output
stringlengths
52
181k
instruction
stringlengths
296
182k
#include <bits/stdc++.h> using namespace std; using P = pair<int,int>; struct RUQ{ int n,seg,init,now; vector<P> dat; RUQ(int n,int init) : n(n),init(init),seg(1),now(0){ while(seg < n) seg *= 2; dat.resize(seg * 2 - 1); for(int i = 0;i < seg * 2 - 1;i++) dat[i] = P(-1,init); } void update(int a,int b,int x,int tim,int k = 0,int l = 0,int r = -1){ if(r == -1) r = seg; if(r <= a || b <= l) return; if(a <= l && r <= b){ dat[k] = P(tim,x); return; } update(a,b,x,tim,k * 2 + 1,l,(l + r) / 2); update(a,b,x,tim,k * 2 + 2,(l + r) / 2,r); } void update(int a,int b,int x){ update(a,b,x,now++); } P get(int i){ i += seg - 1; P ret = dat[i]; while(i){ i = (i - 1) / 2; ret = max(ret,dat[i]); } return ret; } }; signed main(){ int n,q; cin >> n >> q; RUQ ruq(n,(1ll << 31) - 1); for(int i = 0;i < q;i++){ int t; cin >> t; if(!t){ int a,b,x; cin >> a >> b >> x; ruq.update(a,b + 1,x); } else{ int x; cin >> x; cout << ruq.get(x).second << endl; } } }
### Prompt Develop a solution in cpp to the problem described below: Write a program which manipulates a sequence A = {a0, a1, . . . , an−1} with the following operations: * update(s, t, x): change as, as+1, ..., at to x. * find(i): output the value of ai. Note that the initial values of ai (i = 0, 1, . . . , n−1) are 231-1. Constraints * 1 ≤ n ≤ 100000 * 1 ≤ q ≤ 100000 * 0 ≤ s ≤ t < n * 0 ≤ i < n * 0 ≤ x < 231−1 Input n q query1 query2 : queryq In the first line, n (the number of elements in A) and q (the number of queries) are given. Then, ith query queryi is given in the following format: 0 s t x or 1 i The first digit represents the type of the query. '0' denotes update(s, t, x) and '1' denotes find(i). Output For each find operation, print the value. Examples Input 3 5 0 0 1 1 0 1 2 3 0 2 2 2 1 0 1 1 Output 1 3 Input 1 3 1 0 0 0 0 5 1 0 Output 2147483647 5 ### Response ```cpp #include <bits/stdc++.h> using namespace std; using P = pair<int,int>; struct RUQ{ int n,seg,init,now; vector<P> dat; RUQ(int n,int init) : n(n),init(init),seg(1),now(0){ while(seg < n) seg *= 2; dat.resize(seg * 2 - 1); for(int i = 0;i < seg * 2 - 1;i++) dat[i] = P(-1,init); } void update(int a,int b,int x,int tim,int k = 0,int l = 0,int r = -1){ if(r == -1) r = seg; if(r <= a || b <= l) return; if(a <= l && r <= b){ dat[k] = P(tim,x); return; } update(a,b,x,tim,k * 2 + 1,l,(l + r) / 2); update(a,b,x,tim,k * 2 + 2,(l + r) / 2,r); } void update(int a,int b,int x){ update(a,b,x,now++); } P get(int i){ i += seg - 1; P ret = dat[i]; while(i){ i = (i - 1) / 2; ret = max(ret,dat[i]); } return ret; } }; signed main(){ int n,q; cin >> n >> q; RUQ ruq(n,(1ll << 31) - 1); for(int i = 0;i < q;i++){ int t; cin >> t; if(!t){ int a,b,x; cin >> a >> b >> x; ruq.update(a,b + 1,x); } else{ int x; cin >> x; cout << ruq.get(x).second << endl; } } } ```
#include <bits/stdc++.h> using namespace std; class RUQSegmentTree { const int n; const int flag = -1; const int id = 1; vector<int> data, data2; int size(int n) { int res = 1; while (res < n) res <<= 1; return res; } void sub(int l, int r, int node, int lb, int ub, int val) { if (ub <= l || r <= lb) return; if (data[node] == val) return; if (l <= lb && ub <= r) { data[node] = val; return; } int left = node * 2, right = node * 2 + 1; if (data[node] != flag) { data[left] = data[node]; data[right] = data[node]; } data[node] = flag; sub(l, r, left, lb, (lb + ub) / 2, val); sub(l, r, right, (lb + ub) / 2, ub, val); data2[node] = min(data[left] == flag ? data2[left] : data[left], data[right] == flag ? data2[right] : data[right]); } public: RUQSegmentTree(int n_) : n(size(n_)), data(n * 2, INT_MAX), data2(n * 2, INT_MAX) {} void update(int l, int r, int val) { sub(l, r + 1, 1, 0, n, val); } int find(int i) { i += n; int res = data[i]; while (i >>= 1) { if (data[i] != flag) res = data[i]; } return res; } }; int main() { int n, q, b, i, s, t, x; cin >> n >> q; RUQSegmentTree ruq(n); while (q--) { cin >> b; if (b) { cin >> i; cout << ruq.find(i) << endl; } else { cin >> s >> t >> x; ruq.update(s, t, x); } } return 0; }
### Prompt Please formulate a Cpp solution to the following problem: Write a program which manipulates a sequence A = {a0, a1, . . . , an−1} with the following operations: * update(s, t, x): change as, as+1, ..., at to x. * find(i): output the value of ai. Note that the initial values of ai (i = 0, 1, . . . , n−1) are 231-1. Constraints * 1 ≤ n ≤ 100000 * 1 ≤ q ≤ 100000 * 0 ≤ s ≤ t < n * 0 ≤ i < n * 0 ≤ x < 231−1 Input n q query1 query2 : queryq In the first line, n (the number of elements in A) and q (the number of queries) are given. Then, ith query queryi is given in the following format: 0 s t x or 1 i The first digit represents the type of the query. '0' denotes update(s, t, x) and '1' denotes find(i). Output For each find operation, print the value. Examples Input 3 5 0 0 1 1 0 1 2 3 0 2 2 2 1 0 1 1 Output 1 3 Input 1 3 1 0 0 0 0 5 1 0 Output 2147483647 5 ### Response ```cpp #include <bits/stdc++.h> using namespace std; class RUQSegmentTree { const int n; const int flag = -1; const int id = 1; vector<int> data, data2; int size(int n) { int res = 1; while (res < n) res <<= 1; return res; } void sub(int l, int r, int node, int lb, int ub, int val) { if (ub <= l || r <= lb) return; if (data[node] == val) return; if (l <= lb && ub <= r) { data[node] = val; return; } int left = node * 2, right = node * 2 + 1; if (data[node] != flag) { data[left] = data[node]; data[right] = data[node]; } data[node] = flag; sub(l, r, left, lb, (lb + ub) / 2, val); sub(l, r, right, (lb + ub) / 2, ub, val); data2[node] = min(data[left] == flag ? data2[left] : data[left], data[right] == flag ? data2[right] : data[right]); } public: RUQSegmentTree(int n_) : n(size(n_)), data(n * 2, INT_MAX), data2(n * 2, INT_MAX) {} void update(int l, int r, int val) { sub(l, r + 1, 1, 0, n, val); } int find(int i) { i += n; int res = data[i]; while (i >>= 1) { if (data[i] != flag) res = data[i]; } return res; } }; int main() { int n, q, b, i, s, t, x; cin >> n >> q; RUQSegmentTree ruq(n); while (q--) { cin >> b; if (b) { cin >> i; cout << ruq.find(i) << endl; } else { cin >> s >> t >> x; ruq.update(s, t, x); } } return 0; } ```
#include "bits/stdc++.h" using namespace std; #ifdef _DEBUG #include "dump.hpp" #else #define dump(...) #endif //#define int long long #define rep(i,a,b) for(int i=(a);i<(b);i++) #define rrep(i,a,b) for(int i=(b)-1;i>=(a);i--) #define all(c) begin(c),end(c) const int MOD = (int)(1e9) + 7; const int INF = (1ll << 31) - 1; const double PI = acos(-1); const double EPS = 1e-9; template<class T> bool chmax(T &a, const T &b) { if (a < b) { a = b; return true; } return false; } template<class T> bool chmin(T &a, const T &b) { if (a > b) { a = b; return true; } return false; } struct Segtree { int n; vector<int>d; Segtree(int m) { for (n = 1; n < m; n <<= 1); d.assign(2 * n, INF); } void update(int a, int b, int x = -1, int k = 1, int l = 0, int r = -1) { if (r == -1)r = n; if (r <= a || b <= l)return; if (a <= l&&r <= b) { if (x >= 0)d[k] = x; return; } else { if (d[k] != INF) { d[2 * k] = d[2 * k + 1] = d[k]; d[k] = INF; } update(a, b, x, 2 * k, l, (l + r) / 2); update(a, b, x, 2 * k + 1, (l + r) / 2, r); } } int find(int i) { update(i, i + 1); return d[n + i]; } }; signed main() { cin.tie(0); ios::sync_with_stdio(false); int N, Q; cin >> N >> Q; Segtree seg(N); rep(i, 0, Q) { int com; cin >> com; if (com) { int x; cin >> x; cout << seg.find(x) << endl; } else { int s, t, x; cin >> s >> t >> x; seg.update(s, t + 1, x); } } return 0; }
### Prompt Generate a cpp solution to the following problem: Write a program which manipulates a sequence A = {a0, a1, . . . , an−1} with the following operations: * update(s, t, x): change as, as+1, ..., at to x. * find(i): output the value of ai. Note that the initial values of ai (i = 0, 1, . . . , n−1) are 231-1. Constraints * 1 ≤ n ≤ 100000 * 1 ≤ q ≤ 100000 * 0 ≤ s ≤ t < n * 0 ≤ i < n * 0 ≤ x < 231−1 Input n q query1 query2 : queryq In the first line, n (the number of elements in A) and q (the number of queries) are given. Then, ith query queryi is given in the following format: 0 s t x or 1 i The first digit represents the type of the query. '0' denotes update(s, t, x) and '1' denotes find(i). Output For each find operation, print the value. Examples Input 3 5 0 0 1 1 0 1 2 3 0 2 2 2 1 0 1 1 Output 1 3 Input 1 3 1 0 0 0 0 5 1 0 Output 2147483647 5 ### Response ```cpp #include "bits/stdc++.h" using namespace std; #ifdef _DEBUG #include "dump.hpp" #else #define dump(...) #endif //#define int long long #define rep(i,a,b) for(int i=(a);i<(b);i++) #define rrep(i,a,b) for(int i=(b)-1;i>=(a);i--) #define all(c) begin(c),end(c) const int MOD = (int)(1e9) + 7; const int INF = (1ll << 31) - 1; const double PI = acos(-1); const double EPS = 1e-9; template<class T> bool chmax(T &a, const T &b) { if (a < b) { a = b; return true; } return false; } template<class T> bool chmin(T &a, const T &b) { if (a > b) { a = b; return true; } return false; } struct Segtree { int n; vector<int>d; Segtree(int m) { for (n = 1; n < m; n <<= 1); d.assign(2 * n, INF); } void update(int a, int b, int x = -1, int k = 1, int l = 0, int r = -1) { if (r == -1)r = n; if (r <= a || b <= l)return; if (a <= l&&r <= b) { if (x >= 0)d[k] = x; return; } else { if (d[k] != INF) { d[2 * k] = d[2 * k + 1] = d[k]; d[k] = INF; } update(a, b, x, 2 * k, l, (l + r) / 2); update(a, b, x, 2 * k + 1, (l + r) / 2, r); } } int find(int i) { update(i, i + 1); return d[n + i]; } }; signed main() { cin.tie(0); ios::sync_with_stdio(false); int N, Q; cin >> N >> Q; Segtree seg(N); rep(i, 0, Q) { int com; cin >> com; if (com) { int x; cin >> x; cout << seg.find(x) << endl; } else { int s, t, x; cin >> s >> t >> x; seg.update(s, t + 1, x); } } return 0; } ```
#include "bits/stdc++.h" using namespace std; typedef long long ll; #define INF (1<<20) const int MAX_N = 1 << 18; typedef pair<int,int> P; int n; P dat[2*MAX_N-1]; void init(int _n) { n = 1; while(n < _n) n *= 2; for (int i = 0; i < 2 * n - 1; i++) { dat[i].first = -1; dat[i].second = INT_MAX; } } int find(int k) { k += n-1; P p = dat[k]; while (k > 0) { k = (k-1)/2; p = max(p, dat[k]); } return p.second; } void update(int a, int b, int k, P p, int l, int r) { if (r <= a || b <= l) return; if (a <= l && r <= b) { dat[k] = p; } else { update(a,b,k*2+1,p,l,(l+r)/2); update(a,b,k*2+2,p,(l+r)/2,r); } } int main() { int _n, q; cin >> _n >> q; init(_n); for (int i = 0; i < q; i++) { int j; cin >> j; if (j) { int u; cin >> u; cout << find(u) << endl; } else { int s, t, x; cin >> s >> t >> x; update(s,t+1,0,P(i,x),0,n); } } }
### Prompt Please create a solution in Cpp to the following problem: Write a program which manipulates a sequence A = {a0, a1, . . . , an−1} with the following operations: * update(s, t, x): change as, as+1, ..., at to x. * find(i): output the value of ai. Note that the initial values of ai (i = 0, 1, . . . , n−1) are 231-1. Constraints * 1 ≤ n ≤ 100000 * 1 ≤ q ≤ 100000 * 0 ≤ s ≤ t < n * 0 ≤ i < n * 0 ≤ x < 231−1 Input n q query1 query2 : queryq In the first line, n (the number of elements in A) and q (the number of queries) are given. Then, ith query queryi is given in the following format: 0 s t x or 1 i The first digit represents the type of the query. '0' denotes update(s, t, x) and '1' denotes find(i). Output For each find operation, print the value. Examples Input 3 5 0 0 1 1 0 1 2 3 0 2 2 2 1 0 1 1 Output 1 3 Input 1 3 1 0 0 0 0 5 1 0 Output 2147483647 5 ### Response ```cpp #include "bits/stdc++.h" using namespace std; typedef long long ll; #define INF (1<<20) const int MAX_N = 1 << 18; typedef pair<int,int> P; int n; P dat[2*MAX_N-1]; void init(int _n) { n = 1; while(n < _n) n *= 2; for (int i = 0; i < 2 * n - 1; i++) { dat[i].first = -1; dat[i].second = INT_MAX; } } int find(int k) { k += n-1; P p = dat[k]; while (k > 0) { k = (k-1)/2; p = max(p, dat[k]); } return p.second; } void update(int a, int b, int k, P p, int l, int r) { if (r <= a || b <= l) return; if (a <= l && r <= b) { dat[k] = p; } else { update(a,b,k*2+1,p,l,(l+r)/2); update(a,b,k*2+2,p,(l+r)/2,r); } } int main() { int _n, q; cin >> _n >> q; init(_n); for (int i = 0; i < q; i++) { int j; cin >> j; if (j) { int u; cin >> u; cout << find(u) << endl; } else { int s, t, x; cin >> s >> t >> x; update(s,t+1,0,P(i,x),0,n); } } } ```
#include <iostream> #include <vector> using namespace std; const int INF = 2147483647; struct SegmentTree { int n; vector<int> heap; SegmentTree(int n): n(n) { heap.assign(4 * n, INF); } void update(int nodeId, int l, int r, int ql, int qr, int v) { if (qr < l || ql > r) { return; } else if (ql <= l && r <= qr) { heap[nodeId] = v; } else { pushdown(nodeId); int m = l + (r - l)/2; update(nodeId * 2, l, m, ql, qr, v); update(nodeId * 2 + 1, m + 1, r, ql, qr, v); } } int query(int nodeId, int l, int r, int q) { if (q < l || q > r) { return -1; } else if (heap[nodeId] != -1) { return heap[nodeId]; } else { int m = l + (r - l)/2; return max(query(nodeId * 2, l, m, q), query(nodeId * 2 + 1, m + 1, r, q)); } } void pushdown(int nodeId) { //cout << "push: " << nodeId << endl; if (heap[nodeId] != -1) { heap[nodeId * 2] = heap[nodeId]; heap[nodeId * 2 + 1] = heap[nodeId]; heap[nodeId] = -1; } } }; int main() { int n, q; cin >> n >> q; SegmentTree st(n); for (int i = 0; i < q; i++) { int cmd; cin >> cmd; if (cmd == 0) { int ql, qr, v; cin >> ql >> qr >> v; st.update(1, 0, n -1, ql, qr, v); // for (int i = 0; i < 4 * n; i++) { // cout << i << ":" << st.heap[i] << endl; // } } else { int pos; cin >> pos; cout << st.query(1, 0, n-1, pos) << endl; } } return 0; }
### Prompt Create a solution in Cpp for the following problem: Write a program which manipulates a sequence A = {a0, a1, . . . , an−1} with the following operations: * update(s, t, x): change as, as+1, ..., at to x. * find(i): output the value of ai. Note that the initial values of ai (i = 0, 1, . . . , n−1) are 231-1. Constraints * 1 ≤ n ≤ 100000 * 1 ≤ q ≤ 100000 * 0 ≤ s ≤ t < n * 0 ≤ i < n * 0 ≤ x < 231−1 Input n q query1 query2 : queryq In the first line, n (the number of elements in A) and q (the number of queries) are given. Then, ith query queryi is given in the following format: 0 s t x or 1 i The first digit represents the type of the query. '0' denotes update(s, t, x) and '1' denotes find(i). Output For each find operation, print the value. Examples Input 3 5 0 0 1 1 0 1 2 3 0 2 2 2 1 0 1 1 Output 1 3 Input 1 3 1 0 0 0 0 5 1 0 Output 2147483647 5 ### Response ```cpp #include <iostream> #include <vector> using namespace std; const int INF = 2147483647; struct SegmentTree { int n; vector<int> heap; SegmentTree(int n): n(n) { heap.assign(4 * n, INF); } void update(int nodeId, int l, int r, int ql, int qr, int v) { if (qr < l || ql > r) { return; } else if (ql <= l && r <= qr) { heap[nodeId] = v; } else { pushdown(nodeId); int m = l + (r - l)/2; update(nodeId * 2, l, m, ql, qr, v); update(nodeId * 2 + 1, m + 1, r, ql, qr, v); } } int query(int nodeId, int l, int r, int q) { if (q < l || q > r) { return -1; } else if (heap[nodeId] != -1) { return heap[nodeId]; } else { int m = l + (r - l)/2; return max(query(nodeId * 2, l, m, q), query(nodeId * 2 + 1, m + 1, r, q)); } } void pushdown(int nodeId) { //cout << "push: " << nodeId << endl; if (heap[nodeId] != -1) { heap[nodeId * 2] = heap[nodeId]; heap[nodeId * 2 + 1] = heap[nodeId]; heap[nodeId] = -1; } } }; int main() { int n, q; cin >> n >> q; SegmentTree st(n); for (int i = 0; i < q; i++) { int cmd; cin >> cmd; if (cmd == 0) { int ql, qr, v; cin >> ql >> qr >> v; st.update(1, 0, n -1, ql, qr, v); // for (int i = 0; i < 4 * n; i++) { // cout << i << ":" << st.heap[i] << endl; // } } else { int pos; cin >> pos; cout << st.query(1, 0, n-1, pos) << endl; } } return 0; } ```
#include <bits/stdc++.h> using namespace std; const int INF = (1LL<<31)-1; class RUQ{ public: int N; vector<int> data; vector<int> times; void update(int time, int a, int b, int x, int k, int l, int r){ if(a <= l && r <= b){ if(times[k] < time){ data[k] = x; times[k] = time; } return; } if(b <= l || r <= a) return; update(time, a, b, x, 2*k+1, l, (l+r)/2); update(time, a, b, x, 2*k+2, (l+r)/2, r); } public: RUQ(int N_){ N = 1; while(N < N_) N <<= 1; data.assign(2*N-1, INF); times.assign(2*N-1, -1); } void update(int time, int s, int t, int x){ update(time, s, t, x, 0, 0, N); } int find(int x){ x += N-1; int res = INF; int time = -1; while(true){ if(time < times[x]){ time = times[x]; res = data[x]; } if(x == 0) break; x = (x-1)/2; } return res; } }; int main(){ int N, Q; cin >> N >> Q; RUQ ruq(N); for(int i=0; i<Q; i++){ int com; cin >> com; if(com == 0){ int s, t, x; cin >> s >> t >> x; ruq.update(i, s, t+1, x); } if(com == 1){ int i; cin >> i; cout << ruq.find(i) << endl; } } return 0; }
### Prompt Your challenge is to write a Cpp solution to the following problem: Write a program which manipulates a sequence A = {a0, a1, . . . , an−1} with the following operations: * update(s, t, x): change as, as+1, ..., at to x. * find(i): output the value of ai. Note that the initial values of ai (i = 0, 1, . . . , n−1) are 231-1. Constraints * 1 ≤ n ≤ 100000 * 1 ≤ q ≤ 100000 * 0 ≤ s ≤ t < n * 0 ≤ i < n * 0 ≤ x < 231−1 Input n q query1 query2 : queryq In the first line, n (the number of elements in A) and q (the number of queries) are given. Then, ith query queryi is given in the following format: 0 s t x or 1 i The first digit represents the type of the query. '0' denotes update(s, t, x) and '1' denotes find(i). Output For each find operation, print the value. Examples Input 3 5 0 0 1 1 0 1 2 3 0 2 2 2 1 0 1 1 Output 1 3 Input 1 3 1 0 0 0 0 5 1 0 Output 2147483647 5 ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int INF = (1LL<<31)-1; class RUQ{ public: int N; vector<int> data; vector<int> times; void update(int time, int a, int b, int x, int k, int l, int r){ if(a <= l && r <= b){ if(times[k] < time){ data[k] = x; times[k] = time; } return; } if(b <= l || r <= a) return; update(time, a, b, x, 2*k+1, l, (l+r)/2); update(time, a, b, x, 2*k+2, (l+r)/2, r); } public: RUQ(int N_){ N = 1; while(N < N_) N <<= 1; data.assign(2*N-1, INF); times.assign(2*N-1, -1); } void update(int time, int s, int t, int x){ update(time, s, t, x, 0, 0, N); } int find(int x){ x += N-1; int res = INF; int time = -1; while(true){ if(time < times[x]){ time = times[x]; res = data[x]; } if(x == 0) break; x = (x-1)/2; } return res; } }; int main(){ int N, Q; cin >> N >> Q; RUQ ruq(N); for(int i=0; i<Q; i++){ int com; cin >> com; if(com == 0){ int s, t, x; cin >> s >> t >> x; ruq.update(i, s, t+1, x); } if(com == 1){ int i; cin >> i; cout << ruq.find(i) << endl; } } return 0; } ```
#include <bits/stdc++.h> using namespace std; int n, q; const long long inf = (1ll << 31) - 1; const int max_n = (1 << 17); long long seg[max_n * 2 - 1]; long long lazy[max_n * 2 - 1]; void init() { int _n = n; n = 1; while (n < _n) n *= 2; fill(seg, seg + 2 * n - 1, inf); fill(lazy, lazy + 2 * n - 1, inf + 1); } void update(int a, int b, int x, int k = 0, int l = 0, int r = n) { if (a <= l && r <= b){ lazy[k] = x; return; } if (r <= a || b <= l){ return; } if (lazy[k] != inf + 1) { lazy[k * 2 + 1] = lazy[k * 2 + 2] = lazy[k]; } lazy[k] = inf + 1; update(a, b, x, k * 2 + 1, l, (l + r) / 2); update(a, b, x, k * 2 + 2, (l + r) / 2, r); } void find(int a, int b, int k = 0, int l = 0, int r = n) { if (a <= l && r <= b){ if (lazy[k] != inf + 1){ seg[k] = lazy[k]; } lazy[k] = inf + 1; return; } else if (r <= a || b <= l){ return; } else { if (lazy[k] != inf + 1){ lazy[k * 2 + 1] = lazy[k * 2 + 2] = lazy[k]; lazy[k] = inf + 1; } find(a, b, k * 2 + 1, l, (l + r) / 2); find(a, b, k * 2 + 2, (l + r) / 2, r); } } int main() { cin >> n >> q; init(); for (int i = 0; i < q; i++){ int f; cin >> f; if (f == 0){ int s, t, x; cin >> s >> t >> x; update(s, t + 1, x); /* for (int i = 0; i < n * 2 - 1; i++){ cout << lazy[i] << " "; } puts(""); */ } else { int i; cin >> i; find(i, i + 1); /* for (int i = 0; i < n * 2 - 1; i++){ cout << seg[i] << " "; } puts(""); */ cout << seg[i + n - 1] << endl; } } }
### Prompt Please formulate a Cpp solution to the following problem: Write a program which manipulates a sequence A = {a0, a1, . . . , an−1} with the following operations: * update(s, t, x): change as, as+1, ..., at to x. * find(i): output the value of ai. Note that the initial values of ai (i = 0, 1, . . . , n−1) are 231-1. Constraints * 1 ≤ n ≤ 100000 * 1 ≤ q ≤ 100000 * 0 ≤ s ≤ t < n * 0 ≤ i < n * 0 ≤ x < 231−1 Input n q query1 query2 : queryq In the first line, n (the number of elements in A) and q (the number of queries) are given. Then, ith query queryi is given in the following format: 0 s t x or 1 i The first digit represents the type of the query. '0' denotes update(s, t, x) and '1' denotes find(i). Output For each find operation, print the value. Examples Input 3 5 0 0 1 1 0 1 2 3 0 2 2 2 1 0 1 1 Output 1 3 Input 1 3 1 0 0 0 0 5 1 0 Output 2147483647 5 ### Response ```cpp #include <bits/stdc++.h> using namespace std; int n, q; const long long inf = (1ll << 31) - 1; const int max_n = (1 << 17); long long seg[max_n * 2 - 1]; long long lazy[max_n * 2 - 1]; void init() { int _n = n; n = 1; while (n < _n) n *= 2; fill(seg, seg + 2 * n - 1, inf); fill(lazy, lazy + 2 * n - 1, inf + 1); } void update(int a, int b, int x, int k = 0, int l = 0, int r = n) { if (a <= l && r <= b){ lazy[k] = x; return; } if (r <= a || b <= l){ return; } if (lazy[k] != inf + 1) { lazy[k * 2 + 1] = lazy[k * 2 + 2] = lazy[k]; } lazy[k] = inf + 1; update(a, b, x, k * 2 + 1, l, (l + r) / 2); update(a, b, x, k * 2 + 2, (l + r) / 2, r); } void find(int a, int b, int k = 0, int l = 0, int r = n) { if (a <= l && r <= b){ if (lazy[k] != inf + 1){ seg[k] = lazy[k]; } lazy[k] = inf + 1; return; } else if (r <= a || b <= l){ return; } else { if (lazy[k] != inf + 1){ lazy[k * 2 + 1] = lazy[k * 2 + 2] = lazy[k]; lazy[k] = inf + 1; } find(a, b, k * 2 + 1, l, (l + r) / 2); find(a, b, k * 2 + 2, (l + r) / 2, r); } } int main() { cin >> n >> q; init(); for (int i = 0; i < q; i++){ int f; cin >> f; if (f == 0){ int s, t, x; cin >> s >> t >> x; update(s, t + 1, x); /* for (int i = 0; i < n * 2 - 1; i++){ cout << lazy[i] << " "; } puts(""); */ } else { int i; cin >> i; find(i, i + 1); /* for (int i = 0; i < n * 2 - 1; i++){ cout << seg[i] << " "; } puts(""); */ cout << seg[i + n - 1] << endl; } } } ```
#include <bits/stdc++.h> using namespace std; using ll = long long; struct LazySegmentTree { int size; vector<int> node, lazy; LazySegmentTree(int n) { size = 1; while (size < n) size <<= 1; node.resize(2 * size, (unsigned int) (1 << 31) - 1); lazy.resize(2 * size, -1); } void eval(int k) { if (lazy[k] == -1) return; if (k >= size) { node[k] = lazy[k]; } else { lazy[2 * k] = lazy[2 * k + 1] = lazy[k]; } lazy[k] = -1; } void update(int a, int b, int x, int k = 1, int l = 0, int r = -1) { if (r == -1) r = size; eval(k); if (r <= a || b <= l) return; if (a <= l && r <= b) { lazy[k] = x; eval(k); } else { int m = (l + r) / 2; update(a, b, x, 2 * k, l, m); update(a, b, x, 2 * k + 1, m, r); } } int query(int i, int k = 1, int l = 0, int r = -1) { if (r == -1) r = size; eval(k); int m = (l + r) / 2; if (k >= size && l == i) return node[k]; if (l <= i && i < m) return query(i, 2 * k, l, m); else return query(i, 2 * k + 1, m, r); } }; int main() { ios_base::sync_with_stdio(false); cin.tie(0); int n, q; cin >> n >> q; LazySegmentTree st(n); for (int j = 0; j < q; j++) { int type; cin >> type; if (type == 0) { int s, t, x; cin >> s >> t >> x; st.update(s, t + 1, x); } else { int i; cin >> i; cout << st.query(i) << '\n'; } } }
### Prompt Please formulate a cpp solution to the following problem: Write a program which manipulates a sequence A = {a0, a1, . . . , an−1} with the following operations: * update(s, t, x): change as, as+1, ..., at to x. * find(i): output the value of ai. Note that the initial values of ai (i = 0, 1, . . . , n−1) are 231-1. Constraints * 1 ≤ n ≤ 100000 * 1 ≤ q ≤ 100000 * 0 ≤ s ≤ t < n * 0 ≤ i < n * 0 ≤ x < 231−1 Input n q query1 query2 : queryq In the first line, n (the number of elements in A) and q (the number of queries) are given. Then, ith query queryi is given in the following format: 0 s t x or 1 i The first digit represents the type of the query. '0' denotes update(s, t, x) and '1' denotes find(i). Output For each find operation, print the value. Examples Input 3 5 0 0 1 1 0 1 2 3 0 2 2 2 1 0 1 1 Output 1 3 Input 1 3 1 0 0 0 0 5 1 0 Output 2147483647 5 ### Response ```cpp #include <bits/stdc++.h> using namespace std; using ll = long long; struct LazySegmentTree { int size; vector<int> node, lazy; LazySegmentTree(int n) { size = 1; while (size < n) size <<= 1; node.resize(2 * size, (unsigned int) (1 << 31) - 1); lazy.resize(2 * size, -1); } void eval(int k) { if (lazy[k] == -1) return; if (k >= size) { node[k] = lazy[k]; } else { lazy[2 * k] = lazy[2 * k + 1] = lazy[k]; } lazy[k] = -1; } void update(int a, int b, int x, int k = 1, int l = 0, int r = -1) { if (r == -1) r = size; eval(k); if (r <= a || b <= l) return; if (a <= l && r <= b) { lazy[k] = x; eval(k); } else { int m = (l + r) / 2; update(a, b, x, 2 * k, l, m); update(a, b, x, 2 * k + 1, m, r); } } int query(int i, int k = 1, int l = 0, int r = -1) { if (r == -1) r = size; eval(k); int m = (l + r) / 2; if (k >= size && l == i) return node[k]; if (l <= i && i < m) return query(i, 2 * k, l, m); else return query(i, 2 * k + 1, m, r); } }; int main() { ios_base::sync_with_stdio(false); cin.tie(0); int n, q; cin >> n >> q; LazySegmentTree st(n); for (int j = 0; j < q; j++) { int type; cin >> type; if (type == 0) { int s, t, x; cin >> s >> t >> x; st.update(s, t + 1, x); } else { int i; cin >> i; cout << st.query(i) << '\n'; } } } ```
#include<bits/stdc++.h> using namespace std; const int MAX_N = 1<<17; int n,dat[2*MAX_N-1]; //????????? void init(int n_){ //????´???°n???2??????????????? n=1; while(n<n_)n*=2; for(int i=0;i<2*n-1;i++)dat[i]=INT_MAX; } void update(int a,int b,int k,int l,int r,int x){ if(r<=a||b<=l)return; if(a<=l&&r<=b)dat[k]=x; else{ if(dat[k]!=INT_MAX){ dat[k*2+1]=dat[k]; dat[k*2+2]=dat[k]; dat[k]=INT_MAX; } update(a,b,k*2+1,l,(l+r)/2,x); update(a,b,k*2+2,(l+r)/2,r,x); } } int find(int a,int b,int k,int l,int r){ if(r<=a||b<=l)return INT_MAX; if(a<=l&&r<=b)return dat[k]; else{ if(dat[k]!=INT_MAX){ dat[k*2+1]=dat[k]; dat[k*2+2]=dat[k]; dat[k]=INT_MAX; } return min(find(a,b,k*2+1,l,(l+r)/2),find(a,b,k*2+2,(l+r)/2,r)); } } int main(){ int q; cin>>n>>q; init(n); int u,s,t,x; for(int i=0;i<q;i++){ cin>>u; if(!u){ cin>>s>>t>>x; update(s,t+1,0,0,n,x); }else{ cin>>s; cout<<find(s,s+1,0,0,n)<<endl; } } return 0; }
### Prompt Construct a Cpp code solution to the problem outlined: Write a program which manipulates a sequence A = {a0, a1, . . . , an−1} with the following operations: * update(s, t, x): change as, as+1, ..., at to x. * find(i): output the value of ai. Note that the initial values of ai (i = 0, 1, . . . , n−1) are 231-1. Constraints * 1 ≤ n ≤ 100000 * 1 ≤ q ≤ 100000 * 0 ≤ s ≤ t < n * 0 ≤ i < n * 0 ≤ x < 231−1 Input n q query1 query2 : queryq In the first line, n (the number of elements in A) and q (the number of queries) are given. Then, ith query queryi is given in the following format: 0 s t x or 1 i The first digit represents the type of the query. '0' denotes update(s, t, x) and '1' denotes find(i). Output For each find operation, print the value. Examples Input 3 5 0 0 1 1 0 1 2 3 0 2 2 2 1 0 1 1 Output 1 3 Input 1 3 1 0 0 0 0 5 1 0 Output 2147483647 5 ### Response ```cpp #include<bits/stdc++.h> using namespace std; const int MAX_N = 1<<17; int n,dat[2*MAX_N-1]; //????????? void init(int n_){ //????´???°n???2??????????????? n=1; while(n<n_)n*=2; for(int i=0;i<2*n-1;i++)dat[i]=INT_MAX; } void update(int a,int b,int k,int l,int r,int x){ if(r<=a||b<=l)return; if(a<=l&&r<=b)dat[k]=x; else{ if(dat[k]!=INT_MAX){ dat[k*2+1]=dat[k]; dat[k*2+2]=dat[k]; dat[k]=INT_MAX; } update(a,b,k*2+1,l,(l+r)/2,x); update(a,b,k*2+2,(l+r)/2,r,x); } } int find(int a,int b,int k,int l,int r){ if(r<=a||b<=l)return INT_MAX; if(a<=l&&r<=b)return dat[k]; else{ if(dat[k]!=INT_MAX){ dat[k*2+1]=dat[k]; dat[k*2+2]=dat[k]; dat[k]=INT_MAX; } return min(find(a,b,k*2+1,l,(l+r)/2),find(a,b,k*2+2,(l+r)/2,r)); } } int main(){ int q; cin>>n>>q; init(n); int u,s,t,x; for(int i=0;i<q;i++){ cin>>u; if(!u){ cin>>s>>t>>x; update(s,t+1,0,0,n,x); }else{ cin>>s; cout<<find(s,s+1,0,0,n)<<endl; } } return 0; } ```
#include<cstdio> #include<algorithm> #define N 100000 #define MAX (1<<31)-1 using namespace std; int A[N], T[4*N], lazy[4*N]; void build(int l, int r, int k) { if (l == r) { T[k] = A[l]; return; } int mid = (l + r) / 2; build(l, mid, k * 2); build(mid + 1, r, k * 2 + 1); T[k] = min(T[2 * k], T[2 * k + 1]); } void pushdown(int k) { if (lazy[k] != -1) { lazy[2*k] = lazy[k]; lazy[2*k+1] = lazy[k]; T[2*k] = lazy[k]; T[2*k+1] = lazy[k]; lazy[k] = -1; } } void updata(int L, int R, int data ,int l, int r ,int k) { if (L <= l && r <= R) { T[k] = data; lazy[k] = data; return; } pushdown(k); int mid = (l + r) / 2; if (mid >= L) updata(L, R, data, l, mid, 2*k); if (mid < R) updata(L, R, data, mid+1, r, 2*k+1); T[k] = min(T[2 * k], T[2 * k + 1]); } int find(int L, int R, int l, int r, int k) { if (L <= l && r <= R) return T[k]; pushdown(k); int mid = (l + r) / 2; int ans = MAX; if (mid >= L) ans = min(ans, find(L, R, l, mid, k * 2)); if (mid < R) ans = min(ans, find(L, R, mid + 1, r, k * 2 + 1)); return ans; } int main() { int n, q; scanf("%d%d", &n, &q); for (int i = 0; i < n; i++) A[i] = MAX; for (int i = 0; i < 4*n; i++) lazy[i] = -1; build(0, n - 1, 1); int com, s, t, x, y; while (q--) { scanf("%d", &com); if (com == 0) { scanf("%d%d%d", &s, &t, &x); updata(s, t, x, 0, n - 1, 1); } else { scanf("%d", &x); printf("%d\n", find(x, x, 0, n - 1, 1)); } } return 0; }
### Prompt Your challenge is to write a cpp solution to the following problem: Write a program which manipulates a sequence A = {a0, a1, . . . , an−1} with the following operations: * update(s, t, x): change as, as+1, ..., at to x. * find(i): output the value of ai. Note that the initial values of ai (i = 0, 1, . . . , n−1) are 231-1. Constraints * 1 ≤ n ≤ 100000 * 1 ≤ q ≤ 100000 * 0 ≤ s ≤ t < n * 0 ≤ i < n * 0 ≤ x < 231−1 Input n q query1 query2 : queryq In the first line, n (the number of elements in A) and q (the number of queries) are given. Then, ith query queryi is given in the following format: 0 s t x or 1 i The first digit represents the type of the query. '0' denotes update(s, t, x) and '1' denotes find(i). Output For each find operation, print the value. Examples Input 3 5 0 0 1 1 0 1 2 3 0 2 2 2 1 0 1 1 Output 1 3 Input 1 3 1 0 0 0 0 5 1 0 Output 2147483647 5 ### Response ```cpp #include<cstdio> #include<algorithm> #define N 100000 #define MAX (1<<31)-1 using namespace std; int A[N], T[4*N], lazy[4*N]; void build(int l, int r, int k) { if (l == r) { T[k] = A[l]; return; } int mid = (l + r) / 2; build(l, mid, k * 2); build(mid + 1, r, k * 2 + 1); T[k] = min(T[2 * k], T[2 * k + 1]); } void pushdown(int k) { if (lazy[k] != -1) { lazy[2*k] = lazy[k]; lazy[2*k+1] = lazy[k]; T[2*k] = lazy[k]; T[2*k+1] = lazy[k]; lazy[k] = -1; } } void updata(int L, int R, int data ,int l, int r ,int k) { if (L <= l && r <= R) { T[k] = data; lazy[k] = data; return; } pushdown(k); int mid = (l + r) / 2; if (mid >= L) updata(L, R, data, l, mid, 2*k); if (mid < R) updata(L, R, data, mid+1, r, 2*k+1); T[k] = min(T[2 * k], T[2 * k + 1]); } int find(int L, int R, int l, int r, int k) { if (L <= l && r <= R) return T[k]; pushdown(k); int mid = (l + r) / 2; int ans = MAX; if (mid >= L) ans = min(ans, find(L, R, l, mid, k * 2)); if (mid < R) ans = min(ans, find(L, R, mid + 1, r, k * 2 + 1)); return ans; } int main() { int n, q; scanf("%d%d", &n, &q); for (int i = 0; i < n; i++) A[i] = MAX; for (int i = 0; i < 4*n; i++) lazy[i] = -1; build(0, n - 1, 1); int com, s, t, x, y; while (q--) { scanf("%d", &com); if (com == 0) { scanf("%d%d%d", &s, &t, &x); updata(s, t, x, 0, n - 1, 1); } else { scanf("%d", &x); printf("%d\n", find(x, x, 0, n - 1, 1)); } } return 0; } ```
#include <bits/stdc++.h> using namespace std; struct RU { using t1 = int; using t2 = int; static t2 id2() { return -1; } static t1 op2(const t1& l, const t2& r) { return r == id2() ? l : r; } static t2 op3(const t2& l, const t2& r) { return r == id2() ? l : r; } }; template <typename M> class lazy_segment_tree { using T1 = typename M::t1; using T2 = typename M::t2; const int h, n; const vector<T1> data; vector<T2> lazy; void push(int node) { if (lazy[node] == M::id2()) return; lazy[node << 1] = M::op3(lazy[node << 1], lazy[node]); lazy[(node << 1) | 1] = M::op3(lazy[(node << 1) | 1], lazy[node]); lazy[node] = M::id2(); } public: lazy_segment_tree(int n_, T1 v1) : h(ceil(log2(n_))), n(1 << h), data(n_, v1), lazy(n << 1, M::id2()) {} lazy_segment_tree(const vector<T1>& data_) : h(ceil(log2(data_.size()))), n(1 << h), data(data_), lazy(n << 1, M::id2()) {} void update(int l, int r, T2 val) { l += n, r += n; for (int i = h; i > 0; i--) push(l >> i), push(r >> i); r++; while (l < r) { if (l & 1) lazy[l] = M::op3(lazy[l], val), l++; if (r & 1) r--, lazy[r] = M::op3(lazy[r], val); l >>= 1; r >>= 1; } } T1 find(int p) const { T1 res = data[p]; p += n; while (p) res = M::op2(res, lazy[p]), p >>= 1; return res; } }; int main() { ios::sync_with_stdio(false), cin.tie(0); int n, q; cin >> n >> q; lazy_segment_tree<RU> lst(n, INT_MAX); while (q--) { int com; cin >> com; if (com == 0) { int s, t, x; cin >> s >> t >> x; lst.update(s, t, x); } else { int p; cin >> p; printf("%d\n", lst.find(p)); } } return 0; }
### Prompt In cpp, your task is to solve the following problem: Write a program which manipulates a sequence A = {a0, a1, . . . , an−1} with the following operations: * update(s, t, x): change as, as+1, ..., at to x. * find(i): output the value of ai. Note that the initial values of ai (i = 0, 1, . . . , n−1) are 231-1. Constraints * 1 ≤ n ≤ 100000 * 1 ≤ q ≤ 100000 * 0 ≤ s ≤ t < n * 0 ≤ i < n * 0 ≤ x < 231−1 Input n q query1 query2 : queryq In the first line, n (the number of elements in A) and q (the number of queries) are given. Then, ith query queryi is given in the following format: 0 s t x or 1 i The first digit represents the type of the query. '0' denotes update(s, t, x) and '1' denotes find(i). Output For each find operation, print the value. Examples Input 3 5 0 0 1 1 0 1 2 3 0 2 2 2 1 0 1 1 Output 1 3 Input 1 3 1 0 0 0 0 5 1 0 Output 2147483647 5 ### Response ```cpp #include <bits/stdc++.h> using namespace std; struct RU { using t1 = int; using t2 = int; static t2 id2() { return -1; } static t1 op2(const t1& l, const t2& r) { return r == id2() ? l : r; } static t2 op3(const t2& l, const t2& r) { return r == id2() ? l : r; } }; template <typename M> class lazy_segment_tree { using T1 = typename M::t1; using T2 = typename M::t2; const int h, n; const vector<T1> data; vector<T2> lazy; void push(int node) { if (lazy[node] == M::id2()) return; lazy[node << 1] = M::op3(lazy[node << 1], lazy[node]); lazy[(node << 1) | 1] = M::op3(lazy[(node << 1) | 1], lazy[node]); lazy[node] = M::id2(); } public: lazy_segment_tree(int n_, T1 v1) : h(ceil(log2(n_))), n(1 << h), data(n_, v1), lazy(n << 1, M::id2()) {} lazy_segment_tree(const vector<T1>& data_) : h(ceil(log2(data_.size()))), n(1 << h), data(data_), lazy(n << 1, M::id2()) {} void update(int l, int r, T2 val) { l += n, r += n; for (int i = h; i > 0; i--) push(l >> i), push(r >> i); r++; while (l < r) { if (l & 1) lazy[l] = M::op3(lazy[l], val), l++; if (r & 1) r--, lazy[r] = M::op3(lazy[r], val); l >>= 1; r >>= 1; } } T1 find(int p) const { T1 res = data[p]; p += n; while (p) res = M::op2(res, lazy[p]), p >>= 1; return res; } }; int main() { ios::sync_with_stdio(false), cin.tie(0); int n, q; cin >> n >> q; lazy_segment_tree<RU> lst(n, INT_MAX); while (q--) { int com; cin >> com; if (com == 0) { int s, t, x; cin >> s >> t >> x; lst.update(s, t, x); } else { int p; cin >> p; printf("%d\n", lst.find(p)); } } return 0; } ```
#include <algorithm> #include <iostream> #include <vector> #include <functional> using namespace std; template<typename OperatorMonoid> struct SegmentTree { using H = function<OperatorMonoid(OperatorMonoid, OperatorMonoid)>; const H h; const OperatorMonoid OM0; int sz, height; vector<OperatorMonoid> lazy; SegmentTree(int n, const H h, const OperatorMonoid &OM0) : h(h), OM0(OM0), sz(1), height(0) { while (sz < n) sz <<= 1, height++; lazy.assign(sz * 2, OM0); } inline void propagate(int k) { if (lazy[k] == OM0) return ; lazy[k << 1 | 0] = h(lazy[k << 1 | 0], lazy[k]); lazy[k << 1 | 1] = h(lazy[k << 1 | 1], lazy[k]); lazy[k] = OM0; } inline void thrust(int k) { for (int i = height; i > 0; i--) propagate(k >> i); } void update(int a, int b, const OperatorMonoid &x) { thrust(a += sz); thrust(b += sz - 1); for (int l = a, r = b + 1; l < r; l >>= 1, r >>= 1) { if (l & 1) lazy[l] = h(lazy[l], x), ++l; if (r & 1) --r, lazy[r] = h(lazy[r], x); } } void set(int k, const OperatorMonoid &x) { thrust(k += sz); lazy[k] = x; } OperatorMonoid get(int k) { thrust(k += sz); return lazy[k]; } OperatorMonoid operator[](const int &k) { return get(k); } }; const int INF = numeric_limits<int>::max(); int main() { int n, q; cin >> n >> q; SegmentTree<int> seg(n, [](int a, int b) { return b; }, INF); while (q--) { int com; cin >> com; if (com == 0) { int s, t, x; cin >> s >> t >> x; t++; seg.update(s, t, x); } else { int i; cin >> i; cout << seg[i] << endl; } } return 0; }
### Prompt Create a solution in CPP for the following problem: Write a program which manipulates a sequence A = {a0, a1, . . . , an−1} with the following operations: * update(s, t, x): change as, as+1, ..., at to x. * find(i): output the value of ai. Note that the initial values of ai (i = 0, 1, . . . , n−1) are 231-1. Constraints * 1 ≤ n ≤ 100000 * 1 ≤ q ≤ 100000 * 0 ≤ s ≤ t < n * 0 ≤ i < n * 0 ≤ x < 231−1 Input n q query1 query2 : queryq In the first line, n (the number of elements in A) and q (the number of queries) are given. Then, ith query queryi is given in the following format: 0 s t x or 1 i The first digit represents the type of the query. '0' denotes update(s, t, x) and '1' denotes find(i). Output For each find operation, print the value. Examples Input 3 5 0 0 1 1 0 1 2 3 0 2 2 2 1 0 1 1 Output 1 3 Input 1 3 1 0 0 0 0 5 1 0 Output 2147483647 5 ### Response ```cpp #include <algorithm> #include <iostream> #include <vector> #include <functional> using namespace std; template<typename OperatorMonoid> struct SegmentTree { using H = function<OperatorMonoid(OperatorMonoid, OperatorMonoid)>; const H h; const OperatorMonoid OM0; int sz, height; vector<OperatorMonoid> lazy; SegmentTree(int n, const H h, const OperatorMonoid &OM0) : h(h), OM0(OM0), sz(1), height(0) { while (sz < n) sz <<= 1, height++; lazy.assign(sz * 2, OM0); } inline void propagate(int k) { if (lazy[k] == OM0) return ; lazy[k << 1 | 0] = h(lazy[k << 1 | 0], lazy[k]); lazy[k << 1 | 1] = h(lazy[k << 1 | 1], lazy[k]); lazy[k] = OM0; } inline void thrust(int k) { for (int i = height; i > 0; i--) propagate(k >> i); } void update(int a, int b, const OperatorMonoid &x) { thrust(a += sz); thrust(b += sz - 1); for (int l = a, r = b + 1; l < r; l >>= 1, r >>= 1) { if (l & 1) lazy[l] = h(lazy[l], x), ++l; if (r & 1) --r, lazy[r] = h(lazy[r], x); } } void set(int k, const OperatorMonoid &x) { thrust(k += sz); lazy[k] = x; } OperatorMonoid get(int k) { thrust(k += sz); return lazy[k]; } OperatorMonoid operator[](const int &k) { return get(k); } }; const int INF = numeric_limits<int>::max(); int main() { int n, q; cin >> n >> q; SegmentTree<int> seg(n, [](int a, int b) { return b; }, INF); while (q--) { int com; cin >> com; if (com == 0) { int s, t, x; cin >> s >> t >> x; t++; seg.update(s, t, x); } else { int i; cin >> i; cout << seg[i] << endl; } } return 0; } ```
#include<iostream> #include<vector> #include<algorithm> using namespace std; const long long INF = (1ll<<31)-1; template<typename T> class lazy_segment_tree{ int n; T fval; vector<T> dat, lazy; vector<bool> lazyFlag; public: lazy_segment_tree(){ } lazy_segment_tree(int n_, T val){ init(n_, val); } ~lazy_segment_tree(){ } void init(int n_, T val){ fval = val; n = 1; while(n < n_) n *= 2; dat.resize(2 * n - 1); lazy.resize(2 * n - 1, fval); lazyFlag.resize(2 * n - 1, false); for(int i = 0; i < 2 * n - 1; i++) dat[i] = fval; } void eval(int k, int l, int r){ if(lazyFlag[k]){ dat[k] = lazy[k]; if(r - l > 1) { lazy[2*k+1] = lazy[2*k+2] = lazy[k]; lazyFlag[2*k+1] = lazyFlag[2*k+2] = lazyFlag[k]; } lazyFlag[k] = false; } } void update(int a, int b, T x, int k = 0, int l = 0, int r = -1){ if(r < 0) r = n; eval(k, l, r); if(b <= l || r <= a) {return ;} if(a <= l && r <= b){ lazy[k] = x; lazyFlag[k] = true; eval(k, l, r); } else { update(a, b, x, 2*k+1, l, (l+r)/2); update(a, b, x, 2*k+2, (l+r)/2, r); dat[k] = min(dat[2*k+1], dat[2*k+2]); } } T query(int a, int b, int k = 0, int l = 0, int r = -1){ if(r < 0) r = n; eval(k, l, r); if(r <= a || b <= l){ return INF; } if(a <= l && r <= b){ return dat[k]; }else { T vl = query(a, b, k * 2 + 1, l, (l + r) / 2 ); T vr = query(a, b, k * 2 + 2, (l + r) / 2, r); return min(vl, vr); } } }; signed main(){ lazy_segment_tree<long long> lseg; int n, q; cin>>n>>q; lseg.init(n+10, INF); for(int i = 0; i < q; i++){ int com, s, t, x; cin>>com; s++, t++; if(com){ cin>>s; cout<<lseg.query(s,s+1)<<endl; } else { cin>>s>>t>>x; lseg.update(s, t+1, x); } } return 0; }
### Prompt Construct a Cpp code solution to the problem outlined: Write a program which manipulates a sequence A = {a0, a1, . . . , an−1} with the following operations: * update(s, t, x): change as, as+1, ..., at to x. * find(i): output the value of ai. Note that the initial values of ai (i = 0, 1, . . . , n−1) are 231-1. Constraints * 1 ≤ n ≤ 100000 * 1 ≤ q ≤ 100000 * 0 ≤ s ≤ t < n * 0 ≤ i < n * 0 ≤ x < 231−1 Input n q query1 query2 : queryq In the first line, n (the number of elements in A) and q (the number of queries) are given. Then, ith query queryi is given in the following format: 0 s t x or 1 i The first digit represents the type of the query. '0' denotes update(s, t, x) and '1' denotes find(i). Output For each find operation, print the value. Examples Input 3 5 0 0 1 1 0 1 2 3 0 2 2 2 1 0 1 1 Output 1 3 Input 1 3 1 0 0 0 0 5 1 0 Output 2147483647 5 ### Response ```cpp #include<iostream> #include<vector> #include<algorithm> using namespace std; const long long INF = (1ll<<31)-1; template<typename T> class lazy_segment_tree{ int n; T fval; vector<T> dat, lazy; vector<bool> lazyFlag; public: lazy_segment_tree(){ } lazy_segment_tree(int n_, T val){ init(n_, val); } ~lazy_segment_tree(){ } void init(int n_, T val){ fval = val; n = 1; while(n < n_) n *= 2; dat.resize(2 * n - 1); lazy.resize(2 * n - 1, fval); lazyFlag.resize(2 * n - 1, false); for(int i = 0; i < 2 * n - 1; i++) dat[i] = fval; } void eval(int k, int l, int r){ if(lazyFlag[k]){ dat[k] = lazy[k]; if(r - l > 1) { lazy[2*k+1] = lazy[2*k+2] = lazy[k]; lazyFlag[2*k+1] = lazyFlag[2*k+2] = lazyFlag[k]; } lazyFlag[k] = false; } } void update(int a, int b, T x, int k = 0, int l = 0, int r = -1){ if(r < 0) r = n; eval(k, l, r); if(b <= l || r <= a) {return ;} if(a <= l && r <= b){ lazy[k] = x; lazyFlag[k] = true; eval(k, l, r); } else { update(a, b, x, 2*k+1, l, (l+r)/2); update(a, b, x, 2*k+2, (l+r)/2, r); dat[k] = min(dat[2*k+1], dat[2*k+2]); } } T query(int a, int b, int k = 0, int l = 0, int r = -1){ if(r < 0) r = n; eval(k, l, r); if(r <= a || b <= l){ return INF; } if(a <= l && r <= b){ return dat[k]; }else { T vl = query(a, b, k * 2 + 1, l, (l + r) / 2 ); T vr = query(a, b, k * 2 + 2, (l + r) / 2, r); return min(vl, vr); } } }; signed main(){ lazy_segment_tree<long long> lseg; int n, q; cin>>n>>q; lseg.init(n+10, INF); for(int i = 0; i < q; i++){ int com, s, t, x; cin>>com; s++, t++; if(com){ cin>>s; cout<<lseg.query(s,s+1)<<endl; } else { cin>>s>>t>>x; lseg.update(s, t+1, x); } } return 0; } ```
#include <bits/stdc++.h> using namespace std; #define FOR(i,a,b) for(int i=(a);i<(b);++i) #define rep(i,n) FOR(i,0,n) #define pb push_back #define mp make_pair typedef long long ll; typedef pair<int,int> pint; const int MAX_N=1<<17; const ll INF=(1ll<<31)-1; ll dat[2*MAX_N-1]; pint dat2[2*MAX_N-1]; int N; //RMQ void init(int n_){ N=1; while(N<n_) N*=2; //rep(i,2*N-1) dat[i]=INF; rep(i,2*N-1) dat2[i]=mp(-1,INF); } void update(int k,ll a){ k+=N-1; dat[k]=a; while(k>0){ k=(k-1)/2; dat[k]=min(dat[k*2+1],dat[k*2+2]); } } //range [a,b) ll query(int a,int b,int k,int l,int r){ if(r<=a||b<=l) return INF; if(a<=l&&r<=b) return dat[k]; else{ ll vl=query(a,b,k*2+1,l,(l+r)/2); ll vr=query(a,b,k*2+2,(l+r)/2,r); return min(vl,vr); } } //RUQ //range [a,b) void r_update(int a,int b,pint x,int k,int l,int r){ if(r<=a||b<=l) return; if(a<=l&&r<=b){ dat2[k]=x;return; } else{ r_update(a,b,x,k*2+1,l,(l+r)/2); r_update(a,b,x,k*2+2,(l+r)/2,r); } } ll r_query(int i){ i+=N-1; pint res=dat2[i]; while(i>0){ i=(i-1)/2; res=max(res,dat2[i]); } return res.second; } int main(){ //int n,q,c,x,y; int n,q,c,s,t,x; cin>>n>>q; init(n); rep(i,q){ cin>>c; //if(c==0) update(x,y); if(c==0){ cin>>s>>t>>x; r_update(s,t+1,mp(i,x),0,0,N); } else{ ll ans; cin>>x; //ans=query(x,y+1,0,0,N); ans=r_query(x); cout<<ans<<endl; } } return 0; }
### Prompt Create a solution in Cpp for the following problem: Write a program which manipulates a sequence A = {a0, a1, . . . , an−1} with the following operations: * update(s, t, x): change as, as+1, ..., at to x. * find(i): output the value of ai. Note that the initial values of ai (i = 0, 1, . . . , n−1) are 231-1. Constraints * 1 ≤ n ≤ 100000 * 1 ≤ q ≤ 100000 * 0 ≤ s ≤ t < n * 0 ≤ i < n * 0 ≤ x < 231−1 Input n q query1 query2 : queryq In the first line, n (the number of elements in A) and q (the number of queries) are given. Then, ith query queryi is given in the following format: 0 s t x or 1 i The first digit represents the type of the query. '0' denotes update(s, t, x) and '1' denotes find(i). Output For each find operation, print the value. Examples Input 3 5 0 0 1 1 0 1 2 3 0 2 2 2 1 0 1 1 Output 1 3 Input 1 3 1 0 0 0 0 5 1 0 Output 2147483647 5 ### Response ```cpp #include <bits/stdc++.h> using namespace std; #define FOR(i,a,b) for(int i=(a);i<(b);++i) #define rep(i,n) FOR(i,0,n) #define pb push_back #define mp make_pair typedef long long ll; typedef pair<int,int> pint; const int MAX_N=1<<17; const ll INF=(1ll<<31)-1; ll dat[2*MAX_N-1]; pint dat2[2*MAX_N-1]; int N; //RMQ void init(int n_){ N=1; while(N<n_) N*=2; //rep(i,2*N-1) dat[i]=INF; rep(i,2*N-1) dat2[i]=mp(-1,INF); } void update(int k,ll a){ k+=N-1; dat[k]=a; while(k>0){ k=(k-1)/2; dat[k]=min(dat[k*2+1],dat[k*2+2]); } } //range [a,b) ll query(int a,int b,int k,int l,int r){ if(r<=a||b<=l) return INF; if(a<=l&&r<=b) return dat[k]; else{ ll vl=query(a,b,k*2+1,l,(l+r)/2); ll vr=query(a,b,k*2+2,(l+r)/2,r); return min(vl,vr); } } //RUQ //range [a,b) void r_update(int a,int b,pint x,int k,int l,int r){ if(r<=a||b<=l) return; if(a<=l&&r<=b){ dat2[k]=x;return; } else{ r_update(a,b,x,k*2+1,l,(l+r)/2); r_update(a,b,x,k*2+2,(l+r)/2,r); } } ll r_query(int i){ i+=N-1; pint res=dat2[i]; while(i>0){ i=(i-1)/2; res=max(res,dat2[i]); } return res.second; } int main(){ //int n,q,c,x,y; int n,q,c,s,t,x; cin>>n>>q; init(n); rep(i,q){ cin>>c; //if(c==0) update(x,y); if(c==0){ cin>>s>>t>>x; r_update(s,t+1,mp(i,x),0,0,N); } else{ ll ans; cin>>x; //ans=query(x,y+1,0,0,N); ans=r_query(x); cout<<ans<<endl; } } return 0; } ```
#include <bits/stdc++.h> #define chmin(a, b) ((a)=min((a), (b))) #define chmax(a, b) ((a)=max((a), (b))) #define fs first #define sc second #define eb emplace_back using namespace std; typedef long long ll; typedef pair<int, int> P; typedef tuple<int, int, int> T; const ll MOD=1e9+7; const ll INF=(1LL<<31)-1; const double pi=acos(-1); const double eps=1e-10; int dx[]={1, -1, 0, 0}; int dy[]={0, 0, 1, -1}; class SquareDivision{ private: const int BUCKET_SIZE=256; ll N, B; vector<ll> data; vector<bool> lazy_flag; vector<ll> lazy_update; public: void prepare(int n){ B=(n+BUCKET_SIZE-1)/BUCKET_SIZE; N=B*BUCKET_SIZE; data.assign(N, INF); lazy_flag.assign(B, false); lazy_update.assign(B, 0); } void eval(int k){ if(lazy_flag[k]){ lazy_flag[k]=false; for(int i=k*BUCKET_SIZE; i<(k+1)*BUCKET_SIZE; i++){ data[i]=lazy_update[k]; } } } // [s, t) void update(int s, int t, ll x){ for(int k=0; k<B; k++){ int l=k*BUCKET_SIZE, r=(k+1)*BUCKET_SIZE; if(r<=s || t<=l) continue; if(s<=l && r<=t){ lazy_flag[k]=true; lazy_update[k]=x; } else{ eval(k); for(int i=max(s, l); i<min(t, r); i++){ data[i]=x; } } } } int find(int i){ int k=i/BUCKET_SIZE; eval(k); return data[i]; } }; signed main(){ int n, q; cin>>n>>q; SquareDivision ans; ans.prepare(n); while(q--){ int c; cin>>c; if(c==0){ ll s, t, x; cin>>s>>t>>x; ans.update(s, t+1, x); } else{ ll x; cin>>x; cout << ans.find(x) << endl; } } }
### Prompt Generate a Cpp solution to the following problem: Write a program which manipulates a sequence A = {a0, a1, . . . , an−1} with the following operations: * update(s, t, x): change as, as+1, ..., at to x. * find(i): output the value of ai. Note that the initial values of ai (i = 0, 1, . . . , n−1) are 231-1. Constraints * 1 ≤ n ≤ 100000 * 1 ≤ q ≤ 100000 * 0 ≤ s ≤ t < n * 0 ≤ i < n * 0 ≤ x < 231−1 Input n q query1 query2 : queryq In the first line, n (the number of elements in A) and q (the number of queries) are given. Then, ith query queryi is given in the following format: 0 s t x or 1 i The first digit represents the type of the query. '0' denotes update(s, t, x) and '1' denotes find(i). Output For each find operation, print the value. Examples Input 3 5 0 0 1 1 0 1 2 3 0 2 2 2 1 0 1 1 Output 1 3 Input 1 3 1 0 0 0 0 5 1 0 Output 2147483647 5 ### Response ```cpp #include <bits/stdc++.h> #define chmin(a, b) ((a)=min((a), (b))) #define chmax(a, b) ((a)=max((a), (b))) #define fs first #define sc second #define eb emplace_back using namespace std; typedef long long ll; typedef pair<int, int> P; typedef tuple<int, int, int> T; const ll MOD=1e9+7; const ll INF=(1LL<<31)-1; const double pi=acos(-1); const double eps=1e-10; int dx[]={1, -1, 0, 0}; int dy[]={0, 0, 1, -1}; class SquareDivision{ private: const int BUCKET_SIZE=256; ll N, B; vector<ll> data; vector<bool> lazy_flag; vector<ll> lazy_update; public: void prepare(int n){ B=(n+BUCKET_SIZE-1)/BUCKET_SIZE; N=B*BUCKET_SIZE; data.assign(N, INF); lazy_flag.assign(B, false); lazy_update.assign(B, 0); } void eval(int k){ if(lazy_flag[k]){ lazy_flag[k]=false; for(int i=k*BUCKET_SIZE; i<(k+1)*BUCKET_SIZE; i++){ data[i]=lazy_update[k]; } } } // [s, t) void update(int s, int t, ll x){ for(int k=0; k<B; k++){ int l=k*BUCKET_SIZE, r=(k+1)*BUCKET_SIZE; if(r<=s || t<=l) continue; if(s<=l && r<=t){ lazy_flag[k]=true; lazy_update[k]=x; } else{ eval(k); for(int i=max(s, l); i<min(t, r); i++){ data[i]=x; } } } } int find(int i){ int k=i/BUCKET_SIZE; eval(k); return data[i]; } }; signed main(){ int n, q; cin>>n>>q; SquareDivision ans; ans.prepare(n); while(q--){ int c; cin>>c; if(c==0){ ll s, t, x; cin>>s>>t>>x; ans.update(s, t+1, x); } else{ ll x; cin>>x; cout << ans.find(x) << endl; } } } ```
#include <iostream> #include <vector> #define int long long using namespace std; typedef pair<int,int> P; class RUQ{ int n,seg,init; vector<P> dat; public: RUQ(int siz,int def) : n(siz),init(def),seg(1){ while(seg < n) seg *= 2; dat.resize(seg * 2 - 1); for(int i = 0;i < seg * 2 - 1;i++) dat[i] = P(-1,init); } void update(int a,int b,int x,int tim,int k = 0,int l = 0,int r = -1){ if(r == -1) r = seg; if(r <= a || b <= l) return; if(a <= l && r <= b){ dat[k] = P(tim,x); return; } update(a,b,x,tim,k * 2 + 1,l,(l + r) / 2); update(a,b,x,tim,k * 2 + 2,(l + r) / 2,r); } P get(int i){ i += seg - 1; P ret = dat[i]; while(i){ i = (i - 1) / 2; ret = max(ret,dat[i]); } return ret; } }; signed main() { int n,q; cin >> n >> q; RUQ ruq(n,(1 << 31) - 1); for(int i = 0;i < q;i++){ int t; cin >> t; if(t == 0){ int s,t,x; cin >> s >> t >> x; ruq.update(s,t + 1,x,i); }else{ int x; cin >> x; cout << ruq.get(x).second << endl; } } return 0; }
### Prompt Construct a CPP code solution to the problem outlined: Write a program which manipulates a sequence A = {a0, a1, . . . , an−1} with the following operations: * update(s, t, x): change as, as+1, ..., at to x. * find(i): output the value of ai. Note that the initial values of ai (i = 0, 1, . . . , n−1) are 231-1. Constraints * 1 ≤ n ≤ 100000 * 1 ≤ q ≤ 100000 * 0 ≤ s ≤ t < n * 0 ≤ i < n * 0 ≤ x < 231−1 Input n q query1 query2 : queryq In the first line, n (the number of elements in A) and q (the number of queries) are given. Then, ith query queryi is given in the following format: 0 s t x or 1 i The first digit represents the type of the query. '0' denotes update(s, t, x) and '1' denotes find(i). Output For each find operation, print the value. Examples Input 3 5 0 0 1 1 0 1 2 3 0 2 2 2 1 0 1 1 Output 1 3 Input 1 3 1 0 0 0 0 5 1 0 Output 2147483647 5 ### Response ```cpp #include <iostream> #include <vector> #define int long long using namespace std; typedef pair<int,int> P; class RUQ{ int n,seg,init; vector<P> dat; public: RUQ(int siz,int def) : n(siz),init(def),seg(1){ while(seg < n) seg *= 2; dat.resize(seg * 2 - 1); for(int i = 0;i < seg * 2 - 1;i++) dat[i] = P(-1,init); } void update(int a,int b,int x,int tim,int k = 0,int l = 0,int r = -1){ if(r == -1) r = seg; if(r <= a || b <= l) return; if(a <= l && r <= b){ dat[k] = P(tim,x); return; } update(a,b,x,tim,k * 2 + 1,l,(l + r) / 2); update(a,b,x,tim,k * 2 + 2,(l + r) / 2,r); } P get(int i){ i += seg - 1; P ret = dat[i]; while(i){ i = (i - 1) / 2; ret = max(ret,dat[i]); } return ret; } }; signed main() { int n,q; cin >> n >> q; RUQ ruq(n,(1 << 31) - 1); for(int i = 0;i < q;i++){ int t; cin >> t; if(t == 0){ int s,t,x; cin >> s >> t >> x; ruq.update(s,t + 1,x,i); }else{ int x; cin >> x; cout << ruq.get(x).second << endl; } } return 0; } ```
#include <iostream> #include <sstream> #include <cstdio> #include <stdlib.h> #include <string> #include <vector> #include <algorithm> #include <climits> #include <cmath> using namespace std; #define MAX make_pair(-1,INT_MAX) vector<pair<int,int> > ary; int n; int right(int k){ return 2*k+2; } int left(int k){ return 2*k+1; } int parent(int k){ return (k-1)/2; } void update(int s,int t,int p,pair<int,int> x,int l,int r){ if(r<=s||t<=l)return; if(s<=l&&r<=t)ary[p]=x; else{ update(s,t,left(p),x,l,(l+r)/2); update(s,t,right(p),x,(l+r)/2,r); } } int query(int x){ x+=n-1; pair<int,int> res=ary[x]; //cout<<"x:"<<x<<endl; while(x>0){ //cout<<"query: "<<x<<" xf:"<<ary[x].first<<" x s:"<<ary[x].second<<endl; x=parent(x); res=(res<ary[x])?ary[x]:res; } //cout<<"query: "<<x<<" xf:"<<ary[x].first<<" xs:"<<ary[x].second<<endl; return res.second; } void find(int x){ cout<<query(x)<<endl; } int main(){ int m,q,com,s,t,x,i=0; cin>>n>>q; while(n>pow(2,i))i++; n = pow(2,i); m = n*2-1; ary.resize(m*2); for(int i=0;i<m*2;i++)ary[i] = MAX; for(int i=0;i<q;i++){ cin>>com; if(!com){ //cout<<"in-"<<i<<endl; cin>>s>>t>>x; update(s,t+1,0,make_pair(i,x),0,n); } else{ cin>>x; find(x); //cout<<"in-"<<i<<endl; } } return 0; }
### Prompt Your challenge is to write a cpp solution to the following problem: Write a program which manipulates a sequence A = {a0, a1, . . . , an−1} with the following operations: * update(s, t, x): change as, as+1, ..., at to x. * find(i): output the value of ai. Note that the initial values of ai (i = 0, 1, . . . , n−1) are 231-1. Constraints * 1 ≤ n ≤ 100000 * 1 ≤ q ≤ 100000 * 0 ≤ s ≤ t < n * 0 ≤ i < n * 0 ≤ x < 231−1 Input n q query1 query2 : queryq In the first line, n (the number of elements in A) and q (the number of queries) are given. Then, ith query queryi is given in the following format: 0 s t x or 1 i The first digit represents the type of the query. '0' denotes update(s, t, x) and '1' denotes find(i). Output For each find operation, print the value. Examples Input 3 5 0 0 1 1 0 1 2 3 0 2 2 2 1 0 1 1 Output 1 3 Input 1 3 1 0 0 0 0 5 1 0 Output 2147483647 5 ### Response ```cpp #include <iostream> #include <sstream> #include <cstdio> #include <stdlib.h> #include <string> #include <vector> #include <algorithm> #include <climits> #include <cmath> using namespace std; #define MAX make_pair(-1,INT_MAX) vector<pair<int,int> > ary; int n; int right(int k){ return 2*k+2; } int left(int k){ return 2*k+1; } int parent(int k){ return (k-1)/2; } void update(int s,int t,int p,pair<int,int> x,int l,int r){ if(r<=s||t<=l)return; if(s<=l&&r<=t)ary[p]=x; else{ update(s,t,left(p),x,l,(l+r)/2); update(s,t,right(p),x,(l+r)/2,r); } } int query(int x){ x+=n-1; pair<int,int> res=ary[x]; //cout<<"x:"<<x<<endl; while(x>0){ //cout<<"query: "<<x<<" xf:"<<ary[x].first<<" x s:"<<ary[x].second<<endl; x=parent(x); res=(res<ary[x])?ary[x]:res; } //cout<<"query: "<<x<<" xf:"<<ary[x].first<<" xs:"<<ary[x].second<<endl; return res.second; } void find(int x){ cout<<query(x)<<endl; } int main(){ int m,q,com,s,t,x,i=0; cin>>n>>q; while(n>pow(2,i))i++; n = pow(2,i); m = n*2-1; ary.resize(m*2); for(int i=0;i<m*2;i++)ary[i] = MAX; for(int i=0;i<q;i++){ cin>>com; if(!com){ //cout<<"in-"<<i<<endl; cin>>s>>t>>x; update(s,t+1,0,make_pair(i,x),0,n); } else{ cin>>x; find(x); //cout<<"in-"<<i<<endl; } } return 0; } ```
#include<bits/stdc++.h> using namespace std; //BEGIN CUT HERE template <typename T,typename E> struct SegmentTree{ typedef function<T(T,E)> G; typedef function<T(E,E)> H; int n; G g; H h; T d1; E d0; vector<T> dat; vector<E> laz; SegmentTree(){}; SegmentTree(int n_,G g,H h,T d1,E d0, vector<T> v=vector<T>()): g(g),h(h),d1(d1),d0(d0){ init(n_); if(n_==(int)v.size()) build(n_,v); } void init(int n_){ n=1; while(n<n_) n*=2; dat.clear(); dat.resize(n,d1); laz.clear(); laz.resize(2*n-1,d0); } void build(int n_, vector<T> v){ for(int i=0;i<n_;i++) dat[i]=v[i]; } void eval(int k){ if(k*2+1<2*n-1){ laz[k*2+1]=h(laz[k*2+1],laz[k]); laz[k*2+2]=h(laz[k*2+2],laz[k]); laz[k]=d0; } } void update(int a,int b,E x,int k,int l,int r){ eval(k); if(r<=a||b<=l) return; if(a<=l&&r<=b){ laz[k]=h(laz[k],x); return; } update(a,b,x,k*2+1,l,(l+r)/2); update(a,b,x,k*2+2,(l+r)/2,r); } void update(int a,int b,E x){ update(a,b,x,0,0,n); } void eval2(int k){ if(k) eval2((k-1)/2); eval(k); } T query(int k){ T c=dat[k]; k+=n-1; eval2(k); return g(c,laz[k]); } }; //END CUT HERE signed main(){ int n,q; cin>>n>>q; SegmentTree<int,int> beet(n, [&](int a,int b){ return b<0?a:b;}, [&](int a,int b){ return b<0?a:b;}, INT_MAX,-1); for(int i=0;i<q;i++){ int c; cin>>c; if(c){ int x; cin>>x; cout<<beet.query(x)<<endl; }else{ int s,t,x; cin>>s>>t>>x; t++; beet.update(s,t,x); } } return 0; } /* verified on 2017/10/15 http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=DSL_2_D&lang=jp */
### Prompt Your task is to create a cpp solution to the following problem: Write a program which manipulates a sequence A = {a0, a1, . . . , an−1} with the following operations: * update(s, t, x): change as, as+1, ..., at to x. * find(i): output the value of ai. Note that the initial values of ai (i = 0, 1, . . . , n−1) are 231-1. Constraints * 1 ≤ n ≤ 100000 * 1 ≤ q ≤ 100000 * 0 ≤ s ≤ t < n * 0 ≤ i < n * 0 ≤ x < 231−1 Input n q query1 query2 : queryq In the first line, n (the number of elements in A) and q (the number of queries) are given. Then, ith query queryi is given in the following format: 0 s t x or 1 i The first digit represents the type of the query. '0' denotes update(s, t, x) and '1' denotes find(i). Output For each find operation, print the value. Examples Input 3 5 0 0 1 1 0 1 2 3 0 2 2 2 1 0 1 1 Output 1 3 Input 1 3 1 0 0 0 0 5 1 0 Output 2147483647 5 ### Response ```cpp #include<bits/stdc++.h> using namespace std; //BEGIN CUT HERE template <typename T,typename E> struct SegmentTree{ typedef function<T(T,E)> G; typedef function<T(E,E)> H; int n; G g; H h; T d1; E d0; vector<T> dat; vector<E> laz; SegmentTree(){}; SegmentTree(int n_,G g,H h,T d1,E d0, vector<T> v=vector<T>()): g(g),h(h),d1(d1),d0(d0){ init(n_); if(n_==(int)v.size()) build(n_,v); } void init(int n_){ n=1; while(n<n_) n*=2; dat.clear(); dat.resize(n,d1); laz.clear(); laz.resize(2*n-1,d0); } void build(int n_, vector<T> v){ for(int i=0;i<n_;i++) dat[i]=v[i]; } void eval(int k){ if(k*2+1<2*n-1){ laz[k*2+1]=h(laz[k*2+1],laz[k]); laz[k*2+2]=h(laz[k*2+2],laz[k]); laz[k]=d0; } } void update(int a,int b,E x,int k,int l,int r){ eval(k); if(r<=a||b<=l) return; if(a<=l&&r<=b){ laz[k]=h(laz[k],x); return; } update(a,b,x,k*2+1,l,(l+r)/2); update(a,b,x,k*2+2,(l+r)/2,r); } void update(int a,int b,E x){ update(a,b,x,0,0,n); } void eval2(int k){ if(k) eval2((k-1)/2); eval(k); } T query(int k){ T c=dat[k]; k+=n-1; eval2(k); return g(c,laz[k]); } }; //END CUT HERE signed main(){ int n,q; cin>>n>>q; SegmentTree<int,int> beet(n, [&](int a,int b){ return b<0?a:b;}, [&](int a,int b){ return b<0?a:b;}, INT_MAX,-1); for(int i=0;i<q;i++){ int c; cin>>c; if(c){ int x; cin>>x; cout<<beet.query(x)<<endl; }else{ int s,t,x; cin>>s>>t>>x; t++; beet.update(s,t,x); } } return 0; } /* verified on 2017/10/15 http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=DSL_2_D&lang=jp */ ```
#include <bits/stdc++.h> using namespace std; typedef long long ll; #define REP(i,n) FOR(i,0,n) #define FOR(i,a,b) for(ll i=a;i<b;i++) #define PB push_back typedef vector<ll> vi; typedef vector<vector<ll>> vvi; const ll INF = (1ll << 60); typedef pair<ll,ll> pii; struct RUQ{ ll size; ll *tree; vi history; RUQ(ll sz){ ll logsize; for(logsize=0;(1ll<<logsize)<=sz;logsize++); size=(1ll<<logsize); tree=new ll[size*2-1]; REP(i, size*2-1) tree[i]=0; } void update(ll s,ll t,ll x){ ll id=history.size(); updatesub(s,t,0,size,0,id); history.push_back(x); } void updatesub(ll s,ll t,ll l,ll r,ll k,ll id){ if(r<=s||t<=l||l>=r) return; if(l+1==r) {tree[k]=id; return;} if(s<=l&&r<=t) {tree[k]=id; return;} ll mid=(l+r+1)/2; updatesub(s,t,l,mid,k*2+1,id); updatesub(s,t,mid,r,k*2+2,id); } ll find(ll i){ ll k=size+i-1; ll recent=tree[k]; while(k>0){ k=(k-1)/2; recent=max(recent,tree[k]); } return history[recent]; } }; int main(){ ll n,q; cin>>n>>q; RUQ ruq(n); ruq.update(0,n,(1ll<<31)-1); REP(i,q){ ll com;cin>>com; if(com==0) {ll s,t,x; cin>>s>>t>>x; ruq.update(s,t+1,x);} else {ll i; cin>>i; cout<<ruq.find(i)<<endl;} } }
### Prompt Create a solution in Cpp for the following problem: Write a program which manipulates a sequence A = {a0, a1, . . . , an−1} with the following operations: * update(s, t, x): change as, as+1, ..., at to x. * find(i): output the value of ai. Note that the initial values of ai (i = 0, 1, . . . , n−1) are 231-1. Constraints * 1 ≤ n ≤ 100000 * 1 ≤ q ≤ 100000 * 0 ≤ s ≤ t < n * 0 ≤ i < n * 0 ≤ x < 231−1 Input n q query1 query2 : queryq In the first line, n (the number of elements in A) and q (the number of queries) are given. Then, ith query queryi is given in the following format: 0 s t x or 1 i The first digit represents the type of the query. '0' denotes update(s, t, x) and '1' denotes find(i). Output For each find operation, print the value. Examples Input 3 5 0 0 1 1 0 1 2 3 0 2 2 2 1 0 1 1 Output 1 3 Input 1 3 1 0 0 0 0 5 1 0 Output 2147483647 5 ### Response ```cpp #include <bits/stdc++.h> using namespace std; typedef long long ll; #define REP(i,n) FOR(i,0,n) #define FOR(i,a,b) for(ll i=a;i<b;i++) #define PB push_back typedef vector<ll> vi; typedef vector<vector<ll>> vvi; const ll INF = (1ll << 60); typedef pair<ll,ll> pii; struct RUQ{ ll size; ll *tree; vi history; RUQ(ll sz){ ll logsize; for(logsize=0;(1ll<<logsize)<=sz;logsize++); size=(1ll<<logsize); tree=new ll[size*2-1]; REP(i, size*2-1) tree[i]=0; } void update(ll s,ll t,ll x){ ll id=history.size(); updatesub(s,t,0,size,0,id); history.push_back(x); } void updatesub(ll s,ll t,ll l,ll r,ll k,ll id){ if(r<=s||t<=l||l>=r) return; if(l+1==r) {tree[k]=id; return;} if(s<=l&&r<=t) {tree[k]=id; return;} ll mid=(l+r+1)/2; updatesub(s,t,l,mid,k*2+1,id); updatesub(s,t,mid,r,k*2+2,id); } ll find(ll i){ ll k=size+i-1; ll recent=tree[k]; while(k>0){ k=(k-1)/2; recent=max(recent,tree[k]); } return history[recent]; } }; int main(){ ll n,q; cin>>n>>q; RUQ ruq(n); ruq.update(0,n,(1ll<<31)-1); REP(i,q){ ll com;cin>>com; if(com==0) {ll s,t,x; cin>>s>>t>>x; ruq.update(s,t+1,x);} else {ll i; cin>>i; cout<<ruq.find(i)<<endl;} } } ```
#include <iostream> using namespace std; const int DEPTH = 17; const int INTMAX = (1LL << 31) - 1; struct RUQ { int d[1 << (DEPTH + 1)]; int t[1 << (DEPTH + 1)]; RUQ() { int i; for (i = 0; i < (1 << (DEPTH + 1)); i++) { d[i] = INTMAX; t[i] = -1; } } //[l, r) void update(int l, int r, int x, int Time, int a = 0, int b = (1 << DEPTH), int id = 0) { if (a >= r || b <= l) return; if (l <= a && b <= r) { d[id] = x; t[id] = Time; return; } update(l, r, x, Time, a, (a + b) / 2, id * 2 + 1); update(l, r, x, Time, (a + b) / 2, b, id * 2 + 2); } int getValue(int pos) { pos += (1 << DEPTH) - 1; int retD = d[pos]; int retT = t[pos]; while (pos > 0) { pos = (pos - 1) / 2; if (retT < t[pos]) { retT = t[pos]; retD = d[pos]; } } return retD; } }; RUQ ruq; int main() { int n, q; cin >> n >> q; for (int i = 0; i < q; i++) { int type; cin >> type; if (type == 0) { int s, t, x; cin >> s >> t >> x; ruq.update(s, t + 1, x, i); } else { int pos; cin >> pos; cout << ruq.getValue(pos) << endl; } } return 0; }
### Prompt Please formulate a CPP solution to the following problem: Write a program which manipulates a sequence A = {a0, a1, . . . , an−1} with the following operations: * update(s, t, x): change as, as+1, ..., at to x. * find(i): output the value of ai. Note that the initial values of ai (i = 0, 1, . . . , n−1) are 231-1. Constraints * 1 ≤ n ≤ 100000 * 1 ≤ q ≤ 100000 * 0 ≤ s ≤ t < n * 0 ≤ i < n * 0 ≤ x < 231−1 Input n q query1 query2 : queryq In the first line, n (the number of elements in A) and q (the number of queries) are given. Then, ith query queryi is given in the following format: 0 s t x or 1 i The first digit represents the type of the query. '0' denotes update(s, t, x) and '1' denotes find(i). Output For each find operation, print the value. Examples Input 3 5 0 0 1 1 0 1 2 3 0 2 2 2 1 0 1 1 Output 1 3 Input 1 3 1 0 0 0 0 5 1 0 Output 2147483647 5 ### Response ```cpp #include <iostream> using namespace std; const int DEPTH = 17; const int INTMAX = (1LL << 31) - 1; struct RUQ { int d[1 << (DEPTH + 1)]; int t[1 << (DEPTH + 1)]; RUQ() { int i; for (i = 0; i < (1 << (DEPTH + 1)); i++) { d[i] = INTMAX; t[i] = -1; } } //[l, r) void update(int l, int r, int x, int Time, int a = 0, int b = (1 << DEPTH), int id = 0) { if (a >= r || b <= l) return; if (l <= a && b <= r) { d[id] = x; t[id] = Time; return; } update(l, r, x, Time, a, (a + b) / 2, id * 2 + 1); update(l, r, x, Time, (a + b) / 2, b, id * 2 + 2); } int getValue(int pos) { pos += (1 << DEPTH) - 1; int retD = d[pos]; int retT = t[pos]; while (pos > 0) { pos = (pos - 1) / 2; if (retT < t[pos]) { retT = t[pos]; retD = d[pos]; } } return retD; } }; RUQ ruq; int main() { int n, q; cin >> n >> q; for (int i = 0; i < q; i++) { int type; cin >> type; if (type == 0) { int s, t, x; cin >> s >> t >> x; ruq.update(s, t + 1, x, i); } else { int pos; cin >> pos; cout << ruq.getValue(pos) << endl; } } return 0; } ```
#include<iostream> #include<vector> #include<algorithm> using namespace std; #define INF 2147483647 vector<pair<int,int> > a(300000,pair<int,int>(INF,0)); int n,si; int find(int); void update(int,int,int,int,int,int,int); int main(){ int q,f; si = 1; cin >> n >> q; for(int i = 0;;i++){ si*=2; if(si >= n)break; } for(int i = 0;i<q;i++){ cin >> f; if(f == 1){ int po,dat; cin >> po; dat = find(po); cout << dat << endl; } else{ int st,go,d; cin >> st >> go>>d; update(st,go+1,0,0,si,d,i+1); } } return 0; } int find(int p){ int ca = si-1+p; pair<int,int> ma = a[ca]; while(ca>0){ ca=(ca-1)/2; if(ma.second<a[ca].second){ ma=a[ca]; } } return ma.first; } void update (int s,int t,int k,int l,int r,int d,int ti){ int m=(l+r)/2; if(s<=l&&r<=t){ a[k].first=d; a[k].second=ti; return; } else if(r<=s||t<=l)return; else{ update(s,t,k*2+1,l,m,d,ti); update(s,t,k*2+2,m,r,d,ti); } }
### Prompt Your task is to create a cpp solution to the following problem: Write a program which manipulates a sequence A = {a0, a1, . . . , an−1} with the following operations: * update(s, t, x): change as, as+1, ..., at to x. * find(i): output the value of ai. Note that the initial values of ai (i = 0, 1, . . . , n−1) are 231-1. Constraints * 1 ≤ n ≤ 100000 * 1 ≤ q ≤ 100000 * 0 ≤ s ≤ t < n * 0 ≤ i < n * 0 ≤ x < 231−1 Input n q query1 query2 : queryq In the first line, n (the number of elements in A) and q (the number of queries) are given. Then, ith query queryi is given in the following format: 0 s t x or 1 i The first digit represents the type of the query. '0' denotes update(s, t, x) and '1' denotes find(i). Output For each find operation, print the value. Examples Input 3 5 0 0 1 1 0 1 2 3 0 2 2 2 1 0 1 1 Output 1 3 Input 1 3 1 0 0 0 0 5 1 0 Output 2147483647 5 ### Response ```cpp #include<iostream> #include<vector> #include<algorithm> using namespace std; #define INF 2147483647 vector<pair<int,int> > a(300000,pair<int,int>(INF,0)); int n,si; int find(int); void update(int,int,int,int,int,int,int); int main(){ int q,f; si = 1; cin >> n >> q; for(int i = 0;;i++){ si*=2; if(si >= n)break; } for(int i = 0;i<q;i++){ cin >> f; if(f == 1){ int po,dat; cin >> po; dat = find(po); cout << dat << endl; } else{ int st,go,d; cin >> st >> go>>d; update(st,go+1,0,0,si,d,i+1); } } return 0; } int find(int p){ int ca = si-1+p; pair<int,int> ma = a[ca]; while(ca>0){ ca=(ca-1)/2; if(ma.second<a[ca].second){ ma=a[ca]; } } return ma.first; } void update (int s,int t,int k,int l,int r,int d,int ti){ int m=(l+r)/2; if(s<=l&&r<=t){ a[k].first=d; a[k].second=ti; return; } else if(r<=s||t<=l)return; else{ update(s,t,k*2+1,l,m,d,ti); update(s,t,k*2+2,m,r,d,ti); } } ```
#include<bits/stdc++.h> using namespace std; // Segment tree. Assignment on interval, single element access. template<typename T> class SegTree{ size_t n; int h; vector<T> data; vector<bool> used; static T combine(T L, T R){ return max(L, R); } void apply(size_t i, T v){ data[i] = v; used[i] = true; } void push(size_t p){ // propagates the changes from the root to node p. for (int s = h; s > 0; --s){ size_t i = p >> s; if (used[i]){ apply(i*2, data[i]); apply(i*2+1, data[i]); used[i] = false; } } } int calc_h(size_t nn){ int hh = 1; for (; nn > 1; ++hh, nn >>= 1); return hh; } public: SegTree(size_t _n): n(_n), h(calc_h(n)), data(vector<T>(2 * n, numeric_limits<int>::max())), used(vector<bool>(2 * n, false)){used[1] = true;} SegTree(const vector<T> &src): n(src.size()), h(calc_h(n)), data(vector<T>(2 * n, 0)), used(vector<bool>(2 * n, false)){init(src);} void init(const vector<T> &src) {for (size_t i = 0; i != n; ++i) apply(n + i, src[i]);} void modify(size_t L, size_t R, T v){ // assign v to range [L, R) L += n; R += n; push(L); push(R - 1); for (; L < R; L >>= 1, R >>= 1){ if (L & 1) apply(L++, v); if (R & 1) apply(--R, v); } } T query(size_t i){ push(i + n); return data[i + n]; } }; int main(){ cin.tie(0); ios::sync_with_stdio(false); int n, q; cin >> n >> q; SegTree<int> seg(n); while (q--){ int c; cin >> c; if (c == 0){ int s, t, x; cin >> s >> t >> x; seg.modify(s, t + 1, x); } else{ int i; cin >> i; cout << seg.query(i) << '\n'; } } return 0; }
### Prompt Your task is to create a CPP solution to the following problem: Write a program which manipulates a sequence A = {a0, a1, . . . , an−1} with the following operations: * update(s, t, x): change as, as+1, ..., at to x. * find(i): output the value of ai. Note that the initial values of ai (i = 0, 1, . . . , n−1) are 231-1. Constraints * 1 ≤ n ≤ 100000 * 1 ≤ q ≤ 100000 * 0 ≤ s ≤ t < n * 0 ≤ i < n * 0 ≤ x < 231−1 Input n q query1 query2 : queryq In the first line, n (the number of elements in A) and q (the number of queries) are given. Then, ith query queryi is given in the following format: 0 s t x or 1 i The first digit represents the type of the query. '0' denotes update(s, t, x) and '1' denotes find(i). Output For each find operation, print the value. Examples Input 3 5 0 0 1 1 0 1 2 3 0 2 2 2 1 0 1 1 Output 1 3 Input 1 3 1 0 0 0 0 5 1 0 Output 2147483647 5 ### Response ```cpp #include<bits/stdc++.h> using namespace std; // Segment tree. Assignment on interval, single element access. template<typename T> class SegTree{ size_t n; int h; vector<T> data; vector<bool> used; static T combine(T L, T R){ return max(L, R); } void apply(size_t i, T v){ data[i] = v; used[i] = true; } void push(size_t p){ // propagates the changes from the root to node p. for (int s = h; s > 0; --s){ size_t i = p >> s; if (used[i]){ apply(i*2, data[i]); apply(i*2+1, data[i]); used[i] = false; } } } int calc_h(size_t nn){ int hh = 1; for (; nn > 1; ++hh, nn >>= 1); return hh; } public: SegTree(size_t _n): n(_n), h(calc_h(n)), data(vector<T>(2 * n, numeric_limits<int>::max())), used(vector<bool>(2 * n, false)){used[1] = true;} SegTree(const vector<T> &src): n(src.size()), h(calc_h(n)), data(vector<T>(2 * n, 0)), used(vector<bool>(2 * n, false)){init(src);} void init(const vector<T> &src) {for (size_t i = 0; i != n; ++i) apply(n + i, src[i]);} void modify(size_t L, size_t R, T v){ // assign v to range [L, R) L += n; R += n; push(L); push(R - 1); for (; L < R; L >>= 1, R >>= 1){ if (L & 1) apply(L++, v); if (R & 1) apply(--R, v); } } T query(size_t i){ push(i + n); return data[i + n]; } }; int main(){ cin.tie(0); ios::sync_with_stdio(false); int n, q; cin >> n >> q; SegTree<int> seg(n); while (q--){ int c; cin >> c; if (c == 0){ int s, t, x; cin >> s >> t >> x; seg.modify(s, t + 1, x); } else{ int i; cin >> i; cout << seg.query(i) << '\n'; } } return 0; } ```
#include <iostream> #include <vector> class SegmentTree { std::vector<std::vector<int>> _array; std::vector<int> _size; static constexpr int undefined = -1; void make_upper_undefined(int pos, int depth = 1) { if (depth == _array.size()) return; make_upper_undefined(pos / 2, depth + 1); switch (_array[depth][pos]) { case undefined: return; default: _array[depth - 1][pos * 2] = _array[depth][pos]; if (pos * 2 + 1 < _array[depth - 1].size()) _array[depth - 1][pos * 2 + 1] = _array[depth][pos]; _array[depth][pos] = undefined; } } public: SegmentTree(int size) :_array{}, _size{} { for (auto i = size; i > 1; i = (i + 1) / 2) { _size.push_back(i); } _size.push_back(1); _array = std::vector<std::vector<int>>(_size.size()); for (auto i = 0; i < _array.size(); ++i) { _array[i] = std::vector<int>(_size[i], undefined); } _array[_array.size() - 1][0] = 2147483647; } void update(int from, int to, int new_value) { auto depth = 0; while (from < to) { if (from % 2 == 1) { make_upper_undefined(from / 2, depth + 1); _array[depth][from] = new_value; ++from; } if (to % 2 == 0) { make_upper_undefined(to / 2, depth + 1); _array[depth][to] = new_value; --to; } from >>= 1; to >>= 1; ++depth; } if (from == to) { make_upper_undefined(from / 2, depth + 1); _array[depth][from] = new_value; } } int find(int pos) const { for (auto i = _array.size() - 1; i >= 0; --i) { switch (_array[i][pos >> i]) { case undefined: continue; default: return _array[i][pos >> i]; } } } }; int main() { int n, q; std::cin >> n >> q; auto stree = SegmentTree(n); int query, s, t, x, i; for (auto count = 0; count < q; ++count) { std::cin >> query; switch (query) { case 0: std::cin >> s >> t >> x; stree.update(s, t, x); break; default: std::cin >> i; std::cout << stree.find(i) << std::endl; } } }
### Prompt Please provide a Cpp coded solution to the problem described below: Write a program which manipulates a sequence A = {a0, a1, . . . , an−1} with the following operations: * update(s, t, x): change as, as+1, ..., at to x. * find(i): output the value of ai. Note that the initial values of ai (i = 0, 1, . . . , n−1) are 231-1. Constraints * 1 ≤ n ≤ 100000 * 1 ≤ q ≤ 100000 * 0 ≤ s ≤ t < n * 0 ≤ i < n * 0 ≤ x < 231−1 Input n q query1 query2 : queryq In the first line, n (the number of elements in A) and q (the number of queries) are given. Then, ith query queryi is given in the following format: 0 s t x or 1 i The first digit represents the type of the query. '0' denotes update(s, t, x) and '1' denotes find(i). Output For each find operation, print the value. Examples Input 3 5 0 0 1 1 0 1 2 3 0 2 2 2 1 0 1 1 Output 1 3 Input 1 3 1 0 0 0 0 5 1 0 Output 2147483647 5 ### Response ```cpp #include <iostream> #include <vector> class SegmentTree { std::vector<std::vector<int>> _array; std::vector<int> _size; static constexpr int undefined = -1; void make_upper_undefined(int pos, int depth = 1) { if (depth == _array.size()) return; make_upper_undefined(pos / 2, depth + 1); switch (_array[depth][pos]) { case undefined: return; default: _array[depth - 1][pos * 2] = _array[depth][pos]; if (pos * 2 + 1 < _array[depth - 1].size()) _array[depth - 1][pos * 2 + 1] = _array[depth][pos]; _array[depth][pos] = undefined; } } public: SegmentTree(int size) :_array{}, _size{} { for (auto i = size; i > 1; i = (i + 1) / 2) { _size.push_back(i); } _size.push_back(1); _array = std::vector<std::vector<int>>(_size.size()); for (auto i = 0; i < _array.size(); ++i) { _array[i] = std::vector<int>(_size[i], undefined); } _array[_array.size() - 1][0] = 2147483647; } void update(int from, int to, int new_value) { auto depth = 0; while (from < to) { if (from % 2 == 1) { make_upper_undefined(from / 2, depth + 1); _array[depth][from] = new_value; ++from; } if (to % 2 == 0) { make_upper_undefined(to / 2, depth + 1); _array[depth][to] = new_value; --to; } from >>= 1; to >>= 1; ++depth; } if (from == to) { make_upper_undefined(from / 2, depth + 1); _array[depth][from] = new_value; } } int find(int pos) const { for (auto i = _array.size() - 1; i >= 0; --i) { switch (_array[i][pos >> i]) { case undefined: continue; default: return _array[i][pos >> i]; } } } }; int main() { int n, q; std::cin >> n >> q; auto stree = SegmentTree(n); int query, s, t, x, i; for (auto count = 0; count < q; ++count) { std::cin >> query; switch (query) { case 0: std::cin >> s >> t >> x; stree.update(s, t, x); break; default: std::cin >> i; std::cout << stree.find(i) << std::endl; } } } ```
#include <bits/stdc++.h> using namespace std; template <typename T> struct segtree_lazy { int n; vector<T> tree, lazy; T def = numeric_limits<T>::max(), none = -1; segtree_lazy(int n_) { for (n = 1; n < n_; n *= 2) { } tree.assign(2 * n, def); lazy.assign(2 * n, none); } T merge(T a, T b) { return max(a, b); } void set_lazy(int index, T x) { tree[index] = x; lazy[index] = x; } void push(int index) { if (lazy[index] == none) { return; } set_lazy(2 * index, tree[index]); set_lazy(2 * index + 1, tree[index]); lazy[index] = none; } void fix(int index) { tree[index] = merge(tree[2 * index], tree[2 * index + 1]); } void update(int a, int b, int index, int l, int r, T x) { if (r <= a || b <= l) { return; } if (a <= l && r <= b) { set_lazy(index, x); return; } push(index); update(a, b, 2 * index, l, (l + r) / 2, x); update(a, b, 2 * index + 1, (l + r) / 2, r, x); fix(index); } void update(int l, int r, T x) { update(l, r, 1, 0, n, x); } T query(int a, int b, int index, int l, int r) { if (r <= a || b <= l) { return none; } if (a <= l && r <= b) { return tree[index]; } push(index); T puni = query(a, b, 2 * index, l, (l + r) / 2); T muni = query(a, b, 2 * index + 1, (l + r) / 2, r); return merge(puni, muni); } T query(int l, int r) { return query(l, r, 1, 0, n); } }; int main() { int n, q; cin >> n >> q; segtree_lazy<int> seg(n); for (int i = 0; i < q; i++) { bool b; cin >> b; if (b) { int x; cin >> x; cout << seg.query(x, x + 1) << endl; } else { int s, t, x; cin >> s >> t >> x; seg.update(s, t + 1, x); } } return 0; }
### Prompt Your task is to create a CPP solution to the following problem: Write a program which manipulates a sequence A = {a0, a1, . . . , an−1} with the following operations: * update(s, t, x): change as, as+1, ..., at to x. * find(i): output the value of ai. Note that the initial values of ai (i = 0, 1, . . . , n−1) are 231-1. Constraints * 1 ≤ n ≤ 100000 * 1 ≤ q ≤ 100000 * 0 ≤ s ≤ t < n * 0 ≤ i < n * 0 ≤ x < 231−1 Input n q query1 query2 : queryq In the first line, n (the number of elements in A) and q (the number of queries) are given. Then, ith query queryi is given in the following format: 0 s t x or 1 i The first digit represents the type of the query. '0' denotes update(s, t, x) and '1' denotes find(i). Output For each find operation, print the value. Examples Input 3 5 0 0 1 1 0 1 2 3 0 2 2 2 1 0 1 1 Output 1 3 Input 1 3 1 0 0 0 0 5 1 0 Output 2147483647 5 ### Response ```cpp #include <bits/stdc++.h> using namespace std; template <typename T> struct segtree_lazy { int n; vector<T> tree, lazy; T def = numeric_limits<T>::max(), none = -1; segtree_lazy(int n_) { for (n = 1; n < n_; n *= 2) { } tree.assign(2 * n, def); lazy.assign(2 * n, none); } T merge(T a, T b) { return max(a, b); } void set_lazy(int index, T x) { tree[index] = x; lazy[index] = x; } void push(int index) { if (lazy[index] == none) { return; } set_lazy(2 * index, tree[index]); set_lazy(2 * index + 1, tree[index]); lazy[index] = none; } void fix(int index) { tree[index] = merge(tree[2 * index], tree[2 * index + 1]); } void update(int a, int b, int index, int l, int r, T x) { if (r <= a || b <= l) { return; } if (a <= l && r <= b) { set_lazy(index, x); return; } push(index); update(a, b, 2 * index, l, (l + r) / 2, x); update(a, b, 2 * index + 1, (l + r) / 2, r, x); fix(index); } void update(int l, int r, T x) { update(l, r, 1, 0, n, x); } T query(int a, int b, int index, int l, int r) { if (r <= a || b <= l) { return none; } if (a <= l && r <= b) { return tree[index]; } push(index); T puni = query(a, b, 2 * index, l, (l + r) / 2); T muni = query(a, b, 2 * index + 1, (l + r) / 2, r); return merge(puni, muni); } T query(int l, int r) { return query(l, r, 1, 0, n); } }; int main() { int n, q; cin >> n >> q; segtree_lazy<int> seg(n); for (int i = 0; i < q; i++) { bool b; cin >> b; if (b) { int x; cin >> x; cout << seg.query(x, x + 1) << endl; } else { int s, t, x; cin >> s >> t >> x; seg.update(s, t + 1, x); } } return 0; } ```
#include <bits/stdc++.h> using namespace std; template <typename T> struct range_update_point_value{ int N; vector<pair<T, int>> ST; int t; range_update_point_value(int n){ N = 1; while (N < n){ N *= 2; } ST = vector<pair<T, int>>(N * 2 - 1, make_pair(0, 0)); t = 1; } range_update_point_value(int n, T x){ N = 1; while (N < n){ N *= 2; } ST = vector<pair<T, int>>(N * 2 - 1, make_pair(0, 0)); for (int i = 0; i < n; i++){ ST[N - 1 + i] = make_pair(x, 1); } t = 2; } range_update_point_value(vector<T> A){ int n = A.size(); N = 1; while (N < n){ N *= 2; } ST = vector<pair<T, int>>(N * 2 - 1, make_pair(0, 0)); for (int i = 0; i < n; i++){ ST[N - 1 + i] = make_pair(A[i], 1); } t = 2; } T operator [](int k){ k += N - 1; T ans = ST[k].first; T time = ST[k].second; while (k > 0){ k = (k - 1) / 2; if (ST[k].second > time){ ans = ST[k].first; time = ST[k].second; } } return ans; } void update(int L, int R, T x, int i, int l, int r){ if (R <= l || r <= L){ return; } else if (L <= l && r <= R){ ST[i] = make_pair(x, t); } else { int m = (l + r) / 2; update(L, R, x, i * 2 + 1, l, m); update(L, R, x, i * 2 + 2, m, r); } } void range_update(int L, int R, T x){ update(L, R, x, 0, 0, N); t++; } }; int main(){ int n, q; cin >> n >> q; range_update_point_value<int> a(n, 2147483647); for (int c = 0; c < q; c++){ int T; cin >> T; if (T == 0){ int s, t, x; cin >> s >> t >> x; a.range_update(s, t + 1, x); } if (T == 1){ int i; cin >> i; cout << a[i] << endl; } } }
### Prompt Please create a solution in CPP to the following problem: Write a program which manipulates a sequence A = {a0, a1, . . . , an−1} with the following operations: * update(s, t, x): change as, as+1, ..., at to x. * find(i): output the value of ai. Note that the initial values of ai (i = 0, 1, . . . , n−1) are 231-1. Constraints * 1 ≤ n ≤ 100000 * 1 ≤ q ≤ 100000 * 0 ≤ s ≤ t < n * 0 ≤ i < n * 0 ≤ x < 231−1 Input n q query1 query2 : queryq In the first line, n (the number of elements in A) and q (the number of queries) are given. Then, ith query queryi is given in the following format: 0 s t x or 1 i The first digit represents the type of the query. '0' denotes update(s, t, x) and '1' denotes find(i). Output For each find operation, print the value. Examples Input 3 5 0 0 1 1 0 1 2 3 0 2 2 2 1 0 1 1 Output 1 3 Input 1 3 1 0 0 0 0 5 1 0 Output 2147483647 5 ### Response ```cpp #include <bits/stdc++.h> using namespace std; template <typename T> struct range_update_point_value{ int N; vector<pair<T, int>> ST; int t; range_update_point_value(int n){ N = 1; while (N < n){ N *= 2; } ST = vector<pair<T, int>>(N * 2 - 1, make_pair(0, 0)); t = 1; } range_update_point_value(int n, T x){ N = 1; while (N < n){ N *= 2; } ST = vector<pair<T, int>>(N * 2 - 1, make_pair(0, 0)); for (int i = 0; i < n; i++){ ST[N - 1 + i] = make_pair(x, 1); } t = 2; } range_update_point_value(vector<T> A){ int n = A.size(); N = 1; while (N < n){ N *= 2; } ST = vector<pair<T, int>>(N * 2 - 1, make_pair(0, 0)); for (int i = 0; i < n; i++){ ST[N - 1 + i] = make_pair(A[i], 1); } t = 2; } T operator [](int k){ k += N - 1; T ans = ST[k].first; T time = ST[k].second; while (k > 0){ k = (k - 1) / 2; if (ST[k].second > time){ ans = ST[k].first; time = ST[k].second; } } return ans; } void update(int L, int R, T x, int i, int l, int r){ if (R <= l || r <= L){ return; } else if (L <= l && r <= R){ ST[i] = make_pair(x, t); } else { int m = (l + r) / 2; update(L, R, x, i * 2 + 1, l, m); update(L, R, x, i * 2 + 2, m, r); } } void range_update(int L, int R, T x){ update(L, R, x, 0, 0, N); t++; } }; int main(){ int n, q; cin >> n >> q; range_update_point_value<int> a(n, 2147483647); for (int c = 0; c < q; c++){ int T; cin >> T; if (T == 0){ int s, t, x; cin >> s >> t >> x; a.range_update(s, t + 1, x); } if (T == 1){ int i; cin >> i; cout << a[i] << endl; } } } ```
#include<bits/stdc++.h> #define rep(i,n)for(int i=0;i<(n);i++) using namespace std; typedef pair<int, int>P; int dat[400000], lazy[400000], N; inline void push(int k) { if (lazy[k] == -1)return; dat[k] = lazy[k]; if (k < N - 1) { lazy[2 * k + 1] = lazy[k]; lazy[2 * k + 2] = lazy[k]; } lazy[k] = -1; } inline void update_node(int k) { dat[k] = min(dat[2 * k + 1], dat[2 * k + 2]); } inline void update(int a, int b, int x, int k, int l, int r) { push(k); if (r <= a || b <= l)return; if (a <= l&&r <= b) { lazy[k] = x; push(k); return; } update(a, b, x, k * 2 + 1, l, (l + r) / 2); update(a, b, x, k * 2 + 2, (l + r) / 2, r); update_node(k); } inline int query(int a, int b, int k, int l, int r) { push(k); if (r <= a || b <= l)return INT_MAX; if (a <= l&&r <= b)return dat[k]; int lb = query(a, b, k * 2 + 1, l, (l + r) / 2); int rb = query(a, b, k * 2 + 2, (l + r) / 2, r); update_node(k); return min(lb, rb); } int main() { int n, q; scanf("%d%d", &n, &q); N = 1; while (N < n)N <<= 1; rep(i, 2 * N - 1)dat[i] = INT_MAX, lazy[i] = -1; rep(i, q) { int t; scanf("%d", &t); if (t == 0) { int a, b, x; scanf("%d%d%d", &a, &b, &x); update(a, b + 1, x, 0, 0, N); } else { int a; scanf("%d", &a); printf("%d\n", query(a, a + 1, 0, 0, N)); } } }
### Prompt Construct a CPP code solution to the problem outlined: Write a program which manipulates a sequence A = {a0, a1, . . . , an−1} with the following operations: * update(s, t, x): change as, as+1, ..., at to x. * find(i): output the value of ai. Note that the initial values of ai (i = 0, 1, . . . , n−1) are 231-1. Constraints * 1 ≤ n ≤ 100000 * 1 ≤ q ≤ 100000 * 0 ≤ s ≤ t < n * 0 ≤ i < n * 0 ≤ x < 231−1 Input n q query1 query2 : queryq In the first line, n (the number of elements in A) and q (the number of queries) are given. Then, ith query queryi is given in the following format: 0 s t x or 1 i The first digit represents the type of the query. '0' denotes update(s, t, x) and '1' denotes find(i). Output For each find operation, print the value. Examples Input 3 5 0 0 1 1 0 1 2 3 0 2 2 2 1 0 1 1 Output 1 3 Input 1 3 1 0 0 0 0 5 1 0 Output 2147483647 5 ### Response ```cpp #include<bits/stdc++.h> #define rep(i,n)for(int i=0;i<(n);i++) using namespace std; typedef pair<int, int>P; int dat[400000], lazy[400000], N; inline void push(int k) { if (lazy[k] == -1)return; dat[k] = lazy[k]; if (k < N - 1) { lazy[2 * k + 1] = lazy[k]; lazy[2 * k + 2] = lazy[k]; } lazy[k] = -1; } inline void update_node(int k) { dat[k] = min(dat[2 * k + 1], dat[2 * k + 2]); } inline void update(int a, int b, int x, int k, int l, int r) { push(k); if (r <= a || b <= l)return; if (a <= l&&r <= b) { lazy[k] = x; push(k); return; } update(a, b, x, k * 2 + 1, l, (l + r) / 2); update(a, b, x, k * 2 + 2, (l + r) / 2, r); update_node(k); } inline int query(int a, int b, int k, int l, int r) { push(k); if (r <= a || b <= l)return INT_MAX; if (a <= l&&r <= b)return dat[k]; int lb = query(a, b, k * 2 + 1, l, (l + r) / 2); int rb = query(a, b, k * 2 + 2, (l + r) / 2, r); update_node(k); return min(lb, rb); } int main() { int n, q; scanf("%d%d", &n, &q); N = 1; while (N < n)N <<= 1; rep(i, 2 * N - 1)dat[i] = INT_MAX, lazy[i] = -1; rep(i, q) { int t; scanf("%d", &t); if (t == 0) { int a, b, x; scanf("%d%d%d", &a, &b, &x); update(a, b + 1, x, 0, 0, N); } else { int a; scanf("%d", &a); printf("%d\n", query(a, a + 1, 0, 0, N)); } } } ```
#include <cstdio> #include <utility> #include <algorithm> using namespace std; using uint=unsigned int; using update_t=pair<int,uint>;//time value const int MAXN=1e5+10; struct Node{ int lbound,rbound; update_t update; Node *left,*right; }; int A[MAXN]; Node segtree[MAXN*2]; Node* next_pos=segtree; int n,q; Node* build(int left,int right){ auto* cur=next_pos; next_pos++; cur->lbound=left; cur->rbound=right; cur->update=update_t(0,(1u<<31)-1); int mid=(left+right)/2; if (right-left==1) return cur; cur->left=build(left,mid); cur->right=build(mid,right); return cur; } void update(Node& self,int l,int r,update_t u){ // puts("s"); int mid=(self.lbound+self.rbound)/2; if (l==self.lbound&&r==self.rbound){ self.update=u; }else if (l>=mid){ update(*self.right,l,r,u); }else if (r<=mid){ update(*self.left,l,r,u); }else{ update(*self.left,l,mid,u); update(*self.right,mid,r,u); } } update_t query(Node& self,int i){ // puts("q"); if (self.rbound-self.lbound==1&&self.lbound==i) return self.update; int mid=(self.lbound+self.rbound)/2; if (i>=mid) return max(query(*self.right,i),self.update); else return max(query(*self.left,i),self.update); } int main(){ scanf("%d%d",&n,&q); build(0,n); // puts("yes"); for(int time=1;time<=q;time++){ int t; scanf("%d",&t); if (t==0) { int s,t,x; scanf("%d%d%d",&s,&t,&x); update(segtree[0],s,t+1,update_t(time,x)); // puts("updated"); }else{ int i; // puts("ok"); scanf("%d",&i); auto v=query(segtree[0],i).second; printf("%u\n",v); } } return 0; }
### Prompt Construct a cpp code solution to the problem outlined: Write a program which manipulates a sequence A = {a0, a1, . . . , an−1} with the following operations: * update(s, t, x): change as, as+1, ..., at to x. * find(i): output the value of ai. Note that the initial values of ai (i = 0, 1, . . . , n−1) are 231-1. Constraints * 1 ≤ n ≤ 100000 * 1 ≤ q ≤ 100000 * 0 ≤ s ≤ t < n * 0 ≤ i < n * 0 ≤ x < 231−1 Input n q query1 query2 : queryq In the first line, n (the number of elements in A) and q (the number of queries) are given. Then, ith query queryi is given in the following format: 0 s t x or 1 i The first digit represents the type of the query. '0' denotes update(s, t, x) and '1' denotes find(i). Output For each find operation, print the value. Examples Input 3 5 0 0 1 1 0 1 2 3 0 2 2 2 1 0 1 1 Output 1 3 Input 1 3 1 0 0 0 0 5 1 0 Output 2147483647 5 ### Response ```cpp #include <cstdio> #include <utility> #include <algorithm> using namespace std; using uint=unsigned int; using update_t=pair<int,uint>;//time value const int MAXN=1e5+10; struct Node{ int lbound,rbound; update_t update; Node *left,*right; }; int A[MAXN]; Node segtree[MAXN*2]; Node* next_pos=segtree; int n,q; Node* build(int left,int right){ auto* cur=next_pos; next_pos++; cur->lbound=left; cur->rbound=right; cur->update=update_t(0,(1u<<31)-1); int mid=(left+right)/2; if (right-left==1) return cur; cur->left=build(left,mid); cur->right=build(mid,right); return cur; } void update(Node& self,int l,int r,update_t u){ // puts("s"); int mid=(self.lbound+self.rbound)/2; if (l==self.lbound&&r==self.rbound){ self.update=u; }else if (l>=mid){ update(*self.right,l,r,u); }else if (r<=mid){ update(*self.left,l,r,u); }else{ update(*self.left,l,mid,u); update(*self.right,mid,r,u); } } update_t query(Node& self,int i){ // puts("q"); if (self.rbound-self.lbound==1&&self.lbound==i) return self.update; int mid=(self.lbound+self.rbound)/2; if (i>=mid) return max(query(*self.right,i),self.update); else return max(query(*self.left,i),self.update); } int main(){ scanf("%d%d",&n,&q); build(0,n); // puts("yes"); for(int time=1;time<=q;time++){ int t; scanf("%d",&t); if (t==0) { int s,t,x; scanf("%d%d%d",&s,&t,&x); update(segtree[0],s,t+1,update_t(time,x)); // puts("updated"); }else{ int i; // puts("ok"); scanf("%d",&i); auto v=query(segtree[0],i).second; printf("%u\n",v); } } return 0; } ```
#include<bits/stdc++.h> #define ll long long #define pii pair<int,int> #define pll pair<ll,ll> #define vii vector<int> #define vll vector<ll> #define lb lower_bound #define pb push_back #define mp make_pair #define rep(i,n) for(ll i=0;i<n;i++) #define rep2(i,a,b) for(ll i=a;i<b;i++) #define repr(i,n) for(ll i=n-1;i>=0;i--) #define all(x) x.begin(),x.end() #define INF (1 << 30) - 1 #define LLINF (1LL << 61) - 1 // #define int ll using namespace std; const int MOD = 1000000007; const int MAX = 510000; static const int MAX_N = 1<<17; pii dat[2 * MAX_N -1]; int n; struct SegmentTree{ SegmentTree(int n_){ n=1; while(n<n_) n*= 2; for(int i=0;i<2*n-1;i++){ dat[i].first = -1; dat[i].second=(1LL<<31)-1; } } int query(int k){ k += n-1; pii value=dat[k]; while(k>0){ k=(k-1)/2; value=max(value,dat[k]); } return value.second; } void update(int a,int b,int k,pii P,int l,int r){ if(r<=a || b<=l) return; if(a<=l && r<=b){ dat[k]=P; } else{ update(a,b,k*2+1,P,l,(l+r)/2); update(a,b,k*2+2,P,(l+r)/2,r); } } }; int main(){ cin.tie(0); ios::sync_with_stdio(false); int _n,q; cin>>_n>>q; SegmentTree sg(_n); rep(i,q){ int c; cin>>c; if(!c){ int s,t,x; cin>>s>>t>>x; sg.update(s,t+1,0,pii(i,x),0,n); } else{ int x; cin>>x; cout<<sg.query(x)<<endl; } } return 0; }
### Prompt Your task is to create a CPP solution to the following problem: Write a program which manipulates a sequence A = {a0, a1, . . . , an−1} with the following operations: * update(s, t, x): change as, as+1, ..., at to x. * find(i): output the value of ai. Note that the initial values of ai (i = 0, 1, . . . , n−1) are 231-1. Constraints * 1 ≤ n ≤ 100000 * 1 ≤ q ≤ 100000 * 0 ≤ s ≤ t < n * 0 ≤ i < n * 0 ≤ x < 231−1 Input n q query1 query2 : queryq In the first line, n (the number of elements in A) and q (the number of queries) are given. Then, ith query queryi is given in the following format: 0 s t x or 1 i The first digit represents the type of the query. '0' denotes update(s, t, x) and '1' denotes find(i). Output For each find operation, print the value. Examples Input 3 5 0 0 1 1 0 1 2 3 0 2 2 2 1 0 1 1 Output 1 3 Input 1 3 1 0 0 0 0 5 1 0 Output 2147483647 5 ### Response ```cpp #include<bits/stdc++.h> #define ll long long #define pii pair<int,int> #define pll pair<ll,ll> #define vii vector<int> #define vll vector<ll> #define lb lower_bound #define pb push_back #define mp make_pair #define rep(i,n) for(ll i=0;i<n;i++) #define rep2(i,a,b) for(ll i=a;i<b;i++) #define repr(i,n) for(ll i=n-1;i>=0;i--) #define all(x) x.begin(),x.end() #define INF (1 << 30) - 1 #define LLINF (1LL << 61) - 1 // #define int ll using namespace std; const int MOD = 1000000007; const int MAX = 510000; static const int MAX_N = 1<<17; pii dat[2 * MAX_N -1]; int n; struct SegmentTree{ SegmentTree(int n_){ n=1; while(n<n_) n*= 2; for(int i=0;i<2*n-1;i++){ dat[i].first = -1; dat[i].second=(1LL<<31)-1; } } int query(int k){ k += n-1; pii value=dat[k]; while(k>0){ k=(k-1)/2; value=max(value,dat[k]); } return value.second; } void update(int a,int b,int k,pii P,int l,int r){ if(r<=a || b<=l) return; if(a<=l && r<=b){ dat[k]=P; } else{ update(a,b,k*2+1,P,l,(l+r)/2); update(a,b,k*2+2,P,(l+r)/2,r); } } }; int main(){ cin.tie(0); ios::sync_with_stdio(false); int _n,q; cin>>_n>>q; SegmentTree sg(_n); rep(i,q){ int c; cin>>c; if(!c){ int s,t,x; cin>>s>>t>>x; sg.update(s,t+1,0,pii(i,x),0,n); } else{ int x; cin>>x; cout<<sg.query(x)<<endl; } } return 0; } ```
#include <bits/stdc++.h> #define rep(i,n) for(int i = 0; i < (n); ++i) #define rrep(i,n) for(int i = 1; i <= (n); ++i) #define drep(i,n) for(int i = (n)-1; i >= 0; --i) #define srep(i,s,t) for (int i = s; i < t; ++i) using namespace std; typedef pair<int,int> P; typedef long long int ll; #define dame { puts("-1"); return 0;} #define yn {puts("Yes");}else{puts("No");} const int MAX_N = 1 << 19; #define NUM 2147483647 int nn = 1; int data[MAX_N]; void init(int first_N){ nn = 1; if(first_N < 10) nn = 100; while(nn < first_N)nn *= 2; } // [left,right]の区間の値をvalueに更新する // update_(left,right,value,0,0,nn-1)のように呼ぶ void update_(int update_left,int update_right,int new_value,int node_id,int node_left,int node_right){ if(update_right < node_left || update_left > node_right)return; else if(update_left <= node_left && update_right >= node_right){ data[node_id] = new_value; }else{ if(data[node_id] >= 0){ data[2*node_id+1] = data[node_id]; data[2*node_id+2] = data[node_id]; data[node_id] = -1; } update_(update_left,update_right,new_value,2*node_id+1,node_left,(node_left+node_right)/2); update_(update_left,update_right,new_value,2*node_id+2,(node_left+node_right)/2+1,node_right); } } // query_(ite,ite,0,0,nn-1)のように呼ぶ int query_(int search_left,int search_right,int node_id,int node_left,int node_right){ if(search_right < node_left || search_left > node_right){ return -1; }else if(node_left <= search_left && node_right >= search_right && data[node_id] >= 0){ return data[node_id]; }else{ int left = query_(search_left,search_right,2*node_id+1,node_left,(node_left+node_right)/2); int right = query_(search_left,search_right,2*node_id+2,(node_left+node_right)/2+1,node_right); return max(left,right); } } int main(){ int n,Q; cin >> n >> Q; init(n); for(int i = 0; i <= 2*nn-2; i++)data[i] = NUM; rep(i,Q){ int command; cin >> command; if(command == 0){ int left,right,value; cin >> left >> right >> value; update_(left,right,value,0,0,nn-1); }else{ int loc; cin >> loc; cout << query_(loc,loc,0,0,nn-1) << endl; } } }
### Prompt Please formulate a cpp solution to the following problem: Write a program which manipulates a sequence A = {a0, a1, . . . , an−1} with the following operations: * update(s, t, x): change as, as+1, ..., at to x. * find(i): output the value of ai. Note that the initial values of ai (i = 0, 1, . . . , n−1) are 231-1. Constraints * 1 ≤ n ≤ 100000 * 1 ≤ q ≤ 100000 * 0 ≤ s ≤ t < n * 0 ≤ i < n * 0 ≤ x < 231−1 Input n q query1 query2 : queryq In the first line, n (the number of elements in A) and q (the number of queries) are given. Then, ith query queryi is given in the following format: 0 s t x or 1 i The first digit represents the type of the query. '0' denotes update(s, t, x) and '1' denotes find(i). Output For each find operation, print the value. Examples Input 3 5 0 0 1 1 0 1 2 3 0 2 2 2 1 0 1 1 Output 1 3 Input 1 3 1 0 0 0 0 5 1 0 Output 2147483647 5 ### Response ```cpp #include <bits/stdc++.h> #define rep(i,n) for(int i = 0; i < (n); ++i) #define rrep(i,n) for(int i = 1; i <= (n); ++i) #define drep(i,n) for(int i = (n)-1; i >= 0; --i) #define srep(i,s,t) for (int i = s; i < t; ++i) using namespace std; typedef pair<int,int> P; typedef long long int ll; #define dame { puts("-1"); return 0;} #define yn {puts("Yes");}else{puts("No");} const int MAX_N = 1 << 19; #define NUM 2147483647 int nn = 1; int data[MAX_N]; void init(int first_N){ nn = 1; if(first_N < 10) nn = 100; while(nn < first_N)nn *= 2; } // [left,right]の区間の値をvalueに更新する // update_(left,right,value,0,0,nn-1)のように呼ぶ void update_(int update_left,int update_right,int new_value,int node_id,int node_left,int node_right){ if(update_right < node_left || update_left > node_right)return; else if(update_left <= node_left && update_right >= node_right){ data[node_id] = new_value; }else{ if(data[node_id] >= 0){ data[2*node_id+1] = data[node_id]; data[2*node_id+2] = data[node_id]; data[node_id] = -1; } update_(update_left,update_right,new_value,2*node_id+1,node_left,(node_left+node_right)/2); update_(update_left,update_right,new_value,2*node_id+2,(node_left+node_right)/2+1,node_right); } } // query_(ite,ite,0,0,nn-1)のように呼ぶ int query_(int search_left,int search_right,int node_id,int node_left,int node_right){ if(search_right < node_left || search_left > node_right){ return -1; }else if(node_left <= search_left && node_right >= search_right && data[node_id] >= 0){ return data[node_id]; }else{ int left = query_(search_left,search_right,2*node_id+1,node_left,(node_left+node_right)/2); int right = query_(search_left,search_right,2*node_id+2,(node_left+node_right)/2+1,node_right); return max(left,right); } } int main(){ int n,Q; cin >> n >> Q; init(n); for(int i = 0; i <= 2*nn-2; i++)data[i] = NUM; rep(i,Q){ int command; cin >> command; if(command == 0){ int left,right,value; cin >> left >> right >> value; update_(left,right,value,0,0,nn-1); }else{ int loc; cin >> loc; cout << query_(loc,loc,0,0,nn-1) << endl; } } } ```
#include<bits/stdc++.h> using namespace std; #define rep(i,n) for(int i=0;i<(n);i++) typedef long long ll; typedef unsigned long long ull; typedef pair<int, int> P; #define MAX 500005 //#define INF 1001001001 template <typename T> struct RMQ { const T INF = numeric_limits<T>::max(); int n; vector<T> dat, lazy; RMQ(int _n) : n(), dat(_n*4,INF), lazy(_n*4,INF) { int x = 1; while (x < _n) x <<= 1; n = x; } void update(int i, T x) { i += n-1; dat[i] = x; while (i > 0) { i = (i-1)/2; dat[i] = min(dat[i*2+1],dat[i*2+2]); } } T query(int a, int b, int k, int l, int r) { eval(k); if (r <= a || b <= l) return INF; if (a <= l && r <= b) return dat[k]; T mid = (l+r)>>1; T vl = query(a,b,k*2+1,l,mid); T vr = query(a,b,k*2+2,mid,r); return min(vl,vr); } T query(int a, int b) { return query(a,b,0,0,n); } void eval(int k) { if (lazy[k] == INF) return; if (k < n-1) lazy[k*2+1] = lazy[k*2+2] = lazy[k]; dat[k] = lazy[k]; lazy[k] = INF; } void update(int a, int b, int x, int k, int l, int r) { eval(k); if (r <= a || b <= l) return; if (a <= l && r <= b) { lazy[k] = x; eval(k); } else { int mid = (l+r)>>1; update(a,b,x,k*2+1,l,mid); update(a,b,x,k*2+2,mid,r); dat[k] = min(dat[k*2+1],dat[k*2+2]); } } void update(int a, int b, int x) { update(a,b,x,0,0,n); } inline T operator[](int a) { return query(a,a+1); } }; int main(int, char**) { int n, q; cin >> n >> q; RMQ<int> rmq(n); vector<int> ans; rep(i,q) { int command; cin >> command; if (command == 0) { int s, t, x; cin >> s >> t >> x; rmq.update(s,t+1,x); } else if (command == 1) { int i; cin >> i; ans.push_back(rmq[i]); } } for (auto a : ans) cout << a << endl; return 0; }
### Prompt Construct a cpp code solution to the problem outlined: Write a program which manipulates a sequence A = {a0, a1, . . . , an−1} with the following operations: * update(s, t, x): change as, as+1, ..., at to x. * find(i): output the value of ai. Note that the initial values of ai (i = 0, 1, . . . , n−1) are 231-1. Constraints * 1 ≤ n ≤ 100000 * 1 ≤ q ≤ 100000 * 0 ≤ s ≤ t < n * 0 ≤ i < n * 0 ≤ x < 231−1 Input n q query1 query2 : queryq In the first line, n (the number of elements in A) and q (the number of queries) are given. Then, ith query queryi is given in the following format: 0 s t x or 1 i The first digit represents the type of the query. '0' denotes update(s, t, x) and '1' denotes find(i). Output For each find operation, print the value. Examples Input 3 5 0 0 1 1 0 1 2 3 0 2 2 2 1 0 1 1 Output 1 3 Input 1 3 1 0 0 0 0 5 1 0 Output 2147483647 5 ### Response ```cpp #include<bits/stdc++.h> using namespace std; #define rep(i,n) for(int i=0;i<(n);i++) typedef long long ll; typedef unsigned long long ull; typedef pair<int, int> P; #define MAX 500005 //#define INF 1001001001 template <typename T> struct RMQ { const T INF = numeric_limits<T>::max(); int n; vector<T> dat, lazy; RMQ(int _n) : n(), dat(_n*4,INF), lazy(_n*4,INF) { int x = 1; while (x < _n) x <<= 1; n = x; } void update(int i, T x) { i += n-1; dat[i] = x; while (i > 0) { i = (i-1)/2; dat[i] = min(dat[i*2+1],dat[i*2+2]); } } T query(int a, int b, int k, int l, int r) { eval(k); if (r <= a || b <= l) return INF; if (a <= l && r <= b) return dat[k]; T mid = (l+r)>>1; T vl = query(a,b,k*2+1,l,mid); T vr = query(a,b,k*2+2,mid,r); return min(vl,vr); } T query(int a, int b) { return query(a,b,0,0,n); } void eval(int k) { if (lazy[k] == INF) return; if (k < n-1) lazy[k*2+1] = lazy[k*2+2] = lazy[k]; dat[k] = lazy[k]; lazy[k] = INF; } void update(int a, int b, int x, int k, int l, int r) { eval(k); if (r <= a || b <= l) return; if (a <= l && r <= b) { lazy[k] = x; eval(k); } else { int mid = (l+r)>>1; update(a,b,x,k*2+1,l,mid); update(a,b,x,k*2+2,mid,r); dat[k] = min(dat[k*2+1],dat[k*2+2]); } } void update(int a, int b, int x) { update(a,b,x,0,0,n); } inline T operator[](int a) { return query(a,a+1); } }; int main(int, char**) { int n, q; cin >> n >> q; RMQ<int> rmq(n); vector<int> ans; rep(i,q) { int command; cin >> command; if (command == 0) { int s, t, x; cin >> s >> t >> x; rmq.update(s,t+1,x); } else if (command == 1) { int i; cin >> i; ans.push_back(rmq[i]); } } for (auto a : ans) cout << a << endl; return 0; } ```
#include<iostream> #include<algorithm> #include<cmath> #include<vector> #define REP(i,n) for(int i = 0;i < (n);i++) #define pb push_back using namespace std; const int INF = 1e9; typedef long long ll; int main(){ int n,q; cin >> n >> q; vector <int> res; int a[n]; int sq = sqrt(n); int nsq = n/sq+1; int lazy[nsq]; fill(a,a+n,2147483647); fill(lazy,lazy+nsq,-1); REP(i,q){ int z; cin >> z; if(z == 0){ int s,t,x; cin >> s >> t >> x; /*if(s == t){ a[s] = x; }*/ if(t/sq == s/sq){ if(lazy[t/sq] >= 0){ fill_n(a+(t/sq)*sq,sq,lazy[t/sq]); lazy[t/sq] = -1; } if(t-s+1 == sq){ lazy[t/sq] = x; } else{ fill_n(a+s,t-s+1,x); } //cout << "debug1" <<endl; } else{ //cout << "debug3" << endl; int f = s,to = t; while(to%sq != (sq - 1)){ to--; } while(f%sq != 0){ f++; } if(lazy[t/sq] >= 0){ fill_n(a+(t/sq)*sq,sq,lazy[t/sq]); } if(lazy[s/sq] >= 0){ fill_n(a+(s/sq)*sq,sq,lazy[s/sq]); } fill_n(a+to+1,t-to,x); lazy[t/sq] = -1; fill_n(a+s,f-s,x); lazy[s/sq] = -1; f = f/sq; to = to/sq; if(f <= to){ fill_n(lazy+f,to-f+1,x); } } /*REP(i,n) cout << a[i] << " "; cout << endl;*/ } else{ int x; cin >> x; int te = x / sq; if(lazy[te] < 0){ //cout << a[x] << endl; res.pb(a[x]); } else{ fill_n(a+te*sq,sq,lazy[te]); lazy[te] = -1; //cout << a[x] << endl; res.pb(a[x]); } } } for(int i = 0;i < res.size();i++){ cout << res[i] << endl; } //cout << res.size() << endl; return 0; }
### Prompt Your challenge is to write a CPP solution to the following problem: Write a program which manipulates a sequence A = {a0, a1, . . . , an−1} with the following operations: * update(s, t, x): change as, as+1, ..., at to x. * find(i): output the value of ai. Note that the initial values of ai (i = 0, 1, . . . , n−1) are 231-1. Constraints * 1 ≤ n ≤ 100000 * 1 ≤ q ≤ 100000 * 0 ≤ s ≤ t < n * 0 ≤ i < n * 0 ≤ x < 231−1 Input n q query1 query2 : queryq In the first line, n (the number of elements in A) and q (the number of queries) are given. Then, ith query queryi is given in the following format: 0 s t x or 1 i The first digit represents the type of the query. '0' denotes update(s, t, x) and '1' denotes find(i). Output For each find operation, print the value. Examples Input 3 5 0 0 1 1 0 1 2 3 0 2 2 2 1 0 1 1 Output 1 3 Input 1 3 1 0 0 0 0 5 1 0 Output 2147483647 5 ### Response ```cpp #include<iostream> #include<algorithm> #include<cmath> #include<vector> #define REP(i,n) for(int i = 0;i < (n);i++) #define pb push_back using namespace std; const int INF = 1e9; typedef long long ll; int main(){ int n,q; cin >> n >> q; vector <int> res; int a[n]; int sq = sqrt(n); int nsq = n/sq+1; int lazy[nsq]; fill(a,a+n,2147483647); fill(lazy,lazy+nsq,-1); REP(i,q){ int z; cin >> z; if(z == 0){ int s,t,x; cin >> s >> t >> x; /*if(s == t){ a[s] = x; }*/ if(t/sq == s/sq){ if(lazy[t/sq] >= 0){ fill_n(a+(t/sq)*sq,sq,lazy[t/sq]); lazy[t/sq] = -1; } if(t-s+1 == sq){ lazy[t/sq] = x; } else{ fill_n(a+s,t-s+1,x); } //cout << "debug1" <<endl; } else{ //cout << "debug3" << endl; int f = s,to = t; while(to%sq != (sq - 1)){ to--; } while(f%sq != 0){ f++; } if(lazy[t/sq] >= 0){ fill_n(a+(t/sq)*sq,sq,lazy[t/sq]); } if(lazy[s/sq] >= 0){ fill_n(a+(s/sq)*sq,sq,lazy[s/sq]); } fill_n(a+to+1,t-to,x); lazy[t/sq] = -1; fill_n(a+s,f-s,x); lazy[s/sq] = -1; f = f/sq; to = to/sq; if(f <= to){ fill_n(lazy+f,to-f+1,x); } } /*REP(i,n) cout << a[i] << " "; cout << endl;*/ } else{ int x; cin >> x; int te = x / sq; if(lazy[te] < 0){ //cout << a[x] << endl; res.pb(a[x]); } else{ fill_n(a+te*sq,sq,lazy[te]); lazy[te] = -1; //cout << a[x] << endl; res.pb(a[x]); } } } for(int i = 0;i < res.size();i++){ cout << res[i] << endl; } //cout << res.size() << endl; return 0; } ```
#include<bits/stdc++.h> using namespace std; //BEGIN CUT HERE template <typename T,typename E> struct SegmentTree{ typedef function<T(T,E)> G; typedef function<T(E,E)> H; int n; G g; H h; T d1; E d0; vector<T> dat; vector<E> laz; SegmentTree(){}; SegmentTree(int n_,G g,H h,T d1,E d0, vector<T> v=vector<T>()): g(g),h(h),d1(d1),d0(d0){ init(n_); if(n_==(int)v.size()) build(n_,v); } void init(int n_){ n=1; while(n<n_) n*=2; dat.clear(); dat.resize(n,d1); laz.clear(); laz.resize(2*n-1,d0); } void build(int n_, vector<T> v){ for(int i=0;i<n_;i++) dat[i]=v[i]; } void eval(int k){ if(k*2+1<2*n-1){ laz[k*2+1]=h(laz[k*2+1],laz[k]); laz[k*2+2]=h(laz[k*2+2],laz[k]); laz[k]=d0; } } void update(int a,int b,E x,int k,int l,int r){ eval(k); if(r<=a||b<=l) return; if(a<=l&&r<=b){ laz[k]=h(laz[k],x); return; } update(a,b,x,k*2+1,l,(l+r)/2); update(a,b,x,k*2+2,(l+r)/2,r); } void update(int a,int b,E x){ update(a,b,x,0,0,n); } void eval2(int k){ if(k) eval2((k-1)/2); eval(k); } T query(int k){ T c=dat[k]; k+=n-1; eval2(k); return g(c,laz[k]); } }; //END CUT HERE signed main(){ cin.tie(0); ios::sync_with_stdio(0); int n,q; cin>>n>>q; SegmentTree<int,int> beet(n, [&](int a,int b){ return b<0?a:b;}, [&](int a,int b){ return b<0?a:b;}, INT_MAX,-1); for(int i=0;i<q;i++){ int c; cin>>c; if(c){ int x; cin>>x; cout<<beet.query(x)<<endl; }else{ int s,t,x; cin>>s>>t>>x; t++; beet.update(s,t,x); } } return 0; } /* verified on 2017/11/05 http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=DSL_2_D&lang=jp */
### Prompt Create a solution in Cpp for the following problem: Write a program which manipulates a sequence A = {a0, a1, . . . , an−1} with the following operations: * update(s, t, x): change as, as+1, ..., at to x. * find(i): output the value of ai. Note that the initial values of ai (i = 0, 1, . . . , n−1) are 231-1. Constraints * 1 ≤ n ≤ 100000 * 1 ≤ q ≤ 100000 * 0 ≤ s ≤ t < n * 0 ≤ i < n * 0 ≤ x < 231−1 Input n q query1 query2 : queryq In the first line, n (the number of elements in A) and q (the number of queries) are given. Then, ith query queryi is given in the following format: 0 s t x or 1 i The first digit represents the type of the query. '0' denotes update(s, t, x) and '1' denotes find(i). Output For each find operation, print the value. Examples Input 3 5 0 0 1 1 0 1 2 3 0 2 2 2 1 0 1 1 Output 1 3 Input 1 3 1 0 0 0 0 5 1 0 Output 2147483647 5 ### Response ```cpp #include<bits/stdc++.h> using namespace std; //BEGIN CUT HERE template <typename T,typename E> struct SegmentTree{ typedef function<T(T,E)> G; typedef function<T(E,E)> H; int n; G g; H h; T d1; E d0; vector<T> dat; vector<E> laz; SegmentTree(){}; SegmentTree(int n_,G g,H h,T d1,E d0, vector<T> v=vector<T>()): g(g),h(h),d1(d1),d0(d0){ init(n_); if(n_==(int)v.size()) build(n_,v); } void init(int n_){ n=1; while(n<n_) n*=2; dat.clear(); dat.resize(n,d1); laz.clear(); laz.resize(2*n-1,d0); } void build(int n_, vector<T> v){ for(int i=0;i<n_;i++) dat[i]=v[i]; } void eval(int k){ if(k*2+1<2*n-1){ laz[k*2+1]=h(laz[k*2+1],laz[k]); laz[k*2+2]=h(laz[k*2+2],laz[k]); laz[k]=d0; } } void update(int a,int b,E x,int k,int l,int r){ eval(k); if(r<=a||b<=l) return; if(a<=l&&r<=b){ laz[k]=h(laz[k],x); return; } update(a,b,x,k*2+1,l,(l+r)/2); update(a,b,x,k*2+2,(l+r)/2,r); } void update(int a,int b,E x){ update(a,b,x,0,0,n); } void eval2(int k){ if(k) eval2((k-1)/2); eval(k); } T query(int k){ T c=dat[k]; k+=n-1; eval2(k); return g(c,laz[k]); } }; //END CUT HERE signed main(){ cin.tie(0); ios::sync_with_stdio(0); int n,q; cin>>n>>q; SegmentTree<int,int> beet(n, [&](int a,int b){ return b<0?a:b;}, [&](int a,int b){ return b<0?a:b;}, INT_MAX,-1); for(int i=0;i<q;i++){ int c; cin>>c; if(c){ int x; cin>>x; cout<<beet.query(x)<<endl; }else{ int s,t,x; cin>>s>>t>>x; t++; beet.update(s,t,x); } } return 0; } /* verified on 2017/11/05 http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=DSL_2_D&lang=jp */ ```
//Range Update Query //reference https://kujira16.hateblo.jp/entry/2016/12/15/000000 //https://onlinejudge.u-aizu.ac.jp/courses/library/3/DSL/2/DSL_2_D #include <iostream> #include <vector> #include <algorithm> using namespace std; #define rep(i,n) for(int i=0;i<(n);i++) template <typename T> struct RUQ { T n; T k;//バケットの数 T sqrt_n;//バケットの大きさ vector<T> data; vector<T> lazy_update; T INF; RUQ() = delete; RUQ(T n_,T sqrt_n_ = 1000,T INF_ = 1e9) { initialize(n_,sqrt_n_,INF_); } void initialize(T n_,T sqrt_n_ = 1000,T INF_ = 1e9) { n = n_; sqrt_n = sqrt_n_; k = (n + sqrt_n - 1) / sqrt_n;//切り上げ割り算 data.clear();lazy_update.clear(); data.resize(k * sqrt_n,INF_); lazy_update.resize(k,INF_ + 1); INF = INF_; } void delay_propagation(T bucket_id) { if (lazy_update[bucket_id] <= INF) { for (int i = bucket_id * sqrt_n;i < (bucket_id + 1) * sqrt_n;i++) { data[i] = lazy_update[bucket_id]; } lazy_update[bucket_id] = INF + 1; } } void update(T a,T b,T x) { if (a >= sqrt_n * k || b > sqrt_n * k) { cerr << "error index k" << endl; return; } if (a >= n || b > n) { cerr << "warning index k" << endl; } rep (i,k) { T l = i * sqrt_n,r = (i + 1) * sqrt_n; if (b <= l|| r <= a) continue; if (l < a || b < r) { delay_propagation(i); for (int i = max(l,a);i < min(b,r);i++) { data[i] = x; } } else { lazy_update[i] = x; } } } T get(T i) { // i番目(0-indexed)の値を取得する T bucket_id = i / sqrt_n; if (lazy_update[bucket_id] > INF)return data[i]; return lazy_update[bucket_id]; } }; using ll = long long; signed main() { ll n,q; cin >> n >> q; RUQ<ll> ruq(n,1000,(1ll << 31) - 1ll); rep(i,q) { ll c; cin >> c; if(c) { ll i; cin >> i; cout << ruq.get(i) << endl; } else { ll s,t,x; cin >> s >> t >> x; ruq.update(s,t+1,x); } } return 0; }
### Prompt Please create a solution in cpp to the following problem: Write a program which manipulates a sequence A = {a0, a1, . . . , an−1} with the following operations: * update(s, t, x): change as, as+1, ..., at to x. * find(i): output the value of ai. Note that the initial values of ai (i = 0, 1, . . . , n−1) are 231-1. Constraints * 1 ≤ n ≤ 100000 * 1 ≤ q ≤ 100000 * 0 ≤ s ≤ t < n * 0 ≤ i < n * 0 ≤ x < 231−1 Input n q query1 query2 : queryq In the first line, n (the number of elements in A) and q (the number of queries) are given. Then, ith query queryi is given in the following format: 0 s t x or 1 i The first digit represents the type of the query. '0' denotes update(s, t, x) and '1' denotes find(i). Output For each find operation, print the value. Examples Input 3 5 0 0 1 1 0 1 2 3 0 2 2 2 1 0 1 1 Output 1 3 Input 1 3 1 0 0 0 0 5 1 0 Output 2147483647 5 ### Response ```cpp //Range Update Query //reference https://kujira16.hateblo.jp/entry/2016/12/15/000000 //https://onlinejudge.u-aizu.ac.jp/courses/library/3/DSL/2/DSL_2_D #include <iostream> #include <vector> #include <algorithm> using namespace std; #define rep(i,n) for(int i=0;i<(n);i++) template <typename T> struct RUQ { T n; T k;//バケットの数 T sqrt_n;//バケットの大きさ vector<T> data; vector<T> lazy_update; T INF; RUQ() = delete; RUQ(T n_,T sqrt_n_ = 1000,T INF_ = 1e9) { initialize(n_,sqrt_n_,INF_); } void initialize(T n_,T sqrt_n_ = 1000,T INF_ = 1e9) { n = n_; sqrt_n = sqrt_n_; k = (n + sqrt_n - 1) / sqrt_n;//切り上げ割り算 data.clear();lazy_update.clear(); data.resize(k * sqrt_n,INF_); lazy_update.resize(k,INF_ + 1); INF = INF_; } void delay_propagation(T bucket_id) { if (lazy_update[bucket_id] <= INF) { for (int i = bucket_id * sqrt_n;i < (bucket_id + 1) * sqrt_n;i++) { data[i] = lazy_update[bucket_id]; } lazy_update[bucket_id] = INF + 1; } } void update(T a,T b,T x) { if (a >= sqrt_n * k || b > sqrt_n * k) { cerr << "error index k" << endl; return; } if (a >= n || b > n) { cerr << "warning index k" << endl; } rep (i,k) { T l = i * sqrt_n,r = (i + 1) * sqrt_n; if (b <= l|| r <= a) continue; if (l < a || b < r) { delay_propagation(i); for (int i = max(l,a);i < min(b,r);i++) { data[i] = x; } } else { lazy_update[i] = x; } } } T get(T i) { // i番目(0-indexed)の値を取得する T bucket_id = i / sqrt_n; if (lazy_update[bucket_id] > INF)return data[i]; return lazy_update[bucket_id]; } }; using ll = long long; signed main() { ll n,q; cin >> n >> q; RUQ<ll> ruq(n,1000,(1ll << 31) - 1ll); rep(i,q) { ll c; cin >> c; if(c) { ll i; cin >> i; cout << ruq.get(i) << endl; } else { ll s,t,x; cin >> s >> t >> x; ruq.update(s,t+1,x); } } return 0; } ```
#include <iostream> #include <vector> using namespace std; #define int long long const int INF = (1LL << 31) - 1; const int MAX = 1<<9; struct LazySegmentTree { int N, K; vector<int> D; vector<bool> lazyFlag; vector<int> lazy; LazySegmentTree(int n) : N(n) { K = (N + MAX - 1) / MAX; D.assign(K * MAX, INF); lazyFlag.assign(K, false); lazy.assign(K, 0); } void eval(int k) { if (lazyFlag[k]) { lazyFlag[k] = false; for (int i = k * MAX; i < (k + 1) * MAX; ++i) { D[i] = lazy[k]; } } } void update(int s, int t, int x) { for (int k = 0; k < K; ++k) { int l = k * MAX, r = (k + 1) * MAX; if (r <= s || t <= l) continue; if (s <= l && r <= t) { lazyFlag[k] = true; lazy[k] = x; } else { eval(k); for (int i = max(s, l); i < min(t, r); ++i) { D[i] = x; } } } } int find(int i) { int k = i / MAX; eval(k); return D[i]; } }; signed main() { int p, q; cin >> p >> q; LazySegmentTree segtree(p); for(int i=0; i<q; i++) { int com; cin >> com; if (com == 0) { int s, t, x; cin >> s >> t >> x; segtree.update(s, t + 1, x); } else { int i; cin >> i; cout << segtree.find(i) << endl; } } }
### Prompt Please provide a CPP coded solution to the problem described below: Write a program which manipulates a sequence A = {a0, a1, . . . , an−1} with the following operations: * update(s, t, x): change as, as+1, ..., at to x. * find(i): output the value of ai. Note that the initial values of ai (i = 0, 1, . . . , n−1) are 231-1. Constraints * 1 ≤ n ≤ 100000 * 1 ≤ q ≤ 100000 * 0 ≤ s ≤ t < n * 0 ≤ i < n * 0 ≤ x < 231−1 Input n q query1 query2 : queryq In the first line, n (the number of elements in A) and q (the number of queries) are given. Then, ith query queryi is given in the following format: 0 s t x or 1 i The first digit represents the type of the query. '0' denotes update(s, t, x) and '1' denotes find(i). Output For each find operation, print the value. Examples Input 3 5 0 0 1 1 0 1 2 3 0 2 2 2 1 0 1 1 Output 1 3 Input 1 3 1 0 0 0 0 5 1 0 Output 2147483647 5 ### Response ```cpp #include <iostream> #include <vector> using namespace std; #define int long long const int INF = (1LL << 31) - 1; const int MAX = 1<<9; struct LazySegmentTree { int N, K; vector<int> D; vector<bool> lazyFlag; vector<int> lazy; LazySegmentTree(int n) : N(n) { K = (N + MAX - 1) / MAX; D.assign(K * MAX, INF); lazyFlag.assign(K, false); lazy.assign(K, 0); } void eval(int k) { if (lazyFlag[k]) { lazyFlag[k] = false; for (int i = k * MAX; i < (k + 1) * MAX; ++i) { D[i] = lazy[k]; } } } void update(int s, int t, int x) { for (int k = 0; k < K; ++k) { int l = k * MAX, r = (k + 1) * MAX; if (r <= s || t <= l) continue; if (s <= l && r <= t) { lazyFlag[k] = true; lazy[k] = x; } else { eval(k); for (int i = max(s, l); i < min(t, r); ++i) { D[i] = x; } } } } int find(int i) { int k = i / MAX; eval(k); return D[i]; } }; signed main() { int p, q; cin >> p >> q; LazySegmentTree segtree(p); for(int i=0; i<q; i++) { int com; cin >> com; if (com == 0) { int s, t, x; cin >> s >> t >> x; segtree.update(s, t + 1, x); } else { int i; cin >> i; cout << segtree.find(i) << endl; } } } ```
#include<bits/stdc++.h> #define range(i,a,b) for(int i = (a); i < (b); i++) #define rep(i,b) for(int i = 0; i < (b); i++) #define all(a) (a).begin(), (a).end() #define show(x) cerr << #x << " = " << (x) << endl; //const int INF = 1e8; using namespace std; struct RUQ{ using T = int; T operator()(const T &a, const T &b) { return min(a,b); }; static constexpr T identity() { return INT_MAX; } }; template<class Monoid> class rangeUpdateQuery{ private: using T = typename Monoid::T; Monoid op; const int n; vector<T> dat, lazy; int query(int a, int b, int k, int l, int r){ evaluate(k); if(b <= l || r <= a) return INT_MAX; else if(a <= l && r <= b) return dat[k]; else{ int vl = query(a, b, k * 2, l, (l + r) / 2); int vr = query(a, b, k * 2 + 1, (l + r) / 2, r); return min(vl, vr); } } inline void evaluate(int k){ if(lazy[k] == op.identity()) return; dat[k] = lazy[k]; if(k < n){ lazy[2 * k] = lazy[k]; lazy[2 * k + 1] = lazy[k]; } lazy[k] = op.identity(); } void update(int a, int b, int k, int l, int r, int x){ evaluate(k); if(r <= a || b <= l) return; if(a <= l && r <= b){ lazy[k] = x; }else if(l < b && a < r){ evaluate(k); update(a, b, k * 2, l, (l + r) / 2, x); update(a, b, k * 2 + 1, (l + r) / 2, r, x); } } int power(int n){ int res = 1; while(n >= res) res*=2; return res; } public: rangeUpdateQuery(int n) : n(power(n)), dat(4 * n, op.identity()), lazy(4 * n, op.identity()) {} rangeUpdateQuery(const vector<T> &v) : n(v.size()), dat(4 * n), lazy(4 * n, op.identity()){ copy(begin(v), end(v), begin(dat) + n); for(int i = n - 1; i > 0; i--) dat[i] = op(dat[2 * i], dat[2 * i + 1]); } int query(int a, int b){ return query(a,b,1,0,n); } void update(int s, int t, int x){ update(s, t, 1, 0, n, x); } int get(int a){ return query(a, a + 1); }; }; int main(){ int n, q; cin >> n >> q; rangeUpdateQuery<RUQ> seg(n); rep(i,q){ int com; cin >> com; if(not com){ int s, t, x; cin >> s >> t >> x; //cout << s << ' ' << t << endl; seg.update(s + 1, t + 2, x); }else{ int p; cin >> p; cout << seg.get(p + 1) << endl; } } }
### Prompt Create a solution in CPP for the following problem: Write a program which manipulates a sequence A = {a0, a1, . . . , an−1} with the following operations: * update(s, t, x): change as, as+1, ..., at to x. * find(i): output the value of ai. Note that the initial values of ai (i = 0, 1, . . . , n−1) are 231-1. Constraints * 1 ≤ n ≤ 100000 * 1 ≤ q ≤ 100000 * 0 ≤ s ≤ t < n * 0 ≤ i < n * 0 ≤ x < 231−1 Input n q query1 query2 : queryq In the first line, n (the number of elements in A) and q (the number of queries) are given. Then, ith query queryi is given in the following format: 0 s t x or 1 i The first digit represents the type of the query. '0' denotes update(s, t, x) and '1' denotes find(i). Output For each find operation, print the value. Examples Input 3 5 0 0 1 1 0 1 2 3 0 2 2 2 1 0 1 1 Output 1 3 Input 1 3 1 0 0 0 0 5 1 0 Output 2147483647 5 ### Response ```cpp #include<bits/stdc++.h> #define range(i,a,b) for(int i = (a); i < (b); i++) #define rep(i,b) for(int i = 0; i < (b); i++) #define all(a) (a).begin(), (a).end() #define show(x) cerr << #x << " = " << (x) << endl; //const int INF = 1e8; using namespace std; struct RUQ{ using T = int; T operator()(const T &a, const T &b) { return min(a,b); }; static constexpr T identity() { return INT_MAX; } }; template<class Monoid> class rangeUpdateQuery{ private: using T = typename Monoid::T; Monoid op; const int n; vector<T> dat, lazy; int query(int a, int b, int k, int l, int r){ evaluate(k); if(b <= l || r <= a) return INT_MAX; else if(a <= l && r <= b) return dat[k]; else{ int vl = query(a, b, k * 2, l, (l + r) / 2); int vr = query(a, b, k * 2 + 1, (l + r) / 2, r); return min(vl, vr); } } inline void evaluate(int k){ if(lazy[k] == op.identity()) return; dat[k] = lazy[k]; if(k < n){ lazy[2 * k] = lazy[k]; lazy[2 * k + 1] = lazy[k]; } lazy[k] = op.identity(); } void update(int a, int b, int k, int l, int r, int x){ evaluate(k); if(r <= a || b <= l) return; if(a <= l && r <= b){ lazy[k] = x; }else if(l < b && a < r){ evaluate(k); update(a, b, k * 2, l, (l + r) / 2, x); update(a, b, k * 2 + 1, (l + r) / 2, r, x); } } int power(int n){ int res = 1; while(n >= res) res*=2; return res; } public: rangeUpdateQuery(int n) : n(power(n)), dat(4 * n, op.identity()), lazy(4 * n, op.identity()) {} rangeUpdateQuery(const vector<T> &v) : n(v.size()), dat(4 * n), lazy(4 * n, op.identity()){ copy(begin(v), end(v), begin(dat) + n); for(int i = n - 1; i > 0; i--) dat[i] = op(dat[2 * i], dat[2 * i + 1]); } int query(int a, int b){ return query(a,b,1,0,n); } void update(int s, int t, int x){ update(s, t, 1, 0, n, x); } int get(int a){ return query(a, a + 1); }; }; int main(){ int n, q; cin >> n >> q; rangeUpdateQuery<RUQ> seg(n); rep(i,q){ int com; cin >> com; if(not com){ int s, t, x; cin >> s >> t >> x; //cout << s << ' ' << t << endl; seg.update(s + 1, t + 2, x); }else{ int p; cin >> p; cout << seg.get(p + 1) << endl; } } } ```
#include<iostream> #include<cstdio> #include<climits> using namespace std; // 完成版。 int tree[(1 << 18)]; void Update(int s, int t, int m, int left = 0, int right = (1 << 17), int key = 0){ if(t < left || right <= s) return; if(s <= left && right - 1 <= t){ tree[key] = max(tree[key], m); return; } Update(s, t, m, left, (left + right) / 2, 2 * key + 1); Update(s, t, m, (left + right) / 2, right, 2 * key + 2); } int Find(int i){ i += (1 << 17) - 1; int m = tree[i]; while(i){ i = (i - 1) / 2; m = max(tree[i], m); }; return m; } int main(){ int i; for(i = 0; i < (1 << 18); i++) tree[i] = 0; int n, q; int x[100000]; for(i = 0; i < 100000; i++) x[i] = INT_MAX; int s, t, value, m; m = 1; cin >> n >> q; int query; while(q){ q--; cin >> query; if(query){ cin >> i; //cout << x[Find(i)] << endl; printf("%d\n", x[Find(i)]); }else{ cin >> s >> t >> value; x[m] = value; Update(s, t, m); m++; } }; return 0; }
### Prompt Your challenge is to write a Cpp solution to the following problem: Write a program which manipulates a sequence A = {a0, a1, . . . , an−1} with the following operations: * update(s, t, x): change as, as+1, ..., at to x. * find(i): output the value of ai. Note that the initial values of ai (i = 0, 1, . . . , n−1) are 231-1. Constraints * 1 ≤ n ≤ 100000 * 1 ≤ q ≤ 100000 * 0 ≤ s ≤ t < n * 0 ≤ i < n * 0 ≤ x < 231−1 Input n q query1 query2 : queryq In the first line, n (the number of elements in A) and q (the number of queries) are given. Then, ith query queryi is given in the following format: 0 s t x or 1 i The first digit represents the type of the query. '0' denotes update(s, t, x) and '1' denotes find(i). Output For each find operation, print the value. Examples Input 3 5 0 0 1 1 0 1 2 3 0 2 2 2 1 0 1 1 Output 1 3 Input 1 3 1 0 0 0 0 5 1 0 Output 2147483647 5 ### Response ```cpp #include<iostream> #include<cstdio> #include<climits> using namespace std; // 完成版。 int tree[(1 << 18)]; void Update(int s, int t, int m, int left = 0, int right = (1 << 17), int key = 0){ if(t < left || right <= s) return; if(s <= left && right - 1 <= t){ tree[key] = max(tree[key], m); return; } Update(s, t, m, left, (left + right) / 2, 2 * key + 1); Update(s, t, m, (left + right) / 2, right, 2 * key + 2); } int Find(int i){ i += (1 << 17) - 1; int m = tree[i]; while(i){ i = (i - 1) / 2; m = max(tree[i], m); }; return m; } int main(){ int i; for(i = 0; i < (1 << 18); i++) tree[i] = 0; int n, q; int x[100000]; for(i = 0; i < 100000; i++) x[i] = INT_MAX; int s, t, value, m; m = 1; cin >> n >> q; int query; while(q){ q--; cin >> query; if(query){ cin >> i; //cout << x[Find(i)] << endl; printf("%d\n", x[Find(i)]); }else{ cin >> s >> t >> value; x[m] = value; Update(s, t, m); m++; } }; return 0; } ```
#include "bits/stdc++.h" #include <array> using namespace std; struct SgTree{ private: vector<pair<long long, bool>> node; long long defval; int N; int n; public: void init(int n, long long defval = INT64_MAX){ N = 1; while(N < n)N<<=1; this->n = n; this->defval = defval; node.assign(N*2-1, make_pair(defval, false)); } long long query(int a, int b, int l = 0, int r = -1, int i = 0){ if(r == -1) r = N; if(b <= l || r <= a) return defval; if(a <= l && r <= b) return node[i].first; if(node[i].second) return node[i].first; return min(query(a,b,l,(l+r)/2,i*2+1),query(a,b,(l+r)/2,r,i*2+2)); } void update2(int a, int b, long long v, int l, int r, int i, long long defv){ if(b <= l || r <= a) { node[i] = make_pair(defv, true); return; } if(a <= l && r <= b) { node[i] = make_pair(v, true); return; } update2(a,b,v,l,(l+r)/2,i*2+1,defv); update2(a,b,v,(l+r)/2,r,i*2+2,defv); node[i].second = false; node[i].first = min(node[i*2+1].first, node[i*2+2].first); } void update(int a, int b, long long v, int l = 0, int r = -1, int i = 0){ if(r == -1) r = N; if(b <= l || r <= a) return; if(a <= l && r <= b) { node[i] = make_pair(v, true); return; } if(node[i].second) return update2(a,b,v,l,r,i,node[i].first); update(a,b,v,l,(l+r)/2,i*2+1); update(a,b,v,(l+r)/2,r,i*2+2); node[i].first = min(node[i*2+1].first, node[i*2+2].first); } }; int main() { int n, q; cin >> n >> q; SgTree tr; tr.init(n, INT_MAX); vector<long long> ans; for(int i = 0; i < q; i++){ int c; cin >> c; if(c == 0){ int s,t,x; cin >> s >> t >> x; tr.update(s, t+1, x); } else { int i; cin >> i; ans.push_back(tr.query(i, i+1)); } } for(int i = 0; i < ans.size(); i++){ cout << ans[i] << endl; } return 0; }
### Prompt Your challenge is to write a cpp solution to the following problem: Write a program which manipulates a sequence A = {a0, a1, . . . , an−1} with the following operations: * update(s, t, x): change as, as+1, ..., at to x. * find(i): output the value of ai. Note that the initial values of ai (i = 0, 1, . . . , n−1) are 231-1. Constraints * 1 ≤ n ≤ 100000 * 1 ≤ q ≤ 100000 * 0 ≤ s ≤ t < n * 0 ≤ i < n * 0 ≤ x < 231−1 Input n q query1 query2 : queryq In the first line, n (the number of elements in A) and q (the number of queries) are given. Then, ith query queryi is given in the following format: 0 s t x or 1 i The first digit represents the type of the query. '0' denotes update(s, t, x) and '1' denotes find(i). Output For each find operation, print the value. Examples Input 3 5 0 0 1 1 0 1 2 3 0 2 2 2 1 0 1 1 Output 1 3 Input 1 3 1 0 0 0 0 5 1 0 Output 2147483647 5 ### Response ```cpp #include "bits/stdc++.h" #include <array> using namespace std; struct SgTree{ private: vector<pair<long long, bool>> node; long long defval; int N; int n; public: void init(int n, long long defval = INT64_MAX){ N = 1; while(N < n)N<<=1; this->n = n; this->defval = defval; node.assign(N*2-1, make_pair(defval, false)); } long long query(int a, int b, int l = 0, int r = -1, int i = 0){ if(r == -1) r = N; if(b <= l || r <= a) return defval; if(a <= l && r <= b) return node[i].first; if(node[i].second) return node[i].first; return min(query(a,b,l,(l+r)/2,i*2+1),query(a,b,(l+r)/2,r,i*2+2)); } void update2(int a, int b, long long v, int l, int r, int i, long long defv){ if(b <= l || r <= a) { node[i] = make_pair(defv, true); return; } if(a <= l && r <= b) { node[i] = make_pair(v, true); return; } update2(a,b,v,l,(l+r)/2,i*2+1,defv); update2(a,b,v,(l+r)/2,r,i*2+2,defv); node[i].second = false; node[i].first = min(node[i*2+1].first, node[i*2+2].first); } void update(int a, int b, long long v, int l = 0, int r = -1, int i = 0){ if(r == -1) r = N; if(b <= l || r <= a) return; if(a <= l && r <= b) { node[i] = make_pair(v, true); return; } if(node[i].second) return update2(a,b,v,l,r,i,node[i].first); update(a,b,v,l,(l+r)/2,i*2+1); update(a,b,v,(l+r)/2,r,i*2+2); node[i].first = min(node[i*2+1].first, node[i*2+2].first); } }; int main() { int n, q; cin >> n >> q; SgTree tr; tr.init(n, INT_MAX); vector<long long> ans; for(int i = 0; i < q; i++){ int c; cin >> c; if(c == 0){ int s,t,x; cin >> s >> t >> x; tr.update(s, t+1, x); } else { int i; cin >> i; ans.push_back(tr.query(i, i+1)); } } for(int i = 0; i < ans.size(); i++){ cout << ans[i] << endl; } return 0; } ```
#include <bits/stdc++.h> using namespace std; typedef long long ll; typedef unsigned long long ull; typedef pair<int, int> pairInt; typedef tuple<int, int, int> tuple3Int; #define FOR(i, n) for (int i = 0; i < int(n); i++) #define FOR1(i, m, n) for (int i = int(m); i < int(n); i++) #define MAX(a, b) ((a) >= (b) ? (a) : (b)) #define MIN(a, b) ((a) <= (b) ? (a) : (b)) ll pow(ll base, uint exp) { if (exp == 0) return 1; if (exp % 2 == 0) { return pow(base * base, exp / 2); } else { return base * pow(base * base, exp / 2); } } class SegTree { private: int num; int exp; int seq; vector<pair<int, ll>> vec; public: SegTree(int n) : num(n), seq(0){ exp = 0; int x = 1; while (x < n) { exp ++; x <<= 1; } vec.resize(2 * pow(2, exp) - 1, make_pair(-1, pow(2, 31) - 1)); } void update(int s, int t, ll x) { _update(s, t, x, 0, 0, pow(2, exp) - 1); seq ++; } ll get(int i) { return _get(i, 0, 0, pow(2, exp) - 1).second; } private: void _update(int s, int t, ll x, int index, int from, int to) { if (s <= from && to <= t) { vec[index].first = seq; vec[index].second = x; } else { if (s <= (from + to) / 2) _update(s, t, x, 2 * index + 1, from, (from + to) / 2); if ((from + to) / 2 < t) _update(s, t, x, 2 * index + 2, (from + to) / 2 + 1, to); } } pair<int, ll> _get(int i, int index, int from, int to) { pair<int, ll> p; if (from == to) { return vec[index]; } if (i <= (from + to) / 2) p = _get(i, 2 * index + 1, from, (from + to) / 2); else p = _get(i, 2 * index + 2, (from + to) / 2 + 1, to); if (p.first < vec[index].first) return vec[index]; else return p; } }; int main(int argc, char *argv[]) { int n, q; scanf("%d%d", &n, &q); SegTree st(n); FOR(i, q) { int a; scanf("%d", &a); if (a == 0) { int s, t, x; scanf("%d%d%d", &s, &t, &x); st.update(s, t, x); } else { int b; scanf("%d", &b); printf("%lld\n", st.get(b)); } } return 0; }
### Prompt Please provide a CPP coded solution to the problem described below: Write a program which manipulates a sequence A = {a0, a1, . . . , an−1} with the following operations: * update(s, t, x): change as, as+1, ..., at to x. * find(i): output the value of ai. Note that the initial values of ai (i = 0, 1, . . . , n−1) are 231-1. Constraints * 1 ≤ n ≤ 100000 * 1 ≤ q ≤ 100000 * 0 ≤ s ≤ t < n * 0 ≤ i < n * 0 ≤ x < 231−1 Input n q query1 query2 : queryq In the first line, n (the number of elements in A) and q (the number of queries) are given. Then, ith query queryi is given in the following format: 0 s t x or 1 i The first digit represents the type of the query. '0' denotes update(s, t, x) and '1' denotes find(i). Output For each find operation, print the value. Examples Input 3 5 0 0 1 1 0 1 2 3 0 2 2 2 1 0 1 1 Output 1 3 Input 1 3 1 0 0 0 0 5 1 0 Output 2147483647 5 ### Response ```cpp #include <bits/stdc++.h> using namespace std; typedef long long ll; typedef unsigned long long ull; typedef pair<int, int> pairInt; typedef tuple<int, int, int> tuple3Int; #define FOR(i, n) for (int i = 0; i < int(n); i++) #define FOR1(i, m, n) for (int i = int(m); i < int(n); i++) #define MAX(a, b) ((a) >= (b) ? (a) : (b)) #define MIN(a, b) ((a) <= (b) ? (a) : (b)) ll pow(ll base, uint exp) { if (exp == 0) return 1; if (exp % 2 == 0) { return pow(base * base, exp / 2); } else { return base * pow(base * base, exp / 2); } } class SegTree { private: int num; int exp; int seq; vector<pair<int, ll>> vec; public: SegTree(int n) : num(n), seq(0){ exp = 0; int x = 1; while (x < n) { exp ++; x <<= 1; } vec.resize(2 * pow(2, exp) - 1, make_pair(-1, pow(2, 31) - 1)); } void update(int s, int t, ll x) { _update(s, t, x, 0, 0, pow(2, exp) - 1); seq ++; } ll get(int i) { return _get(i, 0, 0, pow(2, exp) - 1).second; } private: void _update(int s, int t, ll x, int index, int from, int to) { if (s <= from && to <= t) { vec[index].first = seq; vec[index].second = x; } else { if (s <= (from + to) / 2) _update(s, t, x, 2 * index + 1, from, (from + to) / 2); if ((from + to) / 2 < t) _update(s, t, x, 2 * index + 2, (from + to) / 2 + 1, to); } } pair<int, ll> _get(int i, int index, int from, int to) { pair<int, ll> p; if (from == to) { return vec[index]; } if (i <= (from + to) / 2) p = _get(i, 2 * index + 1, from, (from + to) / 2); else p = _get(i, 2 * index + 2, (from + to) / 2 + 1, to); if (p.first < vec[index].first) return vec[index]; else return p; } }; int main(int argc, char *argv[]) { int n, q; scanf("%d%d", &n, &q); SegTree st(n); FOR(i, q) { int a; scanf("%d", &a); if (a == 0) { int s, t, x; scanf("%d%d%d", &s, &t, &x); st.update(s, t, x); } else { int b; scanf("%d", &b); printf("%lld\n", st.get(b)); } } return 0; } ```
#include<bits/stdc++.h> using namespace std; struct node { int num,l,r,ls,rs,lazy; node(int _l,int _r) { num=INT_MAX; l=_l; r=_r; } }; vector<node> T; int make(int l,int r) { int id=T.size(); T.push_back(node(l,r)); T[id].ls=(l+1==r?-1:make(l,(l+r)/2)); T[id].rs=(l+1==r?-1:make((l+r)/2,r)); return id; } void update(int id,int l,int r,int t) { if(l==r||T[id].l>=r||T[id].r<=l) return ; if(T[id].l>=l&&T[id].r<=r) { T[id].num=t; return ; } int mid=(T[id].l+T[id].r)>>1; if(T[id].num>=0) T[T[id].ls].num=T[T[id].rs].num=T[id].num; if(l<mid) update(T[id].ls,l,r,t); if(r>mid) update(T[id].rs,l,r,t); T[id].num=-1; } int getmin(int id,int l,int r) { if(l==r||T[id].l>=r||T[id].r<=l) return INT_MAX; if(T[id].num>=0) return T[id].num; int mid=(T[id].l+T[id].r)>>1,mi=INT_MAX; if(l<mid) mi=min(mi,getmin(T[id].ls,l,r)); if(r>mid) mi=min(mi,getmin(T[id].rs,l,r)); return mi; } int main() { T.reserve(200100); int n,q; scanf("%d%d",&n,&q); make(0,n); for(int i=0;i<q;i++) { int com; scanf("%d",&com); if(com==0) { int s,t,x; scanf("%d%d%d",&s,&t,&x); update(0,s,t+1,x); } else { int s; scanf("%d",&s); printf("%d\n",getmin(0,s,s+1)); } } return 0; }
### Prompt Please create a solution in CPP to the following problem: Write a program which manipulates a sequence A = {a0, a1, . . . , an−1} with the following operations: * update(s, t, x): change as, as+1, ..., at to x. * find(i): output the value of ai. Note that the initial values of ai (i = 0, 1, . . . , n−1) are 231-1. Constraints * 1 ≤ n ≤ 100000 * 1 ≤ q ≤ 100000 * 0 ≤ s ≤ t < n * 0 ≤ i < n * 0 ≤ x < 231−1 Input n q query1 query2 : queryq In the first line, n (the number of elements in A) and q (the number of queries) are given. Then, ith query queryi is given in the following format: 0 s t x or 1 i The first digit represents the type of the query. '0' denotes update(s, t, x) and '1' denotes find(i). Output For each find operation, print the value. Examples Input 3 5 0 0 1 1 0 1 2 3 0 2 2 2 1 0 1 1 Output 1 3 Input 1 3 1 0 0 0 0 5 1 0 Output 2147483647 5 ### Response ```cpp #include<bits/stdc++.h> using namespace std; struct node { int num,l,r,ls,rs,lazy; node(int _l,int _r) { num=INT_MAX; l=_l; r=_r; } }; vector<node> T; int make(int l,int r) { int id=T.size(); T.push_back(node(l,r)); T[id].ls=(l+1==r?-1:make(l,(l+r)/2)); T[id].rs=(l+1==r?-1:make((l+r)/2,r)); return id; } void update(int id,int l,int r,int t) { if(l==r||T[id].l>=r||T[id].r<=l) return ; if(T[id].l>=l&&T[id].r<=r) { T[id].num=t; return ; } int mid=(T[id].l+T[id].r)>>1; if(T[id].num>=0) T[T[id].ls].num=T[T[id].rs].num=T[id].num; if(l<mid) update(T[id].ls,l,r,t); if(r>mid) update(T[id].rs,l,r,t); T[id].num=-1; } int getmin(int id,int l,int r) { if(l==r||T[id].l>=r||T[id].r<=l) return INT_MAX; if(T[id].num>=0) return T[id].num; int mid=(T[id].l+T[id].r)>>1,mi=INT_MAX; if(l<mid) mi=min(mi,getmin(T[id].ls,l,r)); if(r>mid) mi=min(mi,getmin(T[id].rs,l,r)); return mi; } int main() { T.reserve(200100); int n,q; scanf("%d%d",&n,&q); make(0,n); for(int i=0;i<q;i++) { int com; scanf("%d",&com); if(com==0) { int s,t,x; scanf("%d%d%d",&s,&t,&x); update(0,s,t+1,x); } else { int s; scanf("%d",&s); printf("%d\n",getmin(0,s,s+1)); } } return 0; } ```
#include "bits/stdc++.h" using namespace std; #ifdef _DEBUG #include "dump.hpp" #else #define dump(...) #endif //#define int long long #define rep(i,a,b) for(int i=(a);i<(b);i++) #define rrep(i,a,b) for(int i=(b)-1;i>=(a);i--) #define all(c) begin(c),end(c) const int INF = (1ll << 31) - 1; const int MOD = (int)(1e9) + 7; const double PI = acos(-1); const double EPS = 1e-9; template<class T> bool chmax(T &a, const T &b) { if (a < b) { a = b; return true; } return false; } template<class T> bool chmin(T &a, const T &b) { if (a > b) { a = b; return true; } return false; } template<typename T> struct RangeUpdateQuery { int n; vector<T>d; RangeUpdateQuery(int m) { for (n = 1; n < m; n <<= 1); d.assign(2 * n, INF); } int get(int i) { update(i, i + 1, -1); return d[n + i]; } void update(int a, int b, T x) { return update(a, b, x, 1, 0, n); } void update(int a, int b, T x, int k, int l, int r) { // [a,b) [l,r) if (r <= a || b <= l)return; else if (a <= l&&r <= b) { if (x >= 0)d[k] = x; return; } else { if (d[k] != INF)d[2 * k] = d[2 * k + 1] = d[k], d[k] = INF; update(a, b, x, 2 * k, l, (l + r) / 2); update(a, b, x, 2 * k + 1, (l + r) / 2, r); } } }; signed main() { cin.tie(0); ios::sync_with_stdio(false); int n, q; cin >> n >> q; RangeUpdateQuery<int> ruq(n); rep(i, 0, q) { int com; cin >> com; if (com) { int i; cin >> i; cout << ruq.get(i) << endl; } else { int s, t, x; cin >> s >> t >> x; ruq.update(s, t + 1, x); } } return 0; }
### Prompt In cpp, your task is to solve the following problem: Write a program which manipulates a sequence A = {a0, a1, . . . , an−1} with the following operations: * update(s, t, x): change as, as+1, ..., at to x. * find(i): output the value of ai. Note that the initial values of ai (i = 0, 1, . . . , n−1) are 231-1. Constraints * 1 ≤ n ≤ 100000 * 1 ≤ q ≤ 100000 * 0 ≤ s ≤ t < n * 0 ≤ i < n * 0 ≤ x < 231−1 Input n q query1 query2 : queryq In the first line, n (the number of elements in A) and q (the number of queries) are given. Then, ith query queryi is given in the following format: 0 s t x or 1 i The first digit represents the type of the query. '0' denotes update(s, t, x) and '1' denotes find(i). Output For each find operation, print the value. Examples Input 3 5 0 0 1 1 0 1 2 3 0 2 2 2 1 0 1 1 Output 1 3 Input 1 3 1 0 0 0 0 5 1 0 Output 2147483647 5 ### Response ```cpp #include "bits/stdc++.h" using namespace std; #ifdef _DEBUG #include "dump.hpp" #else #define dump(...) #endif //#define int long long #define rep(i,a,b) for(int i=(a);i<(b);i++) #define rrep(i,a,b) for(int i=(b)-1;i>=(a);i--) #define all(c) begin(c),end(c) const int INF = (1ll << 31) - 1; const int MOD = (int)(1e9) + 7; const double PI = acos(-1); const double EPS = 1e-9; template<class T> bool chmax(T &a, const T &b) { if (a < b) { a = b; return true; } return false; } template<class T> bool chmin(T &a, const T &b) { if (a > b) { a = b; return true; } return false; } template<typename T> struct RangeUpdateQuery { int n; vector<T>d; RangeUpdateQuery(int m) { for (n = 1; n < m; n <<= 1); d.assign(2 * n, INF); } int get(int i) { update(i, i + 1, -1); return d[n + i]; } void update(int a, int b, T x) { return update(a, b, x, 1, 0, n); } void update(int a, int b, T x, int k, int l, int r) { // [a,b) [l,r) if (r <= a || b <= l)return; else if (a <= l&&r <= b) { if (x >= 0)d[k] = x; return; } else { if (d[k] != INF)d[2 * k] = d[2 * k + 1] = d[k], d[k] = INF; update(a, b, x, 2 * k, l, (l + r) / 2); update(a, b, x, 2 * k + 1, (l + r) / 2, r); } } }; signed main() { cin.tie(0); ios::sync_with_stdio(false); int n, q; cin >> n >> q; RangeUpdateQuery<int> ruq(n); rep(i, 0, q) { int com; cin >> com; if (com) { int i; cin >> i; cout << ruq.get(i) << endl; } else { int s, t, x; cin >> s >> t >> x; ruq.update(s, t + 1, x); } } return 0; } ```
#include<iostream> #include<algorithm> #pragma warning(disable:4996) using namespace std; long long seg[262149], n, v, a, b, c, d, INF = (1LL << 31) - 1, size_ = 1; void update(long long p, long long q, long long r, long long s, long long t, long long u, long long v) { if (s <= p || q <= r) { if (v != INF)seg[u] = v; return; } if (p <= r && s <= q) { seg[u] = t; return; } long long w = v; if (w == INF)w = seg[u]; seg[u] = INF; update(p, q, r, (r + s) / 2, t, u * 2, w); update(p, q, (r + s) / 2, s, t, u * 2 + 1, w); } long long find(long long p, long long q, long long r, long long s, long long u) { if (s <= p || q <= r)return INF; if ((r <= p && q <= s) && (seg[u] != INF || s - r == 1)) { return seg[u]; } long long a1 = find(p, q, r, (r + s) / 2, u * 2); long long a2 = find(p, q, (r + s) / 2, s, u * 2 + 1); return min(a1, a2); } int main() { cin >> n >> v; while (size_ < n)size_ *= 2; for (int i = 1; i <= size_ * 2; i++)seg[i] = INF; for (int i = 1; i <= v; i++) { scanf("%d", &a); if (a == 0) { scanf("%lld%lld%lld", &b, &c, &d); c++; update(b, c, 0, size_, d, 1, INF); } if (a == 1) { scanf("%lld", &b); printf("%lld\n", find(b, b + 1, 0, size_, 1)); } } return 0; }
### Prompt In Cpp, your task is to solve the following problem: Write a program which manipulates a sequence A = {a0, a1, . . . , an−1} with the following operations: * update(s, t, x): change as, as+1, ..., at to x. * find(i): output the value of ai. Note that the initial values of ai (i = 0, 1, . . . , n−1) are 231-1. Constraints * 1 ≤ n ≤ 100000 * 1 ≤ q ≤ 100000 * 0 ≤ s ≤ t < n * 0 ≤ i < n * 0 ≤ x < 231−1 Input n q query1 query2 : queryq In the first line, n (the number of elements in A) and q (the number of queries) are given. Then, ith query queryi is given in the following format: 0 s t x or 1 i The first digit represents the type of the query. '0' denotes update(s, t, x) and '1' denotes find(i). Output For each find operation, print the value. Examples Input 3 5 0 0 1 1 0 1 2 3 0 2 2 2 1 0 1 1 Output 1 3 Input 1 3 1 0 0 0 0 5 1 0 Output 2147483647 5 ### Response ```cpp #include<iostream> #include<algorithm> #pragma warning(disable:4996) using namespace std; long long seg[262149], n, v, a, b, c, d, INF = (1LL << 31) - 1, size_ = 1; void update(long long p, long long q, long long r, long long s, long long t, long long u, long long v) { if (s <= p || q <= r) { if (v != INF)seg[u] = v; return; } if (p <= r && s <= q) { seg[u] = t; return; } long long w = v; if (w == INF)w = seg[u]; seg[u] = INF; update(p, q, r, (r + s) / 2, t, u * 2, w); update(p, q, (r + s) / 2, s, t, u * 2 + 1, w); } long long find(long long p, long long q, long long r, long long s, long long u) { if (s <= p || q <= r)return INF; if ((r <= p && q <= s) && (seg[u] != INF || s - r == 1)) { return seg[u]; } long long a1 = find(p, q, r, (r + s) / 2, u * 2); long long a2 = find(p, q, (r + s) / 2, s, u * 2 + 1); return min(a1, a2); } int main() { cin >> n >> v; while (size_ < n)size_ *= 2; for (int i = 1; i <= size_ * 2; i++)seg[i] = INF; for (int i = 1; i <= v; i++) { scanf("%d", &a); if (a == 0) { scanf("%lld%lld%lld", &b, &c, &d); c++; update(b, c, 0, size_, d, 1, INF); } if (a == 1) { scanf("%lld", &b); printf("%lld\n", find(b, b + 1, 0, size_, 1)); } } return 0; } ```
#pragma GCC optimize("Ofast") #include <bits/stdc++.h> #define rep(i,n) for(int i=0;i<n;i++) #define max0(a,b,c) max(max(a,b),c) #define min0(a,b,c) min(min(a,b),c) #define ft first #define sc second #define pb push_back #define all(v) (v).begin(),(v).end() #define mod 1000000007 using namespace std; using Graph = vector<vector<int>>; typedef long long lint; typedef long long ll; typedef unsigned long long ull; typedef long double ldouble; typedef vector<int> vec; typedef vector<ll> lvec; typedef vector<ull> ulvec; typedef vector<double> dvec; typedef vector<pair<int,int>> pvec; typedef vector<pair<ll,ll>> plvec; typedef vector<tuple<ll,ll,ll>> tvec; typedef vector<string> svec; const int INF=(1LL<<31)-1,MAX_N=1000000; int n; int d[MAX_N*2]; void init(int _n){ n=1; while(n<_n) n*=2; for(int i=0;i<2*n-1;i++) d[i]=INF; } void update(int a,int b,int k,int l,int r,int x){ if(r<=a||b<=l) return; if(a<=l&&r<=b){ d[k]=x; }else{ if(d[k]!=INF){ d[2*k+1]=d[k]; d[2*k+2]=d[k]; d[k]=INF; } int m=(l+r)/2; if(m>=b) update(a,b,2*k+1,l,m,x); else if(m<=a) update(a,b,2*k+2,m,r,x); else{ update(a,b,2*k+1,l,(l+r)/2,x); update(a,b,2*k+2,(l+r)/2,r,x); } } } int find(int i,int k,int l,int r){ if(d[k]!=INF) return d[k]; if(r-l==1) return d[k]; int m=(l+r)/2; if(i<m) return find(i,2*k+1,l,m); return find(i,2*k+2,m,r); } int main(){ int N,q; cin>>N>>q; init(N); rep(i,q){ int a; cin>>a; if(a==0){ int s,t,x; cin>>s>>t>>x; update(s,t+1,0,0,n,x); }else{ int x; cin>>x; cout<<find(x,0,0,n)<<endl; } } }
### Prompt Generate a Cpp solution to the following problem: Write a program which manipulates a sequence A = {a0, a1, . . . , an−1} with the following operations: * update(s, t, x): change as, as+1, ..., at to x. * find(i): output the value of ai. Note that the initial values of ai (i = 0, 1, . . . , n−1) are 231-1. Constraints * 1 ≤ n ≤ 100000 * 1 ≤ q ≤ 100000 * 0 ≤ s ≤ t < n * 0 ≤ i < n * 0 ≤ x < 231−1 Input n q query1 query2 : queryq In the first line, n (the number of elements in A) and q (the number of queries) are given. Then, ith query queryi is given in the following format: 0 s t x or 1 i The first digit represents the type of the query. '0' denotes update(s, t, x) and '1' denotes find(i). Output For each find operation, print the value. Examples Input 3 5 0 0 1 1 0 1 2 3 0 2 2 2 1 0 1 1 Output 1 3 Input 1 3 1 0 0 0 0 5 1 0 Output 2147483647 5 ### Response ```cpp #pragma GCC optimize("Ofast") #include <bits/stdc++.h> #define rep(i,n) for(int i=0;i<n;i++) #define max0(a,b,c) max(max(a,b),c) #define min0(a,b,c) min(min(a,b),c) #define ft first #define sc second #define pb push_back #define all(v) (v).begin(),(v).end() #define mod 1000000007 using namespace std; using Graph = vector<vector<int>>; typedef long long lint; typedef long long ll; typedef unsigned long long ull; typedef long double ldouble; typedef vector<int> vec; typedef vector<ll> lvec; typedef vector<ull> ulvec; typedef vector<double> dvec; typedef vector<pair<int,int>> pvec; typedef vector<pair<ll,ll>> plvec; typedef vector<tuple<ll,ll,ll>> tvec; typedef vector<string> svec; const int INF=(1LL<<31)-1,MAX_N=1000000; int n; int d[MAX_N*2]; void init(int _n){ n=1; while(n<_n) n*=2; for(int i=0;i<2*n-1;i++) d[i]=INF; } void update(int a,int b,int k,int l,int r,int x){ if(r<=a||b<=l) return; if(a<=l&&r<=b){ d[k]=x; }else{ if(d[k]!=INF){ d[2*k+1]=d[k]; d[2*k+2]=d[k]; d[k]=INF; } int m=(l+r)/2; if(m>=b) update(a,b,2*k+1,l,m,x); else if(m<=a) update(a,b,2*k+2,m,r,x); else{ update(a,b,2*k+1,l,(l+r)/2,x); update(a,b,2*k+2,(l+r)/2,r,x); } } } int find(int i,int k,int l,int r){ if(d[k]!=INF) return d[k]; if(r-l==1) return d[k]; int m=(l+r)/2; if(i<m) return find(i,2*k+1,l,m); return find(i,2*k+2,m,r); } int main(){ int N,q; cin>>N>>q; init(N); rep(i,q){ int a; cin>>a; if(a==0){ int s,t,x; cin>>s>>t>>x; update(s,t+1,0,0,n,x); }else{ int x; cin>>x; cout<<find(x,0,0,n)<<endl; } } } ```
#include <cstdio> #include <functional> #include <vector> using namespace std; #define int long long #define dotimes(i, n) for (int i = 0, i##max__ = (n); i < i##max__; i++) #define whole(f, x, ...) ([&](decltype((x)) c) { return (f)(begin(c), end(c), ## __VA_ARGS__); })(x) int rint() { int x; scanf("%lld", &x); return x; } void wint(int x) { printf("%lld\n", x); } template<typename T> int size(T const& c) { return static_cast<int>(c.size()); } template <typename T> bool maxs(T& a, T const& b) { return a < b ? a = b, true : false; } template <typename T> bool mins(T& a, T const& b) { return a > b ? a = b, true : false; } inline int lg(int x) { return 63 - __builtin_clzll(static_cast<unsigned int>(x)); } class segment_tree { // Negative nodes delegate to their children vector<int> xs; public: segment_tree(int n) : xs(1 << (lg(2 * n - 1) + 1), (1LL << 31) - 1) {} void update(int i, int j, int x) { function<void(int, int, int)> rec; rec = [&](int k, int a, int b) { if (i <= a && b <= j) xs[k] = x; else { if (xs[k] >= 0) xs[2*k] = xs[2*k+1] = xs[k]; int c = a + (b - a) / 2; if (j <= c) rec(2*k, a, c); else if (c <= i) rec(2*k+1, c, b); else { rec(2*k, a, c); rec(2*k+1, c, b); } xs[k] = -1; } }; rec(1, 0, ::size(xs)/2); } int query(const int i) { function<int(int, int, int)> rec; rec = [&](int k, int a, int b) { if (xs[k] >= 0) return xs[k]; int c = a + (b - a) / 2; return i < c ? rec(2*k, a, c) : rec(2*k+1, c, b); }; return rec(1, 0, ::size(xs)/2); } }; signed main() { const int n = rint(); const int q = rint(); segment_tree st(n); dotimes(i, q) if (rint()) { int i = rint(); wint(st.query(i)); } else { int s = rint(); int t = rint(); int x = rint(); st.update(s, t+1, x); } return 0; }
### Prompt Construct a CPP code solution to the problem outlined: Write a program which manipulates a sequence A = {a0, a1, . . . , an−1} with the following operations: * update(s, t, x): change as, as+1, ..., at to x. * find(i): output the value of ai. Note that the initial values of ai (i = 0, 1, . . . , n−1) are 231-1. Constraints * 1 ≤ n ≤ 100000 * 1 ≤ q ≤ 100000 * 0 ≤ s ≤ t < n * 0 ≤ i < n * 0 ≤ x < 231−1 Input n q query1 query2 : queryq In the first line, n (the number of elements in A) and q (the number of queries) are given. Then, ith query queryi is given in the following format: 0 s t x or 1 i The first digit represents the type of the query. '0' denotes update(s, t, x) and '1' denotes find(i). Output For each find operation, print the value. Examples Input 3 5 0 0 1 1 0 1 2 3 0 2 2 2 1 0 1 1 Output 1 3 Input 1 3 1 0 0 0 0 5 1 0 Output 2147483647 5 ### Response ```cpp #include <cstdio> #include <functional> #include <vector> using namespace std; #define int long long #define dotimes(i, n) for (int i = 0, i##max__ = (n); i < i##max__; i++) #define whole(f, x, ...) ([&](decltype((x)) c) { return (f)(begin(c), end(c), ## __VA_ARGS__); })(x) int rint() { int x; scanf("%lld", &x); return x; } void wint(int x) { printf("%lld\n", x); } template<typename T> int size(T const& c) { return static_cast<int>(c.size()); } template <typename T> bool maxs(T& a, T const& b) { return a < b ? a = b, true : false; } template <typename T> bool mins(T& a, T const& b) { return a > b ? a = b, true : false; } inline int lg(int x) { return 63 - __builtin_clzll(static_cast<unsigned int>(x)); } class segment_tree { // Negative nodes delegate to their children vector<int> xs; public: segment_tree(int n) : xs(1 << (lg(2 * n - 1) + 1), (1LL << 31) - 1) {} void update(int i, int j, int x) { function<void(int, int, int)> rec; rec = [&](int k, int a, int b) { if (i <= a && b <= j) xs[k] = x; else { if (xs[k] >= 0) xs[2*k] = xs[2*k+1] = xs[k]; int c = a + (b - a) / 2; if (j <= c) rec(2*k, a, c); else if (c <= i) rec(2*k+1, c, b); else { rec(2*k, a, c); rec(2*k+1, c, b); } xs[k] = -1; } }; rec(1, 0, ::size(xs)/2); } int query(const int i) { function<int(int, int, int)> rec; rec = [&](int k, int a, int b) { if (xs[k] >= 0) return xs[k]; int c = a + (b - a) / 2; return i < c ? rec(2*k, a, c) : rec(2*k+1, c, b); }; return rec(1, 0, ::size(xs)/2); } }; signed main() { const int n = rint(); const int q = rint(); segment_tree st(n); dotimes(i, q) if (rint()) { int i = rint(); wint(st.query(i)); } else { int s = rint(); int t = rint(); int x = rint(); st.update(s, t+1, x); } return 0; } ```
#include<bits/stdc++.h> #define range(i,a,b) for(int i = (a); i < (b); i++) #define rep(i,b) for(int i = 0; i < (b); i++) #define all(a) (a).begin(), (a).end() #define show(x) cerr << #x << " = " << (x) << endl; #define debug(x) cerr << #x << " = " << (x) << " (L" << __LINE__ << ")" << " " << __FILE__ << endl; const int INF = 2147483647; using namespace std; const int sqrtN = 512; class sqdiv{ public: int N, K; vector<int> data; vector<bool> lazy_flag; vector<int> lazy_update; sqdiv(int n){ //?????±???????????????????????´ N = n; K = (N + sqrtN - 1) / sqrtN; data.assign(K * sqrtN, INF); lazy_flag.assign(K, false); lazy_update.assign(K, 0); } void eval(int k){ if(lazy_flag[k]){ lazy_flag[k] = false; for(int i = k * sqrtN; i < (k + 1) * sqrtN; i++){ data[i] = lazy_update[k]; } } } void update(int x, int y, int a){ rep(k,K){ int l = k * sqrtN, r = (k + 1) * sqrtN; if(r <= x || y <= l) continue; if(x <= l && r <= y){ lazy_flag[k] = true; lazy_update[k] = a; }else{ eval(k); for(int i = max(x, l); i < min(y, r); i++){ data[i] = a; } } } } int find(int a){ int k = a / sqrtN; eval(k); return data[a]; } }; int main(){ int n,q; cin >> n >> q; sqdiv ob(n); rep(i,q){ bool com; int a, b, c; cin >> com; if(com){ cin >> a; cout << ob.find(a) << endl; }else{ cin >> a >> b >> c; ob.update(a,b + 1,c); } } }
### Prompt Develop a solution in CPP to the problem described below: Write a program which manipulates a sequence A = {a0, a1, . . . , an−1} with the following operations: * update(s, t, x): change as, as+1, ..., at to x. * find(i): output the value of ai. Note that the initial values of ai (i = 0, 1, . . . , n−1) are 231-1. Constraints * 1 ≤ n ≤ 100000 * 1 ≤ q ≤ 100000 * 0 ≤ s ≤ t < n * 0 ≤ i < n * 0 ≤ x < 231−1 Input n q query1 query2 : queryq In the first line, n (the number of elements in A) and q (the number of queries) are given. Then, ith query queryi is given in the following format: 0 s t x or 1 i The first digit represents the type of the query. '0' denotes update(s, t, x) and '1' denotes find(i). Output For each find operation, print the value. Examples Input 3 5 0 0 1 1 0 1 2 3 0 2 2 2 1 0 1 1 Output 1 3 Input 1 3 1 0 0 0 0 5 1 0 Output 2147483647 5 ### Response ```cpp #include<bits/stdc++.h> #define range(i,a,b) for(int i = (a); i < (b); i++) #define rep(i,b) for(int i = 0; i < (b); i++) #define all(a) (a).begin(), (a).end() #define show(x) cerr << #x << " = " << (x) << endl; #define debug(x) cerr << #x << " = " << (x) << " (L" << __LINE__ << ")" << " " << __FILE__ << endl; const int INF = 2147483647; using namespace std; const int sqrtN = 512; class sqdiv{ public: int N, K; vector<int> data; vector<bool> lazy_flag; vector<int> lazy_update; sqdiv(int n){ //?????±???????????????????????´ N = n; K = (N + sqrtN - 1) / sqrtN; data.assign(K * sqrtN, INF); lazy_flag.assign(K, false); lazy_update.assign(K, 0); } void eval(int k){ if(lazy_flag[k]){ lazy_flag[k] = false; for(int i = k * sqrtN; i < (k + 1) * sqrtN; i++){ data[i] = lazy_update[k]; } } } void update(int x, int y, int a){ rep(k,K){ int l = k * sqrtN, r = (k + 1) * sqrtN; if(r <= x || y <= l) continue; if(x <= l && r <= y){ lazy_flag[k] = true; lazy_update[k] = a; }else{ eval(k); for(int i = max(x, l); i < min(y, r); i++){ data[i] = a; } } } } int find(int a){ int k = a / sqrtN; eval(k); return data[a]; } }; int main(){ int n,q; cin >> n >> q; sqdiv ob(n); rep(i,q){ bool com; int a, b, c; cin >> com; if(com){ cin >> a; cout << ob.find(a) << endl; }else{ cin >> a >> b >> c; ob.update(a,b + 1,c); } } } ```
#include <iostream> using namespace std; const int maxn = 0x7fffffff; const int maxnode = 1 << 19; const int INF = 1000000000; int y1, y2, x, v; struct IntervalTree { int sumv[maxnode], setv[maxnode]; // 维护信息 void maintain(int o, int L, int R) { int lc = o * 2, rc = o * 2 + 1; if(R > L) { sumv[o] = sumv[lc] + sumv[rc]; } if(setv[o] >= 0) { sumv[o] = setv[o] * (R - L + 1); } } // 标记传递 void pushdown(int o) { int lc = o * 2, rc = o * 2 + 1; if(setv[o] >= 0) { setv[lc] = setv[rc] = setv[o]; setv[o] = -1; // 清除本结点标记 } } void update(int o, int L, int R) { int lc = o * 2, rc = o * 2 + 1; if(y1 <= L && y2 >= R) // 标记修改 { setv[o] = v; } else { pushdown(o); int M = L + (R - L) / 2; if(y1 <= M) update(lc, L, M); else maintain(lc, L, M); if(y2 > M) update(rc, M + 1, R); else maintain(rc, M + 1, R); } maintain(o, L, R); } void query(int o, int L, int R, int &ssum) { int lc = o * 2, rc = o * 2 + 1; maintain(o, L, R); // 处理被pushdown下来的标记 if(y1 <= L && y2 >= R) { ssum = sumv[o]; } else { pushdown(o); int M = L + (R - L) / 2; int lsum = 0; int rsum = 0; if(y1 <= M) query(lc, L, M, lsum); else maintain(lc, L, M); if(y2 > M) query(rc, M + 1, R, rsum); else maintain(rc, M + 1, R); ssum = lsum + rsum; } } }; /* 3 5 0 0 1 1 0 1 2 3 0 2 2 2 1 0 1 1 */ int n, q; IntervalTree tree; int main() { scanf("%d %d", &n, &q); tree.setv[1] = maxn; for (int i = 0; i < q; ++i) { int op; scanf("%d", &op); if (!op) { scanf("%d %d %d", &y1, &y2, &v); ++y1; ++y2; tree.update(1, 1, n); } else { int loc; scanf("%d", &loc); ++loc; y1 = y2 = loc; int gsum = 0; int ssum; tree.query(1, 1, n, ssum); gsum += ssum; printf("%d\n", gsum); } } return 0; }
### Prompt Your task is to create a Cpp solution to the following problem: Write a program which manipulates a sequence A = {a0, a1, . . . , an−1} with the following operations: * update(s, t, x): change as, as+1, ..., at to x. * find(i): output the value of ai. Note that the initial values of ai (i = 0, 1, . . . , n−1) are 231-1. Constraints * 1 ≤ n ≤ 100000 * 1 ≤ q ≤ 100000 * 0 ≤ s ≤ t < n * 0 ≤ i < n * 0 ≤ x < 231−1 Input n q query1 query2 : queryq In the first line, n (the number of elements in A) and q (the number of queries) are given. Then, ith query queryi is given in the following format: 0 s t x or 1 i The first digit represents the type of the query. '0' denotes update(s, t, x) and '1' denotes find(i). Output For each find operation, print the value. Examples Input 3 5 0 0 1 1 0 1 2 3 0 2 2 2 1 0 1 1 Output 1 3 Input 1 3 1 0 0 0 0 5 1 0 Output 2147483647 5 ### Response ```cpp #include <iostream> using namespace std; const int maxn = 0x7fffffff; const int maxnode = 1 << 19; const int INF = 1000000000; int y1, y2, x, v; struct IntervalTree { int sumv[maxnode], setv[maxnode]; // 维护信息 void maintain(int o, int L, int R) { int lc = o * 2, rc = o * 2 + 1; if(R > L) { sumv[o] = sumv[lc] + sumv[rc]; } if(setv[o] >= 0) { sumv[o] = setv[o] * (R - L + 1); } } // 标记传递 void pushdown(int o) { int lc = o * 2, rc = o * 2 + 1; if(setv[o] >= 0) { setv[lc] = setv[rc] = setv[o]; setv[o] = -1; // 清除本结点标记 } } void update(int o, int L, int R) { int lc = o * 2, rc = o * 2 + 1; if(y1 <= L && y2 >= R) // 标记修改 { setv[o] = v; } else { pushdown(o); int M = L + (R - L) / 2; if(y1 <= M) update(lc, L, M); else maintain(lc, L, M); if(y2 > M) update(rc, M + 1, R); else maintain(rc, M + 1, R); } maintain(o, L, R); } void query(int o, int L, int R, int &ssum) { int lc = o * 2, rc = o * 2 + 1; maintain(o, L, R); // 处理被pushdown下来的标记 if(y1 <= L && y2 >= R) { ssum = sumv[o]; } else { pushdown(o); int M = L + (R - L) / 2; int lsum = 0; int rsum = 0; if(y1 <= M) query(lc, L, M, lsum); else maintain(lc, L, M); if(y2 > M) query(rc, M + 1, R, rsum); else maintain(rc, M + 1, R); ssum = lsum + rsum; } } }; /* 3 5 0 0 1 1 0 1 2 3 0 2 2 2 1 0 1 1 */ int n, q; IntervalTree tree; int main() { scanf("%d %d", &n, &q); tree.setv[1] = maxn; for (int i = 0; i < q; ++i) { int op; scanf("%d", &op); if (!op) { scanf("%d %d %d", &y1, &y2, &v); ++y1; ++y2; tree.update(1, 1, n); } else { int loc; scanf("%d", &loc); ++loc; y1 = y2 = loc; int gsum = 0; int ssum; tree.query(1, 1, n, ssum); gsum += ssum; printf("%d\n", gsum); } } return 0; } ```
#include <bits/stdc++.h> using namespace std; using ll = long long; #define rep(i, n) for (int i = 0; i < (int)(n); ++i) #define all(c) begin(c), end(c) #define dump(x) cerr << __LINE__ << ":\t" #x " = " << (x) << endl struct segtree { vector<int> lazy, dat; int n; segtree(int n_, int init){ n = 1; while(n < n_) n *= 2; dat.assign(n*2, init); lazy.assign(n*2, -1); } void set(int l, int r, int x){ set(l, r, x, 0, n, 1); } void set(int l, int r, int x, int segl, int segr, int n){ // cout << l << ' ' << r << ' ' << x << ' ' << segl << ' ' << segr << ' ' << n << endl; push(segl, segr, n); if(segr <= l || r <= segl); else if(l <= segl && segr <= r) lazy[n] = x; else { int segm = (segl + segr) / 2; set(l, r, x, segl, segm, n*2); set(l, r, x, segm, segr, n*2+1); } } int get(int k){ return get(k, 0, n, 1); } int get(int k, int segl, int segr, int n){ push(segl, segr, n); if(segl + 1 == segr) return dat[n]; int segm = (segl + segr) / 2; if(k < segm) return get(k, segl, segm, n*2); else return get(k, segm, segr, n*2+1); } void push(int segl, int segr, int node){ if(lazy[node] != -1){ dat[node] = lazy[node]; if(segl + 1 != segr){ lazy[node*2] = lazy[node]; lazy[node*2+1] = lazy[node]; } lazy[node] = -1; } } }; int main(){ int n, q; while(cin >> n >> q){ segtree st(n, 2147483647); for(int iq = 0; iq < q; ++iq){ int t; cin >> t; // dump(t); if(t == 0){ int s, t, x; cin >> s >> t >> x; ++t; st.set(s, t, x); } else { int i; cin >> i; cout << st.get(i) << '\n'; } // for(int i = 1; i < (int)st.dat.size(); ++i){ // cout << '[' << st.dat[i] << ' ' << st.lazy[i] << ']'; // if(i == 1 || i == 3 || i == 7 || i == 15) cout << endl; // } } } }
### Prompt Your task is to create a CPP solution to the following problem: Write a program which manipulates a sequence A = {a0, a1, . . . , an−1} with the following operations: * update(s, t, x): change as, as+1, ..., at to x. * find(i): output the value of ai. Note that the initial values of ai (i = 0, 1, . . . , n−1) are 231-1. Constraints * 1 ≤ n ≤ 100000 * 1 ≤ q ≤ 100000 * 0 ≤ s ≤ t < n * 0 ≤ i < n * 0 ≤ x < 231−1 Input n q query1 query2 : queryq In the first line, n (the number of elements in A) and q (the number of queries) are given. Then, ith query queryi is given in the following format: 0 s t x or 1 i The first digit represents the type of the query. '0' denotes update(s, t, x) and '1' denotes find(i). Output For each find operation, print the value. Examples Input 3 5 0 0 1 1 0 1 2 3 0 2 2 2 1 0 1 1 Output 1 3 Input 1 3 1 0 0 0 0 5 1 0 Output 2147483647 5 ### Response ```cpp #include <bits/stdc++.h> using namespace std; using ll = long long; #define rep(i, n) for (int i = 0; i < (int)(n); ++i) #define all(c) begin(c), end(c) #define dump(x) cerr << __LINE__ << ":\t" #x " = " << (x) << endl struct segtree { vector<int> lazy, dat; int n; segtree(int n_, int init){ n = 1; while(n < n_) n *= 2; dat.assign(n*2, init); lazy.assign(n*2, -1); } void set(int l, int r, int x){ set(l, r, x, 0, n, 1); } void set(int l, int r, int x, int segl, int segr, int n){ // cout << l << ' ' << r << ' ' << x << ' ' << segl << ' ' << segr << ' ' << n << endl; push(segl, segr, n); if(segr <= l || r <= segl); else if(l <= segl && segr <= r) lazy[n] = x; else { int segm = (segl + segr) / 2; set(l, r, x, segl, segm, n*2); set(l, r, x, segm, segr, n*2+1); } } int get(int k){ return get(k, 0, n, 1); } int get(int k, int segl, int segr, int n){ push(segl, segr, n); if(segl + 1 == segr) return dat[n]; int segm = (segl + segr) / 2; if(k < segm) return get(k, segl, segm, n*2); else return get(k, segm, segr, n*2+1); } void push(int segl, int segr, int node){ if(lazy[node] != -1){ dat[node] = lazy[node]; if(segl + 1 != segr){ lazy[node*2] = lazy[node]; lazy[node*2+1] = lazy[node]; } lazy[node] = -1; } } }; int main(){ int n, q; while(cin >> n >> q){ segtree st(n, 2147483647); for(int iq = 0; iq < q; ++iq){ int t; cin >> t; // dump(t); if(t == 0){ int s, t, x; cin >> s >> t >> x; ++t; st.set(s, t, x); } else { int i; cin >> i; cout << st.get(i) << '\n'; } // for(int i = 1; i < (int)st.dat.size(); ++i){ // cout << '[' << st.dat[i] << ' ' << st.lazy[i] << ']'; // if(i == 1 || i == 3 || i == 7 || i == 15) cout << endl; // } } } } ```
#include <bits/stdc++.h> #define all(vec) vec.begin(), vec.end() using namespace std; using ll = long long; using P = pair<int, int>; constexpr ll INF = (1LL << 30) - 1LL; constexpr ll LINF = (1LL << 60) - 1LL; constexpr ll MOD = 1e9 + 7; template <typename T> void chmin(T &a, T b) { a = min(a, b); } template <typename T> void chmax(T &a, T b) { a = max(a, b); } template <typename T> struct Segtree { inline T merge(T a, T b) { return a.first > b.first ? a : b; } inline void act(T &a, T b) { a = b; } vector<T> dat; int n; T e; Segtree(int n_, T e) : e(e) { n = 1; while (n < n_) { n <<= 1; } dat.resize(2 * n, e); } void set(const int &a, const int &b, const T &x, int k, int l, int r) { if (b <= l || r <= a) { return; } if (a <= l && r <= b) { act(dat[k], x); return; } set(a, b, x, k << 1, l, (l + r) >> 1); set(a, b, x, k << 1 | 1, (l + r) >> 1, r); } inline void set(const int &a, const int &b, const T &x) { if (a >= b) { return; } set(a, b, x, 1, 0, n); } T get(int k) { k += n; T res = dat[k]; k >>= 1; while (k > 0) { res = merge(res, dat[k]); k >>= 1; } return res; } }; int main() { cin.tie(0); ios::sync_with_stdio(false); int n, q; cin >> n >> q; Segtree<P> seg(n, P(-1, (1LL << 31) - 1LL)); for (int k = 0; k < q; k++) { int t; cin >> t; if (t == 0) { int l, r, x; cin >> l >> r >> x; ++r; seg.set(l, r, P(k, x)); } else { int i; cin >> i; cout << seg.get(i).second << "\n"; } } }
### Prompt Please create a solution in cpp to the following problem: Write a program which manipulates a sequence A = {a0, a1, . . . , an−1} with the following operations: * update(s, t, x): change as, as+1, ..., at to x. * find(i): output the value of ai. Note that the initial values of ai (i = 0, 1, . . . , n−1) are 231-1. Constraints * 1 ≤ n ≤ 100000 * 1 ≤ q ≤ 100000 * 0 ≤ s ≤ t < n * 0 ≤ i < n * 0 ≤ x < 231−1 Input n q query1 query2 : queryq In the first line, n (the number of elements in A) and q (the number of queries) are given. Then, ith query queryi is given in the following format: 0 s t x or 1 i The first digit represents the type of the query. '0' denotes update(s, t, x) and '1' denotes find(i). Output For each find operation, print the value. Examples Input 3 5 0 0 1 1 0 1 2 3 0 2 2 2 1 0 1 1 Output 1 3 Input 1 3 1 0 0 0 0 5 1 0 Output 2147483647 5 ### Response ```cpp #include <bits/stdc++.h> #define all(vec) vec.begin(), vec.end() using namespace std; using ll = long long; using P = pair<int, int>; constexpr ll INF = (1LL << 30) - 1LL; constexpr ll LINF = (1LL << 60) - 1LL; constexpr ll MOD = 1e9 + 7; template <typename T> void chmin(T &a, T b) { a = min(a, b); } template <typename T> void chmax(T &a, T b) { a = max(a, b); } template <typename T> struct Segtree { inline T merge(T a, T b) { return a.first > b.first ? a : b; } inline void act(T &a, T b) { a = b; } vector<T> dat; int n; T e; Segtree(int n_, T e) : e(e) { n = 1; while (n < n_) { n <<= 1; } dat.resize(2 * n, e); } void set(const int &a, const int &b, const T &x, int k, int l, int r) { if (b <= l || r <= a) { return; } if (a <= l && r <= b) { act(dat[k], x); return; } set(a, b, x, k << 1, l, (l + r) >> 1); set(a, b, x, k << 1 | 1, (l + r) >> 1, r); } inline void set(const int &a, const int &b, const T &x) { if (a >= b) { return; } set(a, b, x, 1, 0, n); } T get(int k) { k += n; T res = dat[k]; k >>= 1; while (k > 0) { res = merge(res, dat[k]); k >>= 1; } return res; } }; int main() { cin.tie(0); ios::sync_with_stdio(false); int n, q; cin >> n >> q; Segtree<P> seg(n, P(-1, (1LL << 31) - 1LL)); for (int k = 0; k < q; k++) { int t; cin >> t; if (t == 0) { int l, r, x; cin >> l >> r >> x; ++r; seg.set(l, r, P(k, x)); } else { int i; cin >> i; cout << seg.get(i).second << "\n"; } } } ```
#include<bits/stdc++.h> using namespace std; struct SegmentTree { vector< pair< int, int > > lazy; int sz, timestamp; SegmentTree(int n) { sz = 1; while(sz < n) sz <<= 1; lazy.assign(2 * sz - 1, {-1, 2147483647}); timestamp = 0; } void update(int a, int b, int x, int k, int l, int r) { if(a >= r || b <= l) { } else if(a <= l && r <= b) { lazy[k] = {timestamp, x}; } else { update(a, b, x, 2 * k + 1, l, (l + r) >> 1); update(a, b, x, 2 * k + 2, (l + r) >> 1, r); } } void update(int a, int b, int x) { update(a, b, x, 0, 0, sz); ++timestamp; } int query(int k) { k += sz - 1; auto ret = lazy[k]; while(k > 0) { k = (k - 1) >> 1; ret = max(ret, lazy[k]); } return (ret.second); } }; int main() { int N, Q; scanf("%d %d", &N, &Q); SegmentTree tree(N); while(Q--) { int t; scanf("%d", &t); if(t == 0) { int s, t, x; scanf("%d %d %d", &s, &t, &x); tree.update(s, ++t, x); } else { int i; scanf("%d", &i); printf("%d\n", tree.query(i)); } } }
### Prompt Your challenge is to write a cpp solution to the following problem: Write a program which manipulates a sequence A = {a0, a1, . . . , an−1} with the following operations: * update(s, t, x): change as, as+1, ..., at to x. * find(i): output the value of ai. Note that the initial values of ai (i = 0, 1, . . . , n−1) are 231-1. Constraints * 1 ≤ n ≤ 100000 * 1 ≤ q ≤ 100000 * 0 ≤ s ≤ t < n * 0 ≤ i < n * 0 ≤ x < 231−1 Input n q query1 query2 : queryq In the first line, n (the number of elements in A) and q (the number of queries) are given. Then, ith query queryi is given in the following format: 0 s t x or 1 i The first digit represents the type of the query. '0' denotes update(s, t, x) and '1' denotes find(i). Output For each find operation, print the value. Examples Input 3 5 0 0 1 1 0 1 2 3 0 2 2 2 1 0 1 1 Output 1 3 Input 1 3 1 0 0 0 0 5 1 0 Output 2147483647 5 ### Response ```cpp #include<bits/stdc++.h> using namespace std; struct SegmentTree { vector< pair< int, int > > lazy; int sz, timestamp; SegmentTree(int n) { sz = 1; while(sz < n) sz <<= 1; lazy.assign(2 * sz - 1, {-1, 2147483647}); timestamp = 0; } void update(int a, int b, int x, int k, int l, int r) { if(a >= r || b <= l) { } else if(a <= l && r <= b) { lazy[k] = {timestamp, x}; } else { update(a, b, x, 2 * k + 1, l, (l + r) >> 1); update(a, b, x, 2 * k + 2, (l + r) >> 1, r); } } void update(int a, int b, int x) { update(a, b, x, 0, 0, sz); ++timestamp; } int query(int k) { k += sz - 1; auto ret = lazy[k]; while(k > 0) { k = (k - 1) >> 1; ret = max(ret, lazy[k]); } return (ret.second); } }; int main() { int N, Q; scanf("%d %d", &N, &Q); SegmentTree tree(N); while(Q--) { int t; scanf("%d", &t); if(t == 0) { int s, t, x; scanf("%d %d %d", &s, &t, &x); tree.update(s, ++t, x); } else { int i; scanf("%d", &i); printf("%d\n", tree.query(i)); } } } ```
#include <bits/stdc++.h> #define rep(i,n) for(int i=0;i<(n);i++) #define loop(i,x,n) for(int i=(x);i<(n);i++) #define all(v) (v).begin(),(v).end() #define int long long using namespace std; const int MOD=1e9+7; const int INF=1e9; template<typename T> void cmax(T &a, T b) {a = max(a, b);} template<typename T> void cmin(T &a, T b) {a = min(a, b);} int inf=2147483647; int size=1; vector<int> tree; void init(int n){ while(size<n)size*=2; tree.assign(size*2,inf); } //Range add Query [ ) void update(int l,int r,int x){ l+=size,r+=size; int nl=l,nr=r; stack<int> s; for(l/=2;1<=l;l/=2)s.emplace(l); while(!s.empty()){ int tmp=s.top();s.pop(); if(tree[tmp]==-1)continue; tree[2*tmp]=tree[2*tmp+1]=tree[tmp]; tree[tmp]=-1; } for(r=(r-1)/2;1<=r;r/=2)s.emplace(r); while(!s.empty()){ int tmp=s.top();s.pop(); if(tree[tmp]==-1)continue; tree[2*tmp]=tree[2*tmp+1]=tree[tmp]; tree[tmp]=-1; } for(;nl<nr;nl/=2,nr/=2){ if(nl%2==1)tree[nl++]=x; if(nr%2==1)tree[--nr]=x; } return ; } int getvalue(int i){ i+=size; int res=tree[i]; while(i/=2){ if(tree[i]!=-1){ res=tree[i]; } } return res; } signed main(){ int n,q; cin>>n>>q; init(n); rep(i,q){ int a; cin>>a; if(a){ int x; cin>>x; cout<<getvalue(x)<<endl; }else{ int s,t,x; cin>>s>>t>>x; t++; update(s,t,x); } } return 0; }
### Prompt Create a solution in cpp for the following problem: Write a program which manipulates a sequence A = {a0, a1, . . . , an−1} with the following operations: * update(s, t, x): change as, as+1, ..., at to x. * find(i): output the value of ai. Note that the initial values of ai (i = 0, 1, . . . , n−1) are 231-1. Constraints * 1 ≤ n ≤ 100000 * 1 ≤ q ≤ 100000 * 0 ≤ s ≤ t < n * 0 ≤ i < n * 0 ≤ x < 231−1 Input n q query1 query2 : queryq In the first line, n (the number of elements in A) and q (the number of queries) are given. Then, ith query queryi is given in the following format: 0 s t x or 1 i The first digit represents the type of the query. '0' denotes update(s, t, x) and '1' denotes find(i). Output For each find operation, print the value. Examples Input 3 5 0 0 1 1 0 1 2 3 0 2 2 2 1 0 1 1 Output 1 3 Input 1 3 1 0 0 0 0 5 1 0 Output 2147483647 5 ### Response ```cpp #include <bits/stdc++.h> #define rep(i,n) for(int i=0;i<(n);i++) #define loop(i,x,n) for(int i=(x);i<(n);i++) #define all(v) (v).begin(),(v).end() #define int long long using namespace std; const int MOD=1e9+7; const int INF=1e9; template<typename T> void cmax(T &a, T b) {a = max(a, b);} template<typename T> void cmin(T &a, T b) {a = min(a, b);} int inf=2147483647; int size=1; vector<int> tree; void init(int n){ while(size<n)size*=2; tree.assign(size*2,inf); } //Range add Query [ ) void update(int l,int r,int x){ l+=size,r+=size; int nl=l,nr=r; stack<int> s; for(l/=2;1<=l;l/=2)s.emplace(l); while(!s.empty()){ int tmp=s.top();s.pop(); if(tree[tmp]==-1)continue; tree[2*tmp]=tree[2*tmp+1]=tree[tmp]; tree[tmp]=-1; } for(r=(r-1)/2;1<=r;r/=2)s.emplace(r); while(!s.empty()){ int tmp=s.top();s.pop(); if(tree[tmp]==-1)continue; tree[2*tmp]=tree[2*tmp+1]=tree[tmp]; tree[tmp]=-1; } for(;nl<nr;nl/=2,nr/=2){ if(nl%2==1)tree[nl++]=x; if(nr%2==1)tree[--nr]=x; } return ; } int getvalue(int i){ i+=size; int res=tree[i]; while(i/=2){ if(tree[i]!=-1){ res=tree[i]; } } return res; } signed main(){ int n,q; cin>>n>>q; init(n); rep(i,q){ int a; cin>>a; if(a){ int x; cin>>x; cout<<getvalue(x)<<endl; }else{ int s,t,x; cin>>s>>t>>x; t++; update(s,t,x); } } return 0; } ```
#include <bits/stdc++.h> using namespace std; #define F first #define S second #define pi M_PI #define R cin>> #define Z class #define ll long long #define ln cout<<'\n' #define in(a) insert(a) #define pb(a) push_back(a) #define pd(a) printf("%.10f\n",a) #define mem(a) memset(a,0,sizeof(a)) #define all(c) (c).begin(),(c).end() #define iter(c) __typeof((c).begin()) #define rrep(i,n) for(int i=(int)(n)-1;i>=0;i--) #define REP(i,m,n) for(int i=(int)(m);i<(int)(n);i++) #define rep(i,n) REP(i,0,n) #define tr(it,c) for(iter(c) it=(c).begin();it!=(c).end();it++) template<Z A>void pr(A a){cout<<a;ln;} template<Z A,Z B>void pr(A a,B b){cout<<a<<' ';pr(b);} template<Z A,Z B,Z C>void pr(A a,B b,C c){cout<<a<<' ';pr(b,c);} template<Z A,Z B,Z C,Z D>void pr(A a,B b,C c,D d){cout<<a<<' ';pr(b,c,d);} template<Z A>void PR(A a,ll n){rep(i,n){if(i)cout<<' ';cout<<a[i];}ln;} ll check(ll n,ll m,ll x,ll y){return x>=0&&x<n&&y>=0&&y<m;} const ll MAX=1000000007,MAXL=1LL<<61,dx[4]={-1,0,1,0},dy[4]={0,1,0,-1}; typedef pair<int,int> P; class RUQ{ public: int t[555555],v[555555],c; void init(){ c=0; memset(t,0,sizeof(t)); memset(v,0,sizeof(v)); } void update(int a,int b,int x) { c++; v[c]=x; update2(a,b,c); } void update2(int a,int b,int x,int k=0,int l=0,int r=1<<18){ if(b<=l||r<=a)return; if(a<=l&&r<=b){t[k]=max(t[k],x);return;} int m=(l+r)/2; update2(a,b,x,k*2+1,l,m); update2(a,b,x,k*2+2,m,r); } int query(int i){ i+=(1<<18)-1; int res=t[i]; while(i){ i=(i-1)/2; res=max(res,t[i]); } return v[res]; } }; void Main() { int n,m; cin >> n >> m; RUQ r; r.init(); r.v[0]=INT_MAX; while(m--) { int z,x; cin >> z >> x; if(!z) { int y,w; cin >> y >> w; r.update(x,y+1,w); } else pr(r.query(x)); } } int main(){ios::sync_with_stdio(0);cin.tie(0);Main();return 0;}
### Prompt Please formulate a cpp solution to the following problem: Write a program which manipulates a sequence A = {a0, a1, . . . , an−1} with the following operations: * update(s, t, x): change as, as+1, ..., at to x. * find(i): output the value of ai. Note that the initial values of ai (i = 0, 1, . . . , n−1) are 231-1. Constraints * 1 ≤ n ≤ 100000 * 1 ≤ q ≤ 100000 * 0 ≤ s ≤ t < n * 0 ≤ i < n * 0 ≤ x < 231−1 Input n q query1 query2 : queryq In the first line, n (the number of elements in A) and q (the number of queries) are given. Then, ith query queryi is given in the following format: 0 s t x or 1 i The first digit represents the type of the query. '0' denotes update(s, t, x) and '1' denotes find(i). Output For each find operation, print the value. Examples Input 3 5 0 0 1 1 0 1 2 3 0 2 2 2 1 0 1 1 Output 1 3 Input 1 3 1 0 0 0 0 5 1 0 Output 2147483647 5 ### Response ```cpp #include <bits/stdc++.h> using namespace std; #define F first #define S second #define pi M_PI #define R cin>> #define Z class #define ll long long #define ln cout<<'\n' #define in(a) insert(a) #define pb(a) push_back(a) #define pd(a) printf("%.10f\n",a) #define mem(a) memset(a,0,sizeof(a)) #define all(c) (c).begin(),(c).end() #define iter(c) __typeof((c).begin()) #define rrep(i,n) for(int i=(int)(n)-1;i>=0;i--) #define REP(i,m,n) for(int i=(int)(m);i<(int)(n);i++) #define rep(i,n) REP(i,0,n) #define tr(it,c) for(iter(c) it=(c).begin();it!=(c).end();it++) template<Z A>void pr(A a){cout<<a;ln;} template<Z A,Z B>void pr(A a,B b){cout<<a<<' ';pr(b);} template<Z A,Z B,Z C>void pr(A a,B b,C c){cout<<a<<' ';pr(b,c);} template<Z A,Z B,Z C,Z D>void pr(A a,B b,C c,D d){cout<<a<<' ';pr(b,c,d);} template<Z A>void PR(A a,ll n){rep(i,n){if(i)cout<<' ';cout<<a[i];}ln;} ll check(ll n,ll m,ll x,ll y){return x>=0&&x<n&&y>=0&&y<m;} const ll MAX=1000000007,MAXL=1LL<<61,dx[4]={-1,0,1,0},dy[4]={0,1,0,-1}; typedef pair<int,int> P; class RUQ{ public: int t[555555],v[555555],c; void init(){ c=0; memset(t,0,sizeof(t)); memset(v,0,sizeof(v)); } void update(int a,int b,int x) { c++; v[c]=x; update2(a,b,c); } void update2(int a,int b,int x,int k=0,int l=0,int r=1<<18){ if(b<=l||r<=a)return; if(a<=l&&r<=b){t[k]=max(t[k],x);return;} int m=(l+r)/2; update2(a,b,x,k*2+1,l,m); update2(a,b,x,k*2+2,m,r); } int query(int i){ i+=(1<<18)-1; int res=t[i]; while(i){ i=(i-1)/2; res=max(res,t[i]); } return v[res]; } }; void Main() { int n,m; cin >> n >> m; RUQ r; r.init(); r.v[0]=INT_MAX; while(m--) { int z,x; cin >> z >> x; if(!z) { int y,w; cin >> y >> w; r.update(x,y+1,w); } else pr(r.query(x)); } } int main(){ios::sync_with_stdio(0);cin.tie(0);Main();return 0;} ```
#include<bits/stdc++.h> using namespace std; using Int = long long; template<typename T1,typename T2> inline void chmin(T1 &a,T2 b){if(a>b) a=b;} template<typename T1,typename T2> inline void chmax(T1 &a,T2 b){if(a<b) a=b;} //BEGIN CUT HERE template <typename E> struct SegmentTree{ using H = function<E(E,E)>; int n,height; H h; E ei; vector<E> laz; SegmentTree(H h,E ei):h(h),ei(ei){} void init(int n_){ n=1;height=0; while(n<n_) n<<=1,height++; laz.assign(2*n,ei); } inline void eval(int k){ if(laz[k]==ei) return; laz[(k<<1)|0]=h(laz[(k<<1)|0],laz[k]); laz[(k<<1)|1]=h(laz[(k<<1)|1],laz[k]); laz[k]=ei; } inline void thrust(int k){ for(int i=height;i;i--) eval(k>>i); } void update(int a,int b,E x){ thrust(a+=n); thrust(b+=n-1); for(int l=a,r=b+1;l<r;l>>=1,r>>=1){ if(l&1) laz[l]=h(laz[l],x),l++; if(r&1) --r,laz[r]=h(laz[r],x); } } E get_val(int a){ thrust(a+=n); return laz[a]; } void set_val(int a,E x){ thrust(a+=n); laz[a]=x; } }; //END CUT HERE struct FastIO{ FastIO(){ cin.tie(0); ios::sync_with_stdio(0); } }fastio_beet; //INSERT ABOVE HERE signed AOJ_DSL_2_D(){ int n,q; cin>>n>>q; auto h=[](int a,int b){(void)a;return b;}; int ei=INT_MAX; SegmentTree<int> seg(h,ei); seg.init(n); for(int i=0;i<q;i++){ int tp; cin>>tp; if(tp==0){ int s,t,x; cin>>s>>t>>x; seg.update(s,t+1,x); } if(tp==1){ int s; cin>>s; cout<<seg.get_val(s)<<"\n"; } } cout<<flush; return 0; } signed main(){ AOJ_DSL_2_D(); //AOJ_DSL_2_E(); return 0; }
### Prompt Develop a solution in CPP to the problem described below: Write a program which manipulates a sequence A = {a0, a1, . . . , an−1} with the following operations: * update(s, t, x): change as, as+1, ..., at to x. * find(i): output the value of ai. Note that the initial values of ai (i = 0, 1, . . . , n−1) are 231-1. Constraints * 1 ≤ n ≤ 100000 * 1 ≤ q ≤ 100000 * 0 ≤ s ≤ t < n * 0 ≤ i < n * 0 ≤ x < 231−1 Input n q query1 query2 : queryq In the first line, n (the number of elements in A) and q (the number of queries) are given. Then, ith query queryi is given in the following format: 0 s t x or 1 i The first digit represents the type of the query. '0' denotes update(s, t, x) and '1' denotes find(i). Output For each find operation, print the value. Examples Input 3 5 0 0 1 1 0 1 2 3 0 2 2 2 1 0 1 1 Output 1 3 Input 1 3 1 0 0 0 0 5 1 0 Output 2147483647 5 ### Response ```cpp #include<bits/stdc++.h> using namespace std; using Int = long long; template<typename T1,typename T2> inline void chmin(T1 &a,T2 b){if(a>b) a=b;} template<typename T1,typename T2> inline void chmax(T1 &a,T2 b){if(a<b) a=b;} //BEGIN CUT HERE template <typename E> struct SegmentTree{ using H = function<E(E,E)>; int n,height; H h; E ei; vector<E> laz; SegmentTree(H h,E ei):h(h),ei(ei){} void init(int n_){ n=1;height=0; while(n<n_) n<<=1,height++; laz.assign(2*n,ei); } inline void eval(int k){ if(laz[k]==ei) return; laz[(k<<1)|0]=h(laz[(k<<1)|0],laz[k]); laz[(k<<1)|1]=h(laz[(k<<1)|1],laz[k]); laz[k]=ei; } inline void thrust(int k){ for(int i=height;i;i--) eval(k>>i); } void update(int a,int b,E x){ thrust(a+=n); thrust(b+=n-1); for(int l=a,r=b+1;l<r;l>>=1,r>>=1){ if(l&1) laz[l]=h(laz[l],x),l++; if(r&1) --r,laz[r]=h(laz[r],x); } } E get_val(int a){ thrust(a+=n); return laz[a]; } void set_val(int a,E x){ thrust(a+=n); laz[a]=x; } }; //END CUT HERE struct FastIO{ FastIO(){ cin.tie(0); ios::sync_with_stdio(0); } }fastio_beet; //INSERT ABOVE HERE signed AOJ_DSL_2_D(){ int n,q; cin>>n>>q; auto h=[](int a,int b){(void)a;return b;}; int ei=INT_MAX; SegmentTree<int> seg(h,ei); seg.init(n); for(int i=0;i<q;i++){ int tp; cin>>tp; if(tp==0){ int s,t,x; cin>>s>>t>>x; seg.update(s,t+1,x); } if(tp==1){ int s; cin>>s; cout<<seg.get_val(s)<<"\n"; } } cout<<flush; return 0; } signed main(){ AOJ_DSL_2_D(); //AOJ_DSL_2_E(); return 0; } ```
#include <iostream> #include <iomanip> #include <string> #include <vector> #include <array> #include <queue> #include <algorithm> #include <utility> #include <cmath> #include <map> #include <set> #define INF_LL 9000000000000000000 #define INF 2000000000 #define REP(i, n) for(int i = 0;i < (n);i++) #define FOR(i, a, b) for(int i = (a);i < (b);i++) using namespace std; typedef long long ll; typedef pair<int, int> PII; class RangeSeg{ int n; vector<ll> data, lazy; public: RangeSeg(int n_){ n = 1; while(n < n_) n <<= 1; REP(i, n*2-1){ data.push_back(-1); lazy.push_back(-1); } } void push(int l, int r, int k){ if(lazy[k] != -1){ data[k] = lazy[k]; if(r - l > 1){ lazy[k*2+1] = lazy[k]; lazy[k*2+2] = lazy[k]; } lazy[k] = -1; } } void update(int s, int t, int l, int r, int k, int x){ push(l, r, k); if(s <= l && r <= t){ lazy[k] = x; push(l, r, k); }else if(l < t && s < r){ update(s, t, (l+r)/2, r, k*2+2, x); update(s, t, l, (l+r)/2, k*2+1, x); } } void update(int s, int t, int x){ update(s, t, 0, n, 0, x); } void show(){ int i = 0; int en = 1; while(i < n*2-1){ cout << "(" << data[i] << ", " << lazy[i] << ") "; if(i == en*2-2){ cout << endl; en *= 2; } i++; } } ll find(int l, int r, int k, int i){ push(l, r, k); if(r-l == 1){ return data[k]; } if(l <= i && i <= r){ if((l+r)/2 <= i){ return find((l+r)/2, r, k*2+2, i); }else{ return find(l, (l+r)/2, k*2+1, i); } }else{ return -1; } } ll find(int i){ return find(0, n, 0, i); } }; int main(void){ int n, q; cin >> n >> q; RangeSeg rs(n); REP(i, q){ int com; cin >> com; if(com == 0){ int s, t, x; cin >> s >> t >> x; rs.update(s, t+1, x); }else{ int x; cin >> x; x = rs.find(x); if(x == -1) cout << ((ll)1 << 31)-1 << endl; else cout << x << endl; } } }
### Prompt Please create a solution in Cpp to the following problem: Write a program which manipulates a sequence A = {a0, a1, . . . , an−1} with the following operations: * update(s, t, x): change as, as+1, ..., at to x. * find(i): output the value of ai. Note that the initial values of ai (i = 0, 1, . . . , n−1) are 231-1. Constraints * 1 ≤ n ≤ 100000 * 1 ≤ q ≤ 100000 * 0 ≤ s ≤ t < n * 0 ≤ i < n * 0 ≤ x < 231−1 Input n q query1 query2 : queryq In the first line, n (the number of elements in A) and q (the number of queries) are given. Then, ith query queryi is given in the following format: 0 s t x or 1 i The first digit represents the type of the query. '0' denotes update(s, t, x) and '1' denotes find(i). Output For each find operation, print the value. Examples Input 3 5 0 0 1 1 0 1 2 3 0 2 2 2 1 0 1 1 Output 1 3 Input 1 3 1 0 0 0 0 5 1 0 Output 2147483647 5 ### Response ```cpp #include <iostream> #include <iomanip> #include <string> #include <vector> #include <array> #include <queue> #include <algorithm> #include <utility> #include <cmath> #include <map> #include <set> #define INF_LL 9000000000000000000 #define INF 2000000000 #define REP(i, n) for(int i = 0;i < (n);i++) #define FOR(i, a, b) for(int i = (a);i < (b);i++) using namespace std; typedef long long ll; typedef pair<int, int> PII; class RangeSeg{ int n; vector<ll> data, lazy; public: RangeSeg(int n_){ n = 1; while(n < n_) n <<= 1; REP(i, n*2-1){ data.push_back(-1); lazy.push_back(-1); } } void push(int l, int r, int k){ if(lazy[k] != -1){ data[k] = lazy[k]; if(r - l > 1){ lazy[k*2+1] = lazy[k]; lazy[k*2+2] = lazy[k]; } lazy[k] = -1; } } void update(int s, int t, int l, int r, int k, int x){ push(l, r, k); if(s <= l && r <= t){ lazy[k] = x; push(l, r, k); }else if(l < t && s < r){ update(s, t, (l+r)/2, r, k*2+2, x); update(s, t, l, (l+r)/2, k*2+1, x); } } void update(int s, int t, int x){ update(s, t, 0, n, 0, x); } void show(){ int i = 0; int en = 1; while(i < n*2-1){ cout << "(" << data[i] << ", " << lazy[i] << ") "; if(i == en*2-2){ cout << endl; en *= 2; } i++; } } ll find(int l, int r, int k, int i){ push(l, r, k); if(r-l == 1){ return data[k]; } if(l <= i && i <= r){ if((l+r)/2 <= i){ return find((l+r)/2, r, k*2+2, i); }else{ return find(l, (l+r)/2, k*2+1, i); } }else{ return -1; } } ll find(int i){ return find(0, n, 0, i); } }; int main(void){ int n, q; cin >> n >> q; RangeSeg rs(n); REP(i, q){ int com; cin >> com; if(com == 0){ int s, t, x; cin >> s >> t >> x; rs.update(s, t+1, x); }else{ int x; cin >> x; x = rs.find(x); if(x == -1) cout << ((ll)1 << 31)-1 << endl; else cout << x << endl; } } } ```
#include<iostream> using namespace std; #include<vector> #include<functional> template<typename T> struct dualsegtree{ function<T(T,T)>lazycalcfn,updatefn; int n; T lazydefvalue; vector<T>dat,lazy; vector<bool>lazyflag; dualsegtree(int n_=0,T defvalue=0, function<T(T,T)>lazycalcfn_=[](T a,T b){return a+b;}, function<T(T,T)>updatefn_=[](T a,T b){return a+b;}, T lazydefvalue_=0 ):lazydefvalue(lazydefvalue_), lazycalcfn(lazycalcfn_),updatefn(updatefn_) { n=1; while(n<n_)n<<=1; dat.assign(n,defvalue); lazy.assign(n-1,lazydefvalue); lazyflag.assign(n-1,false); } void copy(const vector<T>&v) { for(int i=0;i<v.size();i++)dat[i]=v[i]; lazy.assign(n-1,lazydefvalue); lazyflag.assign(n-1,false); } void update(int a,int b,T x,int k=0,int l=0,int r=-1)//[a,b) { if(r<0)r=n; if(b<=l||r<=a)return; else if(a<=l&&r<=b) { if(k<n-1) { lazy[k]=lazycalcfn(lazy[k],x); lazyflag[k]=true; } else dat[k-n+1]=updatefn(dat[k-n+1],x); } else { if(lazyflag[k]) { update(0,n,lazy[k],k*2+1,l,(l+r)/2); update(0,n,lazy[k],k*2+2,(l+r)/2,r); lazy[k]=lazydefvalue; lazyflag[k]=false; } update(a,b,x,k*2+1,l,(l+r)/2); update(a,b,x,k*2+2,(l+r)/2,r); } } T query(int i) { T ret=dat[i]; i+=n-1; while(i>0) { i=(i-1)/2; if(lazyflag[i])ret=updatefn(ret,lazy[i]); } return ret; } }; int main() { int N,Q; cin>>N>>Q; dualsegtree<int>P(N,(int)((1LL<<31)-1), [](int a,int b){return b;},[](int a,int b){return b;}); for(;Q--;) { int q;cin>>q; if(q==0) { int s,t,x;cin>>s>>t>>x; P.update(s,t+1,x); } else { int i;cin>>i;cout<<P.query(i)<<endl; } } }
### Prompt Construct a cpp code solution to the problem outlined: Write a program which manipulates a sequence A = {a0, a1, . . . , an−1} with the following operations: * update(s, t, x): change as, as+1, ..., at to x. * find(i): output the value of ai. Note that the initial values of ai (i = 0, 1, . . . , n−1) are 231-1. Constraints * 1 ≤ n ≤ 100000 * 1 ≤ q ≤ 100000 * 0 ≤ s ≤ t < n * 0 ≤ i < n * 0 ≤ x < 231−1 Input n q query1 query2 : queryq In the first line, n (the number of elements in A) and q (the number of queries) are given. Then, ith query queryi is given in the following format: 0 s t x or 1 i The first digit represents the type of the query. '0' denotes update(s, t, x) and '1' denotes find(i). Output For each find operation, print the value. Examples Input 3 5 0 0 1 1 0 1 2 3 0 2 2 2 1 0 1 1 Output 1 3 Input 1 3 1 0 0 0 0 5 1 0 Output 2147483647 5 ### Response ```cpp #include<iostream> using namespace std; #include<vector> #include<functional> template<typename T> struct dualsegtree{ function<T(T,T)>lazycalcfn,updatefn; int n; T lazydefvalue; vector<T>dat,lazy; vector<bool>lazyflag; dualsegtree(int n_=0,T defvalue=0, function<T(T,T)>lazycalcfn_=[](T a,T b){return a+b;}, function<T(T,T)>updatefn_=[](T a,T b){return a+b;}, T lazydefvalue_=0 ):lazydefvalue(lazydefvalue_), lazycalcfn(lazycalcfn_),updatefn(updatefn_) { n=1; while(n<n_)n<<=1; dat.assign(n,defvalue); lazy.assign(n-1,lazydefvalue); lazyflag.assign(n-1,false); } void copy(const vector<T>&v) { for(int i=0;i<v.size();i++)dat[i]=v[i]; lazy.assign(n-1,lazydefvalue); lazyflag.assign(n-1,false); } void update(int a,int b,T x,int k=0,int l=0,int r=-1)//[a,b) { if(r<0)r=n; if(b<=l||r<=a)return; else if(a<=l&&r<=b) { if(k<n-1) { lazy[k]=lazycalcfn(lazy[k],x); lazyflag[k]=true; } else dat[k-n+1]=updatefn(dat[k-n+1],x); } else { if(lazyflag[k]) { update(0,n,lazy[k],k*2+1,l,(l+r)/2); update(0,n,lazy[k],k*2+2,(l+r)/2,r); lazy[k]=lazydefvalue; lazyflag[k]=false; } update(a,b,x,k*2+1,l,(l+r)/2); update(a,b,x,k*2+2,(l+r)/2,r); } } T query(int i) { T ret=dat[i]; i+=n-1; while(i>0) { i=(i-1)/2; if(lazyflag[i])ret=updatefn(ret,lazy[i]); } return ret; } }; int main() { int N,Q; cin>>N>>Q; dualsegtree<int>P(N,(int)((1LL<<31)-1), [](int a,int b){return b;},[](int a,int b){return b;}); for(;Q--;) { int q;cin>>q; if(q==0) { int s,t,x;cin>>s>>t>>x; P.update(s,t+1,x); } else { int i;cin>>i;cout<<P.query(i)<<endl; } } } ```
#include <bits/stdc++.h> #define rep(i,n) for(int i=0;i<n;i++) #define rrep(i,n) for(int i=1;i<=n;i++) #define drep(i,n) for(int i=n;i>=0;i--) #define MAX 100000 #define ll long long #define dmp make_pair #define dpb push_back #define P pair<int,int> #define fi first #define se second using namespace std; //__gcd(a,b), __builtin_popcount(a); const int INF = 2147483647; #define B 100 int bucket[MAX/B][B]; int data[MAX/B]; void update(int a, int b, int x){ int f1 = 1, f2 = 1; while(a <= b && a%B != 0){ if(f1 && data[a/B] != -1){ for(int i = 0;i < 100;i++)bucket[a/B][i] = data[a/B]; f1 = 0;data[a/B] = -1; } bucket[a/B][a%B] = x; a++; } while(a <= b && b%B != 99){ if(f2 && data[b/B] != -1){ for(int i = 0;i < 100;i++)bucket[b/B][i] = data[b/B]; f2 = 0;data[b/B] = -1; } bucket[b/B][b%B] = x; b--; } while(a < b){ data[a/B] = x; a += B; } } int find(int x){ if(data[x/B] != -1){ for(int i = 0;i < 100;i++)bucket[x/B][i] = data[x/B]; data[x/B] = -1; } return bucket[x/B][x%B]; } int main(){ int n, q, c, s, t, x, ans; scanf("%d%d", &n, &q); fill(data, data+MAX/B, -1); fill((int*)bucket, (int*)(bucket+MAX/B), INF); while(q--){ scanf("%d", &c); if(!c){ scanf("%d%d%d", &s, &t, &x); update(s, t, x); }else{ scanf("%d", &x); ans = find(x); printf("%d\n", ans); } } //rep(i,n)printf("%d ", bucket[0][i]); return 0; }
### Prompt Please provide a Cpp coded solution to the problem described below: Write a program which manipulates a sequence A = {a0, a1, . . . , an−1} with the following operations: * update(s, t, x): change as, as+1, ..., at to x. * find(i): output the value of ai. Note that the initial values of ai (i = 0, 1, . . . , n−1) are 231-1. Constraints * 1 ≤ n ≤ 100000 * 1 ≤ q ≤ 100000 * 0 ≤ s ≤ t < n * 0 ≤ i < n * 0 ≤ x < 231−1 Input n q query1 query2 : queryq In the first line, n (the number of elements in A) and q (the number of queries) are given. Then, ith query queryi is given in the following format: 0 s t x or 1 i The first digit represents the type of the query. '0' denotes update(s, t, x) and '1' denotes find(i). Output For each find operation, print the value. Examples Input 3 5 0 0 1 1 0 1 2 3 0 2 2 2 1 0 1 1 Output 1 3 Input 1 3 1 0 0 0 0 5 1 0 Output 2147483647 5 ### Response ```cpp #include <bits/stdc++.h> #define rep(i,n) for(int i=0;i<n;i++) #define rrep(i,n) for(int i=1;i<=n;i++) #define drep(i,n) for(int i=n;i>=0;i--) #define MAX 100000 #define ll long long #define dmp make_pair #define dpb push_back #define P pair<int,int> #define fi first #define se second using namespace std; //__gcd(a,b), __builtin_popcount(a); const int INF = 2147483647; #define B 100 int bucket[MAX/B][B]; int data[MAX/B]; void update(int a, int b, int x){ int f1 = 1, f2 = 1; while(a <= b && a%B != 0){ if(f1 && data[a/B] != -1){ for(int i = 0;i < 100;i++)bucket[a/B][i] = data[a/B]; f1 = 0;data[a/B] = -1; } bucket[a/B][a%B] = x; a++; } while(a <= b && b%B != 99){ if(f2 && data[b/B] != -1){ for(int i = 0;i < 100;i++)bucket[b/B][i] = data[b/B]; f2 = 0;data[b/B] = -1; } bucket[b/B][b%B] = x; b--; } while(a < b){ data[a/B] = x; a += B; } } int find(int x){ if(data[x/B] != -1){ for(int i = 0;i < 100;i++)bucket[x/B][i] = data[x/B]; data[x/B] = -1; } return bucket[x/B][x%B]; } int main(){ int n, q, c, s, t, x, ans; scanf("%d%d", &n, &q); fill(data, data+MAX/B, -1); fill((int*)bucket, (int*)(bucket+MAX/B), INF); while(q--){ scanf("%d", &c); if(!c){ scanf("%d%d%d", &s, &t, &x); update(s, t, x); }else{ scanf("%d", &x); ans = find(x); printf("%d\n", ans); } } //rep(i,n)printf("%d ", bucket[0][i]); return 0; } ```
#include <iostream> #include <vector> #include <functional> #include <limits> template <class Data, class Operator> class CoSegmentTree { using OperatorMerger = std::function<Operator(Operator, Operator)>; using Applier = std::function<Data(Data, Operator)>; public: int length; std::vector<Operator> ope; Data dat_id; Operator ope_id; OperatorMerger opem; Applier app; explicit CoSegmentTree(int N, Data dat_id, Operator ope_id, OperatorMerger opem, Applier app) : length(1), dat_id(dat_id), ope_id(ope_id), opem(opem), app(app) { while (length < N) length *= 2; ope.assign(length * 2, ope_id); } // half-open interval [ql, qr) void update(int ql, int qr, Operator e) { return update(ql, qr, e, 1, 0, length); } void update(int ql, int qr, Operator e, int nidx, int nl, int nr) { if (nr <= ql || qr <= nl) return; if (ql <= nl && nr <= qr) { ope[nidx] = opem(ope[nidx], e); return; } // 子に作用素を伝播 ope[nidx * 2] = opem(ope[nidx * 2], ope[nidx]); ope[nidx * 2 + 1] = opem(ope[nidx * 2 + 1], ope[nidx]); ope[nidx] = ope_id; // 子を再帰的に更新 update(ql, qr, e, nidx * 2, nl, (nl + nr) / 2); update(ql, qr, e, nidx * 2 + 1, (nl + nr) / 2, nr); } Data query(int idx) { int nidx = idx + length; Data ret = app(dat_id, ope[nidx]); while (nidx > 0) { nidx /= 2; ret = app(ret, ope[nidx]); } return ret; } }; const int INF = std::numeric_limits<int>::max(); int main() { int N, Q; std::cin >> N >> Q; CoSegmentTree<int, int> seg(N, INF, INF, [](int a, int b) { return (b == INF ? a : b); }, [](int a, int e) { return (e == INF ? a : e); }); for (int q = 0; q < Q; ++q) { int k; std::cin >> k; if (k == 0) { int l, r, x; std::cin >> l >> r >> x; seg.update(l, r + 1, x); } else { int i; std::cin >> i; std::cout << seg.query(i) << std::endl; } } return 0; }
### Prompt Create a solution in Cpp for the following problem: Write a program which manipulates a sequence A = {a0, a1, . . . , an−1} with the following operations: * update(s, t, x): change as, as+1, ..., at to x. * find(i): output the value of ai. Note that the initial values of ai (i = 0, 1, . . . , n−1) are 231-1. Constraints * 1 ≤ n ≤ 100000 * 1 ≤ q ≤ 100000 * 0 ≤ s ≤ t < n * 0 ≤ i < n * 0 ≤ x < 231−1 Input n q query1 query2 : queryq In the first line, n (the number of elements in A) and q (the number of queries) are given. Then, ith query queryi is given in the following format: 0 s t x or 1 i The first digit represents the type of the query. '0' denotes update(s, t, x) and '1' denotes find(i). Output For each find operation, print the value. Examples Input 3 5 0 0 1 1 0 1 2 3 0 2 2 2 1 0 1 1 Output 1 3 Input 1 3 1 0 0 0 0 5 1 0 Output 2147483647 5 ### Response ```cpp #include <iostream> #include <vector> #include <functional> #include <limits> template <class Data, class Operator> class CoSegmentTree { using OperatorMerger = std::function<Operator(Operator, Operator)>; using Applier = std::function<Data(Data, Operator)>; public: int length; std::vector<Operator> ope; Data dat_id; Operator ope_id; OperatorMerger opem; Applier app; explicit CoSegmentTree(int N, Data dat_id, Operator ope_id, OperatorMerger opem, Applier app) : length(1), dat_id(dat_id), ope_id(ope_id), opem(opem), app(app) { while (length < N) length *= 2; ope.assign(length * 2, ope_id); } // half-open interval [ql, qr) void update(int ql, int qr, Operator e) { return update(ql, qr, e, 1, 0, length); } void update(int ql, int qr, Operator e, int nidx, int nl, int nr) { if (nr <= ql || qr <= nl) return; if (ql <= nl && nr <= qr) { ope[nidx] = opem(ope[nidx], e); return; } // 子に作用素を伝播 ope[nidx * 2] = opem(ope[nidx * 2], ope[nidx]); ope[nidx * 2 + 1] = opem(ope[nidx * 2 + 1], ope[nidx]); ope[nidx] = ope_id; // 子を再帰的に更新 update(ql, qr, e, nidx * 2, nl, (nl + nr) / 2); update(ql, qr, e, nidx * 2 + 1, (nl + nr) / 2, nr); } Data query(int idx) { int nidx = idx + length; Data ret = app(dat_id, ope[nidx]); while (nidx > 0) { nidx /= 2; ret = app(ret, ope[nidx]); } return ret; } }; const int INF = std::numeric_limits<int>::max(); int main() { int N, Q; std::cin >> N >> Q; CoSegmentTree<int, int> seg(N, INF, INF, [](int a, int b) { return (b == INF ? a : b); }, [](int a, int e) { return (e == INF ? a : e); }); for (int q = 0; q < Q; ++q) { int k; std::cin >> k; if (k == 0) { int l, r, x; std::cin >> l >> r >> x; seg.update(l, r + 1, x); } else { int i; std::cin >> i; std::cout << seg.query(i) << std::endl; } } return 0; } ```
#include <bits/stdc++.h> using namespace std; template<typename OperatorMonoid> struct DualSegmentTree{ typedef function<OperatorMonoid(OperatorMonoid,OperatorMonoid)> H; int n,hi; H h; OperatorMonoid id1; vector<OperatorMonoid> laz; DualSegmentTree(int n_,H h,OperatorMonoid id1):h(h),id1(id1){init(n_);} void init(int n_){ n=1,hi=0; while(n<n_) n<<=1,++hi; laz.assign(n<<1,id1); } inline void propagate(int k){ if (laz[k]==id1) return; laz[k<<1|0]=h(laz[k<<1|0],laz[k]); laz[k<<1|1]=h(laz[k<<1|1],laz[k]); laz[k]=id1; } inline void thrust(int k){ for (int i=hi;i;--i) propagate(k>>i); } void update(int a,int b,OperatorMonoid x){ if (a>=b) return; thrust(a+=n),thrust(b+=n-1); for (int l=a,r=b+1;l<r;l>>=1,r>>=1){ if (l&1) laz[l]=h(laz[l],x),++l; if (r&1) --r,laz[r]=h(laz[r],x); } } void set_val(int k,OperatorMonoid x){ thrust(k+=n); laz[k]=x; } OperatorMonoid operator[](int k){ thrust(k+=n); return laz[k]; } }; // https://onlinejudge.u-aizu.ac.jp/courses/library/3/DSL/2/DSL_2_D void DSL_2_D(){ int n,q; cin >> n >> q; auto h=[](int a,int b){return b;}; DualSegmentTree<int> seg(n,h,INT_MAX); for (;q--;){ int c,s,t,x,i; cin >> c; if (!c){ cin >> s >> t >> x; seg.update(s,t+1,x); } else { cin >> i; cout << seg[i] << '\n'; } } } int main(){ cin.tie(0); ios::sync_with_stdio(false); DSL_2_D(); }
### Prompt Your challenge is to write a CPP solution to the following problem: Write a program which manipulates a sequence A = {a0, a1, . . . , an−1} with the following operations: * update(s, t, x): change as, as+1, ..., at to x. * find(i): output the value of ai. Note that the initial values of ai (i = 0, 1, . . . , n−1) are 231-1. Constraints * 1 ≤ n ≤ 100000 * 1 ≤ q ≤ 100000 * 0 ≤ s ≤ t < n * 0 ≤ i < n * 0 ≤ x < 231−1 Input n q query1 query2 : queryq In the first line, n (the number of elements in A) and q (the number of queries) are given. Then, ith query queryi is given in the following format: 0 s t x or 1 i The first digit represents the type of the query. '0' denotes update(s, t, x) and '1' denotes find(i). Output For each find operation, print the value. Examples Input 3 5 0 0 1 1 0 1 2 3 0 2 2 2 1 0 1 1 Output 1 3 Input 1 3 1 0 0 0 0 5 1 0 Output 2147483647 5 ### Response ```cpp #include <bits/stdc++.h> using namespace std; template<typename OperatorMonoid> struct DualSegmentTree{ typedef function<OperatorMonoid(OperatorMonoid,OperatorMonoid)> H; int n,hi; H h; OperatorMonoid id1; vector<OperatorMonoid> laz; DualSegmentTree(int n_,H h,OperatorMonoid id1):h(h),id1(id1){init(n_);} void init(int n_){ n=1,hi=0; while(n<n_) n<<=1,++hi; laz.assign(n<<1,id1); } inline void propagate(int k){ if (laz[k]==id1) return; laz[k<<1|0]=h(laz[k<<1|0],laz[k]); laz[k<<1|1]=h(laz[k<<1|1],laz[k]); laz[k]=id1; } inline void thrust(int k){ for (int i=hi;i;--i) propagate(k>>i); } void update(int a,int b,OperatorMonoid x){ if (a>=b) return; thrust(a+=n),thrust(b+=n-1); for (int l=a,r=b+1;l<r;l>>=1,r>>=1){ if (l&1) laz[l]=h(laz[l],x),++l; if (r&1) --r,laz[r]=h(laz[r],x); } } void set_val(int k,OperatorMonoid x){ thrust(k+=n); laz[k]=x; } OperatorMonoid operator[](int k){ thrust(k+=n); return laz[k]; } }; // https://onlinejudge.u-aizu.ac.jp/courses/library/3/DSL/2/DSL_2_D void DSL_2_D(){ int n,q; cin >> n >> q; auto h=[](int a,int b){return b;}; DualSegmentTree<int> seg(n,h,INT_MAX); for (;q--;){ int c,s,t,x,i; cin >> c; if (!c){ cin >> s >> t >> x; seg.update(s,t+1,x); } else { cin >> i; cout << seg[i] << '\n'; } } } int main(){ cin.tie(0); ios::sync_with_stdio(false); DSL_2_D(); } ```
#include "bits/stdc++.h" using namespace std; //#define int long long #define DBG 1 #define dump(o) if(DBG){cerr<<#o<<" "<<(o)<<endl;} #define dumpc(o) if(DBG){cerr<<#o; for(auto &e:(o))cerr<<" "<<e;cerr<<endl;} #define rep(i,a,b) for(int i=(a);i<(b);i++) #define rrep(i,a,b) for(int i=(b)-1;i>=(a);i--) #define all(c) begin(c),end(c) const int INF = (1LL << 31) - 1; const int MOD = (int)(1e9 + 7); class RangeUpdateQuery { public: int n; vector<int> d; vector<int> timestamp; int time; RangeUpdateQuery(int m) { for (n = 1; n < m; n *= 2); d.assign(n * 2, INF); time = 0; timestamp.assign(n * 2, 0); } //[l, r) void update(int l, int r, int x) { time++; for (; l && l + (l&-l) <= r; l += l&-l) { d[(n + l) / (l&-l)] = x; timestamp[(n + l) / (l&-l)] = time; } for (; l < r; r -= r&-r) { d[(n + r) / (r&-r) - 1] = x; timestamp[(n + r) / (r&-r) - 1] = time; } } int get(int i) { int ret = d[n + i]; int max_time = timestamp[n + i]; for (int j = (n + i) / 2; j > 0; j >>= 1) { if (max_time > timestamp[j])continue; max_time = timestamp[j]; ret = d[j]; } return ret; } }; signed main() { int n, q; cin >> n >> q; RangeUpdateQuery RUQ(n); rep(i, 0, q) { int com; cin >> com; if (com == 0) { int s, t, x; cin >> s >> t >> x; RUQ.update(s, t + 1, x); } else { int i; cin >> i; cout << RUQ.get(i) << endl;; } } return 0; }
### Prompt Please provide a Cpp coded solution to the problem described below: Write a program which manipulates a sequence A = {a0, a1, . . . , an−1} with the following operations: * update(s, t, x): change as, as+1, ..., at to x. * find(i): output the value of ai. Note that the initial values of ai (i = 0, 1, . . . , n−1) are 231-1. Constraints * 1 ≤ n ≤ 100000 * 1 ≤ q ≤ 100000 * 0 ≤ s ≤ t < n * 0 ≤ i < n * 0 ≤ x < 231−1 Input n q query1 query2 : queryq In the first line, n (the number of elements in A) and q (the number of queries) are given. Then, ith query queryi is given in the following format: 0 s t x or 1 i The first digit represents the type of the query. '0' denotes update(s, t, x) and '1' denotes find(i). Output For each find operation, print the value. Examples Input 3 5 0 0 1 1 0 1 2 3 0 2 2 2 1 0 1 1 Output 1 3 Input 1 3 1 0 0 0 0 5 1 0 Output 2147483647 5 ### Response ```cpp #include "bits/stdc++.h" using namespace std; //#define int long long #define DBG 1 #define dump(o) if(DBG){cerr<<#o<<" "<<(o)<<endl;} #define dumpc(o) if(DBG){cerr<<#o; for(auto &e:(o))cerr<<" "<<e;cerr<<endl;} #define rep(i,a,b) for(int i=(a);i<(b);i++) #define rrep(i,a,b) for(int i=(b)-1;i>=(a);i--) #define all(c) begin(c),end(c) const int INF = (1LL << 31) - 1; const int MOD = (int)(1e9 + 7); class RangeUpdateQuery { public: int n; vector<int> d; vector<int> timestamp; int time; RangeUpdateQuery(int m) { for (n = 1; n < m; n *= 2); d.assign(n * 2, INF); time = 0; timestamp.assign(n * 2, 0); } //[l, r) void update(int l, int r, int x) { time++; for (; l && l + (l&-l) <= r; l += l&-l) { d[(n + l) / (l&-l)] = x; timestamp[(n + l) / (l&-l)] = time; } for (; l < r; r -= r&-r) { d[(n + r) / (r&-r) - 1] = x; timestamp[(n + r) / (r&-r) - 1] = time; } } int get(int i) { int ret = d[n + i]; int max_time = timestamp[n + i]; for (int j = (n + i) / 2; j > 0; j >>= 1) { if (max_time > timestamp[j])continue; max_time = timestamp[j]; ret = d[j]; } return ret; } }; signed main() { int n, q; cin >> n >> q; RangeUpdateQuery RUQ(n); rep(i, 0, q) { int com; cin >> com; if (com == 0) { int s, t, x; cin >> s >> t >> x; RUQ.update(s, t + 1, x); } else { int i; cin >> i; cout << RUQ.get(i) << endl;; } } return 0; } ```
#include <bits/stdc++.h> using namespace std; bool upd[(1<<18)]; int val[(1<<18)]; void Set(int a,int b,int x,int k=0,int l=0,int r=(1<<17)){ if(b<=l || r<=a)return; if( r-l>1 && upd[k] ){ upd[k*2+1] = upd[k*2+2] = 1; val[k*2+1] = val[k*2+2] = val[k]; } upd[k]=0; if(a<=l && r<=b){ upd[k]=1; val[k]=x; } else{ Set(a,b,x,k*2+1,l,(l+r)/2); Set(a,b,x,k*2+2,(l+r)/2,r); val[k]=min(val[k*2+1],val[k*2+2]); } } int Find(int a,int b,int k=0,int l=0,int r=(1<<17)){ if(b<=l || r<=a)return INT_MAX; if( r-l>1 && upd[k] ){ upd[k*2+1] = upd[k*2+2] = 1; val[k*2+1] = val[k*2+2] = val[k]; } upd[k]=0; if(a<=l && r<=b) return val[k]; else{ int L = Find(a,b,k*2+1,l,(l+r)/2); int R = Find(a,b,k*2+2,(l+r)/2,r); return min(L,R); } } int n,m,a,b,c,d; int main(){ memset(upd,0,sizeof(upd)); fill(val,val+(1<<18),INT_MAX); cin>>n>>m; while(m--){ cin>>a>>b; if(a){ cout<<Find(b,b+1)<<endl; } else{ cin>>c>>d; Set(b,c+1,d); } } }
### Prompt Please formulate a Cpp solution to the following problem: Write a program which manipulates a sequence A = {a0, a1, . . . , an−1} with the following operations: * update(s, t, x): change as, as+1, ..., at to x. * find(i): output the value of ai. Note that the initial values of ai (i = 0, 1, . . . , n−1) are 231-1. Constraints * 1 ≤ n ≤ 100000 * 1 ≤ q ≤ 100000 * 0 ≤ s ≤ t < n * 0 ≤ i < n * 0 ≤ x < 231−1 Input n q query1 query2 : queryq In the first line, n (the number of elements in A) and q (the number of queries) are given. Then, ith query queryi is given in the following format: 0 s t x or 1 i The first digit represents the type of the query. '0' denotes update(s, t, x) and '1' denotes find(i). Output For each find operation, print the value. Examples Input 3 5 0 0 1 1 0 1 2 3 0 2 2 2 1 0 1 1 Output 1 3 Input 1 3 1 0 0 0 0 5 1 0 Output 2147483647 5 ### Response ```cpp #include <bits/stdc++.h> using namespace std; bool upd[(1<<18)]; int val[(1<<18)]; void Set(int a,int b,int x,int k=0,int l=0,int r=(1<<17)){ if(b<=l || r<=a)return; if( r-l>1 && upd[k] ){ upd[k*2+1] = upd[k*2+2] = 1; val[k*2+1] = val[k*2+2] = val[k]; } upd[k]=0; if(a<=l && r<=b){ upd[k]=1; val[k]=x; } else{ Set(a,b,x,k*2+1,l,(l+r)/2); Set(a,b,x,k*2+2,(l+r)/2,r); val[k]=min(val[k*2+1],val[k*2+2]); } } int Find(int a,int b,int k=0,int l=0,int r=(1<<17)){ if(b<=l || r<=a)return INT_MAX; if( r-l>1 && upd[k] ){ upd[k*2+1] = upd[k*2+2] = 1; val[k*2+1] = val[k*2+2] = val[k]; } upd[k]=0; if(a<=l && r<=b) return val[k]; else{ int L = Find(a,b,k*2+1,l,(l+r)/2); int R = Find(a,b,k*2+2,(l+r)/2,r); return min(L,R); } } int n,m,a,b,c,d; int main(){ memset(upd,0,sizeof(upd)); fill(val,val+(1<<18),INT_MAX); cin>>n>>m; while(m--){ cin>>a>>b; if(a){ cout<<Find(b,b+1)<<endl; } else{ cin>>c>>d; Set(b,c+1,d); } } } ```
#include <iostream> #include <vector> #include <climits> using namespace std; void Init(); void update(int index, int value, int searchLeft, int searchRight, int left, int right); int find(int index, int searchLeft, int searchRight, int left, int right); void lazy_propagate(int index); const int INF = INT_MAX; vector<int> tree; vector<int> lazy; int n, q; int main() { cin >> n >> q; Init(); for (int i = 0; i < q; i++) { int com, a, b, x; cin >> com; switch (com) { case 0: cin >> a >> b >> x; update(0, x, 0, n, a, b + 1); break; case 1: cin >> x; cout << find(0, 0, n, x, x + 1) << endl; break; } } return 0; } void Init() { int _n = 1; while (_n < n) _n *= 2; n = _n; tree = vector<int>(2 * n - 1, INF); lazy = vector<int>(2 * n - 1, -1); } void lazy_propagate(int index) { if (lazy[index] == -1) return; tree[index] = lazy[index]; if (index < n - 1) { lazy[index * 2 + 1] = lazy[index]; lazy[index * 2 + 2] = lazy[index]; } lazy[index] = -1; } void update(int index, int value, int searchLeft, int searchRight, int left, int right) { if (right <= searchLeft || searchRight <= left) { lazy_propagate(index); } else if (left <= searchLeft && searchRight <= right) { lazy[index] = value; lazy_propagate(index); } else { lazy_propagate(index); int mid = (searchLeft + searchRight) / 2; update(index * 2 + 1, value, searchLeft, mid, left, right); update(index * 2 + 2, value, mid, searchRight, left, right); tree[index] = min(tree[index * 2 + 1], tree[index * 2 + 2]); } } int find(int index, int searchLeft, int searchRight, int left, int right) { if (right <= searchLeft || searchRight <= left) { return INF; } else if (left <= searchLeft && searchRight <= right) { lazy_propagate(index); return tree[index]; } else { lazy_propagate(index); int mid = (searchLeft + searchRight) / 2; int lValue = find(index * 2 + 1, searchLeft, mid, left, right); int rValue = find(index * 2 + 2, mid, searchRight, left, right); return min(lValue, rValue); } }
### Prompt Your task is to create a cpp solution to the following problem: Write a program which manipulates a sequence A = {a0, a1, . . . , an−1} with the following operations: * update(s, t, x): change as, as+1, ..., at to x. * find(i): output the value of ai. Note that the initial values of ai (i = 0, 1, . . . , n−1) are 231-1. Constraints * 1 ≤ n ≤ 100000 * 1 ≤ q ≤ 100000 * 0 ≤ s ≤ t < n * 0 ≤ i < n * 0 ≤ x < 231−1 Input n q query1 query2 : queryq In the first line, n (the number of elements in A) and q (the number of queries) are given. Then, ith query queryi is given in the following format: 0 s t x or 1 i The first digit represents the type of the query. '0' denotes update(s, t, x) and '1' denotes find(i). Output For each find operation, print the value. Examples Input 3 5 0 0 1 1 0 1 2 3 0 2 2 2 1 0 1 1 Output 1 3 Input 1 3 1 0 0 0 0 5 1 0 Output 2147483647 5 ### Response ```cpp #include <iostream> #include <vector> #include <climits> using namespace std; void Init(); void update(int index, int value, int searchLeft, int searchRight, int left, int right); int find(int index, int searchLeft, int searchRight, int left, int right); void lazy_propagate(int index); const int INF = INT_MAX; vector<int> tree; vector<int> lazy; int n, q; int main() { cin >> n >> q; Init(); for (int i = 0; i < q; i++) { int com, a, b, x; cin >> com; switch (com) { case 0: cin >> a >> b >> x; update(0, x, 0, n, a, b + 1); break; case 1: cin >> x; cout << find(0, 0, n, x, x + 1) << endl; break; } } return 0; } void Init() { int _n = 1; while (_n < n) _n *= 2; n = _n; tree = vector<int>(2 * n - 1, INF); lazy = vector<int>(2 * n - 1, -1); } void lazy_propagate(int index) { if (lazy[index] == -1) return; tree[index] = lazy[index]; if (index < n - 1) { lazy[index * 2 + 1] = lazy[index]; lazy[index * 2 + 2] = lazy[index]; } lazy[index] = -1; } void update(int index, int value, int searchLeft, int searchRight, int left, int right) { if (right <= searchLeft || searchRight <= left) { lazy_propagate(index); } else if (left <= searchLeft && searchRight <= right) { lazy[index] = value; lazy_propagate(index); } else { lazy_propagate(index); int mid = (searchLeft + searchRight) / 2; update(index * 2 + 1, value, searchLeft, mid, left, right); update(index * 2 + 2, value, mid, searchRight, left, right); tree[index] = min(tree[index * 2 + 1], tree[index * 2 + 2]); } } int find(int index, int searchLeft, int searchRight, int left, int right) { if (right <= searchLeft || searchRight <= left) { return INF; } else if (left <= searchLeft && searchRight <= right) { lazy_propagate(index); return tree[index]; } else { lazy_propagate(index); int mid = (searchLeft + searchRight) / 2; int lValue = find(index * 2 + 1, searchLeft, mid, left, right); int rValue = find(index * 2 + 2, mid, searchRight, left, right); return min(lValue, rValue); } } ```
#include <bits/stdc++.h> using namespace std; const int INF=INT_MAX; struct lst { private: int n; vector<int> node; vector<int> lazy; vector<bool> lflg; public: lst(int sz) { n=1; while(n<sz) n*=2; node.resize(2*n-1, INF); lazy.resize(2*n-1, 0); lflg.resize(2*n-1, false); } void lazy2node(int k, int l, int r) { if(lflg[k]) { node[k]=lazy[k]; lflg[k]=false; prop(k, l, r); } } void prop(int k, int l, int r) { if (r-l>0) { lazy[2*k+1]=lazy[2*k+2]=node[k]; lflg[2*k+1]=lflg[2*k+2]=true; } } void update(int qa, int qb, int v, int k=0, int l=0, int r=-1) { if(r<0) r=n-1; lazy2node(k, l, r); if(qb<l || r<qa) return; if(qa<=l && r<=qb) { node[k] = v; prop(k, l, r); } else { int m=(l+r)/2; update(qa, qb, v, 2*k+1, l, m); update(qa, qb, v, 2*k+2, m+1, r); } } int get(int qa, int qb, int k=0, int l=0, int r=-1) { if(r<0) r=n-1; lazy2node(k, l, r); if(qb<l || r<qa) return INF; if(qa<=l && r<=qb) return node[k]; else { int m=(l+r)/2; int lv = get(qa, qb, 2*k+1, l, m); int lr = get(qa, qb, 2*k+2, m+1, r); return min(lv, lr); } } }; int main() { int n, q; scanf("%d %d", &n, &q); lst tree = lst(n); for(int i=0; i<q; i++) { int t; scanf("%d", &t); if(t) { int s; scanf("%d", &s); printf("%d\n", tree.get(s,s)); } else { int s, t, v; scanf("%d %d %d", &s, &t, &v); tree.update(s, t, v); } } return 0; }
### Prompt Construct a cpp code solution to the problem outlined: Write a program which manipulates a sequence A = {a0, a1, . . . , an−1} with the following operations: * update(s, t, x): change as, as+1, ..., at to x. * find(i): output the value of ai. Note that the initial values of ai (i = 0, 1, . . . , n−1) are 231-1. Constraints * 1 ≤ n ≤ 100000 * 1 ≤ q ≤ 100000 * 0 ≤ s ≤ t < n * 0 ≤ i < n * 0 ≤ x < 231−1 Input n q query1 query2 : queryq In the first line, n (the number of elements in A) and q (the number of queries) are given. Then, ith query queryi is given in the following format: 0 s t x or 1 i The first digit represents the type of the query. '0' denotes update(s, t, x) and '1' denotes find(i). Output For each find operation, print the value. Examples Input 3 5 0 0 1 1 0 1 2 3 0 2 2 2 1 0 1 1 Output 1 3 Input 1 3 1 0 0 0 0 5 1 0 Output 2147483647 5 ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int INF=INT_MAX; struct lst { private: int n; vector<int> node; vector<int> lazy; vector<bool> lflg; public: lst(int sz) { n=1; while(n<sz) n*=2; node.resize(2*n-1, INF); lazy.resize(2*n-1, 0); lflg.resize(2*n-1, false); } void lazy2node(int k, int l, int r) { if(lflg[k]) { node[k]=lazy[k]; lflg[k]=false; prop(k, l, r); } } void prop(int k, int l, int r) { if (r-l>0) { lazy[2*k+1]=lazy[2*k+2]=node[k]; lflg[2*k+1]=lflg[2*k+2]=true; } } void update(int qa, int qb, int v, int k=0, int l=0, int r=-1) { if(r<0) r=n-1; lazy2node(k, l, r); if(qb<l || r<qa) return; if(qa<=l && r<=qb) { node[k] = v; prop(k, l, r); } else { int m=(l+r)/2; update(qa, qb, v, 2*k+1, l, m); update(qa, qb, v, 2*k+2, m+1, r); } } int get(int qa, int qb, int k=0, int l=0, int r=-1) { if(r<0) r=n-1; lazy2node(k, l, r); if(qb<l || r<qa) return INF; if(qa<=l && r<=qb) return node[k]; else { int m=(l+r)/2; int lv = get(qa, qb, 2*k+1, l, m); int lr = get(qa, qb, 2*k+2, m+1, r); return min(lv, lr); } } }; int main() { int n, q; scanf("%d %d", &n, &q); lst tree = lst(n); for(int i=0; i<q; i++) { int t; scanf("%d", &t); if(t) { int s; scanf("%d", &s); printf("%d\n", tree.get(s,s)); } else { int s, t, v; scanf("%d %d %d", &s, &t, &v); tree.update(s, t, v); } } return 0; } ```
#include<bits/stdc++.h> using namespace std; int t[(1<<18)]; //0 2 1 0 0 //0 2 1 0 0 65536 //0 2 1 0 0 2 void Set(int a,int b,int x,int k=0,int l=0,int r=(1<<17)){ if(b<=l || r<=a)return; if(a<=l && r<=b){ t[k]=max(t[k],x); return; } int m=(l+r)/2; Set(a,b,x,k*2+1,l,m); Set(a,b,x,k*2+2,m,r); } int Get(int i){ i+=(1<<17)-1; int res=t[i]; while(i){ i=(i-1)/2; res=max(res,t[i]); } return res; } int n,q; int value[100005]; int main(){ value[0]=2147483647; scanf("%d %d",&n,&q); for(int i=1;i<=q;i++){ int type; scanf("%d",&type); if(type==0){ int l,r; scanf("%d %d %d",&l,&r,&value[i]); r++; Set(l,r,i); }else{ int target; scanf("%d",&target); int ans=Get(target); printf("%d\n",value[ans]); } } return 0; }
### Prompt Construct a Cpp code solution to the problem outlined: Write a program which manipulates a sequence A = {a0, a1, . . . , an−1} with the following operations: * update(s, t, x): change as, as+1, ..., at to x. * find(i): output the value of ai. Note that the initial values of ai (i = 0, 1, . . . , n−1) are 231-1. Constraints * 1 ≤ n ≤ 100000 * 1 ≤ q ≤ 100000 * 0 ≤ s ≤ t < n * 0 ≤ i < n * 0 ≤ x < 231−1 Input n q query1 query2 : queryq In the first line, n (the number of elements in A) and q (the number of queries) are given. Then, ith query queryi is given in the following format: 0 s t x or 1 i The first digit represents the type of the query. '0' denotes update(s, t, x) and '1' denotes find(i). Output For each find operation, print the value. Examples Input 3 5 0 0 1 1 0 1 2 3 0 2 2 2 1 0 1 1 Output 1 3 Input 1 3 1 0 0 0 0 5 1 0 Output 2147483647 5 ### Response ```cpp #include<bits/stdc++.h> using namespace std; int t[(1<<18)]; //0 2 1 0 0 //0 2 1 0 0 65536 //0 2 1 0 0 2 void Set(int a,int b,int x,int k=0,int l=0,int r=(1<<17)){ if(b<=l || r<=a)return; if(a<=l && r<=b){ t[k]=max(t[k],x); return; } int m=(l+r)/2; Set(a,b,x,k*2+1,l,m); Set(a,b,x,k*2+2,m,r); } int Get(int i){ i+=(1<<17)-1; int res=t[i]; while(i){ i=(i-1)/2; res=max(res,t[i]); } return res; } int n,q; int value[100005]; int main(){ value[0]=2147483647; scanf("%d %d",&n,&q); for(int i=1;i<=q;i++){ int type; scanf("%d",&type); if(type==0){ int l,r; scanf("%d %d %d",&l,&r,&value[i]); r++; Set(l,r,i); }else{ int target; scanf("%d",&target); int ans=Get(target); printf("%d\n",value[ans]); } } return 0; } ```
#include <iostream> #include <vector> #include <limits> #include <algorithm> struct RangeUpdateQuery{ int n, now; std::vector<int> dat, time; void init(int n_){ n = 1; now = 0; while(n < n_) n *= 2; dat.resize(2 * n - 1, std::numeric_limits<int>::max()); time.resize(2 * n - 1, 0); } void update(int a, int b, int k, int l, int r, int x){ if(r <= a || b <= l) return; if(a <= l && r <= b){ dat[k] = x; time[k] = now; } else{ update(a, b, k * 2 + 1, l, (l + r) / 2, x); update(a, b, k * 2 + 2, (l + r) / 2, r, x); } } void update(int a, int b, int x){ now++; update(a, b, 0, 0, n, x); } int query(int k){ k += n - 1; int res = dat[k], recent = time[k]; while(k > 0) { k = (k - 1) / 2; if(recent < time[k]){ recent = time[k]; res = dat[k]; } } return res; } }; using namespace std; int main(){ int n, q; cin >> n >> q; RangeUpdateQuery ruq; ruq.init(n); while(q--){ int com; cin >> com; if(com){ int i; cin >> i; cout << ruq.query(i) << "\n"; }else{ int s, t, x; cin >> s >> t >> x; ruq.update(s, t + 1, x); } } }
### Prompt Create a solution in CPP for the following problem: Write a program which manipulates a sequence A = {a0, a1, . . . , an−1} with the following operations: * update(s, t, x): change as, as+1, ..., at to x. * find(i): output the value of ai. Note that the initial values of ai (i = 0, 1, . . . , n−1) are 231-1. Constraints * 1 ≤ n ≤ 100000 * 1 ≤ q ≤ 100000 * 0 ≤ s ≤ t < n * 0 ≤ i < n * 0 ≤ x < 231−1 Input n q query1 query2 : queryq In the first line, n (the number of elements in A) and q (the number of queries) are given. Then, ith query queryi is given in the following format: 0 s t x or 1 i The first digit represents the type of the query. '0' denotes update(s, t, x) and '1' denotes find(i). Output For each find operation, print the value. Examples Input 3 5 0 0 1 1 0 1 2 3 0 2 2 2 1 0 1 1 Output 1 3 Input 1 3 1 0 0 0 0 5 1 0 Output 2147483647 5 ### Response ```cpp #include <iostream> #include <vector> #include <limits> #include <algorithm> struct RangeUpdateQuery{ int n, now; std::vector<int> dat, time; void init(int n_){ n = 1; now = 0; while(n < n_) n *= 2; dat.resize(2 * n - 1, std::numeric_limits<int>::max()); time.resize(2 * n - 1, 0); } void update(int a, int b, int k, int l, int r, int x){ if(r <= a || b <= l) return; if(a <= l && r <= b){ dat[k] = x; time[k] = now; } else{ update(a, b, k * 2 + 1, l, (l + r) / 2, x); update(a, b, k * 2 + 2, (l + r) / 2, r, x); } } void update(int a, int b, int x){ now++; update(a, b, 0, 0, n, x); } int query(int k){ k += n - 1; int res = dat[k], recent = time[k]; while(k > 0) { k = (k - 1) / 2; if(recent < time[k]){ recent = time[k]; res = dat[k]; } } return res; } }; using namespace std; int main(){ int n, q; cin >> n >> q; RangeUpdateQuery ruq; ruq.init(n); while(q--){ int com; cin >> com; if(com){ int i; cin >> i; cout << ruq.query(i) << "\n"; }else{ int s, t, x; cin >> s >> t >> x; ruq.update(s, t + 1, x); } } } ```
#include <bits/stdc++.h> using namespace std; using Int = int_fast64_t; template <class operator_monoid> class dual_segment_tree{ public: typedef typename operator_monoid::underlying_type underlying_type; typedef typename operator_monoid::value_type value_type; size_t n; vector<underlying_type> v; vector<value_type> w; underlying_type e = operator_monoid::unit(); dual_segment_tree(size_t size){ n = 1; while(n < size) n <<= 1; v.resize(2*n, e); w.resize(size, operator_monoid::default_value()); } dual_segment_tree(vector<value_type> _w){ size_t size = w.size(); n = 1; while(n < size) n <<= 1; v.resize(2*n, e); w(_w); } void range_operate(underlying_type f, size_t a, size_t b, size_t k, size_t l, size_t r){ if(r <= a || b <= l) return; if(a <= l && r <= b) v[k] = operator_monoid::compose(f, v[k]); else{ if(2*k < v.size()) v[2*k] = operator_monoid::compose(v[k], v[2*k]); if(2*k+1 < v.size()) v[2*k+1] = operator_monoid::compose(v[k], v[2*k+1]); v[k] = operator_monoid::unit(); range_operate(f, a, b, 2*k, l, (l+r+1)/2); range_operate(f, a, b, 2*k+1, (l+r+1)/2, r); } } void range_operate(underlying_type f, size_t a, size_t b){ range_operate(f, a, b, 1, 0, n); } value_type point_get(size_t i){ range_operate(e, i, i+1, 1, 0, n); return operator_monoid::operate(v[i+n], w[i]); } }; struct assign_operator_monoid{ using underlying_type = pair<bool, Int>; using value_type = Int; static underlying_type unit(){ return pair<bool, int>(true, 0); } static underlying_type compose(underlying_type l, underlying_type r){ if(l == unit()) return r; return l; } static value_type default_value(){ return (1ll<<31)-1; } static value_type operate(underlying_type f, value_type x){ return f.first ? x : f.second; } }; int main(){ // cin.tie(0); // ios::sync_with_stdio(false); Int n, q; cin >> n >> q; dual_segment_tree<assign_operator_monoid> dst(n); while(q--){ Int p; cin >> p; if(p == 0){ Int s, t, x; cin >> s >> t >> x; dst.range_operate(pair<bool, Int>(false, x), s, t+1); }else{ Int i; cin >> i; cout << dst.point_get(i) << "\n"; // if(i == 5) // for(Int j=0; j<64; ++j) // cout << j << " " << (dst.v[j].first ? "id" : "no") << " " << dst.v[j].second << "\n"; } } }
### Prompt Your task is to create a Cpp solution to the following problem: Write a program which manipulates a sequence A = {a0, a1, . . . , an−1} with the following operations: * update(s, t, x): change as, as+1, ..., at to x. * find(i): output the value of ai. Note that the initial values of ai (i = 0, 1, . . . , n−1) are 231-1. Constraints * 1 ≤ n ≤ 100000 * 1 ≤ q ≤ 100000 * 0 ≤ s ≤ t < n * 0 ≤ i < n * 0 ≤ x < 231−1 Input n q query1 query2 : queryq In the first line, n (the number of elements in A) and q (the number of queries) are given. Then, ith query queryi is given in the following format: 0 s t x or 1 i The first digit represents the type of the query. '0' denotes update(s, t, x) and '1' denotes find(i). Output For each find operation, print the value. Examples Input 3 5 0 0 1 1 0 1 2 3 0 2 2 2 1 0 1 1 Output 1 3 Input 1 3 1 0 0 0 0 5 1 0 Output 2147483647 5 ### Response ```cpp #include <bits/stdc++.h> using namespace std; using Int = int_fast64_t; template <class operator_monoid> class dual_segment_tree{ public: typedef typename operator_monoid::underlying_type underlying_type; typedef typename operator_monoid::value_type value_type; size_t n; vector<underlying_type> v; vector<value_type> w; underlying_type e = operator_monoid::unit(); dual_segment_tree(size_t size){ n = 1; while(n < size) n <<= 1; v.resize(2*n, e); w.resize(size, operator_monoid::default_value()); } dual_segment_tree(vector<value_type> _w){ size_t size = w.size(); n = 1; while(n < size) n <<= 1; v.resize(2*n, e); w(_w); } void range_operate(underlying_type f, size_t a, size_t b, size_t k, size_t l, size_t r){ if(r <= a || b <= l) return; if(a <= l && r <= b) v[k] = operator_monoid::compose(f, v[k]); else{ if(2*k < v.size()) v[2*k] = operator_monoid::compose(v[k], v[2*k]); if(2*k+1 < v.size()) v[2*k+1] = operator_monoid::compose(v[k], v[2*k+1]); v[k] = operator_monoid::unit(); range_operate(f, a, b, 2*k, l, (l+r+1)/2); range_operate(f, a, b, 2*k+1, (l+r+1)/2, r); } } void range_operate(underlying_type f, size_t a, size_t b){ range_operate(f, a, b, 1, 0, n); } value_type point_get(size_t i){ range_operate(e, i, i+1, 1, 0, n); return operator_monoid::operate(v[i+n], w[i]); } }; struct assign_operator_monoid{ using underlying_type = pair<bool, Int>; using value_type = Int; static underlying_type unit(){ return pair<bool, int>(true, 0); } static underlying_type compose(underlying_type l, underlying_type r){ if(l == unit()) return r; return l; } static value_type default_value(){ return (1ll<<31)-1; } static value_type operate(underlying_type f, value_type x){ return f.first ? x : f.second; } }; int main(){ // cin.tie(0); // ios::sync_with_stdio(false); Int n, q; cin >> n >> q; dual_segment_tree<assign_operator_monoid> dst(n); while(q--){ Int p; cin >> p; if(p == 0){ Int s, t, x; cin >> s >> t >> x; dst.range_operate(pair<bool, Int>(false, x), s, t+1); }else{ Int i; cin >> i; cout << dst.point_get(i) << "\n"; // if(i == 5) // for(Int j=0; j<64; ++j) // cout << j << " " << (dst.v[j].first ? "id" : "no") << " " << dst.v[j].second << "\n"; } } } ```
#include<cstdio> #include<vector> #include<algorithm> using namespace std; const long long INF = (1 << 31) - 1; struct segtree{ int size; vector<long long> updated; segtree(int n){ size = 1; while(n>size){ size *= 2; } updated.assign(2*size-1,INF); } void update(int a,int b,long long x,int k,int l,int r){ if(b<=l||r<=a) return; if(a<=l&&r<=b) updated[k] = x; else{ if(updated[k]>=0){ updated[2*k+1] = updated[k]; updated[2*k+2] = updated[k]; updated[k] = -1; } update(a,b,x,2*k+1,l,(l+r)/2); update(a,b,x,2*k+2,(l+r)/2,r); } } void update(int a,int b,long long x){ update(a,b+1,x,0,0,size); } long long find(int i,int k,int l,int r){ if(i<l||r<=i) return -1; if(updated[k]>=0) return updated[k]; else return max(find(i,2*k+1,l,(l+r)/2),find(i,2*k+2,(l+r)/2,r)); } long long find(int i){ return find(i,0,0,size); } }; int main(){ int n,q; scanf("%d %d",&n,&q); segtree st(n); for(int i=0;i<q;i++){ int cmd; scanf("%d",&cmd); if(cmd==0){ long long s,t,x; scanf("%lld %lld %lld",&s,&t,&x); st.update(s,t,x); }else if(cmd==1){ int i; scanf("%d",&i); printf("%lld\n",st.find(i)); } } }
### Prompt Construct a Cpp code solution to the problem outlined: Write a program which manipulates a sequence A = {a0, a1, . . . , an−1} with the following operations: * update(s, t, x): change as, as+1, ..., at to x. * find(i): output the value of ai. Note that the initial values of ai (i = 0, 1, . . . , n−1) are 231-1. Constraints * 1 ≤ n ≤ 100000 * 1 ≤ q ≤ 100000 * 0 ≤ s ≤ t < n * 0 ≤ i < n * 0 ≤ x < 231−1 Input n q query1 query2 : queryq In the first line, n (the number of elements in A) and q (the number of queries) are given. Then, ith query queryi is given in the following format: 0 s t x or 1 i The first digit represents the type of the query. '0' denotes update(s, t, x) and '1' denotes find(i). Output For each find operation, print the value. Examples Input 3 5 0 0 1 1 0 1 2 3 0 2 2 2 1 0 1 1 Output 1 3 Input 1 3 1 0 0 0 0 5 1 0 Output 2147483647 5 ### Response ```cpp #include<cstdio> #include<vector> #include<algorithm> using namespace std; const long long INF = (1 << 31) - 1; struct segtree{ int size; vector<long long> updated; segtree(int n){ size = 1; while(n>size){ size *= 2; } updated.assign(2*size-1,INF); } void update(int a,int b,long long x,int k,int l,int r){ if(b<=l||r<=a) return; if(a<=l&&r<=b) updated[k] = x; else{ if(updated[k]>=0){ updated[2*k+1] = updated[k]; updated[2*k+2] = updated[k]; updated[k] = -1; } update(a,b,x,2*k+1,l,(l+r)/2); update(a,b,x,2*k+2,(l+r)/2,r); } } void update(int a,int b,long long x){ update(a,b+1,x,0,0,size); } long long find(int i,int k,int l,int r){ if(i<l||r<=i) return -1; if(updated[k]>=0) return updated[k]; else return max(find(i,2*k+1,l,(l+r)/2),find(i,2*k+2,(l+r)/2,r)); } long long find(int i){ return find(i,0,0,size); } }; int main(){ int n,q; scanf("%d %d",&n,&q); segtree st(n); for(int i=0;i<q;i++){ int cmd; scanf("%d",&cmd); if(cmd==0){ long long s,t,x; scanf("%lld %lld %lld",&s,&t,&x); st.update(s,t,x); }else if(cmd==1){ int i; scanf("%d",&i); printf("%lld\n",st.find(i)); } } } ```
#define _USE_MATH_DEFINES #include <cstdio> #include <cstdlib> #include <iostream> #include <cmath> #include <algorithm> #include <vector> #include <queue> #include <map> #include <list> using namespace std; typedef pair<long long int, long long int> P; long long int INF = 2147483647; int const TREE_SIZE = 1 << 20; long long int seg_tree[TREE_SIZE]; long long int T[TREE_SIZE]; int find(int a){ a += TREE_SIZE / 2; int ret = seg_tree[a]; int tmax = T[a]; for(int x = a / 2; x > 0; x /= 2){ if(T[x] > tmax){ tmax = T[x]; ret = seg_tree[x]; } } return ret; } void update(int a, int b, int index, int num, int time, int l, int r){ // 外からは query(a, b, 1, 0, TREE_SIZE / 2) のように呼ぶ if(r <= a || b <= l){ return; } if(a <= l && r <= b){ seg_tree[index] = num; T[index] = time; return; } update(a, b, index * 2, num, time, l, (l + r) / 2); update(a, b, index * 2 + 1, num, time, (l + r) / 2, r); return; } int main(){ int n, q; cin >> n >> q; for(int i = 0; i < TREE_SIZE; i++){ seg_tree[i] = INF; T[i] = -1; } for(int i = 0; i < q; i++){ long long int num, a, b, c; cin >> num; if(num == 0){ cin >> a >> b >> c; update(a, b + 1, 1, c, i, 0, TREE_SIZE / 2); }else{ cin >> a; cout << find(a) << endl; } /* for(int j = 0; j < n; j++){ cout << find(j) << " "; } cout << endl; */ } return 0; }
### Prompt Create a solution in Cpp for the following problem: Write a program which manipulates a sequence A = {a0, a1, . . . , an−1} with the following operations: * update(s, t, x): change as, as+1, ..., at to x. * find(i): output the value of ai. Note that the initial values of ai (i = 0, 1, . . . , n−1) are 231-1. Constraints * 1 ≤ n ≤ 100000 * 1 ≤ q ≤ 100000 * 0 ≤ s ≤ t < n * 0 ≤ i < n * 0 ≤ x < 231−1 Input n q query1 query2 : queryq In the first line, n (the number of elements in A) and q (the number of queries) are given. Then, ith query queryi is given in the following format: 0 s t x or 1 i The first digit represents the type of the query. '0' denotes update(s, t, x) and '1' denotes find(i). Output For each find operation, print the value. Examples Input 3 5 0 0 1 1 0 1 2 3 0 2 2 2 1 0 1 1 Output 1 3 Input 1 3 1 0 0 0 0 5 1 0 Output 2147483647 5 ### Response ```cpp #define _USE_MATH_DEFINES #include <cstdio> #include <cstdlib> #include <iostream> #include <cmath> #include <algorithm> #include <vector> #include <queue> #include <map> #include <list> using namespace std; typedef pair<long long int, long long int> P; long long int INF = 2147483647; int const TREE_SIZE = 1 << 20; long long int seg_tree[TREE_SIZE]; long long int T[TREE_SIZE]; int find(int a){ a += TREE_SIZE / 2; int ret = seg_tree[a]; int tmax = T[a]; for(int x = a / 2; x > 0; x /= 2){ if(T[x] > tmax){ tmax = T[x]; ret = seg_tree[x]; } } return ret; } void update(int a, int b, int index, int num, int time, int l, int r){ // 外からは query(a, b, 1, 0, TREE_SIZE / 2) のように呼ぶ if(r <= a || b <= l){ return; } if(a <= l && r <= b){ seg_tree[index] = num; T[index] = time; return; } update(a, b, index * 2, num, time, l, (l + r) / 2); update(a, b, index * 2 + 1, num, time, (l + r) / 2, r); return; } int main(){ int n, q; cin >> n >> q; for(int i = 0; i < TREE_SIZE; i++){ seg_tree[i] = INF; T[i] = -1; } for(int i = 0; i < q; i++){ long long int num, a, b, c; cin >> num; if(num == 0){ cin >> a >> b >> c; update(a, b + 1, 1, c, i, 0, TREE_SIZE / 2); }else{ cin >> a; cout << find(a) << endl; } /* for(int j = 0; j < n; j++){ cout << find(j) << " "; } cout << endl; */ } return 0; } ```
#include <iostream> using namespace std; #define INF 2147483647 #define ASTART (1<<17) int a[1<<18][2]; int ti=1; int find(int i){ int nv=INF,t=0; i+=ASTART-1; nv=a[i][0]; t=a[i][1]; while (i>0){ i=(i-1)/2; if (t<a[i][1])nv=a[i][0],t=a[i][1]; } return nv; } void update(int s,int t,int x,int k,int l,int r){ if (l>=s&&r<=t){ a[k][0]=x; a[k][1]=ti; return; } if (r<=s||l>=t)return; int m=(l+r)/2; update(s,t,x,k*2+1,l,m); update(s,t,x,k*2+2,m,r); } int main(){ int n,q,com,s,t,x; for (int i=0;i<(1<<18);i++)a[i][0]=INF,a[i][1]=0; cin >> n>>q; for (int i=0;i<q;i++){ cin >> com; if (com==0) { cin >> s >> t >> x; update(s,t+1,x,0,0,ASTART); ti++; }else { cin >> s; cout << find(s)<< endl; } } return 0; }
### Prompt Create a solution in CPP for the following problem: Write a program which manipulates a sequence A = {a0, a1, . . . , an−1} with the following operations: * update(s, t, x): change as, as+1, ..., at to x. * find(i): output the value of ai. Note that the initial values of ai (i = 0, 1, . . . , n−1) are 231-1. Constraints * 1 ≤ n ≤ 100000 * 1 ≤ q ≤ 100000 * 0 ≤ s ≤ t < n * 0 ≤ i < n * 0 ≤ x < 231−1 Input n q query1 query2 : queryq In the first line, n (the number of elements in A) and q (the number of queries) are given. Then, ith query queryi is given in the following format: 0 s t x or 1 i The first digit represents the type of the query. '0' denotes update(s, t, x) and '1' denotes find(i). Output For each find operation, print the value. Examples Input 3 5 0 0 1 1 0 1 2 3 0 2 2 2 1 0 1 1 Output 1 3 Input 1 3 1 0 0 0 0 5 1 0 Output 2147483647 5 ### Response ```cpp #include <iostream> using namespace std; #define INF 2147483647 #define ASTART (1<<17) int a[1<<18][2]; int ti=1; int find(int i){ int nv=INF,t=0; i+=ASTART-1; nv=a[i][0]; t=a[i][1]; while (i>0){ i=(i-1)/2; if (t<a[i][1])nv=a[i][0],t=a[i][1]; } return nv; } void update(int s,int t,int x,int k,int l,int r){ if (l>=s&&r<=t){ a[k][0]=x; a[k][1]=ti; return; } if (r<=s||l>=t)return; int m=(l+r)/2; update(s,t,x,k*2+1,l,m); update(s,t,x,k*2+2,m,r); } int main(){ int n,q,com,s,t,x; for (int i=0;i<(1<<18);i++)a[i][0]=INF,a[i][1]=0; cin >> n>>q; for (int i=0;i<q;i++){ cin >> com; if (com==0) { cin >> s >> t >> x; update(s,t+1,x,0,0,ASTART); ti++; }else { cin >> s; cout << find(s)<< endl; } } return 0; } ```
#include<iostream> #include<algorithm> #include<vector> #include<stack> #include<queue> #include<list> #include<string> #include<cstring> #include<cstdlib> #include<cstdio> #include<cmath> #include<ctime> using namespace std; const int NIL = -1; const int MAX = 2147483647; clock_t START, END; struct Node { int l, r, key, lazy; }; bool debug = false; Node Tree[500010]; int mark[500010]; int n = 0, N = 1; void update(int x, int y, int z, int k, int height) { if (!mark[k]) { Tree[k].l = k * (1 << height) - N; Tree[k].r = min(Tree[k].l + (1 << height) - 1, n - 1); mark[k] = 1; } if (x > y) return; if (x <= Tree[k].l && Tree[k].r <= y) { Tree[k].key = z; Tree[k].lazy = 1; return; } else if (Tree[k].r < x || Tree[k].l > y) { return; } else { if (Tree[k].lazy) { Tree[k].lazy = 0; Tree[2 * k].key = Tree[2 * k + 1].key = Tree[k].key; Tree[2 * k].lazy = Tree[2 * k + 1].lazy = 1; } update(x, min(Tree[k].l + (1 << (height - 1)) - 1, y), z, 2 * k, height - 1); update(max(Tree[k].l + (1 << (height - 1)), x), y, z, 2 * k + 1, height - 1); } } int find(int k, int height, int z) { if (!mark[k]) { Tree[k].l = k * (1 << height) - N; Tree[k].r = min(Tree[k].l + (1 << height) - 1, n - 1); mark[k] = 1; } if (Tree[k].lazy) { Tree[2 * k].key = Tree[2 * k + 1].key = Tree[k].key; Tree[2 * k].lazy = Tree[2 * k + 1].lazy = 1; return Tree[k].key; } else { if (z <= Tree[k].l + (1 << (height - 1)) - 1) return find(2 * k, height - 1, z); else return find(2 * k + 1, height - 1, z); } } int main(void) { if (debug) { START = clock(); freopen("in15.txt", "r", stdin); freopen("out.txt", "w", stdout); } int q, com, x, s, t, k, height = 0; scanf("%d%d", &n, &q); while (N < n) { N *= 2; height++; } for (int i = 1; i <= n + N - 1; i++) { Tree[i].key = MAX; Tree[i].lazy = 1; } for (int i = 0; i < q; i++) { scanf("%d", &com); if (com) { scanf("%d", &k); printf("%d\n", find(1, height, k)); } else { scanf("%d%d%d", &s, &t, &x); update(s, t, x, 1, height); } } if (debug) { END = clock(); double endtime = (double)(END - START) / 1000; printf("total time = %lf s", endtime); } return 0; }
### Prompt Construct a Cpp code solution to the problem outlined: Write a program which manipulates a sequence A = {a0, a1, . . . , an−1} with the following operations: * update(s, t, x): change as, as+1, ..., at to x. * find(i): output the value of ai. Note that the initial values of ai (i = 0, 1, . . . , n−1) are 231-1. Constraints * 1 ≤ n ≤ 100000 * 1 ≤ q ≤ 100000 * 0 ≤ s ≤ t < n * 0 ≤ i < n * 0 ≤ x < 231−1 Input n q query1 query2 : queryq In the first line, n (the number of elements in A) and q (the number of queries) are given. Then, ith query queryi is given in the following format: 0 s t x or 1 i The first digit represents the type of the query. '0' denotes update(s, t, x) and '1' denotes find(i). Output For each find operation, print the value. Examples Input 3 5 0 0 1 1 0 1 2 3 0 2 2 2 1 0 1 1 Output 1 3 Input 1 3 1 0 0 0 0 5 1 0 Output 2147483647 5 ### Response ```cpp #include<iostream> #include<algorithm> #include<vector> #include<stack> #include<queue> #include<list> #include<string> #include<cstring> #include<cstdlib> #include<cstdio> #include<cmath> #include<ctime> using namespace std; const int NIL = -1; const int MAX = 2147483647; clock_t START, END; struct Node { int l, r, key, lazy; }; bool debug = false; Node Tree[500010]; int mark[500010]; int n = 0, N = 1; void update(int x, int y, int z, int k, int height) { if (!mark[k]) { Tree[k].l = k * (1 << height) - N; Tree[k].r = min(Tree[k].l + (1 << height) - 1, n - 1); mark[k] = 1; } if (x > y) return; if (x <= Tree[k].l && Tree[k].r <= y) { Tree[k].key = z; Tree[k].lazy = 1; return; } else if (Tree[k].r < x || Tree[k].l > y) { return; } else { if (Tree[k].lazy) { Tree[k].lazy = 0; Tree[2 * k].key = Tree[2 * k + 1].key = Tree[k].key; Tree[2 * k].lazy = Tree[2 * k + 1].lazy = 1; } update(x, min(Tree[k].l + (1 << (height - 1)) - 1, y), z, 2 * k, height - 1); update(max(Tree[k].l + (1 << (height - 1)), x), y, z, 2 * k + 1, height - 1); } } int find(int k, int height, int z) { if (!mark[k]) { Tree[k].l = k * (1 << height) - N; Tree[k].r = min(Tree[k].l + (1 << height) - 1, n - 1); mark[k] = 1; } if (Tree[k].lazy) { Tree[2 * k].key = Tree[2 * k + 1].key = Tree[k].key; Tree[2 * k].lazy = Tree[2 * k + 1].lazy = 1; return Tree[k].key; } else { if (z <= Tree[k].l + (1 << (height - 1)) - 1) return find(2 * k, height - 1, z); else return find(2 * k + 1, height - 1, z); } } int main(void) { if (debug) { START = clock(); freopen("in15.txt", "r", stdin); freopen("out.txt", "w", stdout); } int q, com, x, s, t, k, height = 0; scanf("%d%d", &n, &q); while (N < n) { N *= 2; height++; } for (int i = 1; i <= n + N - 1; i++) { Tree[i].key = MAX; Tree[i].lazy = 1; } for (int i = 0; i < q; i++) { scanf("%d", &com); if (com) { scanf("%d", &k); printf("%d\n", find(1, height, k)); } else { scanf("%d%d%d", &s, &t, &x); update(s, t, x, 1, height); } } if (debug) { END = clock(); double endtime = (double)(END - START) / 1000; printf("total time = %lf s", endtime); } return 0; } ```
#include "bits/stdc++.h" using namespace std; #ifdef _DEBUG #include "dump.hpp" #else #define dump(...) #endif //#define int long long #define rep(i,a,b) for(int i=(a);i<(b);i++) #define rrep(i,a,b) for(int i=(b)-1;i>=(a);i--) #define all(c) begin(c),end(c) const int INF = (1ll << 31) - 1; const int MOD = (int)(1e9) + 7; const double PI = acos(-1); const double EPS = 1e-9; template<class T> bool chmax(T &a, const T &b) { if (a < b) { a = b; return true; } return false; } template<class T> bool chmin(T &a, const T &b) { if (a > b) { a = b; return true; } return false; } template<typename T> struct RangeUpdateQuery { int n; vector<int>d; RangeUpdateQuery(int m) { for (n = 1; n < m; n <<= 1); d.assign(2 * n, INF); } int find(int i) { update(i, i + 1); return d[n + i]; } void update(int a, int b, int x=-1, int k = 1, int l = 0, int r = -1) { if (r < 0)r = n; if (r <= a || b <= l)return; else if (a <= l&&r <= b) { if (x >= 0)d[k] = x; return; } else { if (d[k] != INF)d[2 * k] = d[2 * k + 1] = d[k], d[k] = INF; update(a, b, x, 2 * k, l, (l + r) / 2); update(a, b, x, 2 * k + 1, (l + r) / 2, r); } } }; signed main() { cin.tie(0); ios::sync_with_stdio(false); int n, q; cin >> n >> q; RangeUpdateQuery<int>ruq(n); rep(i, 0, q) { int com; cin >> com; if (com) { int x; cin >> x; cout << ruq.find(x) << endl; } else { int s, t, x; cin >> s >> t >> x; ruq.update(s, t + 1, x); } } return 0; }
### Prompt Your task is to create a CPP solution to the following problem: Write a program which manipulates a sequence A = {a0, a1, . . . , an−1} with the following operations: * update(s, t, x): change as, as+1, ..., at to x. * find(i): output the value of ai. Note that the initial values of ai (i = 0, 1, . . . , n−1) are 231-1. Constraints * 1 ≤ n ≤ 100000 * 1 ≤ q ≤ 100000 * 0 ≤ s ≤ t < n * 0 ≤ i < n * 0 ≤ x < 231−1 Input n q query1 query2 : queryq In the first line, n (the number of elements in A) and q (the number of queries) are given. Then, ith query queryi is given in the following format: 0 s t x or 1 i The first digit represents the type of the query. '0' denotes update(s, t, x) and '1' denotes find(i). Output For each find operation, print the value. Examples Input 3 5 0 0 1 1 0 1 2 3 0 2 2 2 1 0 1 1 Output 1 3 Input 1 3 1 0 0 0 0 5 1 0 Output 2147483647 5 ### Response ```cpp #include "bits/stdc++.h" using namespace std; #ifdef _DEBUG #include "dump.hpp" #else #define dump(...) #endif //#define int long long #define rep(i,a,b) for(int i=(a);i<(b);i++) #define rrep(i,a,b) for(int i=(b)-1;i>=(a);i--) #define all(c) begin(c),end(c) const int INF = (1ll << 31) - 1; const int MOD = (int)(1e9) + 7; const double PI = acos(-1); const double EPS = 1e-9; template<class T> bool chmax(T &a, const T &b) { if (a < b) { a = b; return true; } return false; } template<class T> bool chmin(T &a, const T &b) { if (a > b) { a = b; return true; } return false; } template<typename T> struct RangeUpdateQuery { int n; vector<int>d; RangeUpdateQuery(int m) { for (n = 1; n < m; n <<= 1); d.assign(2 * n, INF); } int find(int i) { update(i, i + 1); return d[n + i]; } void update(int a, int b, int x=-1, int k = 1, int l = 0, int r = -1) { if (r < 0)r = n; if (r <= a || b <= l)return; else if (a <= l&&r <= b) { if (x >= 0)d[k] = x; return; } else { if (d[k] != INF)d[2 * k] = d[2 * k + 1] = d[k], d[k] = INF; update(a, b, x, 2 * k, l, (l + r) / 2); update(a, b, x, 2 * k + 1, (l + r) / 2, r); } } }; signed main() { cin.tie(0); ios::sync_with_stdio(false); int n, q; cin >> n >> q; RangeUpdateQuery<int>ruq(n); rep(i, 0, q) { int com; cin >> com; if (com) { int x; cin >> x; cout << ruq.find(x) << endl; } else { int s, t, x; cin >> s >> t >> x; ruq.update(s, t + 1, x); } } return 0; } ```
#include <iostream> #include <cmath> #include <algorithm> #include <queue> using namespace std; int arr[100005 << 2], value[100005], n, q; void update(int a, int b, int x, int k = 0, int l = 0, int r = (1 << 17)) { if (b <= l || r <= a)return; if (a <= l && r <= b) { arr[k] = max(arr[k], x); return; } int m = (l + r) / 2; update(a, b, x, k * 2 + 1, l, m); update(a, b, x, k * 2 + 2, m, r); } int query(int x) { x += (1 << 17) - 1; int res = arr[x]; while (x) { x = (x - 1) / 2; res = max(res, arr[x]); } return res; } int main() { queue<int> r; value[0] = 2147483647; cin >> n >> q; for (int i = 1; i <= q; ++i) { int ch, a, b; cin >> ch; if (ch) { cin >> a; r.push(value[query(a)]); } else { cin >> a >> b >> value[i]; ++b; update(a, b, i); } } while (!r.empty()) { cout << r.front() << endl; r.pop(); } return 0; }
### Prompt In cpp, your task is to solve the following problem: Write a program which manipulates a sequence A = {a0, a1, . . . , an−1} with the following operations: * update(s, t, x): change as, as+1, ..., at to x. * find(i): output the value of ai. Note that the initial values of ai (i = 0, 1, . . . , n−1) are 231-1. Constraints * 1 ≤ n ≤ 100000 * 1 ≤ q ≤ 100000 * 0 ≤ s ≤ t < n * 0 ≤ i < n * 0 ≤ x < 231−1 Input n q query1 query2 : queryq In the first line, n (the number of elements in A) and q (the number of queries) are given. Then, ith query queryi is given in the following format: 0 s t x or 1 i The first digit represents the type of the query. '0' denotes update(s, t, x) and '1' denotes find(i). Output For each find operation, print the value. Examples Input 3 5 0 0 1 1 0 1 2 3 0 2 2 2 1 0 1 1 Output 1 3 Input 1 3 1 0 0 0 0 5 1 0 Output 2147483647 5 ### Response ```cpp #include <iostream> #include <cmath> #include <algorithm> #include <queue> using namespace std; int arr[100005 << 2], value[100005], n, q; void update(int a, int b, int x, int k = 0, int l = 0, int r = (1 << 17)) { if (b <= l || r <= a)return; if (a <= l && r <= b) { arr[k] = max(arr[k], x); return; } int m = (l + r) / 2; update(a, b, x, k * 2 + 1, l, m); update(a, b, x, k * 2 + 2, m, r); } int query(int x) { x += (1 << 17) - 1; int res = arr[x]; while (x) { x = (x - 1) / 2; res = max(res, arr[x]); } return res; } int main() { queue<int> r; value[0] = 2147483647; cin >> n >> q; for (int i = 1; i <= q; ++i) { int ch, a, b; cin >> ch; if (ch) { cin >> a; r.push(value[query(a)]); } else { cin >> a >> b >> value[i]; ++b; update(a, b, i); } } while (!r.empty()) { cout << r.front() << endl; r.pop(); } return 0; } ```
#include<bits/stdc++.h> using namespace std; //BEGIN CUT HERE template <typename T,typename E> struct SegmentTree{ using G = function<T(T,E)>; using H = function<E(E,E)>; int n; G g; H h; T ti; E ei; vector<T> dat; vector<E> laz; SegmentTree(){}; SegmentTree(int n_,G g,H h,T ti,E ei): g(g),h(h),ti(ti),ei(ei){ init(n_); } void init(int n_){ n=1; while(n<n_) n*=2; dat.clear(); dat.resize(n,ti); laz.clear(); laz.resize(2*n-1,ei); } void build(int n_, vector<T> v){ for(int i=0;i<n_;i++) dat[i]=v[i]; } void eval(int k){ if(k*2+1<2*n-1){ laz[k*2+1]=h(laz[k*2+1],laz[k]); laz[k*2+2]=h(laz[k*2+2],laz[k]); laz[k]=ei; } } void update(int a,int b,E x,int k,int l,int r){ eval(k); if(r<=a||b<=l) return; if(a<=l&&r<=b){ laz[k]=h(laz[k],x); return; } update(a,b,x,k*2+1,l,(l+r)/2); update(a,b,x,k*2+2,(l+r)/2,r); } void update(int a,int b,E x){ update(a,b,x,0,0,n); } void eval2(int k){ if(k) eval2((k-1)/2); eval(k); } T query(int k){ T c=dat[k]; k+=n-1; eval2(k); return g(c,laz[k]); } }; //END CUT HERE signed main(){ cin.tie(0); ios::sync_with_stdio(0); int n,q; cin>>n>>q; SegmentTree<int,int> beet(n, [&](int a,int b){ return b<0?a:b;}, [&](int a,int b){ return b<0?a:b;}, INT_MAX,-1); for(int i=0;i<q;i++){ int c; cin>>c; if(c){ int x; cin>>x; cout<<beet.query(x)<<endl; }else{ int s,t,x; cin>>s>>t>>x; t++; beet.update(s,t,x); } } return 0; } /* verified on 2018/03/04 http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=DSL_2_D&lang=jp */
### Prompt Your task is to create a cpp solution to the following problem: Write a program which manipulates a sequence A = {a0, a1, . . . , an−1} with the following operations: * update(s, t, x): change as, as+1, ..., at to x. * find(i): output the value of ai. Note that the initial values of ai (i = 0, 1, . . . , n−1) are 231-1. Constraints * 1 ≤ n ≤ 100000 * 1 ≤ q ≤ 100000 * 0 ≤ s ≤ t < n * 0 ≤ i < n * 0 ≤ x < 231−1 Input n q query1 query2 : queryq In the first line, n (the number of elements in A) and q (the number of queries) are given. Then, ith query queryi is given in the following format: 0 s t x or 1 i The first digit represents the type of the query. '0' denotes update(s, t, x) and '1' denotes find(i). Output For each find operation, print the value. Examples Input 3 5 0 0 1 1 0 1 2 3 0 2 2 2 1 0 1 1 Output 1 3 Input 1 3 1 0 0 0 0 5 1 0 Output 2147483647 5 ### Response ```cpp #include<bits/stdc++.h> using namespace std; //BEGIN CUT HERE template <typename T,typename E> struct SegmentTree{ using G = function<T(T,E)>; using H = function<E(E,E)>; int n; G g; H h; T ti; E ei; vector<T> dat; vector<E> laz; SegmentTree(){}; SegmentTree(int n_,G g,H h,T ti,E ei): g(g),h(h),ti(ti),ei(ei){ init(n_); } void init(int n_){ n=1; while(n<n_) n*=2; dat.clear(); dat.resize(n,ti); laz.clear(); laz.resize(2*n-1,ei); } void build(int n_, vector<T> v){ for(int i=0;i<n_;i++) dat[i]=v[i]; } void eval(int k){ if(k*2+1<2*n-1){ laz[k*2+1]=h(laz[k*2+1],laz[k]); laz[k*2+2]=h(laz[k*2+2],laz[k]); laz[k]=ei; } } void update(int a,int b,E x,int k,int l,int r){ eval(k); if(r<=a||b<=l) return; if(a<=l&&r<=b){ laz[k]=h(laz[k],x); return; } update(a,b,x,k*2+1,l,(l+r)/2); update(a,b,x,k*2+2,(l+r)/2,r); } void update(int a,int b,E x){ update(a,b,x,0,0,n); } void eval2(int k){ if(k) eval2((k-1)/2); eval(k); } T query(int k){ T c=dat[k]; k+=n-1; eval2(k); return g(c,laz[k]); } }; //END CUT HERE signed main(){ cin.tie(0); ios::sync_with_stdio(0); int n,q; cin>>n>>q; SegmentTree<int,int> beet(n, [&](int a,int b){ return b<0?a:b;}, [&](int a,int b){ return b<0?a:b;}, INT_MAX,-1); for(int i=0;i<q;i++){ int c; cin>>c; if(c){ int x; cin>>x; cout<<beet.query(x)<<endl; }else{ int s,t,x; cin>>s>>t>>x; t++; beet.update(s,t,x); } } return 0; } /* verified on 2018/03/04 http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=DSL_2_D&lang=jp */ ```
#include <stdio.h> #include <utility> typedef long long ll; int main(void) { ll i, j, k, n, q, c, s, t, x; scanf("%lld%lld", &n, &q); ll f = 1; std::pair<ll, ll> seg[4 * n]; while(f < n) f *= 2; for(i = f; i < f * 2; ++i) seg[i].first = 2147483647, seg[i].second = 0; for(i = 0; i < f; ++i) seg[i].first = -1, seg[i].second = -1; for(i = 1; i <= q; ++i) { scanf("%lld", &c); if(!c) { scanf("%lld%lld%lld", &s, &t, &x); ll r = s + f; while(1) { ll las, ra = 1; while(!(r % 2)) r /= 2; while(ra <= r) ra *= 2; ra /= 2; las = f / ra * (r + 1 - ra) - 1; while(las > t) { r *= 2; ra *= 2; las = f / ra * (r + 1 - ra) - 1; } seg[r].first = x; seg[r].second = i; if(las == t) break; r++; } } else { scanf("%d", &s); int now = s + f, nowa, nown = -1; while(now) { if(seg[now].second > nown) nowa = seg[now].first, nown = seg[now].second; now /= 2; } printf("%lld\n", nowa); } } return 0; }
### Prompt Create a solution in CPP for the following problem: Write a program which manipulates a sequence A = {a0, a1, . . . , an−1} with the following operations: * update(s, t, x): change as, as+1, ..., at to x. * find(i): output the value of ai. Note that the initial values of ai (i = 0, 1, . . . , n−1) are 231-1. Constraints * 1 ≤ n ≤ 100000 * 1 ≤ q ≤ 100000 * 0 ≤ s ≤ t < n * 0 ≤ i < n * 0 ≤ x < 231−1 Input n q query1 query2 : queryq In the first line, n (the number of elements in A) and q (the number of queries) are given. Then, ith query queryi is given in the following format: 0 s t x or 1 i The first digit represents the type of the query. '0' denotes update(s, t, x) and '1' denotes find(i). Output For each find operation, print the value. Examples Input 3 5 0 0 1 1 0 1 2 3 0 2 2 2 1 0 1 1 Output 1 3 Input 1 3 1 0 0 0 0 5 1 0 Output 2147483647 5 ### Response ```cpp #include <stdio.h> #include <utility> typedef long long ll; int main(void) { ll i, j, k, n, q, c, s, t, x; scanf("%lld%lld", &n, &q); ll f = 1; std::pair<ll, ll> seg[4 * n]; while(f < n) f *= 2; for(i = f; i < f * 2; ++i) seg[i].first = 2147483647, seg[i].second = 0; for(i = 0; i < f; ++i) seg[i].first = -1, seg[i].second = -1; for(i = 1; i <= q; ++i) { scanf("%lld", &c); if(!c) { scanf("%lld%lld%lld", &s, &t, &x); ll r = s + f; while(1) { ll las, ra = 1; while(!(r % 2)) r /= 2; while(ra <= r) ra *= 2; ra /= 2; las = f / ra * (r + 1 - ra) - 1; while(las > t) { r *= 2; ra *= 2; las = f / ra * (r + 1 - ra) - 1; } seg[r].first = x; seg[r].second = i; if(las == t) break; r++; } } else { scanf("%d", &s); int now = s + f, nowa, nown = -1; while(now) { if(seg[now].second > nown) nowa = seg[now].first, nown = seg[now].second; now /= 2; } printf("%lld\n", nowa); } } return 0; } ```
#include <bits/stdc++.h> using namespace std; #define rep(i,n) for(ll i=0; i<(n); i++) #define FOR(i,x,n) for(ll i=x; i<(n); i++) #define ALL(n) begin(n),end(n) #define MOD (1000000007) #define INF (1e9) #define INFL (1e18) typedef long long ll; typedef unsigned int ui; typedef unsigned long long ull; template<class T>using arr=vector<vector<T>>; template<class T>void pr(T x){cout << x << endl;} template<class T>void prvec(vector<T>& a){rep(i, a.size()-1){cout << a[i] << " ";} cout << a[a.size()-1] << endl;} template<class T>bool chmax(T &a, const T &b) { if (a<b) { a=b; return 1; } return 0; } template<class T>bool chmin(T &a, const T &b) { if (b<a) { a=b; return 1; } return 0; } #define LEAF ((ll)pow(2, 17)-1) #define NUM ((ll)pow(2, 18)-1) using P=pair<ll, ll>; vector<P> seg(NUM, {(ll)pow(2,31)-1, 0}); void update(ll s, ll t, ll x, ll n, ll l, ll r, ll k){ // prllf("%d, %d, %d\n", l ,r, k); if(r < s || t < l) { // pr("c"); return;} if(l==r) {seg[k] = {x, n}; // pr("a"); return;} if(s<=l && r<=t) {seg[k] = {x, n}; // pr("b"); return;} ll mid = (l+r)/2; ll chl = 2*k+1, chr = 2*k+2; update(s, t, x, n, l, mid, chl); update(s, t, x, n, mid+1, r, chr); } ll find(ll i, P p){ if(seg[i].second > p.second) p = seg[i]; if(i==0) return p.first; return find((i-1)/2, p); } int main() { ll n, q; cin >> n >> q; ll c, s, t, x; rep(i, q){ cin >> c; if(c==1){ cin >> x; ll k = find(LEAF + x, {0, -1}); pr(k); }else{ cin >> s >> t >> x; update(s, t, x, i+1, 0, LEAF, 0); } } return 0;}
### Prompt Generate a Cpp solution to the following problem: Write a program which manipulates a sequence A = {a0, a1, . . . , an−1} with the following operations: * update(s, t, x): change as, as+1, ..., at to x. * find(i): output the value of ai. Note that the initial values of ai (i = 0, 1, . . . , n−1) are 231-1. Constraints * 1 ≤ n ≤ 100000 * 1 ≤ q ≤ 100000 * 0 ≤ s ≤ t < n * 0 ≤ i < n * 0 ≤ x < 231−1 Input n q query1 query2 : queryq In the first line, n (the number of elements in A) and q (the number of queries) are given. Then, ith query queryi is given in the following format: 0 s t x or 1 i The first digit represents the type of the query. '0' denotes update(s, t, x) and '1' denotes find(i). Output For each find operation, print the value. Examples Input 3 5 0 0 1 1 0 1 2 3 0 2 2 2 1 0 1 1 Output 1 3 Input 1 3 1 0 0 0 0 5 1 0 Output 2147483647 5 ### Response ```cpp #include <bits/stdc++.h> using namespace std; #define rep(i,n) for(ll i=0; i<(n); i++) #define FOR(i,x,n) for(ll i=x; i<(n); i++) #define ALL(n) begin(n),end(n) #define MOD (1000000007) #define INF (1e9) #define INFL (1e18) typedef long long ll; typedef unsigned int ui; typedef unsigned long long ull; template<class T>using arr=vector<vector<T>>; template<class T>void pr(T x){cout << x << endl;} template<class T>void prvec(vector<T>& a){rep(i, a.size()-1){cout << a[i] << " ";} cout << a[a.size()-1] << endl;} template<class T>bool chmax(T &a, const T &b) { if (a<b) { a=b; return 1; } return 0; } template<class T>bool chmin(T &a, const T &b) { if (b<a) { a=b; return 1; } return 0; } #define LEAF ((ll)pow(2, 17)-1) #define NUM ((ll)pow(2, 18)-1) using P=pair<ll, ll>; vector<P> seg(NUM, {(ll)pow(2,31)-1, 0}); void update(ll s, ll t, ll x, ll n, ll l, ll r, ll k){ // prllf("%d, %d, %d\n", l ,r, k); if(r < s || t < l) { // pr("c"); return;} if(l==r) {seg[k] = {x, n}; // pr("a"); return;} if(s<=l && r<=t) {seg[k] = {x, n}; // pr("b"); return;} ll mid = (l+r)/2; ll chl = 2*k+1, chr = 2*k+2; update(s, t, x, n, l, mid, chl); update(s, t, x, n, mid+1, r, chr); } ll find(ll i, P p){ if(seg[i].second > p.second) p = seg[i]; if(i==0) return p.first; return find((i-1)/2, p); } int main() { ll n, q; cin >> n >> q; ll c, s, t, x; rep(i, q){ cin >> c; if(c==1){ cin >> x; ll k = find(LEAF + x, {0, -1}); pr(k); }else{ cin >> s >> t >> x; update(s, t, x, i+1, 0, LEAF, 0); } } return 0;} ```
#include <stdio.h> #include <string> #include <cstring> #include <stdlib.h> #include <math.h> #include <algorithm> #include <vector> #include <set> #include <map> #include <queue> #include <stack> #include <list> #include <iterator> #include <assert.h> #pragma warning(disable:4996) typedef long long ll; #define MIN(a, b) ((a)>(b)? (b): (a)) #define MAX(a, b) ((a)<(b)? (b): (a)) #define LINF 9223300000000000000 #define INF 2140000000 const long long MOD = 1000000007; using namespace std; const long long INF2 = (((ll)1<<31)-1); int main(int argc, char* argv[]) { int n,q; scanf("%d%d", &n, &q); vector<pair<int, pair<int, pair<int,int> > > > z(q); // type, s, t, x; int i; int cnt=0; for(i=0; i<q; i++) { int type, s, t, x; scanf("%d", &type); if(type==0) { scanf("%d%d%d", &s, &t, &x); z[i]=make_pair(type, make_pair(s, make_pair(t,x))); } else { scanf("%d", &s); z[i]=make_pair(type, make_pair(s, make_pair(0,0))); cnt++; } } int ansnum=cnt; set<pair<int,int> > zz; // val, ansid vector<int> ans(ansnum, INF2); cnt=ansnum-1; for(i=q-1; i>=0; i--) { if(z[i].first==0) { int s=z[i].second.first; int t=z[i].second.second.first; int x=z[i].second.second.second; auto it=zz.lower_bound(make_pair(s,-INF)); auto itend=zz.lower_bound(make_pair(t+1,-INF)); while(it!=itend) { ans[it->second]=x; auto itnext=it; itnext++; zz.erase(*it); it=itnext; } } else { zz.insert(make_pair(z[i].second.first, cnt)); cnt--; } } for(i=0; i<ansnum; i++) { printf("%d\n", ans[i]); } return 0; }
### Prompt Please create a solution in CPP to the following problem: Write a program which manipulates a sequence A = {a0, a1, . . . , an−1} with the following operations: * update(s, t, x): change as, as+1, ..., at to x. * find(i): output the value of ai. Note that the initial values of ai (i = 0, 1, . . . , n−1) are 231-1. Constraints * 1 ≤ n ≤ 100000 * 1 ≤ q ≤ 100000 * 0 ≤ s ≤ t < n * 0 ≤ i < n * 0 ≤ x < 231−1 Input n q query1 query2 : queryq In the first line, n (the number of elements in A) and q (the number of queries) are given. Then, ith query queryi is given in the following format: 0 s t x or 1 i The first digit represents the type of the query. '0' denotes update(s, t, x) and '1' denotes find(i). Output For each find operation, print the value. Examples Input 3 5 0 0 1 1 0 1 2 3 0 2 2 2 1 0 1 1 Output 1 3 Input 1 3 1 0 0 0 0 5 1 0 Output 2147483647 5 ### Response ```cpp #include <stdio.h> #include <string> #include <cstring> #include <stdlib.h> #include <math.h> #include <algorithm> #include <vector> #include <set> #include <map> #include <queue> #include <stack> #include <list> #include <iterator> #include <assert.h> #pragma warning(disable:4996) typedef long long ll; #define MIN(a, b) ((a)>(b)? (b): (a)) #define MAX(a, b) ((a)<(b)? (b): (a)) #define LINF 9223300000000000000 #define INF 2140000000 const long long MOD = 1000000007; using namespace std; const long long INF2 = (((ll)1<<31)-1); int main(int argc, char* argv[]) { int n,q; scanf("%d%d", &n, &q); vector<pair<int, pair<int, pair<int,int> > > > z(q); // type, s, t, x; int i; int cnt=0; for(i=0; i<q; i++) { int type, s, t, x; scanf("%d", &type); if(type==0) { scanf("%d%d%d", &s, &t, &x); z[i]=make_pair(type, make_pair(s, make_pair(t,x))); } else { scanf("%d", &s); z[i]=make_pair(type, make_pair(s, make_pair(0,0))); cnt++; } } int ansnum=cnt; set<pair<int,int> > zz; // val, ansid vector<int> ans(ansnum, INF2); cnt=ansnum-1; for(i=q-1; i>=0; i--) { if(z[i].first==0) { int s=z[i].second.first; int t=z[i].second.second.first; int x=z[i].second.second.second; auto it=zz.lower_bound(make_pair(s,-INF)); auto itend=zz.lower_bound(make_pair(t+1,-INF)); while(it!=itend) { ans[it->second]=x; auto itnext=it; itnext++; zz.erase(*it); it=itnext; } } else { zz.insert(make_pair(z[i].second.first, cnt)); cnt--; } } for(i=0; i<ansnum; i++) { printf("%d\n", ans[i]); } return 0; } ```
#include <bits/stdc++.h> using namespace std; #define FOR(i,a,b) for(int i=(a);i<(b);++i) #define rep(i,n) FOR(i,0,n) #define pb emplace_back typedef long long ll; typedef pair<int,int> pint; const ll INF=(1ll<<31)-1; int a[100001]; int b[1005]; int main(){ int n,q; cin>>n>>q; int sqn=sqrt(n); int bn=(n+sqn-1)/sqn; rep(i,n) a[i]=INF; rep(i,bn) b[i]=INF; int com; rep(i,q){ cin>>com; if(com==0){ int s,t,x; //[s,t) cin>>s>>t>>x; ++t; rep(j,bn){ int l=j*sqn,r=(j+1)*sqn; if(r<=s||t<=l) continue; if(s<=l&&r<=t) b[j]=x; else{ FOR(k,l,r){ if(k>=max(s,l)&&k<min(t,r)) a[k]=x; else if(b[j]!=INF) a[k]=b[j]; } b[j]=INF; } } } if(com==1){ int k; cin>>k; int cur=k/sqn; if(b[cur]!=INF){ FOR(j,cur*sqn,(cur+1)*sqn){ a[j]=b[cur]; } b[cur]=INF; } cout<<a[k]<<endl; } } return 0; }
### Prompt Please formulate a CPP solution to the following problem: Write a program which manipulates a sequence A = {a0, a1, . . . , an−1} with the following operations: * update(s, t, x): change as, as+1, ..., at to x. * find(i): output the value of ai. Note that the initial values of ai (i = 0, 1, . . . , n−1) are 231-1. Constraints * 1 ≤ n ≤ 100000 * 1 ≤ q ≤ 100000 * 0 ≤ s ≤ t < n * 0 ≤ i < n * 0 ≤ x < 231−1 Input n q query1 query2 : queryq In the first line, n (the number of elements in A) and q (the number of queries) are given. Then, ith query queryi is given in the following format: 0 s t x or 1 i The first digit represents the type of the query. '0' denotes update(s, t, x) and '1' denotes find(i). Output For each find operation, print the value. Examples Input 3 5 0 0 1 1 0 1 2 3 0 2 2 2 1 0 1 1 Output 1 3 Input 1 3 1 0 0 0 0 5 1 0 Output 2147483647 5 ### Response ```cpp #include <bits/stdc++.h> using namespace std; #define FOR(i,a,b) for(int i=(a);i<(b);++i) #define rep(i,n) FOR(i,0,n) #define pb emplace_back typedef long long ll; typedef pair<int,int> pint; const ll INF=(1ll<<31)-1; int a[100001]; int b[1005]; int main(){ int n,q; cin>>n>>q; int sqn=sqrt(n); int bn=(n+sqn-1)/sqn; rep(i,n) a[i]=INF; rep(i,bn) b[i]=INF; int com; rep(i,q){ cin>>com; if(com==0){ int s,t,x; //[s,t) cin>>s>>t>>x; ++t; rep(j,bn){ int l=j*sqn,r=(j+1)*sqn; if(r<=s||t<=l) continue; if(s<=l&&r<=t) b[j]=x; else{ FOR(k,l,r){ if(k>=max(s,l)&&k<min(t,r)) a[k]=x; else if(b[j]!=INF) a[k]=b[j]; } b[j]=INF; } } } if(com==1){ int k; cin>>k; int cur=k/sqn; if(b[cur]!=INF){ FOR(j,cur*sqn,(cur+1)*sqn){ a[j]=b[cur]; } b[cur]=INF; } cout<<a[k]<<endl; } } return 0; } ```
#include <bits/stdc++.h> #define int long long using namespace std; typedef pair<int,int> P; const int INF=pow(2,31)-1; std::vector<P> v(1e6,P(INF,-1)); int N=1; void update(int a,int b,int c,int d,int k,int l,int r){ if(r<=a||b<=l)return; if(a<=l&&r<=b)v[k]=P(c,d); else{ update(a,b,c,d,k*2+1,l,(l+r)/2); update(a,b,c,d,k*2+2,(l+r)/2,r); } } int ma(int a){ int k=a+N-1; P res=v[k]; while(k){ k=(k-1)/2; if(res.second<v[k].second)res=v[k]; } return res.first; } signed main(){ int n,M; cin>>n>>M; while(n>N)N*=2; std::vector<int> ans; for(int i=0;i<M;i++){ int q;cin>>q; if(q){ int a;cin>>a; ans.push_back(ma(a)); } else{ int s,t,x;cin>>s>>t>>x; update(s,t+1,x,i,0,0,N); } } for(int p:ans)cout<<p<<endl; }
### Prompt Create a solution in CPP for the following problem: Write a program which manipulates a sequence A = {a0, a1, . . . , an−1} with the following operations: * update(s, t, x): change as, as+1, ..., at to x. * find(i): output the value of ai. Note that the initial values of ai (i = 0, 1, . . . , n−1) are 231-1. Constraints * 1 ≤ n ≤ 100000 * 1 ≤ q ≤ 100000 * 0 ≤ s ≤ t < n * 0 ≤ i < n * 0 ≤ x < 231−1 Input n q query1 query2 : queryq In the first line, n (the number of elements in A) and q (the number of queries) are given. Then, ith query queryi is given in the following format: 0 s t x or 1 i The first digit represents the type of the query. '0' denotes update(s, t, x) and '1' denotes find(i). Output For each find operation, print the value. Examples Input 3 5 0 0 1 1 0 1 2 3 0 2 2 2 1 0 1 1 Output 1 3 Input 1 3 1 0 0 0 0 5 1 0 Output 2147483647 5 ### Response ```cpp #include <bits/stdc++.h> #define int long long using namespace std; typedef pair<int,int> P; const int INF=pow(2,31)-1; std::vector<P> v(1e6,P(INF,-1)); int N=1; void update(int a,int b,int c,int d,int k,int l,int r){ if(r<=a||b<=l)return; if(a<=l&&r<=b)v[k]=P(c,d); else{ update(a,b,c,d,k*2+1,l,(l+r)/2); update(a,b,c,d,k*2+2,(l+r)/2,r); } } int ma(int a){ int k=a+N-1; P res=v[k]; while(k){ k=(k-1)/2; if(res.second<v[k].second)res=v[k]; } return res.first; } signed main(){ int n,M; cin>>n>>M; while(n>N)N*=2; std::vector<int> ans; for(int i=0;i<M;i++){ int q;cin>>q; if(q){ int a;cin>>a; ans.push_back(ma(a)); } else{ int s,t,x;cin>>s>>t>>x; update(s,t+1,x,i,0,0,N); } } for(int p:ans)cout<<p<<endl; } ```
#include <bits/stdc++.h> using namespace std; #define FOR(i,l,r) for(int i = (int) (l);i < (int) (r);i++) #define ALL(x) x.begin(),x.end() template<typename T> bool chmax(T& a,const T& b){ return a < b ? (a = b,true) : false; } template<typename T> bool chmin(T& a,const T& b){ return b < a ? (a = b,true) : false; } typedef long long ll; const int BUCKET = 400,SIZE = 300; int N,Q; bool updateFlag [BUCKET]; ll lazyUpdate [BUCKET]; ll A [100000]; const ll INF = (1ll << 31) - 1; void update(int l,int r,ll val) { FOR(i,0,BUCKET){ int bucketL = i * SIZE,bucketR = (i + 1) * SIZE; if(r <= bucketL || bucketR <= l) continue; if(l <= bucketL && bucketR <= r){ lazyUpdate [i] = val; updateFlag [i] = true; continue; } if(updateFlag [i]){ FOR(j,bucketL,bucketR){ A [j] = lazyUpdate [i]; } updateFlag [i] = false; } FOR(j,bucketL,bucketR){ if(l <= j && j < r){ A [j] = val; } } } } ll get(int idx) { if(updateFlag [idx / SIZE]){ int bucketL = (idx / SIZE) * SIZE,bucketR = (idx / SIZE + 1) * SIZE; FOR(i,bucketL,bucketR){ A [i] = lazyUpdate [idx / SIZE]; } updateFlag [idx / SIZE] = false; } return A [idx]; } int main() { scanf("%d%d",&N,&Q); fill(A,A + N,INF); vector<ll> ans; FOR(i,0,Q){ int com; scanf("%d",&com); if(com == 0){ int s,t,x; scanf("%d%d%d",&s,&t,&x); update(s,t + 1,x); } else{ int idx; scanf("%d",&idx); ans.push_back(get(idx)); } } FOR(i,0,ans.size()){ printf("%lld\n",ans [i]); } return 0; }
### Prompt Create a solution in CPP for the following problem: Write a program which manipulates a sequence A = {a0, a1, . . . , an−1} with the following operations: * update(s, t, x): change as, as+1, ..., at to x. * find(i): output the value of ai. Note that the initial values of ai (i = 0, 1, . . . , n−1) are 231-1. Constraints * 1 ≤ n ≤ 100000 * 1 ≤ q ≤ 100000 * 0 ≤ s ≤ t < n * 0 ≤ i < n * 0 ≤ x < 231−1 Input n q query1 query2 : queryq In the first line, n (the number of elements in A) and q (the number of queries) are given. Then, ith query queryi is given in the following format: 0 s t x or 1 i The first digit represents the type of the query. '0' denotes update(s, t, x) and '1' denotes find(i). Output For each find operation, print the value. Examples Input 3 5 0 0 1 1 0 1 2 3 0 2 2 2 1 0 1 1 Output 1 3 Input 1 3 1 0 0 0 0 5 1 0 Output 2147483647 5 ### Response ```cpp #include <bits/stdc++.h> using namespace std; #define FOR(i,l,r) for(int i = (int) (l);i < (int) (r);i++) #define ALL(x) x.begin(),x.end() template<typename T> bool chmax(T& a,const T& b){ return a < b ? (a = b,true) : false; } template<typename T> bool chmin(T& a,const T& b){ return b < a ? (a = b,true) : false; } typedef long long ll; const int BUCKET = 400,SIZE = 300; int N,Q; bool updateFlag [BUCKET]; ll lazyUpdate [BUCKET]; ll A [100000]; const ll INF = (1ll << 31) - 1; void update(int l,int r,ll val) { FOR(i,0,BUCKET){ int bucketL = i * SIZE,bucketR = (i + 1) * SIZE; if(r <= bucketL || bucketR <= l) continue; if(l <= bucketL && bucketR <= r){ lazyUpdate [i] = val; updateFlag [i] = true; continue; } if(updateFlag [i]){ FOR(j,bucketL,bucketR){ A [j] = lazyUpdate [i]; } updateFlag [i] = false; } FOR(j,bucketL,bucketR){ if(l <= j && j < r){ A [j] = val; } } } } ll get(int idx) { if(updateFlag [idx / SIZE]){ int bucketL = (idx / SIZE) * SIZE,bucketR = (idx / SIZE + 1) * SIZE; FOR(i,bucketL,bucketR){ A [i] = lazyUpdate [idx / SIZE]; } updateFlag [idx / SIZE] = false; } return A [idx]; } int main() { scanf("%d%d",&N,&Q); fill(A,A + N,INF); vector<ll> ans; FOR(i,0,Q){ int com; scanf("%d",&com); if(com == 0){ int s,t,x; scanf("%d%d%d",&s,&t,&x); update(s,t + 1,x); } else{ int idx; scanf("%d",&idx); ans.push_back(get(idx)); } } FOR(i,0,ans.size()){ printf("%lld\n",ans [i]); } return 0; } ```
#include <bits/stdc++.h> using namespace std; struct RU { using t1 = int; using t2 = int; static t2 id2() { return -1; } static t1 op2(const t1& l, const t2& r) { return r == id2() ? l : r; } static t2 op3(const t2& l, const t2& r) { return r == id2() ? l : r; } }; template <typename M> class lazy_segment_tree { using T1 = typename M::t1; using T2 = typename M::t2; const int h, n; const vector<T1> data; vector<T2> lazy; void push(int node) { if (lazy[node] == M::id2()) return; lazy[node << 1] = M::op3(lazy[node << 1], lazy[node]); lazy[(node << 1) | 1] = M::op3(lazy[(node << 1) | 1], lazy[node]); lazy[node] = M::id2(); } public: lazy_segment_tree(int n_, T1 v1) : h(ceil(log2(n_))), n(1 << h), data(n_, v1), lazy(n << 1, M::id2()) {} lazy_segment_tree(const vector<T1>& data_) : h(ceil(log2(data_.size()))), n(1 << h), data(data_), lazy(n << 1, M::id2()) {} void update(int l, int r, T2 val) { l += n, r += n; for (int i = h; i > 0; i--) push(l >> i), push(r >> i); r++; while (l < r) { if (l & 1) lazy[l] = M::op3(lazy[l], val), l++; if (r & 1) r--, lazy[r] = M::op3(lazy[r], val); l >>= 1; r >>= 1; } } T1 find(int p) { T1 res = data[p]; p += n; while (p) res = M::op2(res, lazy[p]), p >>= 1; return res; } }; int main() { ios::sync_with_stdio(false), cin.tie(0); int n, q; cin >> n >> q; lazy_segment_tree<RU> lst(n, INT_MAX); while (q--) { int com; cin >> com; if (com == 0) { int s, t, x; cin >> s >> t >> x; lst.update(s, t, x); } else { int p; cin >> p; printf("%d\n", lst.find(p)); } } return 0; }
### Prompt Develop a solution in cpp to the problem described below: Write a program which manipulates a sequence A = {a0, a1, . . . , an−1} with the following operations: * update(s, t, x): change as, as+1, ..., at to x. * find(i): output the value of ai. Note that the initial values of ai (i = 0, 1, . . . , n−1) are 231-1. Constraints * 1 ≤ n ≤ 100000 * 1 ≤ q ≤ 100000 * 0 ≤ s ≤ t < n * 0 ≤ i < n * 0 ≤ x < 231−1 Input n q query1 query2 : queryq In the first line, n (the number of elements in A) and q (the number of queries) are given. Then, ith query queryi is given in the following format: 0 s t x or 1 i The first digit represents the type of the query. '0' denotes update(s, t, x) and '1' denotes find(i). Output For each find operation, print the value. Examples Input 3 5 0 0 1 1 0 1 2 3 0 2 2 2 1 0 1 1 Output 1 3 Input 1 3 1 0 0 0 0 5 1 0 Output 2147483647 5 ### Response ```cpp #include <bits/stdc++.h> using namespace std; struct RU { using t1 = int; using t2 = int; static t2 id2() { return -1; } static t1 op2(const t1& l, const t2& r) { return r == id2() ? l : r; } static t2 op3(const t2& l, const t2& r) { return r == id2() ? l : r; } }; template <typename M> class lazy_segment_tree { using T1 = typename M::t1; using T2 = typename M::t2; const int h, n; const vector<T1> data; vector<T2> lazy; void push(int node) { if (lazy[node] == M::id2()) return; lazy[node << 1] = M::op3(lazy[node << 1], lazy[node]); lazy[(node << 1) | 1] = M::op3(lazy[(node << 1) | 1], lazy[node]); lazy[node] = M::id2(); } public: lazy_segment_tree(int n_, T1 v1) : h(ceil(log2(n_))), n(1 << h), data(n_, v1), lazy(n << 1, M::id2()) {} lazy_segment_tree(const vector<T1>& data_) : h(ceil(log2(data_.size()))), n(1 << h), data(data_), lazy(n << 1, M::id2()) {} void update(int l, int r, T2 val) { l += n, r += n; for (int i = h; i > 0; i--) push(l >> i), push(r >> i); r++; while (l < r) { if (l & 1) lazy[l] = M::op3(lazy[l], val), l++; if (r & 1) r--, lazy[r] = M::op3(lazy[r], val); l >>= 1; r >>= 1; } } T1 find(int p) { T1 res = data[p]; p += n; while (p) res = M::op2(res, lazy[p]), p >>= 1; return res; } }; int main() { ios::sync_with_stdio(false), cin.tie(0); int n, q; cin >> n >> q; lazy_segment_tree<RU> lst(n, INT_MAX); while (q--) { int com; cin >> com; if (com == 0) { int s, t, x; cin >> s >> t >> x; lst.update(s, t, x); } else { int p; cin >> p; printf("%d\n", lst.find(p)); } } return 0; } ```
#include <bits/stdc++.h> using namespace std; const int sqrtN = 512; struct SqrtDecomposition { int N, K; vector<int> data; vector<bool> lazyFlag; vector<int> lazyUpdate; explicit SqrtDecomposition(const vector<int> &v) : N(v.size()) { K = (N + sqrtN - 1) / sqrtN; data.assign(K * sqrtN, 0); for (int i = 0; i < v.size(); ++i) { data[i] = v[i]; } lazyFlag.assign(K, false); lazyUpdate.assign(K, 0); } // [s, t) = x void update(int s, int t, int x) { for (int k = 0; k < K; ++k) { int l = k * sqrtN, r = (k + 1) * sqrtN; if (r <= s || t <= l) { continue; } if (s <= l && r <= t) { lazyFlag[k] = true; lazyUpdate[k] = x; } else { eval(k); for (int i = max(s, l); i < min(t, r); ++i) { data[i] = x; } } } } int find(int i) { int k = i / sqrtN; eval(k); return data[i]; } private: void eval(int k) { if (lazyFlag[k]) { lazyFlag[k] = false; for (int i = k * sqrtN; i < (k + 1) * sqrtN; ++i) { data[i] = lazyUpdate[k]; } } } }; int main() { ios::sync_with_stdio(false); int N, Q; cin >> N >> Q; vector<int> v(N, (1LL << 31) - 1); SqrtDecomposition sd(v); while (Q--) { int c; cin >> c; if (c == 0) { int s, t, x; cin >> s >> t >> x; sd.update(s, t + 1, x); } else { int i; cin >> i; cout << sd.find(i) << endl; } } return 0; }
### Prompt Please provide a CPP coded solution to the problem described below: Write a program which manipulates a sequence A = {a0, a1, . . . , an−1} with the following operations: * update(s, t, x): change as, as+1, ..., at to x. * find(i): output the value of ai. Note that the initial values of ai (i = 0, 1, . . . , n−1) are 231-1. Constraints * 1 ≤ n ≤ 100000 * 1 ≤ q ≤ 100000 * 0 ≤ s ≤ t < n * 0 ≤ i < n * 0 ≤ x < 231−1 Input n q query1 query2 : queryq In the first line, n (the number of elements in A) and q (the number of queries) are given. Then, ith query queryi is given in the following format: 0 s t x or 1 i The first digit represents the type of the query. '0' denotes update(s, t, x) and '1' denotes find(i). Output For each find operation, print the value. Examples Input 3 5 0 0 1 1 0 1 2 3 0 2 2 2 1 0 1 1 Output 1 3 Input 1 3 1 0 0 0 0 5 1 0 Output 2147483647 5 ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int sqrtN = 512; struct SqrtDecomposition { int N, K; vector<int> data; vector<bool> lazyFlag; vector<int> lazyUpdate; explicit SqrtDecomposition(const vector<int> &v) : N(v.size()) { K = (N + sqrtN - 1) / sqrtN; data.assign(K * sqrtN, 0); for (int i = 0; i < v.size(); ++i) { data[i] = v[i]; } lazyFlag.assign(K, false); lazyUpdate.assign(K, 0); } // [s, t) = x void update(int s, int t, int x) { for (int k = 0; k < K; ++k) { int l = k * sqrtN, r = (k + 1) * sqrtN; if (r <= s || t <= l) { continue; } if (s <= l && r <= t) { lazyFlag[k] = true; lazyUpdate[k] = x; } else { eval(k); for (int i = max(s, l); i < min(t, r); ++i) { data[i] = x; } } } } int find(int i) { int k = i / sqrtN; eval(k); return data[i]; } private: void eval(int k) { if (lazyFlag[k]) { lazyFlag[k] = false; for (int i = k * sqrtN; i < (k + 1) * sqrtN; ++i) { data[i] = lazyUpdate[k]; } } } }; int main() { ios::sync_with_stdio(false); int N, Q; cin >> N >> Q; vector<int> v(N, (1LL << 31) - 1); SqrtDecomposition sd(v); while (Q--) { int c; cin >> c; if (c == 0) { int s, t, x; cin >> s >> t >> x; sd.update(s, t + 1, x); } else { int i; cin >> i; cout << sd.find(i) << endl; } } return 0; } ```
#include <iostream> #include <list> #include <vector> #include <map> #include <set> #include <queue> #include <stack> #include <numeric> #include <algorithm> #include <cmath> #include <string> using namespace std; typedef long long lli; typedef vector<lli> vll; typedef vector<bool> vbl; typedef vector<vector<lli> > mat; typedef vector<vector<bool> > matb; typedef vector<string> vst; typedef pair<lli,lli> pll; typedef pair<double,double> pdd; template<class T> class sg_tree : public vector<T>{ private: lli n; T default_value; void _query(lli a,lli b,T x,lli k,lli l,lli r){ if(r <= a || b <= l) return; if(a <= l && r <= b) (*this)[k] = x; else { _query(a,b,x,k*2+1,l,(l+r)/2); _query(a,b,x,k*2+2,(l+r)/2,r); return; } } public: sg_tree():vector<T>(){ } sg_tree(lli n,T d = -1):vector<T>(n*4,d){ this->n = 1; while(n > this->n) this->n <<= 1; this->default_value = d; } T update(lli i){ i += n - 1; T ret = (*this)[i]; while(i > 0){ i = (i - 1) / 2; ret = max(ret,(*this)[i]); } return ret; } void query(lli a,lli b,lli x){ _query(a,b,x,0,0,n); } T func(T a,T b){ return min(a,b); } }; lli n,q; lli c,s,t,x; lli k = 0; vll b; sg_tree<lli> sg; int main(){ cin >> n >> q; sg = sg_tree<lli> (n); for(lli i = 0;i < q;i++){ cin >> c; if(c){ cin >> x; lli t; if((t = sg.update(x)) < 0) cout << 2147483647 << endl; else cout << b[t] << endl; }else{ cin >> s >> t >> x; b.push_back(x); sg.query(s,t+1,k); k++; } } }
### Prompt In CPP, your task is to solve the following problem: Write a program which manipulates a sequence A = {a0, a1, . . . , an−1} with the following operations: * update(s, t, x): change as, as+1, ..., at to x. * find(i): output the value of ai. Note that the initial values of ai (i = 0, 1, . . . , n−1) are 231-1. Constraints * 1 ≤ n ≤ 100000 * 1 ≤ q ≤ 100000 * 0 ≤ s ≤ t < n * 0 ≤ i < n * 0 ≤ x < 231−1 Input n q query1 query2 : queryq In the first line, n (the number of elements in A) and q (the number of queries) are given. Then, ith query queryi is given in the following format: 0 s t x or 1 i The first digit represents the type of the query. '0' denotes update(s, t, x) and '1' denotes find(i). Output For each find operation, print the value. Examples Input 3 5 0 0 1 1 0 1 2 3 0 2 2 2 1 0 1 1 Output 1 3 Input 1 3 1 0 0 0 0 5 1 0 Output 2147483647 5 ### Response ```cpp #include <iostream> #include <list> #include <vector> #include <map> #include <set> #include <queue> #include <stack> #include <numeric> #include <algorithm> #include <cmath> #include <string> using namespace std; typedef long long lli; typedef vector<lli> vll; typedef vector<bool> vbl; typedef vector<vector<lli> > mat; typedef vector<vector<bool> > matb; typedef vector<string> vst; typedef pair<lli,lli> pll; typedef pair<double,double> pdd; template<class T> class sg_tree : public vector<T>{ private: lli n; T default_value; void _query(lli a,lli b,T x,lli k,lli l,lli r){ if(r <= a || b <= l) return; if(a <= l && r <= b) (*this)[k] = x; else { _query(a,b,x,k*2+1,l,(l+r)/2); _query(a,b,x,k*2+2,(l+r)/2,r); return; } } public: sg_tree():vector<T>(){ } sg_tree(lli n,T d = -1):vector<T>(n*4,d){ this->n = 1; while(n > this->n) this->n <<= 1; this->default_value = d; } T update(lli i){ i += n - 1; T ret = (*this)[i]; while(i > 0){ i = (i - 1) / 2; ret = max(ret,(*this)[i]); } return ret; } void query(lli a,lli b,lli x){ _query(a,b,x,0,0,n); } T func(T a,T b){ return min(a,b); } }; lli n,q; lli c,s,t,x; lli k = 0; vll b; sg_tree<lli> sg; int main(){ cin >> n >> q; sg = sg_tree<lli> (n); for(lli i = 0;i < q;i++){ cin >> c; if(c){ cin >> x; lli t; if((t = sg.update(x)) < 0) cout << 2147483647 << endl; else cout << b[t] << endl; }else{ cin >> s >> t >> x; b.push_back(x); sg.query(s,t+1,k); k++; } } } ```
#include <stdio.h> #include <cmath> #include <algorithm> #include <cfloat> #include <stack> #include <queue> #include <vector> typedef long long int ll; #define BIG_NUM 2000000000 #define MOD 1000000007 #define EPS 0.000001 using namespace std; #define NUM 2147483647 int N = 1; int* data; void init(int first_N){ while(N < first_N)N *= 2; } void update(int update_left,int update_right,int new_value,int node_id,int node_left,int node_right){ if(update_right < node_left || update_left > node_right)return; else if(update_left <= node_left && update_right >= node_right){ data[node_id] = new_value; }else{ if(data[node_id] >= 0){ data[2*node_id+1] = data[node_id]; data[2*node_id+2] = data[node_id]; data[node_id] = -1; } update(update_left,update_right,new_value,2*node_id+1,node_left,(node_left+node_right)/2); update(update_left,update_right,new_value,2*node_id+2,(node_left+node_right)/2+1,node_right); } } int query(int search_left,int search_right,int node_id,int node_left,int node_right){ if(search_right < node_left || search_left > node_right){ return -1; }else if(node_left <= search_left && node_right >= search_right && data[node_id] >= 0){ return data[node_id]; }else{ int left = query(search_left,search_right,2*node_id+1,node_left,(node_left+node_right)/2); int right = query(search_left,search_right,2*node_id+2,(node_left+node_right)/2+1,node_right); return max(left,right); } } int main(){ int first_N,Q; scanf("%d %d",&first_N,&Q); init(first_N); data = new int[270000]; for(int i = 0; i <= 2*N-2; i++)data[i] = NUM; int command,left,right,value,loc; for(int i = 0; i < Q; i++){ scanf("%d",&command); if(command == 0){ scanf("%d %d %d",&left,&right,&value); update(left,right,value,0,0,N-1); }else{ scanf("%d",&loc); printf("%d\n",query(loc,loc,0,0,N-1)); } } }
### Prompt Please create a solution in Cpp to the following problem: Write a program which manipulates a sequence A = {a0, a1, . . . , an−1} with the following operations: * update(s, t, x): change as, as+1, ..., at to x. * find(i): output the value of ai. Note that the initial values of ai (i = 0, 1, . . . , n−1) are 231-1. Constraints * 1 ≤ n ≤ 100000 * 1 ≤ q ≤ 100000 * 0 ≤ s ≤ t < n * 0 ≤ i < n * 0 ≤ x < 231−1 Input n q query1 query2 : queryq In the first line, n (the number of elements in A) and q (the number of queries) are given. Then, ith query queryi is given in the following format: 0 s t x or 1 i The first digit represents the type of the query. '0' denotes update(s, t, x) and '1' denotes find(i). Output For each find operation, print the value. Examples Input 3 5 0 0 1 1 0 1 2 3 0 2 2 2 1 0 1 1 Output 1 3 Input 1 3 1 0 0 0 0 5 1 0 Output 2147483647 5 ### Response ```cpp #include <stdio.h> #include <cmath> #include <algorithm> #include <cfloat> #include <stack> #include <queue> #include <vector> typedef long long int ll; #define BIG_NUM 2000000000 #define MOD 1000000007 #define EPS 0.000001 using namespace std; #define NUM 2147483647 int N = 1; int* data; void init(int first_N){ while(N < first_N)N *= 2; } void update(int update_left,int update_right,int new_value,int node_id,int node_left,int node_right){ if(update_right < node_left || update_left > node_right)return; else if(update_left <= node_left && update_right >= node_right){ data[node_id] = new_value; }else{ if(data[node_id] >= 0){ data[2*node_id+1] = data[node_id]; data[2*node_id+2] = data[node_id]; data[node_id] = -1; } update(update_left,update_right,new_value,2*node_id+1,node_left,(node_left+node_right)/2); update(update_left,update_right,new_value,2*node_id+2,(node_left+node_right)/2+1,node_right); } } int query(int search_left,int search_right,int node_id,int node_left,int node_right){ if(search_right < node_left || search_left > node_right){ return -1; }else if(node_left <= search_left && node_right >= search_right && data[node_id] >= 0){ return data[node_id]; }else{ int left = query(search_left,search_right,2*node_id+1,node_left,(node_left+node_right)/2); int right = query(search_left,search_right,2*node_id+2,(node_left+node_right)/2+1,node_right); return max(left,right); } } int main(){ int first_N,Q; scanf("%d %d",&first_N,&Q); init(first_N); data = new int[270000]; for(int i = 0; i <= 2*N-2; i++)data[i] = NUM; int command,left,right,value,loc; for(int i = 0; i < Q; i++){ scanf("%d",&command); if(command == 0){ scanf("%d %d %d",&left,&right,&value); update(left,right,value,0,0,N-1); }else{ scanf("%d",&loc); printf("%d\n",query(loc,loc,0,0,N-1)); } } } ```
#include <bits/stdc++.h> using namespace std; #ifdef __linux__ #define getchar getchar_unlocked #define putchar putchar_unlocked #endif template <class Z> Z getint() { char c = getchar(); bool neg = c == '-'; Z res = neg ? 0 : c - '0'; while (isdigit(c = getchar())) res = res * 10 + (c - '0'); return neg ? -res : res; } template <class Z> void putint(Z a, char c = '\n') { if (a < 0) putchar('-'), a = -a; int d[40], i = 0; do d[i++] = a % 10; while (a /= 10); while (i--) putchar('0' + d[i]); putchar(c); } template <class T> struct assign_segtree { const int n; vector<pair<int, T>> t; assign_segtree(int _n, T a) : n(_n), t(2 * n, {0, a}) {} void assign(int l, int r, T a) { static int time = 0; ++time; for (l += n, r += n; l < r; l >>= 1, r >>= 1) { if (l & 1) t[l++] = {time, a}; if (r & 1) t[--r] = {time, a}; } } T get(int i) const { auto res = t[i += n]; while (i >>= 1) if (t[i].first > res.first) res = t[i]; return res.second; } }; int main() { int n = getint<int>(); int q = getint<int>(); assign_segtree<int> st(n, 0x7fffffff); while (q--) { if (getint<int>() == 0) { int l = getint<int>(); int r = getint<int>() + 1; int a = getint<int>(); st.assign(l, r, a); } else { putint(st.get(getint<int>())); } } }
### Prompt Generate a CPP solution to the following problem: Write a program which manipulates a sequence A = {a0, a1, . . . , an−1} with the following operations: * update(s, t, x): change as, as+1, ..., at to x. * find(i): output the value of ai. Note that the initial values of ai (i = 0, 1, . . . , n−1) are 231-1. Constraints * 1 ≤ n ≤ 100000 * 1 ≤ q ≤ 100000 * 0 ≤ s ≤ t < n * 0 ≤ i < n * 0 ≤ x < 231−1 Input n q query1 query2 : queryq In the first line, n (the number of elements in A) and q (the number of queries) are given. Then, ith query queryi is given in the following format: 0 s t x or 1 i The first digit represents the type of the query. '0' denotes update(s, t, x) and '1' denotes find(i). Output For each find operation, print the value. Examples Input 3 5 0 0 1 1 0 1 2 3 0 2 2 2 1 0 1 1 Output 1 3 Input 1 3 1 0 0 0 0 5 1 0 Output 2147483647 5 ### Response ```cpp #include <bits/stdc++.h> using namespace std; #ifdef __linux__ #define getchar getchar_unlocked #define putchar putchar_unlocked #endif template <class Z> Z getint() { char c = getchar(); bool neg = c == '-'; Z res = neg ? 0 : c - '0'; while (isdigit(c = getchar())) res = res * 10 + (c - '0'); return neg ? -res : res; } template <class Z> void putint(Z a, char c = '\n') { if (a < 0) putchar('-'), a = -a; int d[40], i = 0; do d[i++] = a % 10; while (a /= 10); while (i--) putchar('0' + d[i]); putchar(c); } template <class T> struct assign_segtree { const int n; vector<pair<int, T>> t; assign_segtree(int _n, T a) : n(_n), t(2 * n, {0, a}) {} void assign(int l, int r, T a) { static int time = 0; ++time; for (l += n, r += n; l < r; l >>= 1, r >>= 1) { if (l & 1) t[l++] = {time, a}; if (r & 1) t[--r] = {time, a}; } } T get(int i) const { auto res = t[i += n]; while (i >>= 1) if (t[i].first > res.first) res = t[i]; return res.second; } }; int main() { int n = getint<int>(); int q = getint<int>(); assign_segtree<int> st(n, 0x7fffffff); while (q--) { if (getint<int>() == 0) { int l = getint<int>(); int r = getint<int>() + 1; int a = getint<int>(); st.assign(l, r, a); } else { putint(st.get(getint<int>())); } } } ```
#include<bits/stdc++.h> using namespace std; #define int long long //BEGIN CUT HERE struct RUP{ int n; vector<int> dat,laz; const int def=INT_MAX; RUP(){} RUP(int n_){init(n_);} void init(int n_){ n=1; while(n<n_) n*=2; dat.clear(); dat.resize(2*n-1,def); laz.clear(); laz.resize(2*n-1,-1); } inline void eval(int len,int k){ if(laz[k]<0) return; if(k*2+1<n*2-1){ laz[k*2+1]=laz[k]; laz[k*2+2]=laz[k]; } dat[k]=laz[k]; laz[k]=-1; } void update(int a,int b,int x,int k,int l,int r){ eval(r-l,k); if(r<=a||b<=l) return; if(a<=l&&r<=b){ laz[k]=x; return; } eval(r-l,k); update(a,b,x,k*2+1,l,(l+r)/2); update(a,b,x,k*2+2,(l+r)/2,r); } int query(int a,int b,int k,int l,int r){ eval(r-l,k); if(r<=a||b<=l) return def; if(a<=l&&r<=b) return dat[k]; int vl=query(a,b,k*2+1,l,(l+r)/2); int vr=query(a,b,k*2+2,(l+r)/2,r); return min(vl,vr); } void update(int a,int b,int x){ update(a,b,x,0,0,n); } int query(int a){ return query(a,a+1,0,0,n); } }; //END CUT HERE signed main(){ int n,q; cin>>n>>q; RUP rup(n); for(int i=0;i<q;i++){ int f; cin>>f; if(!f){ int s,t,x; cin>>s>>t>>x; rup.update(s,t+1,x); }else{ int u; cin>>u; cout<<rup.query(u)<<endl; } } return 0; } /* verified on 2017/07/12 http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=DSL_2_D */
### Prompt Construct a CPP code solution to the problem outlined: Write a program which manipulates a sequence A = {a0, a1, . . . , an−1} with the following operations: * update(s, t, x): change as, as+1, ..., at to x. * find(i): output the value of ai. Note that the initial values of ai (i = 0, 1, . . . , n−1) are 231-1. Constraints * 1 ≤ n ≤ 100000 * 1 ≤ q ≤ 100000 * 0 ≤ s ≤ t < n * 0 ≤ i < n * 0 ≤ x < 231−1 Input n q query1 query2 : queryq In the first line, n (the number of elements in A) and q (the number of queries) are given. Then, ith query queryi is given in the following format: 0 s t x or 1 i The first digit represents the type of the query. '0' denotes update(s, t, x) and '1' denotes find(i). Output For each find operation, print the value. Examples Input 3 5 0 0 1 1 0 1 2 3 0 2 2 2 1 0 1 1 Output 1 3 Input 1 3 1 0 0 0 0 5 1 0 Output 2147483647 5 ### Response ```cpp #include<bits/stdc++.h> using namespace std; #define int long long //BEGIN CUT HERE struct RUP{ int n; vector<int> dat,laz; const int def=INT_MAX; RUP(){} RUP(int n_){init(n_);} void init(int n_){ n=1; while(n<n_) n*=2; dat.clear(); dat.resize(2*n-1,def); laz.clear(); laz.resize(2*n-1,-1); } inline void eval(int len,int k){ if(laz[k]<0) return; if(k*2+1<n*2-1){ laz[k*2+1]=laz[k]; laz[k*2+2]=laz[k]; } dat[k]=laz[k]; laz[k]=-1; } void update(int a,int b,int x,int k,int l,int r){ eval(r-l,k); if(r<=a||b<=l) return; if(a<=l&&r<=b){ laz[k]=x; return; } eval(r-l,k); update(a,b,x,k*2+1,l,(l+r)/2); update(a,b,x,k*2+2,(l+r)/2,r); } int query(int a,int b,int k,int l,int r){ eval(r-l,k); if(r<=a||b<=l) return def; if(a<=l&&r<=b) return dat[k]; int vl=query(a,b,k*2+1,l,(l+r)/2); int vr=query(a,b,k*2+2,(l+r)/2,r); return min(vl,vr); } void update(int a,int b,int x){ update(a,b,x,0,0,n); } int query(int a){ return query(a,a+1,0,0,n); } }; //END CUT HERE signed main(){ int n,q; cin>>n>>q; RUP rup(n); for(int i=0;i<q;i++){ int f; cin>>f; if(!f){ int s,t,x; cin>>s>>t>>x; rup.update(s,t+1,x); }else{ int u; cin>>u; cout<<rup.query(u)<<endl; } } return 0; } /* verified on 2017/07/12 http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=DSL_2_D */ ```
#include <bits/stdc++.h> using namespace std; /*RMQ update:O(logN) query:O(lonN)*/ const int MAX_N = 1<<17; int n,dat[2*MAX_N-1]; //????????? void init(int n_){ //????´???°n???2??????????????? n=1; while(n<n_)n*=2; for(int i=0;i<2*n-1;i++)dat[i]=INT_MAX; } //[a,b)???????°????????±??????? //query(a,b,0,0,n) void update(int a,int b,int x=-1,int k=0,int l=0,int r=n){ if(r<=a||b<=l)return ; if(a<=l&&r<=b){ if(x>=0)dat[k]=x; return; } if(dat[k]!=INT_MAX)dat[k*2+1]=dat[k*2+2]=dat[k]; dat[k]=INT_MAX; update(a,b,x,k*2+1,l,(l+r)/2); update(a,b,x,k*2+2,(l+r)/2,r); } int main(){ int q; cin>>n>>q; init(n); while(q--){ int cmd; cin>>cmd; if(cmd==0){ int s,t,x; cin>>s>>t>>x; update(s,t+1,x); } else { int idx; cin>>idx; update(idx,idx+1); cout <<dat[idx+n-1]<<endl; } } return 0; }
### Prompt Generate a cpp solution to the following problem: Write a program which manipulates a sequence A = {a0, a1, . . . , an−1} with the following operations: * update(s, t, x): change as, as+1, ..., at to x. * find(i): output the value of ai. Note that the initial values of ai (i = 0, 1, . . . , n−1) are 231-1. Constraints * 1 ≤ n ≤ 100000 * 1 ≤ q ≤ 100000 * 0 ≤ s ≤ t < n * 0 ≤ i < n * 0 ≤ x < 231−1 Input n q query1 query2 : queryq In the first line, n (the number of elements in A) and q (the number of queries) are given. Then, ith query queryi is given in the following format: 0 s t x or 1 i The first digit represents the type of the query. '0' denotes update(s, t, x) and '1' denotes find(i). Output For each find operation, print the value. Examples Input 3 5 0 0 1 1 0 1 2 3 0 2 2 2 1 0 1 1 Output 1 3 Input 1 3 1 0 0 0 0 5 1 0 Output 2147483647 5 ### Response ```cpp #include <bits/stdc++.h> using namespace std; /*RMQ update:O(logN) query:O(lonN)*/ const int MAX_N = 1<<17; int n,dat[2*MAX_N-1]; //????????? void init(int n_){ //????´???°n???2??????????????? n=1; while(n<n_)n*=2; for(int i=0;i<2*n-1;i++)dat[i]=INT_MAX; } //[a,b)???????°????????±??????? //query(a,b,0,0,n) void update(int a,int b,int x=-1,int k=0,int l=0,int r=n){ if(r<=a||b<=l)return ; if(a<=l&&r<=b){ if(x>=0)dat[k]=x; return; } if(dat[k]!=INT_MAX)dat[k*2+1]=dat[k*2+2]=dat[k]; dat[k]=INT_MAX; update(a,b,x,k*2+1,l,(l+r)/2); update(a,b,x,k*2+2,(l+r)/2,r); } int main(){ int q; cin>>n>>q; init(n); while(q--){ int cmd; cin>>cmd; if(cmd==0){ int s,t,x; cin>>s>>t>>x; update(s,t+1,x); } else { int idx; cin>>idx; update(idx,idx+1); cout <<dat[idx+n-1]<<endl; } } return 0; } ```
#include <bits/stdc++.h> #define ll long long #define INF 1000000005 #define MOD 1000000007 #define rep(i,n) for(int i=0;i<n;++i) using namespace std; typedef pair<int,int>P; const int N = 1 << 17; //?????????????????????0?§??????? //????°????????±???????????????°??????(RMQ) //?????°???????????¨???????????°?????????????????? int n,n_,q,ud[2*N-1],t[2*N-1]; //????????? //n_???x??\??????????°????2???????????? void init(int x) { //?°????????????????????´???°???2??????????????? n_=1; while(n_<x){ n_*=2; } rep(i,2*n_-1){ ud[i] = (int)((1LL<<31) -1LL); t[i] = -1; } } //k????????????????????§?????? int find(int k) { P res; //???????????? k += n_-1; res.first = ud[k]; res.second = t[k]; //?????????????????´??° while(k>0){ k = (k-1)/2; if(t[k] > res.second){ res.first = ud[k]; res.second = t[k]; } } return res.first; } //[a,b)???????°????????±?????????? //k?????????????????? //????????????query(a,b,0,0,n_)??¨???????????¶???(n_??¨???????????¨?????¨???) void update(int a,int b,int k,int l,int r,int val,int id) { if(r <= a || b <= l){ return; } if(a <= l && r <= b){ ud[k] = val; t[k] = id; }else{ update(a,b,2*k+1,l,(l+r)/2,val,id); update(a,b,2*k+2,(l+r)/2,r,val,id); } } int main() { scanf("%d%d",&n,&q); init(n); rep(i,q){ int x; scanf("%d",&x); if(x==0){ int s,t,u; scanf("%d%d%d",&s,&t,&u); update(s,t+1,0,0,n_,u,i); }else{ int s; scanf("%d",&s); printf("%d\n",find(s)); } } return 0; }
### Prompt Your challenge is to write a Cpp solution to the following problem: Write a program which manipulates a sequence A = {a0, a1, . . . , an−1} with the following operations: * update(s, t, x): change as, as+1, ..., at to x. * find(i): output the value of ai. Note that the initial values of ai (i = 0, 1, . . . , n−1) are 231-1. Constraints * 1 ≤ n ≤ 100000 * 1 ≤ q ≤ 100000 * 0 ≤ s ≤ t < n * 0 ≤ i < n * 0 ≤ x < 231−1 Input n q query1 query2 : queryq In the first line, n (the number of elements in A) and q (the number of queries) are given. Then, ith query queryi is given in the following format: 0 s t x or 1 i The first digit represents the type of the query. '0' denotes update(s, t, x) and '1' denotes find(i). Output For each find operation, print the value. Examples Input 3 5 0 0 1 1 0 1 2 3 0 2 2 2 1 0 1 1 Output 1 3 Input 1 3 1 0 0 0 0 5 1 0 Output 2147483647 5 ### Response ```cpp #include <bits/stdc++.h> #define ll long long #define INF 1000000005 #define MOD 1000000007 #define rep(i,n) for(int i=0;i<n;++i) using namespace std; typedef pair<int,int>P; const int N = 1 << 17; //?????????????????????0?§??????? //????°????????±???????????????°??????(RMQ) //?????°???????????¨???????????°?????????????????? int n,n_,q,ud[2*N-1],t[2*N-1]; //????????? //n_???x??\??????????°????2???????????? void init(int x) { //?°????????????????????´???°???2??????????????? n_=1; while(n_<x){ n_*=2; } rep(i,2*n_-1){ ud[i] = (int)((1LL<<31) -1LL); t[i] = -1; } } //k????????????????????§?????? int find(int k) { P res; //???????????? k += n_-1; res.first = ud[k]; res.second = t[k]; //?????????????????´??° while(k>0){ k = (k-1)/2; if(t[k] > res.second){ res.first = ud[k]; res.second = t[k]; } } return res.first; } //[a,b)???????°????????±?????????? //k?????????????????? //????????????query(a,b,0,0,n_)??¨???????????¶???(n_??¨???????????¨?????¨???) void update(int a,int b,int k,int l,int r,int val,int id) { if(r <= a || b <= l){ return; } if(a <= l && r <= b){ ud[k] = val; t[k] = id; }else{ update(a,b,2*k+1,l,(l+r)/2,val,id); update(a,b,2*k+2,(l+r)/2,r,val,id); } } int main() { scanf("%d%d",&n,&q); init(n); rep(i,q){ int x; scanf("%d",&x); if(x==0){ int s,t,u; scanf("%d%d%d",&s,&t,&u); update(s,t+1,0,0,n_,u,i); }else{ int s; scanf("%d",&s); printf("%d\n",find(s)); } } return 0; } ```
#include "bits/stdc++.h" using namespace std; #ifdef _DEBUG #include "dump.hpp" #else #define dump(...) #endif //#define int long long #define rep(i,a,b) for(int i=(a);i<(b);i++) #define rrep(i,a,b) for(int i=(b)-1;i>=(a);i--) #define all(c) begin(c),end(c) const int INF = (1ll << 31) - 1; const int MOD = (int)(1e9) + 7; const double PI = acos(-1); const double EPS = 1e-9; template<class T> bool chmax(T &a, const T &b) { if (a < b) { a = b; return true; } return false; } template<class T> bool chmin(T &a, const T &b) { if (a > b) { a = b; return true; } return false; } template<typename T> struct RangeUpdateQuery { int n; vector<int>d; RangeUpdateQuery(int m) { for (n = 1; n < m; n <<= 1); d.assign(2 * n, INF); } int find(int i) { update(i, i + 1); return d[n + i]; } void update(int a, int b, int x = -1, int k = 1, int l = 0, int r = -1) { if (r == -1)r = n; if (r <= a || b <= l)return; else if (a <= l&&r <= b) { if (x >= 0)d[k] = x; return; } else { if (d[k] != INF)d[2 * k] = d[2 * k + 1] = d[k], d[k] = INF; update(a, b, x, 2 * k, l, (l + r) / 2); update(a, b, x, 2 * k + 1, (l + r) / 2, r); } } }; signed main() { cin.tie(0); ios::sync_with_stdio(false); int n, q; cin >> n >> q; RangeUpdateQuery<int> ruq(n); rep(i, 0, q) { int com; cin >> com; if (com) { int x; cin >> x; cout << ruq.find(x) << endl; } else { int s, t, x; cin >> s >> t >> x; ruq.update(s, t + 1, x); } } return 0; }
### Prompt Please create a solution in Cpp to the following problem: Write a program which manipulates a sequence A = {a0, a1, . . . , an−1} with the following operations: * update(s, t, x): change as, as+1, ..., at to x. * find(i): output the value of ai. Note that the initial values of ai (i = 0, 1, . . . , n−1) are 231-1. Constraints * 1 ≤ n ≤ 100000 * 1 ≤ q ≤ 100000 * 0 ≤ s ≤ t < n * 0 ≤ i < n * 0 ≤ x < 231−1 Input n q query1 query2 : queryq In the first line, n (the number of elements in A) and q (the number of queries) are given. Then, ith query queryi is given in the following format: 0 s t x or 1 i The first digit represents the type of the query. '0' denotes update(s, t, x) and '1' denotes find(i). Output For each find operation, print the value. Examples Input 3 5 0 0 1 1 0 1 2 3 0 2 2 2 1 0 1 1 Output 1 3 Input 1 3 1 0 0 0 0 5 1 0 Output 2147483647 5 ### Response ```cpp #include "bits/stdc++.h" using namespace std; #ifdef _DEBUG #include "dump.hpp" #else #define dump(...) #endif //#define int long long #define rep(i,a,b) for(int i=(a);i<(b);i++) #define rrep(i,a,b) for(int i=(b)-1;i>=(a);i--) #define all(c) begin(c),end(c) const int INF = (1ll << 31) - 1; const int MOD = (int)(1e9) + 7; const double PI = acos(-1); const double EPS = 1e-9; template<class T> bool chmax(T &a, const T &b) { if (a < b) { a = b; return true; } return false; } template<class T> bool chmin(T &a, const T &b) { if (a > b) { a = b; return true; } return false; } template<typename T> struct RangeUpdateQuery { int n; vector<int>d; RangeUpdateQuery(int m) { for (n = 1; n < m; n <<= 1); d.assign(2 * n, INF); } int find(int i) { update(i, i + 1); return d[n + i]; } void update(int a, int b, int x = -1, int k = 1, int l = 0, int r = -1) { if (r == -1)r = n; if (r <= a || b <= l)return; else if (a <= l&&r <= b) { if (x >= 0)d[k] = x; return; } else { if (d[k] != INF)d[2 * k] = d[2 * k + 1] = d[k], d[k] = INF; update(a, b, x, 2 * k, l, (l + r) / 2); update(a, b, x, 2 * k + 1, (l + r) / 2, r); } } }; signed main() { cin.tie(0); ios::sync_with_stdio(false); int n, q; cin >> n >> q; RangeUpdateQuery<int> ruq(n); rep(i, 0, q) { int com; cin >> com; if (com) { int x; cin >> x; cout << ruq.find(x) << endl; } else { int s, t, x; cin >> s >> t >> x; ruq.update(s, t + 1, x); } } return 0; } ```
#include <iostream> #include <queue> #include <vector> #include <algorithm> #include <set> #include <cmath> #include <tuple> #include <cstring> #include <map> #include <iomanip> #include <ctime> #include <complex> #include <cassert> #include <climits> using namespace std; typedef long long ll; typedef unsigned long long ull; #define _ << " " << #define all(X) (X).begin(), (X).end() #define len(X) (X).size() #define Pii pair<int, int> #define Pll pair<ll, ll> #define Tiii tuple<int, int, int> #define Tlll tuple<ll, ll, ll> class SegTree_Delay { public: int f; int INIT = INT_MAX; vector<int> dat, lazy; SegTree_Delay(int n) { f = 1; while (f < n) f *= 2; dat.assign(2 * f, INIT); lazy.assign(2 * f, INIT); } void eval(int k) { if (lazy[k] == INIT) return; if (k < f - 1) { lazy[2 * k + 1] = lazy[k]; lazy[2 * k + 2] = lazy[k]; } dat[k] = lazy[k]; lazy[k] = INIT; } void update(int a, int b, int x, int k, int l, int r) { eval(k); if (a <= l && r <= b) { lazy[k] = x; eval(k); } else if (a < r && l < b) { update(a, b, x, k * 2 + 1, l, (l + r) / 2); update(a, b, x, k * 2 + 2, (l + r) / 2, r); dat[k] = min(dat[k * 2 + 1], dat[k * 2 + 2]); } } void update(int a, int b, int x) { update(a, b, x, 0, 0, f); } int query(int a, int b) { return query(a, b, 0, 0, f); } int query(int a, int b, int k, int l, int r) { eval(k); if (r <= a || b <= l) return INIT; if (a <= l && r <= b) return dat[k]; else { int vl = query(a, b, k * 2 + 1, l, (l + r) / 2); int vr = query(a, b, k * 2 + 2, (l + r) / 2, r); return min(vl, vr); } } }; int main() { int n, q; cin >> n >> q; SegTree_Delay st = SegTree_Delay(n); while (q--) { int m; cin >> m; if (m) { int i; cin >> i; cout << st.query(i, i + 1) << endl; } else { int s, t, x; cin >> s >> t >> x; st.update(s, t + 1, x); } } }
### Prompt Your challenge is to write a CPP solution to the following problem: Write a program which manipulates a sequence A = {a0, a1, . . . , an−1} with the following operations: * update(s, t, x): change as, as+1, ..., at to x. * find(i): output the value of ai. Note that the initial values of ai (i = 0, 1, . . . , n−1) are 231-1. Constraints * 1 ≤ n ≤ 100000 * 1 ≤ q ≤ 100000 * 0 ≤ s ≤ t < n * 0 ≤ i < n * 0 ≤ x < 231−1 Input n q query1 query2 : queryq In the first line, n (the number of elements in A) and q (the number of queries) are given. Then, ith query queryi is given in the following format: 0 s t x or 1 i The first digit represents the type of the query. '0' denotes update(s, t, x) and '1' denotes find(i). Output For each find operation, print the value. Examples Input 3 5 0 0 1 1 0 1 2 3 0 2 2 2 1 0 1 1 Output 1 3 Input 1 3 1 0 0 0 0 5 1 0 Output 2147483647 5 ### Response ```cpp #include <iostream> #include <queue> #include <vector> #include <algorithm> #include <set> #include <cmath> #include <tuple> #include <cstring> #include <map> #include <iomanip> #include <ctime> #include <complex> #include <cassert> #include <climits> using namespace std; typedef long long ll; typedef unsigned long long ull; #define _ << " " << #define all(X) (X).begin(), (X).end() #define len(X) (X).size() #define Pii pair<int, int> #define Pll pair<ll, ll> #define Tiii tuple<int, int, int> #define Tlll tuple<ll, ll, ll> class SegTree_Delay { public: int f; int INIT = INT_MAX; vector<int> dat, lazy; SegTree_Delay(int n) { f = 1; while (f < n) f *= 2; dat.assign(2 * f, INIT); lazy.assign(2 * f, INIT); } void eval(int k) { if (lazy[k] == INIT) return; if (k < f - 1) { lazy[2 * k + 1] = lazy[k]; lazy[2 * k + 2] = lazy[k]; } dat[k] = lazy[k]; lazy[k] = INIT; } void update(int a, int b, int x, int k, int l, int r) { eval(k); if (a <= l && r <= b) { lazy[k] = x; eval(k); } else if (a < r && l < b) { update(a, b, x, k * 2 + 1, l, (l + r) / 2); update(a, b, x, k * 2 + 2, (l + r) / 2, r); dat[k] = min(dat[k * 2 + 1], dat[k * 2 + 2]); } } void update(int a, int b, int x) { update(a, b, x, 0, 0, f); } int query(int a, int b) { return query(a, b, 0, 0, f); } int query(int a, int b, int k, int l, int r) { eval(k); if (r <= a || b <= l) return INIT; if (a <= l && r <= b) return dat[k]; else { int vl = query(a, b, k * 2 + 1, l, (l + r) / 2); int vr = query(a, b, k * 2 + 2, (l + r) / 2, r); return min(vl, vr); } } }; int main() { int n, q; cin >> n >> q; SegTree_Delay st = SegTree_Delay(n); while (q--) { int m; cin >> m; if (m) { int i; cin >> i; cout << st.query(i, i + 1) << endl; } else { int s, t, x; cin >> s >> t >> x; st.update(s, t + 1, x); } } } ```
#include <bits/stdc++.h> using namespace std; using ll = long long; #define rep(i, n) for (int i = 0; i < (int)(n); ++i) #define all(c) begin(c), end(c) #define dump(x) cerr << __LINE__ << ":\t" #x " = " << (x) << endl struct segtree { vector<int> lazy, dat; int n; segtree(int n_, int init){ n = 1; while(n < n_) n *= 2; dat.assign(n*2, init); lazy.assign(n*2, -1); } void set(int l, int r, int x){ set(l, r, x, 0, n, 1); } void set(int l, int r, int x, int segl, int segr, int n){ push(segl, segr, n); if(segr <= l || r <= segl); else if(l <= segl && segr <= r) lazy[n] = x; else { int segm = (segl + segr) / 2; set(l, r, x, segl, segm, n*2); set(l, r, x, segm, segr, n*2+1); } } int get(int k){ return get(k, 0, n, 1); } int get(int k, int segl, int segr, int n){ push(segl, segr, n); if(segl + 1 == segr) return dat[n]; int segm = (segl + segr) / 2; if(k < segm) return get(k, segl, segm, n*2); else return get(k, segm, segr, n*2+1); } void push(int segl, int segr, int node){ if(lazy[node] != -1){ dat[node] = lazy[node]; if(segl + 1 != segr){ lazy[node*2] = lazy[node]; lazy[node*2+1] = lazy[node]; } lazy[node] = -1; } } }; int main(){ cin.tie(0); ios::sync_with_stdio(0); int n, q; cin >> n >> q; segtree st(n, 2147483647); for(int iq = 0; iq < q; ++iq){ int t; cin >> t; // dump(t); if(t == 0){ int s, t, x; cin >> s >> t >> x; ++t; st.set(s, t, x); } else { int i; cin >> i; cout << st.get(i) << '\n'; } } }
### Prompt Construct a cpp code solution to the problem outlined: Write a program which manipulates a sequence A = {a0, a1, . . . , an−1} with the following operations: * update(s, t, x): change as, as+1, ..., at to x. * find(i): output the value of ai. Note that the initial values of ai (i = 0, 1, . . . , n−1) are 231-1. Constraints * 1 ≤ n ≤ 100000 * 1 ≤ q ≤ 100000 * 0 ≤ s ≤ t < n * 0 ≤ i < n * 0 ≤ x < 231−1 Input n q query1 query2 : queryq In the first line, n (the number of elements in A) and q (the number of queries) are given. Then, ith query queryi is given in the following format: 0 s t x or 1 i The first digit represents the type of the query. '0' denotes update(s, t, x) and '1' denotes find(i). Output For each find operation, print the value. Examples Input 3 5 0 0 1 1 0 1 2 3 0 2 2 2 1 0 1 1 Output 1 3 Input 1 3 1 0 0 0 0 5 1 0 Output 2147483647 5 ### Response ```cpp #include <bits/stdc++.h> using namespace std; using ll = long long; #define rep(i, n) for (int i = 0; i < (int)(n); ++i) #define all(c) begin(c), end(c) #define dump(x) cerr << __LINE__ << ":\t" #x " = " << (x) << endl struct segtree { vector<int> lazy, dat; int n; segtree(int n_, int init){ n = 1; while(n < n_) n *= 2; dat.assign(n*2, init); lazy.assign(n*2, -1); } void set(int l, int r, int x){ set(l, r, x, 0, n, 1); } void set(int l, int r, int x, int segl, int segr, int n){ push(segl, segr, n); if(segr <= l || r <= segl); else if(l <= segl && segr <= r) lazy[n] = x; else { int segm = (segl + segr) / 2; set(l, r, x, segl, segm, n*2); set(l, r, x, segm, segr, n*2+1); } } int get(int k){ return get(k, 0, n, 1); } int get(int k, int segl, int segr, int n){ push(segl, segr, n); if(segl + 1 == segr) return dat[n]; int segm = (segl + segr) / 2; if(k < segm) return get(k, segl, segm, n*2); else return get(k, segm, segr, n*2+1); } void push(int segl, int segr, int node){ if(lazy[node] != -1){ dat[node] = lazy[node]; if(segl + 1 != segr){ lazy[node*2] = lazy[node]; lazy[node*2+1] = lazy[node]; } lazy[node] = -1; } } }; int main(){ cin.tie(0); ios::sync_with_stdio(0); int n, q; cin >> n >> q; segtree st(n, 2147483647); for(int iq = 0; iq < q; ++iq){ int t; cin >> t; // dump(t); if(t == 0){ int s, t, x; cin >> s >> t >> x; ++t; st.set(s, t, x); } else { int i; cin >> i; cout << st.get(i) << '\n'; } } } ```
#include <iostream> #include <vector> using namespace std; const int INF = 2147483647; struct SegmentTree { int n; vector<int> heap; vector<bool> isLazy; SegmentTree(int n): n(n) { heap.assign(4 * n, INF); isLazy.assign(4 * n, true); } void update(int nodeId, int l, int r, int ql, int qr, int v) { if (qr < l || ql > r) { return; } else if (ql <= l && r <= qr) { heap[nodeId] = v; isLazy[nodeId] = true; } else { pushdown(nodeId); int m = l + (r - l)/2; update(nodeId * 2, l, m, ql, qr, v); update(nodeId * 2 + 1, m + 1, r, ql, qr, v); } } int query(int nodeId, int l, int r, int q) { if (q < l || q > r) { return -INF; } else if (isLazy[nodeId]) { return heap[nodeId]; } else { int m = l + (r - l)/2; return max(query(nodeId * 2, l, m, q), query(nodeId * 2 + 1, m + 1, r, q)); } } void pushdown(int nodeId) { //cout << "push: " << nodeId << endl; if (isLazy[nodeId]) { heap[nodeId * 2] = heap[nodeId]; isLazy[nodeId * 2] = true; heap[nodeId * 2 + 1] = heap[nodeId]; isLazy[nodeId * 2 + 1] = true; heap[nodeId] = -INF; isLazy[nodeId] = false; } } }; int main() { int n, q; cin >> n >> q; SegmentTree st(n); for (int i = 0; i < q; i++) { int cmd; cin >> cmd; if (cmd == 0) { int ql, qr, v; cin >> ql >> qr >> v; st.update(1, 0, n -1, ql, qr, v); // for (int i = 0; i < 4 * n; i++) { // cout << i << ":" << st.heap[i] << endl; // } } else { int pos; cin >> pos; cout << st.query(1, 0, n-1, pos) << endl; } } return 0; }
### Prompt In cpp, your task is to solve the following problem: Write a program which manipulates a sequence A = {a0, a1, . . . , an−1} with the following operations: * update(s, t, x): change as, as+1, ..., at to x. * find(i): output the value of ai. Note that the initial values of ai (i = 0, 1, . . . , n−1) are 231-1. Constraints * 1 ≤ n ≤ 100000 * 1 ≤ q ≤ 100000 * 0 ≤ s ≤ t < n * 0 ≤ i < n * 0 ≤ x < 231−1 Input n q query1 query2 : queryq In the first line, n (the number of elements in A) and q (the number of queries) are given. Then, ith query queryi is given in the following format: 0 s t x or 1 i The first digit represents the type of the query. '0' denotes update(s, t, x) and '1' denotes find(i). Output For each find operation, print the value. Examples Input 3 5 0 0 1 1 0 1 2 3 0 2 2 2 1 0 1 1 Output 1 3 Input 1 3 1 0 0 0 0 5 1 0 Output 2147483647 5 ### Response ```cpp #include <iostream> #include <vector> using namespace std; const int INF = 2147483647; struct SegmentTree { int n; vector<int> heap; vector<bool> isLazy; SegmentTree(int n): n(n) { heap.assign(4 * n, INF); isLazy.assign(4 * n, true); } void update(int nodeId, int l, int r, int ql, int qr, int v) { if (qr < l || ql > r) { return; } else if (ql <= l && r <= qr) { heap[nodeId] = v; isLazy[nodeId] = true; } else { pushdown(nodeId); int m = l + (r - l)/2; update(nodeId * 2, l, m, ql, qr, v); update(nodeId * 2 + 1, m + 1, r, ql, qr, v); } } int query(int nodeId, int l, int r, int q) { if (q < l || q > r) { return -INF; } else if (isLazy[nodeId]) { return heap[nodeId]; } else { int m = l + (r - l)/2; return max(query(nodeId * 2, l, m, q), query(nodeId * 2 + 1, m + 1, r, q)); } } void pushdown(int nodeId) { //cout << "push: " << nodeId << endl; if (isLazy[nodeId]) { heap[nodeId * 2] = heap[nodeId]; isLazy[nodeId * 2] = true; heap[nodeId * 2 + 1] = heap[nodeId]; isLazy[nodeId * 2 + 1] = true; heap[nodeId] = -INF; isLazy[nodeId] = false; } } }; int main() { int n, q; cin >> n >> q; SegmentTree st(n); for (int i = 0; i < q; i++) { int cmd; cin >> cmd; if (cmd == 0) { int ql, qr, v; cin >> ql >> qr >> v; st.update(1, 0, n -1, ql, qr, v); // for (int i = 0; i < 4 * n; i++) { // cout << i << ":" << st.heap[i] << endl; // } } else { int pos; cin >> pos; cout << st.query(1, 0, n-1, pos) << endl; } } return 0; } ```
#include <bits/stdc++.h> using namespace std; #define dhoom ios_base::sync_with_stdio(false);cin.tie(NULL);cout.tie(NULL); typedef long long ll; #define fi first #define se second #define sc scanf #define pr printf #define pb push_back const ll inf = 1e18; const int nax = 2e6 + 7; ll mod; int n , q; using namespace std; ll exp(ll a , ll b){ if(b == 0) return 1; int x = b % 2 == 0 ? ((exp(a , b/2)%mod)*(exp(a , b / 2)%mod))%mod : (a%mod*exp(a , b - 1) % mod)%mod; return x; } ll tree[nax]; ll arr[nax]; int marked[nax]; void build(ll tl , ll tr , ll pos){ if(tl == tr) { tree[pos] = arr[tl]; return ; } ll mid = tl + (tr - tl)/2; build(tl , mid , 2 * pos); build(mid + 1 , tr , 2 * pos + 1); } void update(ll l , ll r , ll val , ll tl , ll tr , ll pos){ if(l > r) return ; if(tl == l && tr == r){ tree[pos] = val; marked[pos] = 1; return ; } ll mid = tl + (tr - tl)/2; if(marked[pos]){ tree[2 * pos] = tree[pos]; tree[2*pos + 1] = tree[pos]; marked[pos*2] = marked[pos*2 + 1] = 1; marked[pos] = 0; } update(l , min(r , mid),val , tl , mid , 2 * pos ); update(max(l , mid + 1), r , val , mid + 1 , tr , 2 * pos + 1); //tree[pos] = tree[2*pos] + tree[ 2* pos + 1]; } ll query(ll ind, ll tl , ll tr , ll pos){ if(tl == tr) return tree[pos]; ll mid = tl + (tr - tl)/2; if(marked[pos]){ tree[2 * pos] = tree[pos]; tree[2*pos + 1] = tree[pos]; marked[pos*2] = marked[pos*2 + 1] = 1; marked[pos] = 0; } if(ind <= mid) return query(ind , tl , mid , 2*pos); else return query(ind , mid + 1 , tr , 2*pos + 1); } int main(int argc,char ** argv){ dhoom; cin >> n >> q; ll x = pow(2LL , 31LL) - 1; // cout << "HEY" << endl; //cout << x << endl; for(int i = 1 ; i <= n ; i++) arr[i] = x; //cout << "building" << endl; build(1 , n , 1); //cout << " hi " << endl; for(int i = 0 ; i < q ; i++){ ll a , b , c , d; cin >> a; if(a == 0){ cin >> b >> c >> d; update(b+1 , c+1 , d , 1 , n , 1); } else { cin >> b; cout << query(b + 1, 1 , n , 1) << endl; } } return 0; }
### Prompt Construct a Cpp code solution to the problem outlined: Write a program which manipulates a sequence A = {a0, a1, . . . , an−1} with the following operations: * update(s, t, x): change as, as+1, ..., at to x. * find(i): output the value of ai. Note that the initial values of ai (i = 0, 1, . . . , n−1) are 231-1. Constraints * 1 ≤ n ≤ 100000 * 1 ≤ q ≤ 100000 * 0 ≤ s ≤ t < n * 0 ≤ i < n * 0 ≤ x < 231−1 Input n q query1 query2 : queryq In the first line, n (the number of elements in A) and q (the number of queries) are given. Then, ith query queryi is given in the following format: 0 s t x or 1 i The first digit represents the type of the query. '0' denotes update(s, t, x) and '1' denotes find(i). Output For each find operation, print the value. Examples Input 3 5 0 0 1 1 0 1 2 3 0 2 2 2 1 0 1 1 Output 1 3 Input 1 3 1 0 0 0 0 5 1 0 Output 2147483647 5 ### Response ```cpp #include <bits/stdc++.h> using namespace std; #define dhoom ios_base::sync_with_stdio(false);cin.tie(NULL);cout.tie(NULL); typedef long long ll; #define fi first #define se second #define sc scanf #define pr printf #define pb push_back const ll inf = 1e18; const int nax = 2e6 + 7; ll mod; int n , q; using namespace std; ll exp(ll a , ll b){ if(b == 0) return 1; int x = b % 2 == 0 ? ((exp(a , b/2)%mod)*(exp(a , b / 2)%mod))%mod : (a%mod*exp(a , b - 1) % mod)%mod; return x; } ll tree[nax]; ll arr[nax]; int marked[nax]; void build(ll tl , ll tr , ll pos){ if(tl == tr) { tree[pos] = arr[tl]; return ; } ll mid = tl + (tr - tl)/2; build(tl , mid , 2 * pos); build(mid + 1 , tr , 2 * pos + 1); } void update(ll l , ll r , ll val , ll tl , ll tr , ll pos){ if(l > r) return ; if(tl == l && tr == r){ tree[pos] = val; marked[pos] = 1; return ; } ll mid = tl + (tr - tl)/2; if(marked[pos]){ tree[2 * pos] = tree[pos]; tree[2*pos + 1] = tree[pos]; marked[pos*2] = marked[pos*2 + 1] = 1; marked[pos] = 0; } update(l , min(r , mid),val , tl , mid , 2 * pos ); update(max(l , mid + 1), r , val , mid + 1 , tr , 2 * pos + 1); //tree[pos] = tree[2*pos] + tree[ 2* pos + 1]; } ll query(ll ind, ll tl , ll tr , ll pos){ if(tl == tr) return tree[pos]; ll mid = tl + (tr - tl)/2; if(marked[pos]){ tree[2 * pos] = tree[pos]; tree[2*pos + 1] = tree[pos]; marked[pos*2] = marked[pos*2 + 1] = 1; marked[pos] = 0; } if(ind <= mid) return query(ind , tl , mid , 2*pos); else return query(ind , mid + 1 , tr , 2*pos + 1); } int main(int argc,char ** argv){ dhoom; cin >> n >> q; ll x = pow(2LL , 31LL) - 1; // cout << "HEY" << endl; //cout << x << endl; for(int i = 1 ; i <= n ; i++) arr[i] = x; //cout << "building" << endl; build(1 , n , 1); //cout << " hi " << endl; for(int i = 0 ; i < q ; i++){ ll a , b , c , d; cin >> a; if(a == 0){ cin >> b >> c >> d; update(b+1 , c+1 , d , 1 , n , 1); } else { cin >> b; cout << query(b + 1, 1 , n , 1) << endl; } } return 0; } ```
#include<iostream> #include<algorithm> #include<vector> #include<queue> #define lol(i,n) for(int i=0;i<n;i++) #define mod 2147483647 typedef long long ll; using namespace std; #define N (1<<17) class RUQ{ private: int dat[2*N]; vector<int> hs; void dfs(int l,int r,int a,int b,int k,int x){ if(l<=a&&b<=r){dat[k]=x;return;} if(b<=l||r<=a)return; int m=(a+b)/2; dfs(l,r,a,m,k*2+1,x); dfs(l,r,m,b,k*2+2,x); } public: void Init(){ hs.push_back(mod); lol(i,2*N)dat[i]=0; } void Update(int l,int r,int x){ dfs(l,r+1,0,N,0,hs.size()); hs.push_back(x); } int Query(int i){ i+=N-1; int maxi=dat[i]; while(i){ i=(i-1)/2; maxi=max(maxi,dat[i]); } return hs[maxi]; } }; int main(){ int n,q;cin>>n>>q; RUQ ruq;ruq.Init(); while(q--){ int c;cin>>c; if(c==0){ int a,b,x;cin>>a>>b>>x; ruq.Update(a,b,x); } if(c==1){ int x;cin>>x; cout<<ruq.Query(x)<<endl; } } return 0; }
### Prompt Develop a solution in cpp to the problem described below: Write a program which manipulates a sequence A = {a0, a1, . . . , an−1} with the following operations: * update(s, t, x): change as, as+1, ..., at to x. * find(i): output the value of ai. Note that the initial values of ai (i = 0, 1, . . . , n−1) are 231-1. Constraints * 1 ≤ n ≤ 100000 * 1 ≤ q ≤ 100000 * 0 ≤ s ≤ t < n * 0 ≤ i < n * 0 ≤ x < 231−1 Input n q query1 query2 : queryq In the first line, n (the number of elements in A) and q (the number of queries) are given. Then, ith query queryi is given in the following format: 0 s t x or 1 i The first digit represents the type of the query. '0' denotes update(s, t, x) and '1' denotes find(i). Output For each find operation, print the value. Examples Input 3 5 0 0 1 1 0 1 2 3 0 2 2 2 1 0 1 1 Output 1 3 Input 1 3 1 0 0 0 0 5 1 0 Output 2147483647 5 ### Response ```cpp #include<iostream> #include<algorithm> #include<vector> #include<queue> #define lol(i,n) for(int i=0;i<n;i++) #define mod 2147483647 typedef long long ll; using namespace std; #define N (1<<17) class RUQ{ private: int dat[2*N]; vector<int> hs; void dfs(int l,int r,int a,int b,int k,int x){ if(l<=a&&b<=r){dat[k]=x;return;} if(b<=l||r<=a)return; int m=(a+b)/2; dfs(l,r,a,m,k*2+1,x); dfs(l,r,m,b,k*2+2,x); } public: void Init(){ hs.push_back(mod); lol(i,2*N)dat[i]=0; } void Update(int l,int r,int x){ dfs(l,r+1,0,N,0,hs.size()); hs.push_back(x); } int Query(int i){ i+=N-1; int maxi=dat[i]; while(i){ i=(i-1)/2; maxi=max(maxi,dat[i]); } return hs[maxi]; } }; int main(){ int n,q;cin>>n>>q; RUQ ruq;ruq.Init(); while(q--){ int c;cin>>c; if(c==0){ int a,b,x;cin>>a>>b>>x; ruq.Update(a,b,x); } if(c==1){ int x;cin>>x; cout<<ruq.Query(x)<<endl; } } return 0; } ```
#include <bits/stdc++.h> #define rep(i,n) for(int i=0;i<n;i++) #define rrep(i,n) for(int i=1;i<=n;i++) #define drep(i,n) for(int i=n;i>=0;i--) #define MAX 100000 #define ll long long #define dmp make_pair #define dpb push_back #define P pair<int,int> #define fi first #define se second using namespace std; //__gcd(a,b), __builtin_popcount(a); const int INF = 2147483647; #define B 100 int bucket[MAX/B][B]; int udata[MAX/B], data[MAX/B]; void update(int a, int b, int x){ int f1 = 1, f2 = 1; while(a <= b && a%B != 0){ if(f1 && udata[a/B] != -1){ for(int i = 0;i < B;i++)bucket[a/B][i] = udata[a/B]; f1 = 0;udata[a/B] = -1; } bucket[a/B][a%B] = x; a++; } while(a <= b && b%B != B-1){ if(f2 && udata[b/B] != -1){ for(int i = 0;i < B;i++)bucket[b/B][i] = udata[b/B]; f2 = 0;udata[b/B] = -1; } bucket[b/B][b%B] = x; b--; } while(a < b){ udata[a/B] = x; a += B; } } int find(int x){ if(udata[x/B] != -1){ for(int i = 0;i < B;i++)bucket[x/B][i] = udata[x/B]; udata[x/B] = -1; } return bucket[x/B][x%B]; } int main(){ int n, q, c, s, t, x, ans; scanf("%d%d", &n, &q); fill(udata, udata+MAX/B, -1); fill(data, data+MAX/B, INF); fill((int*)bucket, (int*)(bucket+MAX/B), INF); while(q--){ scanf("%d", &c); if(!c){ scanf("%d%d%d", &s, &t, &x); update(s, t, x); }else{ scanf("%d", &x); ans = find(x); printf("%d\n", ans); } } //rep(i,n)printf("%d ", bucket[0][i]); return 0; }
### Prompt Please provide a cpp coded solution to the problem described below: Write a program which manipulates a sequence A = {a0, a1, . . . , an−1} with the following operations: * update(s, t, x): change as, as+1, ..., at to x. * find(i): output the value of ai. Note that the initial values of ai (i = 0, 1, . . . , n−1) are 231-1. Constraints * 1 ≤ n ≤ 100000 * 1 ≤ q ≤ 100000 * 0 ≤ s ≤ t < n * 0 ≤ i < n * 0 ≤ x < 231−1 Input n q query1 query2 : queryq In the first line, n (the number of elements in A) and q (the number of queries) are given. Then, ith query queryi is given in the following format: 0 s t x or 1 i The first digit represents the type of the query. '0' denotes update(s, t, x) and '1' denotes find(i). Output For each find operation, print the value. Examples Input 3 5 0 0 1 1 0 1 2 3 0 2 2 2 1 0 1 1 Output 1 3 Input 1 3 1 0 0 0 0 5 1 0 Output 2147483647 5 ### Response ```cpp #include <bits/stdc++.h> #define rep(i,n) for(int i=0;i<n;i++) #define rrep(i,n) for(int i=1;i<=n;i++) #define drep(i,n) for(int i=n;i>=0;i--) #define MAX 100000 #define ll long long #define dmp make_pair #define dpb push_back #define P pair<int,int> #define fi first #define se second using namespace std; //__gcd(a,b), __builtin_popcount(a); const int INF = 2147483647; #define B 100 int bucket[MAX/B][B]; int udata[MAX/B], data[MAX/B]; void update(int a, int b, int x){ int f1 = 1, f2 = 1; while(a <= b && a%B != 0){ if(f1 && udata[a/B] != -1){ for(int i = 0;i < B;i++)bucket[a/B][i] = udata[a/B]; f1 = 0;udata[a/B] = -1; } bucket[a/B][a%B] = x; a++; } while(a <= b && b%B != B-1){ if(f2 && udata[b/B] != -1){ for(int i = 0;i < B;i++)bucket[b/B][i] = udata[b/B]; f2 = 0;udata[b/B] = -1; } bucket[b/B][b%B] = x; b--; } while(a < b){ udata[a/B] = x; a += B; } } int find(int x){ if(udata[x/B] != -1){ for(int i = 0;i < B;i++)bucket[x/B][i] = udata[x/B]; udata[x/B] = -1; } return bucket[x/B][x%B]; } int main(){ int n, q, c, s, t, x, ans; scanf("%d%d", &n, &q); fill(udata, udata+MAX/B, -1); fill(data, data+MAX/B, INF); fill((int*)bucket, (int*)(bucket+MAX/B), INF); while(q--){ scanf("%d", &c); if(!c){ scanf("%d%d%d", &s, &t, &x); update(s, t, x); }else{ scanf("%d", &x); ans = find(x); printf("%d\n", ans); } } //rep(i,n)printf("%d ", bucket[0][i]); return 0; } ```
#include <bits/stdc++.h> using namespace std; typedef int64_t i64; constexpr i64 llinf=4611686018427387903LL; template <class T_> class rupdq{ public: i64 n; i64 h; T_ *lz; void make(i64 N){ n=1; h=0; while(n<N){ n*=2; h++; } lz=new i64[n*2]{}; for(i64 i=0;i<n*2;i++) lz[i]=(T_)llinf; } void update(i64 A,i64 B,T_ X){ thrust(A+=n); thrust(B+=n-1); for(i64 l=A,r=B+1;l<r;l/=2,r/=2){ if(l%2==1){ lz[l]=X; l++; } if(r%2==1){ r--; lz[r]=X; } } } T_ query(i64 K){ thrust(K+=n); return lz[K]; } void thrust(i64 K){ for(i64 i=h;i>0;i--){ i64 k=K>>i; if(lz[k]==(T_)llinf) continue; lz[k*2]=lz[k]; lz[k*2+1]=lz[k]; lz[k]=(T_)llinf; } } }; int main(void){ i64 n,q; scanf("%lli%lli",&n,&q); rupdq<i64> r; r.make(n); for(i64 i=0;i<q;i++){ i64 c; scanf("%lli",&c); if(c==0){ i64 s,t,x; scanf("%lli%lli%lli",&s,&t,&x); r.update(s,t+1,x); } if(c==1){ i64 j; scanf("%lli",&j); j=r.query(j); if(j==llinf) printf("2147483647\n"); else printf("%lli\n",j); } } return 0; }
### Prompt Generate a CPP solution to the following problem: Write a program which manipulates a sequence A = {a0, a1, . . . , an−1} with the following operations: * update(s, t, x): change as, as+1, ..., at to x. * find(i): output the value of ai. Note that the initial values of ai (i = 0, 1, . . . , n−1) are 231-1. Constraints * 1 ≤ n ≤ 100000 * 1 ≤ q ≤ 100000 * 0 ≤ s ≤ t < n * 0 ≤ i < n * 0 ≤ x < 231−1 Input n q query1 query2 : queryq In the first line, n (the number of elements in A) and q (the number of queries) are given. Then, ith query queryi is given in the following format: 0 s t x or 1 i The first digit represents the type of the query. '0' denotes update(s, t, x) and '1' denotes find(i). Output For each find operation, print the value. Examples Input 3 5 0 0 1 1 0 1 2 3 0 2 2 2 1 0 1 1 Output 1 3 Input 1 3 1 0 0 0 0 5 1 0 Output 2147483647 5 ### Response ```cpp #include <bits/stdc++.h> using namespace std; typedef int64_t i64; constexpr i64 llinf=4611686018427387903LL; template <class T_> class rupdq{ public: i64 n; i64 h; T_ *lz; void make(i64 N){ n=1; h=0; while(n<N){ n*=2; h++; } lz=new i64[n*2]{}; for(i64 i=0;i<n*2;i++) lz[i]=(T_)llinf; } void update(i64 A,i64 B,T_ X){ thrust(A+=n); thrust(B+=n-1); for(i64 l=A,r=B+1;l<r;l/=2,r/=2){ if(l%2==1){ lz[l]=X; l++; } if(r%2==1){ r--; lz[r]=X; } } } T_ query(i64 K){ thrust(K+=n); return lz[K]; } void thrust(i64 K){ for(i64 i=h;i>0;i--){ i64 k=K>>i; if(lz[k]==(T_)llinf) continue; lz[k*2]=lz[k]; lz[k*2+1]=lz[k]; lz[k]=(T_)llinf; } } }; int main(void){ i64 n,q; scanf("%lli%lli",&n,&q); rupdq<i64> r; r.make(n); for(i64 i=0;i<q;i++){ i64 c; scanf("%lli",&c); if(c==0){ i64 s,t,x; scanf("%lli%lli%lli",&s,&t,&x); r.update(s,t+1,x); } if(c==1){ i64 j; scanf("%lli",&j); j=r.query(j); if(j==llinf) printf("2147483647\n"); else printf("%lli\n",j); } } return 0; } ```
#include <bits/stdc++.h> #define rep(i,n) for(int i=0;i<n;i++) #define rrep(i,n) for(int i=1;i<=n;i++) #define drep(i,n) for(int i=n;i>=0;i--) #define MAX 100000 #define ll long long #define dmp make_pair #define dpb push_back #define P pair<int,int> #define fi first #define se second using namespace std; //__gcd(a,b), __builtin_popcount(a); const int INF = 2147483647; #define B 1000 int bucket[MAX/B][B]; int data[MAX/B]; void update(int a, int b, int x){ int f1 = 1, f2 = 1; while(a <= b && a%B != 0){ if(f1 && data[a/B] != -1){ for(int i = 0;i < B;i++)bucket[a/B][i] = data[a/B]; f1 = 0;data[a/B] = -1; } bucket[a/B][a%B] = x; a++; } while(a <= b && b%B != B-1){ if(f2 && data[b/B] != -1){ for(int i = 0;i < B;i++)bucket[b/B][i] = data[b/B]; f2 = 0;data[b/B] = -1; } bucket[b/B][b%B] = x; b--; } while(a < b){ data[a/B] = x; a += B; } } int find(int x){ if(data[x/B] != -1){ for(int i = 0;i < B;i++)bucket[x/B][i] = data[x/B]; data[x/B] = -1; } return bucket[x/B][x%B]; } int main(){ int n, q, c, s, t, x, ans; scanf("%d%d", &n, &q); fill(data, data+MAX/B, -1); fill((int*)bucket, (int*)(bucket+MAX/B), INF); while(q--){ scanf("%d", &c); if(!c){ scanf("%d%d%d", &s, &t, &x); update(s, t, x); }else{ scanf("%d", &x); ans = find(x); printf("%d\n", ans); } } //rep(i,n)printf("%d ", bucket[0][i]); return 0; }
### Prompt Develop a solution in CPP to the problem described below: Write a program which manipulates a sequence A = {a0, a1, . . . , an−1} with the following operations: * update(s, t, x): change as, as+1, ..., at to x. * find(i): output the value of ai. Note that the initial values of ai (i = 0, 1, . . . , n−1) are 231-1. Constraints * 1 ≤ n ≤ 100000 * 1 ≤ q ≤ 100000 * 0 ≤ s ≤ t < n * 0 ≤ i < n * 0 ≤ x < 231−1 Input n q query1 query2 : queryq In the first line, n (the number of elements in A) and q (the number of queries) are given. Then, ith query queryi is given in the following format: 0 s t x or 1 i The first digit represents the type of the query. '0' denotes update(s, t, x) and '1' denotes find(i). Output For each find operation, print the value. Examples Input 3 5 0 0 1 1 0 1 2 3 0 2 2 2 1 0 1 1 Output 1 3 Input 1 3 1 0 0 0 0 5 1 0 Output 2147483647 5 ### Response ```cpp #include <bits/stdc++.h> #define rep(i,n) for(int i=0;i<n;i++) #define rrep(i,n) for(int i=1;i<=n;i++) #define drep(i,n) for(int i=n;i>=0;i--) #define MAX 100000 #define ll long long #define dmp make_pair #define dpb push_back #define P pair<int,int> #define fi first #define se second using namespace std; //__gcd(a,b), __builtin_popcount(a); const int INF = 2147483647; #define B 1000 int bucket[MAX/B][B]; int data[MAX/B]; void update(int a, int b, int x){ int f1 = 1, f2 = 1; while(a <= b && a%B != 0){ if(f1 && data[a/B] != -1){ for(int i = 0;i < B;i++)bucket[a/B][i] = data[a/B]; f1 = 0;data[a/B] = -1; } bucket[a/B][a%B] = x; a++; } while(a <= b && b%B != B-1){ if(f2 && data[b/B] != -1){ for(int i = 0;i < B;i++)bucket[b/B][i] = data[b/B]; f2 = 0;data[b/B] = -1; } bucket[b/B][b%B] = x; b--; } while(a < b){ data[a/B] = x; a += B; } } int find(int x){ if(data[x/B] != -1){ for(int i = 0;i < B;i++)bucket[x/B][i] = data[x/B]; data[x/B] = -1; } return bucket[x/B][x%B]; } int main(){ int n, q, c, s, t, x, ans; scanf("%d%d", &n, &q); fill(data, data+MAX/B, -1); fill((int*)bucket, (int*)(bucket+MAX/B), INF); while(q--){ scanf("%d", &c); if(!c){ scanf("%d%d%d", &s, &t, &x); update(s, t, x); }else{ scanf("%d", &x); ans = find(x); printf("%d\n", ans); } } //rep(i,n)printf("%d ", bucket[0][i]); return 0; } ```
#include <iostream> #include<iomanip> #include <cmath> #include <climits> #include <algorithm> #include <stdio.h> #include <vector> #include <queue> #include <tuple> #include <map> #include <list> #include <string> #include <numeric> #include <utility> #include <cfloat> #include <set> using namespace std; int sqrtN = 512; struct SqrtDecomposition{ int N, K; vector <long long> data; vector <long long> bucketUpdatedLazy; SqrtDecomposition(int n){ N = n; K = (N + sqrtN - 1) / sqrtN; data.assign(N, ((long long) 1 << 31) - 1); bucketUpdatedLazy.assign(K, -1); } void propagateLazy(int k){ if(bucketUpdatedLazy[k] < 0){ return; } for(int i = 0; i < sqrtN; i++){ data[k * sqrtN + i] = bucketUpdatedLazy[k]; } bucketUpdatedLazy[k] = -1; } long long get(int x){ propagateLazy(x / sqrtN); return data[x]; } void update(int x, int y, int a){ if(y - x < sqrtN){ propagateLazy(x / sqrtN); propagateLazy((y - 1) / sqrtN); for(int i = x; i < y; i++){ data[i] = a; } return; } for(int i = x / sqrtN + 1; i < y / sqrtN; i++){ bucketUpdatedLazy[i] = a; //if(bucketUpdatedLazy[i] < 0 && bucketUpdatedLazy[i] != -1){ // cerr << "Warning" << endl; //} } propagateLazy(x / sqrtN); for(int i = x; i < (x / sqrtN + 1) * sqrtN; i++){ data[i] = a; } propagateLazy((y - 1)/ sqrtN); for(int i = y / sqrtN * sqrtN; i < y; i++){ data[i] = a; } } }; int main(){ int n; int q; cin >> n >> q; SqrtDecomposition sq(n); for(int i = 0; i < q; i++){ int com; int s; int t; int x; cin >> com; if(com == 0){ cin >> s >> t >> x; sq.update(s, t + 1, x); } else { cin >> x; cout << sq.get(x) << endl; } } return 0; }
### Prompt Construct a Cpp code solution to the problem outlined: Write a program which manipulates a sequence A = {a0, a1, . . . , an−1} with the following operations: * update(s, t, x): change as, as+1, ..., at to x. * find(i): output the value of ai. Note that the initial values of ai (i = 0, 1, . . . , n−1) are 231-1. Constraints * 1 ≤ n ≤ 100000 * 1 ≤ q ≤ 100000 * 0 ≤ s ≤ t < n * 0 ≤ i < n * 0 ≤ x < 231−1 Input n q query1 query2 : queryq In the first line, n (the number of elements in A) and q (the number of queries) are given. Then, ith query queryi is given in the following format: 0 s t x or 1 i The first digit represents the type of the query. '0' denotes update(s, t, x) and '1' denotes find(i). Output For each find operation, print the value. Examples Input 3 5 0 0 1 1 0 1 2 3 0 2 2 2 1 0 1 1 Output 1 3 Input 1 3 1 0 0 0 0 5 1 0 Output 2147483647 5 ### Response ```cpp #include <iostream> #include<iomanip> #include <cmath> #include <climits> #include <algorithm> #include <stdio.h> #include <vector> #include <queue> #include <tuple> #include <map> #include <list> #include <string> #include <numeric> #include <utility> #include <cfloat> #include <set> using namespace std; int sqrtN = 512; struct SqrtDecomposition{ int N, K; vector <long long> data; vector <long long> bucketUpdatedLazy; SqrtDecomposition(int n){ N = n; K = (N + sqrtN - 1) / sqrtN; data.assign(N, ((long long) 1 << 31) - 1); bucketUpdatedLazy.assign(K, -1); } void propagateLazy(int k){ if(bucketUpdatedLazy[k] < 0){ return; } for(int i = 0; i < sqrtN; i++){ data[k * sqrtN + i] = bucketUpdatedLazy[k]; } bucketUpdatedLazy[k] = -1; } long long get(int x){ propagateLazy(x / sqrtN); return data[x]; } void update(int x, int y, int a){ if(y - x < sqrtN){ propagateLazy(x / sqrtN); propagateLazy((y - 1) / sqrtN); for(int i = x; i < y; i++){ data[i] = a; } return; } for(int i = x / sqrtN + 1; i < y / sqrtN; i++){ bucketUpdatedLazy[i] = a; //if(bucketUpdatedLazy[i] < 0 && bucketUpdatedLazy[i] != -1){ // cerr << "Warning" << endl; //} } propagateLazy(x / sqrtN); for(int i = x; i < (x / sqrtN + 1) * sqrtN; i++){ data[i] = a; } propagateLazy((y - 1)/ sqrtN); for(int i = y / sqrtN * sqrtN; i < y; i++){ data[i] = a; } } }; int main(){ int n; int q; cin >> n >> q; SqrtDecomposition sq(n); for(int i = 0; i < q; i++){ int com; int s; int t; int x; cin >> com; if(com == 0){ cin >> s >> t >> x; sq.update(s, t + 1, x); } else { cin >> x; cout << sq.get(x) << endl; } } return 0; } ```
#include<iostream> #include<algorithm> using namespace std; #define INF 2147483647 int tree[1000000]; void Update(int s, int t, int m, int left = 0, int right = (1 << 17), int key = 0){ if(t < left || right <= s) return; if(s <= left && right - 1 <= t){ tree[key] = max(tree[key], m); return; } Update(s, t, m, left, (left + right) / 2, 2 * key + 1); Update(s, t, m, (left + right) / 2, right, 2 * key + 2); } int Query_find(int i){ i += (1 << 17) - 1; int m = tree[i]; while(i){ i = (i - 1) / 2; m = max(tree[i], m); }; return m; } int main(){ int n, q, x[1000000],i; for(i=0; i<1000000; i++) {tree[i]=0; x[i]=INF;} cin >> n >> q; int c, s, t, value, m=1; for (int j=0; j<q; j++) { cin >> c; if(c){ cin >> i; cout << x[Query_find(i)] << endl; }else{ cin >> s >> t >> value; x[m] = value; Update(s, t, m); m++; } } return 0; }
### Prompt Please provide a cpp coded solution to the problem described below: Write a program which manipulates a sequence A = {a0, a1, . . . , an−1} with the following operations: * update(s, t, x): change as, as+1, ..., at to x. * find(i): output the value of ai. Note that the initial values of ai (i = 0, 1, . . . , n−1) are 231-1. Constraints * 1 ≤ n ≤ 100000 * 1 ≤ q ≤ 100000 * 0 ≤ s ≤ t < n * 0 ≤ i < n * 0 ≤ x < 231−1 Input n q query1 query2 : queryq In the first line, n (the number of elements in A) and q (the number of queries) are given. Then, ith query queryi is given in the following format: 0 s t x or 1 i The first digit represents the type of the query. '0' denotes update(s, t, x) and '1' denotes find(i). Output For each find operation, print the value. Examples Input 3 5 0 0 1 1 0 1 2 3 0 2 2 2 1 0 1 1 Output 1 3 Input 1 3 1 0 0 0 0 5 1 0 Output 2147483647 5 ### Response ```cpp #include<iostream> #include<algorithm> using namespace std; #define INF 2147483647 int tree[1000000]; void Update(int s, int t, int m, int left = 0, int right = (1 << 17), int key = 0){ if(t < left || right <= s) return; if(s <= left && right - 1 <= t){ tree[key] = max(tree[key], m); return; } Update(s, t, m, left, (left + right) / 2, 2 * key + 1); Update(s, t, m, (left + right) / 2, right, 2 * key + 2); } int Query_find(int i){ i += (1 << 17) - 1; int m = tree[i]; while(i){ i = (i - 1) / 2; m = max(tree[i], m); }; return m; } int main(){ int n, q, x[1000000],i; for(i=0; i<1000000; i++) {tree[i]=0; x[i]=INF;} cin >> n >> q; int c, s, t, value, m=1; for (int j=0; j<q; j++) { cin >> c; if(c){ cin >> i; cout << x[Query_find(i)] << endl; }else{ cin >> s >> t >> value; x[m] = value; Update(s, t, m); m++; } } return 0; } ```
#include<bits/stdc++.h> using namespace std; using ll = long long; pair<int,int> SegTree[1<<18]; void update(int l,int r,int x,int t) { while (l!=r) { if(l%2) { SegTree[l] = make_pair(x,t); l++; } if(r%2) { SegTree[r-1] = make_pair(x,t); r--; } l/=2; r/=2; } //SegTree[l] = make_pair(x,t); //cout<<l<<endl; } int get(int i) { pair<int,int> res(-1,-2); while(i!=0) { if(SegTree[i].second>res.second) { res = SegTree[i]; } i/=2; } return res.first; } int main() { //cout<<(1<<18)<<endl; int n,q; cin >> n >> q; for(int i = 0;i<(1<<18);i++) { SegTree[i]=make_pair(INT_MAX,-1); } for(int i = 0;i<q;i++) { int op; cin >> op; if(op) { int I; cin >> I; I += (1<<17); cout<<get(I)<<endl; } else { int s,t,x; cin >> s >> t >> x; s+=(1<<17); t+=(1<<17); t++; update(s,t,x,i); } //cout<<SegTree[(1<<17)].first<<endl; } }
### Prompt Generate a Cpp solution to the following problem: Write a program which manipulates a sequence A = {a0, a1, . . . , an−1} with the following operations: * update(s, t, x): change as, as+1, ..., at to x. * find(i): output the value of ai. Note that the initial values of ai (i = 0, 1, . . . , n−1) are 231-1. Constraints * 1 ≤ n ≤ 100000 * 1 ≤ q ≤ 100000 * 0 ≤ s ≤ t < n * 0 ≤ i < n * 0 ≤ x < 231−1 Input n q query1 query2 : queryq In the first line, n (the number of elements in A) and q (the number of queries) are given. Then, ith query queryi is given in the following format: 0 s t x or 1 i The first digit represents the type of the query. '0' denotes update(s, t, x) and '1' denotes find(i). Output For each find operation, print the value. Examples Input 3 5 0 0 1 1 0 1 2 3 0 2 2 2 1 0 1 1 Output 1 3 Input 1 3 1 0 0 0 0 5 1 0 Output 2147483647 5 ### Response ```cpp #include<bits/stdc++.h> using namespace std; using ll = long long; pair<int,int> SegTree[1<<18]; void update(int l,int r,int x,int t) { while (l!=r) { if(l%2) { SegTree[l] = make_pair(x,t); l++; } if(r%2) { SegTree[r-1] = make_pair(x,t); r--; } l/=2; r/=2; } //SegTree[l] = make_pair(x,t); //cout<<l<<endl; } int get(int i) { pair<int,int> res(-1,-2); while(i!=0) { if(SegTree[i].second>res.second) { res = SegTree[i]; } i/=2; } return res.first; } int main() { //cout<<(1<<18)<<endl; int n,q; cin >> n >> q; for(int i = 0;i<(1<<18);i++) { SegTree[i]=make_pair(INT_MAX,-1); } for(int i = 0;i<q;i++) { int op; cin >> op; if(op) { int I; cin >> I; I += (1<<17); cout<<get(I)<<endl; } else { int s,t,x; cin >> s >> t >> x; s+=(1<<17); t+=(1<<17); t++; update(s,t,x,i); } //cout<<SegTree[(1<<17)].first<<endl; } } ```
#include <bits/stdc++.h> #define int long long using namespace std; class RUQ{ public: typedef pair<int,int> P; int n, cnt; vector<P> A; const int INF = (1LL<<31)-1; RUQ(){} RUQ(int n_){ n = 1; while( n_ > n ) n *= 2; A.resize( n * 2 - 1, P( 0, INF ) ); cnt = 0; } int find(int x){ P res = P( 0, INF ); x += n - 1; res = max( res, A[x] ); while(x){ x = ( x + 1 ) / 2 - 1; res = max( res, A[x] ); } return res.second; } void update(int a, int b, int l, int r, int k, P x){ if( r <= a || b <= l ) return; if( a <= l && r <= b ){ A[k] = x; return; } update( a, b, l, (l+r)/2, k*2+1, x ); update( a, b, (l+r)/2, r, k*2+2, x ); } void update(int a, int b, int x){ cnt++; update(a,b,0,n,0,P(cnt,x)); } }; signed main(){ int n, q; cin>>n>>q; RUQ ruq(n); while(q--){ int com; cin>>com; if( com == 0 ){ int s, t, x; cin>>s>>t>>x; ruq.update(s,t+1,x); } else{ int x; cin>>x; cout<<ruq.find(x)<<endl; } } return 0; }
### Prompt Please create a solution in Cpp to the following problem: Write a program which manipulates a sequence A = {a0, a1, . . . , an−1} with the following operations: * update(s, t, x): change as, as+1, ..., at to x. * find(i): output the value of ai. Note that the initial values of ai (i = 0, 1, . . . , n−1) are 231-1. Constraints * 1 ≤ n ≤ 100000 * 1 ≤ q ≤ 100000 * 0 ≤ s ≤ t < n * 0 ≤ i < n * 0 ≤ x < 231−1 Input n q query1 query2 : queryq In the first line, n (the number of elements in A) and q (the number of queries) are given. Then, ith query queryi is given in the following format: 0 s t x or 1 i The first digit represents the type of the query. '0' denotes update(s, t, x) and '1' denotes find(i). Output For each find operation, print the value. Examples Input 3 5 0 0 1 1 0 1 2 3 0 2 2 2 1 0 1 1 Output 1 3 Input 1 3 1 0 0 0 0 5 1 0 Output 2147483647 5 ### Response ```cpp #include <bits/stdc++.h> #define int long long using namespace std; class RUQ{ public: typedef pair<int,int> P; int n, cnt; vector<P> A; const int INF = (1LL<<31)-1; RUQ(){} RUQ(int n_){ n = 1; while( n_ > n ) n *= 2; A.resize( n * 2 - 1, P( 0, INF ) ); cnt = 0; } int find(int x){ P res = P( 0, INF ); x += n - 1; res = max( res, A[x] ); while(x){ x = ( x + 1 ) / 2 - 1; res = max( res, A[x] ); } return res.second; } void update(int a, int b, int l, int r, int k, P x){ if( r <= a || b <= l ) return; if( a <= l && r <= b ){ A[k] = x; return; } update( a, b, l, (l+r)/2, k*2+1, x ); update( a, b, (l+r)/2, r, k*2+2, x ); } void update(int a, int b, int x){ cnt++; update(a,b,0,n,0,P(cnt,x)); } }; signed main(){ int n, q; cin>>n>>q; RUQ ruq(n); while(q--){ int com; cin>>com; if( com == 0 ){ int s, t, x; cin>>s>>t>>x; ruq.update(s,t+1,x); } else{ int x; cin>>x; cout<<ruq.find(x)<<endl; } } return 0; } ```
#include<bits/stdc++.h> using namespace std; int t[(1<<18)]; void Set(int a,int b,int x,int k=0,int l=0,int r=(1<<17)){ if(b<=l || r<=a)return; if(a<=l && r<=b){ t[k]=max(t[k],x); return; } int m=(l+r)/2; Set(a,b,x,k*2+1,l,m); Set(a,b,x,k*2+2,m,r); } int Get(int i){ i+=(1<<17)-1; int res=t[i]; while(i){ i=(i-1)/2; res=max(res,t[i]); } return res; } int n,q; int value[100005]; int main(){ value[0]=2147483647; scanf("%d %d",&n,&q); for(int i=1;i<=q;i++){ int type; scanf("%d",&type); if(type==0){ int l,r; scanf("%d %d %d",&l,&r,&value[i]); r++; Set(l,r,i); }else{ int target; scanf("%d",&target); int ans=Get(target); printf("%d\n",value[ans]); } } return 0; }
### Prompt In CPP, your task is to solve the following problem: Write a program which manipulates a sequence A = {a0, a1, . . . , an−1} with the following operations: * update(s, t, x): change as, as+1, ..., at to x. * find(i): output the value of ai. Note that the initial values of ai (i = 0, 1, . . . , n−1) are 231-1. Constraints * 1 ≤ n ≤ 100000 * 1 ≤ q ≤ 100000 * 0 ≤ s ≤ t < n * 0 ≤ i < n * 0 ≤ x < 231−1 Input n q query1 query2 : queryq In the first line, n (the number of elements in A) and q (the number of queries) are given. Then, ith query queryi is given in the following format: 0 s t x or 1 i The first digit represents the type of the query. '0' denotes update(s, t, x) and '1' denotes find(i). Output For each find operation, print the value. Examples Input 3 5 0 0 1 1 0 1 2 3 0 2 2 2 1 0 1 1 Output 1 3 Input 1 3 1 0 0 0 0 5 1 0 Output 2147483647 5 ### Response ```cpp #include<bits/stdc++.h> using namespace std; int t[(1<<18)]; void Set(int a,int b,int x,int k=0,int l=0,int r=(1<<17)){ if(b<=l || r<=a)return; if(a<=l && r<=b){ t[k]=max(t[k],x); return; } int m=(l+r)/2; Set(a,b,x,k*2+1,l,m); Set(a,b,x,k*2+2,m,r); } int Get(int i){ i+=(1<<17)-1; int res=t[i]; while(i){ i=(i-1)/2; res=max(res,t[i]); } return res; } int n,q; int value[100005]; int main(){ value[0]=2147483647; scanf("%d %d",&n,&q); for(int i=1;i<=q;i++){ int type; scanf("%d",&type); if(type==0){ int l,r; scanf("%d %d %d",&l,&r,&value[i]); r++; Set(l,r,i); }else{ int target; scanf("%d",&target); int ans=Get(target); printf("%d\n",value[ans]); } } return 0; } ```
#include <iostream> using std::cin; using std::cout; using std::endl; using ll = long long; template <typename T> T min(T a, T b){ return (a < b) ? a : b; } template <typename T> class SegTree{ static const int MAXN = 100010; T INF; int n; T A[MAXN*4]; T time[MAXN*4]; public: SegTree(int size, T INF): INF(INF){ n = 1; while(n < size){ n *= 2; } n *= 2; for(int i = 0; i < MAXN*4; i++) A[i] = INF; for(int i = 0; i < MAXN*4; i++) time[i] = 0; } void update(int a, int b, T v, T t){ return _update(a, b, 0, 0, n, v, t); } void _update(int a, int b, int k, int l, int r, T v, T t){ if(a >= r || b <= l){ return; } if(l >= a && r <= b){ A[k] = v; time[k] = t; return; } _update(a, b, 2*k + 1, l, (l+r)/2, v, t); _update(a, b, 2*k + 2, (l+r)/2, r, v, t); } T query(int _idx){ int offset = n - 1; int idx = _idx + offset; T t = 0; T ans = INF; while(idx > 0){ if(time[idx] >= t){ ans = A[idx]; t = time[idx]; } idx = (idx-1)/2; } return ans; } }; int main(void){ int n, q; cin >> n >> q; SegTree<int> rmq(n, 0x7FFFFFFF); for(int loop = 0; loop < q; loop++){ int com; cin >> com; if(com == 0){ int x, y, v; cin >> x >> y >> v; rmq.update(x, y+1, v, loop+1); }else{ int i; cin >> i; cout << rmq.query(i) << endl; } } }
### Prompt Please provide a Cpp coded solution to the problem described below: Write a program which manipulates a sequence A = {a0, a1, . . . , an−1} with the following operations: * update(s, t, x): change as, as+1, ..., at to x. * find(i): output the value of ai. Note that the initial values of ai (i = 0, 1, . . . , n−1) are 231-1. Constraints * 1 ≤ n ≤ 100000 * 1 ≤ q ≤ 100000 * 0 ≤ s ≤ t < n * 0 ≤ i < n * 0 ≤ x < 231−1 Input n q query1 query2 : queryq In the first line, n (the number of elements in A) and q (the number of queries) are given. Then, ith query queryi is given in the following format: 0 s t x or 1 i The first digit represents the type of the query. '0' denotes update(s, t, x) and '1' denotes find(i). Output For each find operation, print the value. Examples Input 3 5 0 0 1 1 0 1 2 3 0 2 2 2 1 0 1 1 Output 1 3 Input 1 3 1 0 0 0 0 5 1 0 Output 2147483647 5 ### Response ```cpp #include <iostream> using std::cin; using std::cout; using std::endl; using ll = long long; template <typename T> T min(T a, T b){ return (a < b) ? a : b; } template <typename T> class SegTree{ static const int MAXN = 100010; T INF; int n; T A[MAXN*4]; T time[MAXN*4]; public: SegTree(int size, T INF): INF(INF){ n = 1; while(n < size){ n *= 2; } n *= 2; for(int i = 0; i < MAXN*4; i++) A[i] = INF; for(int i = 0; i < MAXN*4; i++) time[i] = 0; } void update(int a, int b, T v, T t){ return _update(a, b, 0, 0, n, v, t); } void _update(int a, int b, int k, int l, int r, T v, T t){ if(a >= r || b <= l){ return; } if(l >= a && r <= b){ A[k] = v; time[k] = t; return; } _update(a, b, 2*k + 1, l, (l+r)/2, v, t); _update(a, b, 2*k + 2, (l+r)/2, r, v, t); } T query(int _idx){ int offset = n - 1; int idx = _idx + offset; T t = 0; T ans = INF; while(idx > 0){ if(time[idx] >= t){ ans = A[idx]; t = time[idx]; } idx = (idx-1)/2; } return ans; } }; int main(void){ int n, q; cin >> n >> q; SegTree<int> rmq(n, 0x7FFFFFFF); for(int loop = 0; loop < q; loop++){ int com; cin >> com; if(com == 0){ int x, y, v; cin >> x >> y >> v; rmq.update(x, y+1, v, loop+1); }else{ int i; cin >> i; cout << rmq.query(i) << endl; } } } ```
#include<bits/stdc++.h> using namespace std; const int MAX_N = 1 << 18; #define int long long typedef pair<int,int> P; int n; P dat[2*MAX_N-1]; void init(int n_){ n=1; while(n<n_) n*=2; for(int i=0;i<2*n-1;i++) dat[i].first=-1,dat[i].second=INT_MAX; } int query(int k){ k+=n-1; P p=dat[k]; //cout<<k<<"/"<<dat[k].second<<endl; while(k>0){ k=(k-1)/2; //cout<<k<<"/"<<dat[k].second<<endl; p=max(p,dat[k]); } return p.second; } void update(int a,int b,int k,P p,int l,int r){ if(r<=a||b<=l) return; if(a<=l&&r<=b) { //cout<<a<<":"<<b<<":"<<k<<":"<<l<<":"<<r<<endl; dat[k]=p; }else{ update(a,b,k*2+1,p,l,(l+r)/2); update(a,b,k*2+2,p,(l+r)/2,r); } } signed main(){ int _n,q; cin>>_n>>q; init(_n+1); for(int i=0;i<q;i++){ int f; cin>>f; if(!f){ int s,t,x; cin>>s>>t>>x; //cout<<i<<":"<<x<<endl; update(s,t+1,0,P(i,x),0,n); }else{ int u; cin>>u; cout<<query(u)<<endl; } } return 0; }
### Prompt Please formulate a CPP solution to the following problem: Write a program which manipulates a sequence A = {a0, a1, . . . , an−1} with the following operations: * update(s, t, x): change as, as+1, ..., at to x. * find(i): output the value of ai. Note that the initial values of ai (i = 0, 1, . . . , n−1) are 231-1. Constraints * 1 ≤ n ≤ 100000 * 1 ≤ q ≤ 100000 * 0 ≤ s ≤ t < n * 0 ≤ i < n * 0 ≤ x < 231−1 Input n q query1 query2 : queryq In the first line, n (the number of elements in A) and q (the number of queries) are given. Then, ith query queryi is given in the following format: 0 s t x or 1 i The first digit represents the type of the query. '0' denotes update(s, t, x) and '1' denotes find(i). Output For each find operation, print the value. Examples Input 3 5 0 0 1 1 0 1 2 3 0 2 2 2 1 0 1 1 Output 1 3 Input 1 3 1 0 0 0 0 5 1 0 Output 2147483647 5 ### Response ```cpp #include<bits/stdc++.h> using namespace std; const int MAX_N = 1 << 18; #define int long long typedef pair<int,int> P; int n; P dat[2*MAX_N-1]; void init(int n_){ n=1; while(n<n_) n*=2; for(int i=0;i<2*n-1;i++) dat[i].first=-1,dat[i].second=INT_MAX; } int query(int k){ k+=n-1; P p=dat[k]; //cout<<k<<"/"<<dat[k].second<<endl; while(k>0){ k=(k-1)/2; //cout<<k<<"/"<<dat[k].second<<endl; p=max(p,dat[k]); } return p.second; } void update(int a,int b,int k,P p,int l,int r){ if(r<=a||b<=l) return; if(a<=l&&r<=b) { //cout<<a<<":"<<b<<":"<<k<<":"<<l<<":"<<r<<endl; dat[k]=p; }else{ update(a,b,k*2+1,p,l,(l+r)/2); update(a,b,k*2+2,p,(l+r)/2,r); } } signed main(){ int _n,q; cin>>_n>>q; init(_n+1); for(int i=0;i<q;i++){ int f; cin>>f; if(!f){ int s,t,x; cin>>s>>t>>x; //cout<<i<<":"<<x<<endl; update(s,t+1,0,P(i,x),0,n); }else{ int u; cin>>u; cout<<query(u)<<endl; } } return 0; } ```