output
stringlengths
52
181k
instruction
stringlengths
296
182k
#include<bits/stdc++.h> using namespace std; int main() { int n; int a[100005]; cin >> n; a[0]=0; int f=0; for(int i=1;i<=n;i++){ scanf("%d",&a[i]); if(a[i]+1==a[i-1]){ a[i]++; } else if(a[i]+1<a[i-1]){ f=1; } } if(f==0)printf("Yes"); else printf("No"); return 0; }
### Prompt Develop a solution in Cpp to the problem described below: There are N squares arranged in a row from left to right. The height of the i-th square from the left is H_i. For each square, you will perform either of the following operations once: * Decrease the height of the square by 1. * Do nothing. Determine if it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right. Constraints * All values in input are integers. * 1 \leq N \leq 10^5 * 1 \leq H_i \leq 10^9 Input Input is given from Standard Input in the following format: N H_1 H_2 ... H_N Output If it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right, print `Yes`; otherwise, print `No`. Examples Input 5 1 2 1 1 3 Output Yes Input 4 1 3 2 1 Output No Input 5 1 2 3 4 5 Output Yes Input 1 1000000000 Output Yes ### Response ```cpp #include<bits/stdc++.h> using namespace std; int main() { int n; int a[100005]; cin >> n; a[0]=0; int f=0; for(int i=1;i<=n;i++){ scanf("%d",&a[i]); if(a[i]+1==a[i-1]){ a[i]++; } else if(a[i]+1<a[i-1]){ f=1; } } if(f==0)printf("Yes"); else printf("No"); return 0; } ```
#include<bits/stdc++.h> using namespace std; int a[100010],n; int main() { scanf("%d",&n); for(int i=1;i<=n;++i) scanf("%d",&a[i]); for(int i=n-1;i>=1;--i) if(a[i]>a[i+1]) --a[i]; for(int i=1;i<n;++i) if(a[i]>a[i+1]) { printf("No"); return 0; } printf("Yes"); return 0; }
### Prompt Construct a Cpp code solution to the problem outlined: There are N squares arranged in a row from left to right. The height of the i-th square from the left is H_i. For each square, you will perform either of the following operations once: * Decrease the height of the square by 1. * Do nothing. Determine if it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right. Constraints * All values in input are integers. * 1 \leq N \leq 10^5 * 1 \leq H_i \leq 10^9 Input Input is given from Standard Input in the following format: N H_1 H_2 ... H_N Output If it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right, print `Yes`; otherwise, print `No`. Examples Input 5 1 2 1 1 3 Output Yes Input 4 1 3 2 1 Output No Input 5 1 2 3 4 5 Output Yes Input 1 1000000000 Output Yes ### Response ```cpp #include<bits/stdc++.h> using namespace std; int a[100010],n; int main() { scanf("%d",&n); for(int i=1;i<=n;++i) scanf("%d",&a[i]); for(int i=n-1;i>=1;--i) if(a[i]>a[i+1]) --a[i]; for(int i=1;i<n;++i) if(a[i]>a[i+1]) { printf("No"); return 0; } printf("Yes"); return 0; } ```
#include<bits/stdc++.h> using namespace std; int n,a[100010]; int main() { scanf("%d",&n); for(int i=1;i<=n;i++) scanf("%d",&a[i]); for(int i=1;i<n;i++) if(a[i]>a[i+1]) { if(a[i]-a[i+1]>=2) { printf("No"); return 0; } a[i+1]++; } printf("Yes"); return 0; }
### Prompt In cpp, your task is to solve the following problem: There are N squares arranged in a row from left to right. The height of the i-th square from the left is H_i. For each square, you will perform either of the following operations once: * Decrease the height of the square by 1. * Do nothing. Determine if it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right. Constraints * All values in input are integers. * 1 \leq N \leq 10^5 * 1 \leq H_i \leq 10^9 Input Input is given from Standard Input in the following format: N H_1 H_2 ... H_N Output If it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right, print `Yes`; otherwise, print `No`. Examples Input 5 1 2 1 1 3 Output Yes Input 4 1 3 2 1 Output No Input 5 1 2 3 4 5 Output Yes Input 1 1000000000 Output Yes ### Response ```cpp #include<bits/stdc++.h> using namespace std; int n,a[100010]; int main() { scanf("%d",&n); for(int i=1;i<=n;i++) scanf("%d",&a[i]); for(int i=1;i<n;i++) if(a[i]>a[i+1]) { if(a[i]-a[i+1]>=2) { printf("No"); return 0; } a[i+1]++; } printf("Yes"); return 0; } ```
#include <bits/stdc++.h> using namespace std; int arr[100007]; int main() { int n; cin>>n; for( int i=1;i<=n;i++ ) cin>>arr[i], arr[i]= (arr[i]-1>=arr[i-1])?arr[i]-1:arr[i]; bool f= 1; for( int i=2;i<=n;i++ ) if( arr[i]<arr[i-1] ) f= 0; if(f) cout<<"Yes\n"; else cout<<"No\n"; }
### Prompt Your task is to create a Cpp solution to the following problem: There are N squares arranged in a row from left to right. The height of the i-th square from the left is H_i. For each square, you will perform either of the following operations once: * Decrease the height of the square by 1. * Do nothing. Determine if it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right. Constraints * All values in input are integers. * 1 \leq N \leq 10^5 * 1 \leq H_i \leq 10^9 Input Input is given from Standard Input in the following format: N H_1 H_2 ... H_N Output If it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right, print `Yes`; otherwise, print `No`. Examples Input 5 1 2 1 1 3 Output Yes Input 4 1 3 2 1 Output No Input 5 1 2 3 4 5 Output Yes Input 1 1000000000 Output Yes ### Response ```cpp #include <bits/stdc++.h> using namespace std; int arr[100007]; int main() { int n; cin>>n; for( int i=1;i<=n;i++ ) cin>>arr[i], arr[i]= (arr[i]-1>=arr[i-1])?arr[i]-1:arr[i]; bool f= 1; for( int i=2;i<=n;i++ ) if( arr[i]<arr[i-1] ) f= 0; if(f) cout<<"Yes\n"; else cout<<"No\n"; } ```
#include <algorithm> #include <iostream> #include <vector> using namespace std; int main() { int N, M, H; cin >> N; bool cond{true}; while (cond && cin >> H) { M = max(M, H); cond &= (M - H <= 1); } cout << (cond ? "Yes" : "No") << endl; }
### Prompt Construct a Cpp code solution to the problem outlined: There are N squares arranged in a row from left to right. The height of the i-th square from the left is H_i. For each square, you will perform either of the following operations once: * Decrease the height of the square by 1. * Do nothing. Determine if it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right. Constraints * All values in input are integers. * 1 \leq N \leq 10^5 * 1 \leq H_i \leq 10^9 Input Input is given from Standard Input in the following format: N H_1 H_2 ... H_N Output If it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right, print `Yes`; otherwise, print `No`. Examples Input 5 1 2 1 1 3 Output Yes Input 4 1 3 2 1 Output No Input 5 1 2 3 4 5 Output Yes Input 1 1000000000 Output Yes ### Response ```cpp #include <algorithm> #include <iostream> #include <vector> using namespace std; int main() { int N, M, H; cin >> N; bool cond{true}; while (cond && cin >> H) { M = max(M, H); cond &= (M - H <= 1); } cout << (cond ? "Yes" : "No") << endl; } ```
#include<iostream> using namespace std; int n,h[100000],maxn=-1; int main(void){ cin>>n; for(int i=0;i<n;i++)cin>>h[i]; for(int i=0;i<n;i++){ maxn=max(maxn,h[i]); if(maxn-h[i]>=2){cout<<"No";return 0;} } cout<<"Yes"; return 0; }
### Prompt Your task is to create a CPP solution to the following problem: There are N squares arranged in a row from left to right. The height of the i-th square from the left is H_i. For each square, you will perform either of the following operations once: * Decrease the height of the square by 1. * Do nothing. Determine if it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right. Constraints * All values in input are integers. * 1 \leq N \leq 10^5 * 1 \leq H_i \leq 10^9 Input Input is given from Standard Input in the following format: N H_1 H_2 ... H_N Output If it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right, print `Yes`; otherwise, print `No`. Examples Input 5 1 2 1 1 3 Output Yes Input 4 1 3 2 1 Output No Input 5 1 2 3 4 5 Output Yes Input 1 1000000000 Output Yes ### Response ```cpp #include<iostream> using namespace std; int n,h[100000],maxn=-1; int main(void){ cin>>n; for(int i=0;i<n;i++)cin>>h[i]; for(int i=0;i<n;i++){ maxn=max(maxn,h[i]); if(maxn-h[i]>=2){cout<<"No";return 0;} } cout<<"Yes"; return 0; } ```
#include <cstdio> #include <algorithm> using namespace std; int main() { int n,a,b; scanf("%d",&n); a=0; while(n--) { scanf("%d",&b); if(b<a) { printf("No"); return 0; } a=(b-1>=a)?b-1:b; } printf("Yes"); return 0; }
### Prompt Generate a cpp solution to the following problem: There are N squares arranged in a row from left to right. The height of the i-th square from the left is H_i. For each square, you will perform either of the following operations once: * Decrease the height of the square by 1. * Do nothing. Determine if it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right. Constraints * All values in input are integers. * 1 \leq N \leq 10^5 * 1 \leq H_i \leq 10^9 Input Input is given from Standard Input in the following format: N H_1 H_2 ... H_N Output If it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right, print `Yes`; otherwise, print `No`. Examples Input 5 1 2 1 1 3 Output Yes Input 4 1 3 2 1 Output No Input 5 1 2 3 4 5 Output Yes Input 1 1000000000 Output Yes ### Response ```cpp #include <cstdio> #include <algorithm> using namespace std; int main() { int n,a,b; scanf("%d",&n); a=0; while(n--) { scanf("%d",&b); if(b<a) { printf("No"); return 0; } a=(b-1>=a)?b-1:b; } printf("Yes"); return 0; } ```
#include <bits/stdc++.h> using namespace std; int main(){ int N; cin >> N; int pre=0; for(int i=0; i<N; i++){ int h; cin >> h; if(pre<h) pre=h-1; else if(pre==h) pre=h; else{ cout << "No" << endl; return 0; } } cout << "Yes" << endl; }
### Prompt Create a solution in CPP for the following problem: There are N squares arranged in a row from left to right. The height of the i-th square from the left is H_i. For each square, you will perform either of the following operations once: * Decrease the height of the square by 1. * Do nothing. Determine if it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right. Constraints * All values in input are integers. * 1 \leq N \leq 10^5 * 1 \leq H_i \leq 10^9 Input Input is given from Standard Input in the following format: N H_1 H_2 ... H_N Output If it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right, print `Yes`; otherwise, print `No`. Examples Input 5 1 2 1 1 3 Output Yes Input 4 1 3 2 1 Output No Input 5 1 2 3 4 5 Output Yes Input 1 1000000000 Output Yes ### Response ```cpp #include <bits/stdc++.h> using namespace std; int main(){ int N; cin >> N; int pre=0; for(int i=0; i<N; i++){ int h; cin >> h; if(pre<h) pre=h-1; else if(pre==h) pre=h; else{ cout << "No" << endl; return 0; } } cout << "Yes" << endl; } ```
#include<bits/stdc++.h> using namespace std; int main(){ unsigned long N, H; cin >> N >> H; for(unsigned long i = 1, h; i < N; ++i){ cin >> h; if(H > h)return 0 & puts("No"); if(H < h)--h; swap(H, h); } puts("Yes"); }
### Prompt Please provide a cpp coded solution to the problem described below: There are N squares arranged in a row from left to right. The height of the i-th square from the left is H_i. For each square, you will perform either of the following operations once: * Decrease the height of the square by 1. * Do nothing. Determine if it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right. Constraints * All values in input are integers. * 1 \leq N \leq 10^5 * 1 \leq H_i \leq 10^9 Input Input is given from Standard Input in the following format: N H_1 H_2 ... H_N Output If it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right, print `Yes`; otherwise, print `No`. Examples Input 5 1 2 1 1 3 Output Yes Input 4 1 3 2 1 Output No Input 5 1 2 3 4 5 Output Yes Input 1 1000000000 Output Yes ### Response ```cpp #include<bits/stdc++.h> using namespace std; int main(){ unsigned long N, H; cin >> N >> H; for(unsigned long i = 1, h; i < N; ++i){ cin >> h; if(H > h)return 0 & puts("No"); if(H < h)--h; swap(H, h); } puts("Yes"); } ```
#include <iostream> using namespace std; int main() { int h,s=0; cin>>h; while(cin>>h){ if(h>s){ s=h; }else if(h<s-1){ cout << "No"; return 0; } } cout << "Yes"; return 0; }
### Prompt Create a solution in Cpp for the following problem: There are N squares arranged in a row from left to right. The height of the i-th square from the left is H_i. For each square, you will perform either of the following operations once: * Decrease the height of the square by 1. * Do nothing. Determine if it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right. Constraints * All values in input are integers. * 1 \leq N \leq 10^5 * 1 \leq H_i \leq 10^9 Input Input is given from Standard Input in the following format: N H_1 H_2 ... H_N Output If it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right, print `Yes`; otherwise, print `No`. Examples Input 5 1 2 1 1 3 Output Yes Input 4 1 3 2 1 Output No Input 5 1 2 3 4 5 Output Yes Input 1 1000000000 Output Yes ### Response ```cpp #include <iostream> using namespace std; int main() { int h,s=0; cin>>h; while(cin>>h){ if(h>s){ s=h; }else if(h<s-1){ cout << "No"; return 0; } } cout << "Yes"; return 0; } ```
#include <bits/stdc++.h> using namespace std; int n; int h,k; bool ok=1; int main(){ cin>>n;n--; cin>>h;h--; while(n--){ cin>>k; if(k<h){cout<<"No";return 0;} if(k>=h+1)h=k-1; } cout<<"Yes"<<endl; }
### Prompt Please create a solution in CPP to the following problem: There are N squares arranged in a row from left to right. The height of the i-th square from the left is H_i. For each square, you will perform either of the following operations once: * Decrease the height of the square by 1. * Do nothing. Determine if it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right. Constraints * All values in input are integers. * 1 \leq N \leq 10^5 * 1 \leq H_i \leq 10^9 Input Input is given from Standard Input in the following format: N H_1 H_2 ... H_N Output If it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right, print `Yes`; otherwise, print `No`. Examples Input 5 1 2 1 1 3 Output Yes Input 4 1 3 2 1 Output No Input 5 1 2 3 4 5 Output Yes Input 1 1000000000 Output Yes ### Response ```cpp #include <bits/stdc++.h> using namespace std; int n; int h,k; bool ok=1; int main(){ cin>>n;n--; cin>>h;h--; while(n--){ cin>>k; if(k<h){cout<<"No";return 0;} if(k>=h+1)h=k-1; } cout<<"Yes"<<endl; } ```
#include <iostream> using namespace std; int main() { int N; cin >> N; int H; cin >> H; int i = 1; for (; i < N; ++i) { int _H; cin >> _H; if (_H < H) break; H = (H < _H ? _H - 1 : _H); } cout << (N == i ? "Yes" : "No"); return 0; }
### Prompt Construct a cpp code solution to the problem outlined: There are N squares arranged in a row from left to right. The height of the i-th square from the left is H_i. For each square, you will perform either of the following operations once: * Decrease the height of the square by 1. * Do nothing. Determine if it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right. Constraints * All values in input are integers. * 1 \leq N \leq 10^5 * 1 \leq H_i \leq 10^9 Input Input is given from Standard Input in the following format: N H_1 H_2 ... H_N Output If it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right, print `Yes`; otherwise, print `No`. Examples Input 5 1 2 1 1 3 Output Yes Input 4 1 3 2 1 Output No Input 5 1 2 3 4 5 Output Yes Input 1 1000000000 Output Yes ### Response ```cpp #include <iostream> using namespace std; int main() { int N; cin >> N; int H; cin >> H; int i = 1; for (; i < N; ++i) { int _H; cin >> _H; if (_H < H) break; H = (H < _H ? _H - 1 : _H); } cout << (N == i ? "Yes" : "No"); return 0; } ```
#include <bits/stdc++.h> using namespace std; int main(){ int n; cin >> n; vector<int> h(n); for(int i=0;i<n;i++) cin >> h.at(i); string s="Yes"; int k=0; for(int i=0;i<n;i++){ if(k>h.at(i)+1){ s="No"; break; } k=max(k,h.at(i)); } cout << s << endl; }
### Prompt Your task is to create a cpp solution to the following problem: There are N squares arranged in a row from left to right. The height of the i-th square from the left is H_i. For each square, you will perform either of the following operations once: * Decrease the height of the square by 1. * Do nothing. Determine if it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right. Constraints * All values in input are integers. * 1 \leq N \leq 10^5 * 1 \leq H_i \leq 10^9 Input Input is given from Standard Input in the following format: N H_1 H_2 ... H_N Output If it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right, print `Yes`; otherwise, print `No`. Examples Input 5 1 2 1 1 3 Output Yes Input 4 1 3 2 1 Output No Input 5 1 2 3 4 5 Output Yes Input 1 1000000000 Output Yes ### Response ```cpp #include <bits/stdc++.h> using namespace std; int main(){ int n; cin >> n; vector<int> h(n); for(int i=0;i<n;i++) cin >> h.at(i); string s="Yes"; int k=0; for(int i=0;i<n;i++){ if(k>h.at(i)+1){ s="No"; break; } k=max(k,h.at(i)); } cout << s << endl; } ```
#include<bits/stdc++.h> using namespace std; #define M 100005 int a[M]; int main(){ int n; scanf("%d",&n); for(int i=1;i<=n;++i)scanf("%d",&a[i]); for(int i=1;i<=n;++i)if(a[i]>a[i-1])a[i]--; for(int i=1;i<n;++i)if(a[i]>a[i+1]){ puts("No"); return 0; } puts("Yes"); }
### Prompt In Cpp, your task is to solve the following problem: There are N squares arranged in a row from left to right. The height of the i-th square from the left is H_i. For each square, you will perform either of the following operations once: * Decrease the height of the square by 1. * Do nothing. Determine if it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right. Constraints * All values in input are integers. * 1 \leq N \leq 10^5 * 1 \leq H_i \leq 10^9 Input Input is given from Standard Input in the following format: N H_1 H_2 ... H_N Output If it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right, print `Yes`; otherwise, print `No`. Examples Input 5 1 2 1 1 3 Output Yes Input 4 1 3 2 1 Output No Input 5 1 2 3 4 5 Output Yes Input 1 1000000000 Output Yes ### Response ```cpp #include<bits/stdc++.h> using namespace std; #define M 100005 int a[M]; int main(){ int n; scanf("%d",&n); for(int i=1;i<=n;++i)scanf("%d",&a[i]); for(int i=1;i<=n;++i)if(a[i]>a[i-1])a[i]--; for(int i=1;i<n;++i)if(a[i]>a[i+1]){ puts("No"); return 0; } puts("Yes"); } ```
#include <cstdio> using namespace std; int N, H0, H1; int main() { scanf("%d", &N); for(int i = 0; i < N; i++) { scanf("%d", &H1); if(i == 0) H0 = H1; if(H0 > H1) {printf("No"); return 0;} if(H0 < H1) H1--; H0 = H1; } printf("Yes"); }
### Prompt Your challenge is to write a cpp solution to the following problem: There are N squares arranged in a row from left to right. The height of the i-th square from the left is H_i. For each square, you will perform either of the following operations once: * Decrease the height of the square by 1. * Do nothing. Determine if it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right. Constraints * All values in input are integers. * 1 \leq N \leq 10^5 * 1 \leq H_i \leq 10^9 Input Input is given from Standard Input in the following format: N H_1 H_2 ... H_N Output If it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right, print `Yes`; otherwise, print `No`. Examples Input 5 1 2 1 1 3 Output Yes Input 4 1 3 2 1 Output No Input 5 1 2 3 4 5 Output Yes Input 1 1000000000 Output Yes ### Response ```cpp #include <cstdio> using namespace std; int N, H0, H1; int main() { scanf("%d", &N); for(int i = 0; i < N; i++) { scanf("%d", &H1); if(i == 0) H0 = H1; if(H0 > H1) {printf("No"); return 0;} if(H0 < H1) H1--; H0 = H1; } printf("Yes"); } ```
#include<bits/stdc++.h> using namespace std; int n; int main(){ cin>>n;bool flag=true;int h,mem=0; for(int i=0;i<n;i++){ cin>>h; if(mem-1<=h)mem=((mem-1==h)?mem:h); else {flag=false;break;} } cout<<(flag?"Yes":"No")<<endl; }
### Prompt Construct a Cpp code solution to the problem outlined: There are N squares arranged in a row from left to right. The height of the i-th square from the left is H_i. For each square, you will perform either of the following operations once: * Decrease the height of the square by 1. * Do nothing. Determine if it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right. Constraints * All values in input are integers. * 1 \leq N \leq 10^5 * 1 \leq H_i \leq 10^9 Input Input is given from Standard Input in the following format: N H_1 H_2 ... H_N Output If it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right, print `Yes`; otherwise, print `No`. Examples Input 5 1 2 1 1 3 Output Yes Input 4 1 3 2 1 Output No Input 5 1 2 3 4 5 Output Yes Input 1 1000000000 Output Yes ### Response ```cpp #include<bits/stdc++.h> using namespace std; int n; int main(){ cin>>n;bool flag=true;int h,mem=0; for(int i=0;i<n;i++){ cin>>h; if(mem-1<=h)mem=((mem-1==h)?mem:h); else {flag=false;break;} } cout<<(flag?"Yes":"No")<<endl; } ```
#include<bits/stdc++.h> using namespace std; int h[100005]; int main() { int n; cin>>n; for(int i=1;i<=n;i++) cin>>h[i]; int max=h[1]; for(int i=2;i<=n;i++) { if(h[i-1]-h[i]>1||max-h[i]>1) { cout<<"No"; return 0; } if(h[i]>max) max=h[i]; } cout<<"Yes"; return 0; }
### Prompt Generate a CPP solution to the following problem: There are N squares arranged in a row from left to right. The height of the i-th square from the left is H_i. For each square, you will perform either of the following operations once: * Decrease the height of the square by 1. * Do nothing. Determine if it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right. Constraints * All values in input are integers. * 1 \leq N \leq 10^5 * 1 \leq H_i \leq 10^9 Input Input is given from Standard Input in the following format: N H_1 H_2 ... H_N Output If it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right, print `Yes`; otherwise, print `No`. Examples Input 5 1 2 1 1 3 Output Yes Input 4 1 3 2 1 Output No Input 5 1 2 3 4 5 Output Yes Input 1 1000000000 Output Yes ### Response ```cpp #include<bits/stdc++.h> using namespace std; int h[100005]; int main() { int n; cin>>n; for(int i=1;i<=n;i++) cin>>h[i]; int max=h[1]; for(int i=2;i<=n;i++) { if(h[i-1]-h[i]>1||max-h[i]>1) { cout<<"No"; return 0; } if(h[i]>max) max=h[i]; } cout<<"Yes"; return 0; } ```
#include <algorithm> #include <cstdio> int main(int argc, const char *argv[]) { int N, Hi, m; scanf("%d", &N); m = 0; for (int i = 0; i < N; i++) { scanf("%d", &Hi); if (!(m <= Hi)) { printf("No\n"); return 0; } m = std::max(m, Hi - 1); } printf("Yes\n"); }
### Prompt Generate a cpp solution to the following problem: There are N squares arranged in a row from left to right. The height of the i-th square from the left is H_i. For each square, you will perform either of the following operations once: * Decrease the height of the square by 1. * Do nothing. Determine if it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right. Constraints * All values in input are integers. * 1 \leq N \leq 10^5 * 1 \leq H_i \leq 10^9 Input Input is given from Standard Input in the following format: N H_1 H_2 ... H_N Output If it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right, print `Yes`; otherwise, print `No`. Examples Input 5 1 2 1 1 3 Output Yes Input 4 1 3 2 1 Output No Input 5 1 2 3 4 5 Output Yes Input 1 1000000000 Output Yes ### Response ```cpp #include <algorithm> #include <cstdio> int main(int argc, const char *argv[]) { int N, Hi, m; scanf("%d", &N); m = 0; for (int i = 0; i < N; i++) { scanf("%d", &Hi); if (!(m <= Hi)) { printf("No\n"); return 0; } m = std::max(m, Hi - 1); } printf("Yes\n"); } ```
#include<bits/stdc++.h> using namespace std; int n; int main() { cin>>n; int x; cin>>x; for (int i=1;i<n;i++) { int y=x; cin>>x; if(x<y) { puts("No"); exit(0); } else if (x>y) { x--; } } puts("Yes"); return 0; }
### Prompt Construct a Cpp code solution to the problem outlined: There are N squares arranged in a row from left to right. The height of the i-th square from the left is H_i. For each square, you will perform either of the following operations once: * Decrease the height of the square by 1. * Do nothing. Determine if it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right. Constraints * All values in input are integers. * 1 \leq N \leq 10^5 * 1 \leq H_i \leq 10^9 Input Input is given from Standard Input in the following format: N H_1 H_2 ... H_N Output If it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right, print `Yes`; otherwise, print `No`. Examples Input 5 1 2 1 1 3 Output Yes Input 4 1 3 2 1 Output No Input 5 1 2 3 4 5 Output Yes Input 1 1000000000 Output Yes ### Response ```cpp #include<bits/stdc++.h> using namespace std; int n; int main() { cin>>n; int x; cin>>x; for (int i=1;i<n;i++) { int y=x; cin>>x; if(x<y) { puts("No"); exit(0); } else if (x>y) { x--; } } puts("Yes"); return 0; } ```
#include <iostream> using namespace std; int main(){ int n; cin >> n; int h[n]; for(int i = 0; i < n; i++) cin >> h[i]; for(int i = 1; i < n; i++){ if(h[i-1] < h[i]) h[i]--; } for(int i = 1; i < n; i++){ if(h[i-1] > h[i]){ cout << "No" << endl; return 0; } } cout << "Yes" << endl; }
### Prompt In Cpp, your task is to solve the following problem: There are N squares arranged in a row from left to right. The height of the i-th square from the left is H_i. For each square, you will perform either of the following operations once: * Decrease the height of the square by 1. * Do nothing. Determine if it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right. Constraints * All values in input are integers. * 1 \leq N \leq 10^5 * 1 \leq H_i \leq 10^9 Input Input is given from Standard Input in the following format: N H_1 H_2 ... H_N Output If it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right, print `Yes`; otherwise, print `No`. Examples Input 5 1 2 1 1 3 Output Yes Input 4 1 3 2 1 Output No Input 5 1 2 3 4 5 Output Yes Input 1 1000000000 Output Yes ### Response ```cpp #include <iostream> using namespace std; int main(){ int n; cin >> n; int h[n]; for(int i = 0; i < n; i++) cin >> h[i]; for(int i = 1; i < n; i++){ if(h[i-1] < h[i]) h[i]--; } for(int i = 1; i < n; i++){ if(h[i-1] > h[i]){ cout << "No" << endl; return 0; } } cout << "Yes" << endl; } ```
#include <stdio.h> int main(){ int n,m,pre=1; scanf("%d", &n); while(n--){ scanf("%d", &m); if(m < pre){ printf("No\n"); return 0; } if(m>pre) --m; pre = m; } printf("Yes\n"); return 0; }
### Prompt Please provide a Cpp coded solution to the problem described below: There are N squares arranged in a row from left to right. The height of the i-th square from the left is H_i. For each square, you will perform either of the following operations once: * Decrease the height of the square by 1. * Do nothing. Determine if it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right. Constraints * All values in input are integers. * 1 \leq N \leq 10^5 * 1 \leq H_i \leq 10^9 Input Input is given from Standard Input in the following format: N H_1 H_2 ... H_N Output If it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right, print `Yes`; otherwise, print `No`. Examples Input 5 1 2 1 1 3 Output Yes Input 4 1 3 2 1 Output No Input 5 1 2 3 4 5 Output Yes Input 1 1000000000 Output Yes ### Response ```cpp #include <stdio.h> int main(){ int n,m,pre=1; scanf("%d", &n); while(n--){ scanf("%d", &m); if(m < pre){ printf("No\n"); return 0; } if(m>pre) --m; pre = m; } printf("Yes\n"); return 0; } ```
#include <iostream> #include <cstdio> using namespace std; int n, a[100005]; int main() { int i, d; cin>>n; for(i=1; i<=n; i++) scanf("%d", &a[i]); for(i=n-1; i>=1; i--) { d = a[i] - a[i+1]; if(d>1) {cout<<"No"; return 0;} else if(d==1) a[i]--; } cout<<"Yes"; return 0; }
### Prompt Develop a solution in CPP to the problem described below: There are N squares arranged in a row from left to right. The height of the i-th square from the left is H_i. For each square, you will perform either of the following operations once: * Decrease the height of the square by 1. * Do nothing. Determine if it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right. Constraints * All values in input are integers. * 1 \leq N \leq 10^5 * 1 \leq H_i \leq 10^9 Input Input is given from Standard Input in the following format: N H_1 H_2 ... H_N Output If it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right, print `Yes`; otherwise, print `No`. Examples Input 5 1 2 1 1 3 Output Yes Input 4 1 3 2 1 Output No Input 5 1 2 3 4 5 Output Yes Input 1 1000000000 Output Yes ### Response ```cpp #include <iostream> #include <cstdio> using namespace std; int n, a[100005]; int main() { int i, d; cin>>n; for(i=1; i<=n; i++) scanf("%d", &a[i]); for(i=n-1; i>=1; i--) { d = a[i] - a[i+1]; if(d>1) {cout<<"No"; return 0;} else if(d==1) a[i]--; } cout<<"Yes"; return 0; } ```
#include<bits/stdc++.h> using namespace std; long long a[100011]; int main(){ int n; cin>>n; for(int i=1;i<=n;i++){ cin>>a[i]; } int t=0; for(int i=1;i<=n;i++){ if(a[i-1]>a[i]){ puts("No"); return 0; } if(a[i]-1>=a[i-1]){ a[i]-=1; } } puts("Yes"); return 0; }
### Prompt Please create a solution in CPP to the following problem: There are N squares arranged in a row from left to right. The height of the i-th square from the left is H_i. For each square, you will perform either of the following operations once: * Decrease the height of the square by 1. * Do nothing. Determine if it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right. Constraints * All values in input are integers. * 1 \leq N \leq 10^5 * 1 \leq H_i \leq 10^9 Input Input is given from Standard Input in the following format: N H_1 H_2 ... H_N Output If it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right, print `Yes`; otherwise, print `No`. Examples Input 5 1 2 1 1 3 Output Yes Input 4 1 3 2 1 Output No Input 5 1 2 3 4 5 Output Yes Input 1 1000000000 Output Yes ### Response ```cpp #include<bits/stdc++.h> using namespace std; long long a[100011]; int main(){ int n; cin>>n; for(int i=1;i<=n;i++){ cin>>a[i]; } int t=0; for(int i=1;i<=n;i++){ if(a[i-1]>a[i]){ puts("No"); return 0; } if(a[i]-1>=a[i-1]){ a[i]-=1; } } puts("Yes"); return 0; } ```
#include <stdio.h> int main() { int n, h, maxi = 0; bool valid = true; scanf("%d", &n); while (n--) { scanf("%d", &h); if (maxi - h > 1) { valid = false; break; } if (h > maxi) maxi = h; } if (valid) puts("Yes"); else puts("No"); return 0; }
### Prompt Develop a solution in cpp to the problem described below: There are N squares arranged in a row from left to right. The height of the i-th square from the left is H_i. For each square, you will perform either of the following operations once: * Decrease the height of the square by 1. * Do nothing. Determine if it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right. Constraints * All values in input are integers. * 1 \leq N \leq 10^5 * 1 \leq H_i \leq 10^9 Input Input is given from Standard Input in the following format: N H_1 H_2 ... H_N Output If it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right, print `Yes`; otherwise, print `No`. Examples Input 5 1 2 1 1 3 Output Yes Input 4 1 3 2 1 Output No Input 5 1 2 3 4 5 Output Yes Input 1 1000000000 Output Yes ### Response ```cpp #include <stdio.h> int main() { int n, h, maxi = 0; bool valid = true; scanf("%d", &n); while (n--) { scanf("%d", &h); if (maxi - h > 1) { valid = false; break; } if (h > maxi) maxi = h; } if (valid) puts("Yes"); else puts("No"); return 0; } ```
#include<bits/stdc++.h> using namespace std; int n,A[100001]; int main(){ scanf("%d",&n); for(int i=1;i<=n;i++)scanf("%d",&A[i]); A[1]--; for(int i=2;i<=n;i++){ if(A[i]<A[i-1]){ puts("No"); return 0; } if(A[i]>A[i-1])A[i]--; } puts("Yes"); }
### Prompt Develop a solution in Cpp to the problem described below: There are N squares arranged in a row from left to right. The height of the i-th square from the left is H_i. For each square, you will perform either of the following operations once: * Decrease the height of the square by 1. * Do nothing. Determine if it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right. Constraints * All values in input are integers. * 1 \leq N \leq 10^5 * 1 \leq H_i \leq 10^9 Input Input is given from Standard Input in the following format: N H_1 H_2 ... H_N Output If it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right, print `Yes`; otherwise, print `No`. Examples Input 5 1 2 1 1 3 Output Yes Input 4 1 3 2 1 Output No Input 5 1 2 3 4 5 Output Yes Input 1 1000000000 Output Yes ### Response ```cpp #include<bits/stdc++.h> using namespace std; int n,A[100001]; int main(){ scanf("%d",&n); for(int i=1;i<=n;i++)scanf("%d",&A[i]); A[1]--; for(int i=2;i<=n;i++){ if(A[i]<A[i-1]){ puts("No"); return 0; } if(A[i]>A[i-1])A[i]--; } puts("Yes"); } ```
#include<bits/stdc++.h> using namespace std; int main(){ int n; cin >> n; int m=0,h,i; for(i=0;i<n;i++){ cin >> h; if(h<=m-2){ cout << "No" << endl; return 0; } m=max(m,h); } cout << "Yes" << endl; }
### Prompt Develop a solution in Cpp to the problem described below: There are N squares arranged in a row from left to right. The height of the i-th square from the left is H_i. For each square, you will perform either of the following operations once: * Decrease the height of the square by 1. * Do nothing. Determine if it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right. Constraints * All values in input are integers. * 1 \leq N \leq 10^5 * 1 \leq H_i \leq 10^9 Input Input is given from Standard Input in the following format: N H_1 H_2 ... H_N Output If it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right, print `Yes`; otherwise, print `No`. Examples Input 5 1 2 1 1 3 Output Yes Input 4 1 3 2 1 Output No Input 5 1 2 3 4 5 Output Yes Input 1 1000000000 Output Yes ### Response ```cpp #include<bits/stdc++.h> using namespace std; int main(){ int n; cin >> n; int m=0,h,i; for(i=0;i<n;i++){ cin >> h; if(h<=m-2){ cout << "No" << endl; return 0; } m=max(m,h); } cout << "Yes" << endl; } ```
#include <bits/stdc++.h> using namespace std; int main(){ int n,a,b,i,f=0; cin>>n>>a; for(i=0;i<n-1;i++){ cin>>b; if(a<b) f=0; else if(a-1==b && !f) f=1; else if(a!=b){ cout<<"No"; return 0; } a=b; } cout<<"Yes"; }
### Prompt Please create a solution in CPP to the following problem: There are N squares arranged in a row from left to right. The height of the i-th square from the left is H_i. For each square, you will perform either of the following operations once: * Decrease the height of the square by 1. * Do nothing. Determine if it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right. Constraints * All values in input are integers. * 1 \leq N \leq 10^5 * 1 \leq H_i \leq 10^9 Input Input is given from Standard Input in the following format: N H_1 H_2 ... H_N Output If it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right, print `Yes`; otherwise, print `No`. Examples Input 5 1 2 1 1 3 Output Yes Input 4 1 3 2 1 Output No Input 5 1 2 3 4 5 Output Yes Input 1 1000000000 Output Yes ### Response ```cpp #include <bits/stdc++.h> using namespace std; int main(){ int n,a,b,i,f=0; cin>>n>>a; for(i=0;i<n-1;i++){ cin>>b; if(a<b) f=0; else if(a-1==b && !f) f=1; else if(a!=b){ cout<<"No"; return 0; } a=b; } cout<<"Yes"; } ```
#include <iostream> using namespace std; int main() { int N; cin >> N; bool ans = true; int before = 0; for (int i = 0; i < N; i++) { int H; cin >> H; if (before-1 > H) ans = false; before = H + (before-1==H ? 1 : 0); } cout << (ans ? "Yes" : "No") << endl; }
### Prompt Develop a solution in CPP to the problem described below: There are N squares arranged in a row from left to right. The height of the i-th square from the left is H_i. For each square, you will perform either of the following operations once: * Decrease the height of the square by 1. * Do nothing. Determine if it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right. Constraints * All values in input are integers. * 1 \leq N \leq 10^5 * 1 \leq H_i \leq 10^9 Input Input is given from Standard Input in the following format: N H_1 H_2 ... H_N Output If it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right, print `Yes`; otherwise, print `No`. Examples Input 5 1 2 1 1 3 Output Yes Input 4 1 3 2 1 Output No Input 5 1 2 3 4 5 Output Yes Input 1 1000000000 Output Yes ### Response ```cpp #include <iostream> using namespace std; int main() { int N; cin >> N; bool ans = true; int before = 0; for (int i = 0; i < N; i++) { int H; cin >> H; if (before-1 > H) ans = false; before = H + (before-1==H ? 1 : 0); } cout << (ans ? "Yes" : "No") << endl; } ```
#include<bits/stdc++.h> using namespace std; int a[100005]; int main() { int n; int max=0; cin>>n; for(int i=1;i<=n;i++) { cin>>a[i]; if(a[i]>max) { max=a[i]; } else { if(max-a[i]>=2) { cout<<"No"; return 0; } } } cout<<"Yes"; return 0; }
### Prompt Please provide a CPP coded solution to the problem described below: There are N squares arranged in a row from left to right. The height of the i-th square from the left is H_i. For each square, you will perform either of the following operations once: * Decrease the height of the square by 1. * Do nothing. Determine if it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right. Constraints * All values in input are integers. * 1 \leq N \leq 10^5 * 1 \leq H_i \leq 10^9 Input Input is given from Standard Input in the following format: N H_1 H_2 ... H_N Output If it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right, print `Yes`; otherwise, print `No`. Examples Input 5 1 2 1 1 3 Output Yes Input 4 1 3 2 1 Output No Input 5 1 2 3 4 5 Output Yes Input 1 1000000000 Output Yes ### Response ```cpp #include<bits/stdc++.h> using namespace std; int a[100005]; int main() { int n; int max=0; cin>>n; for(int i=1;i<=n;i++) { cin>>a[i]; if(a[i]>max) { max=a[i]; } else { if(max-a[i]>=2) { cout<<"No"; return 0; } } } cout<<"Yes"; return 0; } ```
#include<bits/stdc++.h> using namespace std; int n,A[100010]; int main(){ scanf("%d",&n); for(int i=1;i<=n;i++)scanf("%d",&A[i]),A[i]--; for(int i=1;i<=n;i++){ if(A[i]<A[i-1]){ A[i]++; if(A[i]<A[i-1]){ puts("No"); return 0; } } } puts("Yes"); return 0; }
### Prompt Construct a CPP code solution to the problem outlined: There are N squares arranged in a row from left to right. The height of the i-th square from the left is H_i. For each square, you will perform either of the following operations once: * Decrease the height of the square by 1. * Do nothing. Determine if it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right. Constraints * All values in input are integers. * 1 \leq N \leq 10^5 * 1 \leq H_i \leq 10^9 Input Input is given from Standard Input in the following format: N H_1 H_2 ... H_N Output If it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right, print `Yes`; otherwise, print `No`. Examples Input 5 1 2 1 1 3 Output Yes Input 4 1 3 2 1 Output No Input 5 1 2 3 4 5 Output Yes Input 1 1000000000 Output Yes ### Response ```cpp #include<bits/stdc++.h> using namespace std; int n,A[100010]; int main(){ scanf("%d",&n); for(int i=1;i<=n;i++)scanf("%d",&A[i]),A[i]--; for(int i=1;i<=n;i++){ if(A[i]<A[i-1]){ A[i]++; if(A[i]<A[i-1]){ puts("No"); return 0; } } } puts("Yes"); return 0; } ```
#include<iostream> using namespace std; #define ll long long int int main(){ ll i,j,k,n,m,t; ll pre=0; cin>>n; ll f=1; while(n--){ cin>>k; if(k<pre) { f=0; } if(k-1>=pre) pre=k-1; else pre=k; } if(f) cout<<"Yes\n"; else cout<<"No\n"; }
### Prompt Your task is to create a cpp solution to the following problem: There are N squares arranged in a row from left to right. The height of the i-th square from the left is H_i. For each square, you will perform either of the following operations once: * Decrease the height of the square by 1. * Do nothing. Determine if it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right. Constraints * All values in input are integers. * 1 \leq N \leq 10^5 * 1 \leq H_i \leq 10^9 Input Input is given from Standard Input in the following format: N H_1 H_2 ... H_N Output If it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right, print `Yes`; otherwise, print `No`. Examples Input 5 1 2 1 1 3 Output Yes Input 4 1 3 2 1 Output No Input 5 1 2 3 4 5 Output Yes Input 1 1000000000 Output Yes ### Response ```cpp #include<iostream> using namespace std; #define ll long long int int main(){ ll i,j,k,n,m,t; ll pre=0; cin>>n; ll f=1; while(n--){ cin>>k; if(k<pre) { f=0; } if(k-1>=pre) pre=k-1; else pre=k; } if(f) cout<<"Yes\n"; else cout<<"No\n"; } ```
#include <bits/stdc++.h> using namespace std; #define MAXN 100010 int n,a[MAXN]; int main() { scanf("%d",&n); for(int i=1;i<=n;++i) { scanf("%d",a+i); } for(int i=1;i<=n;++i) { if(a[i-1]<a[i])--a[i]; if(a[i-1]>a[i])return puts("No"),0; } puts("Yes"); }
### Prompt Construct a CPP code solution to the problem outlined: There are N squares arranged in a row from left to right. The height of the i-th square from the left is H_i. For each square, you will perform either of the following operations once: * Decrease the height of the square by 1. * Do nothing. Determine if it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right. Constraints * All values in input are integers. * 1 \leq N \leq 10^5 * 1 \leq H_i \leq 10^9 Input Input is given from Standard Input in the following format: N H_1 H_2 ... H_N Output If it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right, print `Yes`; otherwise, print `No`. Examples Input 5 1 2 1 1 3 Output Yes Input 4 1 3 2 1 Output No Input 5 1 2 3 4 5 Output Yes Input 1 1000000000 Output Yes ### Response ```cpp #include <bits/stdc++.h> using namespace std; #define MAXN 100010 int n,a[MAXN]; int main() { scanf("%d",&n); for(int i=1;i<=n;++i) { scanf("%d",a+i); } for(int i=1;i<=n;++i) { if(a[i-1]<a[i])--a[i]; if(a[i-1]>a[i])return puts("No"),0; } puts("Yes"); } ```
/* ID: wangjun30 TASK: LANG: C++ */ #include<iostream> using namespace std; int main(){ int n,cur; cin>>n>>cur; for(int i=1;i<n;i++){ int x; cin>>x; if(x<cur-1){ cout<<"No"; return 0; } cur=max(x,cur); } cout<<"Yes"; return 0; }
### Prompt Please provide a cpp coded solution to the problem described below: There are N squares arranged in a row from left to right. The height of the i-th square from the left is H_i. For each square, you will perform either of the following operations once: * Decrease the height of the square by 1. * Do nothing. Determine if it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right. Constraints * All values in input are integers. * 1 \leq N \leq 10^5 * 1 \leq H_i \leq 10^9 Input Input is given from Standard Input in the following format: N H_1 H_2 ... H_N Output If it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right, print `Yes`; otherwise, print `No`. Examples Input 5 1 2 1 1 3 Output Yes Input 4 1 3 2 1 Output No Input 5 1 2 3 4 5 Output Yes Input 1 1000000000 Output Yes ### Response ```cpp /* ID: wangjun30 TASK: LANG: C++ */ #include<iostream> using namespace std; int main(){ int n,cur; cin>>n>>cur; for(int i=1;i<n;i++){ int x; cin>>x; if(x<cur-1){ cout<<"No"; return 0; } cur=max(x,cur); } cout<<"Yes"; return 0; } ```
#include<cstdio> const int N=1e5+10; int n,a[N]; int main() { scanf("%d",&n); for(int i=1;i<=n;i++) scanf("%d",&a[i]); for(int i=n;i>1;i--) if(a[i]<a[i-1])a[i-1]--; for(int i=2;i<=n;i++) if(a[i]<a[i-1]) { puts("No"); return 0; } puts("Yes"); return 0; }
### Prompt Your task is to create a cpp solution to the following problem: There are N squares arranged in a row from left to right. The height of the i-th square from the left is H_i. For each square, you will perform either of the following operations once: * Decrease the height of the square by 1. * Do nothing. Determine if it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right. Constraints * All values in input are integers. * 1 \leq N \leq 10^5 * 1 \leq H_i \leq 10^9 Input Input is given from Standard Input in the following format: N H_1 H_2 ... H_N Output If it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right, print `Yes`; otherwise, print `No`. Examples Input 5 1 2 1 1 3 Output Yes Input 4 1 3 2 1 Output No Input 5 1 2 3 4 5 Output Yes Input 1 1000000000 Output Yes ### Response ```cpp #include<cstdio> const int N=1e5+10; int n,a[N]; int main() { scanf("%d",&n); for(int i=1;i<=n;i++) scanf("%d",&a[i]); for(int i=n;i>1;i--) if(a[i]<a[i-1])a[i-1]--; for(int i=2;i<=n;i++) if(a[i]<a[i-1]) { puts("No"); return 0; } puts("Yes"); return 0; } ```
#include <bits/stdc++.h> using namespace std; int main(){ int a; cin>>a; int now; cin>>now; now--; for(int i=0;i<a-1;i++){ int num; cin>>num; if(num<now){ cout<<"No"<<endl; return 0; } else now=max(now,num-1); } cout<<"Yes"<<endl; return 0; }
### Prompt Your task is to create a Cpp solution to the following problem: There are N squares arranged in a row from left to right. The height of the i-th square from the left is H_i. For each square, you will perform either of the following operations once: * Decrease the height of the square by 1. * Do nothing. Determine if it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right. Constraints * All values in input are integers. * 1 \leq N \leq 10^5 * 1 \leq H_i \leq 10^9 Input Input is given from Standard Input in the following format: N H_1 H_2 ... H_N Output If it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right, print `Yes`; otherwise, print `No`. Examples Input 5 1 2 1 1 3 Output Yes Input 4 1 3 2 1 Output No Input 5 1 2 3 4 5 Output Yes Input 1 1000000000 Output Yes ### Response ```cpp #include <bits/stdc++.h> using namespace std; int main(){ int a; cin>>a; int now; cin>>now; now--; for(int i=0;i<a-1;i++){ int num; cin>>num; if(num<now){ cout<<"No"<<endl; return 0; } else now=max(now,num-1); } cout<<"Yes"<<endl; return 0; } ```
#include <iostream> using namespace std; int main() { int n; cin >> n; int a[n]; for (int i = 0; i < n; i++) cin >> a[i]; for (int i = 1; i < n; i++){ if (a[i-1] < a[i]) a[i]--; if (a[i-1] > a[i]){ cout << "No" << endl; return 0; } } cout << "Yes" << endl; }
### Prompt Please provide a Cpp coded solution to the problem described below: There are N squares arranged in a row from left to right. The height of the i-th square from the left is H_i. For each square, you will perform either of the following operations once: * Decrease the height of the square by 1. * Do nothing. Determine if it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right. Constraints * All values in input are integers. * 1 \leq N \leq 10^5 * 1 \leq H_i \leq 10^9 Input Input is given from Standard Input in the following format: N H_1 H_2 ... H_N Output If it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right, print `Yes`; otherwise, print `No`. Examples Input 5 1 2 1 1 3 Output Yes Input 4 1 3 2 1 Output No Input 5 1 2 3 4 5 Output Yes Input 1 1000000000 Output Yes ### Response ```cpp #include <iostream> using namespace std; int main() { int n; cin >> n; int a[n]; for (int i = 0; i < n; i++) cin >> a[i]; for (int i = 1; i < n; i++){ if (a[i-1] < a[i]) a[i]--; if (a[i-1] > a[i]){ cout << "No" << endl; return 0; } } cout << "Yes" << endl; } ```
#include<bits/stdc++.h> using namespace std; int main(){ int n,k=-1; cin >> n; int a[n]; for(int i=0;i<n;i++)cin >> a[i]; for(int i=0;i<n;i++){ if(a[i]+1<k){ cout << "No" << endl; return 0; } k=max(k,a[i]); } cout << "Yes" << endl; return 0; }
### Prompt Your task is to create a Cpp solution to the following problem: There are N squares arranged in a row from left to right. The height of the i-th square from the left is H_i. For each square, you will perform either of the following operations once: * Decrease the height of the square by 1. * Do nothing. Determine if it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right. Constraints * All values in input are integers. * 1 \leq N \leq 10^5 * 1 \leq H_i \leq 10^9 Input Input is given from Standard Input in the following format: N H_1 H_2 ... H_N Output If it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right, print `Yes`; otherwise, print `No`. Examples Input 5 1 2 1 1 3 Output Yes Input 4 1 3 2 1 Output No Input 5 1 2 3 4 5 Output Yes Input 1 1000000000 Output Yes ### Response ```cpp #include<bits/stdc++.h> using namespace std; int main(){ int n,k=-1; cin >> n; int a[n]; for(int i=0;i<n;i++)cin >> a[i]; for(int i=0;i<n;i++){ if(a[i]+1<k){ cout << "No" << endl; return 0; } k=max(k,a[i]); } cout << "Yes" << endl; return 0; } ```
#include<bits/stdc++.h> using namespace std; int main() { int n; cin>>n; int a[100005],b[100005]; for(int i=0;i<n;i++) cin>>a[i],b[i]=a[i]; sort(a,a+n); for(int i=0;i<n;i++) { if(b[i]-a[i]>1) { cout<<"No"; return 0; } } cout<<"Yes"; return 0; }
### Prompt Please create a solution in Cpp to the following problem: There are N squares arranged in a row from left to right. The height of the i-th square from the left is H_i. For each square, you will perform either of the following operations once: * Decrease the height of the square by 1. * Do nothing. Determine if it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right. Constraints * All values in input are integers. * 1 \leq N \leq 10^5 * 1 \leq H_i \leq 10^9 Input Input is given from Standard Input in the following format: N H_1 H_2 ... H_N Output If it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right, print `Yes`; otherwise, print `No`. Examples Input 5 1 2 1 1 3 Output Yes Input 4 1 3 2 1 Output No Input 5 1 2 3 4 5 Output Yes Input 1 1000000000 Output Yes ### Response ```cpp #include<bits/stdc++.h> using namespace std; int main() { int n; cin>>n; int a[100005],b[100005]; for(int i=0;i<n;i++) cin>>a[i],b[i]=a[i]; sort(a,a+n); for(int i=0;i<n;i++) { if(b[i]-a[i]>1) { cout<<"No"; return 0; } } cout<<"Yes"; return 0; } ```
#include<iostream> using namespace std; int main() { int N,H; cin >> N; int max=0; for (int i=0;i<N;i++) { cin >> H; if (H>max) max=H; else if (H<max-1) { cout << "No" << endl; return 0; } } cout << "Yes" << endl; }
### Prompt Please formulate a CPP solution to the following problem: There are N squares arranged in a row from left to right. The height of the i-th square from the left is H_i. For each square, you will perform either of the following operations once: * Decrease the height of the square by 1. * Do nothing. Determine if it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right. Constraints * All values in input are integers. * 1 \leq N \leq 10^5 * 1 \leq H_i \leq 10^9 Input Input is given from Standard Input in the following format: N H_1 H_2 ... H_N Output If it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right, print `Yes`; otherwise, print `No`. Examples Input 5 1 2 1 1 3 Output Yes Input 4 1 3 2 1 Output No Input 5 1 2 3 4 5 Output Yes Input 1 1000000000 Output Yes ### Response ```cpp #include<iostream> using namespace std; int main() { int N,H; cin >> N; int max=0; for (int i=0;i<N;i++) { cin >> H; if (H>max) max=H; else if (H<max-1) { cout << "No" << endl; return 0; } } cout << "Yes" << endl; } ```
#include<bits/stdc++.h> using namespace std; #define rep(i,n) for(int i = 0; i < n; i++) const int mx = 100005; int n, h[mx]; int main(){ scanf("%d%d", &n, h); rep(i,n-1){ scanf("%d", h+i+1); if(h[i]-1 == h[i+1]) h[i+1]++; else if(h[i] > h[i+1]) return 0*puts("No"); } puts("Yes"); }
### Prompt Create a solution in CPP for the following problem: There are N squares arranged in a row from left to right. The height of the i-th square from the left is H_i. For each square, you will perform either of the following operations once: * Decrease the height of the square by 1. * Do nothing. Determine if it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right. Constraints * All values in input are integers. * 1 \leq N \leq 10^5 * 1 \leq H_i \leq 10^9 Input Input is given from Standard Input in the following format: N H_1 H_2 ... H_N Output If it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right, print `Yes`; otherwise, print `No`. Examples Input 5 1 2 1 1 3 Output Yes Input 4 1 3 2 1 Output No Input 5 1 2 3 4 5 Output Yes Input 1 1000000000 Output Yes ### Response ```cpp #include<bits/stdc++.h> using namespace std; #define rep(i,n) for(int i = 0; i < n; i++) const int mx = 100005; int n, h[mx]; int main(){ scanf("%d%d", &n, h); rep(i,n-1){ scanf("%d", h+i+1); if(h[i]-1 == h[i+1]) h[i+1]++; else if(h[i] > h[i+1]) return 0*puts("No"); } puts("Yes"); } ```
#include<bits/stdc++.h> using namespace std; int n,a[100005]; int main() { scanf("%d",&n); for(int i=1;i<=n;i++) scanf("%d",&a[i]); for(int i=1;i<=n;i++) { if(a[i]<a[i-1]) { printf("No"); return 0; } if(a[i]>a[i-1]) a[i]--; } printf("Yes"); }
### Prompt Your challenge is to write a CPP solution to the following problem: There are N squares arranged in a row from left to right. The height of the i-th square from the left is H_i. For each square, you will perform either of the following operations once: * Decrease the height of the square by 1. * Do nothing. Determine if it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right. Constraints * All values in input are integers. * 1 \leq N \leq 10^5 * 1 \leq H_i \leq 10^9 Input Input is given from Standard Input in the following format: N H_1 H_2 ... H_N Output If it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right, print `Yes`; otherwise, print `No`. Examples Input 5 1 2 1 1 3 Output Yes Input 4 1 3 2 1 Output No Input 5 1 2 3 4 5 Output Yes Input 1 1000000000 Output Yes ### Response ```cpp #include<bits/stdc++.h> using namespace std; int n,a[100005]; int main() { scanf("%d",&n); for(int i=1;i<=n;i++) scanf("%d",&a[i]); for(int i=1;i<=n;i++) { if(a[i]<a[i-1]) { printf("No"); return 0; } if(a[i]>a[i-1]) a[i]--; } printf("Yes"); } ```
#include<bits/stdc++.h> using namespace std; int a[100005]; int main(){ int n,flag=0; scanf("%d",&n); for(int i=1;i<=n;i++){ scanf("%d",&a[i]); if(a[i-1]>a[i]){cout<<"No";return 0;} if(a[i-1]!=a[i])a[i]--; } cout<<"Yes"; }
### Prompt Please formulate a Cpp solution to the following problem: There are N squares arranged in a row from left to right. The height of the i-th square from the left is H_i. For each square, you will perform either of the following operations once: * Decrease the height of the square by 1. * Do nothing. Determine if it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right. Constraints * All values in input are integers. * 1 \leq N \leq 10^5 * 1 \leq H_i \leq 10^9 Input Input is given from Standard Input in the following format: N H_1 H_2 ... H_N Output If it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right, print `Yes`; otherwise, print `No`. Examples Input 5 1 2 1 1 3 Output Yes Input 4 1 3 2 1 Output No Input 5 1 2 3 4 5 Output Yes Input 1 1000000000 Output Yes ### Response ```cpp #include<bits/stdc++.h> using namespace std; int a[100005]; int main(){ int n,flag=0; scanf("%d",&n); for(int i=1;i<=n;i++){ scanf("%d",&a[i]); if(a[i-1]>a[i]){cout<<"No";return 0;} if(a[i-1]!=a[i])a[i]--; } cout<<"Yes"; } ```
#include<bits/stdc++.h> using namespace std; typedef long long ll; int main(){ ll n,i;scanf("%lld",&n); ll a[n]; for(i=0;i<n;i++) scanf("%lld",&a[i]); for(i=1;i<n;i++){ if(a[i-1]>a[i]){ printf("No\n");return 0; } else if(a[i-1]<a[i]) a[i]--; } printf("Yes\n");return 0; }
### Prompt Your challenge is to write a cpp solution to the following problem: There are N squares arranged in a row from left to right. The height of the i-th square from the left is H_i. For each square, you will perform either of the following operations once: * Decrease the height of the square by 1. * Do nothing. Determine if it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right. Constraints * All values in input are integers. * 1 \leq N \leq 10^5 * 1 \leq H_i \leq 10^9 Input Input is given from Standard Input in the following format: N H_1 H_2 ... H_N Output If it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right, print `Yes`; otherwise, print `No`. Examples Input 5 1 2 1 1 3 Output Yes Input 4 1 3 2 1 Output No Input 5 1 2 3 4 5 Output Yes Input 1 1000000000 Output Yes ### Response ```cpp #include<bits/stdc++.h> using namespace std; typedef long long ll; int main(){ ll n,i;scanf("%lld",&n); ll a[n]; for(i=0;i<n;i++) scanf("%lld",&a[i]); for(i=1;i<n;i++){ if(a[i-1]>a[i]){ printf("No\n");return 0; } else if(a[i-1]<a[i]) a[i]--; } printf("Yes\n");return 0; } ```
#include<bits/stdc++.h> using namespace std; int main(){ int n; cin >> n; int a[n]; for(int i=0;i<n;i++)cin >> a[i]; for(int i=n-2;i>=0;i--){ if(a[i+1]+1<a[i]){ cout << "No"; return 0; } if(a[i+1]+1==a[i])a[i]--; } cout << "Yes"; }
### Prompt Please provide a CPP coded solution to the problem described below: There are N squares arranged in a row from left to right. The height of the i-th square from the left is H_i. For each square, you will perform either of the following operations once: * Decrease the height of the square by 1. * Do nothing. Determine if it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right. Constraints * All values in input are integers. * 1 \leq N \leq 10^5 * 1 \leq H_i \leq 10^9 Input Input is given from Standard Input in the following format: N H_1 H_2 ... H_N Output If it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right, print `Yes`; otherwise, print `No`. Examples Input 5 1 2 1 1 3 Output Yes Input 4 1 3 2 1 Output No Input 5 1 2 3 4 5 Output Yes Input 1 1000000000 Output Yes ### Response ```cpp #include<bits/stdc++.h> using namespace std; int main(){ int n; cin >> n; int a[n]; for(int i=0;i<n;i++)cin >> a[i]; for(int i=n-2;i>=0;i--){ if(a[i+1]+1<a[i]){ cout << "No"; return 0; } if(a[i+1]+1==a[i])a[i]--; } cout << "Yes"; } ```
#include<cstdio> #define maxn 100005 using namespace std; int n,a[maxn]; int main(){ scanf("%d",&n); for (int i=1;i<=n;i++) scanf("%d",&a[i]),a[i]--; for (int i=2;i<=n;i++){ if (a[i]<a[i-1]){ a[i]++; if (a[i]<a[i-1]){printf("No\n");return 0;} } } printf("Yes\n"); return 0; }
### Prompt Please formulate a cpp solution to the following problem: There are N squares arranged in a row from left to right. The height of the i-th square from the left is H_i. For each square, you will perform either of the following operations once: * Decrease the height of the square by 1. * Do nothing. Determine if it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right. Constraints * All values in input are integers. * 1 \leq N \leq 10^5 * 1 \leq H_i \leq 10^9 Input Input is given from Standard Input in the following format: N H_1 H_2 ... H_N Output If it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right, print `Yes`; otherwise, print `No`. Examples Input 5 1 2 1 1 3 Output Yes Input 4 1 3 2 1 Output No Input 5 1 2 3 4 5 Output Yes Input 1 1000000000 Output Yes ### Response ```cpp #include<cstdio> #define maxn 100005 using namespace std; int n,a[maxn]; int main(){ scanf("%d",&n); for (int i=1;i<=n;i++) scanf("%d",&a[i]),a[i]--; for (int i=2;i<=n;i++){ if (a[i]<a[i-1]){ a[i]++; if (a[i]<a[i-1]){printf("No\n");return 0;} } } printf("Yes\n"); return 0; } ```
#include<bits/stdc++.h> using namespace std; int n,h[100010]; int main() { scanf("%d",&n); for(int i=1;i<=n;i++) scanf("%d",&h[i]); for(int i=n;i>1;i--) if(h[i-1]-h[i]>=2) { printf("No\n"); return 0; } else if(h[i-1]-h[i]==1) h[i-1]--; printf("Yes\n"); return 0; }
### Prompt Create a solution in Cpp for the following problem: There are N squares arranged in a row from left to right. The height of the i-th square from the left is H_i. For each square, you will perform either of the following operations once: * Decrease the height of the square by 1. * Do nothing. Determine if it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right. Constraints * All values in input are integers. * 1 \leq N \leq 10^5 * 1 \leq H_i \leq 10^9 Input Input is given from Standard Input in the following format: N H_1 H_2 ... H_N Output If it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right, print `Yes`; otherwise, print `No`. Examples Input 5 1 2 1 1 3 Output Yes Input 4 1 3 2 1 Output No Input 5 1 2 3 4 5 Output Yes Input 1 1000000000 Output Yes ### Response ```cpp #include<bits/stdc++.h> using namespace std; int n,h[100010]; int main() { scanf("%d",&n); for(int i=1;i<=n;i++) scanf("%d",&h[i]); for(int i=n;i>1;i--) if(h[i-1]-h[i]>=2) { printf("No\n"); return 0; } else if(h[i-1]-h[i]==1) h[i-1]--; printf("Yes\n"); return 0; } ```
#include<bits/stdc++.h> using namespace std; int a,n,cant,fo; int main() { scanf("%d",&n); for(int i=1; i<=n; i++) { scanf("%d",&a); if(a<fo)cant=1; else if(a!=fo)fo=max(a-1,fo); } if(cant)printf("No"); else printf("Yes"); return 0; }
### Prompt Develop a solution in cpp to the problem described below: There are N squares arranged in a row from left to right. The height of the i-th square from the left is H_i. For each square, you will perform either of the following operations once: * Decrease the height of the square by 1. * Do nothing. Determine if it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right. Constraints * All values in input are integers. * 1 \leq N \leq 10^5 * 1 \leq H_i \leq 10^9 Input Input is given from Standard Input in the following format: N H_1 H_2 ... H_N Output If it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right, print `Yes`; otherwise, print `No`. Examples Input 5 1 2 1 1 3 Output Yes Input 4 1 3 2 1 Output No Input 5 1 2 3 4 5 Output Yes Input 1 1000000000 Output Yes ### Response ```cpp #include<bits/stdc++.h> using namespace std; int a,n,cant,fo; int main() { scanf("%d",&n); for(int i=1; i<=n; i++) { scanf("%d",&a); if(a<fo)cant=1; else if(a!=fo)fo=max(a-1,fo); } if(cant)printf("No"); else printf("Yes"); return 0; } ```
#include <iostream> #include <cstdio> using namespace std; int n, a[100005]; int main() { int i; cin>>n; for(i=1; i<=n; i++) scanf("%d", &a[i]); for(i=n-1; i>=1; i--) { if(a[i] > a[i+1]) { a[i]--; if(a[i] > a[i+1]) {cout<<"No"; return 0;} } } cout<<"Yes"; return 0; }
### Prompt Please provide a CPP coded solution to the problem described below: There are N squares arranged in a row from left to right. The height of the i-th square from the left is H_i. For each square, you will perform either of the following operations once: * Decrease the height of the square by 1. * Do nothing. Determine if it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right. Constraints * All values in input are integers. * 1 \leq N \leq 10^5 * 1 \leq H_i \leq 10^9 Input Input is given from Standard Input in the following format: N H_1 H_2 ... H_N Output If it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right, print `Yes`; otherwise, print `No`. Examples Input 5 1 2 1 1 3 Output Yes Input 4 1 3 2 1 Output No Input 5 1 2 3 4 5 Output Yes Input 1 1000000000 Output Yes ### Response ```cpp #include <iostream> #include <cstdio> using namespace std; int n, a[100005]; int main() { int i; cin>>n; for(i=1; i<=n; i++) scanf("%d", &a[i]); for(i=n-1; i>=1; i--) { if(a[i] > a[i+1]) { a[i]--; if(a[i] > a[i+1]) {cout<<"No"; return 0;} } } cout<<"Yes"; return 0; } ```
#include<cstdio> #include<algorithm> using namespace std; const int N=1e5+5; int n,a[N],minn[N]; int main() { scanf("%d",&n); for(int i=1;i<=n;++i) scanf("%d",&a[i]); for(int i=1;i<=n;++i) { if(a[i]>a[i-1]) --a[i]; if(a[i]<a[i-1]) {puts("No");return 0;} } puts("Yes"); return 0; }
### Prompt Please create a solution in cpp to the following problem: There are N squares arranged in a row from left to right. The height of the i-th square from the left is H_i. For each square, you will perform either of the following operations once: * Decrease the height of the square by 1. * Do nothing. Determine if it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right. Constraints * All values in input are integers. * 1 \leq N \leq 10^5 * 1 \leq H_i \leq 10^9 Input Input is given from Standard Input in the following format: N H_1 H_2 ... H_N Output If it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right, print `Yes`; otherwise, print `No`. Examples Input 5 1 2 1 1 3 Output Yes Input 4 1 3 2 1 Output No Input 5 1 2 3 4 5 Output Yes Input 1 1000000000 Output Yes ### Response ```cpp #include<cstdio> #include<algorithm> using namespace std; const int N=1e5+5; int n,a[N],minn[N]; int main() { scanf("%d",&n); for(int i=1;i<=n;++i) scanf("%d",&a[i]); for(int i=1;i<=n;++i) { if(a[i]>a[i-1]) --a[i]; if(a[i]<a[i-1]) {puts("No");return 0;} } puts("Yes"); return 0; } ```
#include <bits/stdc++.h> using namespace std; int main() { int n,aa[500000]; cin>>n; for(int i=0;i<n;i++)cin>>aa[i]; int mx=0; for(int i=0;i<n;i++){ if(mx>aa[i]){ if(mx-aa[i]>1){ cout<<"No"; return 0; } }else mx=aa[i]; } cout<<"Yes"; return 0; }
### Prompt Develop a solution in CPP to the problem described below: There are N squares arranged in a row from left to right. The height of the i-th square from the left is H_i. For each square, you will perform either of the following operations once: * Decrease the height of the square by 1. * Do nothing. Determine if it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right. Constraints * All values in input are integers. * 1 \leq N \leq 10^5 * 1 \leq H_i \leq 10^9 Input Input is given from Standard Input in the following format: N H_1 H_2 ... H_N Output If it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right, print `Yes`; otherwise, print `No`. Examples Input 5 1 2 1 1 3 Output Yes Input 4 1 3 2 1 Output No Input 5 1 2 3 4 5 Output Yes Input 1 1000000000 Output Yes ### Response ```cpp #include <bits/stdc++.h> using namespace std; int main() { int n,aa[500000]; cin>>n; for(int i=0;i<n;i++)cin>>aa[i]; int mx=0; for(int i=0;i<n;i++){ if(mx>aa[i]){ if(mx-aa[i]>1){ cout<<"No"; return 0; } }else mx=aa[i]; } cout<<"Yes"; return 0; } ```
#include <bits/stdc++.h> using namespace std; int main(){ int n; cin>>n; int a,b; cin>>a; bool flg=true; --a; for(int i=0; i<n-1; ++i){ cin>>b; if(a<b)a=b-1; else if(a==b)a=b; else{flg=false; break;} } if(flg)cout<<"Yes"<<endl; else cout<<"No"<<endl; }
### Prompt Please provide a Cpp coded solution to the problem described below: There are N squares arranged in a row from left to right. The height of the i-th square from the left is H_i. For each square, you will perform either of the following operations once: * Decrease the height of the square by 1. * Do nothing. Determine if it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right. Constraints * All values in input are integers. * 1 \leq N \leq 10^5 * 1 \leq H_i \leq 10^9 Input Input is given from Standard Input in the following format: N H_1 H_2 ... H_N Output If it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right, print `Yes`; otherwise, print `No`. Examples Input 5 1 2 1 1 3 Output Yes Input 4 1 3 2 1 Output No Input 5 1 2 3 4 5 Output Yes Input 1 1000000000 Output Yes ### Response ```cpp #include <bits/stdc++.h> using namespace std; int main(){ int n; cin>>n; int a,b; cin>>a; bool flg=true; --a; for(int i=0; i<n-1; ++i){ cin>>b; if(a<b)a=b-1; else if(a==b)a=b; else{flg=false; break;} } if(flg)cout<<"Yes"<<endl; else cout<<"No"<<endl; } ```
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; int m = 0; for (int i = 0; i < n; i++) { int a; scanf("%d", &a); if (a < m) { cout << "No" << endl; return 0; } m = max(m, a - 1); } cout << "Yes" << endl; return 0; }
### Prompt Generate a Cpp solution to the following problem: There are N squares arranged in a row from left to right. The height of the i-th square from the left is H_i. For each square, you will perform either of the following operations once: * Decrease the height of the square by 1. * Do nothing. Determine if it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right. Constraints * All values in input are integers. * 1 \leq N \leq 10^5 * 1 \leq H_i \leq 10^9 Input Input is given from Standard Input in the following format: N H_1 H_2 ... H_N Output If it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right, print `Yes`; otherwise, print `No`. Examples Input 5 1 2 1 1 3 Output Yes Input 4 1 3 2 1 Output No Input 5 1 2 3 4 5 Output Yes Input 1 1000000000 Output Yes ### Response ```cpp #include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; int m = 0; for (int i = 0; i < n; i++) { int a; scanf("%d", &a); if (a < m) { cout << "No" << endl; return 0; } m = max(m, a - 1); } cout << "Yes" << endl; return 0; } ```
#include <cstdio> using namespace std; int a[100005]; int main(void) { int n,i,h; scanf("%d",&n); for(i=0;i<n;i++){ scanf("%d",&a[i]); } for(i=1,h=a[0];i<n;i++){ if(h-a[i]>=2){ printf("No"); return 0; } if(a[i]>h) h=a[i]; } printf("Yes"); return 0; }
### Prompt Generate a Cpp solution to the following problem: There are N squares arranged in a row from left to right. The height of the i-th square from the left is H_i. For each square, you will perform either of the following operations once: * Decrease the height of the square by 1. * Do nothing. Determine if it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right. Constraints * All values in input are integers. * 1 \leq N \leq 10^5 * 1 \leq H_i \leq 10^9 Input Input is given from Standard Input in the following format: N H_1 H_2 ... H_N Output If it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right, print `Yes`; otherwise, print `No`. Examples Input 5 1 2 1 1 3 Output Yes Input 4 1 3 2 1 Output No Input 5 1 2 3 4 5 Output Yes Input 1 1000000000 Output Yes ### Response ```cpp #include <cstdio> using namespace std; int a[100005]; int main(void) { int n,i,h; scanf("%d",&n); for(i=0;i<n;i++){ scanf("%d",&a[i]); } for(i=1,h=a[0];i<n;i++){ if(h-a[i]>=2){ printf("No"); return 0; } if(a[i]>h) h=a[i]; } printf("Yes"); return 0; } ```
#include<bits/stdc++.h> using namespace std; int main() { int n; cin>>n; int h[n+10]; for(int i=0;i<n;i++) cin>>h[i]; for(int i=n-1;i>0;i--) if(h[i]<h[i-1])h[i-1]--; for(int i=0;i<n-1;i++) if(h[i]>h[i+1]){ cout<<"No"; return 0; } cout<<"Yes"; return 0; }
### Prompt Generate a CPP solution to the following problem: There are N squares arranged in a row from left to right. The height of the i-th square from the left is H_i. For each square, you will perform either of the following operations once: * Decrease the height of the square by 1. * Do nothing. Determine if it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right. Constraints * All values in input are integers. * 1 \leq N \leq 10^5 * 1 \leq H_i \leq 10^9 Input Input is given from Standard Input in the following format: N H_1 H_2 ... H_N Output If it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right, print `Yes`; otherwise, print `No`. Examples Input 5 1 2 1 1 3 Output Yes Input 4 1 3 2 1 Output No Input 5 1 2 3 4 5 Output Yes Input 1 1000000000 Output Yes ### Response ```cpp #include<bits/stdc++.h> using namespace std; int main() { int n; cin>>n; int h[n+10]; for(int i=0;i<n;i++) cin>>h[i]; for(int i=n-1;i>0;i--) if(h[i]<h[i-1])h[i-1]--; for(int i=0;i<n-1;i++) if(h[i]>h[i+1]){ cout<<"No"; return 0; } cout<<"Yes"; return 0; } ```
#include<bits/stdc++.h> using namespace std; int main(){ int n; cin>>n; int m=0; bool f=1; for(int i=0;i<n;i++){ int h; cin>>h; if(m-h<2) m=max(m,h); else f=0; } cout<<(f?"Yes":"No")<<endl; }
### Prompt Please create a solution in Cpp to the following problem: There are N squares arranged in a row from left to right. The height of the i-th square from the left is H_i. For each square, you will perform either of the following operations once: * Decrease the height of the square by 1. * Do nothing. Determine if it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right. Constraints * All values in input are integers. * 1 \leq N \leq 10^5 * 1 \leq H_i \leq 10^9 Input Input is given from Standard Input in the following format: N H_1 H_2 ... H_N Output If it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right, print `Yes`; otherwise, print `No`. Examples Input 5 1 2 1 1 3 Output Yes Input 4 1 3 2 1 Output No Input 5 1 2 3 4 5 Output Yes Input 1 1000000000 Output Yes ### Response ```cpp #include<bits/stdc++.h> using namespace std; int main(){ int n; cin>>n; int m=0; bool f=1; for(int i=0;i<n;i++){ int h; cin>>h; if(m-h<2) m=max(m,h); else f=0; } cout<<(f?"Yes":"No")<<endl; } ```
#include <bits/stdc++.h> using namespace std; int n,a[100005]; bool flag; signed main(){ scanf("%d",&n); for(int i=1;i<=n;++i){ scanf("%d",&a[i]); if(a[i]-a[i-1]>0) a[i]--; if(a[i]<a[i-1]){ puts("No"); return 0; } } puts("Yes"); }
### Prompt Generate a CPP solution to the following problem: There are N squares arranged in a row from left to right. The height of the i-th square from the left is H_i. For each square, you will perform either of the following operations once: * Decrease the height of the square by 1. * Do nothing. Determine if it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right. Constraints * All values in input are integers. * 1 \leq N \leq 10^5 * 1 \leq H_i \leq 10^9 Input Input is given from Standard Input in the following format: N H_1 H_2 ... H_N Output If it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right, print `Yes`; otherwise, print `No`. Examples Input 5 1 2 1 1 3 Output Yes Input 4 1 3 2 1 Output No Input 5 1 2 3 4 5 Output Yes Input 1 1000000000 Output Yes ### Response ```cpp #include <bits/stdc++.h> using namespace std; int n,a[100005]; bool flag; signed main(){ scanf("%d",&n); for(int i=1;i<=n;++i){ scanf("%d",&a[i]); if(a[i]-a[i-1]>0) a[i]--; if(a[i]<a[i-1]){ puts("No"); return 0; } } puts("Yes"); } ```
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<int> h(n); int mxh = 0; string ans = "Yes"; for(int i=0; i<n; i++){ cin >> h[i]; if(h[i]>mxh){ mxh = h[i]; } if(h[i]<mxh-1){ ans = "No"; } } cout << ans << endl; }
### Prompt Construct a CPP code solution to the problem outlined: There are N squares arranged in a row from left to right. The height of the i-th square from the left is H_i. For each square, you will perform either of the following operations once: * Decrease the height of the square by 1. * Do nothing. Determine if it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right. Constraints * All values in input are integers. * 1 \leq N \leq 10^5 * 1 \leq H_i \leq 10^9 Input Input is given from Standard Input in the following format: N H_1 H_2 ... H_N Output If it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right, print `Yes`; otherwise, print `No`. Examples Input 5 1 2 1 1 3 Output Yes Input 4 1 3 2 1 Output No Input 5 1 2 3 4 5 Output Yes Input 1 1000000000 Output Yes ### Response ```cpp #include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<int> h(n); int mxh = 0; string ans = "Yes"; for(int i=0; i<n; i++){ cin >> h[i]; if(h[i]>mxh){ mxh = h[i]; } if(h[i]<mxh-1){ ans = "No"; } } cout << ans << endl; } ```
#include <bits/stdc++.h> using namespace std; int main(){ int N,i;cin>>N;int H[N]; for(i=0;i<N;i++)cin>>H[i]; for(i=N-1;i>0;i--){ if(H[i-1]>H[i]){ if(H[i-1]-H[i]==1)H[i-1]--; else break; } } if(i==0)cout<<"Yes"<<endl; else cout<<"No"<<endl; }
### Prompt Develop a solution in cpp to the problem described below: There are N squares arranged in a row from left to right. The height of the i-th square from the left is H_i. For each square, you will perform either of the following operations once: * Decrease the height of the square by 1. * Do nothing. Determine if it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right. Constraints * All values in input are integers. * 1 \leq N \leq 10^5 * 1 \leq H_i \leq 10^9 Input Input is given from Standard Input in the following format: N H_1 H_2 ... H_N Output If it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right, print `Yes`; otherwise, print `No`. Examples Input 5 1 2 1 1 3 Output Yes Input 4 1 3 2 1 Output No Input 5 1 2 3 4 5 Output Yes Input 1 1000000000 Output Yes ### Response ```cpp #include <bits/stdc++.h> using namespace std; int main(){ int N,i;cin>>N;int H[N]; for(i=0;i<N;i++)cin>>H[i]; for(i=N-1;i>0;i--){ if(H[i-1]>H[i]){ if(H[i-1]-H[i]==1)H[i-1]--; else break; } } if(i==0)cout<<"Yes"<<endl; else cout<<"No"<<endl; } ```
#include <bits/stdc++.h> using namespace std; int main() { int n; cin>>n; int maks=0, a; for(int i=0; i<n; i++) { cin>>a; maks=max(maks,a); if(a<maks-1) { cout<<"No"; return 0; } } cout<<"Yes"; return 0; }
### Prompt Generate a CPP solution to the following problem: There are N squares arranged in a row from left to right. The height of the i-th square from the left is H_i. For each square, you will perform either of the following operations once: * Decrease the height of the square by 1. * Do nothing. Determine if it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right. Constraints * All values in input are integers. * 1 \leq N \leq 10^5 * 1 \leq H_i \leq 10^9 Input Input is given from Standard Input in the following format: N H_1 H_2 ... H_N Output If it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right, print `Yes`; otherwise, print `No`. Examples Input 5 1 2 1 1 3 Output Yes Input 4 1 3 2 1 Output No Input 5 1 2 3 4 5 Output Yes Input 1 1000000000 Output Yes ### Response ```cpp #include <bits/stdc++.h> using namespace std; int main() { int n; cin>>n; int maks=0, a; for(int i=0; i<n; i++) { cin>>a; maks=max(maks,a); if(a<maks-1) { cout<<"No"; return 0; } } cout<<"Yes"; return 0; } ```
#include <iostream> using namespace std; int main(){ int n,flag=1;; cin>>n; int a[n]; for(int i=0;i<n;i++){ cin>>a[i]; } a[0]--; for(int i=1;i<n;i++){ if(a[i]<a[i-1]) flag=0; if(a[i]>a[i-1]) a[i]--; } if(flag) cout<<"Yes\n"; else cout<<"No\n"; return 0; }
### Prompt Please provide a Cpp coded solution to the problem described below: There are N squares arranged in a row from left to right. The height of the i-th square from the left is H_i. For each square, you will perform either of the following operations once: * Decrease the height of the square by 1. * Do nothing. Determine if it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right. Constraints * All values in input are integers. * 1 \leq N \leq 10^5 * 1 \leq H_i \leq 10^9 Input Input is given from Standard Input in the following format: N H_1 H_2 ... H_N Output If it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right, print `Yes`; otherwise, print `No`. Examples Input 5 1 2 1 1 3 Output Yes Input 4 1 3 2 1 Output No Input 5 1 2 3 4 5 Output Yes Input 1 1000000000 Output Yes ### Response ```cpp #include <iostream> using namespace std; int main(){ int n,flag=1;; cin>>n; int a[n]; for(int i=0;i<n;i++){ cin>>a[i]; } a[0]--; for(int i=1;i<n;i++){ if(a[i]<a[i-1]) flag=0; if(a[i]>a[i-1]) a[i]--; } if(flag) cout<<"Yes\n"; else cout<<"No\n"; return 0; } ```
#include <bits/stdc++.h> using namespace std; int main(){ int n; cin >> n; int a[n]; cin >> a[0]; int r=a[0]; for(int i=1;i<n;i++){ cin >> a[i]; if(r>=a[i]+2){cout << "No" << endl; return 0;} if(r<a[i]){r=a[i];} } cout << "Yes" << endl; }
### Prompt Your challenge is to write a cpp solution to the following problem: There are N squares arranged in a row from left to right. The height of the i-th square from the left is H_i. For each square, you will perform either of the following operations once: * Decrease the height of the square by 1. * Do nothing. Determine if it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right. Constraints * All values in input are integers. * 1 \leq N \leq 10^5 * 1 \leq H_i \leq 10^9 Input Input is given from Standard Input in the following format: N H_1 H_2 ... H_N Output If it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right, print `Yes`; otherwise, print `No`. Examples Input 5 1 2 1 1 3 Output Yes Input 4 1 3 2 1 Output No Input 5 1 2 3 4 5 Output Yes Input 1 1000000000 Output Yes ### Response ```cpp #include <bits/stdc++.h> using namespace std; int main(){ int n; cin >> n; int a[n]; cin >> a[0]; int r=a[0]; for(int i=1;i<n;i++){ cin >> a[i]; if(r>=a[i]+2){cout << "No" << endl; return 0;} if(r<a[i]){r=a[i];} } cout << "Yes" << endl; } ```
#include<iostream> using namespace std; int n; int h[100005],mn; int main() { cin>>n; for(int i=1;i<=n;i++) cin>>h[i]; mn=h[n]; for(int i=n-1;i>=1;i--) { if(mn>h[i]) mn=h[i]; if(h[i]-2>=mn) { cout<<"No"; return 0; } } cout<<"Yes"; }
### Prompt Please create a solution in cpp to the following problem: There are N squares arranged in a row from left to right. The height of the i-th square from the left is H_i. For each square, you will perform either of the following operations once: * Decrease the height of the square by 1. * Do nothing. Determine if it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right. Constraints * All values in input are integers. * 1 \leq N \leq 10^5 * 1 \leq H_i \leq 10^9 Input Input is given from Standard Input in the following format: N H_1 H_2 ... H_N Output If it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right, print `Yes`; otherwise, print `No`. Examples Input 5 1 2 1 1 3 Output Yes Input 4 1 3 2 1 Output No Input 5 1 2 3 4 5 Output Yes Input 1 1000000000 Output Yes ### Response ```cpp #include<iostream> using namespace std; int n; int h[100005],mn; int main() { cin>>n; for(int i=1;i<=n;i++) cin>>h[i]; mn=h[n]; for(int i=n-1;i>=1;i--) { if(mn>h[i]) mn=h[i]; if(h[i]-2>=mn) { cout<<"No"; return 0; } } cout<<"Yes"; } ```
#include<iostream> using namespace std; int N,H[1<<17]; int main() { cin>>N; for(int i=0;i<N;i++)cin>>H[i]; for(int i=N-1;i--;) { if(H[i]>H[i+1])H[i]--; if(H[i]>H[i+1]) { cout<<"No"<<endl; return 0; } } cout<<"Yes"<<endl; }
### Prompt In Cpp, your task is to solve the following problem: There are N squares arranged in a row from left to right. The height of the i-th square from the left is H_i. For each square, you will perform either of the following operations once: * Decrease the height of the square by 1. * Do nothing. Determine if it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right. Constraints * All values in input are integers. * 1 \leq N \leq 10^5 * 1 \leq H_i \leq 10^9 Input Input is given from Standard Input in the following format: N H_1 H_2 ... H_N Output If it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right, print `Yes`; otherwise, print `No`. Examples Input 5 1 2 1 1 3 Output Yes Input 4 1 3 2 1 Output No Input 5 1 2 3 4 5 Output Yes Input 1 1000000000 Output Yes ### Response ```cpp #include<iostream> using namespace std; int N,H[1<<17]; int main() { cin>>N; for(int i=0;i<N;i++)cin>>H[i]; for(int i=N-1;i--;) { if(H[i]>H[i+1])H[i]--; if(H[i]>H[i+1]) { cout<<"No"<<endl; return 0; } } cout<<"Yes"<<endl; } ```
#include<bits/stdc++.h> using namespace std; int h[100006]; int main() { int n; cin>>n; for(int i=1;i<=n;++i) scanf("%d",&h[i]); for(int i=n;i>=2;--i) { if(h[i]+1==h[i-1]) h[i-1]--; else if(h[i]+1<h[i-1]) { printf("No"); return 0; } } printf("Yes"); return 0; }
### Prompt Create a solution in CPP for the following problem: There are N squares arranged in a row from left to right. The height of the i-th square from the left is H_i. For each square, you will perform either of the following operations once: * Decrease the height of the square by 1. * Do nothing. Determine if it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right. Constraints * All values in input are integers. * 1 \leq N \leq 10^5 * 1 \leq H_i \leq 10^9 Input Input is given from Standard Input in the following format: N H_1 H_2 ... H_N Output If it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right, print `Yes`; otherwise, print `No`. Examples Input 5 1 2 1 1 3 Output Yes Input 4 1 3 2 1 Output No Input 5 1 2 3 4 5 Output Yes Input 1 1000000000 Output Yes ### Response ```cpp #include<bits/stdc++.h> using namespace std; int h[100006]; int main() { int n; cin>>n; for(int i=1;i<=n;++i) scanf("%d",&h[i]); for(int i=n;i>=2;--i) { if(h[i]+1==h[i-1]) h[i-1]--; else if(h[i]+1<h[i-1]) { printf("No"); return 0; } } printf("Yes"); return 0; } ```
#include <cstdio> int n; int h[100010]; int main() { int i; scanf("%d", &n); for(i=1; i<=n; i++) scanf("%d", &h[i]); for(i=1; i<=n; i++) { if(h[i-1]>h[i]) { printf("No\n"); return 0; } else if(h[i-1]<h[i]) h[i]--; } printf("Yes\n"); return 0; }
### Prompt Create a solution in cpp for the following problem: There are N squares arranged in a row from left to right. The height of the i-th square from the left is H_i. For each square, you will perform either of the following operations once: * Decrease the height of the square by 1. * Do nothing. Determine if it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right. Constraints * All values in input are integers. * 1 \leq N \leq 10^5 * 1 \leq H_i \leq 10^9 Input Input is given from Standard Input in the following format: N H_1 H_2 ... H_N Output If it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right, print `Yes`; otherwise, print `No`. Examples Input 5 1 2 1 1 3 Output Yes Input 4 1 3 2 1 Output No Input 5 1 2 3 4 5 Output Yes Input 1 1000000000 Output Yes ### Response ```cpp #include <cstdio> int n; int h[100010]; int main() { int i; scanf("%d", &n); for(i=1; i<=n; i++) scanf("%d", &h[i]); for(i=1; i<=n; i++) { if(h[i-1]>h[i]) { printf("No\n"); return 0; } else if(h[i-1]<h[i]) h[i]--; } printf("Yes\n"); return 0; } ```
# include <bits/stdc++.h> # define ll long long # define pb push_back # define mk make_pair # define fr first # define sc second using namespace std; int n,ans,x,y; int main(){ cin>>n; for(int i=1;i<=n;i++) { cin>>x; if(x>y)x--; if(x<y){cout<<"No";return 0;} y=x; } cout<<"Yes"; }
### Prompt Your task is to create a CPP solution to the following problem: There are N squares arranged in a row from left to right. The height of the i-th square from the left is H_i. For each square, you will perform either of the following operations once: * Decrease the height of the square by 1. * Do nothing. Determine if it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right. Constraints * All values in input are integers. * 1 \leq N \leq 10^5 * 1 \leq H_i \leq 10^9 Input Input is given from Standard Input in the following format: N H_1 H_2 ... H_N Output If it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right, print `Yes`; otherwise, print `No`. Examples Input 5 1 2 1 1 3 Output Yes Input 4 1 3 2 1 Output No Input 5 1 2 3 4 5 Output Yes Input 1 1000000000 Output Yes ### Response ```cpp # include <bits/stdc++.h> # define ll long long # define pb push_back # define mk make_pair # define fr first # define sc second using namespace std; int n,ans,x,y; int main(){ cin>>n; for(int i=1;i<=n;i++) { cin>>x; if(x>y)x--; if(x<y){cout<<"No";return 0;} y=x; } cout<<"Yes"; } ```
#include <iostream> #include <algorithm> using namespace std; int main() { int n,H[100010]; cin >> n; for(int i=0;i<n;i++){ cin >> H[i]; } for(int i=1;i<n;i++){ if(H[i]-1 >= H[i-1]){ H[i]--; } } cout << (is_sorted(H,H+n) ? "Yes" : "No") << "\n"; return 0; }
### Prompt In cpp, your task is to solve the following problem: There are N squares arranged in a row from left to right. The height of the i-th square from the left is H_i. For each square, you will perform either of the following operations once: * Decrease the height of the square by 1. * Do nothing. Determine if it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right. Constraints * All values in input are integers. * 1 \leq N \leq 10^5 * 1 \leq H_i \leq 10^9 Input Input is given from Standard Input in the following format: N H_1 H_2 ... H_N Output If it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right, print `Yes`; otherwise, print `No`. Examples Input 5 1 2 1 1 3 Output Yes Input 4 1 3 2 1 Output No Input 5 1 2 3 4 5 Output Yes Input 1 1000000000 Output Yes ### Response ```cpp #include <iostream> #include <algorithm> using namespace std; int main() { int n,H[100010]; cin >> n; for(int i=0;i<n;i++){ cin >> H[i]; } for(int i=1;i<n;i++){ if(H[i]-1 >= H[i-1]){ H[i]--; } } cout << (is_sorted(H,H+n) ? "Yes" : "No") << "\n"; return 0; } ```
#include <cstdio> #include <algorithm> using namespace std; int N,mx; int main() { scanf("%d",&N); for (int i = 0,H;i < N;i++) { scanf("%d",&H); if (mx-1 > H) return printf("No\n"),0; mx = max(mx,H); } printf("Yes\n"); }
### Prompt Your task is to create a Cpp solution to the following problem: There are N squares arranged in a row from left to right. The height of the i-th square from the left is H_i. For each square, you will perform either of the following operations once: * Decrease the height of the square by 1. * Do nothing. Determine if it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right. Constraints * All values in input are integers. * 1 \leq N \leq 10^5 * 1 \leq H_i \leq 10^9 Input Input is given from Standard Input in the following format: N H_1 H_2 ... H_N Output If it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right, print `Yes`; otherwise, print `No`. Examples Input 5 1 2 1 1 3 Output Yes Input 4 1 3 2 1 Output No Input 5 1 2 3 4 5 Output Yes Input 1 1000000000 Output Yes ### Response ```cpp #include <cstdio> #include <algorithm> using namespace std; int N,mx; int main() { scanf("%d",&N); for (int i = 0,H;i < N;i++) { scanf("%d",&H); if (mx-1 > H) return printf("No\n"),0; mx = max(mx,H); } printf("Yes\n"); } ```
#include<bits/stdc++.h> using namespace std; int main(){ int n; cin>>n; int m,h; cin>>m; for(int i=1;i<n;i++){ cin>>h; m=max(m,h); if(m-1>h){ puts("No"); return 0; } } puts("Yes"); return 0; }
### Prompt In Cpp, your task is to solve the following problem: There are N squares arranged in a row from left to right. The height of the i-th square from the left is H_i. For each square, you will perform either of the following operations once: * Decrease the height of the square by 1. * Do nothing. Determine if it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right. Constraints * All values in input are integers. * 1 \leq N \leq 10^5 * 1 \leq H_i \leq 10^9 Input Input is given from Standard Input in the following format: N H_1 H_2 ... H_N Output If it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right, print `Yes`; otherwise, print `No`. Examples Input 5 1 2 1 1 3 Output Yes Input 4 1 3 2 1 Output No Input 5 1 2 3 4 5 Output Yes Input 1 1000000000 Output Yes ### Response ```cpp #include<bits/stdc++.h> using namespace std; int main(){ int n; cin>>n; int m,h; cin>>m; for(int i=1;i<n;i++){ cin>>h; m=max(m,h); if(m-1>h){ puts("No"); return 0; } } puts("Yes"); return 0; } ```
#include <iostream> using namespace std; int main(){ int n,b=-2; cin>>n; while(n--){ int e; cin>>e; if(e<b){ cout<<"No"<<endl; return 0; } if(e>b){ b=e-1; } } cout<<"Yes"<<endl; }
### Prompt Create a solution in Cpp for the following problem: There are N squares arranged in a row from left to right. The height of the i-th square from the left is H_i. For each square, you will perform either of the following operations once: * Decrease the height of the square by 1. * Do nothing. Determine if it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right. Constraints * All values in input are integers. * 1 \leq N \leq 10^5 * 1 \leq H_i \leq 10^9 Input Input is given from Standard Input in the following format: N H_1 H_2 ... H_N Output If it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right, print `Yes`; otherwise, print `No`. Examples Input 5 1 2 1 1 3 Output Yes Input 4 1 3 2 1 Output No Input 5 1 2 3 4 5 Output Yes Input 1 1000000000 Output Yes ### Response ```cpp #include <iostream> using namespace std; int main(){ int n,b=-2; cin>>n; while(n--){ int e; cin>>e; if(e<b){ cout<<"No"<<endl; return 0; } if(e>b){ b=e-1; } } cout<<"Yes"<<endl; } ```
#include<bits/stdc++.h> using namespace std; int n,a[100010],minn=0X7FFFFFFF; int main() { cin>>n; for(int i=1;i<=n;i++)cin>>a[i]; for(int i=n;i>=1;i--){ if(a[i]-minn>=2){ cout<<"No"<<endl; return 0; } minn=min(minn,a[i]); } cout<<"Yes"<<endl; return 0; }
### Prompt In Cpp, your task is to solve the following problem: There are N squares arranged in a row from left to right. The height of the i-th square from the left is H_i. For each square, you will perform either of the following operations once: * Decrease the height of the square by 1. * Do nothing. Determine if it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right. Constraints * All values in input are integers. * 1 \leq N \leq 10^5 * 1 \leq H_i \leq 10^9 Input Input is given from Standard Input in the following format: N H_1 H_2 ... H_N Output If it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right, print `Yes`; otherwise, print `No`. Examples Input 5 1 2 1 1 3 Output Yes Input 4 1 3 2 1 Output No Input 5 1 2 3 4 5 Output Yes Input 1 1000000000 Output Yes ### Response ```cpp #include<bits/stdc++.h> using namespace std; int n,a[100010],minn=0X7FFFFFFF; int main() { cin>>n; for(int i=1;i<=n;i++)cin>>a[i]; for(int i=n;i>=1;i--){ if(a[i]-minn>=2){ cout<<"No"<<endl; return 0; } minn=min(minn,a[i]); } cout<<"Yes"<<endl; return 0; } ```
#include <bits/stdc++.h> using namespace std; int main() { long n,i,cur; cin >> n; vector<long> h(n); for(i=0; i<n; i++){ cin >> h[i]; } for(i=n-1; i>0; i--){ if(h[i]-h[i-1]==-1){ h[i-1]--; }else if(h[i]<h[i-1]){ cout << "No"; return 0; } } cout << "Yes"; return 0; }
### Prompt In Cpp, your task is to solve the following problem: There are N squares arranged in a row from left to right. The height of the i-th square from the left is H_i. For each square, you will perform either of the following operations once: * Decrease the height of the square by 1. * Do nothing. Determine if it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right. Constraints * All values in input are integers. * 1 \leq N \leq 10^5 * 1 \leq H_i \leq 10^9 Input Input is given from Standard Input in the following format: N H_1 H_2 ... H_N Output If it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right, print `Yes`; otherwise, print `No`. Examples Input 5 1 2 1 1 3 Output Yes Input 4 1 3 2 1 Output No Input 5 1 2 3 4 5 Output Yes Input 1 1000000000 Output Yes ### Response ```cpp #include <bits/stdc++.h> using namespace std; int main() { long n,i,cur; cin >> n; vector<long> h(n); for(i=0; i<n; i++){ cin >> h[i]; } for(i=n-1; i>0; i--){ if(h[i]-h[i-1]==-1){ h[i-1]--; }else if(h[i]<h[i-1]){ cout << "No"; return 0; } } cout << "Yes"; return 0; } ```
#include <stdio.h> int main(void){ int n; scanf("%d", &n); int h[n]; for(int i=0;i<n;i++){ scanf("%d", &h[i]); } for(int i=n-2;i>=0;i--){ if(h[i]>h[i+1]+1){ printf("No"); return 0; }else if(h[i]==h[i+1]+1){ h[i]--; } } printf("Yes"); return 0; }
### Prompt Develop a solution in cpp to the problem described below: There are N squares arranged in a row from left to right. The height of the i-th square from the left is H_i. For each square, you will perform either of the following operations once: * Decrease the height of the square by 1. * Do nothing. Determine if it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right. Constraints * All values in input are integers. * 1 \leq N \leq 10^5 * 1 \leq H_i \leq 10^9 Input Input is given from Standard Input in the following format: N H_1 H_2 ... H_N Output If it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right, print `Yes`; otherwise, print `No`. Examples Input 5 1 2 1 1 3 Output Yes Input 4 1 3 2 1 Output No Input 5 1 2 3 4 5 Output Yes Input 1 1000000000 Output Yes ### Response ```cpp #include <stdio.h> int main(void){ int n; scanf("%d", &n); int h[n]; for(int i=0;i<n;i++){ scanf("%d", &h[i]); } for(int i=n-2;i>=0;i--){ if(h[i]>h[i+1]+1){ printf("No"); return 0; }else if(h[i]==h[i+1]+1){ h[i]--; } } printf("Yes"); return 0; } ```
#include<bits/stdc++.h> using namespace std; int n,a[100050],mi; bool ans=1; int main() { cin>>n; for(int i=1;i<=n;i++) { scanf("%d",&a[i]); } for(int i=n-1;i>=1;i--) { if(a[i]-a[i+1]>1)ans=0; if(a[i]-a[i+1]==1)a[i]--; } puts(ans?"Yes":"No"); }
### Prompt Your task is to create a cpp solution to the following problem: There are N squares arranged in a row from left to right. The height of the i-th square from the left is H_i. For each square, you will perform either of the following operations once: * Decrease the height of the square by 1. * Do nothing. Determine if it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right. Constraints * All values in input are integers. * 1 \leq N \leq 10^5 * 1 \leq H_i \leq 10^9 Input Input is given from Standard Input in the following format: N H_1 H_2 ... H_N Output If it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right, print `Yes`; otherwise, print `No`. Examples Input 5 1 2 1 1 3 Output Yes Input 4 1 3 2 1 Output No Input 5 1 2 3 4 5 Output Yes Input 1 1000000000 Output Yes ### Response ```cpp #include<bits/stdc++.h> using namespace std; int n,a[100050],mi; bool ans=1; int main() { cin>>n; for(int i=1;i<=n;i++) { scanf("%d",&a[i]); } for(int i=n-1;i>=1;i--) { if(a[i]-a[i+1]>1)ans=0; if(a[i]-a[i+1]==1)a[i]--; } puts(ans?"Yes":"No"); } ```
#include<bits/stdc++.h> using namespace std; int a[100001]; int main(){ int n; cin>>n; for(int i=1;i<=n;i++)cin>>a[i]; for(int i=1;i<=n;i++){ if(a[i]-1>=a[i-1])a[i]--; if(a[i-1]>a[i]){ printf("No"); return 0; } } printf("Yes"); }
### Prompt Your task is to create a Cpp solution to the following problem: There are N squares arranged in a row from left to right. The height of the i-th square from the left is H_i. For each square, you will perform either of the following operations once: * Decrease the height of the square by 1. * Do nothing. Determine if it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right. Constraints * All values in input are integers. * 1 \leq N \leq 10^5 * 1 \leq H_i \leq 10^9 Input Input is given from Standard Input in the following format: N H_1 H_2 ... H_N Output If it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right, print `Yes`; otherwise, print `No`. Examples Input 5 1 2 1 1 3 Output Yes Input 4 1 3 2 1 Output No Input 5 1 2 3 4 5 Output Yes Input 1 1000000000 Output Yes ### Response ```cpp #include<bits/stdc++.h> using namespace std; int a[100001]; int main(){ int n; cin>>n; for(int i=1;i<=n;i++)cin>>a[i]; for(int i=1;i<=n;i++){ if(a[i]-1>=a[i-1])a[i]--; if(a[i-1]>a[i]){ printf("No"); return 0; } } printf("Yes"); } ```
#include <cstdio> int main() { int N; std::scanf("%d", &N); int b, n, flag = 0; std::scanf("%d", &b); for (int i = 1; i < N; i++) { std::scanf("%d", &n); if (b < n) { n--; } if (n < b) { std::printf("No\n"); return 0; } b = n; } std::printf("Yes\n"); return 0; }
### Prompt Generate a cpp solution to the following problem: There are N squares arranged in a row from left to right. The height of the i-th square from the left is H_i. For each square, you will perform either of the following operations once: * Decrease the height of the square by 1. * Do nothing. Determine if it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right. Constraints * All values in input are integers. * 1 \leq N \leq 10^5 * 1 \leq H_i \leq 10^9 Input Input is given from Standard Input in the following format: N H_1 H_2 ... H_N Output If it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right, print `Yes`; otherwise, print `No`. Examples Input 5 1 2 1 1 3 Output Yes Input 4 1 3 2 1 Output No Input 5 1 2 3 4 5 Output Yes Input 1 1000000000 Output Yes ### Response ```cpp #include <cstdio> int main() { int N; std::scanf("%d", &N); int b, n, flag = 0; std::scanf("%d", &b); for (int i = 1; i < N; i++) { std::scanf("%d", &n); if (b < n) { n--; } if (n < b) { std::printf("No\n"); return 0; } b = n; } std::printf("Yes\n"); return 0; } ```
#include<bits/stdc++.h> using namespace std; int A[100001]; int main(){ int a,i; cin>>a,scanf("%d",&A[1]),A[1]--; for(i=2;i<=a;i++){ scanf("%d",&A[i]); if(A[i]>A[i-1])A[i]--; if(A[i]<A[i-1]){ puts("No"); return 0; } } puts("Yes"); }
### Prompt Create a solution in cpp for the following problem: There are N squares arranged in a row from left to right. The height of the i-th square from the left is H_i. For each square, you will perform either of the following operations once: * Decrease the height of the square by 1. * Do nothing. Determine if it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right. Constraints * All values in input are integers. * 1 \leq N \leq 10^5 * 1 \leq H_i \leq 10^9 Input Input is given from Standard Input in the following format: N H_1 H_2 ... H_N Output If it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right, print `Yes`; otherwise, print `No`. Examples Input 5 1 2 1 1 3 Output Yes Input 4 1 3 2 1 Output No Input 5 1 2 3 4 5 Output Yes Input 1 1000000000 Output Yes ### Response ```cpp #include<bits/stdc++.h> using namespace std; int A[100001]; int main(){ int a,i; cin>>a,scanf("%d",&A[1]),A[1]--; for(i=2;i<=a;i++){ scanf("%d",&A[i]); if(A[i]>A[i-1])A[i]--; if(A[i]<A[i-1]){ puts("No"); return 0; } } puts("Yes"); } ```
#include<bits/stdc++.h> using namespace std; int n, ok, a[100005]; int main(){ cin>>n; for(int i=1;i<=n;i++){ scanf("%d", &a[i]); } for(int i=1;i<=n;i++){ if(a[i]-1>=a[i-1]) a[i]--; if(i!=n&&a[i]>a[i+1]) { cout<<"No"; return 0; } } cout<<"Yes"; }
### Prompt Generate a Cpp solution to the following problem: There are N squares arranged in a row from left to right. The height of the i-th square from the left is H_i. For each square, you will perform either of the following operations once: * Decrease the height of the square by 1. * Do nothing. Determine if it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right. Constraints * All values in input are integers. * 1 \leq N \leq 10^5 * 1 \leq H_i \leq 10^9 Input Input is given from Standard Input in the following format: N H_1 H_2 ... H_N Output If it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right, print `Yes`; otherwise, print `No`. Examples Input 5 1 2 1 1 3 Output Yes Input 4 1 3 2 1 Output No Input 5 1 2 3 4 5 Output Yes Input 1 1000000000 Output Yes ### Response ```cpp #include<bits/stdc++.h> using namespace std; int n, ok, a[100005]; int main(){ cin>>n; for(int i=1;i<=n;i++){ scanf("%d", &a[i]); } for(int i=1;i<=n;i++){ if(a[i]-1>=a[i-1]) a[i]--; if(i!=n&&a[i]>a[i+1]) { cout<<"No"; return 0; } } cout<<"Yes"; } ```
#include<bits/stdc++.h> using namespace std; int n, a[100010]={0}; int main() { cin >> n; int f = 0; for(int i = 1; i <= n; i++) { scanf("%d", a + i); if(a[i] < a[i-1]) a[i]++; if(a[i] < a[i-1]) f = 1; } if(f) cout << "No"; else cout << "Yes"; }
### Prompt Your challenge is to write a CPP solution to the following problem: There are N squares arranged in a row from left to right. The height of the i-th square from the left is H_i. For each square, you will perform either of the following operations once: * Decrease the height of the square by 1. * Do nothing. Determine if it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right. Constraints * All values in input are integers. * 1 \leq N \leq 10^5 * 1 \leq H_i \leq 10^9 Input Input is given from Standard Input in the following format: N H_1 H_2 ... H_N Output If it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right, print `Yes`; otherwise, print `No`. Examples Input 5 1 2 1 1 3 Output Yes Input 4 1 3 2 1 Output No Input 5 1 2 3 4 5 Output Yes Input 1 1000000000 Output Yes ### Response ```cpp #include<bits/stdc++.h> using namespace std; int n, a[100010]={0}; int main() { cin >> n; int f = 0; for(int i = 1; i <= n; i++) { scanf("%d", a + i); if(a[i] < a[i-1]) a[i]++; if(a[i] < a[i-1]) f = 1; } if(f) cout << "No"; else cout << "Yes"; } ```
#include <bits/stdc++.h> using namespace std; int main(){ int n,ima=0,i,dan,kotae=1; cin>>n; for(i=0;i<n;i++){ cin>>dan; if(ima<dan){ ima=dan-1; }else if(ima>dan){ kotae=0; break; } } if(kotae){ cout<<"Yes"; }else{ cout<<"No"; } }
### Prompt Your task is to create a CPP solution to the following problem: There are N squares arranged in a row from left to right. The height of the i-th square from the left is H_i. For each square, you will perform either of the following operations once: * Decrease the height of the square by 1. * Do nothing. Determine if it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right. Constraints * All values in input are integers. * 1 \leq N \leq 10^5 * 1 \leq H_i \leq 10^9 Input Input is given from Standard Input in the following format: N H_1 H_2 ... H_N Output If it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right, print `Yes`; otherwise, print `No`. Examples Input 5 1 2 1 1 3 Output Yes Input 4 1 3 2 1 Output No Input 5 1 2 3 4 5 Output Yes Input 1 1000000000 Output Yes ### Response ```cpp #include <bits/stdc++.h> using namespace std; int main(){ int n,ima=0,i,dan,kotae=1; cin>>n; for(i=0;i<n;i++){ cin>>dan; if(ima<dan){ ima=dan-1; }else if(ima>dan){ kotae=0; break; } } if(kotae){ cout<<"Yes"; }else{ cout<<"No"; } } ```
#include <bits/stdc++.h> using namespace std; int main() { int n,h,maxh=0; cin>>n; for(int i=0;i<n;i++){ cin>>h; if(maxh>h){cout<<"No"; return 0;} maxh=max(maxh,h-1); } cout<<"Yes"; }
### Prompt In CPP, your task is to solve the following problem: There are N squares arranged in a row from left to right. The height of the i-th square from the left is H_i. For each square, you will perform either of the following operations once: * Decrease the height of the square by 1. * Do nothing. Determine if it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right. Constraints * All values in input are integers. * 1 \leq N \leq 10^5 * 1 \leq H_i \leq 10^9 Input Input is given from Standard Input in the following format: N H_1 H_2 ... H_N Output If it is possible to perform the operations so that the heights of the squares are non-decreasing from left to right, print `Yes`; otherwise, print `No`. Examples Input 5 1 2 1 1 3 Output Yes Input 4 1 3 2 1 Output No Input 5 1 2 3 4 5 Output Yes Input 1 1000000000 Output Yes ### Response ```cpp #include <bits/stdc++.h> using namespace std; int main() { int n,h,maxh=0; cin>>n; for(int i=0;i<n;i++){ cin>>h; if(maxh>h){cout<<"No"; return 0;} maxh=max(maxh,h-1); } cout<<"Yes"; } ```
#include<cstdio> #include<algorithm> int main(){ int n,b[100],a[100]; scanf("%d",&n); for(int i=0;i<n;i++){ scanf("%d",&b[i]); if(b[i]>=i+2){ printf("-1"); return 0; } } //b[i]==iなる最も大きいiを選んで取り除く //という操作で選んだ数列のreverse for(int ia=n-1;ia>=0;ia--){ int ib=ia; while(b[ib]<ib+1)ib--; a[ia]=b[ib]; while(ib<ia){ b[ib]=b[ib+1]; ib++; } } for(int i=0;i<n;i++)printf("%d\n",a[i]); return 0; }
### Prompt Your task is to create a CPP solution to the following problem: Snuke has an empty sequence a. He will perform N operations on this sequence. In the i-th operation, he chooses an integer j satisfying 1 \leq j \leq i, and insert j at position j in a (the beginning is position 1). You are given a sequence b of length N. Determine if it is possible that a is equal to b after N operations. If it is, show one possible sequence of operations that achieves it. Constraints * All values in input are integers. * 1 \leq N \leq 100 * 1 \leq b_i \leq N Input Input is given from Standard Input in the following format: N b_1 \dots b_N Output If there is no sequence of N operations after which a would be equal to b, print `-1`. If there is, print N lines. In the i-th line, the integer chosen in the i-th operation should be printed. If there are multiple solutions, any of them is accepted. Examples Input 3 1 2 1 Output 1 1 2 Input 2 2 2 Output -1 Input 9 1 1 1 2 2 1 2 3 2 Output 1 2 2 3 1 2 2 1 1 ### Response ```cpp #include<cstdio> #include<algorithm> int main(){ int n,b[100],a[100]; scanf("%d",&n); for(int i=0;i<n;i++){ scanf("%d",&b[i]); if(b[i]>=i+2){ printf("-1"); return 0; } } //b[i]==iなる最も大きいiを選んで取り除く //という操作で選んだ数列のreverse for(int ia=n-1;ia>=0;ia--){ int ib=ia; while(b[ib]<ib+1)ib--; a[ia]=b[ib]; while(ib<ia){ b[ib]=b[ib+1]; ib++; } } for(int i=0;i<n;i++)printf("%d\n",a[i]); return 0; } ```
#include<bits/stdc++.h> using namespace std; int main(){ ios_base::sync_with_stdio(0); cin.tie(0); int n; cin>>n; vector<int> v(n+1); v[0]=-1; vector<int> ans; for(int i=1;i<=n;i++) cin>>v[i]; for(int i=n;i>=1;i--){ int j; for(j=i;j>=1;j--){ if(j==v[j]){ ans.emplace_back(j); v.erase(v.begin()+j); break; } } if(j==0){ cout<<-1<<endl; return 0; } } reverse(ans.begin(),ans.end()); for(int it:ans) cout<<it<<endl; }
### Prompt Please provide a cpp coded solution to the problem described below: Snuke has an empty sequence a. He will perform N operations on this sequence. In the i-th operation, he chooses an integer j satisfying 1 \leq j \leq i, and insert j at position j in a (the beginning is position 1). You are given a sequence b of length N. Determine if it is possible that a is equal to b after N operations. If it is, show one possible sequence of operations that achieves it. Constraints * All values in input are integers. * 1 \leq N \leq 100 * 1 \leq b_i \leq N Input Input is given from Standard Input in the following format: N b_1 \dots b_N Output If there is no sequence of N operations after which a would be equal to b, print `-1`. If there is, print N lines. In the i-th line, the integer chosen in the i-th operation should be printed. If there are multiple solutions, any of them is accepted. Examples Input 3 1 2 1 Output 1 1 2 Input 2 2 2 Output -1 Input 9 1 1 1 2 2 1 2 3 2 Output 1 2 2 3 1 2 2 1 1 ### Response ```cpp #include<bits/stdc++.h> using namespace std; int main(){ ios_base::sync_with_stdio(0); cin.tie(0); int n; cin>>n; vector<int> v(n+1); v[0]=-1; vector<int> ans; for(int i=1;i<=n;i++) cin>>v[i]; for(int i=n;i>=1;i--){ int j; for(j=i;j>=1;j--){ if(j==v[j]){ ans.emplace_back(j); v.erase(v.begin()+j); break; } } if(j==0){ cout<<-1<<endl; return 0; } } reverse(ans.begin(),ans.end()); for(int it:ans) cout<<it<<endl; } ```
#include <bits/stdc++.h> using namespace std; typedef long long ll; int main(){ int n; cin >> n; vector<int> b; for(int i = 0; i < n; i++){ int bb; cin >> bb; b.push_back(bb); } vector<int> ans; for(int i = (int)b.size()-1; i >= 0; i--){ if(i+1-b[i] == 0){ ans.push_back(b[i]); b.erase(b.begin()+i); i = (int)b.size(); } } if((int)b.size() == 0){ for(int i = n-1; i >= 0; i--)cout << ans[i] << endl; } else cout << -1 << endl; return 0; }
### Prompt Please formulate a cpp solution to the following problem: Snuke has an empty sequence a. He will perform N operations on this sequence. In the i-th operation, he chooses an integer j satisfying 1 \leq j \leq i, and insert j at position j in a (the beginning is position 1). You are given a sequence b of length N. Determine if it is possible that a is equal to b after N operations. If it is, show one possible sequence of operations that achieves it. Constraints * All values in input are integers. * 1 \leq N \leq 100 * 1 \leq b_i \leq N Input Input is given from Standard Input in the following format: N b_1 \dots b_N Output If there is no sequence of N operations after which a would be equal to b, print `-1`. If there is, print N lines. In the i-th line, the integer chosen in the i-th operation should be printed. If there are multiple solutions, any of them is accepted. Examples Input 3 1 2 1 Output 1 1 2 Input 2 2 2 Output -1 Input 9 1 1 1 2 2 1 2 3 2 Output 1 2 2 3 1 2 2 1 1 ### Response ```cpp #include <bits/stdc++.h> using namespace std; typedef long long ll; int main(){ int n; cin >> n; vector<int> b; for(int i = 0; i < n; i++){ int bb; cin >> bb; b.push_back(bb); } vector<int> ans; for(int i = (int)b.size()-1; i >= 0; i--){ if(i+1-b[i] == 0){ ans.push_back(b[i]); b.erase(b.begin()+i); i = (int)b.size(); } } if((int)b.size() == 0){ for(int i = n-1; i >= 0; i--)cout << ans[i] << endl; } else cout << -1 << endl; return 0; } ```
#include<bits/stdc++.h> #define rep(i,n) for(int i = 0; i < (n); i++) #define ll long long using namespace std; int main(){ int n;cin>>n; vector<int> b(n); rep(i,n)cin>>b[i]; vector<int> result; rep(i,n){ int c=-1; rep(j,b.size()){ if(j+1==b[j] && j+1>c)c=j+1; } if(c==-1){ cout<<-1<<endl; return 0; } auto it = b.begin(); rep(i,c-1)it++; b.erase(it); result.push_back(c); } rep(i,n)cout<<result[n-1-i]<<endl; return 0; }
### Prompt Please provide a Cpp coded solution to the problem described below: Snuke has an empty sequence a. He will perform N operations on this sequence. In the i-th operation, he chooses an integer j satisfying 1 \leq j \leq i, and insert j at position j in a (the beginning is position 1). You are given a sequence b of length N. Determine if it is possible that a is equal to b after N operations. If it is, show one possible sequence of operations that achieves it. Constraints * All values in input are integers. * 1 \leq N \leq 100 * 1 \leq b_i \leq N Input Input is given from Standard Input in the following format: N b_1 \dots b_N Output If there is no sequence of N operations after which a would be equal to b, print `-1`. If there is, print N lines. In the i-th line, the integer chosen in the i-th operation should be printed. If there are multiple solutions, any of them is accepted. Examples Input 3 1 2 1 Output 1 1 2 Input 2 2 2 Output -1 Input 9 1 1 1 2 2 1 2 3 2 Output 1 2 2 3 1 2 2 1 1 ### Response ```cpp #include<bits/stdc++.h> #define rep(i,n) for(int i = 0; i < (n); i++) #define ll long long using namespace std; int main(){ int n;cin>>n; vector<int> b(n); rep(i,n)cin>>b[i]; vector<int> result; rep(i,n){ int c=-1; rep(j,b.size()){ if(j+1==b[j] && j+1>c)c=j+1; } if(c==-1){ cout<<-1<<endl; return 0; } auto it = b.begin(); rep(i,c-1)it++; b.erase(it); result.push_back(c); } rep(i,n)cout<<result[n-1-i]<<endl; return 0; } ```
#include <bits/stdc++.h> using namespace std; typedef long long ll; #define INF 1LL<<62 #define inf 1000000007 int main() { ll n; vector<ll>a; cin>>n; for(int i=0;i<n;i++){ ll x; cin>>x; a.push_back(x); } vector<ll>b; ll m=n; for(int i=n-1;i>=0;i--){ if(a[i]==i+1){ b.push_back(a[i]); a.erase(a.begin()+i); m--; i=m; continue; } if(i==0){ cout << -1; return 0; } } for(int i=n-1;i>=0;i--){ cout << b[i]<<endl; } return 0; }
### Prompt Your task is to create a Cpp solution to the following problem: Snuke has an empty sequence a. He will perform N operations on this sequence. In the i-th operation, he chooses an integer j satisfying 1 \leq j \leq i, and insert j at position j in a (the beginning is position 1). You are given a sequence b of length N. Determine if it is possible that a is equal to b after N operations. If it is, show one possible sequence of operations that achieves it. Constraints * All values in input are integers. * 1 \leq N \leq 100 * 1 \leq b_i \leq N Input Input is given from Standard Input in the following format: N b_1 \dots b_N Output If there is no sequence of N operations after which a would be equal to b, print `-1`. If there is, print N lines. In the i-th line, the integer chosen in the i-th operation should be printed. If there are multiple solutions, any of them is accepted. Examples Input 3 1 2 1 Output 1 1 2 Input 2 2 2 Output -1 Input 9 1 1 1 2 2 1 2 3 2 Output 1 2 2 3 1 2 2 1 1 ### Response ```cpp #include <bits/stdc++.h> using namespace std; typedef long long ll; #define INF 1LL<<62 #define inf 1000000007 int main() { ll n; vector<ll>a; cin>>n; for(int i=0;i<n;i++){ ll x; cin>>x; a.push_back(x); } vector<ll>b; ll m=n; for(int i=n-1;i>=0;i--){ if(a[i]==i+1){ b.push_back(a[i]); a.erase(a.begin()+i); m--; i=m; continue; } if(i==0){ cout << -1; return 0; } } for(int i=n-1;i>=0;i--){ cout << b[i]<<endl; } return 0; } ```
#include <bits/stdc++.h> using namespace std; const int N = 105; int n, b[N], a[N]; int main() { scanf("%d", &n); for (int i = 1; i <= n; ++i) scanf("%d", b + i); vector<int> vec; for (int i = 1; i <= n; ++i) vec.push_back(i); for (int i = n; i; --i) { if ((int)vec.size() < b[i]) return puts("-1"), 0; a[vec[b[i] - 1]] = b[i]; vec.erase(vec.begin() + b[i] - 1); } for (int i = 1; i <= n; ++i) printf("%d\n", a[i]); return 0; }
### Prompt Generate a Cpp solution to the following problem: Snuke has an empty sequence a. He will perform N operations on this sequence. In the i-th operation, he chooses an integer j satisfying 1 \leq j \leq i, and insert j at position j in a (the beginning is position 1). You are given a sequence b of length N. Determine if it is possible that a is equal to b after N operations. If it is, show one possible sequence of operations that achieves it. Constraints * All values in input are integers. * 1 \leq N \leq 100 * 1 \leq b_i \leq N Input Input is given from Standard Input in the following format: N b_1 \dots b_N Output If there is no sequence of N operations after which a would be equal to b, print `-1`. If there is, print N lines. In the i-th line, the integer chosen in the i-th operation should be printed. If there are multiple solutions, any of them is accepted. Examples Input 3 1 2 1 Output 1 1 2 Input 2 2 2 Output -1 Input 9 1 1 1 2 2 1 2 3 2 Output 1 2 2 3 1 2 2 1 1 ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int N = 105; int n, b[N], a[N]; int main() { scanf("%d", &n); for (int i = 1; i <= n; ++i) scanf("%d", b + i); vector<int> vec; for (int i = 1; i <= n; ++i) vec.push_back(i); for (int i = n; i; --i) { if ((int)vec.size() < b[i]) return puts("-1"), 0; a[vec[b[i] - 1]] = b[i]; vec.erase(vec.begin() + b[i] - 1); } for (int i = 1; i <= n; ++i) printf("%d\n", a[i]); return 0; } ```
#include <iostream> #include <vector> using namespace std; int main() { int n; cin >> n; vector<int> a(n); for (int i = 1; i <= n; i++) { int x; cin >> x; if (x > i) { cout << -1 << endl; return 0; } a.insert(a.begin() + x - 1, x); } for (int i = 0; i < n; i++) cout << a[i] << endl; return 0; }
### Prompt Generate a CPP solution to the following problem: Snuke has an empty sequence a. He will perform N operations on this sequence. In the i-th operation, he chooses an integer j satisfying 1 \leq j \leq i, and insert j at position j in a (the beginning is position 1). You are given a sequence b of length N. Determine if it is possible that a is equal to b after N operations. If it is, show one possible sequence of operations that achieves it. Constraints * All values in input are integers. * 1 \leq N \leq 100 * 1 \leq b_i \leq N Input Input is given from Standard Input in the following format: N b_1 \dots b_N Output If there is no sequence of N operations after which a would be equal to b, print `-1`. If there is, print N lines. In the i-th line, the integer chosen in the i-th operation should be printed. If there are multiple solutions, any of them is accepted. Examples Input 3 1 2 1 Output 1 1 2 Input 2 2 2 Output -1 Input 9 1 1 1 2 2 1 2 3 2 Output 1 2 2 3 1 2 2 1 1 ### Response ```cpp #include <iostream> #include <vector> using namespace std; int main() { int n; cin >> n; vector<int> a(n); for (int i = 1; i <= n; i++) { int x; cin >> x; if (x > i) { cout << -1 << endl; return 0; } a.insert(a.begin() + x - 1, x); } for (int i = 0; i < n; i++) cout << a[i] << endl; return 0; } ```
#include <bits/stdc++.h> using namespace std; int gcd(int a, int b) { return b ? gcd(b, a % b) : a; } void solve() { int n; cin >> n; vector<int> b(n); for (auto&& i : b) { cin >> i; } stack<int> s; while(n) { for(int i = n - 1; i >= 0; i--) { if(b[i] == i + 1) { b.erase(begin(b) + i); s.push(i + 1); break; } } if(b.size() == n--) { cout << "-1\n"; return; } } while(s.size()) { cout << s.top() << "\n"; s.pop(); } } int main() { solve(); }
### Prompt Please provide a Cpp coded solution to the problem described below: Snuke has an empty sequence a. He will perform N operations on this sequence. In the i-th operation, he chooses an integer j satisfying 1 \leq j \leq i, and insert j at position j in a (the beginning is position 1). You are given a sequence b of length N. Determine if it is possible that a is equal to b after N operations. If it is, show one possible sequence of operations that achieves it. Constraints * All values in input are integers. * 1 \leq N \leq 100 * 1 \leq b_i \leq N Input Input is given from Standard Input in the following format: N b_1 \dots b_N Output If there is no sequence of N operations after which a would be equal to b, print `-1`. If there is, print N lines. In the i-th line, the integer chosen in the i-th operation should be printed. If there are multiple solutions, any of them is accepted. Examples Input 3 1 2 1 Output 1 1 2 Input 2 2 2 Output -1 Input 9 1 1 1 2 2 1 2 3 2 Output 1 2 2 3 1 2 2 1 1 ### Response ```cpp #include <bits/stdc++.h> using namespace std; int gcd(int a, int b) { return b ? gcd(b, a % b) : a; } void solve() { int n; cin >> n; vector<int> b(n); for (auto&& i : b) { cin >> i; } stack<int> s; while(n) { for(int i = n - 1; i >= 0; i--) { if(b[i] == i + 1) { b.erase(begin(b) + i); s.push(i + 1); break; } } if(b.size() == n--) { cout << "-1\n"; return; } } while(s.size()) { cout << s.top() << "\n"; s.pop(); } } int main() { solve(); } ```
#include <bits/stdc++.h> int n,a[105],ans[105]; int main(){ scanf("%d",&n); for (int i=1;i<=n;i++) scanf("%d",&a[i]); for (int i=n;i>=1;i--){ for (int j=i;j>=1;j--){ if (a[j]==j){ ans[i]=j; for (int k=j;k<i;k++) a[k]=a[k+1]; break; } } if (!ans[i]){ puts("-1"); return 0; } } for (int i=1;i<=n;i++) printf("%d\n",ans[i]); }
### Prompt Please provide a Cpp coded solution to the problem described below: Snuke has an empty sequence a. He will perform N operations on this sequence. In the i-th operation, he chooses an integer j satisfying 1 \leq j \leq i, and insert j at position j in a (the beginning is position 1). You are given a sequence b of length N. Determine if it is possible that a is equal to b after N operations. If it is, show one possible sequence of operations that achieves it. Constraints * All values in input are integers. * 1 \leq N \leq 100 * 1 \leq b_i \leq N Input Input is given from Standard Input in the following format: N b_1 \dots b_N Output If there is no sequence of N operations after which a would be equal to b, print `-1`. If there is, print N lines. In the i-th line, the integer chosen in the i-th operation should be printed. If there are multiple solutions, any of them is accepted. Examples Input 3 1 2 1 Output 1 1 2 Input 2 2 2 Output -1 Input 9 1 1 1 2 2 1 2 3 2 Output 1 2 2 3 1 2 2 1 1 ### Response ```cpp #include <bits/stdc++.h> int n,a[105],ans[105]; int main(){ scanf("%d",&n); for (int i=1;i<=n;i++) scanf("%d",&a[i]); for (int i=n;i>=1;i--){ for (int j=i;j>=1;j--){ if (a[j]==j){ ans[i]=j; for (int k=j;k<i;k++) a[k]=a[k+1]; break; } } if (!ans[i]){ puts("-1"); return 0; } } for (int i=1;i<=n;i++) printf("%d\n",ans[i]); } ```
#include<bits/stdc++.h> using namespace std; int main() { cin.tie(0); cout.tie(0); ios_base::sync_with_stdio(0); int n; cin>>n; vector<int> a(n+1,-1); for (int i=1; i<=n; i++) cin>>a[i]; stack<int> stk; while(1) { bool up=false; int sz=a.size(); for (int i=sz-1; i>=1; i--) if(a[i]==i) { up=true; stk.push(i); a.erase(a.begin()+i); break; } if(!up) break; } if(stk.size()!=n) { cout<<-1<<"\n"; return 0; } while(!stk.empty()) cout<<stk.top()<<"\n", stk.pop(); return 0; }
### Prompt Please formulate a Cpp solution to the following problem: Snuke has an empty sequence a. He will perform N operations on this sequence. In the i-th operation, he chooses an integer j satisfying 1 \leq j \leq i, and insert j at position j in a (the beginning is position 1). You are given a sequence b of length N. Determine if it is possible that a is equal to b after N operations. If it is, show one possible sequence of operations that achieves it. Constraints * All values in input are integers. * 1 \leq N \leq 100 * 1 \leq b_i \leq N Input Input is given from Standard Input in the following format: N b_1 \dots b_N Output If there is no sequence of N operations after which a would be equal to b, print `-1`. If there is, print N lines. In the i-th line, the integer chosen in the i-th operation should be printed. If there are multiple solutions, any of them is accepted. Examples Input 3 1 2 1 Output 1 1 2 Input 2 2 2 Output -1 Input 9 1 1 1 2 2 1 2 3 2 Output 1 2 2 3 1 2 2 1 1 ### Response ```cpp #include<bits/stdc++.h> using namespace std; int main() { cin.tie(0); cout.tie(0); ios_base::sync_with_stdio(0); int n; cin>>n; vector<int> a(n+1,-1); for (int i=1; i<=n; i++) cin>>a[i]; stack<int> stk; while(1) { bool up=false; int sz=a.size(); for (int i=sz-1; i>=1; i--) if(a[i]==i) { up=true; stk.push(i); a.erase(a.begin()+i); break; } if(!up) break; } if(stk.size()!=n) { cout<<-1<<"\n"; return 0; } while(!stk.empty()) cout<<stk.top()<<"\n", stk.pop(); return 0; } ```
#include <bits/stdc++.h> #define rep(i,n) for(int i=0;i<(n);i++) using namespace std; int main(){ int n; scanf("%d",&n); vector<int> a(n); rep(i,n) scanf("%d",&a[i]), a[i]--; vector<int> ans(n); for(int i=n-1;i>=0;i--){ int j; for(j=i;j>=0;j--) if(a[j]==j) break; if(j<0) return puts("-1"),0; a.erase(a.begin()+j); ans[i]=j; } rep(i,n) printf("%d\n",ans[i]+1); return 0; }
### Prompt Develop a solution in CPP to the problem described below: Snuke has an empty sequence a. He will perform N operations on this sequence. In the i-th operation, he chooses an integer j satisfying 1 \leq j \leq i, and insert j at position j in a (the beginning is position 1). You are given a sequence b of length N. Determine if it is possible that a is equal to b after N operations. If it is, show one possible sequence of operations that achieves it. Constraints * All values in input are integers. * 1 \leq N \leq 100 * 1 \leq b_i \leq N Input Input is given from Standard Input in the following format: N b_1 \dots b_N Output If there is no sequence of N operations after which a would be equal to b, print `-1`. If there is, print N lines. In the i-th line, the integer chosen in the i-th operation should be printed. If there are multiple solutions, any of them is accepted. Examples Input 3 1 2 1 Output 1 1 2 Input 2 2 2 Output -1 Input 9 1 1 1 2 2 1 2 3 2 Output 1 2 2 3 1 2 2 1 1 ### Response ```cpp #include <bits/stdc++.h> #define rep(i,n) for(int i=0;i<(n);i++) using namespace std; int main(){ int n; scanf("%d",&n); vector<int> a(n); rep(i,n) scanf("%d",&a[i]), a[i]--; vector<int> ans(n); for(int i=n-1;i>=0;i--){ int j; for(j=i;j>=0;j--) if(a[j]==j) break; if(j<0) return puts("-1"),0; a.erase(a.begin()+j); ans[i]=j; } rep(i,n) printf("%d\n",ans[i]+1); return 0; } ```
#include<bits/stdc++.h> using namespace std; const int N=105; int n,a[N]; vector<int> ans; int main(){ scanf("%d",&n); for (int i=1;i<=n;i++)scanf("%d",&a[i]); for (int i=1;i<=n;i++){ int flag=0; for (int j=n-i+1;j;j--) if (a[j]==j){ for (int k=j;k<n-i+1;k++)a[k]=a[k+1]; ans.push_back(j); flag=1; break; } if (!flag){ puts("-1"); return 0; } } for (int i=n-1;i>=0;i--)printf("%d\n",ans[i]); }
### Prompt In Cpp, your task is to solve the following problem: Snuke has an empty sequence a. He will perform N operations on this sequence. In the i-th operation, he chooses an integer j satisfying 1 \leq j \leq i, and insert j at position j in a (the beginning is position 1). You are given a sequence b of length N. Determine if it is possible that a is equal to b after N operations. If it is, show one possible sequence of operations that achieves it. Constraints * All values in input are integers. * 1 \leq N \leq 100 * 1 \leq b_i \leq N Input Input is given from Standard Input in the following format: N b_1 \dots b_N Output If there is no sequence of N operations after which a would be equal to b, print `-1`. If there is, print N lines. In the i-th line, the integer chosen in the i-th operation should be printed. If there are multiple solutions, any of them is accepted. Examples Input 3 1 2 1 Output 1 1 2 Input 2 2 2 Output -1 Input 9 1 1 1 2 2 1 2 3 2 Output 1 2 2 3 1 2 2 1 1 ### Response ```cpp #include<bits/stdc++.h> using namespace std; const int N=105; int n,a[N]; vector<int> ans; int main(){ scanf("%d",&n); for (int i=1;i<=n;i++)scanf("%d",&a[i]); for (int i=1;i<=n;i++){ int flag=0; for (int j=n-i+1;j;j--) if (a[j]==j){ for (int k=j;k<n-i+1;k++)a[k]=a[k+1]; ans.push_back(j); flag=1; break; } if (!flag){ puts("-1"); return 0; } } for (int i=n-1;i>=0;i--)printf("%d\n",ans[i]); } ```
#include<bits/stdc++.h> using namespace std; int N; bool rec(int n, list<int>&l){ if(n == 0)return true; auto it = l.begin(); for(int i = n; i >= 0; --i){ if(*it == i){ l.erase(it); if(!rec(n - 1, l))return false; cout << i << endl; return true; } it++; if(it == l.end())return false; } return false; } int main(){ cin >> N; list<int> l; for(int i = 0 ; i < N; ++i){ int x; cin >> x; l.push_front(x); } if(!rec(N, l))cout << -1 << endl; return 0; }
### Prompt Please provide a CPP coded solution to the problem described below: Snuke has an empty sequence a. He will perform N operations on this sequence. In the i-th operation, he chooses an integer j satisfying 1 \leq j \leq i, and insert j at position j in a (the beginning is position 1). You are given a sequence b of length N. Determine if it is possible that a is equal to b after N operations. If it is, show one possible sequence of operations that achieves it. Constraints * All values in input are integers. * 1 \leq N \leq 100 * 1 \leq b_i \leq N Input Input is given from Standard Input in the following format: N b_1 \dots b_N Output If there is no sequence of N operations after which a would be equal to b, print `-1`. If there is, print N lines. In the i-th line, the integer chosen in the i-th operation should be printed. If there are multiple solutions, any of them is accepted. Examples Input 3 1 2 1 Output 1 1 2 Input 2 2 2 Output -1 Input 9 1 1 1 2 2 1 2 3 2 Output 1 2 2 3 1 2 2 1 1 ### Response ```cpp #include<bits/stdc++.h> using namespace std; int N; bool rec(int n, list<int>&l){ if(n == 0)return true; auto it = l.begin(); for(int i = n; i >= 0; --i){ if(*it == i){ l.erase(it); if(!rec(n - 1, l))return false; cout << i << endl; return true; } it++; if(it == l.end())return false; } return false; } int main(){ cin >> N; list<int> l; for(int i = 0 ; i < N; ++i){ int x; cin >> x; l.push_front(x); } if(!rec(N, l))cout << -1 << endl; return 0; } ```
#include <bits/stdc++.h> using namespace std; const int MOD = (int)1e9+7; int main(){ int N; cin >> N; vector<int> b(N); for(int i=0;i<N;i++) cin >> b.at(i); vector<int> ans; for(int i=N-1;i>=0;i--){ int max=-1; for(int j=i;j>=0;j--){ if(b.at(j)==j+1){ max=j+1; break; } } //cout << max << ","; if(max==-1){ cout << -1 << endl; return 0; } ans.push_back(max); b.erase(b.begin()+max-1); } for(int i=N-1;i>=0;i--) cout << ans.at(i) << endl; return 0; }
### Prompt Your challenge is to write a cpp solution to the following problem: Snuke has an empty sequence a. He will perform N operations on this sequence. In the i-th operation, he chooses an integer j satisfying 1 \leq j \leq i, and insert j at position j in a (the beginning is position 1). You are given a sequence b of length N. Determine if it is possible that a is equal to b after N operations. If it is, show one possible sequence of operations that achieves it. Constraints * All values in input are integers. * 1 \leq N \leq 100 * 1 \leq b_i \leq N Input Input is given from Standard Input in the following format: N b_1 \dots b_N Output If there is no sequence of N operations after which a would be equal to b, print `-1`. If there is, print N lines. In the i-th line, the integer chosen in the i-th operation should be printed. If there are multiple solutions, any of them is accepted. Examples Input 3 1 2 1 Output 1 1 2 Input 2 2 2 Output -1 Input 9 1 1 1 2 2 1 2 3 2 Output 1 2 2 3 1 2 2 1 1 ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int MOD = (int)1e9+7; int main(){ int N; cin >> N; vector<int> b(N); for(int i=0;i<N;i++) cin >> b.at(i); vector<int> ans; for(int i=N-1;i>=0;i--){ int max=-1; for(int j=i;j>=0;j--){ if(b.at(j)==j+1){ max=j+1; break; } } //cout << max << ","; if(max==-1){ cout << -1 << endl; return 0; } ans.push_back(max); b.erase(b.begin()+max-1); } for(int i=N-1;i>=0;i--) cout << ans.at(i) << endl; return 0; } ```
#include<bits/stdc++.h> using namespace std; const int N = 100 + 5; int n,b[N],ans[N]; int main() { cin>>n; for (int i = 1;i <= n; ++i) cin>>b[i]; int i = n; for (;i;--i) { bool flag = 0; for (int j = i;j;--j) if (b[j] == j) { ans[i] = j; for (int k = j + 1;k <= i;++k) b[k - 1] = b[k]; flag = 1; break; } if (!flag) break; } if (i) printf("-1"); else for (int j = 1;j <= n; ++j) printf("%d\n",ans[j]); }
### Prompt Please formulate a cpp solution to the following problem: Snuke has an empty sequence a. He will perform N operations on this sequence. In the i-th operation, he chooses an integer j satisfying 1 \leq j \leq i, and insert j at position j in a (the beginning is position 1). You are given a sequence b of length N. Determine if it is possible that a is equal to b after N operations. If it is, show one possible sequence of operations that achieves it. Constraints * All values in input are integers. * 1 \leq N \leq 100 * 1 \leq b_i \leq N Input Input is given from Standard Input in the following format: N b_1 \dots b_N Output If there is no sequence of N operations after which a would be equal to b, print `-1`. If there is, print N lines. In the i-th line, the integer chosen in the i-th operation should be printed. If there are multiple solutions, any of them is accepted. Examples Input 3 1 2 1 Output 1 1 2 Input 2 2 2 Output -1 Input 9 1 1 1 2 2 1 2 3 2 Output 1 2 2 3 1 2 2 1 1 ### Response ```cpp #include<bits/stdc++.h> using namespace std; const int N = 100 + 5; int n,b[N],ans[N]; int main() { cin>>n; for (int i = 1;i <= n; ++i) cin>>b[i]; int i = n; for (;i;--i) { bool flag = 0; for (int j = i;j;--j) if (b[j] == j) { ans[i] = j; for (int k = j + 1;k <= i;++k) b[k - 1] = b[k]; flag = 1; break; } if (!flag) break; } if (i) printf("-1"); else for (int j = 1;j <= n; ++j) printf("%d\n",ans[j]); } ```
#include<bits/stdc++.h> using namespace std; const int maxn = 1000 + 7; int n, a[maxn], ans[maxn]; bool cal() { for (int i = 1; i <= n; ++i) { int now = i, pos = 0; for (int j = n; j; --j) { if(a[j] == now) { pos = j; break; } if(!a[j]) --now; } if(!pos) return 0; ans[i] = a[pos]; a[pos] = 0; } for (int i = 1; i <= n; ++i) printf("%d\n", ans[i]); return 1; } int main() { scanf("%d", &n); for (int i = 1; i <= n; ++i) scanf("%d", &a[i]); if(!cal()) printf("-1\n"); return 0; }
### Prompt Your task is to create a Cpp solution to the following problem: Snuke has an empty sequence a. He will perform N operations on this sequence. In the i-th operation, he chooses an integer j satisfying 1 \leq j \leq i, and insert j at position j in a (the beginning is position 1). You are given a sequence b of length N. Determine if it is possible that a is equal to b after N operations. If it is, show one possible sequence of operations that achieves it. Constraints * All values in input are integers. * 1 \leq N \leq 100 * 1 \leq b_i \leq N Input Input is given from Standard Input in the following format: N b_1 \dots b_N Output If there is no sequence of N operations after which a would be equal to b, print `-1`. If there is, print N lines. In the i-th line, the integer chosen in the i-th operation should be printed. If there are multiple solutions, any of them is accepted. Examples Input 3 1 2 1 Output 1 1 2 Input 2 2 2 Output -1 Input 9 1 1 1 2 2 1 2 3 2 Output 1 2 2 3 1 2 2 1 1 ### Response ```cpp #include<bits/stdc++.h> using namespace std; const int maxn = 1000 + 7; int n, a[maxn], ans[maxn]; bool cal() { for (int i = 1; i <= n; ++i) { int now = i, pos = 0; for (int j = n; j; --j) { if(a[j] == now) { pos = j; break; } if(!a[j]) --now; } if(!pos) return 0; ans[i] = a[pos]; a[pos] = 0; } for (int i = 1; i <= n; ++i) printf("%d\n", ans[i]); return 1; } int main() { scanf("%d", &n); for (int i = 1; i <= n; ++i) scanf("%d", &a[i]); if(!cal()) printf("-1\n"); return 0; } ```
#include<iostream> #include<vector> using namespace std; int a[110] = { 0 }; vector<int> v; int main() { int n; cin >> n; for (int i = 1; i <= n; i++) { cin >> a[i]; } for (int i = n; i > 0; i--) { if (i == a[i]) { v.push_back(i); for (int j = i; j <= n; j++) { a[j] = a[j + 1]; } i = n - 1; } } if (v.size() == n) { for (int i = v.size() - 1; i >= 0; i--) { cout << v[i] << endl; } } else { cout << -1; } }
### Prompt Please provide a Cpp coded solution to the problem described below: Snuke has an empty sequence a. He will perform N operations on this sequence. In the i-th operation, he chooses an integer j satisfying 1 \leq j \leq i, and insert j at position j in a (the beginning is position 1). You are given a sequence b of length N. Determine if it is possible that a is equal to b after N operations. If it is, show one possible sequence of operations that achieves it. Constraints * All values in input are integers. * 1 \leq N \leq 100 * 1 \leq b_i \leq N Input Input is given from Standard Input in the following format: N b_1 \dots b_N Output If there is no sequence of N operations after which a would be equal to b, print `-1`. If there is, print N lines. In the i-th line, the integer chosen in the i-th operation should be printed. If there are multiple solutions, any of them is accepted. Examples Input 3 1 2 1 Output 1 1 2 Input 2 2 2 Output -1 Input 9 1 1 1 2 2 1 2 3 2 Output 1 2 2 3 1 2 2 1 1 ### Response ```cpp #include<iostream> #include<vector> using namespace std; int a[110] = { 0 }; vector<int> v; int main() { int n; cin >> n; for (int i = 1; i <= n; i++) { cin >> a[i]; } for (int i = n; i > 0; i--) { if (i == a[i]) { v.push_back(i); for (int j = i; j <= n; j++) { a[j] = a[j + 1]; } i = n - 1; } } if (v.size() == n) { for (int i = v.size() - 1; i >= 0; i--) { cout << v[i] << endl; } } else { cout << -1; } } ```
# include "iostream" # include "cstdio" using namespace std; const int maxm=1e2+10; int N,A[maxm],B[maxm]; int main(){ register int i,j,k; register bool Find; scanf("%d",&N); for(i=1;i<=N;i++) scanf("%d",&A[i]); for(i=N;i;i--){ Find=true; for(j=i;j;j--){ if(A[j]==j){ B[i]=j; for(k=j;k<i;k++) A[k]=A[k+1]; Find=false; break; } } if(Find){ printf("-1"); return 0; } } for(i=1;i<=N;i++) printf("%d\n",B[i]); return 0; }
### Prompt Please create a solution in cpp to the following problem: Snuke has an empty sequence a. He will perform N operations on this sequence. In the i-th operation, he chooses an integer j satisfying 1 \leq j \leq i, and insert j at position j in a (the beginning is position 1). You are given a sequence b of length N. Determine if it is possible that a is equal to b after N operations. If it is, show one possible sequence of operations that achieves it. Constraints * All values in input are integers. * 1 \leq N \leq 100 * 1 \leq b_i \leq N Input Input is given from Standard Input in the following format: N b_1 \dots b_N Output If there is no sequence of N operations after which a would be equal to b, print `-1`. If there is, print N lines. In the i-th line, the integer chosen in the i-th operation should be printed. If there are multiple solutions, any of them is accepted. Examples Input 3 1 2 1 Output 1 1 2 Input 2 2 2 Output -1 Input 9 1 1 1 2 2 1 2 3 2 Output 1 2 2 3 1 2 2 1 1 ### Response ```cpp # include "iostream" # include "cstdio" using namespace std; const int maxm=1e2+10; int N,A[maxm],B[maxm]; int main(){ register int i,j,k; register bool Find; scanf("%d",&N); for(i=1;i<=N;i++) scanf("%d",&A[i]); for(i=N;i;i--){ Find=true; for(j=i;j;j--){ if(A[j]==j){ B[i]=j; for(k=j;k<i;k++) A[k]=A[k+1]; Find=false; break; } } if(Find){ printf("-1"); return 0; } } for(i=1;i<=N;i++) printf("%d\n",B[i]); return 0; } ```
#include<cstdio> #include<cstring> #include<cstdlib> #include<algorithm> #include<vector> using namespace std; const int N=2005; int n; int b[N]; int ans[N]; int main() { scanf("%d",&n); for(int i=1;i<=n;i++) scanf("%d",&b[i]); for(int i=n;i>=1;i--){ int p=-1; for(int j=1;j<=i;j++) if(b[j]==j) p=j; ans[i]=p; if(p==-1){ puts("-1"); return 0; } for(int j=p;j<=i;j++) b[j]=b[j+1]; } for(int i=1;i<=n;i++) printf("%d\n",ans[i]); }
### Prompt Your challenge is to write a CPP solution to the following problem: Snuke has an empty sequence a. He will perform N operations on this sequence. In the i-th operation, he chooses an integer j satisfying 1 \leq j \leq i, and insert j at position j in a (the beginning is position 1). You are given a sequence b of length N. Determine if it is possible that a is equal to b after N operations. If it is, show one possible sequence of operations that achieves it. Constraints * All values in input are integers. * 1 \leq N \leq 100 * 1 \leq b_i \leq N Input Input is given from Standard Input in the following format: N b_1 \dots b_N Output If there is no sequence of N operations after which a would be equal to b, print `-1`. If there is, print N lines. In the i-th line, the integer chosen in the i-th operation should be printed. If there are multiple solutions, any of them is accepted. Examples Input 3 1 2 1 Output 1 1 2 Input 2 2 2 Output -1 Input 9 1 1 1 2 2 1 2 3 2 Output 1 2 2 3 1 2 2 1 1 ### Response ```cpp #include<cstdio> #include<cstring> #include<cstdlib> #include<algorithm> #include<vector> using namespace std; const int N=2005; int n; int b[N]; int ans[N]; int main() { scanf("%d",&n); for(int i=1;i<=n;i++) scanf("%d",&b[i]); for(int i=n;i>=1;i--){ int p=-1; for(int j=1;j<=i;j++) if(b[j]==j) p=j; ans[i]=p; if(p==-1){ puts("-1"); return 0; } for(int j=p;j<=i;j++) b[j]=b[j+1]; } for(int i=1;i<=n;i++) printf("%d\n",ans[i]); } ```