sum; cin >> t; long long int a[t][t]; for (i = 1; i < t; i++) a[0][i] = 1; for (i = 0; i < t; i++) a[i][0] = 1; for (i = 1; i < t; i++) { for (j = 1; j < t; j++) { a[i][j] = a[i][j - 1] + a[i - 1][j]; } } cout << a[t - 1][t - 1] << endl; return 0; }
### Prompt Please formulate a cpp solution to the following problem: An n Γ— n table a is defined as follows: * The first row and the first column contain ones, that is: ai, 1 = a1, i = 1 for all i = 1, 2, ..., n. * Each of the remaining numbers in the table is equal to the sum of the number above it and the number to the left of it. In other words, the remaining elements are defined by the formula ai, j = ai - 1, j + ai, j - 1. These conditions define all the values in the table. You are given a number n. You need to determine the maximum value in the n Γ— n table defined by the rules above. Input The only line of input contains a positive integer n (1 ≀ n ≀ 10) β€” the number of rows and columns of the table. Output Print a single line containing a positive integer m β€” the maximum value in the table. Examples Input 1 Output 1 Input 5 Output 70 Note In the second test the rows of the table look as follows: {1, 1, 1, 1, 1}, {1, 2, 3, 4, 5}, {1, 3, 6, 10, 15}, {1, 4, 10, 20, 35}, {1, 5, 15, 35, 70}. ### Response ```cpp #include <bits/stdc++.h> using namespace std; int main() { long long int i, j, t, k, c, cnt, n, d, d1, cnt1, l, sum; cin >> t; long long int a[t][t]; for (i = 1; i < t; i++) a[0][i] = 1; for (i = 0; i < t; i++) a[i][0] = 1; for (i = 1; i < t; i++) { for (j = 1; j < t; j++) { a[i][j] = a[i][j - 1] + a[i - 1][j]; } } cout << a[t - 1][t - 1] << endl; return 0; } ```
#include <bits/stdc++.h> using namespace std; int main() { int a[10][10]; for (int i = 0; i < 10; ++i) for (int j = 0; j < 10; ++j) { if (i == 0 || j == 0) a[i][j] = 1; else a[i][j] = a[i - 1][j] + a[i][j - 1]; } int n; cin >> n; cout << a[n - 1][n - 1] << endl; return 0; }
### Prompt Please provide a Cpp coded solution to the problem described below: An n Γ— n table a is defined as follows: * The first row and the first column contain ones, that is: ai, 1 = a1, i = 1 for all i = 1, 2, ..., n. * Each of the remaining numbers in the table is equal to the sum of the number above it and the number to the left of it. In other words, the remaining elements are defined by the formula ai, j = ai - 1, j + ai, j - 1. These conditions define all the values in the table. You are given a number n. You need to determine the maximum value in the n Γ— n table defined by the rules above. Input The only line of input contains a positive integer n (1 ≀ n ≀ 10) β€” the number of rows and columns of the table. Output Print a single line containing a positive integer m β€” the maximum value in the table. Examples Input 1 Output 1 Input 5 Output 70 Note In the second test the rows of the table look as follows: {1, 1, 1, 1, 1}, {1, 2, 3, 4, 5}, {1, 3, 6, 10, 15}, {1, 4, 10, 20, 35}, {1, 5, 15, 35, 70}. ### Response ```cpp #include <bits/stdc++.h> using namespace std; int main() { int a[10][10]; for (int i = 0; i < 10; ++i) for (int j = 0; j < 10; ++j) { if (i == 0 || j == 0) a[i][j] = 1; else a[i][j] = a[i - 1][j] + a[i][j - 1]; } int n; cin >> n; cout << a[n - 1][n - 1] << endl; return 0; } ```
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; int ara[n][n]; for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { if (i == 0 || j == 0) ara[i][j] = 1; else ara[i][j] = ara[i - 1][j] + ara[i][j - 1]; } } cout << ara[n - 1][n - 1] << endl; return 0; }
### Prompt Your challenge is to write a cpp solution to the following problem: An n Γ— n table a is defined as follows: * The first row and the first column contain ones, that is: ai, 1 = a1, i = 1 for all i = 1, 2, ..., n. * Each of the remaining numbers in the table is equal to the sum of the number above it and the number to the left of it. In other words, the remaining elements are defined by the formula ai, j = ai - 1, j + ai, j - 1. These conditions define all the values in the table. You are given a number n. You need to determine the maximum value in the n Γ— n table defined by the rules above. Input The only line of input contains a positive integer n (1 ≀ n ≀ 10) β€” the number of rows and columns of the table. Output Print a single line containing a positive integer m β€” the maximum value in the table. Examples Input 1 Output 1 Input 5 Output 70 Note In the second test the rows of the table look as follows: {1, 1, 1, 1, 1}, {1, 2, 3, 4, 5}, {1, 3, 6, 10, 15}, {1, 4, 10, 20, 35}, {1, 5, 15, 35, 70}. ### Response ```cpp #include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; int ara[n][n]; for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { if (i == 0 || j == 0) ara[i][j] = 1; else ara[i][j] = ara[i - 1][j] + ara[i][j - 1]; } } cout << ara[n - 1][n - 1] << endl; return 0; } ```
#include <bits/stdc++.h> using namespace std; void maxi() { long long int n; cin >> n; long long int a[n][n]; for (long long int i = 0; i < n; i++) { for (long long int j = 0; j < n; j++) { if (i == 0 || j == 0) { a[i][j] = 1; } else { a[i][j] = a[i - 1][j] + a[i][j - 1]; } } } cout << a[n - 1][n - 1] << endl; } int main() { maxi(); return 0; }
### Prompt Your challenge is to write a CPP solution to the following problem: An n Γ— n table a is defined as follows: * The first row and the first column contain ones, that is: ai, 1 = a1, i = 1 for all i = 1, 2, ..., n. * Each of the remaining numbers in the table is equal to the sum of the number above it and the number to the left of it. In other words, the remaining elements are defined by the formula ai, j = ai - 1, j + ai, j - 1. These conditions define all the values in the table. You are given a number n. You need to determine the maximum value in the n Γ— n table defined by the rules above. Input The only line of input contains a positive integer n (1 ≀ n ≀ 10) β€” the number of rows and columns of the table. Output Print a single line containing a positive integer m β€” the maximum value in the table. Examples Input 1 Output 1 Input 5 Output 70 Note In the second test the rows of the table look as follows: {1, 1, 1, 1, 1}, {1, 2, 3, 4, 5}, {1, 3, 6, 10, 15}, {1, 4, 10, 20, 35}, {1, 5, 15, 35, 70}. ### Response ```cpp #include <bits/stdc++.h> using namespace std; void maxi() { long long int n; cin >> n; long long int a[n][n]; for (long long int i = 0; i < n; i++) { for (long long int j = 0; j < n; j++) { if (i == 0 || j == 0) { a[i][j] = 1; } else { a[i][j] = a[i - 1][j] + a[i][j - 1]; } } } cout << a[n - 1][n - 1] << endl; } int main() { maxi(); return 0; } ```
#include <bits/stdc++.h> using namespace std; int a[1000001]; int main() { int x; cin >> x; if (x == 1) { cout << "1"; } if (x == 5) { cout << "70"; } if (x == 2) { cout << "2"; } if (x == 3) { cout << "6"; } if (x == 4) { cout << "20"; } if (x == 6) { cout << "252"; } if (x == 7) { cout << "924"; } if (x == 8) { cout << "3432"; } if (x == 9) { cout << "12870"; } if (x == 10) { cout << "48620"; } return 0; }
### Prompt Create a solution in Cpp for the following problem: An n Γ— n table a is defined as follows: * The first row and the first column contain ones, that is: ai, 1 = a1, i = 1 for all i = 1, 2, ..., n. * Each of the remaining numbers in the table is equal to the sum of the number above it and the number to the left of it. In other words, the remaining elements are defined by the formula ai, j = ai - 1, j + ai, j - 1. These conditions define all the values in the table. You are given a number n. You need to determine the maximum value in the n Γ— n table defined by the rules above. Input The only line of input contains a positive integer n (1 ≀ n ≀ 10) β€” the number of rows and columns of the table. Output Print a single line containing a positive integer m β€” the maximum value in the table. Examples Input 1 Output 1 Input 5 Output 70 Note In the second test the rows of the table look as follows: {1, 1, 1, 1, 1}, {1, 2, 3, 4, 5}, {1, 3, 6, 10, 15}, {1, 4, 10, 20, 35}, {1, 5, 15, 35, 70}. ### Response ```cpp #include <bits/stdc++.h> using namespace std; int a[1000001]; int main() { int x; cin >> x; if (x == 1) { cout << "1"; } if (x == 5) { cout << "70"; } if (x == 2) { cout << "2"; } if (x == 3) { cout << "6"; } if (x == 4) { cout << "20"; } if (x == 6) { cout << "252"; } if (x == 7) { cout << "924"; } if (x == 8) { cout << "3432"; } if (x == 9) { cout << "12870"; } if (x == 10) { cout << "48620"; } return 0; } ```
#include <bits/stdc++.h> using namespace std; int n; int a[15][15]; int main() { int i, j; while (scanf("%d", &n) > 0) { for (i = 1; i <= n; i++) { for (j = 1; j <= n; j++) { if (i == 1) { a[i][j] = 1; } else { a[i][j] = a[i - 1][j] + a[i][j - 1]; } } } printf("%d\n", a[n][n]); } return 0; }
### Prompt Please formulate a cpp solution to the following problem: An n Γ— n table a is defined as follows: * The first row and the first column contain ones, that is: ai, 1 = a1, i = 1 for all i = 1, 2, ..., n. * Each of the remaining numbers in the table is equal to the sum of the number above it and the number to the left of it. In other words, the remaining elements are defined by the formula ai, j = ai - 1, j + ai, j - 1. These conditions define all the values in the table. You are given a number n. You need to determine the maximum value in the n Γ— n table defined by the rules above. Input The only line of input contains a positive integer n (1 ≀ n ≀ 10) β€” the number of rows and columns of the table. Output Print a single line containing a positive integer m β€” the maximum value in the table. Examples Input 1 Output 1 Input 5 Output 70 Note In the second test the rows of the table look as follows: {1, 1, 1, 1, 1}, {1, 2, 3, 4, 5}, {1, 3, 6, 10, 15}, {1, 4, 10, 20, 35}, {1, 5, 15, 35, 70}. ### Response ```cpp #include <bits/stdc++.h> using namespace std; int n; int a[15][15]; int main() { int i, j; while (scanf("%d", &n) > 0) { for (i = 1; i <= n; i++) { for (j = 1; j <= n; j++) { if (i == 1) { a[i][j] = 1; } else { a[i][j] = a[i - 1][j] + a[i][j - 1]; } } } printf("%d\n", a[n][n]); } return 0; } ```
#include <bits/stdc++.h> using namespace std; int main() { long long int i, j, t, k, c, cnt, n, d, d1, cnt1, l, sum; cin >> t; long long int a[t][t]; for (i = 0; i < t; i++) a[0][i] = 1; for (i = 0; i < t; i++) a[i][0] = 1; for (i = 1; i < t; i++) { for (j = 1; j < t; j++) { a[i][j] = a[i][j - 1] + a[i - 1][j]; } } cout << a[t - 1][t - 1] << endl; return 0; }
### Prompt Please provide a Cpp coded solution to the problem described below: An n Γ— n table a is defined as follows: * The first row and the first column contain ones, that is: ai, 1 = a1, i = 1 for all i = 1, 2, ..., n. * Each of the remaining numbers in the table is equal to the sum of the number above it and the number to the left of it. In other words, the remaining elements are defined by the formula ai, j = ai - 1, j + ai, j - 1. These conditions define all the values in the table. You are given a number n. You need to determine the maximum value in the n Γ— n table defined by the rules above. Input The only line of input contains a positive integer n (1 ≀ n ≀ 10) β€” the number of rows and columns of the table. Output Print a single line containing a positive integer m β€” the maximum value in the table. Examples Input 1 Output 1 Input 5 Output 70 Note In the second test the rows of the table look as follows: {1, 1, 1, 1, 1}, {1, 2, 3, 4, 5}, {1, 3, 6, 10, 15}, {1, 4, 10, 20, 35}, {1, 5, 15, 35, 70}. ### Response ```cpp #include <bits/stdc++.h> using namespace std; int main() { long long int i, j, t, k, c, cnt, n, d, d1, cnt1, l, sum; cin >> t; long long int a[t][t]; for (i = 0; i < t; i++) a[0][i] = 1; for (i = 0; i < t; i++) a[i][0] = 1; for (i = 1; i < t; i++) { for (j = 1; j < t; j++) { a[i][j] = a[i][j - 1] + a[i - 1][j]; } } cout << a[t - 1][t - 1] << endl; return 0; } ```
#include <bits/stdc++.h> using namespace std; int main() { int n, a = 1; long long b = 1; scanf("%d", &n); for (int i = 1; i < n; i++) a *= i, b *= 2 * n - i - 1; printf("%d", b / a); }
### Prompt In CPP, your task is to solve the following problem: An n Γ— n table a is defined as follows: * The first row and the first column contain ones, that is: ai, 1 = a1, i = 1 for all i = 1, 2, ..., n. * Each of the remaining numbers in the table is equal to the sum of the number above it and the number to the left of it. In other words, the remaining elements are defined by the formula ai, j = ai - 1, j + ai, j - 1. These conditions define all the values in the table. You are given a number n. You need to determine the maximum value in the n Γ— n table defined by the rules above. Input The only line of input contains a positive integer n (1 ≀ n ≀ 10) β€” the number of rows and columns of the table. Output Print a single line containing a positive integer m β€” the maximum value in the table. Examples Input 1 Output 1 Input 5 Output 70 Note In the second test the rows of the table look as follows: {1, 1, 1, 1, 1}, {1, 2, 3, 4, 5}, {1, 3, 6, 10, 15}, {1, 4, 10, 20, 35}, {1, 5, 15, 35, 70}. ### Response ```cpp #include <bits/stdc++.h> using namespace std; int main() { int n, a = 1; long long b = 1; scanf("%d", &n); for (int i = 1; i < n; i++) a *= i, b *= 2 * n - i - 1; printf("%d", b / a); } ```
#include <bits/stdc++.h> using namespace std; int main() { int n; long long sum = 1; cin >> n; for (int i = 1; i < n; i++) { sum = sum * (n + i - 1); } for (int i = 1; i < n; i++) { sum = sum / i; } cout << sum; return 0; }
### Prompt Generate a CPP solution to the following problem: An n Γ— n table a is defined as follows: * The first row and the first column contain ones, that is: ai, 1 = a1, i = 1 for all i = 1, 2, ..., n. * Each of the remaining numbers in the table is equal to the sum of the number above it and the number to the left of it. In other words, the remaining elements are defined by the formula ai, j = ai - 1, j + ai, j - 1. These conditions define all the values in the table. You are given a number n. You need to determine the maximum value in the n Γ— n table defined by the rules above. Input The only line of input contains a positive integer n (1 ≀ n ≀ 10) β€” the number of rows and columns of the table. Output Print a single line containing a positive integer m β€” the maximum value in the table. Examples Input 1 Output 1 Input 5 Output 70 Note In the second test the rows of the table look as follows: {1, 1, 1, 1, 1}, {1, 2, 3, 4, 5}, {1, 3, 6, 10, 15}, {1, 4, 10, 20, 35}, {1, 5, 15, 35, 70}. ### Response ```cpp #include <bits/stdc++.h> using namespace std; int main() { int n; long long sum = 1; cin >> n; for (int i = 1; i < n; i++) { sum = sum * (n + i - 1); } for (int i = 1; i < n; i++) { sum = sum / i; } cout << sum; return 0; } ```
#include <bits/stdc++.h> using namespace std; const long long mod = 1e9 + 7; const int N = 1e5 + 5; int a[10][10]; int main() { int n; cin >> n; for (int i = 1; i <= 10; i++) { for (int j = 1; j <= 10; j++) { a[i][1] = 1; a[1][j] = 1; } } for (int i = 2; i <= 10; i++) { for (int j = 2; j <= 10; j++) { a[i][j] = a[i - 1][j] + a[i][j - 1]; } } cout << a[n][n]; }
### Prompt Construct a cpp code solution to the problem outlined: An n Γ— n table a is defined as follows: * The first row and the first column contain ones, that is: ai, 1 = a1, i = 1 for all i = 1, 2, ..., n. * Each of the remaining numbers in the table is equal to the sum of the number above it and the number to the left of it. In other words, the remaining elements are defined by the formula ai, j = ai - 1, j + ai, j - 1. These conditions define all the values in the table. You are given a number n. You need to determine the maximum value in the n Γ— n table defined by the rules above. Input The only line of input contains a positive integer n (1 ≀ n ≀ 10) β€” the number of rows and columns of the table. Output Print a single line containing a positive integer m β€” the maximum value in the table. Examples Input 1 Output 1 Input 5 Output 70 Note In the second test the rows of the table look as follows: {1, 1, 1, 1, 1}, {1, 2, 3, 4, 5}, {1, 3, 6, 10, 15}, {1, 4, 10, 20, 35}, {1, 5, 15, 35, 70}. ### Response ```cpp #include <bits/stdc++.h> using namespace std; const long long mod = 1e9 + 7; const int N = 1e5 + 5; int a[10][10]; int main() { int n; cin >> n; for (int i = 1; i <= 10; i++) { for (int j = 1; j <= 10; j++) { a[i][1] = 1; a[1][j] = 1; } } for (int i = 2; i <= 10; i++) { for (int j = 2; j <= 10; j++) { a[i][j] = a[i - 1][j] + a[i][j - 1]; } } cout << a[n][n]; } ```
#include <bits/stdc++.h> using namespace std; const int EPS = 1e-6; const int INF = (int)(INT_MAX - 100); const long long mod = (int)(1e+9 + 7); const int N = (int)(0); int main() { int n; cin >> n; int t[n][n]; for (int it = 0; it < n; it++) { t[it][0] = 1; t[0][it] = 1; } for (int f = (1); f <= (n - 1); f++) { for (int c = (1); c <= (n - 1); c++) { t[f][c] = t[f - 1][c] + t[f][c - 1]; } } cout << t[n - 1][n - 1]; return 0; }
### Prompt Construct a cpp code solution to the problem outlined: An n Γ— n table a is defined as follows: * The first row and the first column contain ones, that is: ai, 1 = a1, i = 1 for all i = 1, 2, ..., n. * Each of the remaining numbers in the table is equal to the sum of the number above it and the number to the left of it. In other words, the remaining elements are defined by the formula ai, j = ai - 1, j + ai, j - 1. These conditions define all the values in the table. You are given a number n. You need to determine the maximum value in the n Γ— n table defined by the rules above. Input The only line of input contains a positive integer n (1 ≀ n ≀ 10) β€” the number of rows and columns of the table. Output Print a single line containing a positive integer m β€” the maximum value in the table. Examples Input 1 Output 1 Input 5 Output 70 Note In the second test the rows of the table look as follows: {1, 1, 1, 1, 1}, {1, 2, 3, 4, 5}, {1, 3, 6, 10, 15}, {1, 4, 10, 20, 35}, {1, 5, 15, 35, 70}. ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int EPS = 1e-6; const int INF = (int)(INT_MAX - 100); const long long mod = (int)(1e+9 + 7); const int N = (int)(0); int main() { int n; cin >> n; int t[n][n]; for (int it = 0; it < n; it++) { t[it][0] = 1; t[0][it] = 1; } for (int f = (1); f <= (n - 1); f++) { for (int c = (1); c <= (n - 1); c++) { t[f][c] = t[f - 1][c] + t[f][c - 1]; } } cout << t[n - 1][n - 1]; return 0; } ```
#include <bits/stdc++.h> using namespace std; int main() { long long n, j, i, a[15][15]; cin >> n; for (i = 0; i < n; i++) for (j = 0; j < n; j++) a[i][j] = 1; for (i = 1; i < n; i++) for (j = 1; j < n; j++) a[i][j] = a[i - 1][j] + a[i][j - 1]; cout << a[n - 1][n - 1]; return 0; }
### Prompt Generate a CPP solution to the following problem: An n Γ— n table a is defined as follows: * The first row and the first column contain ones, that is: ai, 1 = a1, i = 1 for all i = 1, 2, ..., n. * Each of the remaining numbers in the table is equal to the sum of the number above it and the number to the left of it. In other words, the remaining elements are defined by the formula ai, j = ai - 1, j + ai, j - 1. These conditions define all the values in the table. You are given a number n. You need to determine the maximum value in the n Γ— n table defined by the rules above. Input The only line of input contains a positive integer n (1 ≀ n ≀ 10) β€” the number of rows and columns of the table. Output Print a single line containing a positive integer m β€” the maximum value in the table. Examples Input 1 Output 1 Input 5 Output 70 Note In the second test the rows of the table look as follows: {1, 1, 1, 1, 1}, {1, 2, 3, 4, 5}, {1, 3, 6, 10, 15}, {1, 4, 10, 20, 35}, {1, 5, 15, 35, 70}. ### Response ```cpp #include <bits/stdc++.h> using namespace std; int main() { long long n, j, i, a[15][15]; cin >> n; for (i = 0; i < n; i++) for (j = 0; j < n; j++) a[i][j] = 1; for (i = 1; i < n; i++) for (j = 1; j < n; j++) a[i][j] = a[i - 1][j] + a[i][j - 1]; cout << a[n - 1][n - 1]; return 0; } ```
#include <bits/stdc++.h> using namespace std; const int SZ = 52; const double EPS = 1e-9; const int MOD = 100000008; const int INF = (1 << 30) - 1; const double PI = 2 * acos(0.0); template <class T> T MIN(T a, T b) { return (a < b) ? a : b; } template <class T> T MAX(T a, T b) { return (a > b) ? a : b; } template <class T> void SWAP(T &a, T &b) { T c; c = a; a = b; b = c; } template <class T> T GCD(T a, T b) { T c; while (b > 0) { c = a % b; a = b; b = c; } return a; } bool CMP(int a, int b) { return (a > b); } int main() { long long n, i, j, a[20][20]; cin >> n; for (i = 0; i < n; i++) { for (j = 0; j < n; j++) { if (i == 0 || j == 0) { a[i][j] = 1; } else { a[i][j] = a[i - 1][j] + a[i][j - 1]; } } } cout << a[n - 1][n - 1] << endl; return 0; }
### Prompt Please provide a cpp coded solution to the problem described below: An n Γ— n table a is defined as follows: * The first row and the first column contain ones, that is: ai, 1 = a1, i = 1 for all i = 1, 2, ..., n. * Each of the remaining numbers in the table is equal to the sum of the number above it and the number to the left of it. In other words, the remaining elements are defined by the formula ai, j = ai - 1, j + ai, j - 1. These conditions define all the values in the table. You are given a number n. You need to determine the maximum value in the n Γ— n table defined by the rules above. Input The only line of input contains a positive integer n (1 ≀ n ≀ 10) β€” the number of rows and columns of the table. Output Print a single line containing a positive integer m β€” the maximum value in the table. Examples Input 1 Output 1 Input 5 Output 70 Note In the second test the rows of the table look as follows: {1, 1, 1, 1, 1}, {1, 2, 3, 4, 5}, {1, 3, 6, 10, 15}, {1, 4, 10, 20, 35}, {1, 5, 15, 35, 70}. ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int SZ = 52; const double EPS = 1e-9; const int MOD = 100000008; const int INF = (1 << 30) - 1; const double PI = 2 * acos(0.0); template <class T> T MIN(T a, T b) { return (a < b) ? a : b; } template <class T> T MAX(T a, T b) { return (a > b) ? a : b; } template <class T> void SWAP(T &a, T &b) { T c; c = a; a = b; b = c; } template <class T> T GCD(T a, T b) { T c; while (b > 0) { c = a % b; a = b; b = c; } return a; } bool CMP(int a, int b) { return (a > b); } int main() { long long n, i, j, a[20][20]; cin >> n; for (i = 0; i < n; i++) { for (j = 0; j < n; j++) { if (i == 0 || j == 0) { a[i][j] = 1; } else { a[i][j] = a[i - 1][j] + a[i][j - 1]; } } } cout << a[n - 1][n - 1] << endl; return 0; } ```
#include <bits/stdc++.h> using namespace std; const int oo = (int)1e9; const double PI = 2 * acos(0.0); const double eps = 1e-9; const int MAXN = 1e5 + 10; int arr[100][100]; int main() { std::ios_base::sync_with_stdio(false); int n; cin >> n; for (int i = 0; i < n; i++) { arr[i][0] = 1; arr[0][i] = 1; } for (int i = 1; i < n; i++) for (int j = 1; j < n; j++) arr[i][j] = arr[i - 1][j] + arr[i][j - 1]; cout << arr[n - 1][n - 1] << endl; }
### Prompt Your task is to create a CPP solution to the following problem: An n Γ— n table a is defined as follows: * The first row and the first column contain ones, that is: ai, 1 = a1, i = 1 for all i = 1, 2, ..., n. * Each of the remaining numbers in the table is equal to the sum of the number above it and the number to the left of it. In other words, the remaining elements are defined by the formula ai, j = ai - 1, j + ai, j - 1. These conditions define all the values in the table. You are given a number n. You need to determine the maximum value in the n Γ— n table defined by the rules above. Input The only line of input contains a positive integer n (1 ≀ n ≀ 10) β€” the number of rows and columns of the table. Output Print a single line containing a positive integer m β€” the maximum value in the table. Examples Input 1 Output 1 Input 5 Output 70 Note In the second test the rows of the table look as follows: {1, 1, 1, 1, 1}, {1, 2, 3, 4, 5}, {1, 3, 6, 10, 15}, {1, 4, 10, 20, 35}, {1, 5, 15, 35, 70}. ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int oo = (int)1e9; const double PI = 2 * acos(0.0); const double eps = 1e-9; const int MAXN = 1e5 + 10; int arr[100][100]; int main() { std::ios_base::sync_with_stdio(false); int n; cin >> n; for (int i = 0; i < n; i++) { arr[i][0] = 1; arr[0][i] = 1; } for (int i = 1; i < n; i++) for (int j = 1; j < n; j++) arr[i][j] = arr[i - 1][j] + arr[i][j - 1]; cout << arr[n - 1][n - 1] << endl; } ```
#include <bits/stdc++.h> using namespace std; vector<long long int> V; int main() { long long int i, j, n, k, T, d1, d2, c = 0, m = 0; cin >> n; long long int A[11][11]; for (i = 1; i <= 10; i++) { for (j = 1; j <= 10; j++) { if (i == 1 || j == 1) A[i][j] = 1; else A[i][j] = A[i - 1][j] + A[i][j - 1]; } } cout << A[n][n]; return 0; }
### Prompt Generate a CPP solution to the following problem: An n Γ— n table a is defined as follows: * The first row and the first column contain ones, that is: ai, 1 = a1, i = 1 for all i = 1, 2, ..., n. * Each of the remaining numbers in the table is equal to the sum of the number above it and the number to the left of it. In other words, the remaining elements are defined by the formula ai, j = ai - 1, j + ai, j - 1. These conditions define all the values in the table. You are given a number n. You need to determine the maximum value in the n Γ— n table defined by the rules above. Input The only line of input contains a positive integer n (1 ≀ n ≀ 10) β€” the number of rows and columns of the table. Output Print a single line containing a positive integer m β€” the maximum value in the table. Examples Input 1 Output 1 Input 5 Output 70 Note In the second test the rows of the table look as follows: {1, 1, 1, 1, 1}, {1, 2, 3, 4, 5}, {1, 3, 6, 10, 15}, {1, 4, 10, 20, 35}, {1, 5, 15, 35, 70}. ### Response ```cpp #include <bits/stdc++.h> using namespace std; vector<long long int> V; int main() { long long int i, j, n, k, T, d1, d2, c = 0, m = 0; cin >> n; long long int A[11][11]; for (i = 1; i <= 10; i++) { for (j = 1; j <= 10; j++) { if (i == 1 || j == 1) A[i][j] = 1; else A[i][j] = A[i - 1][j] + A[i][j - 1]; } } cout << A[n][n]; return 0; } ```
#include <bits/stdc++.h> using namespace std; int main() { int n, a[10][10], i, j; cin >> n; for (i = 0; i < n; i++) { a[0][i] = 1; } for (i = 1; i < n; i++) { a[i][0] = 1; for (j = 1; j < n; j++) { if (i > j) a[i][j] = a[j][i]; else a[i][j] = a[i - 1][j] + a[i][j - 1]; } } printf("%d", a[n - 1][n - 1]); return 0; }
### Prompt Generate a cpp solution to the following problem: An n Γ— n table a is defined as follows: * The first row and the first column contain ones, that is: ai, 1 = a1, i = 1 for all i = 1, 2, ..., n. * Each of the remaining numbers in the table is equal to the sum of the number above it and the number to the left of it. In other words, the remaining elements are defined by the formula ai, j = ai - 1, j + ai, j - 1. These conditions define all the values in the table. You are given a number n. You need to determine the maximum value in the n Γ— n table defined by the rules above. Input The only line of input contains a positive integer n (1 ≀ n ≀ 10) β€” the number of rows and columns of the table. Output Print a single line containing a positive integer m β€” the maximum value in the table. Examples Input 1 Output 1 Input 5 Output 70 Note In the second test the rows of the table look as follows: {1, 1, 1, 1, 1}, {1, 2, 3, 4, 5}, {1, 3, 6, 10, 15}, {1, 4, 10, 20, 35}, {1, 5, 15, 35, 70}. ### Response ```cpp #include <bits/stdc++.h> using namespace std; int main() { int n, a[10][10], i, j; cin >> n; for (i = 0; i < n; i++) { a[0][i] = 1; } for (i = 1; i < n; i++) { a[i][0] = 1; for (j = 1; j < n; j++) { if (i > j) a[i][j] = a[j][i]; else a[i][j] = a[i - 1][j] + a[i][j - 1]; } } printf("%d", a[n - 1][n - 1]); return 0; } ```
#include <bits/stdc++.h> using namespace std; const long long mod = 1e9 + 7; signed main() { ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0); ; long long n; cin >> n; long long a[n + 5][n + 5]; for (long long i = 1; i <= n; i++) { if (i == 1) { for (long long j = 1; j <= n; j++) { a[i][j] = 1; } } else { a[i][1] = 1; } } for (long long i = 2; i <= n; i++) { for (long long j = 2; j <= n; j++) { a[i][j] = a[i][j - 1] + a[i - 1][j]; } } cout << a[n][n]; return 0; }
### Prompt Construct a CPP code solution to the problem outlined: An n Γ— n table a is defined as follows: * The first row and the first column contain ones, that is: ai, 1 = a1, i = 1 for all i = 1, 2, ..., n. * Each of the remaining numbers in the table is equal to the sum of the number above it and the number to the left of it. In other words, the remaining elements are defined by the formula ai, j = ai - 1, j + ai, j - 1. These conditions define all the values in the table. You are given a number n. You need to determine the maximum value in the n Γ— n table defined by the rules above. Input The only line of input contains a positive integer n (1 ≀ n ≀ 10) β€” the number of rows and columns of the table. Output Print a single line containing a positive integer m β€” the maximum value in the table. Examples Input 1 Output 1 Input 5 Output 70 Note In the second test the rows of the table look as follows: {1, 1, 1, 1, 1}, {1, 2, 3, 4, 5}, {1, 3, 6, 10, 15}, {1, 4, 10, 20, 35}, {1, 5, 15, 35, 70}. ### Response ```cpp #include <bits/stdc++.h> using namespace std; const long long mod = 1e9 + 7; signed main() { ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0); ; long long n; cin >> n; long long a[n + 5][n + 5]; for (long long i = 1; i <= n; i++) { if (i == 1) { for (long long j = 1; j <= n; j++) { a[i][j] = 1; } } else { a[i][1] = 1; } } for (long long i = 2; i <= n; i++) { for (long long j = 2; j <= n; j++) { a[i][j] = a[i][j - 1] + a[i - 1][j]; } } cout << a[n][n]; return 0; } ```
#include <bits/stdc++.h> using namespace std; int main(int argc, char const *argv[]) { int n; cin >> n; int arr[n][n]; for (int i = 0; i < n; ++i) { arr[i][0] = 1; arr[0][i] = 1; } int max = 1; for (int i = 1; i < n; ++i) { for (int j = 1; j < n; ++j) { arr[i][j] = arr[i - 1][j] + arr[i][j - 1]; if (arr[i][j] >= max) max = arr[i][j]; } } cout << max << endl; return 0; }
### Prompt Develop a solution in Cpp to the problem described below: An n Γ— n table a is defined as follows: * The first row and the first column contain ones, that is: ai, 1 = a1, i = 1 for all i = 1, 2, ..., n. * Each of the remaining numbers in the table is equal to the sum of the number above it and the number to the left of it. In other words, the remaining elements are defined by the formula ai, j = ai - 1, j + ai, j - 1. These conditions define all the values in the table. You are given a number n. You need to determine the maximum value in the n Γ— n table defined by the rules above. Input The only line of input contains a positive integer n (1 ≀ n ≀ 10) β€” the number of rows and columns of the table. Output Print a single line containing a positive integer m β€” the maximum value in the table. Examples Input 1 Output 1 Input 5 Output 70 Note In the second test the rows of the table look as follows: {1, 1, 1, 1, 1}, {1, 2, 3, 4, 5}, {1, 3, 6, 10, 15}, {1, 4, 10, 20, 35}, {1, 5, 15, 35, 70}. ### Response ```cpp #include <bits/stdc++.h> using namespace std; int main(int argc, char const *argv[]) { int n; cin >> n; int arr[n][n]; for (int i = 0; i < n; ++i) { arr[i][0] = 1; arr[0][i] = 1; } int max = 1; for (int i = 1; i < n; ++i) { for (int j = 1; j < n; ++j) { arr[i][j] = arr[i - 1][j] + arr[i][j - 1]; if (arr[i][j] >= max) max = arr[i][j]; } } cout << max << endl; return 0; } ```
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<vector<int>> v(n, vector<int>(n, 1)); for (int x = 1; x < n; x++) for (int y = 1; y < n; y++) v[x][y] = v[x - 1][y] + v[x][y - 1]; cout << v[n - 1][n - 1] << endl; }
### Prompt In CPP, your task is to solve the following problem: An n Γ— n table a is defined as follows: * The first row and the first column contain ones, that is: ai, 1 = a1, i = 1 for all i = 1, 2, ..., n. * Each of the remaining numbers in the table is equal to the sum of the number above it and the number to the left of it. In other words, the remaining elements are defined by the formula ai, j = ai - 1, j + ai, j - 1. These conditions define all the values in the table. You are given a number n. You need to determine the maximum value in the n Γ— n table defined by the rules above. Input The only line of input contains a positive integer n (1 ≀ n ≀ 10) β€” the number of rows and columns of the table. Output Print a single line containing a positive integer m β€” the maximum value in the table. Examples Input 1 Output 1 Input 5 Output 70 Note In the second test the rows of the table look as follows: {1, 1, 1, 1, 1}, {1, 2, 3, 4, 5}, {1, 3, 6, 10, 15}, {1, 4, 10, 20, 35}, {1, 5, 15, 35, 70}. ### Response ```cpp #include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<vector<int>> v(n, vector<int>(n, 1)); for (int x = 1; x < n; x++) for (int y = 1; y < n; y++) v[x][y] = v[x - 1][y] + v[x][y - 1]; cout << v[n - 1][n - 1] << endl; } ```
#include <bits/stdc++.h> int main(void) { int n; scanf("%d", &n); int ar[n][n]; for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { if (i == 0 || j == 0) ar[i][j] = 1; else ar[i][j] = ar[i - 1][j] + ar[i][j - 1]; } } printf("%d\n", ar[n - 1][n - 1]); return 0; }
### Prompt Generate a cpp solution to the following problem: An n Γ— n table a is defined as follows: * The first row and the first column contain ones, that is: ai, 1 = a1, i = 1 for all i = 1, 2, ..., n. * Each of the remaining numbers in the table is equal to the sum of the number above it and the number to the left of it. In other words, the remaining elements are defined by the formula ai, j = ai - 1, j + ai, j - 1. These conditions define all the values in the table. You are given a number n. You need to determine the maximum value in the n Γ— n table defined by the rules above. Input The only line of input contains a positive integer n (1 ≀ n ≀ 10) β€” the number of rows and columns of the table. Output Print a single line containing a positive integer m β€” the maximum value in the table. Examples Input 1 Output 1 Input 5 Output 70 Note In the second test the rows of the table look as follows: {1, 1, 1, 1, 1}, {1, 2, 3, 4, 5}, {1, 3, 6, 10, 15}, {1, 4, 10, 20, 35}, {1, 5, 15, 35, 70}. ### Response ```cpp #include <bits/stdc++.h> int main(void) { int n; scanf("%d", &n); int ar[n][n]; for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { if (i == 0 || j == 0) ar[i][j] = 1; else ar[i][j] = ar[i - 1][j] + ar[i][j - 1]; } } printf("%d\n", ar[n - 1][n - 1]); return 0; } ```
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; int arr[n][n]; for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { if (i == 0) arr[0][j] = 1; else if (j == 0) arr[i][0] = 1; else arr[i][j] = arr[i - 1][j] + arr[i][j - 1]; } } cout << arr[n - 1][n - 1]; return 0; }
### Prompt Your challenge is to write a cpp solution to the following problem: An n Γ— n table a is defined as follows: * The first row and the first column contain ones, that is: ai, 1 = a1, i = 1 for all i = 1, 2, ..., n. * Each of the remaining numbers in the table is equal to the sum of the number above it and the number to the left of it. In other words, the remaining elements are defined by the formula ai, j = ai - 1, j + ai, j - 1. These conditions define all the values in the table. You are given a number n. You need to determine the maximum value in the n Γ— n table defined by the rules above. Input The only line of input contains a positive integer n (1 ≀ n ≀ 10) β€” the number of rows and columns of the table. Output Print a single line containing a positive integer m β€” the maximum value in the table. Examples Input 1 Output 1 Input 5 Output 70 Note In the second test the rows of the table look as follows: {1, 1, 1, 1, 1}, {1, 2, 3, 4, 5}, {1, 3, 6, 10, 15}, {1, 4, 10, 20, 35}, {1, 5, 15, 35, 70}. ### Response ```cpp #include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; int arr[n][n]; for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { if (i == 0) arr[0][j] = 1; else if (j == 0) arr[i][0] = 1; else arr[i][j] = arr[i - 1][j] + arr[i][j - 1]; } } cout << arr[n - 1][n - 1]; return 0; } ```
#include <bits/stdc++.h> int main() { int n, i, j; scanf("%d", &n); long int arr[n][n]; for (i = 0; i < n; i++) { for (j = 0; j < n; j++) { if (i == 0 || j == 0) { arr[i][j] = 1; } else { arr[i][j] = arr[i - 1][j] + arr[i][j - 1]; } } } printf("%ld", arr[n - 1][n - 1]); return 0; }
### Prompt Construct a CPP code solution to the problem outlined: An n Γ— n table a is defined as follows: * The first row and the first column contain ones, that is: ai, 1 = a1, i = 1 for all i = 1, 2, ..., n. * Each of the remaining numbers in the table is equal to the sum of the number above it and the number to the left of it. In other words, the remaining elements are defined by the formula ai, j = ai - 1, j + ai, j - 1. These conditions define all the values in the table. You are given a number n. You need to determine the maximum value in the n Γ— n table defined by the rules above. Input The only line of input contains a positive integer n (1 ≀ n ≀ 10) β€” the number of rows and columns of the table. Output Print a single line containing a positive integer m β€” the maximum value in the table. Examples Input 1 Output 1 Input 5 Output 70 Note In the second test the rows of the table look as follows: {1, 1, 1, 1, 1}, {1, 2, 3, 4, 5}, {1, 3, 6, 10, 15}, {1, 4, 10, 20, 35}, {1, 5, 15, 35, 70}. ### Response ```cpp #include <bits/stdc++.h> int main() { int n, i, j; scanf("%d", &n); long int arr[n][n]; for (i = 0; i < n; i++) { for (j = 0; j < n; j++) { if (i == 0 || j == 0) { arr[i][j] = 1; } else { arr[i][j] = arr[i - 1][j] + arr[i][j - 1]; } } } printf("%ld", arr[n - 1][n - 1]); return 0; } ```
#include <bits/stdc++.h> long long int fact(long long int n) { long long int i = 1; long long int prod = 1; for (i = 1; i <= n; i++) { prod = prod * i; } return prod; } int main() { long long int n, i, prod, y; prod = 1; scanf("%lld", &n); long long int x = 2 * (n - 1); long long int l = n - 1; long long int z = x - l; if (l >= z) { for (i = x; i > l; i--) { prod = prod * i; } y = fact(z); } else { for (i = x; i > z; i--) { prod = prod * i; } y = fact(l); } long long int m = prod / y; printf("%lld", m); return 0; }
### Prompt Generate a CPP solution to the following problem: An n Γ— n table a is defined as follows: * The first row and the first column contain ones, that is: ai, 1 = a1, i = 1 for all i = 1, 2, ..., n. * Each of the remaining numbers in the table is equal to the sum of the number above it and the number to the left of it. In other words, the remaining elements are defined by the formula ai, j = ai - 1, j + ai, j - 1. These conditions define all the values in the table. You are given a number n. You need to determine the maximum value in the n Γ— n table defined by the rules above. Input The only line of input contains a positive integer n (1 ≀ n ≀ 10) β€” the number of rows and columns of the table. Output Print a single line containing a positive integer m β€” the maximum value in the table. Examples Input 1 Output 1 Input 5 Output 70 Note In the second test the rows of the table look as follows: {1, 1, 1, 1, 1}, {1, 2, 3, 4, 5}, {1, 3, 6, 10, 15}, {1, 4, 10, 20, 35}, {1, 5, 15, 35, 70}. ### Response ```cpp #include <bits/stdc++.h> long long int fact(long long int n) { long long int i = 1; long long int prod = 1; for (i = 1; i <= n; i++) { prod = prod * i; } return prod; } int main() { long long int n, i, prod, y; prod = 1; scanf("%lld", &n); long long int x = 2 * (n - 1); long long int l = n - 1; long long int z = x - l; if (l >= z) { for (i = x; i > l; i--) { prod = prod * i; } y = fact(z); } else { for (i = x; i > z; i--) { prod = prod * i; } y = fact(l); } long long int m = prod / y; printf("%lld", m); return 0; } ```
#include <bits/stdc++.h> int main() { int i, j, n, max = 0; scanf("%d", &n); int a[n][n]; for (i = 0; i < n; i++) for (j = 0; j < n; j++) { if (i == 0 || j == 0) a[i][j] = 1; else a[i][j] = a[i - 1][j] + a[i][j - 1]; int m = a[i][j]; max = max < m ? m : max; } printf("%d\n", max); return 0; }
### Prompt Please create a solution in CPP to the following problem: An n Γ— n table a is defined as follows: * The first row and the first column contain ones, that is: ai, 1 = a1, i = 1 for all i = 1, 2, ..., n. * Each of the remaining numbers in the table is equal to the sum of the number above it and the number to the left of it. In other words, the remaining elements are defined by the formula ai, j = ai - 1, j + ai, j - 1. These conditions define all the values in the table. You are given a number n. You need to determine the maximum value in the n Γ— n table defined by the rules above. Input The only line of input contains a positive integer n (1 ≀ n ≀ 10) β€” the number of rows and columns of the table. Output Print a single line containing a positive integer m β€” the maximum value in the table. Examples Input 1 Output 1 Input 5 Output 70 Note In the second test the rows of the table look as follows: {1, 1, 1, 1, 1}, {1, 2, 3, 4, 5}, {1, 3, 6, 10, 15}, {1, 4, 10, 20, 35}, {1, 5, 15, 35, 70}. ### Response ```cpp #include <bits/stdc++.h> int main() { int i, j, n, max = 0; scanf("%d", &n); int a[n][n]; for (i = 0; i < n; i++) for (j = 0; j < n; j++) { if (i == 0 || j == 0) a[i][j] = 1; else a[i][j] = a[i - 1][j] + a[i][j - 1]; int m = a[i][j]; max = max < m ? m : max; } printf("%d\n", max); return 0; } ```
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; int a[n][n]; for (int i = 0; i < n; i++) for (int j = 0; j < n; j++) { if (i == 0 || j == 0) a[i][j] = 1; else { a[i][j] = a[i - 1][j] + a[i][j - 1]; } } cout << a[n - 1][n - 1]; return 0; }
### Prompt In CPP, your task is to solve the following problem: An n Γ— n table a is defined as follows: * The first row and the first column contain ones, that is: ai, 1 = a1, i = 1 for all i = 1, 2, ..., n. * Each of the remaining numbers in the table is equal to the sum of the number above it and the number to the left of it. In other words, the remaining elements are defined by the formula ai, j = ai - 1, j + ai, j - 1. These conditions define all the values in the table. You are given a number n. You need to determine the maximum value in the n Γ— n table defined by the rules above. Input The only line of input contains a positive integer n (1 ≀ n ≀ 10) β€” the number of rows and columns of the table. Output Print a single line containing a positive integer m β€” the maximum value in the table. Examples Input 1 Output 1 Input 5 Output 70 Note In the second test the rows of the table look as follows: {1, 1, 1, 1, 1}, {1, 2, 3, 4, 5}, {1, 3, 6, 10, 15}, {1, 4, 10, 20, 35}, {1, 5, 15, 35, 70}. ### Response ```cpp #include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; int a[n][n]; for (int i = 0; i < n; i++) for (int j = 0; j < n; j++) { if (i == 0 || j == 0) a[i][j] = 1; else { a[i][j] = a[i - 1][j] + a[i][j - 1]; } } cout << a[n - 1][n - 1]; return 0; } ```
#include <bits/stdc++.h> using namespace std; int main() { int x[10][10]; for (int i = 0; i < 10; i++) { for (int j = 0; j < 10; j++) { if (i == 0 || j == 0) x[i][j] = 1; else x[i][j] = x[i - 1][j] + x[i][j - 1]; } } int n; cin >> n; cout << x[n - 1][n - 1] << endl; }
### Prompt Please formulate a Cpp solution to the following problem: An n Γ— n table a is defined as follows: * The first row and the first column contain ones, that is: ai, 1 = a1, i = 1 for all i = 1, 2, ..., n. * Each of the remaining numbers in the table is equal to the sum of the number above it and the number to the left of it. In other words, the remaining elements are defined by the formula ai, j = ai - 1, j + ai, j - 1. These conditions define all the values in the table. You are given a number n. You need to determine the maximum value in the n Γ— n table defined by the rules above. Input The only line of input contains a positive integer n (1 ≀ n ≀ 10) β€” the number of rows and columns of the table. Output Print a single line containing a positive integer m β€” the maximum value in the table. Examples Input 1 Output 1 Input 5 Output 70 Note In the second test the rows of the table look as follows: {1, 1, 1, 1, 1}, {1, 2, 3, 4, 5}, {1, 3, 6, 10, 15}, {1, 4, 10, 20, 35}, {1, 5, 15, 35, 70}. ### Response ```cpp #include <bits/stdc++.h> using namespace std; int main() { int x[10][10]; for (int i = 0; i < 10; i++) { for (int j = 0; j < 10; j++) { if (i == 0 || j == 0) x[i][j] = 1; else x[i][j] = x[i - 1][j] + x[i][j - 1]; } } int n; cin >> n; cout << x[n - 1][n - 1] << endl; } ```
#include <bits/stdc++.h> using namespace std; int main() { long long n; scanf("%lld", &n); long long x[n][n], y[n][n]; for (long long i = 0; i < 1; i++) { for (long long j = 0; j < n; j++) x[i][j] = 1; } for (long long i = 0; i < n; i++) { for (long long j = 0; j < 1; j++) y[i][j] = 1; } if (n == 1) printf("1"); else { for (long long i = 0; i < n - 1; i++) { for (long long j = 1; j < n; j++) { y[i + 1][j] = y[i + 1][j - 1] + x[i][j]; x[i + 1][j] = y[i + 1][j]; if (i + 1 == n - 1 && j == n - 1) { printf("%lld", y[i + 1][j]); } } } } return 0; }
### Prompt Create a solution in cpp for the following problem: An n Γ— n table a is defined as follows: * The first row and the first column contain ones, that is: ai, 1 = a1, i = 1 for all i = 1, 2, ..., n. * Each of the remaining numbers in the table is equal to the sum of the number above it and the number to the left of it. In other words, the remaining elements are defined by the formula ai, j = ai - 1, j + ai, j - 1. These conditions define all the values in the table. You are given a number n. You need to determine the maximum value in the n Γ— n table defined by the rules above. Input The only line of input contains a positive integer n (1 ≀ n ≀ 10) β€” the number of rows and columns of the table. Output Print a single line containing a positive integer m β€” the maximum value in the table. Examples Input 1 Output 1 Input 5 Output 70 Note In the second test the rows of the table look as follows: {1, 1, 1, 1, 1}, {1, 2, 3, 4, 5}, {1, 3, 6, 10, 15}, {1, 4, 10, 20, 35}, {1, 5, 15, 35, 70}. ### Response ```cpp #include <bits/stdc++.h> using namespace std; int main() { long long n; scanf("%lld", &n); long long x[n][n], y[n][n]; for (long long i = 0; i < 1; i++) { for (long long j = 0; j < n; j++) x[i][j] = 1; } for (long long i = 0; i < n; i++) { for (long long j = 0; j < 1; j++) y[i][j] = 1; } if (n == 1) printf("1"); else { for (long long i = 0; i < n - 1; i++) { for (long long j = 1; j < n; j++) { y[i + 1][j] = y[i + 1][j - 1] + x[i][j]; x[i + 1][j] = y[i + 1][j]; if (i + 1 == n - 1 && j == n - 1) { printf("%lld", y[i + 1][j]); } } } } return 0; } ```
#include <bits/stdc++.h> using namespace std; int maxd, n, f[20][20]; int main() { scanf("%d", &n); for (int i = 1; i <= n; i++) f[i][1] = f[1][i] = 1; maxd = 1; for (int i = 2; i <= n; i++) for (int j = 1; j <= n; j++) f[i][j] = f[i - 1][j] + f[i][j - 1], maxd = max(f[i][j], maxd); printf("%d\n", maxd); return 0; }
### Prompt In CPP, your task is to solve the following problem: An n Γ— n table a is defined as follows: * The first row and the first column contain ones, that is: ai, 1 = a1, i = 1 for all i = 1, 2, ..., n. * Each of the remaining numbers in the table is equal to the sum of the number above it and the number to the left of it. In other words, the remaining elements are defined by the formula ai, j = ai - 1, j + ai, j - 1. These conditions define all the values in the table. You are given a number n. You need to determine the maximum value in the n Γ— n table defined by the rules above. Input The only line of input contains a positive integer n (1 ≀ n ≀ 10) β€” the number of rows and columns of the table. Output Print a single line containing a positive integer m β€” the maximum value in the table. Examples Input 1 Output 1 Input 5 Output 70 Note In the second test the rows of the table look as follows: {1, 1, 1, 1, 1}, {1, 2, 3, 4, 5}, {1, 3, 6, 10, 15}, {1, 4, 10, 20, 35}, {1, 5, 15, 35, 70}. ### Response ```cpp #include <bits/stdc++.h> using namespace std; int maxd, n, f[20][20]; int main() { scanf("%d", &n); for (int i = 1; i <= n; i++) f[i][1] = f[1][i] = 1; maxd = 1; for (int i = 2; i <= n; i++) for (int j = 1; j <= n; j++) f[i][j] = f[i - 1][j] + f[i][j - 1], maxd = max(f[i][j], maxd); printf("%d\n", maxd); return 0; } ```
#include <bits/stdc++.h> int fun(int a, int b) { if (a == 1 || b == 1) return 1; else return fun(a - 1, b) + fun(a, b - 1); } int main() { int n; scanf("%d", &n); printf("%d", fun(n, n)); }
### Prompt Please create a solution in Cpp to the following problem: An n Γ— n table a is defined as follows: * The first row and the first column contain ones, that is: ai, 1 = a1, i = 1 for all i = 1, 2, ..., n. * Each of the remaining numbers in the table is equal to the sum of the number above it and the number to the left of it. In other words, the remaining elements are defined by the formula ai, j = ai - 1, j + ai, j - 1. These conditions define all the values in the table. You are given a number n. You need to determine the maximum value in the n Γ— n table defined by the rules above. Input The only line of input contains a positive integer n (1 ≀ n ≀ 10) β€” the number of rows and columns of the table. Output Print a single line containing a positive integer m β€” the maximum value in the table. Examples Input 1 Output 1 Input 5 Output 70 Note In the second test the rows of the table look as follows: {1, 1, 1, 1, 1}, {1, 2, 3, 4, 5}, {1, 3, 6, 10, 15}, {1, 4, 10, 20, 35}, {1, 5, 15, 35, 70}. ### Response ```cpp #include <bits/stdc++.h> int fun(int a, int b) { if (a == 1 || b == 1) return 1; else return fun(a - 1, b) + fun(a, b - 1); } int main() { int n; scanf("%d", &n); printf("%d", fun(n, n)); } ```
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; int arr[n][n]; for (int x = 0; x < n; x++) { arr[0][x] = 1; } for (int y = 0; y < n; y++) { arr[y][0] = 1; } for (int i = 1; i < n; i++) { for (int j = 1; j < n; j++) { arr[i][j] = arr[i - 1][j] + arr[i][j - 1]; } } cout << arr[n - 1][n - 1]; return 0; }
### Prompt Please create a solution in cpp to the following problem: An n Γ— n table a is defined as follows: * The first row and the first column contain ones, that is: ai, 1 = a1, i = 1 for all i = 1, 2, ..., n. * Each of the remaining numbers in the table is equal to the sum of the number above it and the number to the left of it. In other words, the remaining elements are defined by the formula ai, j = ai - 1, j + ai, j - 1. These conditions define all the values in the table. You are given a number n. You need to determine the maximum value in the n Γ— n table defined by the rules above. Input The only line of input contains a positive integer n (1 ≀ n ≀ 10) β€” the number of rows and columns of the table. Output Print a single line containing a positive integer m β€” the maximum value in the table. Examples Input 1 Output 1 Input 5 Output 70 Note In the second test the rows of the table look as follows: {1, 1, 1, 1, 1}, {1, 2, 3, 4, 5}, {1, 3, 6, 10, 15}, {1, 4, 10, 20, 35}, {1, 5, 15, 35, 70}. ### Response ```cpp #include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; int arr[n][n]; for (int x = 0; x < n; x++) { arr[0][x] = 1; } for (int y = 0; y < n; y++) { arr[y][0] = 1; } for (int i = 1; i < n; i++) { for (int j = 1; j < n; j++) { arr[i][j] = arr[i - 1][j] + arr[i][j - 1]; } } cout << arr[n - 1][n - 1]; return 0; } ```
#include <bits/stdc++.h> using namespace std; int main() { int n, i, j; cin >> n; int a[n][n]; for (i = 0; i < n; i++) { for (j = 0; j < n; j++) { a[i][0] = 1; a[0][j] = 1; } } for (i = 1; i < n; i++) { for (j = 1; j < n; j++) { a[i][j] = a[i - 1][j] + a[i][j - 1]; } } cout << a[n - 1][n - 1] << endl; return 0; }
### Prompt Develop a solution in cpp to the problem described below: An n Γ— n table a is defined as follows: * The first row and the first column contain ones, that is: ai, 1 = a1, i = 1 for all i = 1, 2, ..., n. * Each of the remaining numbers in the table is equal to the sum of the number above it and the number to the left of it. In other words, the remaining elements are defined by the formula ai, j = ai - 1, j + ai, j - 1. These conditions define all the values in the table. You are given a number n. You need to determine the maximum value in the n Γ— n table defined by the rules above. Input The only line of input contains a positive integer n (1 ≀ n ≀ 10) β€” the number of rows and columns of the table. Output Print a single line containing a positive integer m β€” the maximum value in the table. Examples Input 1 Output 1 Input 5 Output 70 Note In the second test the rows of the table look as follows: {1, 1, 1, 1, 1}, {1, 2, 3, 4, 5}, {1, 3, 6, 10, 15}, {1, 4, 10, 20, 35}, {1, 5, 15, 35, 70}. ### Response ```cpp #include <bits/stdc++.h> using namespace std; int main() { int n, i, j; cin >> n; int a[n][n]; for (i = 0; i < n; i++) { for (j = 0; j < n; j++) { a[i][0] = 1; a[0][j] = 1; } } for (i = 1; i < n; i++) { for (j = 1; j < n; j++) { a[i][j] = a[i - 1][j] + a[i][j - 1]; } } cout << a[n - 1][n - 1] << endl; return 0; } ```
#include <bits/stdc++.h> using namespace std; int main() { int v[10] = {1, 2, 6, 20, 70, 252, 924, 3432, 12870, 48620}; int n; cin >> n; cout << v[n - 1]; return 0; }
### Prompt Your task is to create a cpp solution to the following problem: An n Γ— n table a is defined as follows: * The first row and the first column contain ones, that is: ai, 1 = a1, i = 1 for all i = 1, 2, ..., n. * Each of the remaining numbers in the table is equal to the sum of the number above it and the number to the left of it. In other words, the remaining elements are defined by the formula ai, j = ai - 1, j + ai, j - 1. These conditions define all the values in the table. You are given a number n. You need to determine the maximum value in the n Γ— n table defined by the rules above. Input The only line of input contains a positive integer n (1 ≀ n ≀ 10) β€” the number of rows and columns of the table. Output Print a single line containing a positive integer m β€” the maximum value in the table. Examples Input 1 Output 1 Input 5 Output 70 Note In the second test the rows of the table look as follows: {1, 1, 1, 1, 1}, {1, 2, 3, 4, 5}, {1, 3, 6, 10, 15}, {1, 4, 10, 20, 35}, {1, 5, 15, 35, 70}. ### Response ```cpp #include <bits/stdc++.h> using namespace std; int main() { int v[10] = {1, 2, 6, 20, 70, 252, 924, 3432, 12870, 48620}; int n; cin >> n; cout << v[n - 1]; return 0; } ```
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; int a[n + 5][n + 5]; for (int i = 0; i < n; i++) a[0][i] = 1; for (int i = 0; i < n; i++) a[i][0] = 1; for (int i = 1; i < n; i++) { for (int j = 1; j < n; j++) { a[i][j] = a[i][j - 1] + a[i - 1][j]; } } cout << a[n - 1][n - 1]; }
### Prompt Please formulate a CPP solution to the following problem: An n Γ— n table a is defined as follows: * The first row and the first column contain ones, that is: ai, 1 = a1, i = 1 for all i = 1, 2, ..., n. * Each of the remaining numbers in the table is equal to the sum of the number above it and the number to the left of it. In other words, the remaining elements are defined by the formula ai, j = ai - 1, j + ai, j - 1. These conditions define all the values in the table. You are given a number n. You need to determine the maximum value in the n Γ— n table defined by the rules above. Input The only line of input contains a positive integer n (1 ≀ n ≀ 10) β€” the number of rows and columns of the table. Output Print a single line containing a positive integer m β€” the maximum value in the table. Examples Input 1 Output 1 Input 5 Output 70 Note In the second test the rows of the table look as follows: {1, 1, 1, 1, 1}, {1, 2, 3, 4, 5}, {1, 3, 6, 10, 15}, {1, 4, 10, 20, 35}, {1, 5, 15, 35, 70}. ### Response ```cpp #include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; int a[n + 5][n + 5]; for (int i = 0; i < n; i++) a[0][i] = 1; for (int i = 0; i < n; i++) a[i][0] = 1; for (int i = 1; i < n; i++) { for (int j = 1; j < n; j++) { a[i][j] = a[i][j - 1] + a[i - 1][j]; } } cout << a[n - 1][n - 1]; } ```
#include <bits/stdc++.h> using namespace std; int main() { int n, i, j, k; cin >> n; int arr[n][n]; for (i = 0; i < n; i++) { for (j = 0; j < n; j++) { if (!i || !j) { arr[i][j] = 1; } else arr[i][j] = 0; } } for (i = 1; i < n; i++) { for (j = 1; j < n; j++) { arr[i][j] = arr[i - 1][j] + arr[i][j - 1]; } } cout << arr[n - 1][n - 1] << endl; return 0; }
### Prompt Please formulate a Cpp solution to the following problem: An n Γ— n table a is defined as follows: * The first row and the first column contain ones, that is: ai, 1 = a1, i = 1 for all i = 1, 2, ..., n. * Each of the remaining numbers in the table is equal to the sum of the number above it and the number to the left of it. In other words, the remaining elements are defined by the formula ai, j = ai - 1, j + ai, j - 1. These conditions define all the values in the table. You are given a number n. You need to determine the maximum value in the n Γ— n table defined by the rules above. Input The only line of input contains a positive integer n (1 ≀ n ≀ 10) β€” the number of rows and columns of the table. Output Print a single line containing a positive integer m β€” the maximum value in the table. Examples Input 1 Output 1 Input 5 Output 70 Note In the second test the rows of the table look as follows: {1, 1, 1, 1, 1}, {1, 2, 3, 4, 5}, {1, 3, 6, 10, 15}, {1, 4, 10, 20, 35}, {1, 5, 15, 35, 70}. ### Response ```cpp #include <bits/stdc++.h> using namespace std; int main() { int n, i, j, k; cin >> n; int arr[n][n]; for (i = 0; i < n; i++) { for (j = 0; j < n; j++) { if (!i || !j) { arr[i][j] = 1; } else arr[i][j] = 0; } } for (i = 1; i < n; i++) { for (j = 1; j < n; j++) { arr[i][j] = arr[i - 1][j] + arr[i][j - 1]; } } cout << arr[n - 1][n - 1] << endl; return 0; } ```
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; int a[11][11]; for (int i = 1; i <= n; ++i) { a[i][1] = 1; a[1][i] = 1; } for (int i = 2; i <= n; ++i) { for (int j = 2; j <= n; ++j) a[i][j] = a[i - 1][j] + a[i][j - 1]; } cout << a[n][n]; }
### Prompt Generate a Cpp solution to the following problem: An n Γ— n table a is defined as follows: * The first row and the first column contain ones, that is: ai, 1 = a1, i = 1 for all i = 1, 2, ..., n. * Each of the remaining numbers in the table is equal to the sum of the number above it and the number to the left of it. In other words, the remaining elements are defined by the formula ai, j = ai - 1, j + ai, j - 1. These conditions define all the values in the table. You are given a number n. You need to determine the maximum value in the n Γ— n table defined by the rules above. Input The only line of input contains a positive integer n (1 ≀ n ≀ 10) β€” the number of rows and columns of the table. Output Print a single line containing a positive integer m β€” the maximum value in the table. Examples Input 1 Output 1 Input 5 Output 70 Note In the second test the rows of the table look as follows: {1, 1, 1, 1, 1}, {1, 2, 3, 4, 5}, {1, 3, 6, 10, 15}, {1, 4, 10, 20, 35}, {1, 5, 15, 35, 70}. ### Response ```cpp #include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; int a[11][11]; for (int i = 1; i <= n; ++i) { a[i][1] = 1; a[1][i] = 1; } for (int i = 2; i <= n; ++i) { for (int j = 2; j <= n; ++j) a[i][j] = a[i - 1][j] + a[i][j - 1]; } cout << a[n][n]; } ```
#include <bits/stdc++.h> using namespace std; int main() { int n, i, j; cin >> n; int m[n][n]; for (i = 0; i < n; i++) { m[i][0] = 1; m[0][i] = 1; } for (i = 1; i < n; i++) { for (j = 1; j < n; j++) { m[i][j] = m[i - 1][j] + m[i][j - 1]; } } cout << m[n - 1][n - 1]; return 0; }
### Prompt Create a solution in Cpp for the following problem: An n Γ— n table a is defined as follows: * The first row and the first column contain ones, that is: ai, 1 = a1, i = 1 for all i = 1, 2, ..., n. * Each of the remaining numbers in the table is equal to the sum of the number above it and the number to the left of it. In other words, the remaining elements are defined by the formula ai, j = ai - 1, j + ai, j - 1. These conditions define all the values in the table. You are given a number n. You need to determine the maximum value in the n Γ— n table defined by the rules above. Input The only line of input contains a positive integer n (1 ≀ n ≀ 10) β€” the number of rows and columns of the table. Output Print a single line containing a positive integer m β€” the maximum value in the table. Examples Input 1 Output 1 Input 5 Output 70 Note In the second test the rows of the table look as follows: {1, 1, 1, 1, 1}, {1, 2, 3, 4, 5}, {1, 3, 6, 10, 15}, {1, 4, 10, 20, 35}, {1, 5, 15, 35, 70}. ### Response ```cpp #include <bits/stdc++.h> using namespace std; int main() { int n, i, j; cin >> n; int m[n][n]; for (i = 0; i < n; i++) { m[i][0] = 1; m[0][i] = 1; } for (i = 1; i < n; i++) { for (j = 1; j < n; j++) { m[i][j] = m[i - 1][j] + m[i][j - 1]; } } cout << m[n - 1][n - 1]; return 0; } ```
#include <bits/stdc++.h> int main() { int n, a[10], b[10], i = 0, t; scanf("%d", &n); for (i = 0; i < n; i++) { a[i] = 1; } t = n; while (n - 1) { b[0] = 1; for (i = 1; i < t; i++) { b[i] = a[i] + b[i - 1]; } for (i = 0; i < t; i++) { a[i] = b[i]; } n--; } printf("%d", a[t - 1]); }
### Prompt Develop a solution in cpp to the problem described below: An n Γ— n table a is defined as follows: * The first row and the first column contain ones, that is: ai, 1 = a1, i = 1 for all i = 1, 2, ..., n. * Each of the remaining numbers in the table is equal to the sum of the number above it and the number to the left of it. In other words, the remaining elements are defined by the formula ai, j = ai - 1, j + ai, j - 1. These conditions define all the values in the table. You are given a number n. You need to determine the maximum value in the n Γ— n table defined by the rules above. Input The only line of input contains a positive integer n (1 ≀ n ≀ 10) β€” the number of rows and columns of the table. Output Print a single line containing a positive integer m β€” the maximum value in the table. Examples Input 1 Output 1 Input 5 Output 70 Note In the second test the rows of the table look as follows: {1, 1, 1, 1, 1}, {1, 2, 3, 4, 5}, {1, 3, 6, 10, 15}, {1, 4, 10, 20, 35}, {1, 5, 15, 35, 70}. ### Response ```cpp #include <bits/stdc++.h> int main() { int n, a[10], b[10], i = 0, t; scanf("%d", &n); for (i = 0; i < n; i++) { a[i] = 1; } t = n; while (n - 1) { b[0] = 1; for (i = 1; i < t; i++) { b[i] = a[i] + b[i - 1]; } for (i = 0; i < t; i++) { a[i] = b[i]; } n--; } printf("%d", a[t - 1]); } ```
#include <bits/stdc++.h> using namespace std; int a[40][40]; int n; int main() { cin >> n; for (int i = 1; i <= n; i++) { for (int j = 1; j <= n; j++) { if (i == 1 || j == 1) { a[i][j] = 1; } else { a[i][j] = a[i - 1][j] + a[i][j - 1]; } } } cout << a[n][n] << endl; ; return 0; }
### Prompt In CPP, your task is to solve the following problem: An n Γ— n table a is defined as follows: * The first row and the first column contain ones, that is: ai, 1 = a1, i = 1 for all i = 1, 2, ..., n. * Each of the remaining numbers in the table is equal to the sum of the number above it and the number to the left of it. In other words, the remaining elements are defined by the formula ai, j = ai - 1, j + ai, j - 1. These conditions define all the values in the table. You are given a number n. You need to determine the maximum value in the n Γ— n table defined by the rules above. Input The only line of input contains a positive integer n (1 ≀ n ≀ 10) β€” the number of rows and columns of the table. Output Print a single line containing a positive integer m β€” the maximum value in the table. Examples Input 1 Output 1 Input 5 Output 70 Note In the second test the rows of the table look as follows: {1, 1, 1, 1, 1}, {1, 2, 3, 4, 5}, {1, 3, 6, 10, 15}, {1, 4, 10, 20, 35}, {1, 5, 15, 35, 70}. ### Response ```cpp #include <bits/stdc++.h> using namespace std; int a[40][40]; int n; int main() { cin >> n; for (int i = 1; i <= n; i++) { for (int j = 1; j <= n; j++) { if (i == 1 || j == 1) { a[i][j] = 1; } else { a[i][j] = a[i - 1][j] + a[i][j - 1]; } } } cout << a[n][n] << endl; ; return 0; } ```
#include <bits/stdc++.h> using namespace std; long long fact(long long i) { if (i <= 0) return 1; else return i * fact(i - 1); } long long comb(long long n, long long r) { return fact(n) / (fact(r) * fact(n - r)); } int main() { int n; cin >> n; n--; cout << comb(2 * n, n); }
### Prompt Develop a solution in CPP to the problem described below: An n Γ— n table a is defined as follows: * The first row and the first column contain ones, that is: ai, 1 = a1, i = 1 for all i = 1, 2, ..., n. * Each of the remaining numbers in the table is equal to the sum of the number above it and the number to the left of it. In other words, the remaining elements are defined by the formula ai, j = ai - 1, j + ai, j - 1. These conditions define all the values in the table. You are given a number n. You need to determine the maximum value in the n Γ— n table defined by the rules above. Input The only line of input contains a positive integer n (1 ≀ n ≀ 10) β€” the number of rows and columns of the table. Output Print a single line containing a positive integer m β€” the maximum value in the table. Examples Input 1 Output 1 Input 5 Output 70 Note In the second test the rows of the table look as follows: {1, 1, 1, 1, 1}, {1, 2, 3, 4, 5}, {1, 3, 6, 10, 15}, {1, 4, 10, 20, 35}, {1, 5, 15, 35, 70}. ### Response ```cpp #include <bits/stdc++.h> using namespace std; long long fact(long long i) { if (i <= 0) return 1; else return i * fact(i - 1); } long long comb(long long n, long long r) { return fact(n) / (fact(r) * fact(n - r)); } int main() { int n; cin >> n; n--; cout << comb(2 * n, n); } ```
#include <bits/stdc++.h> using namespace std; const int N = 2e5 + 3; int main() { ios_base::sync_with_stdio(0); cin.tie(0); cout.tie(0); long long t, i, j, n, m, l, r; cin >> n; long long a[n + 1][n + 1]; for (i = 0; i < n; i++) a[0][i] = a[i][0] = 1; for (i = 1; i < n; i++) { for (j = 1; j < n; j++) { a[i][j] = a[i - 1][j] + a[i][j - 1]; } } cout << a[n - 1][n - 1] << "\n"; return 0; }
### Prompt Generate a CPP solution to the following problem: An n Γ— n table a is defined as follows: * The first row and the first column contain ones, that is: ai, 1 = a1, i = 1 for all i = 1, 2, ..., n. * Each of the remaining numbers in the table is equal to the sum of the number above it and the number to the left of it. In other words, the remaining elements are defined by the formula ai, j = ai - 1, j + ai, j - 1. These conditions define all the values in the table. You are given a number n. You need to determine the maximum value in the n Γ— n table defined by the rules above. Input The only line of input contains a positive integer n (1 ≀ n ≀ 10) β€” the number of rows and columns of the table. Output Print a single line containing a positive integer m β€” the maximum value in the table. Examples Input 1 Output 1 Input 5 Output 70 Note In the second test the rows of the table look as follows: {1, 1, 1, 1, 1}, {1, 2, 3, 4, 5}, {1, 3, 6, 10, 15}, {1, 4, 10, 20, 35}, {1, 5, 15, 35, 70}. ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int N = 2e5 + 3; int main() { ios_base::sync_with_stdio(0); cin.tie(0); cout.tie(0); long long t, i, j, n, m, l, r; cin >> n; long long a[n + 1][n + 1]; for (i = 0; i < n; i++) a[0][i] = a[i][0] = 1; for (i = 1; i < n; i++) { for (j = 1; j < n; j++) { a[i][j] = a[i - 1][j] + a[i][j - 1]; } } cout << a[n - 1][n - 1] << "\n"; return 0; } ```
#include <bits/stdc++.h> using namespace std; int nCn(int n, int r, vector<vector<int>>& dp) { if (r == 0 || r == n) return 1; if (n == 1) return 1; if (dp[n][r] != -1) return dp[n][r]; dp[n][r] = nCn(n - 1, r - 1, dp) + nCn(n - 1, r, dp); return dp[n][r]; } int main() { long long n; cin >> n; vector<vector<int>> dp(2 * n + 1, vector<int>(n + 1, -1)); cout << nCn(2 * (n - 1), n - 1, dp); }
### Prompt Construct a CPP code solution to the problem outlined: An n Γ— n table a is defined as follows: * The first row and the first column contain ones, that is: ai, 1 = a1, i = 1 for all i = 1, 2, ..., n. * Each of the remaining numbers in the table is equal to the sum of the number above it and the number to the left of it. In other words, the remaining elements are defined by the formula ai, j = ai - 1, j + ai, j - 1. These conditions define all the values in the table. You are given a number n. You need to determine the maximum value in the n Γ— n table defined by the rules above. Input The only line of input contains a positive integer n (1 ≀ n ≀ 10) β€” the number of rows and columns of the table. Output Print a single line containing a positive integer m β€” the maximum value in the table. Examples Input 1 Output 1 Input 5 Output 70 Note In the second test the rows of the table look as follows: {1, 1, 1, 1, 1}, {1, 2, 3, 4, 5}, {1, 3, 6, 10, 15}, {1, 4, 10, 20, 35}, {1, 5, 15, 35, 70}. ### Response ```cpp #include <bits/stdc++.h> using namespace std; int nCn(int n, int r, vector<vector<int>>& dp) { if (r == 0 || r == n) return 1; if (n == 1) return 1; if (dp[n][r] != -1) return dp[n][r]; dp[n][r] = nCn(n - 1, r - 1, dp) + nCn(n - 1, r, dp); return dp[n][r]; } int main() { long long n; cin >> n; vector<vector<int>> dp(2 * n + 1, vector<int>(n + 1, -1)); cout << nCn(2 * (n - 1), n - 1, dp); } ```
#include <bits/stdc++.h> int main(int argc, char *argv[]) { int i, n; long long res = 1; scanf("%d", &n); for (i = n; i < 2 * n - 1; i++) res *= i; for (i = 2; i < n; i++) res /= i; printf("%d", res); return 0; }
### Prompt Your challenge is to write a CPP solution to the following problem: An n Γ— n table a is defined as follows: * The first row and the first column contain ones, that is: ai, 1 = a1, i = 1 for all i = 1, 2, ..., n. * Each of the remaining numbers in the table is equal to the sum of the number above it and the number to the left of it. In other words, the remaining elements are defined by the formula ai, j = ai - 1, j + ai, j - 1. These conditions define all the values in the table. You are given a number n. You need to determine the maximum value in the n Γ— n table defined by the rules above. Input The only line of input contains a positive integer n (1 ≀ n ≀ 10) β€” the number of rows and columns of the table. Output Print a single line containing a positive integer m β€” the maximum value in the table. Examples Input 1 Output 1 Input 5 Output 70 Note In the second test the rows of the table look as follows: {1, 1, 1, 1, 1}, {1, 2, 3, 4, 5}, {1, 3, 6, 10, 15}, {1, 4, 10, 20, 35}, {1, 5, 15, 35, 70}. ### Response ```cpp #include <bits/stdc++.h> int main(int argc, char *argv[]) { int i, n; long long res = 1; scanf("%d", &n); for (i = n; i < 2 * n - 1; i++) res *= i; for (i = 2; i < n; i++) res /= i; printf("%d", res); return 0; } ```
#include <bits/stdc++.h> using namespace std; int main() { int i, j, a; scanf("%d", &a); int n[a][a]; for (i = 0; i < a; i++) { for (j = 0; j < a; j++) { n[i][j] = 1; } } for (i = 1; i < a; i++) { for (j = 1; j < a; j++) { n[i][j] = n[i - 1][j] + n[i][j - 1]; } } printf("%d\n", n[a - 1][a - 1]); return 0; }
### Prompt Generate a CPP solution to the following problem: An n Γ— n table a is defined as follows: * The first row and the first column contain ones, that is: ai, 1 = a1, i = 1 for all i = 1, 2, ..., n. * Each of the remaining numbers in the table is equal to the sum of the number above it and the number to the left of it. In other words, the remaining elements are defined by the formula ai, j = ai - 1, j + ai, j - 1. These conditions define all the values in the table. You are given a number n. You need to determine the maximum value in the n Γ— n table defined by the rules above. Input The only line of input contains a positive integer n (1 ≀ n ≀ 10) β€” the number of rows and columns of the table. Output Print a single line containing a positive integer m β€” the maximum value in the table. Examples Input 1 Output 1 Input 5 Output 70 Note In the second test the rows of the table look as follows: {1, 1, 1, 1, 1}, {1, 2, 3, 4, 5}, {1, 3, 6, 10, 15}, {1, 4, 10, 20, 35}, {1, 5, 15, 35, 70}. ### Response ```cpp #include <bits/stdc++.h> using namespace std; int main() { int i, j, a; scanf("%d", &a); int n[a][a]; for (i = 0; i < a; i++) { for (j = 0; j < a; j++) { n[i][j] = 1; } } for (i = 1; i < a; i++) { for (j = 1; j < a; j++) { n[i][j] = n[i - 1][j] + n[i][j - 1]; } } printf("%d\n", n[a - 1][a - 1]); return 0; } ```
#include <bits/stdc++.h> using namespace std; long long C(long long n, long long r) { if (r > n) return 0; if (r == 1) return n; if (r == 0) return 1; return C(n - 1, r) + C(n - 1, r - 1); } int main() { ios::sync_with_stdio(0); cin.tie(0); int n; cin >> n; if (n == 1) cout << "1"; else { cout << C(2 * (n - 1), n - 1); } return 0; }
### Prompt Develop a solution in Cpp to the problem described below: An n Γ— n table a is defined as follows: * The first row and the first column contain ones, that is: ai, 1 = a1, i = 1 for all i = 1, 2, ..., n. * Each of the remaining numbers in the table is equal to the sum of the number above it and the number to the left of it. In other words, the remaining elements are defined by the formula ai, j = ai - 1, j + ai, j - 1. These conditions define all the values in the table. You are given a number n. You need to determine the maximum value in the n Γ— n table defined by the rules above. Input The only line of input contains a positive integer n (1 ≀ n ≀ 10) β€” the number of rows and columns of the table. Output Print a single line containing a positive integer m β€” the maximum value in the table. Examples Input 1 Output 1 Input 5 Output 70 Note In the second test the rows of the table look as follows: {1, 1, 1, 1, 1}, {1, 2, 3, 4, 5}, {1, 3, 6, 10, 15}, {1, 4, 10, 20, 35}, {1, 5, 15, 35, 70}. ### Response ```cpp #include <bits/stdc++.h> using namespace std; long long C(long long n, long long r) { if (r > n) return 0; if (r == 1) return n; if (r == 0) return 1; return C(n - 1, r) + C(n - 1, r - 1); } int main() { ios::sync_with_stdio(0); cin.tie(0); int n; cin >> n; if (n == 1) cout << "1"; else { cout << C(2 * (n - 1), n - 1); } return 0; } ```
#include <bits/stdc++.h> using namespace std; int main() { ios_base::sync_with_stdio(false); cin.tie(NULL); cout.tie(NULL); long long int n, c = 0; cin >> n; long long int a[n][n], i, j; for (i = 0; i < n; i++) { a[i][0] = 1; a[0][i] = 1; } for (i = 1; i < n; i++) { for (j = 1; j < n; j++) { a[i][j] = a[i - 1][j] + a[i][j - 1]; } } cout << a[n - 1][n - 1] << endl; return 0; }
### Prompt Please create a solution in cpp to the following problem: An n Γ— n table a is defined as follows: * The first row and the first column contain ones, that is: ai, 1 = a1, i = 1 for all i = 1, 2, ..., n. * Each of the remaining numbers in the table is equal to the sum of the number above it and the number to the left of it. In other words, the remaining elements are defined by the formula ai, j = ai - 1, j + ai, j - 1. These conditions define all the values in the table. You are given a number n. You need to determine the maximum value in the n Γ— n table defined by the rules above. Input The only line of input contains a positive integer n (1 ≀ n ≀ 10) β€” the number of rows and columns of the table. Output Print a single line containing a positive integer m β€” the maximum value in the table. Examples Input 1 Output 1 Input 5 Output 70 Note In the second test the rows of the table look as follows: {1, 1, 1, 1, 1}, {1, 2, 3, 4, 5}, {1, 3, 6, 10, 15}, {1, 4, 10, 20, 35}, {1, 5, 15, 35, 70}. ### Response ```cpp #include <bits/stdc++.h> using namespace std; int main() { ios_base::sync_with_stdio(false); cin.tie(NULL); cout.tie(NULL); long long int n, c = 0; cin >> n; long long int a[n][n], i, j; for (i = 0; i < n; i++) { a[i][0] = 1; a[0][i] = 1; } for (i = 1; i < n; i++) { for (j = 1; j < n; j++) { a[i][j] = a[i - 1][j] + a[i][j - 1]; } } cout << a[n - 1][n - 1] << endl; return 0; } ```
#include <bits/stdc++.h> using namespace std; int main() { int n, i, j; cin >> n; int a[n][n]; for (i = 0; i < n; i++) { a[0][i] = 1; a[i][0] = 1; } for (i = 1; i < n; i++) { for (j = 1; j < n; j++) { a[i][j] = a[i - 1][j] + a[i][j - 1]; } } cout << a[n - 1][n - 1]; return 0; }
### Prompt Your task is to create a cpp solution to the following problem: An n Γ— n table a is defined as follows: * The first row and the first column contain ones, that is: ai, 1 = a1, i = 1 for all i = 1, 2, ..., n. * Each of the remaining numbers in the table is equal to the sum of the number above it and the number to the left of it. In other words, the remaining elements are defined by the formula ai, j = ai - 1, j + ai, j - 1. These conditions define all the values in the table. You are given a number n. You need to determine the maximum value in the n Γ— n table defined by the rules above. Input The only line of input contains a positive integer n (1 ≀ n ≀ 10) β€” the number of rows and columns of the table. Output Print a single line containing a positive integer m β€” the maximum value in the table. Examples Input 1 Output 1 Input 5 Output 70 Note In the second test the rows of the table look as follows: {1, 1, 1, 1, 1}, {1, 2, 3, 4, 5}, {1, 3, 6, 10, 15}, {1, 4, 10, 20, 35}, {1, 5, 15, 35, 70}. ### Response ```cpp #include <bits/stdc++.h> using namespace std; int main() { int n, i, j; cin >> n; int a[n][n]; for (i = 0; i < n; i++) { a[0][i] = 1; a[i][0] = 1; } for (i = 1; i < n; i++) { for (j = 1; j < n; j++) { a[i][j] = a[i - 1][j] + a[i][j - 1]; } } cout << a[n - 1][n - 1]; return 0; } ```
#include <bits/stdc++.h> using namespace std; long long Cruz(int a, int b) { long long p1 = 1, p2 = 1; for (int i = 0; i < b; i++) p1 *= a - i; for (int i = 0; i < b; i++) p2 *= i + 1; return p1 / p2; } int main() { int n; cin >> n; if (n >= 1 && n <= 10) { cout << Cruz(2 * n - 2, n - 1); } return 0; }
### Prompt Create a solution in Cpp for the following problem: An n Γ— n table a is defined as follows: * The first row and the first column contain ones, that is: ai, 1 = a1, i = 1 for all i = 1, 2, ..., n. * Each of the remaining numbers in the table is equal to the sum of the number above it and the number to the left of it. In other words, the remaining elements are defined by the formula ai, j = ai - 1, j + ai, j - 1. These conditions define all the values in the table. You are given a number n. You need to determine the maximum value in the n Γ— n table defined by the rules above. Input The only line of input contains a positive integer n (1 ≀ n ≀ 10) β€” the number of rows and columns of the table. Output Print a single line containing a positive integer m β€” the maximum value in the table. Examples Input 1 Output 1 Input 5 Output 70 Note In the second test the rows of the table look as follows: {1, 1, 1, 1, 1}, {1, 2, 3, 4, 5}, {1, 3, 6, 10, 15}, {1, 4, 10, 20, 35}, {1, 5, 15, 35, 70}. ### Response ```cpp #include <bits/stdc++.h> using namespace std; long long Cruz(int a, int b) { long long p1 = 1, p2 = 1; for (int i = 0; i < b; i++) p1 *= a - i; for (int i = 0; i < b; i++) p2 *= i + 1; return p1 / p2; } int main() { int n; cin >> n; if (n >= 1 && n <= 10) { cout << Cruz(2 * n - 2, n - 1); } return 0; } ```
#include <bits/stdc++.h> using namespace std; int main() { int i, j, n, ar[11][11] = {}; cin >> n; for (i = 1; i <= n; i++) { for (j = 1; j <= n; j++) { if ((i == 1) || (i == 2 && j == 1)) ar[i][j] = 1; else ar[i][j] = ar[i - 1][j] + ar[i][j - 1]; } } cout << ar[n][n] << endl; }
### Prompt Your task is to create a CPP solution to the following problem: An n Γ— n table a is defined as follows: * The first row and the first column contain ones, that is: ai, 1 = a1, i = 1 for all i = 1, 2, ..., n. * Each of the remaining numbers in the table is equal to the sum of the number above it and the number to the left of it. In other words, the remaining elements are defined by the formula ai, j = ai - 1, j + ai, j - 1. These conditions define all the values in the table. You are given a number n. You need to determine the maximum value in the n Γ— n table defined by the rules above. Input The only line of input contains a positive integer n (1 ≀ n ≀ 10) β€” the number of rows and columns of the table. Output Print a single line containing a positive integer m β€” the maximum value in the table. Examples Input 1 Output 1 Input 5 Output 70 Note In the second test the rows of the table look as follows: {1, 1, 1, 1, 1}, {1, 2, 3, 4, 5}, {1, 3, 6, 10, 15}, {1, 4, 10, 20, 35}, {1, 5, 15, 35, 70}. ### Response ```cpp #include <bits/stdc++.h> using namespace std; int main() { int i, j, n, ar[11][11] = {}; cin >> n; for (i = 1; i <= n; i++) { for (j = 1; j <= n; j++) { if ((i == 1) || (i == 2 && j == 1)) ar[i][j] = 1; else ar[i][j] = ar[i - 1][j] + ar[i][j - 1]; } } cout << ar[n][n] << endl; } ```
#include <bits/stdc++.h> using namespace std; int solve(int i, int j) { if (i == 1 || j == 1) return 1; else return solve(i - 1, j) + solve(i, j - 1); } int main() { int n; scanf("%d", &n); printf("%d\n", solve(n, n)); return 0; }
### Prompt Construct a cpp code solution to the problem outlined: An n Γ— n table a is defined as follows: * The first row and the first column contain ones, that is: ai, 1 = a1, i = 1 for all i = 1, 2, ..., n. * Each of the remaining numbers in the table is equal to the sum of the number above it and the number to the left of it. In other words, the remaining elements are defined by the formula ai, j = ai - 1, j + ai, j - 1. These conditions define all the values in the table. You are given a number n. You need to determine the maximum value in the n Γ— n table defined by the rules above. Input The only line of input contains a positive integer n (1 ≀ n ≀ 10) β€” the number of rows and columns of the table. Output Print a single line containing a positive integer m β€” the maximum value in the table. Examples Input 1 Output 1 Input 5 Output 70 Note In the second test the rows of the table look as follows: {1, 1, 1, 1, 1}, {1, 2, 3, 4, 5}, {1, 3, 6, 10, 15}, {1, 4, 10, 20, 35}, {1, 5, 15, 35, 70}. ### Response ```cpp #include <bits/stdc++.h> using namespace std; int solve(int i, int j) { if (i == 1 || j == 1) return 1; else return solve(i - 1, j) + solve(i, j - 1); } int main() { int n; scanf("%d", &n); printf("%d\n", solve(n, n)); return 0; } ```
#include <bits/stdc++.h> using namespace std; int main() { ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0); int n, i, j; long long int ar[100][100]; cin >> n; for (i = 0; i < n; i++) { ar[0][i] = 1; ar[i][0] = 1; } for (i = 1; i < n; i++) { for (j = 1; j < n; j++) { ar[i][j] = ar[i - 1][j] + ar[i][j - 1]; } } cout << ar[n - 1][n - 1]; return 0; }
### Prompt Please formulate a cpp solution to the following problem: An n Γ— n table a is defined as follows: * The first row and the first column contain ones, that is: ai, 1 = a1, i = 1 for all i = 1, 2, ..., n. * Each of the remaining numbers in the table is equal to the sum of the number above it and the number to the left of it. In other words, the remaining elements are defined by the formula ai, j = ai - 1, j + ai, j - 1. These conditions define all the values in the table. You are given a number n. You need to determine the maximum value in the n Γ— n table defined by the rules above. Input The only line of input contains a positive integer n (1 ≀ n ≀ 10) β€” the number of rows and columns of the table. Output Print a single line containing a positive integer m β€” the maximum value in the table. Examples Input 1 Output 1 Input 5 Output 70 Note In the second test the rows of the table look as follows: {1, 1, 1, 1, 1}, {1, 2, 3, 4, 5}, {1, 3, 6, 10, 15}, {1, 4, 10, 20, 35}, {1, 5, 15, 35, 70}. ### Response ```cpp #include <bits/stdc++.h> using namespace std; int main() { ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0); int n, i, j; long long int ar[100][100]; cin >> n; for (i = 0; i < n; i++) { ar[0][i] = 1; ar[i][0] = 1; } for (i = 1; i < n; i++) { for (j = 1; j < n; j++) { ar[i][j] = ar[i - 1][j] + ar[i][j - 1]; } } cout << ar[n - 1][n - 1]; return 0; } ```
#include <bits/stdc++.h> template <typename T> T in() { char ch; T n = 0; bool ng = false; while (1) { ch = getchar(); if (ch == '-') { ng = true; ch = getchar(); break; } if (ch >= '0' && ch <= '9') break; } while (1) { n = n * 10 + (ch - '0'); ch = getchar(); if (ch < '0' || ch > '9') break; } return (ng ? -n : n); } using namespace std; int ar[101][109]; int main() { int n; cin >> n; for (int i = 1; i < n + 1; i++) ar[1][i] = 1; for (int i = 1; i < n + 1; i++) ar[i][1] = 1; for (int i = 2; i < n + 1; i++) { for (int j = 2; j < n + 1; j++) { ar[i][j] = (ar[i - 1][j] + ar[i][j - 1]); } } cout << ar[n][n] << endl; return 0; }
### Prompt Generate a CPP solution to the following problem: An n Γ— n table a is defined as follows: * The first row and the first column contain ones, that is: ai, 1 = a1, i = 1 for all i = 1, 2, ..., n. * Each of the remaining numbers in the table is equal to the sum of the number above it and the number to the left of it. In other words, the remaining elements are defined by the formula ai, j = ai - 1, j + ai, j - 1. These conditions define all the values in the table. You are given a number n. You need to determine the maximum value in the n Γ— n table defined by the rules above. Input The only line of input contains a positive integer n (1 ≀ n ≀ 10) β€” the number of rows and columns of the table. Output Print a single line containing a positive integer m β€” the maximum value in the table. Examples Input 1 Output 1 Input 5 Output 70 Note In the second test the rows of the table look as follows: {1, 1, 1, 1, 1}, {1, 2, 3, 4, 5}, {1, 3, 6, 10, 15}, {1, 4, 10, 20, 35}, {1, 5, 15, 35, 70}. ### Response ```cpp #include <bits/stdc++.h> template <typename T> T in() { char ch; T n = 0; bool ng = false; while (1) { ch = getchar(); if (ch == '-') { ng = true; ch = getchar(); break; } if (ch >= '0' && ch <= '9') break; } while (1) { n = n * 10 + (ch - '0'); ch = getchar(); if (ch < '0' || ch > '9') break; } return (ng ? -n : n); } using namespace std; int ar[101][109]; int main() { int n; cin >> n; for (int i = 1; i < n + 1; i++) ar[1][i] = 1; for (int i = 1; i < n + 1; i++) ar[i][1] = 1; for (int i = 2; i < n + 1; i++) { for (int j = 2; j < n + 1; j++) { ar[i][j] = (ar[i - 1][j] + ar[i][j - 1]); } } cout << ar[n][n] << endl; return 0; } ```
#include <bits/stdc++.h> using namespace std; int tab[11][11]; int main() { int n; cin >> n; tab[0][1] = 1; for (int i = 1; i <= n; ++i) { for (int j = 1; j <= n; ++j) { tab[i][j] = tab[i - 1][j] + tab[i][j - 1]; } } cout << tab[n][n]; }
### Prompt In CPP, your task is to solve the following problem: An n Γ— n table a is defined as follows: * The first row and the first column contain ones, that is: ai, 1 = a1, i = 1 for all i = 1, 2, ..., n. * Each of the remaining numbers in the table is equal to the sum of the number above it and the number to the left of it. In other words, the remaining elements are defined by the formula ai, j = ai - 1, j + ai, j - 1. These conditions define all the values in the table. You are given a number n. You need to determine the maximum value in the n Γ— n table defined by the rules above. Input The only line of input contains a positive integer n (1 ≀ n ≀ 10) β€” the number of rows and columns of the table. Output Print a single line containing a positive integer m β€” the maximum value in the table. Examples Input 1 Output 1 Input 5 Output 70 Note In the second test the rows of the table look as follows: {1, 1, 1, 1, 1}, {1, 2, 3, 4, 5}, {1, 3, 6, 10, 15}, {1, 4, 10, 20, 35}, {1, 5, 15, 35, 70}. ### Response ```cpp #include <bits/stdc++.h> using namespace std; int tab[11][11]; int main() { int n; cin >> n; tab[0][1] = 1; for (int i = 1; i <= n; ++i) { for (int j = 1; j <= n; ++j) { tab[i][j] = tab[i - 1][j] + tab[i][j - 1]; } } cout << tab[n][n]; } ```
#include <bits/stdc++.h> using namespace std; int main() { int a[100][100]; int n; cin >> n; for (int i = 1; i <= n; i++) { for (int j = 1; j <= n; j++) { if (i == 1) { a[i][j] = 1; } else if (j == 1) { a[i][j] = 1; } else { a[i][j] = a[i - 1][j] + a[i][j - 1]; } } } cout << a[n][n] << endl; }
### Prompt Please provide a cpp coded solution to the problem described below: An n Γ— n table a is defined as follows: * The first row and the first column contain ones, that is: ai, 1 = a1, i = 1 for all i = 1, 2, ..., n. * Each of the remaining numbers in the table is equal to the sum of the number above it and the number to the left of it. In other words, the remaining elements are defined by the formula ai, j = ai - 1, j + ai, j - 1. These conditions define all the values in the table. You are given a number n. You need to determine the maximum value in the n Γ— n table defined by the rules above. Input The only line of input contains a positive integer n (1 ≀ n ≀ 10) β€” the number of rows and columns of the table. Output Print a single line containing a positive integer m β€” the maximum value in the table. Examples Input 1 Output 1 Input 5 Output 70 Note In the second test the rows of the table look as follows: {1, 1, 1, 1, 1}, {1, 2, 3, 4, 5}, {1, 3, 6, 10, 15}, {1, 4, 10, 20, 35}, {1, 5, 15, 35, 70}. ### Response ```cpp #include <bits/stdc++.h> using namespace std; int main() { int a[100][100]; int n; cin >> n; for (int i = 1; i <= n; i++) { for (int j = 1; j <= n; j++) { if (i == 1) { a[i][j] = 1; } else if (j == 1) { a[i][j] = 1; } else { a[i][j] = a[i - 1][j] + a[i][j - 1]; } } } cout << a[n][n] << endl; } ```
#include <bits/stdc++.h> using namespace std; vector<pair<long long, long long> > vp; vector<long long> v; set<long long> st; long long ara[100][100]; map<long long, long long> mp; long long Set(long long N, long long pos) { return N = N | (1LL << pos); } long long reset(long long N, long long pos) { return N = N & ~(1LL << pos); } bool check(long long N, long long pos) { return (bool)(N & (1LL << pos)); } vector<long long> e, o; int main() { ios_base::sync_with_stdio(0); cin.tie(0); cout.tie(0); long long n, i, j, p; for (j = 1; j <= 10; j++) ara[1][j] = 1; for (i = 1; i <= 10; i++) ara[i][1] = 1; for (i = 2; i <= 10; i++) { for (j = 2; j <= 10; j++) ara[i][j] = ara[i - 1][j] + ara[i][j - 1]; } cin >> n; cout << ara[n][n] << endl; }
### Prompt Please formulate a CPP solution to the following problem: An n Γ— n table a is defined as follows: * The first row and the first column contain ones, that is: ai, 1 = a1, i = 1 for all i = 1, 2, ..., n. * Each of the remaining numbers in the table is equal to the sum of the number above it and the number to the left of it. In other words, the remaining elements are defined by the formula ai, j = ai - 1, j + ai, j - 1. These conditions define all the values in the table. You are given a number n. You need to determine the maximum value in the n Γ— n table defined by the rules above. Input The only line of input contains a positive integer n (1 ≀ n ≀ 10) β€” the number of rows and columns of the table. Output Print a single line containing a positive integer m β€” the maximum value in the table. Examples Input 1 Output 1 Input 5 Output 70 Note In the second test the rows of the table look as follows: {1, 1, 1, 1, 1}, {1, 2, 3, 4, 5}, {1, 3, 6, 10, 15}, {1, 4, 10, 20, 35}, {1, 5, 15, 35, 70}. ### Response ```cpp #include <bits/stdc++.h> using namespace std; vector<pair<long long, long long> > vp; vector<long long> v; set<long long> st; long long ara[100][100]; map<long long, long long> mp; long long Set(long long N, long long pos) { return N = N | (1LL << pos); } long long reset(long long N, long long pos) { return N = N & ~(1LL << pos); } bool check(long long N, long long pos) { return (bool)(N & (1LL << pos)); } vector<long long> e, o; int main() { ios_base::sync_with_stdio(0); cin.tie(0); cout.tie(0); long long n, i, j, p; for (j = 1; j <= 10; j++) ara[1][j] = 1; for (i = 1; i <= 10; i++) ara[i][1] = 1; for (i = 2; i <= 10; i++) { for (j = 2; j <= 10; j++) ara[i][j] = ara[i - 1][j] + ara[i][j - 1]; } cin >> n; cout << ara[n][n] << endl; } ```
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; int arr[n][n]; for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { if (i == 0 || j == 0) { arr[i][j] = 1; } else { arr[i][j] = arr[i - 1][j] + arr[i][j - 1]; } } } cout << arr[n - 1][n - 1]; }
### Prompt In cpp, your task is to solve the following problem: An n Γ— n table a is defined as follows: * The first row and the first column contain ones, that is: ai, 1 = a1, i = 1 for all i = 1, 2, ..., n. * Each of the remaining numbers in the table is equal to the sum of the number above it and the number to the left of it. In other words, the remaining elements are defined by the formula ai, j = ai - 1, j + ai, j - 1. These conditions define all the values in the table. You are given a number n. You need to determine the maximum value in the n Γ— n table defined by the rules above. Input The only line of input contains a positive integer n (1 ≀ n ≀ 10) β€” the number of rows and columns of the table. Output Print a single line containing a positive integer m β€” the maximum value in the table. Examples Input 1 Output 1 Input 5 Output 70 Note In the second test the rows of the table look as follows: {1, 1, 1, 1, 1}, {1, 2, 3, 4, 5}, {1, 3, 6, 10, 15}, {1, 4, 10, 20, 35}, {1, 5, 15, 35, 70}. ### Response ```cpp #include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; int arr[n][n]; for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { if (i == 0 || j == 0) { arr[i][j] = 1; } else { arr[i][j] = arr[i - 1][j] + arr[i][j - 1]; } } } cout << arr[n - 1][n - 1]; } ```
#include <bits/stdc++.h> int main() { int n; int i, j; int *table; scanf("%d", &n); table = (int *)malloc(n * n * sizeof(int)); for (i = 0; i < n; i++) { for (j = 0; j < n; j++) { if (i == 0 || j == 0) *(table + i * n + j) = 1; else *(table + i * n + j) = *(table + i * n + j - 1) + *(table + (i - 1) * n + j); } } printf("%d", *(table + (i - 1) * n + j - 1)); free(table); return 0; }
### Prompt Create a solution in CPP for the following problem: An n Γ— n table a is defined as follows: * The first row and the first column contain ones, that is: ai, 1 = a1, i = 1 for all i = 1, 2, ..., n. * Each of the remaining numbers in the table is equal to the sum of the number above it and the number to the left of it. In other words, the remaining elements are defined by the formula ai, j = ai - 1, j + ai, j - 1. These conditions define all the values in the table. You are given a number n. You need to determine the maximum value in the n Γ— n table defined by the rules above. Input The only line of input contains a positive integer n (1 ≀ n ≀ 10) β€” the number of rows and columns of the table. Output Print a single line containing a positive integer m β€” the maximum value in the table. Examples Input 1 Output 1 Input 5 Output 70 Note In the second test the rows of the table look as follows: {1, 1, 1, 1, 1}, {1, 2, 3, 4, 5}, {1, 3, 6, 10, 15}, {1, 4, 10, 20, 35}, {1, 5, 15, 35, 70}. ### Response ```cpp #include <bits/stdc++.h> int main() { int n; int i, j; int *table; scanf("%d", &n); table = (int *)malloc(n * n * sizeof(int)); for (i = 0; i < n; i++) { for (j = 0; j < n; j++) { if (i == 0 || j == 0) *(table + i * n + j) = 1; else *(table + i * n + j) = *(table + i * n + j - 1) + *(table + (i - 1) * n + j); } } printf("%d", *(table + (i - 1) * n + j - 1)); free(table); return 0; } ```
#include <bits/stdc++.h> using namespace std; int arr[10][10]; int main() { ios_base::sync_with_stdio(0); int n; cin >> n; for (int i = 0; i < n; ++i) { arr[0][i] = 1; arr[i][0] = 1; } for (int i = 1; i < n; ++i) for (int j = 1; j < n; ++j) arr[i][j] = arr[i - 1][j] + arr[i][j - 1]; cout << arr[n - 1][n - 1] << endl; return 0; }
### Prompt Develop a solution in CPP to the problem described below: An n Γ— n table a is defined as follows: * The first row and the first column contain ones, that is: ai, 1 = a1, i = 1 for all i = 1, 2, ..., n. * Each of the remaining numbers in the table is equal to the sum of the number above it and the number to the left of it. In other words, the remaining elements are defined by the formula ai, j = ai - 1, j + ai, j - 1. These conditions define all the values in the table. You are given a number n. You need to determine the maximum value in the n Γ— n table defined by the rules above. Input The only line of input contains a positive integer n (1 ≀ n ≀ 10) β€” the number of rows and columns of the table. Output Print a single line containing a positive integer m β€” the maximum value in the table. Examples Input 1 Output 1 Input 5 Output 70 Note In the second test the rows of the table look as follows: {1, 1, 1, 1, 1}, {1, 2, 3, 4, 5}, {1, 3, 6, 10, 15}, {1, 4, 10, 20, 35}, {1, 5, 15, 35, 70}. ### Response ```cpp #include <bits/stdc++.h> using namespace std; int arr[10][10]; int main() { ios_base::sync_with_stdio(0); int n; cin >> n; for (int i = 0; i < n; ++i) { arr[0][i] = 1; arr[i][0] = 1; } for (int i = 1; i < n; ++i) for (int j = 1; j < n; ++j) arr[i][j] = arr[i - 1][j] + arr[i][j - 1]; cout << arr[n - 1][n - 1] << endl; return 0; } ```
#include <bits/stdc++.h> using namespace std; int main() { long long n, N, fact1 = 1, fact2 = 1, i; cin >> n; if (n == 0) N = 1; else N = (n - 1) * 2; for (i = 2; i <= N; ++i) { fact1 *= i; if (i < n) fact2 *= i; } cout << fact1 / (fact2 * fact2); return 0; }
### Prompt Construct a Cpp code solution to the problem outlined: An n Γ— n table a is defined as follows: * The first row and the first column contain ones, that is: ai, 1 = a1, i = 1 for all i = 1, 2, ..., n. * Each of the remaining numbers in the table is equal to the sum of the number above it and the number to the left of it. In other words, the remaining elements are defined by the formula ai, j = ai - 1, j + ai, j - 1. These conditions define all the values in the table. You are given a number n. You need to determine the maximum value in the n Γ— n table defined by the rules above. Input The only line of input contains a positive integer n (1 ≀ n ≀ 10) β€” the number of rows and columns of the table. Output Print a single line containing a positive integer m β€” the maximum value in the table. Examples Input 1 Output 1 Input 5 Output 70 Note In the second test the rows of the table look as follows: {1, 1, 1, 1, 1}, {1, 2, 3, 4, 5}, {1, 3, 6, 10, 15}, {1, 4, 10, 20, 35}, {1, 5, 15, 35, 70}. ### Response ```cpp #include <bits/stdc++.h> using namespace std; int main() { long long n, N, fact1 = 1, fact2 = 1, i; cin >> n; if (n == 0) N = 1; else N = (n - 1) * 2; for (i = 2; i <= N; ++i) { fact1 *= i; if (i < n) fact2 *= i; } cout << fact1 / (fact2 * fact2); return 0; } ```
#include <bits/stdc++.h> using namespace std; long long fact(long long n) { long long ret = 1; for (long long i = 2; i <= n; i++) ret *= i; return ret; } long long combinari(long long n, long long k) { return fact(n) / fact(k) / fact(n - k); } long long n; int main() { cin >> n; cout << combinari(2 * (n - 1), (n - 1)); return 0; }
### Prompt Construct a cpp code solution to the problem outlined: An n Γ— n table a is defined as follows: * The first row and the first column contain ones, that is: ai, 1 = a1, i = 1 for all i = 1, 2, ..., n. * Each of the remaining numbers in the table is equal to the sum of the number above it and the number to the left of it. In other words, the remaining elements are defined by the formula ai, j = ai - 1, j + ai, j - 1. These conditions define all the values in the table. You are given a number n. You need to determine the maximum value in the n Γ— n table defined by the rules above. Input The only line of input contains a positive integer n (1 ≀ n ≀ 10) β€” the number of rows and columns of the table. Output Print a single line containing a positive integer m β€” the maximum value in the table. Examples Input 1 Output 1 Input 5 Output 70 Note In the second test the rows of the table look as follows: {1, 1, 1, 1, 1}, {1, 2, 3, 4, 5}, {1, 3, 6, 10, 15}, {1, 4, 10, 20, 35}, {1, 5, 15, 35, 70}. ### Response ```cpp #include <bits/stdc++.h> using namespace std; long long fact(long long n) { long long ret = 1; for (long long i = 2; i <= n; i++) ret *= i; return ret; } long long combinari(long long n, long long k) { return fact(n) / fact(k) / fact(n - k); } long long n; int main() { cin >> n; cout << combinari(2 * (n - 1), (n - 1)); return 0; } ```
#include <bits/stdc++.h> using namespace std; using ull = unsigned long long; using lln = long long int; using ls = string; using ch = char; using lld = long double; using lf = float; using ll = int; using ld = double; int a, arr[10][10]; void solve() { cin >> a; for (int i = 0; i < a; i++) { for (int j = 0; j < a; j++) { if (i == 0) { arr[i][j] = 1; } else if (j == 0) { arr[i][j] = 1; } else { arr[i][j] = arr[i - 1][j] + arr[i][j - 1]; } } } cout << arr[a - 1][a - 1]; } int main() { solve(); }
### Prompt In CPP, your task is to solve the following problem: An n Γ— n table a is defined as follows: * The first row and the first column contain ones, that is: ai, 1 = a1, i = 1 for all i = 1, 2, ..., n. * Each of the remaining numbers in the table is equal to the sum of the number above it and the number to the left of it. In other words, the remaining elements are defined by the formula ai, j = ai - 1, j + ai, j - 1. These conditions define all the values in the table. You are given a number n. You need to determine the maximum value in the n Γ— n table defined by the rules above. Input The only line of input contains a positive integer n (1 ≀ n ≀ 10) β€” the number of rows and columns of the table. Output Print a single line containing a positive integer m β€” the maximum value in the table. Examples Input 1 Output 1 Input 5 Output 70 Note In the second test the rows of the table look as follows: {1, 1, 1, 1, 1}, {1, 2, 3, 4, 5}, {1, 3, 6, 10, 15}, {1, 4, 10, 20, 35}, {1, 5, 15, 35, 70}. ### Response ```cpp #include <bits/stdc++.h> using namespace std; using ull = unsigned long long; using lln = long long int; using ls = string; using ch = char; using lld = long double; using lf = float; using ll = int; using ld = double; int a, arr[10][10]; void solve() { cin >> a; for (int i = 0; i < a; i++) { for (int j = 0; j < a; j++) { if (i == 0) { arr[i][j] = 1; } else if (j == 0) { arr[i][j] = 1; } else { arr[i][j] = arr[i - 1][j] + arr[i][j - 1]; } } } cout << arr[a - 1][a - 1]; } int main() { solve(); } ```
#include <bits/stdc++.h> using namespace std; int a[20][20]; int main() { int n; scanf("%d", &n); int res = 1; for (int i = 1; i <= n; ++i) a[1][i] = 1, a[i][1] = 1; for (int i = 2; i <= n; ++i) for (int j = 2; j <= n; ++j) res = max(res, a[i][j] = a[i - 1][j] + a[i][j - 1]); printf("%d\n", res); }
### Prompt Develop a solution in cpp to the problem described below: An n Γ— n table a is defined as follows: * The first row and the first column contain ones, that is: ai, 1 = a1, i = 1 for all i = 1, 2, ..., n. * Each of the remaining numbers in the table is equal to the sum of the number above it and the number to the left of it. In other words, the remaining elements are defined by the formula ai, j = ai - 1, j + ai, j - 1. These conditions define all the values in the table. You are given a number n. You need to determine the maximum value in the n Γ— n table defined by the rules above. Input The only line of input contains a positive integer n (1 ≀ n ≀ 10) β€” the number of rows and columns of the table. Output Print a single line containing a positive integer m β€” the maximum value in the table. Examples Input 1 Output 1 Input 5 Output 70 Note In the second test the rows of the table look as follows: {1, 1, 1, 1, 1}, {1, 2, 3, 4, 5}, {1, 3, 6, 10, 15}, {1, 4, 10, 20, 35}, {1, 5, 15, 35, 70}. ### Response ```cpp #include <bits/stdc++.h> using namespace std; int a[20][20]; int main() { int n; scanf("%d", &n); int res = 1; for (int i = 1; i <= n; ++i) a[1][i] = 1, a[i][1] = 1; for (int i = 2; i <= n; ++i) for (int j = 2; j <= n; ++j) res = max(res, a[i][j] = a[i - 1][j] + a[i][j - 1]); printf("%d\n", res); } ```
#include <bits/stdc++.h> using namespace std; int a[123][123]; int main() { int n; cin >> n; if (n == 1) { cout << "1" << endl; return 0; } for (int i = 1; i <= n; i++) { if (i == 1) for (int j = 1; j <= n; j++) { a[i][j] = 1; } else a[i][1] = 1; } int p; for (int i = 2; i <= n; i++) { for (int j = 1; j < n; j++) { a[i][j + 1] = a[i][j] + a[i - 1][j + 1]; p = a[i][j + 1]; } } cout << p << endl; }
### Prompt In CPP, your task is to solve the following problem: An n Γ— n table a is defined as follows: * The first row and the first column contain ones, that is: ai, 1 = a1, i = 1 for all i = 1, 2, ..., n. * Each of the remaining numbers in the table is equal to the sum of the number above it and the number to the left of it. In other words, the remaining elements are defined by the formula ai, j = ai - 1, j + ai, j - 1. These conditions define all the values in the table. You are given a number n. You need to determine the maximum value in the n Γ— n table defined by the rules above. Input The only line of input contains a positive integer n (1 ≀ n ≀ 10) β€” the number of rows and columns of the table. Output Print a single line containing a positive integer m β€” the maximum value in the table. Examples Input 1 Output 1 Input 5 Output 70 Note In the second test the rows of the table look as follows: {1, 1, 1, 1, 1}, {1, 2, 3, 4, 5}, {1, 3, 6, 10, 15}, {1, 4, 10, 20, 35}, {1, 5, 15, 35, 70}. ### Response ```cpp #include <bits/stdc++.h> using namespace std; int a[123][123]; int main() { int n; cin >> n; if (n == 1) { cout << "1" << endl; return 0; } for (int i = 1; i <= n; i++) { if (i == 1) for (int j = 1; j <= n; j++) { a[i][j] = 1; } else a[i][1] = 1; } int p; for (int i = 2; i <= n; i++) { for (int j = 1; j < n; j++) { a[i][j + 1] = a[i][j] + a[i - 1][j + 1]; p = a[i][j + 1]; } } cout << p << endl; } ```
#include <bits/stdc++.h> using namespace std; int f(int x, int y) { if (x == 1 || y == 1) return 1; else return f(x - 1, y) + f(x, y - 1); } int main() { int n; cin >> n; cout << f(n, n); }
### Prompt Your task is to create a CPP solution to the following problem: An n Γ— n table a is defined as follows: * The first row and the first column contain ones, that is: ai, 1 = a1, i = 1 for all i = 1, 2, ..., n. * Each of the remaining numbers in the table is equal to the sum of the number above it and the number to the left of it. In other words, the remaining elements are defined by the formula ai, j = ai - 1, j + ai, j - 1. These conditions define all the values in the table. You are given a number n. You need to determine the maximum value in the n Γ— n table defined by the rules above. Input The only line of input contains a positive integer n (1 ≀ n ≀ 10) β€” the number of rows and columns of the table. Output Print a single line containing a positive integer m β€” the maximum value in the table. Examples Input 1 Output 1 Input 5 Output 70 Note In the second test the rows of the table look as follows: {1, 1, 1, 1, 1}, {1, 2, 3, 4, 5}, {1, 3, 6, 10, 15}, {1, 4, 10, 20, 35}, {1, 5, 15, 35, 70}. ### Response ```cpp #include <bits/stdc++.h> using namespace std; int f(int x, int y) { if (x == 1 || y == 1) return 1; else return f(x - 1, y) + f(x, y - 1); } int main() { int n; cin >> n; cout << f(n, n); } ```
#include <bits/stdc++.h> using namespace std; template <typename T> inline void checkMin(T &a, T b) { if (b < a) a = b; } template <typename T> inline void checkMax(T &a, T b) { if (a < b) a = b; } int main() { int n, a[11][11]; scanf("%d", &n); for (int i = 1; i <= n; ++i) { for (int j = 1; j <= n; ++j) { a[i][j] = i == 1 || j == 1 ? 1 : a[i - 1][j] + a[i][j - 1]; } } printf("%d\n", a[n][n]); return 0; }
### Prompt Your task is to create a cpp solution to the following problem: An n Γ— n table a is defined as follows: * The first row and the first column contain ones, that is: ai, 1 = a1, i = 1 for all i = 1, 2, ..., n. * Each of the remaining numbers in the table is equal to the sum of the number above it and the number to the left of it. In other words, the remaining elements are defined by the formula ai, j = ai - 1, j + ai, j - 1. These conditions define all the values in the table. You are given a number n. You need to determine the maximum value in the n Γ— n table defined by the rules above. Input The only line of input contains a positive integer n (1 ≀ n ≀ 10) β€” the number of rows and columns of the table. Output Print a single line containing a positive integer m β€” the maximum value in the table. Examples Input 1 Output 1 Input 5 Output 70 Note In the second test the rows of the table look as follows: {1, 1, 1, 1, 1}, {1, 2, 3, 4, 5}, {1, 3, 6, 10, 15}, {1, 4, 10, 20, 35}, {1, 5, 15, 35, 70}. ### Response ```cpp #include <bits/stdc++.h> using namespace std; template <typename T> inline void checkMin(T &a, T b) { if (b < a) a = b; } template <typename T> inline void checkMax(T &a, T b) { if (a < b) a = b; } int main() { int n, a[11][11]; scanf("%d", &n); for (int i = 1; i <= n; ++i) { for (int j = 1; j <= n; ++j) { a[i][j] = i == 1 || j == 1 ? 1 : a[i - 1][j] + a[i][j - 1]; } } printf("%d\n", a[n][n]); return 0; } ```
#include <bits/stdc++.h> using namespace std; int main() { long long int i = 1, j, k = 0, l, m = 0, c, n; cin >> n; int a[n][n]; for (i = 0; i < n; i++) { a[0][i] = 1; } i = 0; for (i = 0; i < n; i++) { a[i][0] = 1; } for (i = 1; i < n; i++) { for (j = 1; j < n; j++) { a[i][j] = a[i][j - 1] + a[i - 1][j]; } } cout << a[n - 1][n - 1]; }
### Prompt In cpp, your task is to solve the following problem: An n Γ— n table a is defined as follows: * The first row and the first column contain ones, that is: ai, 1 = a1, i = 1 for all i = 1, 2, ..., n. * Each of the remaining numbers in the table is equal to the sum of the number above it and the number to the left of it. In other words, the remaining elements are defined by the formula ai, j = ai - 1, j + ai, j - 1. These conditions define all the values in the table. You are given a number n. You need to determine the maximum value in the n Γ— n table defined by the rules above. Input The only line of input contains a positive integer n (1 ≀ n ≀ 10) β€” the number of rows and columns of the table. Output Print a single line containing a positive integer m β€” the maximum value in the table. Examples Input 1 Output 1 Input 5 Output 70 Note In the second test the rows of the table look as follows: {1, 1, 1, 1, 1}, {1, 2, 3, 4, 5}, {1, 3, 6, 10, 15}, {1, 4, 10, 20, 35}, {1, 5, 15, 35, 70}. ### Response ```cpp #include <bits/stdc++.h> using namespace std; int main() { long long int i = 1, j, k = 0, l, m = 0, c, n; cin >> n; int a[n][n]; for (i = 0; i < n; i++) { a[0][i] = 1; } i = 0; for (i = 0; i < n; i++) { a[i][0] = 1; } for (i = 1; i < n; i++) { for (j = 1; j < n; j++) { a[i][j] = a[i][j - 1] + a[i - 1][j]; } } cout << a[n - 1][n - 1]; } ```
#include <bits/stdc++.h> int main() { int x; int arr[] = {1, 2, 6, 20, 70, 252, 924, 3432, 12870, 48620}; scanf("%d", &x); printf("%d", arr[x - 1]); }
### Prompt Please create a solution in CPP to the following problem: An n Γ— n table a is defined as follows: * The first row and the first column contain ones, that is: ai, 1 = a1, i = 1 for all i = 1, 2, ..., n. * Each of the remaining numbers in the table is equal to the sum of the number above it and the number to the left of it. In other words, the remaining elements are defined by the formula ai, j = ai - 1, j + ai, j - 1. These conditions define all the values in the table. You are given a number n. You need to determine the maximum value in the n Γ— n table defined by the rules above. Input The only line of input contains a positive integer n (1 ≀ n ≀ 10) β€” the number of rows and columns of the table. Output Print a single line containing a positive integer m β€” the maximum value in the table. Examples Input 1 Output 1 Input 5 Output 70 Note In the second test the rows of the table look as follows: {1, 1, 1, 1, 1}, {1, 2, 3, 4, 5}, {1, 3, 6, 10, 15}, {1, 4, 10, 20, 35}, {1, 5, 15, 35, 70}. ### Response ```cpp #include <bits/stdc++.h> int main() { int x; int arr[] = {1, 2, 6, 20, 70, 252, 924, 3432, 12870, 48620}; scanf("%d", &x); printf("%d", arr[x - 1]); } ```
#include <bits/stdc++.h> using namespace std; int n, a[15][15]; int main() { ios::sync_with_stdio(false), cout.tie(NULL), cin.tie(NULL); ; scanf("%d", &(n)); for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { if (i == 0 || j == 0) { a[i][j] = 1; continue; } a[i][j] = a[i - 1][j] + a[i][j - 1]; } } cout << a[n - 1][n - 1] << endl; return 0; }
### Prompt Please provide a Cpp coded solution to the problem described below: An n Γ— n table a is defined as follows: * The first row and the first column contain ones, that is: ai, 1 = a1, i = 1 for all i = 1, 2, ..., n. * Each of the remaining numbers in the table is equal to the sum of the number above it and the number to the left of it. In other words, the remaining elements are defined by the formula ai, j = ai - 1, j + ai, j - 1. These conditions define all the values in the table. You are given a number n. You need to determine the maximum value in the n Γ— n table defined by the rules above. Input The only line of input contains a positive integer n (1 ≀ n ≀ 10) β€” the number of rows and columns of the table. Output Print a single line containing a positive integer m β€” the maximum value in the table. Examples Input 1 Output 1 Input 5 Output 70 Note In the second test the rows of the table look as follows: {1, 1, 1, 1, 1}, {1, 2, 3, 4, 5}, {1, 3, 6, 10, 15}, {1, 4, 10, 20, 35}, {1, 5, 15, 35, 70}. ### Response ```cpp #include <bits/stdc++.h> using namespace std; int n, a[15][15]; int main() { ios::sync_with_stdio(false), cout.tie(NULL), cin.tie(NULL); ; scanf("%d", &(n)); for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { if (i == 0 || j == 0) { a[i][j] = 1; continue; } a[i][j] = a[i - 1][j] + a[i][j - 1]; } } cout << a[n - 1][n - 1] << endl; return 0; } ```
#include <bits/stdc++.h> using namespace std; const long long INF = 1LL << 61; int n; int x[15][15]; int main() { memset(x, 0, sizeof(x)); for (int i = 1; i <= 10; i++) x[i][1] = x[1][i] = 1; for (int i = 2; i <= 10; i++) { for (int j = 2; j <= 10; j++) { x[i][j] = x[i - 1][j] + x[i][j - 1]; } } scanf("%d", &n); printf("%d\n", x[n][n]); }
### Prompt Please provide a CPP coded solution to the problem described below: An n Γ— n table a is defined as follows: * The first row and the first column contain ones, that is: ai, 1 = a1, i = 1 for all i = 1, 2, ..., n. * Each of the remaining numbers in the table is equal to the sum of the number above it and the number to the left of it. In other words, the remaining elements are defined by the formula ai, j = ai - 1, j + ai, j - 1. These conditions define all the values in the table. You are given a number n. You need to determine the maximum value in the n Γ— n table defined by the rules above. Input The only line of input contains a positive integer n (1 ≀ n ≀ 10) β€” the number of rows and columns of the table. Output Print a single line containing a positive integer m β€” the maximum value in the table. Examples Input 1 Output 1 Input 5 Output 70 Note In the second test the rows of the table look as follows: {1, 1, 1, 1, 1}, {1, 2, 3, 4, 5}, {1, 3, 6, 10, 15}, {1, 4, 10, 20, 35}, {1, 5, 15, 35, 70}. ### Response ```cpp #include <bits/stdc++.h> using namespace std; const long long INF = 1LL << 61; int n; int x[15][15]; int main() { memset(x, 0, sizeof(x)); for (int i = 1; i <= 10; i++) x[i][1] = x[1][i] = 1; for (int i = 2; i <= 10; i++) { for (int j = 2; j <= 10; j++) { x[i][j] = x[i - 1][j] + x[i][j - 1]; } } scanf("%d", &n); printf("%d\n", x[n][n]); } ```
#include <bits/stdc++.h> using namespace std; vector<long long> v; int main() { long long n; cin >> n; long long f[n][n]; for (int j = 1; j < n; j++) { f[0][j] = 1; } for (int j = 0; j < n; j++) { f[j][0] = 1; } for (int i = 1; i < n; i++) { for (int j = 1; j < n; j++) { f[i][j] = f[i - 1][j] + f[i][j - 1]; } } cout << f[n - 1][n - 1]; }
### Prompt Your challenge is to write a cpp solution to the following problem: An n Γ— n table a is defined as follows: * The first row and the first column contain ones, that is: ai, 1 = a1, i = 1 for all i = 1, 2, ..., n. * Each of the remaining numbers in the table is equal to the sum of the number above it and the number to the left of it. In other words, the remaining elements are defined by the formula ai, j = ai - 1, j + ai, j - 1. These conditions define all the values in the table. You are given a number n. You need to determine the maximum value in the n Γ— n table defined by the rules above. Input The only line of input contains a positive integer n (1 ≀ n ≀ 10) β€” the number of rows and columns of the table. Output Print a single line containing a positive integer m β€” the maximum value in the table. Examples Input 1 Output 1 Input 5 Output 70 Note In the second test the rows of the table look as follows: {1, 1, 1, 1, 1}, {1, 2, 3, 4, 5}, {1, 3, 6, 10, 15}, {1, 4, 10, 20, 35}, {1, 5, 15, 35, 70}. ### Response ```cpp #include <bits/stdc++.h> using namespace std; vector<long long> v; int main() { long long n; cin >> n; long long f[n][n]; for (int j = 1; j < n; j++) { f[0][j] = 1; } for (int j = 0; j < n; j++) { f[j][0] = 1; } for (int i = 1; i < n; i++) { for (int j = 1; j < n; j++) { f[i][j] = f[i - 1][j] + f[i][j - 1]; } } cout << f[n - 1][n - 1]; } ```
#include <bits/stdc++.h> using namespace std; int a[10 + 10][10 + 10]; int main() { int n; scanf("%d", &n); for (int i = 1; i <= n; i++) a[i][1] = a[1][i] = 1; for (int i = 2; i <= n; ++i) for (int j = 2; j <= n; ++j) a[i][j] = a[i - 1][j] + a[i][j - 1]; cout << a[n][n] << endl; }
### Prompt Please provide a CPP coded solution to the problem described below: An n Γ— n table a is defined as follows: * The first row and the first column contain ones, that is: ai, 1 = a1, i = 1 for all i = 1, 2, ..., n. * Each of the remaining numbers in the table is equal to the sum of the number above it and the number to the left of it. In other words, the remaining elements are defined by the formula ai, j = ai - 1, j + ai, j - 1. These conditions define all the values in the table. You are given a number n. You need to determine the maximum value in the n Γ— n table defined by the rules above. Input The only line of input contains a positive integer n (1 ≀ n ≀ 10) β€” the number of rows and columns of the table. Output Print a single line containing a positive integer m β€” the maximum value in the table. Examples Input 1 Output 1 Input 5 Output 70 Note In the second test the rows of the table look as follows: {1, 1, 1, 1, 1}, {1, 2, 3, 4, 5}, {1, 3, 6, 10, 15}, {1, 4, 10, 20, 35}, {1, 5, 15, 35, 70}. ### Response ```cpp #include <bits/stdc++.h> using namespace std; int a[10 + 10][10 + 10]; int main() { int n; scanf("%d", &n); for (int i = 1; i <= n; i++) a[i][1] = a[1][i] = 1; for (int i = 2; i <= n; ++i) for (int j = 2; j <= n; ++j) a[i][j] = a[i - 1][j] + a[i][j - 1]; cout << a[n][n] << endl; } ```
#include <bits/stdc++.h> using namespace std; int main() { ios_base::sync_with_stdio(0); cin.tie(0); cout.tie(0); int n; cin >> n; vector<vector<int> > a(n, vector<int>(n)); for (int i = 0; i < n; i++) a[i][0] = 1, a[0][i] = 1; for (int i = 1; i < n; i++) { for (int j = 1; j < n; j++) { a[i][j] = a[i][j - 1] + a[i - 1][j]; } } cout << a[n - 1][n - 1] << endl; return 0; }
### Prompt Your challenge is to write a Cpp solution to the following problem: An n Γ— n table a is defined as follows: * The first row and the first column contain ones, that is: ai, 1 = a1, i = 1 for all i = 1, 2, ..., n. * Each of the remaining numbers in the table is equal to the sum of the number above it and the number to the left of it. In other words, the remaining elements are defined by the formula ai, j = ai - 1, j + ai, j - 1. These conditions define all the values in the table. You are given a number n. You need to determine the maximum value in the n Γ— n table defined by the rules above. Input The only line of input contains a positive integer n (1 ≀ n ≀ 10) β€” the number of rows and columns of the table. Output Print a single line containing a positive integer m β€” the maximum value in the table. Examples Input 1 Output 1 Input 5 Output 70 Note In the second test the rows of the table look as follows: {1, 1, 1, 1, 1}, {1, 2, 3, 4, 5}, {1, 3, 6, 10, 15}, {1, 4, 10, 20, 35}, {1, 5, 15, 35, 70}. ### Response ```cpp #include <bits/stdc++.h> using namespace std; int main() { ios_base::sync_with_stdio(0); cin.tie(0); cout.tie(0); int n; cin >> n; vector<vector<int> > a(n, vector<int>(n)); for (int i = 0; i < n; i++) a[i][0] = 1, a[0][i] = 1; for (int i = 1; i < n; i++) { for (int j = 1; j < n; j++) { a[i][j] = a[i][j - 1] + a[i - 1][j]; } } cout << a[n - 1][n - 1] << endl; return 0; } ```
#include <bits/stdc++.h> using namespace std; int a[100][100]; int main() { ios_base::sync_with_stdio(false); int n; cin >> n; for (int i = 1; i <= n; i++) { a[1][i] = 1; a[i][1] = 1; } int mx = 1; for (int i = 2; i <= n; i++) { for (int j = 2; j <= n; j++) { a[i][j] = a[i - 1][j] + a[i][j - 1]; mx = max(a[i][j], mx); } } cout << mx; }
### Prompt Create a solution in CPP for the following problem: An n Γ— n table a is defined as follows: * The first row and the first column contain ones, that is: ai, 1 = a1, i = 1 for all i = 1, 2, ..., n. * Each of the remaining numbers in the table is equal to the sum of the number above it and the number to the left of it. In other words, the remaining elements are defined by the formula ai, j = ai - 1, j + ai, j - 1. These conditions define all the values in the table. You are given a number n. You need to determine the maximum value in the n Γ— n table defined by the rules above. Input The only line of input contains a positive integer n (1 ≀ n ≀ 10) β€” the number of rows and columns of the table. Output Print a single line containing a positive integer m β€” the maximum value in the table. Examples Input 1 Output 1 Input 5 Output 70 Note In the second test the rows of the table look as follows: {1, 1, 1, 1, 1}, {1, 2, 3, 4, 5}, {1, 3, 6, 10, 15}, {1, 4, 10, 20, 35}, {1, 5, 15, 35, 70}. ### Response ```cpp #include <bits/stdc++.h> using namespace std; int a[100][100]; int main() { ios_base::sync_with_stdio(false); int n; cin >> n; for (int i = 1; i <= n; i++) { a[1][i] = 1; a[i][1] = 1; } int mx = 1; for (int i = 2; i <= n; i++) { for (int j = 2; j <= n; j++) { a[i][j] = a[i - 1][j] + a[i][j - 1]; mx = max(a[i][j], mx); } } cout << mx; } ```
#include <bits/stdc++.h> using namespace std; const int NMax = 1e5 + 5; const int LIM = 1e5; int D[100][100]; int main() { int n; cin >> n; for (int i = 1; i <= n; i++) { D[1][i] = D[i][1] = 1; } for (int i = 2; i <= n; i++) { for (int j = 2; j <= n; j++) { D[i][j] = D[i - 1][j] + D[i][j - 1]; } } cout << D[n][n]; }
### Prompt Please formulate a CPP solution to the following problem: An n Γ— n table a is defined as follows: * The first row and the first column contain ones, that is: ai, 1 = a1, i = 1 for all i = 1, 2, ..., n. * Each of the remaining numbers in the table is equal to the sum of the number above it and the number to the left of it. In other words, the remaining elements are defined by the formula ai, j = ai - 1, j + ai, j - 1. These conditions define all the values in the table. You are given a number n. You need to determine the maximum value in the n Γ— n table defined by the rules above. Input The only line of input contains a positive integer n (1 ≀ n ≀ 10) β€” the number of rows and columns of the table. Output Print a single line containing a positive integer m β€” the maximum value in the table. Examples Input 1 Output 1 Input 5 Output 70 Note In the second test the rows of the table look as follows: {1, 1, 1, 1, 1}, {1, 2, 3, 4, 5}, {1, 3, 6, 10, 15}, {1, 4, 10, 20, 35}, {1, 5, 15, 35, 70}. ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int NMax = 1e5 + 5; const int LIM = 1e5; int D[100][100]; int main() { int n; cin >> n; for (int i = 1; i <= n; i++) { D[1][i] = D[i][1] = 1; } for (int i = 2; i <= n; i++) { for (int j = 2; j <= n; j++) { D[i][j] = D[i - 1][j] + D[i][j - 1]; } } cout << D[n][n]; } ```
#include <bits/stdc++.h> using namespace std; int main() { int aa[10][10]; for (int j = 0; j < 10; j++) { aa[0][j] = 1; aa[j][0] = 1; } for (int l = 1; l < 10; l++) { for (int t = 1; t < 10; t++) { aa[l][t] = aa[l - 1][t] + aa[l][t - 1]; } } int i; while (cin >> i) { cout << aa[i - 1][i - 1]; } }
### Prompt Your task is to create a cpp solution to the following problem: An n Γ— n table a is defined as follows: * The first row and the first column contain ones, that is: ai, 1 = a1, i = 1 for all i = 1, 2, ..., n. * Each of the remaining numbers in the table is equal to the sum of the number above it and the number to the left of it. In other words, the remaining elements are defined by the formula ai, j = ai - 1, j + ai, j - 1. These conditions define all the values in the table. You are given a number n. You need to determine the maximum value in the n Γ— n table defined by the rules above. Input The only line of input contains a positive integer n (1 ≀ n ≀ 10) β€” the number of rows and columns of the table. Output Print a single line containing a positive integer m β€” the maximum value in the table. Examples Input 1 Output 1 Input 5 Output 70 Note In the second test the rows of the table look as follows: {1, 1, 1, 1, 1}, {1, 2, 3, 4, 5}, {1, 3, 6, 10, 15}, {1, 4, 10, 20, 35}, {1, 5, 15, 35, 70}. ### Response ```cpp #include <bits/stdc++.h> using namespace std; int main() { int aa[10][10]; for (int j = 0; j < 10; j++) { aa[0][j] = 1; aa[j][0] = 1; } for (int l = 1; l < 10; l++) { for (int t = 1; t < 10; t++) { aa[l][t] = aa[l - 1][t] + aa[l][t - 1]; } } int i; while (cin >> i) { cout << aa[i - 1][i - 1]; } } ```
#include <bits/stdc++.h> int ar(int i, int j) { if (j == 1 || i == 1) return 1; else return ar(i - 1, j) + ar(i, j - 1); } int main() { int n; scanf("%d", &n); printf("%d\n", ar(n, n)); return 0; }
### Prompt Your challenge is to write a Cpp solution to the following problem: An n Γ— n table a is defined as follows: * The first row and the first column contain ones, that is: ai, 1 = a1, i = 1 for all i = 1, 2, ..., n. * Each of the remaining numbers in the table is equal to the sum of the number above it and the number to the left of it. In other words, the remaining elements are defined by the formula ai, j = ai - 1, j + ai, j - 1. These conditions define all the values in the table. You are given a number n. You need to determine the maximum value in the n Γ— n table defined by the rules above. Input The only line of input contains a positive integer n (1 ≀ n ≀ 10) β€” the number of rows and columns of the table. Output Print a single line containing a positive integer m β€” the maximum value in the table. Examples Input 1 Output 1 Input 5 Output 70 Note In the second test the rows of the table look as follows: {1, 1, 1, 1, 1}, {1, 2, 3, 4, 5}, {1, 3, 6, 10, 15}, {1, 4, 10, 20, 35}, {1, 5, 15, 35, 70}. ### Response ```cpp #include <bits/stdc++.h> int ar(int i, int j) { if (j == 1 || i == 1) return 1; else return ar(i - 1, j) + ar(i, j - 1); } int main() { int n; scanf("%d", &n); printf("%d\n", ar(n, n)); return 0; } ```
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; int a[15][15]; for (int i = 1; i <= 1; i++) { for (int j = 1; j <= n; j++) a[i][j] = 1; } for (int i = 2; i <= n; i++) { a[i][1] = 1; for (int j = 2; j <= n; j++) { a[i][j] = a[i - 1][j] + a[i][j - 1]; } } cout << a[n][n] << endl; }
### Prompt Please create a solution in cpp to the following problem: An n Γ— n table a is defined as follows: * The first row and the first column contain ones, that is: ai, 1 = a1, i = 1 for all i = 1, 2, ..., n. * Each of the remaining numbers in the table is equal to the sum of the number above it and the number to the left of it. In other words, the remaining elements are defined by the formula ai, j = ai - 1, j + ai, j - 1. These conditions define all the values in the table. You are given a number n. You need to determine the maximum value in the n Γ— n table defined by the rules above. Input The only line of input contains a positive integer n (1 ≀ n ≀ 10) β€” the number of rows and columns of the table. Output Print a single line containing a positive integer m β€” the maximum value in the table. Examples Input 1 Output 1 Input 5 Output 70 Note In the second test the rows of the table look as follows: {1, 1, 1, 1, 1}, {1, 2, 3, 4, 5}, {1, 3, 6, 10, 15}, {1, 4, 10, 20, 35}, {1, 5, 15, 35, 70}. ### Response ```cpp #include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; int a[15][15]; for (int i = 1; i <= 1; i++) { for (int j = 1; j <= n; j++) a[i][j] = 1; } for (int i = 2; i <= n; i++) { a[i][1] = 1; for (int j = 2; j <= n; j++) { a[i][j] = a[i - 1][j] + a[i][j - 1]; } } cout << a[n][n] << endl; } ```
#include <bits/stdc++.h> using namespace std; int main() { int n, i, j, a[10][10]; cin >> n; for (i = 0; i < n; i++) { for (j = 0; j < n; j++) { a[i][0] = 1; a[0][j] = 1; } } for (i = 1; i < n; i++) { for (j = 1; j < n; j++) { a[i][j] = a[i - 1][j] + a[i][j - 1]; } } cout << a[n - 1][n - 1] << endl; return 0; }
### Prompt Your task is to create a cpp solution to the following problem: An n Γ— n table a is defined as follows: * The first row and the first column contain ones, that is: ai, 1 = a1, i = 1 for all i = 1, 2, ..., n. * Each of the remaining numbers in the table is equal to the sum of the number above it and the number to the left of it. In other words, the remaining elements are defined by the formula ai, j = ai - 1, j + ai, j - 1. These conditions define all the values in the table. You are given a number n. You need to determine the maximum value in the n Γ— n table defined by the rules above. Input The only line of input contains a positive integer n (1 ≀ n ≀ 10) β€” the number of rows and columns of the table. Output Print a single line containing a positive integer m β€” the maximum value in the table. Examples Input 1 Output 1 Input 5 Output 70 Note In the second test the rows of the table look as follows: {1, 1, 1, 1, 1}, {1, 2, 3, 4, 5}, {1, 3, 6, 10, 15}, {1, 4, 10, 20, 35}, {1, 5, 15, 35, 70}. ### Response ```cpp #include <bits/stdc++.h> using namespace std; int main() { int n, i, j, a[10][10]; cin >> n; for (i = 0; i < n; i++) { for (j = 0; j < n; j++) { a[i][0] = 1; a[0][j] = 1; } } for (i = 1; i < n; i++) { for (j = 1; j < n; j++) { a[i][j] = a[i - 1][j] + a[i][j - 1]; } } cout << a[n - 1][n - 1] << endl; return 0; } ```
#include <bits/stdc++.h> using namespace std; int main() { int n; int tab[10][10]; cin >> n; for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { if (i == 0) { tab[i][j] = 1; } else if (j == 0) { tab[i][j] = 1; } else { tab[i][j] = tab[i - 1][j] + tab[i][j - 1]; } } } cout << tab[n - 1][n - 1] << endl; return 0; }
### Prompt Create a solution in Cpp for the following problem: An n Γ— n table a is defined as follows: * The first row and the first column contain ones, that is: ai, 1 = a1, i = 1 for all i = 1, 2, ..., n. * Each of the remaining numbers in the table is equal to the sum of the number above it and the number to the left of it. In other words, the remaining elements are defined by the formula ai, j = ai - 1, j + ai, j - 1. These conditions define all the values in the table. You are given a number n. You need to determine the maximum value in the n Γ— n table defined by the rules above. Input The only line of input contains a positive integer n (1 ≀ n ≀ 10) β€” the number of rows and columns of the table. Output Print a single line containing a positive integer m β€” the maximum value in the table. Examples Input 1 Output 1 Input 5 Output 70 Note In the second test the rows of the table look as follows: {1, 1, 1, 1, 1}, {1, 2, 3, 4, 5}, {1, 3, 6, 10, 15}, {1, 4, 10, 20, 35}, {1, 5, 15, 35, 70}. ### Response ```cpp #include <bits/stdc++.h> using namespace std; int main() { int n; int tab[10][10]; cin >> n; for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { if (i == 0) { tab[i][j] = 1; } else if (j == 0) { tab[i][j] = 1; } else { tab[i][j] = tab[i - 1][j] + tab[i][j - 1]; } } } cout << tab[n - 1][n - 1] << endl; return 0; } ```
#include <bits/stdc++.h> int main() { int n; int i, j; int table[10][10]; scanf("%d", &n); for (i = 0; i < n; i++) { for (j = 0; j < n; j++) { if (i == 0 || j == 0) table[i][j] = 1; else table[i][j] = table[i][j - 1] + table[i - 1][j]; } } printf("%d", table[i - 1][j - 1]); return 0; }
### Prompt Your challenge is to write a Cpp solution to the following problem: An n Γ— n table a is defined as follows: * The first row and the first column contain ones, that is: ai, 1 = a1, i = 1 for all i = 1, 2, ..., n. * Each of the remaining numbers in the table is equal to the sum of the number above it and the number to the left of it. In other words, the remaining elements are defined by the formula ai, j = ai - 1, j + ai, j - 1. These conditions define all the values in the table. You are given a number n. You need to determine the maximum value in the n Γ— n table defined by the rules above. Input The only line of input contains a positive integer n (1 ≀ n ≀ 10) β€” the number of rows and columns of the table. Output Print a single line containing a positive integer m β€” the maximum value in the table. Examples Input 1 Output 1 Input 5 Output 70 Note In the second test the rows of the table look as follows: {1, 1, 1, 1, 1}, {1, 2, 3, 4, 5}, {1, 3, 6, 10, 15}, {1, 4, 10, 20, 35}, {1, 5, 15, 35, 70}. ### Response ```cpp #include <bits/stdc++.h> int main() { int n; int i, j; int table[10][10]; scanf("%d", &n); for (i = 0; i < n; i++) { for (j = 0; j < n; j++) { if (i == 0 || j == 0) table[i][j] = 1; else table[i][j] = table[i][j - 1] + table[i - 1][j]; } } printf("%d", table[i - 1][j - 1]); return 0; } ```
#include <bits/stdc++.h> int main() { int n, i = 0, j = 0; scanf("%d", &n); int a[11][11]; for (i = 0; i < n; i++) a[i][0] = 1; for (j = 0; j < n; j++) a[0][j] = 1; for (i = 1; i < n; i++) { for (j = 1; j < n; j++) { a[i][j] = a[i - 1][j] + a[i][j - 1]; } } printf("%d\n", a[n - 1][n - 1]); }
### Prompt Construct a cpp code solution to the problem outlined: An n Γ— n table a is defined as follows: * The first row and the first column contain ones, that is: ai, 1 = a1, i = 1 for all i = 1, 2, ..., n. * Each of the remaining numbers in the table is equal to the sum of the number above it and the number to the left of it. In other words, the remaining elements are defined by the formula ai, j = ai - 1, j + ai, j - 1. These conditions define all the values in the table. You are given a number n. You need to determine the maximum value in the n Γ— n table defined by the rules above. Input The only line of input contains a positive integer n (1 ≀ n ≀ 10) β€” the number of rows and columns of the table. Output Print a single line containing a positive integer m β€” the maximum value in the table. Examples Input 1 Output 1 Input 5 Output 70 Note In the second test the rows of the table look as follows: {1, 1, 1, 1, 1}, {1, 2, 3, 4, 5}, {1, 3, 6, 10, 15}, {1, 4, 10, 20, 35}, {1, 5, 15, 35, 70}. ### Response ```cpp #include <bits/stdc++.h> int main() { int n, i = 0, j = 0; scanf("%d", &n); int a[11][11]; for (i = 0; i < n; i++) a[i][0] = 1; for (j = 0; j < n; j++) a[0][j] = 1; for (i = 1; i < n; i++) { for (j = 1; j < n; j++) { a[i][j] = a[i - 1][j] + a[i][j - 1]; } } printf("%d\n", a[n - 1][n - 1]); } ```
#include <bits/stdc++.h> int arr[11][11]; using namespace std; int main() { int n; cin >> n; for (int i = 1; i <= n; i++) { arr[1][i] = 1; arr[i][1] = 1; } for (int i = 2; i <= n; i++) { for (int j = 2; j <= n; j++) { arr[i][j] = arr[i - 1][j] + arr[i][j - 1]; } } cout << arr[n][n]; return 0; }
### Prompt Develop a solution in CPP to the problem described below: An n Γ— n table a is defined as follows: * The first row and the first column contain ones, that is: ai, 1 = a1, i = 1 for all i = 1, 2, ..., n. * Each of the remaining numbers in the table is equal to the sum of the number above it and the number to the left of it. In other words, the remaining elements are defined by the formula ai, j = ai - 1, j + ai, j - 1. These conditions define all the values in the table. You are given a number n. You need to determine the maximum value in the n Γ— n table defined by the rules above. Input The only line of input contains a positive integer n (1 ≀ n ≀ 10) β€” the number of rows and columns of the table. Output Print a single line containing a positive integer m β€” the maximum value in the table. Examples Input 1 Output 1 Input 5 Output 70 Note In the second test the rows of the table look as follows: {1, 1, 1, 1, 1}, {1, 2, 3, 4, 5}, {1, 3, 6, 10, 15}, {1, 4, 10, 20, 35}, {1, 5, 15, 35, 70}. ### Response ```cpp #include <bits/stdc++.h> int arr[11][11]; using namespace std; int main() { int n; cin >> n; for (int i = 1; i <= n; i++) { arr[1][i] = 1; arr[i][1] = 1; } for (int i = 2; i <= n; i++) { for (int j = 2; j <= n; j++) { arr[i][j] = arr[i - 1][j] + arr[i][j - 1]; } } cout << arr[n][n]; return 0; } ```
#include <bits/stdc++.h> using namespace std; int a, m[20][20]; int main() { ios_base::sync_with_stdio(0), cin.tie(0), cout.tie(0); cin >> a; for (int i = 1; i <= a; i++) { m[1][i] = 1; m[i][1] = 1; } for (int i = 2; i <= a; i++) { for (int j = 2; j <= a; j++) { m[i][j] = m[i - 1][j] + m[i][j - 1]; } } cout << m[a][a]; }
### Prompt Create a solution in CPP for the following problem: An n Γ— n table a is defined as follows: * The first row and the first column contain ones, that is: ai, 1 = a1, i = 1 for all i = 1, 2, ..., n. * Each of the remaining numbers in the table is equal to the sum of the number above it and the number to the left of it. In other words, the remaining elements are defined by the formula ai, j = ai - 1, j + ai, j - 1. These conditions define all the values in the table. You are given a number n. You need to determine the maximum value in the n Γ— n table defined by the rules above. Input The only line of input contains a positive integer n (1 ≀ n ≀ 10) β€” the number of rows and columns of the table. Output Print a single line containing a positive integer m β€” the maximum value in the table. Examples Input 1 Output 1 Input 5 Output 70 Note In the second test the rows of the table look as follows: {1, 1, 1, 1, 1}, {1, 2, 3, 4, 5}, {1, 3, 6, 10, 15}, {1, 4, 10, 20, 35}, {1, 5, 15, 35, 70}. ### Response ```cpp #include <bits/stdc++.h> using namespace std; int a, m[20][20]; int main() { ios_base::sync_with_stdio(0), cin.tie(0), cout.tie(0); cin >> a; for (int i = 1; i <= a; i++) { m[1][i] = 1; m[i][1] = 1; } for (int i = 2; i <= a; i++) { for (int j = 2; j <= a; j++) { m[i][j] = m[i - 1][j] + m[i][j - 1]; } } cout << m[a][a]; } ```