output
stringlengths
52
181k
instruction
stringlengths
296
182k
#include <bits/stdc++.h> using namespace std; int const N = 1000000; int x[N], pa[N], lc[N]; stack<int> st; multiset<int> an; set<pair<int, int> > tr[N]; int P(int v) { return pa[v] < 0 ? v : pa[v] = P(pa[v]); } int sz(int id) { assert(!tr[id].empty()); return tr[id].rbegin()->first - tr[id].begin()->first + 1; } void J(int a, int b) { int of = tr[a].rbegin()->first - tr[b].rbegin()->first - 1; if (tr[a].size() < tr[b].size()) { swap(tr[a], tr[b]); of = tr[a].rbegin()->first - tr[b].rbegin()->first + 1; } for (auto it = tr[b].begin(); it != tr[b].end(); tr[b].erase(it++)) { int id = it->second; lc[id] = it->first + of; tr[a].insert(make_pair(lc[id], id)); } pa[b] = a; } void ad(int id) { tr[id].insert(make_pair(0, id)); while (!st.empty() && x[st.top()] < x[id]) { if (!tr[st.top()].empty()) { an.erase(an.find(sz(st.top()))); J(id, st.top()); } st.pop(); } st.push(id); an.insert(sz(id)); } void er(int id) { int g = P(id); an.erase(an.find(sz(g))); tr[g].erase(make_pair(lc[id], id)); if (!tr[g].empty()) an.insert(sz(g)); } int main() { int n, k; scanf("%d%d", &n, &k); for (int i = 0; i < (int)(n); ++i) scanf("%d", x + i); for (int i = 0; i < (int)(n); ++i) pa[i] = -1; bool sp = false; for (int i = 0; i < (int)(n); ++i) { if (i - k >= 0) er(i - k); ad(i); if (i + 1 >= k) { if (sp) printf(" "); else sp = true; printf("%d", *an.rbegin()); } } printf("\n"); }
### Prompt Please create a solution in cpp to the following problem: For some array c, let's denote a greedy subsequence as a sequence of indices p_1, p_2, ..., p_l such that 1 ≀ p_1 < p_2 < ... < p_l ≀ |c|, and for each i ∈ [1, l - 1], p_{i + 1} is the minimum number such that p_{i + 1} > p_i and c[p_{i + 1}] > c[p_i]. You are given an array a_1, a_2, ..., a_n. For each its subsegment of length k, calculate the length of its longest greedy subsequence. Input The first line contains two integers n and k (1 ≀ k ≀ n ≀ 10^6) β€” the length of array a and the length of subsegments. The second line contains n integers a_1, a_2, ..., a_n (1 ≀ a_i ≀ n) β€” array a. Output Print n - k + 1 integers β€” the maximum lengths of greedy subsequences of each subsegment having length k. The first number should correspond to subsegment a[1..k], the second β€” to subsegment a[2..k + 1], and so on. Examples Input 6 4 1 5 2 5 3 6 Output 2 2 3 Input 7 6 4 5 2 5 3 6 6 Output 3 3 Note In the first example: * [1, 5, 2, 5] β€” the longest greedy subsequences are 1, 2 ([c_1, c_2] = [1, 5]) or 3, 4 ([c_3, c_4] = [2, 5]). * [5, 2, 5, 3] β€” the sequence is 2, 3 ([c_2, c_3] = [2, 5]). * [2, 5, 3, 6] β€” the sequence is 1, 2, 4 ([c_1, c_2, c_4] = [2, 5, 6]). In the second example: * [4, 5, 2, 5, 3, 6] β€” the longest greedy subsequences are 1, 2, 6 ([c_1, c_2, c_6] = [4, 5, 6]) or 3, 4, 6 ([c_3, c_4, c_6] = [2, 5, 6]). * [5, 2, 5, 3, 6, 6] β€” the subsequence is 2, 3, 5 ([c_2, c_3, c_5] = [2, 5, 6]). ### Response ```cpp #include <bits/stdc++.h> using namespace std; int const N = 1000000; int x[N], pa[N], lc[N]; stack<int> st; multiset<int> an; set<pair<int, int> > tr[N]; int P(int v) { return pa[v] < 0 ? v : pa[v] = P(pa[v]); } int sz(int id) { assert(!tr[id].empty()); return tr[id].rbegin()->first - tr[id].begin()->first + 1; } void J(int a, int b) { int of = tr[a].rbegin()->first - tr[b].rbegin()->first - 1; if (tr[a].size() < tr[b].size()) { swap(tr[a], tr[b]); of = tr[a].rbegin()->first - tr[b].rbegin()->first + 1; } for (auto it = tr[b].begin(); it != tr[b].end(); tr[b].erase(it++)) { int id = it->second; lc[id] = it->first + of; tr[a].insert(make_pair(lc[id], id)); } pa[b] = a; } void ad(int id) { tr[id].insert(make_pair(0, id)); while (!st.empty() && x[st.top()] < x[id]) { if (!tr[st.top()].empty()) { an.erase(an.find(sz(st.top()))); J(id, st.top()); } st.pop(); } st.push(id); an.insert(sz(id)); } void er(int id) { int g = P(id); an.erase(an.find(sz(g))); tr[g].erase(make_pair(lc[id], id)); if (!tr[g].empty()) an.insert(sz(g)); } int main() { int n, k; scanf("%d%d", &n, &k); for (int i = 0; i < (int)(n); ++i) scanf("%d", x + i); for (int i = 0; i < (int)(n); ++i) pa[i] = -1; bool sp = false; for (int i = 0; i < (int)(n); ++i) { if (i - k >= 0) er(i - k); ad(i); if (i + 1 >= k) { if (sp) printf(" "); else sp = true; printf("%d", *an.rbegin()); } } printf("\n"); } ```
#include <bits/stdc++.h> using namespace std; const int N = 1000003; int n, k, p[N], stk[N], top, head[N], to[N], nxt[N], dfn[N], siz[N], tim; inline void add(int a, int b) { static int cnt = 0; to[++cnt] = b; nxt[cnt] = head[a]; head[a] = cnt; } inline void dfs(int x) { dfn[x] = ++tim; siz[x] = 1; for (register int i = head[x]; i; i = nxt[i]) dfs(to[i]), siz[x] += siz[to[i]]; } int seg[N << 2], lazy[N << 2]; inline void pushdown(int x) { if (lazy[x]) { seg[x << 1] += lazy[x]; seg[x << 1 | 1] += lazy[x]; lazy[x << 1] += lazy[x]; lazy[x << 1 | 1] += lazy[x]; lazy[x] = 0; } } inline void pushup(int x) { seg[x] = max(seg[x << 1], seg[x << 1 | 1]); } inline void change(int x, int L, int R, int l, int r, int v) { if (l <= L && R <= r) { seg[x] += v; lazy[x] += v; return; } int mid = L + R >> 1; pushdown(x); if (l <= mid) change(x << 1, L, mid, l, r, v); if (mid < r) change(x << 1 | 1, mid + 1, R, l, r, v); pushup(x); } int main() { scanf("%d%d", &n, &k); for (register int i = 1; i <= n; i++) scanf("%d", p + i); for (register int i = 1; i <= n; i++) { while (top && p[stk[top]] < p[i]) { add(i, stk[top]); --top; } stk[++top] = i; } while (top) add(n + 1, stk[top]), --top; dfs(n + 1); for (register int i = 1; i <= k; i++) change(1, 1, n + 1, dfn[i], dfn[i] + siz[i] - 1, 1); printf("%d", seg[1]); for (register int i = k + 1; i <= n; i++) { change(1, 1, n + 1, dfn[i], dfn[i] + siz[i] - 1, 1); change(1, 1, n + 1, dfn[i - k], dfn[i - k] + siz[i - k] - 1, -1); printf(" %d", seg[1]); } }
### Prompt In CPP, your task is to solve the following problem: For some array c, let's denote a greedy subsequence as a sequence of indices p_1, p_2, ..., p_l such that 1 ≀ p_1 < p_2 < ... < p_l ≀ |c|, and for each i ∈ [1, l - 1], p_{i + 1} is the minimum number such that p_{i + 1} > p_i and c[p_{i + 1}] > c[p_i]. You are given an array a_1, a_2, ..., a_n. For each its subsegment of length k, calculate the length of its longest greedy subsequence. Input The first line contains two integers n and k (1 ≀ k ≀ n ≀ 10^6) β€” the length of array a and the length of subsegments. The second line contains n integers a_1, a_2, ..., a_n (1 ≀ a_i ≀ n) β€” array a. Output Print n - k + 1 integers β€” the maximum lengths of greedy subsequences of each subsegment having length k. The first number should correspond to subsegment a[1..k], the second β€” to subsegment a[2..k + 1], and so on. Examples Input 6 4 1 5 2 5 3 6 Output 2 2 3 Input 7 6 4 5 2 5 3 6 6 Output 3 3 Note In the first example: * [1, 5, 2, 5] β€” the longest greedy subsequences are 1, 2 ([c_1, c_2] = [1, 5]) or 3, 4 ([c_3, c_4] = [2, 5]). * [5, 2, 5, 3] β€” the sequence is 2, 3 ([c_2, c_3] = [2, 5]). * [2, 5, 3, 6] β€” the sequence is 1, 2, 4 ([c_1, c_2, c_4] = [2, 5, 6]). In the second example: * [4, 5, 2, 5, 3, 6] β€” the longest greedy subsequences are 1, 2, 6 ([c_1, c_2, c_6] = [4, 5, 6]) or 3, 4, 6 ([c_3, c_4, c_6] = [2, 5, 6]). * [5, 2, 5, 3, 6, 6] β€” the subsequence is 2, 3, 5 ([c_2, c_3, c_5] = [2, 5, 6]). ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int N = 1000003; int n, k, p[N], stk[N], top, head[N], to[N], nxt[N], dfn[N], siz[N], tim; inline void add(int a, int b) { static int cnt = 0; to[++cnt] = b; nxt[cnt] = head[a]; head[a] = cnt; } inline void dfs(int x) { dfn[x] = ++tim; siz[x] = 1; for (register int i = head[x]; i; i = nxt[i]) dfs(to[i]), siz[x] += siz[to[i]]; } int seg[N << 2], lazy[N << 2]; inline void pushdown(int x) { if (lazy[x]) { seg[x << 1] += lazy[x]; seg[x << 1 | 1] += lazy[x]; lazy[x << 1] += lazy[x]; lazy[x << 1 | 1] += lazy[x]; lazy[x] = 0; } } inline void pushup(int x) { seg[x] = max(seg[x << 1], seg[x << 1 | 1]); } inline void change(int x, int L, int R, int l, int r, int v) { if (l <= L && R <= r) { seg[x] += v; lazy[x] += v; return; } int mid = L + R >> 1; pushdown(x); if (l <= mid) change(x << 1, L, mid, l, r, v); if (mid < r) change(x << 1 | 1, mid + 1, R, l, r, v); pushup(x); } int main() { scanf("%d%d", &n, &k); for (register int i = 1; i <= n; i++) scanf("%d", p + i); for (register int i = 1; i <= n; i++) { while (top && p[stk[top]] < p[i]) { add(i, stk[top]); --top; } stk[++top] = i; } while (top) add(n + 1, stk[top]), --top; dfs(n + 1); for (register int i = 1; i <= k; i++) change(1, 1, n + 1, dfn[i], dfn[i] + siz[i] - 1, 1); printf("%d", seg[1]); for (register int i = k + 1; i <= n; i++) { change(1, 1, n + 1, dfn[i], dfn[i] + siz[i] - 1, 1); change(1, 1, n + 1, dfn[i - k], dfn[i - k] + siz[i - k] - 1, -1); printf(" %d", seg[1]); } } ```
#include <bits/stdc++.h> using namespace std; const int N = 1000000; const int oo = 0x3f3f3f3f; namespace SEG { const int SZ = N << 2; int tag[SZ + 5], mx[SZ + 5]; void push_down(int u) { if (tag[u]) { mx[(u << 1)] += tag[u], tag[(u << 1)] += tag[u]; mx[(u << 1 | 1)] += tag[u], tag[(u << 1 | 1)] += tag[u]; } tag[u] = 0; } void add(int u, int l, int r, int x, int y, int v) { if (x <= l && r <= y) { mx[u] += v; tag[u] += v; } else { if (x <= ((l + r) >> 1)) add((u << 1), l, ((l + r) >> 1), x, y, v); if (((l + r) >> 1) < y) add((u << 1 | 1), ((l + r) >> 1) + 1, r, x, y, v); mx[u] = max(mx[(u << 1)], mx[(u << 1 | 1)]); } } int query(int u, int l, int r, int x, int y) { if (x > r || y < l) return -oo; if (x <= l && r <= y) return mx[u]; push_down(u); return max(query((u << 1), l, ((l + r) >> 1), x, y), query((u << 1 | 1), ((l + r) >> 1) + 1, r, x, y)); } } // namespace SEG int n, k; int a[N + 5]; int stk[N + 5], bnd[N + 5], top; int main() { scanf("%d%d", &n, &k); for (int i = 1; i <= n; ++i) { scanf("%d", a + i); bnd[i] = i; while (top > 0 && a[stk[top - 1]] < a[i]) { bnd[i] = bnd[stk[top - 1]]; --top; } stk[top++] = i; } for (int i = 1; i <= n; ++i) { SEG::add(1, 1, n, bnd[i], i, +1); if (i - k + 1 > 0) { printf("%d ", SEG::query(1, 1, n, i - k + 1, i)); } } return 0; }
### Prompt Your challenge is to write a cpp solution to the following problem: For some array c, let's denote a greedy subsequence as a sequence of indices p_1, p_2, ..., p_l such that 1 ≀ p_1 < p_2 < ... < p_l ≀ |c|, and for each i ∈ [1, l - 1], p_{i + 1} is the minimum number such that p_{i + 1} > p_i and c[p_{i + 1}] > c[p_i]. You are given an array a_1, a_2, ..., a_n. For each its subsegment of length k, calculate the length of its longest greedy subsequence. Input The first line contains two integers n and k (1 ≀ k ≀ n ≀ 10^6) β€” the length of array a and the length of subsegments. The second line contains n integers a_1, a_2, ..., a_n (1 ≀ a_i ≀ n) β€” array a. Output Print n - k + 1 integers β€” the maximum lengths of greedy subsequences of each subsegment having length k. The first number should correspond to subsegment a[1..k], the second β€” to subsegment a[2..k + 1], and so on. Examples Input 6 4 1 5 2 5 3 6 Output 2 2 3 Input 7 6 4 5 2 5 3 6 6 Output 3 3 Note In the first example: * [1, 5, 2, 5] β€” the longest greedy subsequences are 1, 2 ([c_1, c_2] = [1, 5]) or 3, 4 ([c_3, c_4] = [2, 5]). * [5, 2, 5, 3] β€” the sequence is 2, 3 ([c_2, c_3] = [2, 5]). * [2, 5, 3, 6] β€” the sequence is 1, 2, 4 ([c_1, c_2, c_4] = [2, 5, 6]). In the second example: * [4, 5, 2, 5, 3, 6] β€” the longest greedy subsequences are 1, 2, 6 ([c_1, c_2, c_6] = [4, 5, 6]) or 3, 4, 6 ([c_3, c_4, c_6] = [2, 5, 6]). * [5, 2, 5, 3, 6, 6] β€” the subsequence is 2, 3, 5 ([c_2, c_3, c_5] = [2, 5, 6]). ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int N = 1000000; const int oo = 0x3f3f3f3f; namespace SEG { const int SZ = N << 2; int tag[SZ + 5], mx[SZ + 5]; void push_down(int u) { if (tag[u]) { mx[(u << 1)] += tag[u], tag[(u << 1)] += tag[u]; mx[(u << 1 | 1)] += tag[u], tag[(u << 1 | 1)] += tag[u]; } tag[u] = 0; } void add(int u, int l, int r, int x, int y, int v) { if (x <= l && r <= y) { mx[u] += v; tag[u] += v; } else { if (x <= ((l + r) >> 1)) add((u << 1), l, ((l + r) >> 1), x, y, v); if (((l + r) >> 1) < y) add((u << 1 | 1), ((l + r) >> 1) + 1, r, x, y, v); mx[u] = max(mx[(u << 1)], mx[(u << 1 | 1)]); } } int query(int u, int l, int r, int x, int y) { if (x > r || y < l) return -oo; if (x <= l && r <= y) return mx[u]; push_down(u); return max(query((u << 1), l, ((l + r) >> 1), x, y), query((u << 1 | 1), ((l + r) >> 1) + 1, r, x, y)); } } // namespace SEG int n, k; int a[N + 5]; int stk[N + 5], bnd[N + 5], top; int main() { scanf("%d%d", &n, &k); for (int i = 1; i <= n; ++i) { scanf("%d", a + i); bnd[i] = i; while (top > 0 && a[stk[top - 1]] < a[i]) { bnd[i] = bnd[stk[top - 1]]; --top; } stk[top++] = i; } for (int i = 1; i <= n; ++i) { SEG::add(1, 1, n, bnd[i], i, +1); if (i - k + 1 > 0) { printf("%d ", SEG::query(1, 1, n, i - k + 1, i)); } } return 0; } ```
#include <bits/stdc++.h> using namespace std; const int N = 1e6 + 10; int n, k, a[N]; vector<int> g[N]; int sta[N], top, dep[N]; int dfn[N], dfn_end[N], clk; int val[N]; void dfs(int u) { dfn[u] = ++clk; val[clk] = dep[u]; for (int v : g[u]) { dfs(v); } dfn_end[u] = clk; } int mx[N * 10], tag[N * 10]; const int inf = -0xcfcfcfcf; void push(int id) { if (tag[id]) { tag[(id << 1)] += tag[id], tag[(id << 1 | 1)] += tag[id]; mx[id] += tag[id], tag[id] = 0; } } void upd(int id) { push((id << 1)), push((id << 1 | 1)); mx[id] = max(mx[(id << 1)], mx[(id << 1 | 1)]); } void modify(int id, int l, int r, int ql, int qr, int val) { int mid = (l + r) >> 1; push(id); if (ql <= l && r <= qr) { tag[id] += val; return; } else if (qr <= mid) { modify((id << 1), l, mid, ql, qr, val); } else if (ql >= mid + 1) { modify((id << 1 | 1), mid + 1, r, ql, qr, val); } else { modify((id << 1), l, mid, ql, mid, val); modify((id << 1 | 1), mid + 1, r, mid + 1, qr, val); } upd(id); } int ans[N]; int main() { memset(mx, 0xcf, sizeof mx); scanf("%d%d", &n, &k); for (int i = 1; i <= n; ++i) { scanf("%d", &a[i]); } for (int i = n; i; --i) { while (top && a[sta[top]] <= a[i]) --top; dep[i] = dep[sta[top]] + 1; g[sta[top]].push_back(i); sta[++top] = i; } dfs(0); int L = n - k + 1, R = n; for (int i = L; i <= R; ++i) { modify(1, 1, clk, dfn[i], dfn[i], inf + dep[i]); } for (int i = 1; i <= n - k + 1; ++i) { push(1), ans[i] = mx[1]; modify(1, 1, clk, dfn[R], dfn_end[R], -1); modify(1, 1, clk, dfn[L - 1], dfn[L - 1], inf + dep[L - 1]); --R, --L; } for (int i = n - k + 1; i; --i) { printf("%d ", ans[i]); } }
### Prompt Generate a cpp solution to the following problem: For some array c, let's denote a greedy subsequence as a sequence of indices p_1, p_2, ..., p_l such that 1 ≀ p_1 < p_2 < ... < p_l ≀ |c|, and for each i ∈ [1, l - 1], p_{i + 1} is the minimum number such that p_{i + 1} > p_i and c[p_{i + 1}] > c[p_i]. You are given an array a_1, a_2, ..., a_n. For each its subsegment of length k, calculate the length of its longest greedy subsequence. Input The first line contains two integers n and k (1 ≀ k ≀ n ≀ 10^6) β€” the length of array a and the length of subsegments. The second line contains n integers a_1, a_2, ..., a_n (1 ≀ a_i ≀ n) β€” array a. Output Print n - k + 1 integers β€” the maximum lengths of greedy subsequences of each subsegment having length k. The first number should correspond to subsegment a[1..k], the second β€” to subsegment a[2..k + 1], and so on. Examples Input 6 4 1 5 2 5 3 6 Output 2 2 3 Input 7 6 4 5 2 5 3 6 6 Output 3 3 Note In the first example: * [1, 5, 2, 5] β€” the longest greedy subsequences are 1, 2 ([c_1, c_2] = [1, 5]) or 3, 4 ([c_3, c_4] = [2, 5]). * [5, 2, 5, 3] β€” the sequence is 2, 3 ([c_2, c_3] = [2, 5]). * [2, 5, 3, 6] β€” the sequence is 1, 2, 4 ([c_1, c_2, c_4] = [2, 5, 6]). In the second example: * [4, 5, 2, 5, 3, 6] β€” the longest greedy subsequences are 1, 2, 6 ([c_1, c_2, c_6] = [4, 5, 6]) or 3, 4, 6 ([c_3, c_4, c_6] = [2, 5, 6]). * [5, 2, 5, 3, 6, 6] β€” the subsequence is 2, 3, 5 ([c_2, c_3, c_5] = [2, 5, 6]). ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int N = 1e6 + 10; int n, k, a[N]; vector<int> g[N]; int sta[N], top, dep[N]; int dfn[N], dfn_end[N], clk; int val[N]; void dfs(int u) { dfn[u] = ++clk; val[clk] = dep[u]; for (int v : g[u]) { dfs(v); } dfn_end[u] = clk; } int mx[N * 10], tag[N * 10]; const int inf = -0xcfcfcfcf; void push(int id) { if (tag[id]) { tag[(id << 1)] += tag[id], tag[(id << 1 | 1)] += tag[id]; mx[id] += tag[id], tag[id] = 0; } } void upd(int id) { push((id << 1)), push((id << 1 | 1)); mx[id] = max(mx[(id << 1)], mx[(id << 1 | 1)]); } void modify(int id, int l, int r, int ql, int qr, int val) { int mid = (l + r) >> 1; push(id); if (ql <= l && r <= qr) { tag[id] += val; return; } else if (qr <= mid) { modify((id << 1), l, mid, ql, qr, val); } else if (ql >= mid + 1) { modify((id << 1 | 1), mid + 1, r, ql, qr, val); } else { modify((id << 1), l, mid, ql, mid, val); modify((id << 1 | 1), mid + 1, r, mid + 1, qr, val); } upd(id); } int ans[N]; int main() { memset(mx, 0xcf, sizeof mx); scanf("%d%d", &n, &k); for (int i = 1; i <= n; ++i) { scanf("%d", &a[i]); } for (int i = n; i; --i) { while (top && a[sta[top]] <= a[i]) --top; dep[i] = dep[sta[top]] + 1; g[sta[top]].push_back(i); sta[++top] = i; } dfs(0); int L = n - k + 1, R = n; for (int i = L; i <= R; ++i) { modify(1, 1, clk, dfn[i], dfn[i], inf + dep[i]); } for (int i = 1; i <= n - k + 1; ++i) { push(1), ans[i] = mx[1]; modify(1, 1, clk, dfn[R], dfn_end[R], -1); modify(1, 1, clk, dfn[L - 1], dfn[L - 1], inf + dep[L - 1]); --R, --L; } for (int i = n - k + 1; i; --i) { printf("%d ", ans[i]); } } ```
#include <bits/stdc++.h> using namespace std; const int N = 1000010; int n, k, arr[N], idx[N], last[N], dfs_cnt = 0; vector<int> g[N]; stack<int> st; bool vis[N]; int seg[4 * N], lazy[4 * N]; void DFS(int node) { idx[node] = last[node] = dfs_cnt++; vis[node] = true; for (int i = 0; i < (int)g[node].size(); i++) { DFS(g[node][i]); last[node] = last[g[node][i]]; } } inline void fix(int s, int e, int idx) { seg[idx] += lazy[idx]; if (s != e) { lazy[(idx << 1)] += lazy[idx]; lazy[(idx << 1) + 1] += lazy[idx]; } lazy[idx] = 0; } int l, r, val; int update(int s, int e, int idx) { fix(s, e, idx); if (s > r || e < l) return seg[idx]; if (s >= l && e <= r) { lazy[idx] += val; fix(s, e, idx); return seg[idx]; } return seg[idx] = max(update(s, (s + e) / 2, idx * 2), update((s + e) / 2 + 1, e, idx * 2 + 1)); } int main() { scanf("%d%d", &n, &k); for (int i = 0; i < n; i++) { scanf("%d", &arr[i]); while ((int)st.size() > 0 && arr[i] > arr[st.top()]) { g[i].push_back(st.top()); st.pop(); } st.push(i); } for (int i = n - 1; i >= 0; i--) { if (!vis[i]) DFS(i); } int j = 0; for (j = 0; j < k; j++) { l = idx[j]; r = last[j]; val = 1; update(0, n - 1, 1); } j--; int ss; while (j < n) { fix(0, n - 1, 1); printf("%d ", seg[1]); ss = j - k + 1; l = idx[ss]; r = idx[ss]; val = -1000000010; update(0, n - 1, 1); j++; if (j == n) break; l = idx[j]; r = last[j]; val = 1; update(0, n - 1, 1); } puts(""); return 0; }
### Prompt Please create a solution in Cpp to the following problem: For some array c, let's denote a greedy subsequence as a sequence of indices p_1, p_2, ..., p_l such that 1 ≀ p_1 < p_2 < ... < p_l ≀ |c|, and for each i ∈ [1, l - 1], p_{i + 1} is the minimum number such that p_{i + 1} > p_i and c[p_{i + 1}] > c[p_i]. You are given an array a_1, a_2, ..., a_n. For each its subsegment of length k, calculate the length of its longest greedy subsequence. Input The first line contains two integers n and k (1 ≀ k ≀ n ≀ 10^6) β€” the length of array a and the length of subsegments. The second line contains n integers a_1, a_2, ..., a_n (1 ≀ a_i ≀ n) β€” array a. Output Print n - k + 1 integers β€” the maximum lengths of greedy subsequences of each subsegment having length k. The first number should correspond to subsegment a[1..k], the second β€” to subsegment a[2..k + 1], and so on. Examples Input 6 4 1 5 2 5 3 6 Output 2 2 3 Input 7 6 4 5 2 5 3 6 6 Output 3 3 Note In the first example: * [1, 5, 2, 5] β€” the longest greedy subsequences are 1, 2 ([c_1, c_2] = [1, 5]) or 3, 4 ([c_3, c_4] = [2, 5]). * [5, 2, 5, 3] β€” the sequence is 2, 3 ([c_2, c_3] = [2, 5]). * [2, 5, 3, 6] β€” the sequence is 1, 2, 4 ([c_1, c_2, c_4] = [2, 5, 6]). In the second example: * [4, 5, 2, 5, 3, 6] β€” the longest greedy subsequences are 1, 2, 6 ([c_1, c_2, c_6] = [4, 5, 6]) or 3, 4, 6 ([c_3, c_4, c_6] = [2, 5, 6]). * [5, 2, 5, 3, 6, 6] β€” the subsequence is 2, 3, 5 ([c_2, c_3, c_5] = [2, 5, 6]). ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int N = 1000010; int n, k, arr[N], idx[N], last[N], dfs_cnt = 0; vector<int> g[N]; stack<int> st; bool vis[N]; int seg[4 * N], lazy[4 * N]; void DFS(int node) { idx[node] = last[node] = dfs_cnt++; vis[node] = true; for (int i = 0; i < (int)g[node].size(); i++) { DFS(g[node][i]); last[node] = last[g[node][i]]; } } inline void fix(int s, int e, int idx) { seg[idx] += lazy[idx]; if (s != e) { lazy[(idx << 1)] += lazy[idx]; lazy[(idx << 1) + 1] += lazy[idx]; } lazy[idx] = 0; } int l, r, val; int update(int s, int e, int idx) { fix(s, e, idx); if (s > r || e < l) return seg[idx]; if (s >= l && e <= r) { lazy[idx] += val; fix(s, e, idx); return seg[idx]; } return seg[idx] = max(update(s, (s + e) / 2, idx * 2), update((s + e) / 2 + 1, e, idx * 2 + 1)); } int main() { scanf("%d%d", &n, &k); for (int i = 0; i < n; i++) { scanf("%d", &arr[i]); while ((int)st.size() > 0 && arr[i] > arr[st.top()]) { g[i].push_back(st.top()); st.pop(); } st.push(i); } for (int i = n - 1; i >= 0; i--) { if (!vis[i]) DFS(i); } int j = 0; for (j = 0; j < k; j++) { l = idx[j]; r = last[j]; val = 1; update(0, n - 1, 1); } j--; int ss; while (j < n) { fix(0, n - 1, 1); printf("%d ", seg[1]); ss = j - k + 1; l = idx[ss]; r = idx[ss]; val = -1000000010; update(0, n - 1, 1); j++; if (j == n) break; l = idx[j]; r = last[j]; val = 1; update(0, n - 1, 1); } puts(""); return 0; } ```
#include <bits/stdc++.h> using namespace std; const int mxN = 1e6; int n, k, a[mxN], l[mxN], p[mxN], ld[mxN], lb[mxN]; int find(int x) { return x == p[x] ? x : (p[x] = find(p[x])); } void join(int x, int y) { p[x] = y; lb[y] = lb[x]; ld[y] += ld[x]; } void upd1(int i, int j) { i = find(i); ++ld[i]; if (j < n) --ld[j]; while (ld[i] >= 0 && lb[i]) join(lb[i] - 1, i); } void upd2(int i) { if (i < k) return; int j = find(i - k + 1); while (lb[j] > i - k) join(lb[j] - 1, j); } int main() { ios::sync_with_stdio(0); cin.tie(0); cin >> n >> k; for (int i = 0; i < n; ++i) cin >> a[i]; iota(p, p + n, 0); iota(lb, lb + n, 0); for (int i = 0; i < n; ++i) { upd2(i); l[i] = i - 1; while (l[i] >= 0 && a[l[i]] < a[i]) l[i] = l[l[i]]; upd1(l[i] + 1, i + 1); if (i >= k - 1) cout << ld[find(0)] << " "; } }
### Prompt Create a solution in CPP for the following problem: For some array c, let's denote a greedy subsequence as a sequence of indices p_1, p_2, ..., p_l such that 1 ≀ p_1 < p_2 < ... < p_l ≀ |c|, and for each i ∈ [1, l - 1], p_{i + 1} is the minimum number such that p_{i + 1} > p_i and c[p_{i + 1}] > c[p_i]. You are given an array a_1, a_2, ..., a_n. For each its subsegment of length k, calculate the length of its longest greedy subsequence. Input The first line contains two integers n and k (1 ≀ k ≀ n ≀ 10^6) β€” the length of array a and the length of subsegments. The second line contains n integers a_1, a_2, ..., a_n (1 ≀ a_i ≀ n) β€” array a. Output Print n - k + 1 integers β€” the maximum lengths of greedy subsequences of each subsegment having length k. The first number should correspond to subsegment a[1..k], the second β€” to subsegment a[2..k + 1], and so on. Examples Input 6 4 1 5 2 5 3 6 Output 2 2 3 Input 7 6 4 5 2 5 3 6 6 Output 3 3 Note In the first example: * [1, 5, 2, 5] β€” the longest greedy subsequences are 1, 2 ([c_1, c_2] = [1, 5]) or 3, 4 ([c_3, c_4] = [2, 5]). * [5, 2, 5, 3] β€” the sequence is 2, 3 ([c_2, c_3] = [2, 5]). * [2, 5, 3, 6] β€” the sequence is 1, 2, 4 ([c_1, c_2, c_4] = [2, 5, 6]). In the second example: * [4, 5, 2, 5, 3, 6] β€” the longest greedy subsequences are 1, 2, 6 ([c_1, c_2, c_6] = [4, 5, 6]) or 3, 4, 6 ([c_3, c_4, c_6] = [2, 5, 6]). * [5, 2, 5, 3, 6, 6] β€” the subsequence is 2, 3, 5 ([c_2, c_3, c_5] = [2, 5, 6]). ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int mxN = 1e6; int n, k, a[mxN], l[mxN], p[mxN], ld[mxN], lb[mxN]; int find(int x) { return x == p[x] ? x : (p[x] = find(p[x])); } void join(int x, int y) { p[x] = y; lb[y] = lb[x]; ld[y] += ld[x]; } void upd1(int i, int j) { i = find(i); ++ld[i]; if (j < n) --ld[j]; while (ld[i] >= 0 && lb[i]) join(lb[i] - 1, i); } void upd2(int i) { if (i < k) return; int j = find(i - k + 1); while (lb[j] > i - k) join(lb[j] - 1, j); } int main() { ios::sync_with_stdio(0); cin.tie(0); cin >> n >> k; for (int i = 0; i < n; ++i) cin >> a[i]; iota(p, p + n, 0); iota(lb, lb + n, 0); for (int i = 0; i < n; ++i) { upd2(i); l[i] = i - 1; while (l[i] >= 0 && a[l[i]] < a[i]) l[i] = l[l[i]]; upd1(l[i] + 1, i + 1); if (i >= k - 1) cout << ld[find(0)] << " "; } } ```
#include <bits/stdc++.h> using namespace std; const int maxn = 1e6 + 100; struct segtree { int mx[maxn << 2], lazy[maxn << 2]; void maintain(int rt) { mx[rt] = max(mx[(rt << 1)], mx[(rt << 1 | 1)]); } void push(int rt) { if (!lazy[rt]) return; lazy[(rt << 1)] += lazy[rt], lazy[(rt << 1 | 1)] += lazy[rt]; mx[(rt << 1)] += lazy[rt], mx[(rt << 1 | 1)] += lazy[rt]; lazy[rt] = 0; } void update(int l, int r, int rt, int ql, int qr, int v) { if (ql <= l && qr >= r) { lazy[rt] += v; mx[rt] += v; return; ; } push(rt); int mid = l + r >> 1; if (ql <= mid) update(l, mid, (rt << 1), ql, qr, v); if (qr > mid) update(mid + 1, r, (rt << 1 | 1), ql, qr, v); maintain(rt); } } T; vector<vector<int> > v; int in[maxn], out[maxn], tot; void dfs(int x) { in[x] = ++tot; for (auto &u : v[x]) dfs(u); out[x] = tot; } int go[maxn], a[maxn]; int main() { ios::sync_with_stdio(0); cin.tie(0); int n, k; cin >> n >> k; v.resize(n + 2); for (int i = 1; i <= n; ++i) cin >> a[i], go[i] = i + 1; for (int i = n; i >= 1; --i) { while (go[i] <= n && a[i] >= a[go[i]]) { go[i] = go[go[i]]; } v[go[i]].push_back(i); } dfs(n + 1); for (int i = 1; i <= n; ++i) { T.update(1, n + 1, 1, in[i], out[i], 1); if (i - k >= 1) T.update(1, n + 1, 1, in[i - k], out[i - k], -1), T.update(1, n + 1, 1, in[i - k], in[i - k], -1e9); if (i - k >= 0) cout << T.mx[1] << ' '; } cout << '\n'; return 0; }
### Prompt Please formulate a cpp solution to the following problem: For some array c, let's denote a greedy subsequence as a sequence of indices p_1, p_2, ..., p_l such that 1 ≀ p_1 < p_2 < ... < p_l ≀ |c|, and for each i ∈ [1, l - 1], p_{i + 1} is the minimum number such that p_{i + 1} > p_i and c[p_{i + 1}] > c[p_i]. You are given an array a_1, a_2, ..., a_n. For each its subsegment of length k, calculate the length of its longest greedy subsequence. Input The first line contains two integers n and k (1 ≀ k ≀ n ≀ 10^6) β€” the length of array a and the length of subsegments. The second line contains n integers a_1, a_2, ..., a_n (1 ≀ a_i ≀ n) β€” array a. Output Print n - k + 1 integers β€” the maximum lengths of greedy subsequences of each subsegment having length k. The first number should correspond to subsegment a[1..k], the second β€” to subsegment a[2..k + 1], and so on. Examples Input 6 4 1 5 2 5 3 6 Output 2 2 3 Input 7 6 4 5 2 5 3 6 6 Output 3 3 Note In the first example: * [1, 5, 2, 5] β€” the longest greedy subsequences are 1, 2 ([c_1, c_2] = [1, 5]) or 3, 4 ([c_3, c_4] = [2, 5]). * [5, 2, 5, 3] β€” the sequence is 2, 3 ([c_2, c_3] = [2, 5]). * [2, 5, 3, 6] β€” the sequence is 1, 2, 4 ([c_1, c_2, c_4] = [2, 5, 6]). In the second example: * [4, 5, 2, 5, 3, 6] β€” the longest greedy subsequences are 1, 2, 6 ([c_1, c_2, c_6] = [4, 5, 6]) or 3, 4, 6 ([c_3, c_4, c_6] = [2, 5, 6]). * [5, 2, 5, 3, 6, 6] β€” the subsequence is 2, 3, 5 ([c_2, c_3, c_5] = [2, 5, 6]). ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int maxn = 1e6 + 100; struct segtree { int mx[maxn << 2], lazy[maxn << 2]; void maintain(int rt) { mx[rt] = max(mx[(rt << 1)], mx[(rt << 1 | 1)]); } void push(int rt) { if (!lazy[rt]) return; lazy[(rt << 1)] += lazy[rt], lazy[(rt << 1 | 1)] += lazy[rt]; mx[(rt << 1)] += lazy[rt], mx[(rt << 1 | 1)] += lazy[rt]; lazy[rt] = 0; } void update(int l, int r, int rt, int ql, int qr, int v) { if (ql <= l && qr >= r) { lazy[rt] += v; mx[rt] += v; return; ; } push(rt); int mid = l + r >> 1; if (ql <= mid) update(l, mid, (rt << 1), ql, qr, v); if (qr > mid) update(mid + 1, r, (rt << 1 | 1), ql, qr, v); maintain(rt); } } T; vector<vector<int> > v; int in[maxn], out[maxn], tot; void dfs(int x) { in[x] = ++tot; for (auto &u : v[x]) dfs(u); out[x] = tot; } int go[maxn], a[maxn]; int main() { ios::sync_with_stdio(0); cin.tie(0); int n, k; cin >> n >> k; v.resize(n + 2); for (int i = 1; i <= n; ++i) cin >> a[i], go[i] = i + 1; for (int i = n; i >= 1; --i) { while (go[i] <= n && a[i] >= a[go[i]]) { go[i] = go[go[i]]; } v[go[i]].push_back(i); } dfs(n + 1); for (int i = 1; i <= n; ++i) { T.update(1, n + 1, 1, in[i], out[i], 1); if (i - k >= 1) T.update(1, n + 1, 1, in[i - k], out[i - k], -1), T.update(1, n + 1, 1, in[i - k], in[i - k], -1e9); if (i - k >= 0) cout << T.mx[1] << ' '; } cout << '\n'; return 0; } ```
#include <bits/stdc++.h> using namespace std; const int INF = INT_MAX / 3; class SegmentTree { public: SegmentTree(int _n) : n(_n), N(_n << 1), data(N, 0), chgs(N, 0) { h = 0; while (1 << h <= N) { ++h; } } void build(vector<int>& nums) { assert(nums.size() <= n); int sz = nums.size(); for (int i = 0; i < sz; ++i) { data[i + n] = nums[i]; } for (int i = n - 1; i > 0; --i) { data[i] = max(data[i << 1], data[i << 1 | 1]); } } void apply(int x, int v) { data[x] += v; if (x < n) { chgs[x] += v; } } void pull(int x) { for (int p = x >> 1; p > 0; p >>= 1) { if (chgs[p] == 0) { data[p] = max(data[p << 1], data[p << 1 | 1]); } } } void push(int x) { for (int i = h; i >= 0; --i) { int p = x >> i; if (chgs[p] != 0) { apply(p << 1, chgs[p]); apply(p << 1 | 1, chgs[p]); chgs[p] = 0; } } } void update(int x, int v) { x += n; push(x); data[x] = v; pull(x); } void update(int l, int r, int v) { l += n; r += n; int ll = l, rr = r; push(ll); push(rr); while (l <= r) { if (l & 0x1) { apply(l++, v); } if ((r & 0x1) == 0) { apply(r--, v); } l >>= 1; r >>= 1; } pull(ll); pull(rr); } int get(int x) { x += n; push(x); return data[x]; } int get(int l, int r) { l += n; r += n; push(l); push(r); int res = -INF; while (l <= r) { if (l & 0x1) { res = max(res, data[l++]); } if ((r & 0x1) == 0) { res = max(res, data[r--]); } l >>= 1; r >>= 1; } return res; } private: int n; int N; int h; vector<int> data; vector<int> chgs; }; class Solution { public: vector<int> calc(vector<int>& nums, int n, int k) { vector<int> rights(n, n); vector<int> stk(n + 1); int sz = 0; for (int i = n - 1; i >= 0; --i) { while (sz > 0) { int j = stk[sz - 1]; if (nums[j] <= nums[i]) { --sz; } else { break; } } rights[i] = sz == 0 ? n : stk[sz - 1]; stk[sz++] = i; } vector<vector<int>> graph(n + 1); for (int i = 0; i < n; ++i) { graph[rights[i]].push_back(i); } int rt = n; vector<int> in(n + 1, 0); vector<int> out(n + 1, 0); int clk = -1; dfs(rt, -1, clk, graph, in, out); vector<int> vals(n + 1, -INF); SegmentTree st(n + 100); st.build(vals); vector<int> res; res.reserve(n - k + 1); for (int i = 0; i < n; ++i) { int idx = in[i]; st.update(idx, 0); st.update(in[i], out[i], 1); if (i >= k) { st.update(in[i - k], -INF); } if (i + 1 >= k) { res.push_back(st.get(0, n)); } } return res; } private: void dfs(int u, int p, int& clk, vector<vector<int>>& graph, vector<int>& in, vector<int>& out) { in[u] = ++clk; for (auto v : graph[u]) { if (v != p) { dfs(v, u, clk, graph, in, out); } } out[u] = clk; } }; int main(int argc, char** argv) { ios::sync_with_stdio(false); cin.tie(0); Solution sol; int n, k; cin >> n >> k; vector<int> nums(n); for (int i = 0; i < n; ++i) { cin >> nums[i]; } auto res = sol.calc(nums, n, k); for (auto r : res) { cout << r << " "; } cout << "\n"; return 0; }
### Prompt Please provide a Cpp coded solution to the problem described below: For some array c, let's denote a greedy subsequence as a sequence of indices p_1, p_2, ..., p_l such that 1 ≀ p_1 < p_2 < ... < p_l ≀ |c|, and for each i ∈ [1, l - 1], p_{i + 1} is the minimum number such that p_{i + 1} > p_i and c[p_{i + 1}] > c[p_i]. You are given an array a_1, a_2, ..., a_n. For each its subsegment of length k, calculate the length of its longest greedy subsequence. Input The first line contains two integers n and k (1 ≀ k ≀ n ≀ 10^6) β€” the length of array a and the length of subsegments. The second line contains n integers a_1, a_2, ..., a_n (1 ≀ a_i ≀ n) β€” array a. Output Print n - k + 1 integers β€” the maximum lengths of greedy subsequences of each subsegment having length k. The first number should correspond to subsegment a[1..k], the second β€” to subsegment a[2..k + 1], and so on. Examples Input 6 4 1 5 2 5 3 6 Output 2 2 3 Input 7 6 4 5 2 5 3 6 6 Output 3 3 Note In the first example: * [1, 5, 2, 5] β€” the longest greedy subsequences are 1, 2 ([c_1, c_2] = [1, 5]) or 3, 4 ([c_3, c_4] = [2, 5]). * [5, 2, 5, 3] β€” the sequence is 2, 3 ([c_2, c_3] = [2, 5]). * [2, 5, 3, 6] β€” the sequence is 1, 2, 4 ([c_1, c_2, c_4] = [2, 5, 6]). In the second example: * [4, 5, 2, 5, 3, 6] β€” the longest greedy subsequences are 1, 2, 6 ([c_1, c_2, c_6] = [4, 5, 6]) or 3, 4, 6 ([c_3, c_4, c_6] = [2, 5, 6]). * [5, 2, 5, 3, 6, 6] β€” the subsequence is 2, 3, 5 ([c_2, c_3, c_5] = [2, 5, 6]). ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int INF = INT_MAX / 3; class SegmentTree { public: SegmentTree(int _n) : n(_n), N(_n << 1), data(N, 0), chgs(N, 0) { h = 0; while (1 << h <= N) { ++h; } } void build(vector<int>& nums) { assert(nums.size() <= n); int sz = nums.size(); for (int i = 0; i < sz; ++i) { data[i + n] = nums[i]; } for (int i = n - 1; i > 0; --i) { data[i] = max(data[i << 1], data[i << 1 | 1]); } } void apply(int x, int v) { data[x] += v; if (x < n) { chgs[x] += v; } } void pull(int x) { for (int p = x >> 1; p > 0; p >>= 1) { if (chgs[p] == 0) { data[p] = max(data[p << 1], data[p << 1 | 1]); } } } void push(int x) { for (int i = h; i >= 0; --i) { int p = x >> i; if (chgs[p] != 0) { apply(p << 1, chgs[p]); apply(p << 1 | 1, chgs[p]); chgs[p] = 0; } } } void update(int x, int v) { x += n; push(x); data[x] = v; pull(x); } void update(int l, int r, int v) { l += n; r += n; int ll = l, rr = r; push(ll); push(rr); while (l <= r) { if (l & 0x1) { apply(l++, v); } if ((r & 0x1) == 0) { apply(r--, v); } l >>= 1; r >>= 1; } pull(ll); pull(rr); } int get(int x) { x += n; push(x); return data[x]; } int get(int l, int r) { l += n; r += n; push(l); push(r); int res = -INF; while (l <= r) { if (l & 0x1) { res = max(res, data[l++]); } if ((r & 0x1) == 0) { res = max(res, data[r--]); } l >>= 1; r >>= 1; } return res; } private: int n; int N; int h; vector<int> data; vector<int> chgs; }; class Solution { public: vector<int> calc(vector<int>& nums, int n, int k) { vector<int> rights(n, n); vector<int> stk(n + 1); int sz = 0; for (int i = n - 1; i >= 0; --i) { while (sz > 0) { int j = stk[sz - 1]; if (nums[j] <= nums[i]) { --sz; } else { break; } } rights[i] = sz == 0 ? n : stk[sz - 1]; stk[sz++] = i; } vector<vector<int>> graph(n + 1); for (int i = 0; i < n; ++i) { graph[rights[i]].push_back(i); } int rt = n; vector<int> in(n + 1, 0); vector<int> out(n + 1, 0); int clk = -1; dfs(rt, -1, clk, graph, in, out); vector<int> vals(n + 1, -INF); SegmentTree st(n + 100); st.build(vals); vector<int> res; res.reserve(n - k + 1); for (int i = 0; i < n; ++i) { int idx = in[i]; st.update(idx, 0); st.update(in[i], out[i], 1); if (i >= k) { st.update(in[i - k], -INF); } if (i + 1 >= k) { res.push_back(st.get(0, n)); } } return res; } private: void dfs(int u, int p, int& clk, vector<vector<int>>& graph, vector<int>& in, vector<int>& out) { in[u] = ++clk; for (auto v : graph[u]) { if (v != p) { dfs(v, u, clk, graph, in, out); } } out[u] = clk; } }; int main(int argc, char** argv) { ios::sync_with_stdio(false); cin.tie(0); Solution sol; int n, k; cin >> n >> k; vector<int> nums(n); for (int i = 0; i < n; ++i) { cin >> nums[i]; } auto res = sol.calc(nums, n, k); for (auto r : res) { cout << r << " "; } cout << "\n"; return 0; } ```
#include <bits/stdc++.h> using namespace std; const int maxn = 1000000 + 10; int tree[4 * maxn], lazy[4 * maxn], seen[maxn]; int N, K, A[maxn], in[maxn], out[maxn]; vector<int> graph[maxn]; int cnt = 0; void dfs(int u, int p) { seen[u] = 1; for (auto &v : graph[u]) { if (v == p) continue; dfs(v, u); } } void dfs2(int u, int p) { in[u] = ++cnt; for (auto &v : graph[u]) { if (v == p) continue; dfs2(v, u); } out[u] = cnt; } void update(int node, int start, int end, int l, int r, int val) { if (lazy[node] != 0) { tree[node] += lazy[node]; if (start != end) { lazy[node * 2] += lazy[node]; lazy[node * 2 + 1] += lazy[node]; } lazy[node] = 0; } if (start > end || start > r || end < l) return; if (start >= l && end <= r) { tree[node] += val; if (start != end) { lazy[node * 2] += val; lazy[node * 2 + 1] += val; } return; } int mid = (start + end) / 2; update(node * 2, start, mid, l, r, val); update(node * 2 + 1, mid + 1, end, l, r, val); tree[node] = max(tree[node * 2], tree[node * 2 + 1]); } int query(int node, int start, int end, int l, int r) { if (start > end || start > r || end < l) return 0; if (lazy[node] != 0) { tree[node] += lazy[node]; if (start != end) { lazy[node * 2] += lazy[node]; lazy[node * 2 + 1] += lazy[node]; } lazy[node] = 0; } if (start >= l && end <= r) return tree[node]; int mid = (start + end) / 2; int p1 = query(node * 2, start, mid, l, r); int p2 = query(node * 2 + 1, mid + 1, end, l, r); return max(p1, p2); } int main() { ios_base::sync_with_stdio(0); cin.tie(0); cin >> N >> K; for (int i = 1; i < N + 1; i++) cin >> A[i]; stack<pair<int, int> > st; for (int i = N; i >= 1; i--) { while (st.size() && st.top().first <= A[i]) st.pop(); if (st.size()) { graph[i].push_back(st.top().second); graph[st.top().second].push_back(i); } st.push({A[i], i}); } for (int i = N; i >= 1; i--) if (!seen[i]) { dfs(i, i); graph[i].push_back(0); graph[0].push_back(i); } dfs2(0, 0); for (int i = 1; i < K + 1; i++) update(1, 1, cnt, in[i], out[i], 1); vector<int> res; res.push_back(query(1, 1, cnt, 1, cnt)); for (int i = K + 1; i < N + 1; i++) { update(1, 1, cnt, in[i - K], out[i - K], -1); update(1, 1, cnt, in[i], out[i], 1); res.push_back(query(1, 1, cnt, 1, cnt)); } for (auto &x : res) cout << x << ' '; cout << '\n'; return 0; }
### Prompt Construct a cpp code solution to the problem outlined: For some array c, let's denote a greedy subsequence as a sequence of indices p_1, p_2, ..., p_l such that 1 ≀ p_1 < p_2 < ... < p_l ≀ |c|, and for each i ∈ [1, l - 1], p_{i + 1} is the minimum number such that p_{i + 1} > p_i and c[p_{i + 1}] > c[p_i]. You are given an array a_1, a_2, ..., a_n. For each its subsegment of length k, calculate the length of its longest greedy subsequence. Input The first line contains two integers n and k (1 ≀ k ≀ n ≀ 10^6) β€” the length of array a and the length of subsegments. The second line contains n integers a_1, a_2, ..., a_n (1 ≀ a_i ≀ n) β€” array a. Output Print n - k + 1 integers β€” the maximum lengths of greedy subsequences of each subsegment having length k. The first number should correspond to subsegment a[1..k], the second β€” to subsegment a[2..k + 1], and so on. Examples Input 6 4 1 5 2 5 3 6 Output 2 2 3 Input 7 6 4 5 2 5 3 6 6 Output 3 3 Note In the first example: * [1, 5, 2, 5] β€” the longest greedy subsequences are 1, 2 ([c_1, c_2] = [1, 5]) or 3, 4 ([c_3, c_4] = [2, 5]). * [5, 2, 5, 3] β€” the sequence is 2, 3 ([c_2, c_3] = [2, 5]). * [2, 5, 3, 6] β€” the sequence is 1, 2, 4 ([c_1, c_2, c_4] = [2, 5, 6]). In the second example: * [4, 5, 2, 5, 3, 6] β€” the longest greedy subsequences are 1, 2, 6 ([c_1, c_2, c_6] = [4, 5, 6]) or 3, 4, 6 ([c_3, c_4, c_6] = [2, 5, 6]). * [5, 2, 5, 3, 6, 6] β€” the subsequence is 2, 3, 5 ([c_2, c_3, c_5] = [2, 5, 6]). ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int maxn = 1000000 + 10; int tree[4 * maxn], lazy[4 * maxn], seen[maxn]; int N, K, A[maxn], in[maxn], out[maxn]; vector<int> graph[maxn]; int cnt = 0; void dfs(int u, int p) { seen[u] = 1; for (auto &v : graph[u]) { if (v == p) continue; dfs(v, u); } } void dfs2(int u, int p) { in[u] = ++cnt; for (auto &v : graph[u]) { if (v == p) continue; dfs2(v, u); } out[u] = cnt; } void update(int node, int start, int end, int l, int r, int val) { if (lazy[node] != 0) { tree[node] += lazy[node]; if (start != end) { lazy[node * 2] += lazy[node]; lazy[node * 2 + 1] += lazy[node]; } lazy[node] = 0; } if (start > end || start > r || end < l) return; if (start >= l && end <= r) { tree[node] += val; if (start != end) { lazy[node * 2] += val; lazy[node * 2 + 1] += val; } return; } int mid = (start + end) / 2; update(node * 2, start, mid, l, r, val); update(node * 2 + 1, mid + 1, end, l, r, val); tree[node] = max(tree[node * 2], tree[node * 2 + 1]); } int query(int node, int start, int end, int l, int r) { if (start > end || start > r || end < l) return 0; if (lazy[node] != 0) { tree[node] += lazy[node]; if (start != end) { lazy[node * 2] += lazy[node]; lazy[node * 2 + 1] += lazy[node]; } lazy[node] = 0; } if (start >= l && end <= r) return tree[node]; int mid = (start + end) / 2; int p1 = query(node * 2, start, mid, l, r); int p2 = query(node * 2 + 1, mid + 1, end, l, r); return max(p1, p2); } int main() { ios_base::sync_with_stdio(0); cin.tie(0); cin >> N >> K; for (int i = 1; i < N + 1; i++) cin >> A[i]; stack<pair<int, int> > st; for (int i = N; i >= 1; i--) { while (st.size() && st.top().first <= A[i]) st.pop(); if (st.size()) { graph[i].push_back(st.top().second); graph[st.top().second].push_back(i); } st.push({A[i], i}); } for (int i = N; i >= 1; i--) if (!seen[i]) { dfs(i, i); graph[i].push_back(0); graph[0].push_back(i); } dfs2(0, 0); for (int i = 1; i < K + 1; i++) update(1, 1, cnt, in[i], out[i], 1); vector<int> res; res.push_back(query(1, 1, cnt, 1, cnt)); for (int i = K + 1; i < N + 1; i++) { update(1, 1, cnt, in[i - K], out[i - K], -1); update(1, 1, cnt, in[i], out[i], 1); res.push_back(query(1, 1, cnt, 1, cnt)); } for (auto &x : res) cout << x << ' '; cout << '\n'; return 0; } ```
#include <bits/stdc++.h> using namespace std; int t[4000050], tag[4000050]; vector<int> v[1005000]; inline void refresh(int now) { t[now] = max(t[now << 1], t[now << 1 | 1]); } void pushdown(int l, int r, int now) { if (l == r) { tag[now] = 0; return; } tag[now << 1] += tag[now]; tag[now << 1 | 1] += tag[now]; int mid = (l + r) >> 1; t[now << 1] += tag[now]; t[now << 1 | 1] += tag[now]; tag[now] = 0; } void add(int l, int r, int now, int LL, int RR, int data) { if (LL <= l && r <= RR) { t[now] += data; tag[now] += data; return; } if (tag[now]) pushdown(l, r, now); int mid = (l + r) >> 1; if (LL <= mid) add(l, mid, now << 1, LL, RR, data); if (mid < RR) add(mid + 1, r, now << 1 | 1, LL, RR, data); refresh(now); } int query(int l, int r, int now, int LL, int RR) { if (LL <= l && r <= RR) { return t[now]; } if (tag[now]) pushdown(l, r, now); int mid = (l + r) >> 1; int ans = -1e9; if (LL <= mid) ans = max(query(l, mid, now << 1, LL, RR), ans); if (mid < RR) ans = max(ans, query(mid + 1, r, now << 1 | 1, LL, RR)); refresh(now); return ans; } int i, j, k, n, m, st[1005000][2], siz[1005000], id[1005000], it, sb; void dfs(int x) { siz[x]++; for (auto i : v[x]) { dfs(i); siz[x] += siz[i]; } id[x] = ++it; } int main() { scanf("%d%d", &n, &sb); for (i = 1; i <= n; i++) { scanf("%d", &k); while (m && st[m][1] < k) { v[i].push_back(st[m][0]); m--; } st[++m][0] = i; st[m][1] = k; } n++; while (m) { v[n].push_back(st[m][0]); m--; } dfs(n); for (i = 1; i <= sb; i++) { add(1, n, 1, id[i] - siz[i] + 1, id[i], 1); } for (i = sb; i < n; i++) { printf("%d ", t[1]); add(1, n, 1, id[i + 1] - siz[i + 1] + 1, id[i + 1], 1); add(1, n, 1, id[i - sb + 1] - siz[i - sb + 1] + 1, id[i - sb + 1], -1); } }
### Prompt In CPP, your task is to solve the following problem: For some array c, let's denote a greedy subsequence as a sequence of indices p_1, p_2, ..., p_l such that 1 ≀ p_1 < p_2 < ... < p_l ≀ |c|, and for each i ∈ [1, l - 1], p_{i + 1} is the minimum number such that p_{i + 1} > p_i and c[p_{i + 1}] > c[p_i]. You are given an array a_1, a_2, ..., a_n. For each its subsegment of length k, calculate the length of its longest greedy subsequence. Input The first line contains two integers n and k (1 ≀ k ≀ n ≀ 10^6) β€” the length of array a and the length of subsegments. The second line contains n integers a_1, a_2, ..., a_n (1 ≀ a_i ≀ n) β€” array a. Output Print n - k + 1 integers β€” the maximum lengths of greedy subsequences of each subsegment having length k. The first number should correspond to subsegment a[1..k], the second β€” to subsegment a[2..k + 1], and so on. Examples Input 6 4 1 5 2 5 3 6 Output 2 2 3 Input 7 6 4 5 2 5 3 6 6 Output 3 3 Note In the first example: * [1, 5, 2, 5] β€” the longest greedy subsequences are 1, 2 ([c_1, c_2] = [1, 5]) or 3, 4 ([c_3, c_4] = [2, 5]). * [5, 2, 5, 3] β€” the sequence is 2, 3 ([c_2, c_3] = [2, 5]). * [2, 5, 3, 6] β€” the sequence is 1, 2, 4 ([c_1, c_2, c_4] = [2, 5, 6]). In the second example: * [4, 5, 2, 5, 3, 6] β€” the longest greedy subsequences are 1, 2, 6 ([c_1, c_2, c_6] = [4, 5, 6]) or 3, 4, 6 ([c_3, c_4, c_6] = [2, 5, 6]). * [5, 2, 5, 3, 6, 6] β€” the subsequence is 2, 3, 5 ([c_2, c_3, c_5] = [2, 5, 6]). ### Response ```cpp #include <bits/stdc++.h> using namespace std; int t[4000050], tag[4000050]; vector<int> v[1005000]; inline void refresh(int now) { t[now] = max(t[now << 1], t[now << 1 | 1]); } void pushdown(int l, int r, int now) { if (l == r) { tag[now] = 0; return; } tag[now << 1] += tag[now]; tag[now << 1 | 1] += tag[now]; int mid = (l + r) >> 1; t[now << 1] += tag[now]; t[now << 1 | 1] += tag[now]; tag[now] = 0; } void add(int l, int r, int now, int LL, int RR, int data) { if (LL <= l && r <= RR) { t[now] += data; tag[now] += data; return; } if (tag[now]) pushdown(l, r, now); int mid = (l + r) >> 1; if (LL <= mid) add(l, mid, now << 1, LL, RR, data); if (mid < RR) add(mid + 1, r, now << 1 | 1, LL, RR, data); refresh(now); } int query(int l, int r, int now, int LL, int RR) { if (LL <= l && r <= RR) { return t[now]; } if (tag[now]) pushdown(l, r, now); int mid = (l + r) >> 1; int ans = -1e9; if (LL <= mid) ans = max(query(l, mid, now << 1, LL, RR), ans); if (mid < RR) ans = max(ans, query(mid + 1, r, now << 1 | 1, LL, RR)); refresh(now); return ans; } int i, j, k, n, m, st[1005000][2], siz[1005000], id[1005000], it, sb; void dfs(int x) { siz[x]++; for (auto i : v[x]) { dfs(i); siz[x] += siz[i]; } id[x] = ++it; } int main() { scanf("%d%d", &n, &sb); for (i = 1; i <= n; i++) { scanf("%d", &k); while (m && st[m][1] < k) { v[i].push_back(st[m][0]); m--; } st[++m][0] = i; st[m][1] = k; } n++; while (m) { v[n].push_back(st[m][0]); m--; } dfs(n); for (i = 1; i <= sb; i++) { add(1, n, 1, id[i] - siz[i] + 1, id[i], 1); } for (i = sb; i < n; i++) { printf("%d ", t[1]); add(1, n, 1, id[i + 1] - siz[i + 1] + 1, id[i + 1], 1); add(1, n, 1, id[i - sb + 1] - siz[i - sb + 1] + 1, id[i - sb + 1], -1); } } ```
#include <bits/stdc++.h> using namespace std; const int N = 1e6 + 10; const int mod = 998244353; const int inf = 0x3f3f3f3f; int n, k, tim; int a[N], nex[N], in[N], out[N]; vector<int> son[N]; template <typename T> void read(T &x) { int f = 0; char c = getchar(); while (c < '0' || c > '9') f |= (c == '-'), c = getchar(); for (x = 0; c >= '0' && c <= '9'; c = getchar()) x = (x << 3) + (x << 1) + c - '0'; if (f) x = -x; } namespace BIT { int tr[N]; void init() { memset(tr, 0x3f, sizeof tr); } void upd(int x, int v) { for (int i = x; i; i -= i & -i) { tr[i] = min(tr[i], v); } } int query(int x) { int ans = inf; for (int i = x; i < N; i += i & -i) { ans = min(ans, tr[i]); } return ans; } } // namespace BIT namespace SEG { int tr[N << 2], tag[N << 2]; void pushdown(int x) { tr[x << 1] += tag[x]; tr[x << 1 | 1] += tag[x]; tag[x << 1] += tag[x]; tag[x << 1 | 1] += tag[x]; tag[x] = 0; } void update(int x, int l, int r, int ql, int qr, int v) { if (ql <= l && r <= qr) { tr[x] += v; tag[x] += v; return; } pushdown(x); int mid = (l + r) >> 1; if (mid >= ql) { update(x << 1, l, mid, ql, qr, v); } if (mid < qr) { update(x << 1 | 1, mid + 1, r, ql, qr, v); } tr[x] = max(tr[x << 1], tr[x << 1 | 1]); } } // namespace SEG void dfs(int x) { in[x] = out[x] = ++tim; for (auto i : son[x]) { dfs(i); out[x] = max(out[x], out[i]); } } int main() { read(n); read(k); for (int i = 1; i <= n; ++i) read(a[i]); BIT::init(); BIT::upd(n + 1, n + 1); for (int i = n; i >= 1; --i) { nex[i] = BIT::query(a[i]); if (a[i] > 1) BIT::upd(a[i] - 1, i); } for (int i = 1; i <= n; ++i) { son[nex[i]].push_back(i); } dfs(n + 1); for (int i = 1; i <= k; ++i) { SEG::update(1, 1, n + 1, in[i], out[i], 1); } printf("%d ", SEG::tr[1]); for (int i = k + 1; i <= n; ++i) { SEG::update(1, 1, n + 1, in[i - k], in[i - k], -inf); SEG::update(1, 1, n + 1, in[i], out[i], 1); printf("%d ", SEG::tr[1]); } puts(""); return 0; }
### Prompt Your challenge is to write a cpp solution to the following problem: For some array c, let's denote a greedy subsequence as a sequence of indices p_1, p_2, ..., p_l such that 1 ≀ p_1 < p_2 < ... < p_l ≀ |c|, and for each i ∈ [1, l - 1], p_{i + 1} is the minimum number such that p_{i + 1} > p_i and c[p_{i + 1}] > c[p_i]. You are given an array a_1, a_2, ..., a_n. For each its subsegment of length k, calculate the length of its longest greedy subsequence. Input The first line contains two integers n and k (1 ≀ k ≀ n ≀ 10^6) β€” the length of array a and the length of subsegments. The second line contains n integers a_1, a_2, ..., a_n (1 ≀ a_i ≀ n) β€” array a. Output Print n - k + 1 integers β€” the maximum lengths of greedy subsequences of each subsegment having length k. The first number should correspond to subsegment a[1..k], the second β€” to subsegment a[2..k + 1], and so on. Examples Input 6 4 1 5 2 5 3 6 Output 2 2 3 Input 7 6 4 5 2 5 3 6 6 Output 3 3 Note In the first example: * [1, 5, 2, 5] β€” the longest greedy subsequences are 1, 2 ([c_1, c_2] = [1, 5]) or 3, 4 ([c_3, c_4] = [2, 5]). * [5, 2, 5, 3] β€” the sequence is 2, 3 ([c_2, c_3] = [2, 5]). * [2, 5, 3, 6] β€” the sequence is 1, 2, 4 ([c_1, c_2, c_4] = [2, 5, 6]). In the second example: * [4, 5, 2, 5, 3, 6] β€” the longest greedy subsequences are 1, 2, 6 ([c_1, c_2, c_6] = [4, 5, 6]) or 3, 4, 6 ([c_3, c_4, c_6] = [2, 5, 6]). * [5, 2, 5, 3, 6, 6] β€” the subsequence is 2, 3, 5 ([c_2, c_3, c_5] = [2, 5, 6]). ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int N = 1e6 + 10; const int mod = 998244353; const int inf = 0x3f3f3f3f; int n, k, tim; int a[N], nex[N], in[N], out[N]; vector<int> son[N]; template <typename T> void read(T &x) { int f = 0; char c = getchar(); while (c < '0' || c > '9') f |= (c == '-'), c = getchar(); for (x = 0; c >= '0' && c <= '9'; c = getchar()) x = (x << 3) + (x << 1) + c - '0'; if (f) x = -x; } namespace BIT { int tr[N]; void init() { memset(tr, 0x3f, sizeof tr); } void upd(int x, int v) { for (int i = x; i; i -= i & -i) { tr[i] = min(tr[i], v); } } int query(int x) { int ans = inf; for (int i = x; i < N; i += i & -i) { ans = min(ans, tr[i]); } return ans; } } // namespace BIT namespace SEG { int tr[N << 2], tag[N << 2]; void pushdown(int x) { tr[x << 1] += tag[x]; tr[x << 1 | 1] += tag[x]; tag[x << 1] += tag[x]; tag[x << 1 | 1] += tag[x]; tag[x] = 0; } void update(int x, int l, int r, int ql, int qr, int v) { if (ql <= l && r <= qr) { tr[x] += v; tag[x] += v; return; } pushdown(x); int mid = (l + r) >> 1; if (mid >= ql) { update(x << 1, l, mid, ql, qr, v); } if (mid < qr) { update(x << 1 | 1, mid + 1, r, ql, qr, v); } tr[x] = max(tr[x << 1], tr[x << 1 | 1]); } } // namespace SEG void dfs(int x) { in[x] = out[x] = ++tim; for (auto i : son[x]) { dfs(i); out[x] = max(out[x], out[i]); } } int main() { read(n); read(k); for (int i = 1; i <= n; ++i) read(a[i]); BIT::init(); BIT::upd(n + 1, n + 1); for (int i = n; i >= 1; --i) { nex[i] = BIT::query(a[i]); if (a[i] > 1) BIT::upd(a[i] - 1, i); } for (int i = 1; i <= n; ++i) { son[nex[i]].push_back(i); } dfs(n + 1); for (int i = 1; i <= k; ++i) { SEG::update(1, 1, n + 1, in[i], out[i], 1); } printf("%d ", SEG::tr[1]); for (int i = k + 1; i <= n; ++i) { SEG::update(1, 1, n + 1, in[i - k], in[i - k], -inf); SEG::update(1, 1, n + 1, in[i], out[i], 1); printf("%d ", SEG::tr[1]); } puts(""); return 0; } ```
#include <bits/stdc++.h> const int MAXN = 1e6 + 10; const double eps = 1e-8; using namespace std; const int inf = 1e9; struct edge { int t; edge *next; } e[MAXN << 1], *h[MAXN], *o = e; void add(int x, int y) { o->t = y; o->next = h[x]; h[x] = o++; } long long read() { long long x = 0, f = 1; char ch = getchar(); while (!isdigit(ch)) { if (ch == '-') f = -1; ch = getchar(); } while (isdigit(ch)) x = x * 10 + ch - '0', ch = getchar(); return x * f; } int n, k; int a[MAXN], key[MAXN]; int st[MAXN], tot, cnt; int dep[MAXN], p[MAXN], num[MAXN]; void dfs(int x, int pre, int deep) { dep[x] = deep + 1; num[x] = 1; p[x] = ++cnt; key[x] = x; for (edge *j = h[x]; j; j = j->next) { dfs(j->t, x, deep + 1); num[x] += num[j->t]; } } int maxx[MAXN << 2], tag[MAXN << 2]; void push(int x) { if (tag[x]) { maxx[x << 1] -= tag[x]; maxx[x << 1 | 1] -= tag[x]; tag[x << 1] += tag[x]; tag[x << 1 | 1] += tag[x]; tag[x] = 0; } } void up(int x) { maxx[x] = max(maxx[x << 1], maxx[x << 1 | 1]); } void built(int x, int l, int r) { if (l == r) { maxx[x] = -inf; return; } int mid = (l + r) >> 1; built(x << 1, l, mid); built(x << 1 | 1, mid + 1, r); up(x); } void update(int x, int l, int r, int ql, int qr) { if (ql <= l && r <= qr) { tag[x]++; maxx[x]--; return; } int mid = (l + r) >> 1; push(x); if (ql <= mid) update(x << 1, l, mid, ql, qr); if (qr > mid) update(x << 1 | 1, mid + 1, r, ql, qr); up(x); } void update1(int x, int l, int r, int t, int k) { if (l == r) { maxx[x] += k; return; } int mid = (l + r) >> 1; push(x); if (t <= mid) update1(x << 1, l, mid, t, k); else update1(x << 1 | 1, mid + 1, r, t, k); up(x); } int ans[MAXN]; int main() { n = read(); k = read(); key[0] = inf; for (int i = 1; i <= n; i++) a[i] = read(); for (int i = n; i >= 1; i--) { while (tot && a[st[tot]] <= a[i]) tot--; if (!tot) add(n + 1, i); else add(st[tot], i); st[++tot] = i; } dfs(n + 1, 0, 0); built(1, 1, n + 1); for (int i = n; i >= n - k + 1; i--) update1(1, 1, n + 1, p[i], dep[i] - 1 + inf); ans[n - k + 1] = maxx[1]; for (int i = n - k; i >= 1; i--) { update(1, 1, n + 1, p[i + k], p[i + k] + num[i + k] - 1); update1(1, 1, n + 1, p[i + k], -inf); update1(1, 1, n + 1, p[i], dep[i] + inf - 1); ans[i] = maxx[1]; } for (int i = 1; i <= n - k + 1; i++) printf("%d ", ans[i]); printf("\n"); return 0; }
### Prompt Your challenge is to write a Cpp solution to the following problem: For some array c, let's denote a greedy subsequence as a sequence of indices p_1, p_2, ..., p_l such that 1 ≀ p_1 < p_2 < ... < p_l ≀ |c|, and for each i ∈ [1, l - 1], p_{i + 1} is the minimum number such that p_{i + 1} > p_i and c[p_{i + 1}] > c[p_i]. You are given an array a_1, a_2, ..., a_n. For each its subsegment of length k, calculate the length of its longest greedy subsequence. Input The first line contains two integers n and k (1 ≀ k ≀ n ≀ 10^6) β€” the length of array a and the length of subsegments. The second line contains n integers a_1, a_2, ..., a_n (1 ≀ a_i ≀ n) β€” array a. Output Print n - k + 1 integers β€” the maximum lengths of greedy subsequences of each subsegment having length k. The first number should correspond to subsegment a[1..k], the second β€” to subsegment a[2..k + 1], and so on. Examples Input 6 4 1 5 2 5 3 6 Output 2 2 3 Input 7 6 4 5 2 5 3 6 6 Output 3 3 Note In the first example: * [1, 5, 2, 5] β€” the longest greedy subsequences are 1, 2 ([c_1, c_2] = [1, 5]) or 3, 4 ([c_3, c_4] = [2, 5]). * [5, 2, 5, 3] β€” the sequence is 2, 3 ([c_2, c_3] = [2, 5]). * [2, 5, 3, 6] β€” the sequence is 1, 2, 4 ([c_1, c_2, c_4] = [2, 5, 6]). In the second example: * [4, 5, 2, 5, 3, 6] β€” the longest greedy subsequences are 1, 2, 6 ([c_1, c_2, c_6] = [4, 5, 6]) or 3, 4, 6 ([c_3, c_4, c_6] = [2, 5, 6]). * [5, 2, 5, 3, 6, 6] β€” the subsequence is 2, 3, 5 ([c_2, c_3, c_5] = [2, 5, 6]). ### Response ```cpp #include <bits/stdc++.h> const int MAXN = 1e6 + 10; const double eps = 1e-8; using namespace std; const int inf = 1e9; struct edge { int t; edge *next; } e[MAXN << 1], *h[MAXN], *o = e; void add(int x, int y) { o->t = y; o->next = h[x]; h[x] = o++; } long long read() { long long x = 0, f = 1; char ch = getchar(); while (!isdigit(ch)) { if (ch == '-') f = -1; ch = getchar(); } while (isdigit(ch)) x = x * 10 + ch - '0', ch = getchar(); return x * f; } int n, k; int a[MAXN], key[MAXN]; int st[MAXN], tot, cnt; int dep[MAXN], p[MAXN], num[MAXN]; void dfs(int x, int pre, int deep) { dep[x] = deep + 1; num[x] = 1; p[x] = ++cnt; key[x] = x; for (edge *j = h[x]; j; j = j->next) { dfs(j->t, x, deep + 1); num[x] += num[j->t]; } } int maxx[MAXN << 2], tag[MAXN << 2]; void push(int x) { if (tag[x]) { maxx[x << 1] -= tag[x]; maxx[x << 1 | 1] -= tag[x]; tag[x << 1] += tag[x]; tag[x << 1 | 1] += tag[x]; tag[x] = 0; } } void up(int x) { maxx[x] = max(maxx[x << 1], maxx[x << 1 | 1]); } void built(int x, int l, int r) { if (l == r) { maxx[x] = -inf; return; } int mid = (l + r) >> 1; built(x << 1, l, mid); built(x << 1 | 1, mid + 1, r); up(x); } void update(int x, int l, int r, int ql, int qr) { if (ql <= l && r <= qr) { tag[x]++; maxx[x]--; return; } int mid = (l + r) >> 1; push(x); if (ql <= mid) update(x << 1, l, mid, ql, qr); if (qr > mid) update(x << 1 | 1, mid + 1, r, ql, qr); up(x); } void update1(int x, int l, int r, int t, int k) { if (l == r) { maxx[x] += k; return; } int mid = (l + r) >> 1; push(x); if (t <= mid) update1(x << 1, l, mid, t, k); else update1(x << 1 | 1, mid + 1, r, t, k); up(x); } int ans[MAXN]; int main() { n = read(); k = read(); key[0] = inf; for (int i = 1; i <= n; i++) a[i] = read(); for (int i = n; i >= 1; i--) { while (tot && a[st[tot]] <= a[i]) tot--; if (!tot) add(n + 1, i); else add(st[tot], i); st[++tot] = i; } dfs(n + 1, 0, 0); built(1, 1, n + 1); for (int i = n; i >= n - k + 1; i--) update1(1, 1, n + 1, p[i], dep[i] - 1 + inf); ans[n - k + 1] = maxx[1]; for (int i = n - k; i >= 1; i--) { update(1, 1, n + 1, p[i + k], p[i + k] + num[i + k] - 1); update1(1, 1, n + 1, p[i + k], -inf); update1(1, 1, n + 1, p[i], dep[i] + inf - 1); ans[i] = maxx[1]; } for (int i = 1; i <= n - k + 1; i++) printf("%d ", ans[i]); printf("\n"); return 0; } ```
#include <bits/stdc++.h> using namespace std; const int N = (int)(1e6) + 322; const int inf = 0; const int mod = 1000000007; const double eps = 1e-9; int n, k; int st[N], a[N], id, timer, L[N], R[N]; vector<int> v[N]; void dfs(int x, int lvl = 0, int p = -1) { L[x] = timer++; for (auto to : v[x]) { if (to == p) continue; dfs(to, lvl + 1, x); } R[x] = timer++; } struct Node { int mx = 0; int push = 0; } t[N * 8]; inline void Merge(Node &acc, Node &left, Node &right) { acc.mx = max(left.mx, right.mx); } inline void push(int x, int l, int r) { if (t[x].push != -inf) { t[x].mx += t[x].push; if (l != r) { t[x + x].push += t[x].push; t[x + x + 1].push += t[x].push; } t[x].push = -inf; } } void update(int val, int tl, int tr, int x = 1, int l = L[0], int r = R[0]) { push(x, l, r); if (tl > r || l > tr) return; if (tl <= l && r <= tr) { t[x].push += val; push(x, l, r); return; } int mid = (l + r) >> 1; update(val, tl, tr, x + x, l, mid); update(val, tl, tr, x + x + 1, mid + 1, r); Merge(t[x], t[x + x], t[x + x + 1]); } int getmax() { push(1, L[0], R[0]); return t[1].mx; } signed main() { ios_base ::sync_with_stdio(false); cin.tie(0); cin >> n >> k; for (int i = 1; i <= n; ++i) { cin >> a[i]; } reverse(a + 1, a + n + 1); for (int i = 1; i <= n; ++i) { while (id > 0 && a[st[id]] <= a[i]) id--; v[i].push_back(st[id]); v[st[id]].push_back(i); st[++id] = i; } dfs(0); for (int i = 1; i <= k; ++i) { update(1, L[i], R[i]); } vector<int> ans; ans.push_back(getmax()); for (int i = 1; i + k <= n; ++i) { update(-1, L[i], R[i]); update(1, L[i + k], R[i + k]); ans.push_back(getmax()); } reverse(ans.begin(), ans.end()); for (auto it : ans) cout << it << ' '; return 0; }
### Prompt Please provide a Cpp coded solution to the problem described below: For some array c, let's denote a greedy subsequence as a sequence of indices p_1, p_2, ..., p_l such that 1 ≀ p_1 < p_2 < ... < p_l ≀ |c|, and for each i ∈ [1, l - 1], p_{i + 1} is the minimum number such that p_{i + 1} > p_i and c[p_{i + 1}] > c[p_i]. You are given an array a_1, a_2, ..., a_n. For each its subsegment of length k, calculate the length of its longest greedy subsequence. Input The first line contains two integers n and k (1 ≀ k ≀ n ≀ 10^6) β€” the length of array a and the length of subsegments. The second line contains n integers a_1, a_2, ..., a_n (1 ≀ a_i ≀ n) β€” array a. Output Print n - k + 1 integers β€” the maximum lengths of greedy subsequences of each subsegment having length k. The first number should correspond to subsegment a[1..k], the second β€” to subsegment a[2..k + 1], and so on. Examples Input 6 4 1 5 2 5 3 6 Output 2 2 3 Input 7 6 4 5 2 5 3 6 6 Output 3 3 Note In the first example: * [1, 5, 2, 5] β€” the longest greedy subsequences are 1, 2 ([c_1, c_2] = [1, 5]) or 3, 4 ([c_3, c_4] = [2, 5]). * [5, 2, 5, 3] β€” the sequence is 2, 3 ([c_2, c_3] = [2, 5]). * [2, 5, 3, 6] β€” the sequence is 1, 2, 4 ([c_1, c_2, c_4] = [2, 5, 6]). In the second example: * [4, 5, 2, 5, 3, 6] β€” the longest greedy subsequences are 1, 2, 6 ([c_1, c_2, c_6] = [4, 5, 6]) or 3, 4, 6 ([c_3, c_4, c_6] = [2, 5, 6]). * [5, 2, 5, 3, 6, 6] β€” the subsequence is 2, 3, 5 ([c_2, c_3, c_5] = [2, 5, 6]). ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int N = (int)(1e6) + 322; const int inf = 0; const int mod = 1000000007; const double eps = 1e-9; int n, k; int st[N], a[N], id, timer, L[N], R[N]; vector<int> v[N]; void dfs(int x, int lvl = 0, int p = -1) { L[x] = timer++; for (auto to : v[x]) { if (to == p) continue; dfs(to, lvl + 1, x); } R[x] = timer++; } struct Node { int mx = 0; int push = 0; } t[N * 8]; inline void Merge(Node &acc, Node &left, Node &right) { acc.mx = max(left.mx, right.mx); } inline void push(int x, int l, int r) { if (t[x].push != -inf) { t[x].mx += t[x].push; if (l != r) { t[x + x].push += t[x].push; t[x + x + 1].push += t[x].push; } t[x].push = -inf; } } void update(int val, int tl, int tr, int x = 1, int l = L[0], int r = R[0]) { push(x, l, r); if (tl > r || l > tr) return; if (tl <= l && r <= tr) { t[x].push += val; push(x, l, r); return; } int mid = (l + r) >> 1; update(val, tl, tr, x + x, l, mid); update(val, tl, tr, x + x + 1, mid + 1, r); Merge(t[x], t[x + x], t[x + x + 1]); } int getmax() { push(1, L[0], R[0]); return t[1].mx; } signed main() { ios_base ::sync_with_stdio(false); cin.tie(0); cin >> n >> k; for (int i = 1; i <= n; ++i) { cin >> a[i]; } reverse(a + 1, a + n + 1); for (int i = 1; i <= n; ++i) { while (id > 0 && a[st[id]] <= a[i]) id--; v[i].push_back(st[id]); v[st[id]].push_back(i); st[++id] = i; } dfs(0); for (int i = 1; i <= k; ++i) { update(1, L[i], R[i]); } vector<int> ans; ans.push_back(getmax()); for (int i = 1; i + k <= n; ++i) { update(-1, L[i], R[i]); update(1, L[i + k], R[i + k]); ans.push_back(getmax()); } reverse(ans.begin(), ans.end()); for (auto it : ans) cout << it << ' '; return 0; } ```
#include <bits/stdc++.h> #pragma GCC optimization("unroll-loops") #pragma GCC optimize("Ofast") #pragma GCC target("avx,avx2,fma") using namespace std; const int N = 1e6 + 7; const int INF = 1e9 + 7; int t[4 * N], lz[4 * N]; int tin[N], tout[N], tim; int a[N], p[N]; int n, k; vector<int> g[N]; void dfs(int v) { tin[v] = ++tim; for (int to : g[v]) dfs(to); tout[v] = tim; } void push(int v, int l, int r) { if (l != r) { lz[v + v] += lz[v]; lz[v + v + 1] += lz[v]; } t[v] += lz[v]; lz[v] = 0; } void upd(int v, int l, int r, int ql, int qr, int val) { push(v, l, r); if (ql <= l && r <= qr) { lz[v] = val; push(v, l, r); return; } if (r < ql || qr < l) return; int mid = (l + r) >> 1; upd(v + v, l, mid, ql, qr, val); upd(v + v + 1, mid + 1, r, ql, qr, val); t[v] = max(t[v + v], t[v + v + 1]); } int main() { cin >> n >> k; for (int i = 1; i <= n; i++) scanf("%d", &a[i]); stack<int> st; for (int i = n; i >= 1; i--) { while (!st.empty() && a[st.top()] <= a[i]) st.pop(); if (!st.empty()) { p[i] = st.top(); g[p[i]].push_back(i); } st.push(i); } for (int i = n; i >= 1; i--) if (!p[i]) dfs(i); for (int i = 1; i <= k; i++) upd(1, 1, n, tin[i], tout[i], 1); printf("%d ", t[1]); for (int i = k + 1; i <= n; i++) { upd(1, 1, n, tin[i - k], tout[i - k], -1); upd(1, 1, n, tin[i], tout[i], 1); printf("%d ", t[1]); } }
### Prompt Please provide a cpp coded solution to the problem described below: For some array c, let's denote a greedy subsequence as a sequence of indices p_1, p_2, ..., p_l such that 1 ≀ p_1 < p_2 < ... < p_l ≀ |c|, and for each i ∈ [1, l - 1], p_{i + 1} is the minimum number such that p_{i + 1} > p_i and c[p_{i + 1}] > c[p_i]. You are given an array a_1, a_2, ..., a_n. For each its subsegment of length k, calculate the length of its longest greedy subsequence. Input The first line contains two integers n and k (1 ≀ k ≀ n ≀ 10^6) β€” the length of array a and the length of subsegments. The second line contains n integers a_1, a_2, ..., a_n (1 ≀ a_i ≀ n) β€” array a. Output Print n - k + 1 integers β€” the maximum lengths of greedy subsequences of each subsegment having length k. The first number should correspond to subsegment a[1..k], the second β€” to subsegment a[2..k + 1], and so on. Examples Input 6 4 1 5 2 5 3 6 Output 2 2 3 Input 7 6 4 5 2 5 3 6 6 Output 3 3 Note In the first example: * [1, 5, 2, 5] β€” the longest greedy subsequences are 1, 2 ([c_1, c_2] = [1, 5]) or 3, 4 ([c_3, c_4] = [2, 5]). * [5, 2, 5, 3] β€” the sequence is 2, 3 ([c_2, c_3] = [2, 5]). * [2, 5, 3, 6] β€” the sequence is 1, 2, 4 ([c_1, c_2, c_4] = [2, 5, 6]). In the second example: * [4, 5, 2, 5, 3, 6] β€” the longest greedy subsequences are 1, 2, 6 ([c_1, c_2, c_6] = [4, 5, 6]) or 3, 4, 6 ([c_3, c_4, c_6] = [2, 5, 6]). * [5, 2, 5, 3, 6, 6] β€” the subsequence is 2, 3, 5 ([c_2, c_3, c_5] = [2, 5, 6]). ### Response ```cpp #include <bits/stdc++.h> #pragma GCC optimization("unroll-loops") #pragma GCC optimize("Ofast") #pragma GCC target("avx,avx2,fma") using namespace std; const int N = 1e6 + 7; const int INF = 1e9 + 7; int t[4 * N], lz[4 * N]; int tin[N], tout[N], tim; int a[N], p[N]; int n, k; vector<int> g[N]; void dfs(int v) { tin[v] = ++tim; for (int to : g[v]) dfs(to); tout[v] = tim; } void push(int v, int l, int r) { if (l != r) { lz[v + v] += lz[v]; lz[v + v + 1] += lz[v]; } t[v] += lz[v]; lz[v] = 0; } void upd(int v, int l, int r, int ql, int qr, int val) { push(v, l, r); if (ql <= l && r <= qr) { lz[v] = val; push(v, l, r); return; } if (r < ql || qr < l) return; int mid = (l + r) >> 1; upd(v + v, l, mid, ql, qr, val); upd(v + v + 1, mid + 1, r, ql, qr, val); t[v] = max(t[v + v], t[v + v + 1]); } int main() { cin >> n >> k; for (int i = 1; i <= n; i++) scanf("%d", &a[i]); stack<int> st; for (int i = n; i >= 1; i--) { while (!st.empty() && a[st.top()] <= a[i]) st.pop(); if (!st.empty()) { p[i] = st.top(); g[p[i]].push_back(i); } st.push(i); } for (int i = n; i >= 1; i--) if (!p[i]) dfs(i); for (int i = 1; i <= k; i++) upd(1, 1, n, tin[i], tout[i], 1); printf("%d ", t[1]); for (int i = k + 1; i <= n; i++) { upd(1, 1, n, tin[i - k], tout[i - k], -1); upd(1, 1, n, tin[i], tout[i], 1); printf("%d ", t[1]); } } ```
#include <bits/stdc++.h> using namespace std; struct Node { int max; int lazyAdd; }; int n, k; int sequence[1000000]; int dpNext[1000000]; vector<int> rootIndices; vector<vector<int>> edges; int rangeStarts[1000000]; int rangeEnds[1000000]; int nextN = 0; vector<Node> rt; void topologicalSort(int node) { rangeStarts[node] = nextN; nextN++; for (int nextNode : edges[node]) { topologicalSort(nextNode); } rangeEnds[node] = nextN; } void updateRangeTree(int qL, int qR, int rL, int rR, int i, int add) { if (qL == rL && qR == rR) { rt[i].max += add; rt[i].lazyAdd += add; return; } int rM = (rL + rR) >> 1; int childL = (i << 1) + 1; int childR = childL + 1; if (rt[i].lazyAdd != 0) { rt[childL].max += rt[i].lazyAdd; rt[childR].max += rt[i].lazyAdd; rt[childL].lazyAdd += rt[i].lazyAdd; rt[childR].lazyAdd += rt[i].lazyAdd; rt[i].lazyAdd = 0; } if (qL < rM) updateRangeTree(qL, min(qR, rM), rL, rM, childL, add); if (qR > rM) updateRangeTree(max(qL, rM), qR, rM, rR, childR, add); rt[i].max = max(rt[childL].max, rt[childR].max); } int main() { ios_base::sync_with_stdio(false); cin.tie(NULL); cout.tie(NULL); cin >> n >> k; for (int i = 0; i < n; i++) { cin >> sequence[i]; } edges.resize(n); for (int i = n - 1; i >= 0; i--) { int nextIndex = i + 1; dpNext[i] = n; while (nextIndex != n) { if (sequence[i] < sequence[nextIndex]) { dpNext[i] = nextIndex; edges[nextIndex].push_back(i); break; } else { nextIndex = dpNext[nextIndex]; } } if (dpNext[i] == n) { rootIndices.push_back(i); } } for (int r : rootIndices) { topologicalSort(r); } edges.clear(); rt.assign(1000000 << 2, {0, 0}); for (int i = 0; i < k; i++) { updateRangeTree(rangeStarts[i], rangeEnds[i], 0, n, 0, 1); } cout << rt[0].max << " "; for (int i = k; i < n; i++) { updateRangeTree(rangeStarts[i], rangeEnds[i], 0, n, 0, 1); updateRangeTree(rangeStarts[i - k], rangeEnds[i - k], 0, n, 0, -1); cout << rt[0].max << " "; } cout << '\n'; return 0; }
### Prompt Develop a solution in CPP to the problem described below: For some array c, let's denote a greedy subsequence as a sequence of indices p_1, p_2, ..., p_l such that 1 ≀ p_1 < p_2 < ... < p_l ≀ |c|, and for each i ∈ [1, l - 1], p_{i + 1} is the minimum number such that p_{i + 1} > p_i and c[p_{i + 1}] > c[p_i]. You are given an array a_1, a_2, ..., a_n. For each its subsegment of length k, calculate the length of its longest greedy subsequence. Input The first line contains two integers n and k (1 ≀ k ≀ n ≀ 10^6) β€” the length of array a and the length of subsegments. The second line contains n integers a_1, a_2, ..., a_n (1 ≀ a_i ≀ n) β€” array a. Output Print n - k + 1 integers β€” the maximum lengths of greedy subsequences of each subsegment having length k. The first number should correspond to subsegment a[1..k], the second β€” to subsegment a[2..k + 1], and so on. Examples Input 6 4 1 5 2 5 3 6 Output 2 2 3 Input 7 6 4 5 2 5 3 6 6 Output 3 3 Note In the first example: * [1, 5, 2, 5] β€” the longest greedy subsequences are 1, 2 ([c_1, c_2] = [1, 5]) or 3, 4 ([c_3, c_4] = [2, 5]). * [5, 2, 5, 3] β€” the sequence is 2, 3 ([c_2, c_3] = [2, 5]). * [2, 5, 3, 6] β€” the sequence is 1, 2, 4 ([c_1, c_2, c_4] = [2, 5, 6]). In the second example: * [4, 5, 2, 5, 3, 6] β€” the longest greedy subsequences are 1, 2, 6 ([c_1, c_2, c_6] = [4, 5, 6]) or 3, 4, 6 ([c_3, c_4, c_6] = [2, 5, 6]). * [5, 2, 5, 3, 6, 6] β€” the subsequence is 2, 3, 5 ([c_2, c_3, c_5] = [2, 5, 6]). ### Response ```cpp #include <bits/stdc++.h> using namespace std; struct Node { int max; int lazyAdd; }; int n, k; int sequence[1000000]; int dpNext[1000000]; vector<int> rootIndices; vector<vector<int>> edges; int rangeStarts[1000000]; int rangeEnds[1000000]; int nextN = 0; vector<Node> rt; void topologicalSort(int node) { rangeStarts[node] = nextN; nextN++; for (int nextNode : edges[node]) { topologicalSort(nextNode); } rangeEnds[node] = nextN; } void updateRangeTree(int qL, int qR, int rL, int rR, int i, int add) { if (qL == rL && qR == rR) { rt[i].max += add; rt[i].lazyAdd += add; return; } int rM = (rL + rR) >> 1; int childL = (i << 1) + 1; int childR = childL + 1; if (rt[i].lazyAdd != 0) { rt[childL].max += rt[i].lazyAdd; rt[childR].max += rt[i].lazyAdd; rt[childL].lazyAdd += rt[i].lazyAdd; rt[childR].lazyAdd += rt[i].lazyAdd; rt[i].lazyAdd = 0; } if (qL < rM) updateRangeTree(qL, min(qR, rM), rL, rM, childL, add); if (qR > rM) updateRangeTree(max(qL, rM), qR, rM, rR, childR, add); rt[i].max = max(rt[childL].max, rt[childR].max); } int main() { ios_base::sync_with_stdio(false); cin.tie(NULL); cout.tie(NULL); cin >> n >> k; for (int i = 0; i < n; i++) { cin >> sequence[i]; } edges.resize(n); for (int i = n - 1; i >= 0; i--) { int nextIndex = i + 1; dpNext[i] = n; while (nextIndex != n) { if (sequence[i] < sequence[nextIndex]) { dpNext[i] = nextIndex; edges[nextIndex].push_back(i); break; } else { nextIndex = dpNext[nextIndex]; } } if (dpNext[i] == n) { rootIndices.push_back(i); } } for (int r : rootIndices) { topologicalSort(r); } edges.clear(); rt.assign(1000000 << 2, {0, 0}); for (int i = 0; i < k; i++) { updateRangeTree(rangeStarts[i], rangeEnds[i], 0, n, 0, 1); } cout << rt[0].max << " "; for (int i = k; i < n; i++) { updateRangeTree(rangeStarts[i], rangeEnds[i], 0, n, 0, 1); updateRangeTree(rangeStarts[i - k], rangeEnds[i - k], 0, n, 0, -1); cout << rt[0].max << " "; } cout << '\n'; return 0; } ```
#include <bits/stdc++.h> using namespace std; const int N = 1e6 + 7; const int inf = 0x3f3f3f3f; const long long INF = 0x3f3f3f3f3f3f3f3f; const int mod = 1e9 + 7; const double eps = 1e-8; const double PI = acos(-1); template <class T, class S> inline void add(T& a, S b) { a += b; if (a >= mod) a -= mod; } template <class T, class S> inline void sub(T& a, S b) { a -= b; if (a < 0) a += mod; } template <class T, class S> inline bool chkmax(T& a, S b) { return a < b ? a = b, true : false; } template <class T, class S> inline bool chkmin(T& a, S b) { return a > b ? a = b, true : false; } int n, k, to[N], a[N]; vector<int> G[N]; int in[N], ot[N], idx; vector<int> ans; struct SegmentTree { int mx[N << 2], lazy[N << 2]; inline void pull(int rt) { mx[rt] = max(mx[rt << 1], mx[rt << 1 | 1]); } inline void push(int rt) { if (lazy[rt]) { mx[rt << 1] += lazy[rt]; mx[rt << 1 | 1] += lazy[rt]; lazy[rt << 1] += lazy[rt]; lazy[rt << 1 | 1] += lazy[rt]; lazy[rt] = 0; } } void update(int L, int R, int val, int l, int r, int rt) { if (R < l || r < L || R < L) return; if (L <= l && r <= R) { mx[rt] += val; lazy[rt] += val; return; } push(rt); int mid = l + r >> 1; update(L, R, val, l, mid, rt << 1); update(L, R, val, mid + 1, r, rt << 1 | 1); pull(rt); } void setVal(int p, int val, int l, int r, int rt) { if (l == r) { mx[rt] = val; return; } push(rt); int mid = l + r >> 1; if (p <= mid) setVal(p, val, l, mid, rt << 1); else setVal(p, val, mid + 1, r, rt << 1 | 1); pull(rt); } int query(int L, int R, int l, int r, int rt) { if (R < l || r < L || R < L) return 0; if (L <= l && r <= R) return mx[rt]; push(rt); int mid = l + r >> 1; return max(query(L, R, l, mid, rt << 1), query(L, R, mid + 1, r, rt << 1 | 1)); } } Tree; void dfs(int u) { in[u] = ++idx; for (auto& v : G[u]) dfs(v); ot[u] = idx; } int main() { scanf("%d%d", &n, &k); for (int i = 1; i <= n; i++) scanf("%d", &a[i]); stack<int> stk; for (int i = n; i >= 1; i--) { while (((int)stk.size()) && a[stk.top()] <= a[i]) stk.pop(); to[i] = ((int)stk.size()) ? stk.top() : n + 1; stk.push(i); G[to[i]].push_back(i); } dfs(n + 1); for (int i = n; i > n - k; i--) { Tree.setVal(in[i], Tree.query(in[to[i]], in[to[i]], 1, n + 1, 1) + 1, 1, n + 1, 1); } ans.push_back(Tree.mx[1]); for (int i = n - k; i >= 1; i--) { Tree.update(in[i + k], ot[i + k], -1, 1, n + 1, 1); Tree.setVal(in[i], Tree.query(in[to[i]], in[to[i]], 1, n + 1, 1) + 1, 1, n + 1, 1); ans.push_back(Tree.mx[1]); } reverse((ans).begin(), (ans).end()); for (int i = 0; i < ((int)ans.size()); i++) printf("%d%c", ans[i], " \n"[i == ((int)ans.size()) - 1]); return 0; }
### Prompt Please create a solution in CPP to the following problem: For some array c, let's denote a greedy subsequence as a sequence of indices p_1, p_2, ..., p_l such that 1 ≀ p_1 < p_2 < ... < p_l ≀ |c|, and for each i ∈ [1, l - 1], p_{i + 1} is the minimum number such that p_{i + 1} > p_i and c[p_{i + 1}] > c[p_i]. You are given an array a_1, a_2, ..., a_n. For each its subsegment of length k, calculate the length of its longest greedy subsequence. Input The first line contains two integers n and k (1 ≀ k ≀ n ≀ 10^6) β€” the length of array a and the length of subsegments. The second line contains n integers a_1, a_2, ..., a_n (1 ≀ a_i ≀ n) β€” array a. Output Print n - k + 1 integers β€” the maximum lengths of greedy subsequences of each subsegment having length k. The first number should correspond to subsegment a[1..k], the second β€” to subsegment a[2..k + 1], and so on. Examples Input 6 4 1 5 2 5 3 6 Output 2 2 3 Input 7 6 4 5 2 5 3 6 6 Output 3 3 Note In the first example: * [1, 5, 2, 5] β€” the longest greedy subsequences are 1, 2 ([c_1, c_2] = [1, 5]) or 3, 4 ([c_3, c_4] = [2, 5]). * [5, 2, 5, 3] β€” the sequence is 2, 3 ([c_2, c_3] = [2, 5]). * [2, 5, 3, 6] β€” the sequence is 1, 2, 4 ([c_1, c_2, c_4] = [2, 5, 6]). In the second example: * [4, 5, 2, 5, 3, 6] β€” the longest greedy subsequences are 1, 2, 6 ([c_1, c_2, c_6] = [4, 5, 6]) or 3, 4, 6 ([c_3, c_4, c_6] = [2, 5, 6]). * [5, 2, 5, 3, 6, 6] β€” the subsequence is 2, 3, 5 ([c_2, c_3, c_5] = [2, 5, 6]). ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int N = 1e6 + 7; const int inf = 0x3f3f3f3f; const long long INF = 0x3f3f3f3f3f3f3f3f; const int mod = 1e9 + 7; const double eps = 1e-8; const double PI = acos(-1); template <class T, class S> inline void add(T& a, S b) { a += b; if (a >= mod) a -= mod; } template <class T, class S> inline void sub(T& a, S b) { a -= b; if (a < 0) a += mod; } template <class T, class S> inline bool chkmax(T& a, S b) { return a < b ? a = b, true : false; } template <class T, class S> inline bool chkmin(T& a, S b) { return a > b ? a = b, true : false; } int n, k, to[N], a[N]; vector<int> G[N]; int in[N], ot[N], idx; vector<int> ans; struct SegmentTree { int mx[N << 2], lazy[N << 2]; inline void pull(int rt) { mx[rt] = max(mx[rt << 1], mx[rt << 1 | 1]); } inline void push(int rt) { if (lazy[rt]) { mx[rt << 1] += lazy[rt]; mx[rt << 1 | 1] += lazy[rt]; lazy[rt << 1] += lazy[rt]; lazy[rt << 1 | 1] += lazy[rt]; lazy[rt] = 0; } } void update(int L, int R, int val, int l, int r, int rt) { if (R < l || r < L || R < L) return; if (L <= l && r <= R) { mx[rt] += val; lazy[rt] += val; return; } push(rt); int mid = l + r >> 1; update(L, R, val, l, mid, rt << 1); update(L, R, val, mid + 1, r, rt << 1 | 1); pull(rt); } void setVal(int p, int val, int l, int r, int rt) { if (l == r) { mx[rt] = val; return; } push(rt); int mid = l + r >> 1; if (p <= mid) setVal(p, val, l, mid, rt << 1); else setVal(p, val, mid + 1, r, rt << 1 | 1); pull(rt); } int query(int L, int R, int l, int r, int rt) { if (R < l || r < L || R < L) return 0; if (L <= l && r <= R) return mx[rt]; push(rt); int mid = l + r >> 1; return max(query(L, R, l, mid, rt << 1), query(L, R, mid + 1, r, rt << 1 | 1)); } } Tree; void dfs(int u) { in[u] = ++idx; for (auto& v : G[u]) dfs(v); ot[u] = idx; } int main() { scanf("%d%d", &n, &k); for (int i = 1; i <= n; i++) scanf("%d", &a[i]); stack<int> stk; for (int i = n; i >= 1; i--) { while (((int)stk.size()) && a[stk.top()] <= a[i]) stk.pop(); to[i] = ((int)stk.size()) ? stk.top() : n + 1; stk.push(i); G[to[i]].push_back(i); } dfs(n + 1); for (int i = n; i > n - k; i--) { Tree.setVal(in[i], Tree.query(in[to[i]], in[to[i]], 1, n + 1, 1) + 1, 1, n + 1, 1); } ans.push_back(Tree.mx[1]); for (int i = n - k; i >= 1; i--) { Tree.update(in[i + k], ot[i + k], -1, 1, n + 1, 1); Tree.setVal(in[i], Tree.query(in[to[i]], in[to[i]], 1, n + 1, 1) + 1, 1, n + 1, 1); ans.push_back(Tree.mx[1]); } reverse((ans).begin(), (ans).end()); for (int i = 0; i < ((int)ans.size()); i++) printf("%d%c", ans[i], " \n"[i == ((int)ans.size()) - 1]); return 0; } ```
#include <bits/stdc++.h> using namespace std; const int maxn = 1e6; const int maxnode = maxn << 2; int n, kk, ai[maxn + 5], st[maxn + 5]; int in[maxn + 5], out[maxn + 5], DFN = 0; int ans[maxn + 5], m = 0; vector<int> G[maxn + 5]; int tr[maxnode + 5], lz[maxnode + 5]; void PushDown(int x) { tr[(x << 1)] += lz[x], tr[(x << 1 | 1)] += lz[x]; lz[(x << 1)] += lz[x], lz[(x << 1 | 1)] += lz[x]; lz[x] = 0; } void Inc(int x, int l, int r, int ll, int rr) { if (ll <= l && r <= rr) ++tr[x], ++lz[x]; else { PushDown(x); if (ll <= ((l + r) >> 1)) Inc((x << 1), l, ((l + r) >> 1), ll, rr); if (((l + r) >> 1) < rr) Inc((x << 1 | 1), ((l + r) >> 1) + 1, r, ll, rr); tr[x] = max(tr[(x << 1)], tr[(x << 1 | 1)]); } } void Reset(int x, int l, int r, int p) { if (l == r) lz[x] = 0, tr[x] = -(maxn + 10); else { PushDown(x); if (p <= ((l + r) >> 1)) Reset((x << 1), l, ((l + r) >> 1), p); else Reset((x << 1 | 1), ((l + r) >> 1) + 1, r, p); tr[x] = max(tr[(x << 1)], tr[(x << 1 | 1)]); } } void dfs(int x) { in[x] = ++DFN; for (auto y : G[x]) dfs(y); out[x] = DFN; } int main() { scanf("%d%d", &n, &kk); for (int i = 1; i <= n; ++i) scanf("%d", ai + i); { int top = 0; for (int i = n; i >= 1; --i) { while (top && ai[i] >= ai[st[top]]) --top; if (top == 0) G[n + 1].push_back(i); else G[st[top]].push_back(i); st[++top] = i; } } dfs(n + 1); for (int i = 1; i <= n; ++i) { Inc(1, 1, n + 1, in[i], out[i]); if (i - kk >= 1) Reset(1, 1, n + 1, in[i - kk]); if (i >= kk) ans[++m] = tr[1]; } for (int i = 1; i <= m; ++i) printf("%d%c", ans[i], (i == m) ? '\n' : ' '); return 0; }
### Prompt Please formulate a CPP solution to the following problem: For some array c, let's denote a greedy subsequence as a sequence of indices p_1, p_2, ..., p_l such that 1 ≀ p_1 < p_2 < ... < p_l ≀ |c|, and for each i ∈ [1, l - 1], p_{i + 1} is the minimum number such that p_{i + 1} > p_i and c[p_{i + 1}] > c[p_i]. You are given an array a_1, a_2, ..., a_n. For each its subsegment of length k, calculate the length of its longest greedy subsequence. Input The first line contains two integers n and k (1 ≀ k ≀ n ≀ 10^6) β€” the length of array a and the length of subsegments. The second line contains n integers a_1, a_2, ..., a_n (1 ≀ a_i ≀ n) β€” array a. Output Print n - k + 1 integers β€” the maximum lengths of greedy subsequences of each subsegment having length k. The first number should correspond to subsegment a[1..k], the second β€” to subsegment a[2..k + 1], and so on. Examples Input 6 4 1 5 2 5 3 6 Output 2 2 3 Input 7 6 4 5 2 5 3 6 6 Output 3 3 Note In the first example: * [1, 5, 2, 5] β€” the longest greedy subsequences are 1, 2 ([c_1, c_2] = [1, 5]) or 3, 4 ([c_3, c_4] = [2, 5]). * [5, 2, 5, 3] β€” the sequence is 2, 3 ([c_2, c_3] = [2, 5]). * [2, 5, 3, 6] β€” the sequence is 1, 2, 4 ([c_1, c_2, c_4] = [2, 5, 6]). In the second example: * [4, 5, 2, 5, 3, 6] β€” the longest greedy subsequences are 1, 2, 6 ([c_1, c_2, c_6] = [4, 5, 6]) or 3, 4, 6 ([c_3, c_4, c_6] = [2, 5, 6]). * [5, 2, 5, 3, 6, 6] β€” the subsequence is 2, 3, 5 ([c_2, c_3, c_5] = [2, 5, 6]). ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int maxn = 1e6; const int maxnode = maxn << 2; int n, kk, ai[maxn + 5], st[maxn + 5]; int in[maxn + 5], out[maxn + 5], DFN = 0; int ans[maxn + 5], m = 0; vector<int> G[maxn + 5]; int tr[maxnode + 5], lz[maxnode + 5]; void PushDown(int x) { tr[(x << 1)] += lz[x], tr[(x << 1 | 1)] += lz[x]; lz[(x << 1)] += lz[x], lz[(x << 1 | 1)] += lz[x]; lz[x] = 0; } void Inc(int x, int l, int r, int ll, int rr) { if (ll <= l && r <= rr) ++tr[x], ++lz[x]; else { PushDown(x); if (ll <= ((l + r) >> 1)) Inc((x << 1), l, ((l + r) >> 1), ll, rr); if (((l + r) >> 1) < rr) Inc((x << 1 | 1), ((l + r) >> 1) + 1, r, ll, rr); tr[x] = max(tr[(x << 1)], tr[(x << 1 | 1)]); } } void Reset(int x, int l, int r, int p) { if (l == r) lz[x] = 0, tr[x] = -(maxn + 10); else { PushDown(x); if (p <= ((l + r) >> 1)) Reset((x << 1), l, ((l + r) >> 1), p); else Reset((x << 1 | 1), ((l + r) >> 1) + 1, r, p); tr[x] = max(tr[(x << 1)], tr[(x << 1 | 1)]); } } void dfs(int x) { in[x] = ++DFN; for (auto y : G[x]) dfs(y); out[x] = DFN; } int main() { scanf("%d%d", &n, &kk); for (int i = 1; i <= n; ++i) scanf("%d", ai + i); { int top = 0; for (int i = n; i >= 1; --i) { while (top && ai[i] >= ai[st[top]]) --top; if (top == 0) G[n + 1].push_back(i); else G[st[top]].push_back(i); st[++top] = i; } } dfs(n + 1); for (int i = 1; i <= n; ++i) { Inc(1, 1, n + 1, in[i], out[i]); if (i - kk >= 1) Reset(1, 1, n + 1, in[i - kk]); if (i >= kk) ans[++m] = tr[1]; } for (int i = 1; i <= m; ++i) printf("%d%c", ans[i], (i == m) ? '\n' : ' '); return 0; } ```
#include <bits/stdc++.h> using namespace std; char buf[1 << 20], *p1, *p2; inline unsigned int read() { unsigned int s = 0, f = 1; char ch = (p1 == p2 ? (p2 = buf + fread(p1 = buf, 1, 1 << 20, stdin), p1 == p2 ? EOF : *p1++) : *p1++); while (ch < '0' || ch > '9') { if (ch == '-') f = -f; ch = (p1 == p2 ? (p2 = buf + fread(p1 = buf, 1, 1 << 20, stdin), p1 == p2 ? EOF : *p1++) : *p1++); }; while (ch >= '0' && ch <= '9') { s = (s << 1) + (s << 3) + ch - '0'; ch = (p1 == p2 ? (p2 = buf + fread(p1 = buf, 1, 1 << 20, stdin), p1 == p2 ? EOF : *p1++) : *p1++); }; return s * f; } const unsigned int maxn = 1e6 + 10; unsigned int sta[maxn], top; unsigned int nxt[maxn], las[maxn], val[maxn], a[maxn]; unsigned int tree[maxn << 2], lazy[maxn << 2]; void build(unsigned int rt, unsigned int l, unsigned int r) { if (l == r) return tree[rt] = val[l], void(); build((rt << 1), l, ((l + r) >> 1)); build((rt << 1 | 1), ((l + r) >> 1) + 1, r); tree[rt] = max(tree[(rt << 1)], tree[(rt << 1 | 1)]); } void update(unsigned int rt, unsigned int val) { lazy[rt] += val; tree[rt] += val; return; } void push_down(unsigned int rt) { if (!lazy[rt]) return; update((rt << 1), lazy[rt]); update((rt << 1 | 1), lazy[rt]); lazy[rt] = 0; } unsigned int ask(unsigned int rt, unsigned int l, unsigned int r, unsigned int s, unsigned int t) { if (s <= l && t >= r) return tree[rt]; push_down(rt); unsigned int Max = 0; if (s <= ((l + r) >> 1)) Max = max(Max, ask((rt << 1), l, ((l + r) >> 1), s, t)); if (t > ((l + r) >> 1)) Max = max(Max, ask((rt << 1 | 1), ((l + r) >> 1) + 1, r, s, t)); return Max; } void del(unsigned int rt, unsigned int l, unsigned int r, unsigned int pos) { if (l == r) return tree[rt] = 0, void(); push_down(rt); if (pos <= ((l + r) >> 1)) del((rt << 1), l, ((l + r) >> 1), pos); else del((rt << 1 | 1), ((l + r) >> 1) + 1, r, pos); tree[rt] = max(tree[(rt << 1)], tree[(rt << 1 | 1)]); } void add(unsigned int rt, unsigned int l, unsigned int r, unsigned int s, unsigned int t, unsigned int val) { if (s <= l && t >= r) return update(rt, val), void(); push_down(rt); if (s <= ((l + r) >> 1)) add((rt << 1), l, ((l + r) >> 1), s, t, val); if (t > ((l + r) >> 1)) add((rt << 1 | 1), ((l + r) >> 1) + 1, r, s, t, val); tree[rt] = max(tree[(rt << 1)], tree[(rt << 1 | 1)]); } signed main() { unsigned int n = read(), k = read(); for (unsigned int i = 1; i <= n; i++) a[i] = read(); for (unsigned int i = k; i >= 1; i--) { while (top && a[sta[top]] <= a[i]) top--; nxt[i] = sta[top]; sta[++top] = i; } for (unsigned int i = k; i >= 1; i--) val[i] = val[nxt[i]] + 1; top = 0; for (unsigned int i = 1; i <= n; i++) { while (top && a[sta[top]] < a[i]) top--; las[i] = sta[top]; sta[++top] = i; } build(1, 1, n); printf("%d ", tree[1]); del(1, 1, n, 1); for (unsigned int i = 2; i + k - 1 <= n; i++) { unsigned int pos = las[i + k - 1] + 1; add(1, 1, n, max(i, pos), i + k - 1, 1); printf("%d ", tree[1]); del(1, 1, n, i); } puts(""); }
### Prompt Generate a Cpp solution to the following problem: For some array c, let's denote a greedy subsequence as a sequence of indices p_1, p_2, ..., p_l such that 1 ≀ p_1 < p_2 < ... < p_l ≀ |c|, and for each i ∈ [1, l - 1], p_{i + 1} is the minimum number such that p_{i + 1} > p_i and c[p_{i + 1}] > c[p_i]. You are given an array a_1, a_2, ..., a_n. For each its subsegment of length k, calculate the length of its longest greedy subsequence. Input The first line contains two integers n and k (1 ≀ k ≀ n ≀ 10^6) β€” the length of array a and the length of subsegments. The second line contains n integers a_1, a_2, ..., a_n (1 ≀ a_i ≀ n) β€” array a. Output Print n - k + 1 integers β€” the maximum lengths of greedy subsequences of each subsegment having length k. The first number should correspond to subsegment a[1..k], the second β€” to subsegment a[2..k + 1], and so on. Examples Input 6 4 1 5 2 5 3 6 Output 2 2 3 Input 7 6 4 5 2 5 3 6 6 Output 3 3 Note In the first example: * [1, 5, 2, 5] β€” the longest greedy subsequences are 1, 2 ([c_1, c_2] = [1, 5]) or 3, 4 ([c_3, c_4] = [2, 5]). * [5, 2, 5, 3] β€” the sequence is 2, 3 ([c_2, c_3] = [2, 5]). * [2, 5, 3, 6] β€” the sequence is 1, 2, 4 ([c_1, c_2, c_4] = [2, 5, 6]). In the second example: * [4, 5, 2, 5, 3, 6] β€” the longest greedy subsequences are 1, 2, 6 ([c_1, c_2, c_6] = [4, 5, 6]) or 3, 4, 6 ([c_3, c_4, c_6] = [2, 5, 6]). * [5, 2, 5, 3, 6, 6] β€” the subsequence is 2, 3, 5 ([c_2, c_3, c_5] = [2, 5, 6]). ### Response ```cpp #include <bits/stdc++.h> using namespace std; char buf[1 << 20], *p1, *p2; inline unsigned int read() { unsigned int s = 0, f = 1; char ch = (p1 == p2 ? (p2 = buf + fread(p1 = buf, 1, 1 << 20, stdin), p1 == p2 ? EOF : *p1++) : *p1++); while (ch < '0' || ch > '9') { if (ch == '-') f = -f; ch = (p1 == p2 ? (p2 = buf + fread(p1 = buf, 1, 1 << 20, stdin), p1 == p2 ? EOF : *p1++) : *p1++); }; while (ch >= '0' && ch <= '9') { s = (s << 1) + (s << 3) + ch - '0'; ch = (p1 == p2 ? (p2 = buf + fread(p1 = buf, 1, 1 << 20, stdin), p1 == p2 ? EOF : *p1++) : *p1++); }; return s * f; } const unsigned int maxn = 1e6 + 10; unsigned int sta[maxn], top; unsigned int nxt[maxn], las[maxn], val[maxn], a[maxn]; unsigned int tree[maxn << 2], lazy[maxn << 2]; void build(unsigned int rt, unsigned int l, unsigned int r) { if (l == r) return tree[rt] = val[l], void(); build((rt << 1), l, ((l + r) >> 1)); build((rt << 1 | 1), ((l + r) >> 1) + 1, r); tree[rt] = max(tree[(rt << 1)], tree[(rt << 1 | 1)]); } void update(unsigned int rt, unsigned int val) { lazy[rt] += val; tree[rt] += val; return; } void push_down(unsigned int rt) { if (!lazy[rt]) return; update((rt << 1), lazy[rt]); update((rt << 1 | 1), lazy[rt]); lazy[rt] = 0; } unsigned int ask(unsigned int rt, unsigned int l, unsigned int r, unsigned int s, unsigned int t) { if (s <= l && t >= r) return tree[rt]; push_down(rt); unsigned int Max = 0; if (s <= ((l + r) >> 1)) Max = max(Max, ask((rt << 1), l, ((l + r) >> 1), s, t)); if (t > ((l + r) >> 1)) Max = max(Max, ask((rt << 1 | 1), ((l + r) >> 1) + 1, r, s, t)); return Max; } void del(unsigned int rt, unsigned int l, unsigned int r, unsigned int pos) { if (l == r) return tree[rt] = 0, void(); push_down(rt); if (pos <= ((l + r) >> 1)) del((rt << 1), l, ((l + r) >> 1), pos); else del((rt << 1 | 1), ((l + r) >> 1) + 1, r, pos); tree[rt] = max(tree[(rt << 1)], tree[(rt << 1 | 1)]); } void add(unsigned int rt, unsigned int l, unsigned int r, unsigned int s, unsigned int t, unsigned int val) { if (s <= l && t >= r) return update(rt, val), void(); push_down(rt); if (s <= ((l + r) >> 1)) add((rt << 1), l, ((l + r) >> 1), s, t, val); if (t > ((l + r) >> 1)) add((rt << 1 | 1), ((l + r) >> 1) + 1, r, s, t, val); tree[rt] = max(tree[(rt << 1)], tree[(rt << 1 | 1)]); } signed main() { unsigned int n = read(), k = read(); for (unsigned int i = 1; i <= n; i++) a[i] = read(); for (unsigned int i = k; i >= 1; i--) { while (top && a[sta[top]] <= a[i]) top--; nxt[i] = sta[top]; sta[++top] = i; } for (unsigned int i = k; i >= 1; i--) val[i] = val[nxt[i]] + 1; top = 0; for (unsigned int i = 1; i <= n; i++) { while (top && a[sta[top]] < a[i]) top--; las[i] = sta[top]; sta[++top] = i; } build(1, 1, n); printf("%d ", tree[1]); del(1, 1, n, 1); for (unsigned int i = 2; i + k - 1 <= n; i++) { unsigned int pos = las[i + k - 1] + 1; add(1, 1, n, max(i, pos), i + k - 1, 1); printf("%d ", tree[1]); del(1, 1, n, i); } puts(""); } ```
#include <bits/stdc++.h> const int N = 1000200; const long long mod = 1000000007; using namespace std; int n; int k; int a[N]; int r[N]; int d[N]; int p[N]; int dip[N]; multiset<int> s[N]; vector<int> g[N]; multiset<int> res; int get(int x) { return x == p[x] ? x : p[x] = get(p[x]); } int best(int x) { if (s[x].empty()) { return 1; } return dip[x] - *s[x].begin() + 1; } void add(int x) { if (r[x]) { g[r[x]].push_back(x); } s[x].insert(dip[x]); for (int y : g[x]) { if (x - y >= k) { continue; } int py = get(y); res.erase(res.find(best(py))); if (s[py].size() > s[x].size()) { swap(s[x], s[py]); } for (int z : s[py]) { s[x].insert(z); } s[py].clear(); p[py] = x; } res.insert(best(x)); } int main() { ios_base::sync_with_stdio(0); scanf("%d%d", &n, &k); for (int i = 1; i <= n; i++) { scanf("%d", &a[i]); } vector<int> v; for (int i = n; i >= 1; i--) { p[i] = i; while (!v.empty() && a[i] >= a[v.back()]) { v.pop_back(); } if (!v.empty()) { r[i] = v.back(); dip[i] = dip[r[i]] - 1; } v.push_back(i); } for (int i = 1; i <= k; i++) { add(i); } printf("%d ", *(--res.end())); for (int i = 1; i <= n - k; i++) { int x = get(i); res.erase(res.find(best(x))); if (x != i) { s[x].erase(s[x].find(dip[i])); res.insert(best(x)); } add(i + k); printf("%d ", *(--res.end())); } }
### Prompt Create a solution in cpp for the following problem: For some array c, let's denote a greedy subsequence as a sequence of indices p_1, p_2, ..., p_l such that 1 ≀ p_1 < p_2 < ... < p_l ≀ |c|, and for each i ∈ [1, l - 1], p_{i + 1} is the minimum number such that p_{i + 1} > p_i and c[p_{i + 1}] > c[p_i]. You are given an array a_1, a_2, ..., a_n. For each its subsegment of length k, calculate the length of its longest greedy subsequence. Input The first line contains two integers n and k (1 ≀ k ≀ n ≀ 10^6) β€” the length of array a and the length of subsegments. The second line contains n integers a_1, a_2, ..., a_n (1 ≀ a_i ≀ n) β€” array a. Output Print n - k + 1 integers β€” the maximum lengths of greedy subsequences of each subsegment having length k. The first number should correspond to subsegment a[1..k], the second β€” to subsegment a[2..k + 1], and so on. Examples Input 6 4 1 5 2 5 3 6 Output 2 2 3 Input 7 6 4 5 2 5 3 6 6 Output 3 3 Note In the first example: * [1, 5, 2, 5] β€” the longest greedy subsequences are 1, 2 ([c_1, c_2] = [1, 5]) or 3, 4 ([c_3, c_4] = [2, 5]). * [5, 2, 5, 3] β€” the sequence is 2, 3 ([c_2, c_3] = [2, 5]). * [2, 5, 3, 6] β€” the sequence is 1, 2, 4 ([c_1, c_2, c_4] = [2, 5, 6]). In the second example: * [4, 5, 2, 5, 3, 6] β€” the longest greedy subsequences are 1, 2, 6 ([c_1, c_2, c_6] = [4, 5, 6]) or 3, 4, 6 ([c_3, c_4, c_6] = [2, 5, 6]). * [5, 2, 5, 3, 6, 6] β€” the subsequence is 2, 3, 5 ([c_2, c_3, c_5] = [2, 5, 6]). ### Response ```cpp #include <bits/stdc++.h> const int N = 1000200; const long long mod = 1000000007; using namespace std; int n; int k; int a[N]; int r[N]; int d[N]; int p[N]; int dip[N]; multiset<int> s[N]; vector<int> g[N]; multiset<int> res; int get(int x) { return x == p[x] ? x : p[x] = get(p[x]); } int best(int x) { if (s[x].empty()) { return 1; } return dip[x] - *s[x].begin() + 1; } void add(int x) { if (r[x]) { g[r[x]].push_back(x); } s[x].insert(dip[x]); for (int y : g[x]) { if (x - y >= k) { continue; } int py = get(y); res.erase(res.find(best(py))); if (s[py].size() > s[x].size()) { swap(s[x], s[py]); } for (int z : s[py]) { s[x].insert(z); } s[py].clear(); p[py] = x; } res.insert(best(x)); } int main() { ios_base::sync_with_stdio(0); scanf("%d%d", &n, &k); for (int i = 1; i <= n; i++) { scanf("%d", &a[i]); } vector<int> v; for (int i = n; i >= 1; i--) { p[i] = i; while (!v.empty() && a[i] >= a[v.back()]) { v.pop_back(); } if (!v.empty()) { r[i] = v.back(); dip[i] = dip[r[i]] - 1; } v.push_back(i); } for (int i = 1; i <= k; i++) { add(i); } printf("%d ", *(--res.end())); for (int i = 1; i <= n - k; i++) { int x = get(i); res.erase(res.find(best(x))); if (x != i) { s[x].erase(s[x].find(dip[i])); res.insert(best(x)); } add(i + k); printf("%d ", *(--res.end())); } } ```
#include <bits/stdc++.h> using namespace std; const int N = 1e6 + 10; const int INF = 1e9; struct SegmentTree { int st[4 * N], lp[4 * N]; void Propagate(int k) { int v = lp[k]; if (v == 0) return; lp[k] = 0; lp[k << 1] += v; lp[k << 1 | 1] += v; st[k << 1] += v; st[k << 1 | 1] += v; } void Assign(int k, int l, int r, int i, int v) { if (l > i || r < i) return; if (l == r) { st[k] = v; return; } Propagate(k); Assign(k << 1, l, ((l + r) >> 1), i, v); Assign(k << 1 | 1, ((l + r) >> 1) + 1, r, i, v); st[k] = max(st[k << 1], st[k << 1 | 1]); } void Update(int k, int l, int r, int i, int j, int v) { if (l > j || r < i) return; if (i <= l && r <= j) { st[k] += v; lp[k] += v; return; } Propagate(k); Update(k << 1, l, ((l + r) >> 1), i, j, v); Update(k << 1 | 1, ((l + r) >> 1) + 1, r, i, j, v); st[k] = max(st[k << 1], st[k << 1 | 1]); } int get(int k, int l, int r, int i) { if (l == r) return st[k]; Propagate(k); if (i <= ((l + r) >> 1)) return get(k << 1, l, ((l + r) >> 1), i); return get(k << 1 | 1, ((l + r) >> 1) + 1, r, i); } } ST; int n, m; int a[N], L[N], R[N], f[N]; void Init() { stack<int> ST; for (int i = 1; i <= n; ++i) { while (ST.size() && a[ST.top()] < a[i]) ST.pop(); L[i] = (ST.size() == 0 ? 1 : ST.top() + 1); ST.push(i); } while (ST.size()) ST.pop(); for (int i = n; i >= 1; --i) { while (ST.size() && a[ST.top()] <= a[i]) ST.pop(); R[i] = (ST.size() == 0 ? n : ST.top() - 1); ST.push(i); } for (int i = n; i >= n - m + 1; --i) { int j = R[i]; f[i] = (j >= n ? 1 : f[j + 1] + 1); } } int main() { ios_base::sync_with_stdio(false); cin.tie(NULL); cin >> n >> m; for (int i = 1; i <= n; ++i) cin >> a[i]; Init(); for (int i = n - m + 1; i <= n; ++i) ST.Assign(1, 1, n, i, f[i]); vector<int> ans; for (int i = n - m + 1; i >= 1; --i) { ans.push_back(ST.st[1]); int r = i + m - 1; int l = L[r]; if (l <= r - 1) ST.Update(1, 1, n, l, r - 1, -1); ST.Assign(1, 1, n, r, -INF); if (i - 1 >= 1) { int j = R[i - 1]; f[i - 1] = (j + 1 >= r ? 1 : ST.get(1, 1, n, j + 1) + 1); ST.Assign(1, 1, n, i - 1, f[i - 1]); } } reverse(ans.begin(), ans.end()); for (int v : ans) cout << v << ' '; cout << '\n'; return 0; }
### Prompt Please formulate a cpp solution to the following problem: For some array c, let's denote a greedy subsequence as a sequence of indices p_1, p_2, ..., p_l such that 1 ≀ p_1 < p_2 < ... < p_l ≀ |c|, and for each i ∈ [1, l - 1], p_{i + 1} is the minimum number such that p_{i + 1} > p_i and c[p_{i + 1}] > c[p_i]. You are given an array a_1, a_2, ..., a_n. For each its subsegment of length k, calculate the length of its longest greedy subsequence. Input The first line contains two integers n and k (1 ≀ k ≀ n ≀ 10^6) β€” the length of array a and the length of subsegments. The second line contains n integers a_1, a_2, ..., a_n (1 ≀ a_i ≀ n) β€” array a. Output Print n - k + 1 integers β€” the maximum lengths of greedy subsequences of each subsegment having length k. The first number should correspond to subsegment a[1..k], the second β€” to subsegment a[2..k + 1], and so on. Examples Input 6 4 1 5 2 5 3 6 Output 2 2 3 Input 7 6 4 5 2 5 3 6 6 Output 3 3 Note In the first example: * [1, 5, 2, 5] β€” the longest greedy subsequences are 1, 2 ([c_1, c_2] = [1, 5]) or 3, 4 ([c_3, c_4] = [2, 5]). * [5, 2, 5, 3] β€” the sequence is 2, 3 ([c_2, c_3] = [2, 5]). * [2, 5, 3, 6] β€” the sequence is 1, 2, 4 ([c_1, c_2, c_4] = [2, 5, 6]). In the second example: * [4, 5, 2, 5, 3, 6] β€” the longest greedy subsequences are 1, 2, 6 ([c_1, c_2, c_6] = [4, 5, 6]) or 3, 4, 6 ([c_3, c_4, c_6] = [2, 5, 6]). * [5, 2, 5, 3, 6, 6] β€” the subsequence is 2, 3, 5 ([c_2, c_3, c_5] = [2, 5, 6]). ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int N = 1e6 + 10; const int INF = 1e9; struct SegmentTree { int st[4 * N], lp[4 * N]; void Propagate(int k) { int v = lp[k]; if (v == 0) return; lp[k] = 0; lp[k << 1] += v; lp[k << 1 | 1] += v; st[k << 1] += v; st[k << 1 | 1] += v; } void Assign(int k, int l, int r, int i, int v) { if (l > i || r < i) return; if (l == r) { st[k] = v; return; } Propagate(k); Assign(k << 1, l, ((l + r) >> 1), i, v); Assign(k << 1 | 1, ((l + r) >> 1) + 1, r, i, v); st[k] = max(st[k << 1], st[k << 1 | 1]); } void Update(int k, int l, int r, int i, int j, int v) { if (l > j || r < i) return; if (i <= l && r <= j) { st[k] += v; lp[k] += v; return; } Propagate(k); Update(k << 1, l, ((l + r) >> 1), i, j, v); Update(k << 1 | 1, ((l + r) >> 1) + 1, r, i, j, v); st[k] = max(st[k << 1], st[k << 1 | 1]); } int get(int k, int l, int r, int i) { if (l == r) return st[k]; Propagate(k); if (i <= ((l + r) >> 1)) return get(k << 1, l, ((l + r) >> 1), i); return get(k << 1 | 1, ((l + r) >> 1) + 1, r, i); } } ST; int n, m; int a[N], L[N], R[N], f[N]; void Init() { stack<int> ST; for (int i = 1; i <= n; ++i) { while (ST.size() && a[ST.top()] < a[i]) ST.pop(); L[i] = (ST.size() == 0 ? 1 : ST.top() + 1); ST.push(i); } while (ST.size()) ST.pop(); for (int i = n; i >= 1; --i) { while (ST.size() && a[ST.top()] <= a[i]) ST.pop(); R[i] = (ST.size() == 0 ? n : ST.top() - 1); ST.push(i); } for (int i = n; i >= n - m + 1; --i) { int j = R[i]; f[i] = (j >= n ? 1 : f[j + 1] + 1); } } int main() { ios_base::sync_with_stdio(false); cin.tie(NULL); cin >> n >> m; for (int i = 1; i <= n; ++i) cin >> a[i]; Init(); for (int i = n - m + 1; i <= n; ++i) ST.Assign(1, 1, n, i, f[i]); vector<int> ans; for (int i = n - m + 1; i >= 1; --i) { ans.push_back(ST.st[1]); int r = i + m - 1; int l = L[r]; if (l <= r - 1) ST.Update(1, 1, n, l, r - 1, -1); ST.Assign(1, 1, n, r, -INF); if (i - 1 >= 1) { int j = R[i - 1]; f[i - 1] = (j + 1 >= r ? 1 : ST.get(1, 1, n, j + 1) + 1); ST.Assign(1, 1, n, i - 1, f[i - 1]); } } reverse(ans.begin(), ans.end()); for (int v : ans) cout << v << ' '; cout << '\n'; return 0; } ```
#include <bits/stdc++.h> using namespace std; const int maxn = 1000010; int n, k, cnt; vector<int> ve[maxn]; int id[maxn], sz[maxn]; int mx[maxn << 2], lz[maxn << 2]; int a[maxn]; void dfs(int u) { sz[u] = 1; id[u] = ++cnt; for (int i = 0; i < ve[u].size(); i++) { int v = ve[u][i]; dfs(v); sz[u] += sz[v]; } } void update(int rt, int l, int r, int a, int b, int v) { int m = (l + r) / 2, ls = rt << 1, rs = rt << 1 | 1; if (lz[rt] && l != r) { lz[ls] += lz[rt]; lz[rs] += lz[rt]; mx[ls] += lz[rt]; mx[rs] += lz[rt]; lz[rt] = 0; } if (l >= a && r <= b) { lz[rt] += v; mx[rt] += v; return; } if (a <= m) update(ls, l, m, a, b, v); if (b > m) update(rs, m + 1, r, a, b, v); mx[rt] = max(mx[ls], mx[rs]); } int main() { while (~scanf("%d%d", &n, &k)) { for (int i = 1; i <= n; i++) { scanf("%d", &a[i]); ve[i].clear(); sz[i] = id[i] = 0; mx[i] = lz[i] = 0; } stack<int> st; for (int i = n; i >= 1; i--) { while (!st.empty() && a[i] >= a[st.top()]) st.pop(); if (!st.empty()) ve[st.top()].push_back(i); st.push(i); } cnt = 0; for (int i = n; i >= 1; i--) if (!id[i]) dfs(i); for (int i = 1; i <= k; i++) update(1, 1, n, id[i], id[i] + sz[i] - 1, 1); printf("%d", mx[1]); for (int i = k + 1; i <= n; i++) { update(1, 1, n, id[i - k], id[i - k], -10000000); update(1, 1, n, id[i], id[i] + sz[i] - 1, 1); printf(" %d", mx[1]); } printf("\n"); } }
### Prompt Develop a solution in CPP to the problem described below: For some array c, let's denote a greedy subsequence as a sequence of indices p_1, p_2, ..., p_l such that 1 ≀ p_1 < p_2 < ... < p_l ≀ |c|, and for each i ∈ [1, l - 1], p_{i + 1} is the minimum number such that p_{i + 1} > p_i and c[p_{i + 1}] > c[p_i]. You are given an array a_1, a_2, ..., a_n. For each its subsegment of length k, calculate the length of its longest greedy subsequence. Input The first line contains two integers n and k (1 ≀ k ≀ n ≀ 10^6) β€” the length of array a and the length of subsegments. The second line contains n integers a_1, a_2, ..., a_n (1 ≀ a_i ≀ n) β€” array a. Output Print n - k + 1 integers β€” the maximum lengths of greedy subsequences of each subsegment having length k. The first number should correspond to subsegment a[1..k], the second β€” to subsegment a[2..k + 1], and so on. Examples Input 6 4 1 5 2 5 3 6 Output 2 2 3 Input 7 6 4 5 2 5 3 6 6 Output 3 3 Note In the first example: * [1, 5, 2, 5] β€” the longest greedy subsequences are 1, 2 ([c_1, c_2] = [1, 5]) or 3, 4 ([c_3, c_4] = [2, 5]). * [5, 2, 5, 3] β€” the sequence is 2, 3 ([c_2, c_3] = [2, 5]). * [2, 5, 3, 6] β€” the sequence is 1, 2, 4 ([c_1, c_2, c_4] = [2, 5, 6]). In the second example: * [4, 5, 2, 5, 3, 6] β€” the longest greedy subsequences are 1, 2, 6 ([c_1, c_2, c_6] = [4, 5, 6]) or 3, 4, 6 ([c_3, c_4, c_6] = [2, 5, 6]). * [5, 2, 5, 3, 6, 6] β€” the subsequence is 2, 3, 5 ([c_2, c_3, c_5] = [2, 5, 6]). ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int maxn = 1000010; int n, k, cnt; vector<int> ve[maxn]; int id[maxn], sz[maxn]; int mx[maxn << 2], lz[maxn << 2]; int a[maxn]; void dfs(int u) { sz[u] = 1; id[u] = ++cnt; for (int i = 0; i < ve[u].size(); i++) { int v = ve[u][i]; dfs(v); sz[u] += sz[v]; } } void update(int rt, int l, int r, int a, int b, int v) { int m = (l + r) / 2, ls = rt << 1, rs = rt << 1 | 1; if (lz[rt] && l != r) { lz[ls] += lz[rt]; lz[rs] += lz[rt]; mx[ls] += lz[rt]; mx[rs] += lz[rt]; lz[rt] = 0; } if (l >= a && r <= b) { lz[rt] += v; mx[rt] += v; return; } if (a <= m) update(ls, l, m, a, b, v); if (b > m) update(rs, m + 1, r, a, b, v); mx[rt] = max(mx[ls], mx[rs]); } int main() { while (~scanf("%d%d", &n, &k)) { for (int i = 1; i <= n; i++) { scanf("%d", &a[i]); ve[i].clear(); sz[i] = id[i] = 0; mx[i] = lz[i] = 0; } stack<int> st; for (int i = n; i >= 1; i--) { while (!st.empty() && a[i] >= a[st.top()]) st.pop(); if (!st.empty()) ve[st.top()].push_back(i); st.push(i); } cnt = 0; for (int i = n; i >= 1; i--) if (!id[i]) dfs(i); for (int i = 1; i <= k; i++) update(1, 1, n, id[i], id[i] + sz[i] - 1, 1); printf("%d", mx[1]); for (int i = k + 1; i <= n; i++) { update(1, 1, n, id[i - k], id[i - k], -10000000); update(1, 1, n, id[i], id[i] + sz[i] - 1, 1); printf(" %d", mx[1]); } printf("\n"); } } ```
#include <bits/stdc++.h> using namespace std; const int mod = 1e9 + 7; const int mod1 = 998244353; #pragma GCC optimize("Ofast") mt19937 rng(chrono::steady_clock::now().time_since_epoch().count()); int rand(int l, int r) { uniform_int_distribution<int> uid(l, r); return uid(rng); } long long int pwr(long long int a, long long int b) { a %= mod; int ans = 1; while (b) { if (b & 1) ans = (ans * a) % mod; a = (a * a) % mod; b >>= 1; } return ans; } string to_string(string s) { return '"' + s + '"'; } string to_string(const char *s) { return to_string((string)s); } string to_string(bool b) { return (b ? "true" : "false"); } template <typename A, typename B> string to_string(pair<A, B> p) { return "(" + to_string(p.first) + ", " + to_string(p.second) + ")"; } template <typename A> string to_string(A v) { bool first = true; string res = "{"; for (const auto &x : v) { if (!first) { res += ", "; } first = false; res += to_string(x); } res += "}"; return res; } void debug_out() { cerr << '\n'; } template <typename Head, typename... Tail> void debug_out(Head H, Tail... T) { cerr << " " << to_string(H); debug_out(T...); } class Segtree_With_lazy { public: vector<int> t, lz; int n, h; Segtree_With_lazy(int n) : n(n) { t.resize(2 * n, 0); lz.resize(n, 0); h = sizeof(int) * 8 - __builtin_clz(n); 42; } void apply(int p, int val) { t[p] += val; if (p < n) lz[p] += val; } void build(int p) { while (p > 1) p >>= 1, t[p] = max(t[p << 1], t[p << 1 | 1]) + lz[p]; } void push(int p) { for (int s = h; s > 0; s--) { int i = p >> s; if (lz[i]) { apply(i << 1, lz[i]); apply(i << 1 | 1, lz[i]); lz[i] = 0; } } } void inc(int l, int r, int val) { r++; l += n, r += n; int l0 = l, r0 = r; for (; l < r; l >>= 1, r >>= 1) { if (l & 1) apply(l++, val); if (r & 1) apply(--r, val); } build(l0); build(r0 - 1); } int query(int l, int r) { r++; l += n, r += n; push(l); push(r - 1); int res = -2e9; for (; l < r; l >>= 1, r >>= 1) { if (l & 1) res = max(res, t[l++]); if (r & 1) res = max(res, t[--r]); } return res; } }; int tt = 0; vector<int> s, e; void dfs(int u, vector<vector<int>> &g) { s[u] = tt++; for (int v : g[u]) { dfs(v, g); } e[u] = tt - 1; } void solve() { int n, k; cin >> n >> k; 42; vector<int> a(n); s.resize(n + 1), e.resize(n + 1); for (int i = 0; i <= n - 1; i++) { cin >> a[i]; } stack<pair<int, int>> st; st.push({1e9 + 5, n}); vector<vector<int>> g(n + 1); for (int i = n - 1; i >= 0; i--) { while (st.top().first <= a[i]) st.pop(); g[st.top().second].push_back(i); st.push({a[i], i}); 42; } dfs(n, g); Segtree_With_lazy S(n + 1); for (int i = 0; i <= n - 1; i++) { S.inc(s[i], e[i], 1); 42; if (i >= k) { S.inc(s[i - k], s[i - k], -1e9); } if (i >= k - 1) { cout << S.query(0, n) << " "; } } } signed main() { ios ::sync_with_stdio(0), cin.tie(0), cout.tie(0); int t = 1; for (int tt = 1; tt <= t; tt++) { solve(); } return 0; }
### Prompt Please formulate a cpp solution to the following problem: For some array c, let's denote a greedy subsequence as a sequence of indices p_1, p_2, ..., p_l such that 1 ≀ p_1 < p_2 < ... < p_l ≀ |c|, and for each i ∈ [1, l - 1], p_{i + 1} is the minimum number such that p_{i + 1} > p_i and c[p_{i + 1}] > c[p_i]. You are given an array a_1, a_2, ..., a_n. For each its subsegment of length k, calculate the length of its longest greedy subsequence. Input The first line contains two integers n and k (1 ≀ k ≀ n ≀ 10^6) β€” the length of array a and the length of subsegments. The second line contains n integers a_1, a_2, ..., a_n (1 ≀ a_i ≀ n) β€” array a. Output Print n - k + 1 integers β€” the maximum lengths of greedy subsequences of each subsegment having length k. The first number should correspond to subsegment a[1..k], the second β€” to subsegment a[2..k + 1], and so on. Examples Input 6 4 1 5 2 5 3 6 Output 2 2 3 Input 7 6 4 5 2 5 3 6 6 Output 3 3 Note In the first example: * [1, 5, 2, 5] β€” the longest greedy subsequences are 1, 2 ([c_1, c_2] = [1, 5]) or 3, 4 ([c_3, c_4] = [2, 5]). * [5, 2, 5, 3] β€” the sequence is 2, 3 ([c_2, c_3] = [2, 5]). * [2, 5, 3, 6] β€” the sequence is 1, 2, 4 ([c_1, c_2, c_4] = [2, 5, 6]). In the second example: * [4, 5, 2, 5, 3, 6] β€” the longest greedy subsequences are 1, 2, 6 ([c_1, c_2, c_6] = [4, 5, 6]) or 3, 4, 6 ([c_3, c_4, c_6] = [2, 5, 6]). * [5, 2, 5, 3, 6, 6] β€” the subsequence is 2, 3, 5 ([c_2, c_3, c_5] = [2, 5, 6]). ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int mod = 1e9 + 7; const int mod1 = 998244353; #pragma GCC optimize("Ofast") mt19937 rng(chrono::steady_clock::now().time_since_epoch().count()); int rand(int l, int r) { uniform_int_distribution<int> uid(l, r); return uid(rng); } long long int pwr(long long int a, long long int b) { a %= mod; int ans = 1; while (b) { if (b & 1) ans = (ans * a) % mod; a = (a * a) % mod; b >>= 1; } return ans; } string to_string(string s) { return '"' + s + '"'; } string to_string(const char *s) { return to_string((string)s); } string to_string(bool b) { return (b ? "true" : "false"); } template <typename A, typename B> string to_string(pair<A, B> p) { return "(" + to_string(p.first) + ", " + to_string(p.second) + ")"; } template <typename A> string to_string(A v) { bool first = true; string res = "{"; for (const auto &x : v) { if (!first) { res += ", "; } first = false; res += to_string(x); } res += "}"; return res; } void debug_out() { cerr << '\n'; } template <typename Head, typename... Tail> void debug_out(Head H, Tail... T) { cerr << " " << to_string(H); debug_out(T...); } class Segtree_With_lazy { public: vector<int> t, lz; int n, h; Segtree_With_lazy(int n) : n(n) { t.resize(2 * n, 0); lz.resize(n, 0); h = sizeof(int) * 8 - __builtin_clz(n); 42; } void apply(int p, int val) { t[p] += val; if (p < n) lz[p] += val; } void build(int p) { while (p > 1) p >>= 1, t[p] = max(t[p << 1], t[p << 1 | 1]) + lz[p]; } void push(int p) { for (int s = h; s > 0; s--) { int i = p >> s; if (lz[i]) { apply(i << 1, lz[i]); apply(i << 1 | 1, lz[i]); lz[i] = 0; } } } void inc(int l, int r, int val) { r++; l += n, r += n; int l0 = l, r0 = r; for (; l < r; l >>= 1, r >>= 1) { if (l & 1) apply(l++, val); if (r & 1) apply(--r, val); } build(l0); build(r0 - 1); } int query(int l, int r) { r++; l += n, r += n; push(l); push(r - 1); int res = -2e9; for (; l < r; l >>= 1, r >>= 1) { if (l & 1) res = max(res, t[l++]); if (r & 1) res = max(res, t[--r]); } return res; } }; int tt = 0; vector<int> s, e; void dfs(int u, vector<vector<int>> &g) { s[u] = tt++; for (int v : g[u]) { dfs(v, g); } e[u] = tt - 1; } void solve() { int n, k; cin >> n >> k; 42; vector<int> a(n); s.resize(n + 1), e.resize(n + 1); for (int i = 0; i <= n - 1; i++) { cin >> a[i]; } stack<pair<int, int>> st; st.push({1e9 + 5, n}); vector<vector<int>> g(n + 1); for (int i = n - 1; i >= 0; i--) { while (st.top().first <= a[i]) st.pop(); g[st.top().second].push_back(i); st.push({a[i], i}); 42; } dfs(n, g); Segtree_With_lazy S(n + 1); for (int i = 0; i <= n - 1; i++) { S.inc(s[i], e[i], 1); 42; if (i >= k) { S.inc(s[i - k], s[i - k], -1e9); } if (i >= k - 1) { cout << S.query(0, n) << " "; } } } signed main() { ios ::sync_with_stdio(0), cin.tie(0), cout.tie(0); int t = 1; for (int tt = 1; tt <= t; tt++) { solve(); } return 0; } ```
#include <bits/stdc++.h> using namespace std; template <class T, class T2> inline bool chkmax(T &x, const T2 &y) { return x < y ? x = y, 1 : 0; } template <class T, class T2> inline bool chkmin(T &x, const T2 &y) { return x > y ? x = y, 1 : 0; } const long long mod = 1e9 + 7; template <class T> inline void fix(T &x) { if (x >= mod | x <= -mod) { x %= mod; } if (x < 0) { x += mod; } } const long long MAX_N = 1e6 + 10; struct SegTree { long long tree[4 * MAX_N], lazy[4 * MAX_N]; SegTree() { fill_n(tree, 4 * MAX_N, 0); fill_n(lazy, 4 * MAX_N, 0); } void push(long long curr, long long l, long long r) { tree[curr] += lazy[curr]; if (l != r) { lazy[curr * 2] += lazy[curr]; lazy[curr * 2 + 1] += lazy[curr]; } lazy[curr] = 0; } void upd(long long curr, long long l, long long r, long long ql, long long qr, long long val) { push(curr, l, r); if (ql <= l && r <= qr) { lazy[curr] += val; push(curr, l, r); return; } else if (l > qr || r < ql) { return; } long long m = (l + r) / 2; upd(curr * 2, l, m, ql, qr, val); upd(curr * 2 + 1, m + 1, r, ql, qr, val); tree[curr] = max(tree[curr * 2], tree[curr * 2 + 1]); } long long ans(long long curr, long long l, long long r) { push(curr, l, r); return tree[curr]; } }; vector<long long> g[MAX_N]; long long in[MAX_N], out[MAX_N], tme = 0; long long n, k; long long arr[MAX_N]; void dfs(long long x) { in[x] = ++tme; for (auto it : g[x]) { dfs(it); } out[x] = tme; } SegTree str; void add(long long x) { str.upd(1, 0, tme + 1, in[x], out[x], 1); } void remove(long long x) { str.upd(1, 0, tme + 1, in[x], in[x], -mod * mod); } signed main() { ios_base::sync_with_stdio(false); cin.tie(NULL); cout.tie(NULL); cin >> n >> k; for (long long i = 0; i < n; i++) { cin >> arr[i]; } stack<long long> st; st.push(n); arr[n] = mod; for (long long i = n - 1; i >= 0; i--) { while (arr[i] >= arr[st.top()]) { st.pop(); } g[st.top()].push_back(i); st.push(i); } dfs(n); for (long long i = 0; i < k; i++) { add(i); } for (long long i = 0; i + k < n; i++) { cout << str.ans(1, 0, tme + 1) << " "; remove(i); add(i + k); } cout << str.ans(1, 0, tme) << "\n"; return 0; }
### Prompt Please provide a Cpp coded solution to the problem described below: For some array c, let's denote a greedy subsequence as a sequence of indices p_1, p_2, ..., p_l such that 1 ≀ p_1 < p_2 < ... < p_l ≀ |c|, and for each i ∈ [1, l - 1], p_{i + 1} is the minimum number such that p_{i + 1} > p_i and c[p_{i + 1}] > c[p_i]. You are given an array a_1, a_2, ..., a_n. For each its subsegment of length k, calculate the length of its longest greedy subsequence. Input The first line contains two integers n and k (1 ≀ k ≀ n ≀ 10^6) β€” the length of array a and the length of subsegments. The second line contains n integers a_1, a_2, ..., a_n (1 ≀ a_i ≀ n) β€” array a. Output Print n - k + 1 integers β€” the maximum lengths of greedy subsequences of each subsegment having length k. The first number should correspond to subsegment a[1..k], the second β€” to subsegment a[2..k + 1], and so on. Examples Input 6 4 1 5 2 5 3 6 Output 2 2 3 Input 7 6 4 5 2 5 3 6 6 Output 3 3 Note In the first example: * [1, 5, 2, 5] β€” the longest greedy subsequences are 1, 2 ([c_1, c_2] = [1, 5]) or 3, 4 ([c_3, c_4] = [2, 5]). * [5, 2, 5, 3] β€” the sequence is 2, 3 ([c_2, c_3] = [2, 5]). * [2, 5, 3, 6] β€” the sequence is 1, 2, 4 ([c_1, c_2, c_4] = [2, 5, 6]). In the second example: * [4, 5, 2, 5, 3, 6] β€” the longest greedy subsequences are 1, 2, 6 ([c_1, c_2, c_6] = [4, 5, 6]) or 3, 4, 6 ([c_3, c_4, c_6] = [2, 5, 6]). * [5, 2, 5, 3, 6, 6] β€” the subsequence is 2, 3, 5 ([c_2, c_3, c_5] = [2, 5, 6]). ### Response ```cpp #include <bits/stdc++.h> using namespace std; template <class T, class T2> inline bool chkmax(T &x, const T2 &y) { return x < y ? x = y, 1 : 0; } template <class T, class T2> inline bool chkmin(T &x, const T2 &y) { return x > y ? x = y, 1 : 0; } const long long mod = 1e9 + 7; template <class T> inline void fix(T &x) { if (x >= mod | x <= -mod) { x %= mod; } if (x < 0) { x += mod; } } const long long MAX_N = 1e6 + 10; struct SegTree { long long tree[4 * MAX_N], lazy[4 * MAX_N]; SegTree() { fill_n(tree, 4 * MAX_N, 0); fill_n(lazy, 4 * MAX_N, 0); } void push(long long curr, long long l, long long r) { tree[curr] += lazy[curr]; if (l != r) { lazy[curr * 2] += lazy[curr]; lazy[curr * 2 + 1] += lazy[curr]; } lazy[curr] = 0; } void upd(long long curr, long long l, long long r, long long ql, long long qr, long long val) { push(curr, l, r); if (ql <= l && r <= qr) { lazy[curr] += val; push(curr, l, r); return; } else if (l > qr || r < ql) { return; } long long m = (l + r) / 2; upd(curr * 2, l, m, ql, qr, val); upd(curr * 2 + 1, m + 1, r, ql, qr, val); tree[curr] = max(tree[curr * 2], tree[curr * 2 + 1]); } long long ans(long long curr, long long l, long long r) { push(curr, l, r); return tree[curr]; } }; vector<long long> g[MAX_N]; long long in[MAX_N], out[MAX_N], tme = 0; long long n, k; long long arr[MAX_N]; void dfs(long long x) { in[x] = ++tme; for (auto it : g[x]) { dfs(it); } out[x] = tme; } SegTree str; void add(long long x) { str.upd(1, 0, tme + 1, in[x], out[x], 1); } void remove(long long x) { str.upd(1, 0, tme + 1, in[x], in[x], -mod * mod); } signed main() { ios_base::sync_with_stdio(false); cin.tie(NULL); cout.tie(NULL); cin >> n >> k; for (long long i = 0; i < n; i++) { cin >> arr[i]; } stack<long long> st; st.push(n); arr[n] = mod; for (long long i = n - 1; i >= 0; i--) { while (arr[i] >= arr[st.top()]) { st.pop(); } g[st.top()].push_back(i); st.push(i); } dfs(n); for (long long i = 0; i < k; i++) { add(i); } for (long long i = 0; i + k < n; i++) { cout << str.ans(1, 0, tme + 1) << " "; remove(i); add(i + k); } cout << str.ans(1, 0, tme) << "\n"; return 0; } ```
#include <bits/stdc++.h> using namespace std; int head[1000010], n, k, a[1000010], tree[4000010], add[4000010], st[1000010][2], t = 0, o = 0, size[1000010], iid[1000010], x = 0; struct edge { int to, link; } e[1000010]; void add_edge(int u, int v) { e[++o].to = v, e[o].link = head[u], head[u] = o; } void dfs(int u) { iid[u] = ++x; size[u] = 1; for (int i = head[u]; i; i = e[i].link) { dfs(e[i].to); size[u] += size[e[i].to]; } } void pushdown(int t) { tree[t << 1] += add[t]; add[t << 1] += add[t]; tree[t << 1 | 1] += add[t]; add[t << 1 | 1] += add[t]; add[t] = 0; } void pushup(int t) { tree[t] = max(tree[t << 1], tree[t << 1 | 1]); } void add_tree(int ll, int rr, int l, int r, int t, int c) { if (ll <= l && r <= rr) { tree[t] += c, add[t] += c; return; } pushdown(t); int mid = (l + r) >> 1; if (mid >= ll) add_tree(ll, rr, l, mid, t << 1, c); if (mid < rr) add_tree(ll, rr, mid + 1, r, t << 1 | 1, c); pushup(t); } int main() { scanf("%d %d", &n, &k); for (int i = 1; i <= n; i++) scanf("%d", &a[i]); a[++n] = INT_MAX; st[++t][0] = a[n], st[t][1] = n; for (int i = n - 1; i >= 1; i--) { while (st[t][0] <= a[i] && t) t--; add_edge(st[t][1], i); st[++t][0] = a[i], st[t][1] = i; } dfs(n); for (int i = 1; i <= k; i++) add_tree(iid[i], iid[i] + size[i] - 1, 1, n, 1, 1); printf("%d ", tree[1]); for (int i = k + 1; i < n; i++) { add_tree(iid[i], iid[i] + size[i] - 1, 1, n, 1, 1); add_tree(iid[i - k], iid[i - k] + size[i - k] - 1, 1, n, 1, -1); printf("%d ", tree[1]); } printf("\n"); }
### Prompt Your task is to create a cpp solution to the following problem: For some array c, let's denote a greedy subsequence as a sequence of indices p_1, p_2, ..., p_l such that 1 ≀ p_1 < p_2 < ... < p_l ≀ |c|, and for each i ∈ [1, l - 1], p_{i + 1} is the minimum number such that p_{i + 1} > p_i and c[p_{i + 1}] > c[p_i]. You are given an array a_1, a_2, ..., a_n. For each its subsegment of length k, calculate the length of its longest greedy subsequence. Input The first line contains two integers n and k (1 ≀ k ≀ n ≀ 10^6) β€” the length of array a and the length of subsegments. The second line contains n integers a_1, a_2, ..., a_n (1 ≀ a_i ≀ n) β€” array a. Output Print n - k + 1 integers β€” the maximum lengths of greedy subsequences of each subsegment having length k. The first number should correspond to subsegment a[1..k], the second β€” to subsegment a[2..k + 1], and so on. Examples Input 6 4 1 5 2 5 3 6 Output 2 2 3 Input 7 6 4 5 2 5 3 6 6 Output 3 3 Note In the first example: * [1, 5, 2, 5] β€” the longest greedy subsequences are 1, 2 ([c_1, c_2] = [1, 5]) or 3, 4 ([c_3, c_4] = [2, 5]). * [5, 2, 5, 3] β€” the sequence is 2, 3 ([c_2, c_3] = [2, 5]). * [2, 5, 3, 6] β€” the sequence is 1, 2, 4 ([c_1, c_2, c_4] = [2, 5, 6]). In the second example: * [4, 5, 2, 5, 3, 6] β€” the longest greedy subsequences are 1, 2, 6 ([c_1, c_2, c_6] = [4, 5, 6]) or 3, 4, 6 ([c_3, c_4, c_6] = [2, 5, 6]). * [5, 2, 5, 3, 6, 6] β€” the subsequence is 2, 3, 5 ([c_2, c_3, c_5] = [2, 5, 6]). ### Response ```cpp #include <bits/stdc++.h> using namespace std; int head[1000010], n, k, a[1000010], tree[4000010], add[4000010], st[1000010][2], t = 0, o = 0, size[1000010], iid[1000010], x = 0; struct edge { int to, link; } e[1000010]; void add_edge(int u, int v) { e[++o].to = v, e[o].link = head[u], head[u] = o; } void dfs(int u) { iid[u] = ++x; size[u] = 1; for (int i = head[u]; i; i = e[i].link) { dfs(e[i].to); size[u] += size[e[i].to]; } } void pushdown(int t) { tree[t << 1] += add[t]; add[t << 1] += add[t]; tree[t << 1 | 1] += add[t]; add[t << 1 | 1] += add[t]; add[t] = 0; } void pushup(int t) { tree[t] = max(tree[t << 1], tree[t << 1 | 1]); } void add_tree(int ll, int rr, int l, int r, int t, int c) { if (ll <= l && r <= rr) { tree[t] += c, add[t] += c; return; } pushdown(t); int mid = (l + r) >> 1; if (mid >= ll) add_tree(ll, rr, l, mid, t << 1, c); if (mid < rr) add_tree(ll, rr, mid + 1, r, t << 1 | 1, c); pushup(t); } int main() { scanf("%d %d", &n, &k); for (int i = 1; i <= n; i++) scanf("%d", &a[i]); a[++n] = INT_MAX; st[++t][0] = a[n], st[t][1] = n; for (int i = n - 1; i >= 1; i--) { while (st[t][0] <= a[i] && t) t--; add_edge(st[t][1], i); st[++t][0] = a[i], st[t][1] = i; } dfs(n); for (int i = 1; i <= k; i++) add_tree(iid[i], iid[i] + size[i] - 1, 1, n, 1, 1); printf("%d ", tree[1]); for (int i = k + 1; i < n; i++) { add_tree(iid[i], iid[i] + size[i] - 1, 1, n, 1, 1); add_tree(iid[i - k], iid[i - k] + size[i - k] - 1, 1, n, 1, -1); printf("%d ", tree[1]); } printf("\n"); } ```
#include <bits/stdc++.h> using namespace std; int s[1000005 << 2], tag[1000005 << 2]; inline void upd(int rt, int v) { s[rt] += v, tag[rt] += v; } inline void PushUp(int rt) { s[rt] = max(s[rt << 1], s[rt << 1 | 1]); } inline void PushDown(int rt) { if (tag[rt]) upd(rt << 1, tag[rt]), upd(rt << 1 | 1, tag[rt]), tag[rt] = 0; } void Update(int L, int R, int l, int r, int rt) { if (L <= l && r <= R) return upd(rt, 1); PushDown(rt); int m = (l + r) >> 1; if (L <= m) Update(L, R, l, m, rt << 1); if (m < R) Update(L, R, m + 1, r, rt << 1 | 1); PushUp(rt); } int query(int L, int R, int l, int r, int rt) { if (L <= l && r <= R) return s[rt]; PushDown(rt); int m = (l + r) >> 1, ret = 0; if (L <= m) ret = query(L, R, l, m, rt << 1); if (m < R) ret = max(ret, query(L, R, m + 1, r, rt << 1 | 1)); return ret; } int sta[1000005], top, pre[1000005], a[1000005], n, k; int main() { scanf("%d%d", &n, &k); for (int i = 1; i <= n; i++) scanf("%d", &a[i]); for (int i = n; i; i--) { while (top && a[sta[top]] <= a[i]) pre[sta[top]] = i, top--; sta[++top] = i; } for (int i = 1; i <= n; i++) { Update(pre[i] + 1, i, 1, n, 1); if (i >= k) printf("%d ", query(i - k + 1, i, 1, n, 1)); } puts(""); }
### Prompt Your challenge is to write a Cpp solution to the following problem: For some array c, let's denote a greedy subsequence as a sequence of indices p_1, p_2, ..., p_l such that 1 ≀ p_1 < p_2 < ... < p_l ≀ |c|, and for each i ∈ [1, l - 1], p_{i + 1} is the minimum number such that p_{i + 1} > p_i and c[p_{i + 1}] > c[p_i]. You are given an array a_1, a_2, ..., a_n. For each its subsegment of length k, calculate the length of its longest greedy subsequence. Input The first line contains two integers n and k (1 ≀ k ≀ n ≀ 10^6) β€” the length of array a and the length of subsegments. The second line contains n integers a_1, a_2, ..., a_n (1 ≀ a_i ≀ n) β€” array a. Output Print n - k + 1 integers β€” the maximum lengths of greedy subsequences of each subsegment having length k. The first number should correspond to subsegment a[1..k], the second β€” to subsegment a[2..k + 1], and so on. Examples Input 6 4 1 5 2 5 3 6 Output 2 2 3 Input 7 6 4 5 2 5 3 6 6 Output 3 3 Note In the first example: * [1, 5, 2, 5] β€” the longest greedy subsequences are 1, 2 ([c_1, c_2] = [1, 5]) or 3, 4 ([c_3, c_4] = [2, 5]). * [5, 2, 5, 3] β€” the sequence is 2, 3 ([c_2, c_3] = [2, 5]). * [2, 5, 3, 6] β€” the sequence is 1, 2, 4 ([c_1, c_2, c_4] = [2, 5, 6]). In the second example: * [4, 5, 2, 5, 3, 6] β€” the longest greedy subsequences are 1, 2, 6 ([c_1, c_2, c_6] = [4, 5, 6]) or 3, 4, 6 ([c_3, c_4, c_6] = [2, 5, 6]). * [5, 2, 5, 3, 6, 6] β€” the subsequence is 2, 3, 5 ([c_2, c_3, c_5] = [2, 5, 6]). ### Response ```cpp #include <bits/stdc++.h> using namespace std; int s[1000005 << 2], tag[1000005 << 2]; inline void upd(int rt, int v) { s[rt] += v, tag[rt] += v; } inline void PushUp(int rt) { s[rt] = max(s[rt << 1], s[rt << 1 | 1]); } inline void PushDown(int rt) { if (tag[rt]) upd(rt << 1, tag[rt]), upd(rt << 1 | 1, tag[rt]), tag[rt] = 0; } void Update(int L, int R, int l, int r, int rt) { if (L <= l && r <= R) return upd(rt, 1); PushDown(rt); int m = (l + r) >> 1; if (L <= m) Update(L, R, l, m, rt << 1); if (m < R) Update(L, R, m + 1, r, rt << 1 | 1); PushUp(rt); } int query(int L, int R, int l, int r, int rt) { if (L <= l && r <= R) return s[rt]; PushDown(rt); int m = (l + r) >> 1, ret = 0; if (L <= m) ret = query(L, R, l, m, rt << 1); if (m < R) ret = max(ret, query(L, R, m + 1, r, rt << 1 | 1)); return ret; } int sta[1000005], top, pre[1000005], a[1000005], n, k; int main() { scanf("%d%d", &n, &k); for (int i = 1; i <= n; i++) scanf("%d", &a[i]); for (int i = n; i; i--) { while (top && a[sta[top]] <= a[i]) pre[sta[top]] = i, top--; sta[++top] = i; } for (int i = 1; i <= n; i++) { Update(pre[i] + 1, i, 1, n, 1); if (i >= k) printf("%d ", query(i - k + 1, i, 1, n, 1)); } puts(""); } ```
#include <bits/stdc++.h> using namespace std; int a, b, c, d, e, zx, xc, za, i, j, ii, jj, k, f[1000009], pi, p[1000009][3], lf[1000009], rg[1000009], tim, seg[2500009], seg2[2500009], z, x, l, r, pas[1000009], pasi; bool bo[1000009]; deque<pair<int, int> > de; vector<int> v[1000009]; void dfs(int q, int w) { bo[q] = 1; tim++; lf[q] = rg[q] = tim; for (vector<int>::iterator it = v[q].begin(); it != v[q].end(); it++) { if ((*it) == w) continue; dfs((*it), q); if (rg[q] < rg[(*it)]) rg[q] = rg[(*it)]; } } void pushdown() { if (p[pi][0] != p[pi][1]) { seg2[p[pi][2] * 2] += seg2[p[pi][2]]; seg2[p[pi][2] * 2 + 1] += seg2[p[pi][2]]; } seg[p[pi][2]] += seg2[p[pi][2]]; seg2[p[pi][2]] = 0; } void upd() { pushdown(); if (p[pi][0] > r || p[pi][1] < l) { pi--; return; } if (p[pi][0] >= l && p[pi][1] <= r) { seg2[p[pi][2]] += z; pushdown(); pi--; return; } pi++; p[pi][0] = p[pi - 1][0]; p[pi][1] = (p[pi - 1][0] + p[pi - 1][1]) / 2; p[pi][2] = p[pi - 1][2] * 2; upd(); pi++; p[pi][0] = (p[pi - 1][0] + p[pi - 1][1]) / 2 + 1; p[pi][1] = p[pi - 1][1]; p[pi][2] = p[pi - 1][2] * 2 + 1; upd(); seg[p[pi][2]] = max(seg[p[pi][2] * 2], seg[p[pi][2] * 2 + 1]); pi--; } int main() { ios_base::sync_with_stdio(false), cin.tie(0), cout.tie(0); cin >> a >> k; for (i = 1; i <= a; i++) cin >> f[i]; for (i = a; i >= 1; i--) { zx = 0; while (de.size() != 0) { if (de.front().first <= f[i]) { de.pop_front(); } else { zx = de.front().second; break; } } de.push_front(make_pair(f[i], i)); if (zx != 0) { v[zx].push_back(i); } } for (i = a; i >= 1; i--) { if (bo[i] == 1) continue; dfs(i, 0); } za = 1; while (za < a) za *= 2; for (i = a; i > a - k; i--) { pi = 1; p[pi][0] = 1; p[pi][1] = za; p[pi][2] = 1; l = lf[i]; r = rg[i]; z = 1; upd(); } pi = 1; p[pi][0] = 1; p[pi][1] = za; p[pi][2] = 1; pushdown(); pasi++; pas[pasi] = seg[1]; for (i = a; i > k; i--) { pi = 1; p[pi][0] = 1; p[pi][1] = za; p[pi][2] = 1; l = lf[i]; r = rg[i]; z = -1; upd(); pi = 1; p[pi][0] = 1; p[pi][1] = za; p[pi][2] = 1; l = lf[i - k]; r = rg[i - k]; z = 1; upd(); pi = 1; p[pi][0] = 1; p[pi][1] = za; p[pi][2] = 1; pushdown(); pasi++; pas[pasi] = seg[1]; } for (i = pasi; i >= 1; i--) cout << pas[i] << " "; return 0; }
### Prompt Generate a Cpp solution to the following problem: For some array c, let's denote a greedy subsequence as a sequence of indices p_1, p_2, ..., p_l such that 1 ≀ p_1 < p_2 < ... < p_l ≀ |c|, and for each i ∈ [1, l - 1], p_{i + 1} is the minimum number such that p_{i + 1} > p_i and c[p_{i + 1}] > c[p_i]. You are given an array a_1, a_2, ..., a_n. For each its subsegment of length k, calculate the length of its longest greedy subsequence. Input The first line contains two integers n and k (1 ≀ k ≀ n ≀ 10^6) β€” the length of array a and the length of subsegments. The second line contains n integers a_1, a_2, ..., a_n (1 ≀ a_i ≀ n) β€” array a. Output Print n - k + 1 integers β€” the maximum lengths of greedy subsequences of each subsegment having length k. The first number should correspond to subsegment a[1..k], the second β€” to subsegment a[2..k + 1], and so on. Examples Input 6 4 1 5 2 5 3 6 Output 2 2 3 Input 7 6 4 5 2 5 3 6 6 Output 3 3 Note In the first example: * [1, 5, 2, 5] β€” the longest greedy subsequences are 1, 2 ([c_1, c_2] = [1, 5]) or 3, 4 ([c_3, c_4] = [2, 5]). * [5, 2, 5, 3] β€” the sequence is 2, 3 ([c_2, c_3] = [2, 5]). * [2, 5, 3, 6] β€” the sequence is 1, 2, 4 ([c_1, c_2, c_4] = [2, 5, 6]). In the second example: * [4, 5, 2, 5, 3, 6] β€” the longest greedy subsequences are 1, 2, 6 ([c_1, c_2, c_6] = [4, 5, 6]) or 3, 4, 6 ([c_3, c_4, c_6] = [2, 5, 6]). * [5, 2, 5, 3, 6, 6] β€” the subsequence is 2, 3, 5 ([c_2, c_3, c_5] = [2, 5, 6]). ### Response ```cpp #include <bits/stdc++.h> using namespace std; int a, b, c, d, e, zx, xc, za, i, j, ii, jj, k, f[1000009], pi, p[1000009][3], lf[1000009], rg[1000009], tim, seg[2500009], seg2[2500009], z, x, l, r, pas[1000009], pasi; bool bo[1000009]; deque<pair<int, int> > de; vector<int> v[1000009]; void dfs(int q, int w) { bo[q] = 1; tim++; lf[q] = rg[q] = tim; for (vector<int>::iterator it = v[q].begin(); it != v[q].end(); it++) { if ((*it) == w) continue; dfs((*it), q); if (rg[q] < rg[(*it)]) rg[q] = rg[(*it)]; } } void pushdown() { if (p[pi][0] != p[pi][1]) { seg2[p[pi][2] * 2] += seg2[p[pi][2]]; seg2[p[pi][2] * 2 + 1] += seg2[p[pi][2]]; } seg[p[pi][2]] += seg2[p[pi][2]]; seg2[p[pi][2]] = 0; } void upd() { pushdown(); if (p[pi][0] > r || p[pi][1] < l) { pi--; return; } if (p[pi][0] >= l && p[pi][1] <= r) { seg2[p[pi][2]] += z; pushdown(); pi--; return; } pi++; p[pi][0] = p[pi - 1][0]; p[pi][1] = (p[pi - 1][0] + p[pi - 1][1]) / 2; p[pi][2] = p[pi - 1][2] * 2; upd(); pi++; p[pi][0] = (p[pi - 1][0] + p[pi - 1][1]) / 2 + 1; p[pi][1] = p[pi - 1][1]; p[pi][2] = p[pi - 1][2] * 2 + 1; upd(); seg[p[pi][2]] = max(seg[p[pi][2] * 2], seg[p[pi][2] * 2 + 1]); pi--; } int main() { ios_base::sync_with_stdio(false), cin.tie(0), cout.tie(0); cin >> a >> k; for (i = 1; i <= a; i++) cin >> f[i]; for (i = a; i >= 1; i--) { zx = 0; while (de.size() != 0) { if (de.front().first <= f[i]) { de.pop_front(); } else { zx = de.front().second; break; } } de.push_front(make_pair(f[i], i)); if (zx != 0) { v[zx].push_back(i); } } for (i = a; i >= 1; i--) { if (bo[i] == 1) continue; dfs(i, 0); } za = 1; while (za < a) za *= 2; for (i = a; i > a - k; i--) { pi = 1; p[pi][0] = 1; p[pi][1] = za; p[pi][2] = 1; l = lf[i]; r = rg[i]; z = 1; upd(); } pi = 1; p[pi][0] = 1; p[pi][1] = za; p[pi][2] = 1; pushdown(); pasi++; pas[pasi] = seg[1]; for (i = a; i > k; i--) { pi = 1; p[pi][0] = 1; p[pi][1] = za; p[pi][2] = 1; l = lf[i]; r = rg[i]; z = -1; upd(); pi = 1; p[pi][0] = 1; p[pi][1] = za; p[pi][2] = 1; l = lf[i - k]; r = rg[i - k]; z = 1; upd(); pi = 1; p[pi][0] = 1; p[pi][1] = za; p[pi][2] = 1; pushdown(); pasi++; pas[pasi] = seg[1]; } for (i = pasi; i >= 1; i--) cout << pas[i] << " "; return 0; } ```
#include <bits/stdc++.h> using namespace std; inline int read() { int f = 1, x = 0; char ch = getchar(); while (!isdigit(ch)) { if (ch == '-') f = -1; ch = getchar(); } while (isdigit(ch)) { x = x * 10 + ch - '0'; ch = getchar(); } return x * f; } inline long long readll() { long long f = 1, x = 0; char ch = getchar(); while (!isdigit(ch)) { if (ch == '-') f = -1; ch = getchar(); } while (isdigit(ch)) { x = x * 10 + ch - '0'; ch = getchar(); } return x * f; } const int MAXN = 1e6 + 6; int n, k, a[MAXN], pre[MAXN], sta[MAXN], t; struct SegmentTree { int mx[MAXN << 2], tag[MAXN << 2]; void push_down(int p) { if (tag[p]) { mx[p << 1] += tag[p]; mx[p << 1 | 1] += tag[p]; tag[p << 1] += tag[p]; tag[p << 1 | 1] += tag[p]; tag[p] = 0; } } void push_up(int p) { mx[p] = max(mx[p << 1], mx[p << 1 | 1]); } void modify(int p, int l, int r, int ql, int qr) { if (ql <= l && qr >= r) { mx[p]++; tag[p]++; return; } push_down(p); int mid = (l + r) >> 1; if (ql <= mid) modify(p << 1, l, mid, ql, qr); if (qr > mid) modify(p << 1 | 1, mid + 1, r, ql, qr); push_up(p); } int query(int p, int l, int r, int ql, int qr) { if (ql <= l && qr >= r) return mx[p]; push_down(p); int mid = (l + r) >> 1, res = 0; if (ql <= mid) res = query(p << 1, l, mid, ql, qr); if (qr > mid) res = max(res, query(p << 1 | 1, mid + 1, r, ql, qr)); push_up(p); return res; } SegmentTree() {} } T; int main() { n = read(); k = read(); for (int i = 1; i <= n; ++i) { a[i] = read(); while (t && a[sta[t]] < a[i]) --t; pre[i] = sta[t]; sta[++t] = i; } for (int i = 1; i <= n; ++i) { T.modify(1, 1, n, pre[i] + 1, i); if (i >= k) { printf("%d ", T.query(1, 1, n, i - k + 1, i)); } } return 0; }
### Prompt Your challenge is to write a Cpp solution to the following problem: For some array c, let's denote a greedy subsequence as a sequence of indices p_1, p_2, ..., p_l such that 1 ≀ p_1 < p_2 < ... < p_l ≀ |c|, and for each i ∈ [1, l - 1], p_{i + 1} is the minimum number such that p_{i + 1} > p_i and c[p_{i + 1}] > c[p_i]. You are given an array a_1, a_2, ..., a_n. For each its subsegment of length k, calculate the length of its longest greedy subsequence. Input The first line contains two integers n and k (1 ≀ k ≀ n ≀ 10^6) β€” the length of array a and the length of subsegments. The second line contains n integers a_1, a_2, ..., a_n (1 ≀ a_i ≀ n) β€” array a. Output Print n - k + 1 integers β€” the maximum lengths of greedy subsequences of each subsegment having length k. The first number should correspond to subsegment a[1..k], the second β€” to subsegment a[2..k + 1], and so on. Examples Input 6 4 1 5 2 5 3 6 Output 2 2 3 Input 7 6 4 5 2 5 3 6 6 Output 3 3 Note In the first example: * [1, 5, 2, 5] β€” the longest greedy subsequences are 1, 2 ([c_1, c_2] = [1, 5]) or 3, 4 ([c_3, c_4] = [2, 5]). * [5, 2, 5, 3] β€” the sequence is 2, 3 ([c_2, c_3] = [2, 5]). * [2, 5, 3, 6] β€” the sequence is 1, 2, 4 ([c_1, c_2, c_4] = [2, 5, 6]). In the second example: * [4, 5, 2, 5, 3, 6] β€” the longest greedy subsequences are 1, 2, 6 ([c_1, c_2, c_6] = [4, 5, 6]) or 3, 4, 6 ([c_3, c_4, c_6] = [2, 5, 6]). * [5, 2, 5, 3, 6, 6] β€” the subsequence is 2, 3, 5 ([c_2, c_3, c_5] = [2, 5, 6]). ### Response ```cpp #include <bits/stdc++.h> using namespace std; inline int read() { int f = 1, x = 0; char ch = getchar(); while (!isdigit(ch)) { if (ch == '-') f = -1; ch = getchar(); } while (isdigit(ch)) { x = x * 10 + ch - '0'; ch = getchar(); } return x * f; } inline long long readll() { long long f = 1, x = 0; char ch = getchar(); while (!isdigit(ch)) { if (ch == '-') f = -1; ch = getchar(); } while (isdigit(ch)) { x = x * 10 + ch - '0'; ch = getchar(); } return x * f; } const int MAXN = 1e6 + 6; int n, k, a[MAXN], pre[MAXN], sta[MAXN], t; struct SegmentTree { int mx[MAXN << 2], tag[MAXN << 2]; void push_down(int p) { if (tag[p]) { mx[p << 1] += tag[p]; mx[p << 1 | 1] += tag[p]; tag[p << 1] += tag[p]; tag[p << 1 | 1] += tag[p]; tag[p] = 0; } } void push_up(int p) { mx[p] = max(mx[p << 1], mx[p << 1 | 1]); } void modify(int p, int l, int r, int ql, int qr) { if (ql <= l && qr >= r) { mx[p]++; tag[p]++; return; } push_down(p); int mid = (l + r) >> 1; if (ql <= mid) modify(p << 1, l, mid, ql, qr); if (qr > mid) modify(p << 1 | 1, mid + 1, r, ql, qr); push_up(p); } int query(int p, int l, int r, int ql, int qr) { if (ql <= l && qr >= r) return mx[p]; push_down(p); int mid = (l + r) >> 1, res = 0; if (ql <= mid) res = query(p << 1, l, mid, ql, qr); if (qr > mid) res = max(res, query(p << 1 | 1, mid + 1, r, ql, qr)); push_up(p); return res; } SegmentTree() {} } T; int main() { n = read(); k = read(); for (int i = 1; i <= n; ++i) { a[i] = read(); while (t && a[sta[t]] < a[i]) --t; pre[i] = sta[t]; sta[++t] = i; } for (int i = 1; i <= n; ++i) { T.modify(1, 1, n, pre[i] + 1, i); if (i >= k) { printf("%d ", T.query(1, 1, n, i - k + 1, i)); } } return 0; } ```
#include <bits/stdc++.h> #pragma comment(linker, "/STACK:1024000000,1024000000") using namespace std; const int inf = 0x3f3f3f3f; const long long INF = 1e18; template <typename T> void read(T &x) { x = 0; int s = 1, c = getchar(); for (; !isdigit(c); c = getchar()) if (c == '-') s = -1; for (; isdigit(c); c = getchar()) x = x * 10 + c - 48; x *= s; } template <typename T> void write(T x) { if (x < 0) x = -x, putchar('-'); if (x > 9) write(x / 10); putchar(x % 10 + '0'); } template <typename T> void writeln(T x) { write(x); puts(""); } const int maxn = 1e6 + 5; int n, k, a[maxn], dfn[maxn], Time, size[maxn]; vector<int> adj[maxn]; class SegmentTree { public: struct Node { int l, r, maxx, tag; } t[maxn << 2]; void Push_up(int p) { t[p].maxx = max(t[p << 1].maxx, t[p << 1 | 1].maxx); } void Push_down(int p) { if (t[p].tag) { t[p << 1].maxx += t[p].tag, t[p << 1 | 1].maxx += t[p].tag; t[p << 1].tag += t[p].tag, t[p << 1 | 1].tag += t[p].tag; t[p].tag = 0; } } void Build(int l, int r, int p) { t[p].l = l, t[p].r = r; if (l == r) return; int mid = (l + r) >> 1; Build(l, mid, p << 1); Build(mid + 1, r, p << 1 | 1); } void Modify(int l, int r, int p, int k) { if (l <= t[p].l && t[p].r <= r) { t[p].maxx += k, t[p].tag += k; return; } Push_down(p); int mid = (t[p].l + t[p].r) >> 1; if (l <= mid) Modify(l, r, p << 1, k); if (mid < r) Modify(l, r, p << 1 | 1, k); Push_up(p); } } T; void dfs(int fa) { dfn[fa] = ++Time; size[fa] = 1; for (auto i : adj[fa]) { dfs(i); size[fa] += size[i]; } } void Pre() { stack<int> st; for (int i = n; i >= 1; i--) { while (!st.empty() && a[st.top()] <= a[i]) st.pop(); int fa = st.empty() ? n + 1 : st.top(); adj[fa].push_back(i); st.push(i); } dfs(n + 1); } void Solve() { T.Build(1, n + 1, 1); for (int i = 1; i <= k - 1; i++) T.Modify(dfn[i], dfn[i] + size[i] - 1, 1, 1); for (int i = 1; i + k - 1 <= n; i++) { T.Modify(dfn[i + k - 1], dfn[i + k - 1] + size[i + k - 1] - 1, 1, 1); printf("%d ", T.t[1].maxx); T.Modify(dfn[i], dfn[i] + size[i] - 1, 1, -1); } } int main() { read(n), read(k); for (int i = 1; i <= n; i++) read(a[i]); Pre(); Solve(); return 0; }
### Prompt Generate a cpp solution to the following problem: For some array c, let's denote a greedy subsequence as a sequence of indices p_1, p_2, ..., p_l such that 1 ≀ p_1 < p_2 < ... < p_l ≀ |c|, and for each i ∈ [1, l - 1], p_{i + 1} is the minimum number such that p_{i + 1} > p_i and c[p_{i + 1}] > c[p_i]. You are given an array a_1, a_2, ..., a_n. For each its subsegment of length k, calculate the length of its longest greedy subsequence. Input The first line contains two integers n and k (1 ≀ k ≀ n ≀ 10^6) β€” the length of array a and the length of subsegments. The second line contains n integers a_1, a_2, ..., a_n (1 ≀ a_i ≀ n) β€” array a. Output Print n - k + 1 integers β€” the maximum lengths of greedy subsequences of each subsegment having length k. The first number should correspond to subsegment a[1..k], the second β€” to subsegment a[2..k + 1], and so on. Examples Input 6 4 1 5 2 5 3 6 Output 2 2 3 Input 7 6 4 5 2 5 3 6 6 Output 3 3 Note In the first example: * [1, 5, 2, 5] β€” the longest greedy subsequences are 1, 2 ([c_1, c_2] = [1, 5]) or 3, 4 ([c_3, c_4] = [2, 5]). * [5, 2, 5, 3] β€” the sequence is 2, 3 ([c_2, c_3] = [2, 5]). * [2, 5, 3, 6] β€” the sequence is 1, 2, 4 ([c_1, c_2, c_4] = [2, 5, 6]). In the second example: * [4, 5, 2, 5, 3, 6] β€” the longest greedy subsequences are 1, 2, 6 ([c_1, c_2, c_6] = [4, 5, 6]) or 3, 4, 6 ([c_3, c_4, c_6] = [2, 5, 6]). * [5, 2, 5, 3, 6, 6] β€” the subsequence is 2, 3, 5 ([c_2, c_3, c_5] = [2, 5, 6]). ### Response ```cpp #include <bits/stdc++.h> #pragma comment(linker, "/STACK:1024000000,1024000000") using namespace std; const int inf = 0x3f3f3f3f; const long long INF = 1e18; template <typename T> void read(T &x) { x = 0; int s = 1, c = getchar(); for (; !isdigit(c); c = getchar()) if (c == '-') s = -1; for (; isdigit(c); c = getchar()) x = x * 10 + c - 48; x *= s; } template <typename T> void write(T x) { if (x < 0) x = -x, putchar('-'); if (x > 9) write(x / 10); putchar(x % 10 + '0'); } template <typename T> void writeln(T x) { write(x); puts(""); } const int maxn = 1e6 + 5; int n, k, a[maxn], dfn[maxn], Time, size[maxn]; vector<int> adj[maxn]; class SegmentTree { public: struct Node { int l, r, maxx, tag; } t[maxn << 2]; void Push_up(int p) { t[p].maxx = max(t[p << 1].maxx, t[p << 1 | 1].maxx); } void Push_down(int p) { if (t[p].tag) { t[p << 1].maxx += t[p].tag, t[p << 1 | 1].maxx += t[p].tag; t[p << 1].tag += t[p].tag, t[p << 1 | 1].tag += t[p].tag; t[p].tag = 0; } } void Build(int l, int r, int p) { t[p].l = l, t[p].r = r; if (l == r) return; int mid = (l + r) >> 1; Build(l, mid, p << 1); Build(mid + 1, r, p << 1 | 1); } void Modify(int l, int r, int p, int k) { if (l <= t[p].l && t[p].r <= r) { t[p].maxx += k, t[p].tag += k; return; } Push_down(p); int mid = (t[p].l + t[p].r) >> 1; if (l <= mid) Modify(l, r, p << 1, k); if (mid < r) Modify(l, r, p << 1 | 1, k); Push_up(p); } } T; void dfs(int fa) { dfn[fa] = ++Time; size[fa] = 1; for (auto i : adj[fa]) { dfs(i); size[fa] += size[i]; } } void Pre() { stack<int> st; for (int i = n; i >= 1; i--) { while (!st.empty() && a[st.top()] <= a[i]) st.pop(); int fa = st.empty() ? n + 1 : st.top(); adj[fa].push_back(i); st.push(i); } dfs(n + 1); } void Solve() { T.Build(1, n + 1, 1); for (int i = 1; i <= k - 1; i++) T.Modify(dfn[i], dfn[i] + size[i] - 1, 1, 1); for (int i = 1; i + k - 1 <= n; i++) { T.Modify(dfn[i + k - 1], dfn[i + k - 1] + size[i + k - 1] - 1, 1, 1); printf("%d ", T.t[1].maxx); T.Modify(dfn[i], dfn[i] + size[i] - 1, 1, -1); } } int main() { read(n), read(k); for (int i = 1; i <= n; i++) read(a[i]); Pre(); Solve(); return 0; } ```
#include <bits/stdc++.h> using namespace std; const int MAXN = 1000000 + 5; const int inf = 0x3f3f3f3f; int n, k, dfs_clock, A[MAXN], dfn[MAXN], sz[MAXN]; vector<int> G[MAXN]; stack<pair<int, int> > s; inline void add(int u, int v) { G[u].push_back(v); } void dfs(int u) { sz[u] = 1, dfn[u] = ++dfs_clock; for (int i = 0; i < (int)G[u].size(); ++i) dfs(G[u][i]), sz[u] += sz[G[u][i]]; } int maxv[MAXN << 2], addv[MAXN << 2]; inline void up(int o) { maxv[o] = max(maxv[(o << 1)], maxv[((o << 1) | 1)]); } inline void Add(int o, int k) { maxv[o] += k, addv[o] += k; } inline void down(int o) { if (addv[o]) { Add((o << 1), addv[o]); Add(((o << 1) | 1), addv[o]); addv[o] = 0; } } inline void modify(int o, int l, int r, int ql, int qr, int k) { if (qr < l || ql > r) return; if (ql <= l && r <= qr) return Add(o, k); down(o); modify((o << 1), l, ((l + r) >> 1), ql, qr, k); modify(((o << 1) | 1), ((l + r) >> 1) + 1, r, ql, qr, k); up(o); } int main() { scanf("%d %d", &n, &k); for (int i = 1; i <= n; ++i) scanf("%d", A + i); A[++n] = inf; for (int i = 1; i <= n; ++i) { while (!s.empty() && s.top().first < A[i]) add(i, s.top().second), s.pop(); s.push(make_pair(A[i], i)); } dfs(n); for (int i = 1; i <= k; ++i) modify(1, 1, n, dfn[i], dfn[i] + sz[i] - 1, 1); printf("%d ", maxv[1]); for (int i = k + 1; i < n; ++i) { modify(1, 1, n, dfn[i], dfn[i] + sz[i] - 1, 1); modify(1, 1, n, dfn[i - k], dfn[i - k] + sz[i - k] - 1, -1); printf("%d ", maxv[1]); } return 0; }
### Prompt Your challenge is to write a Cpp solution to the following problem: For some array c, let's denote a greedy subsequence as a sequence of indices p_1, p_2, ..., p_l such that 1 ≀ p_1 < p_2 < ... < p_l ≀ |c|, and for each i ∈ [1, l - 1], p_{i + 1} is the minimum number such that p_{i + 1} > p_i and c[p_{i + 1}] > c[p_i]. You are given an array a_1, a_2, ..., a_n. For each its subsegment of length k, calculate the length of its longest greedy subsequence. Input The first line contains two integers n and k (1 ≀ k ≀ n ≀ 10^6) β€” the length of array a and the length of subsegments. The second line contains n integers a_1, a_2, ..., a_n (1 ≀ a_i ≀ n) β€” array a. Output Print n - k + 1 integers β€” the maximum lengths of greedy subsequences of each subsegment having length k. The first number should correspond to subsegment a[1..k], the second β€” to subsegment a[2..k + 1], and so on. Examples Input 6 4 1 5 2 5 3 6 Output 2 2 3 Input 7 6 4 5 2 5 3 6 6 Output 3 3 Note In the first example: * [1, 5, 2, 5] β€” the longest greedy subsequences are 1, 2 ([c_1, c_2] = [1, 5]) or 3, 4 ([c_3, c_4] = [2, 5]). * [5, 2, 5, 3] β€” the sequence is 2, 3 ([c_2, c_3] = [2, 5]). * [2, 5, 3, 6] β€” the sequence is 1, 2, 4 ([c_1, c_2, c_4] = [2, 5, 6]). In the second example: * [4, 5, 2, 5, 3, 6] β€” the longest greedy subsequences are 1, 2, 6 ([c_1, c_2, c_6] = [4, 5, 6]) or 3, 4, 6 ([c_3, c_4, c_6] = [2, 5, 6]). * [5, 2, 5, 3, 6, 6] β€” the subsequence is 2, 3, 5 ([c_2, c_3, c_5] = [2, 5, 6]). ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int MAXN = 1000000 + 5; const int inf = 0x3f3f3f3f; int n, k, dfs_clock, A[MAXN], dfn[MAXN], sz[MAXN]; vector<int> G[MAXN]; stack<pair<int, int> > s; inline void add(int u, int v) { G[u].push_back(v); } void dfs(int u) { sz[u] = 1, dfn[u] = ++dfs_clock; for (int i = 0; i < (int)G[u].size(); ++i) dfs(G[u][i]), sz[u] += sz[G[u][i]]; } int maxv[MAXN << 2], addv[MAXN << 2]; inline void up(int o) { maxv[o] = max(maxv[(o << 1)], maxv[((o << 1) | 1)]); } inline void Add(int o, int k) { maxv[o] += k, addv[o] += k; } inline void down(int o) { if (addv[o]) { Add((o << 1), addv[o]); Add(((o << 1) | 1), addv[o]); addv[o] = 0; } } inline void modify(int o, int l, int r, int ql, int qr, int k) { if (qr < l || ql > r) return; if (ql <= l && r <= qr) return Add(o, k); down(o); modify((o << 1), l, ((l + r) >> 1), ql, qr, k); modify(((o << 1) | 1), ((l + r) >> 1) + 1, r, ql, qr, k); up(o); } int main() { scanf("%d %d", &n, &k); for (int i = 1; i <= n; ++i) scanf("%d", A + i); A[++n] = inf; for (int i = 1; i <= n; ++i) { while (!s.empty() && s.top().first < A[i]) add(i, s.top().second), s.pop(); s.push(make_pair(A[i], i)); } dfs(n); for (int i = 1; i <= k; ++i) modify(1, 1, n, dfn[i], dfn[i] + sz[i] - 1, 1); printf("%d ", maxv[1]); for (int i = k + 1; i < n; ++i) { modify(1, 1, n, dfn[i], dfn[i] + sz[i] - 1, 1); modify(1, 1, n, dfn[i - k], dfn[i - k] + sz[i - k] - 1, -1); printf("%d ", maxv[1]); } return 0; } ```
#include <bits/stdc++.h> using namespace std; int tr[1000005 * 4], mark[1000005 * 4], dfn[1000005], deep[1000005], n, k, a[1000005], nx[1000005], sz, R[1000005], ans[1000005], cnt; vector<int> G[1000005]; void dfs(int x) { dfn[x] = ++sz; for (auto u : G[x]) if (!dfn[u]) { deep[u] = deep[x] + 1; dfs(u); } R[x] = sz; } void insert(int p, int l, int r, int x, int u) { if (x > r || l > x) return; if (l == r) { tr[p] += u; return; } if (mark[p]) { mark[p * 2] += mark[p]; mark[p * 2 + 1] += mark[p]; tr[p * 2] -= mark[p]; tr[p * 2 + 1] -= mark[p]; mark[p] = 0; } int mid = (l + r) / 2; insert(p * 2, l, mid, x, u); insert(p * 2 + 1, mid + 1, r, x, u); tr[p] = max(tr[p * 2], tr[p * 2 + 1]); } void del(int p, int l, int r, int x, int y) { if (x > r || l > y) return; if (x <= l && r <= y) { tr[p]--; mark[p]++; return; } if (mark[p]) { mark[p * 2] += mark[p]; mark[p * 2 + 1] += mark[p]; tr[p * 2] -= mark[p]; tr[p * 2 + 1] -= mark[p]; mark[p] = 0; } int mid = (l + r) / 2; del(p * 2, l, mid, x, y); del(p * 2 + 1, mid + 1, r, x, y); tr[p] = max(tr[p * 2], tr[p * 2 + 1]); } int main() { scanf("%d%d", &n, &k); for (int i = 1; i <= n; i++) scanf("%d", &a[i]); a[n + 1] = n + 1; nx[n] = n + 1; for (int i = n - 1; i >= 1; i--) { nx[i] = i + 1; while (a[nx[i]] <= a[i]) nx[i] = nx[nx[i]]; G[nx[i]].push_back(i); } for (int i = n; i >= 1; i--) if (!dfn[i]) { deep[i] = 1; dfs(i); } for (int i = n; i >= n - k + 1; i--) insert(1, 1, n, dfn[i], deep[i]); ans[++cnt] = tr[1]; for (int i = n - k; i >= 1; i--) { insert(1, 1, n, dfn[i], deep[i]); del(1, 1, n, dfn[i + k], R[i + k]); ans[++cnt] = tr[1]; } for (int i = cnt; i >= 1; i--) printf("%d ", ans[i]); }
### Prompt Please create a solution in cpp to the following problem: For some array c, let's denote a greedy subsequence as a sequence of indices p_1, p_2, ..., p_l such that 1 ≀ p_1 < p_2 < ... < p_l ≀ |c|, and for each i ∈ [1, l - 1], p_{i + 1} is the minimum number such that p_{i + 1} > p_i and c[p_{i + 1}] > c[p_i]. You are given an array a_1, a_2, ..., a_n. For each its subsegment of length k, calculate the length of its longest greedy subsequence. Input The first line contains two integers n and k (1 ≀ k ≀ n ≀ 10^6) β€” the length of array a and the length of subsegments. The second line contains n integers a_1, a_2, ..., a_n (1 ≀ a_i ≀ n) β€” array a. Output Print n - k + 1 integers β€” the maximum lengths of greedy subsequences of each subsegment having length k. The first number should correspond to subsegment a[1..k], the second β€” to subsegment a[2..k + 1], and so on. Examples Input 6 4 1 5 2 5 3 6 Output 2 2 3 Input 7 6 4 5 2 5 3 6 6 Output 3 3 Note In the first example: * [1, 5, 2, 5] β€” the longest greedy subsequences are 1, 2 ([c_1, c_2] = [1, 5]) or 3, 4 ([c_3, c_4] = [2, 5]). * [5, 2, 5, 3] β€” the sequence is 2, 3 ([c_2, c_3] = [2, 5]). * [2, 5, 3, 6] β€” the sequence is 1, 2, 4 ([c_1, c_2, c_4] = [2, 5, 6]). In the second example: * [4, 5, 2, 5, 3, 6] β€” the longest greedy subsequences are 1, 2, 6 ([c_1, c_2, c_6] = [4, 5, 6]) or 3, 4, 6 ([c_3, c_4, c_6] = [2, 5, 6]). * [5, 2, 5, 3, 6, 6] β€” the subsequence is 2, 3, 5 ([c_2, c_3, c_5] = [2, 5, 6]). ### Response ```cpp #include <bits/stdc++.h> using namespace std; int tr[1000005 * 4], mark[1000005 * 4], dfn[1000005], deep[1000005], n, k, a[1000005], nx[1000005], sz, R[1000005], ans[1000005], cnt; vector<int> G[1000005]; void dfs(int x) { dfn[x] = ++sz; for (auto u : G[x]) if (!dfn[u]) { deep[u] = deep[x] + 1; dfs(u); } R[x] = sz; } void insert(int p, int l, int r, int x, int u) { if (x > r || l > x) return; if (l == r) { tr[p] += u; return; } if (mark[p]) { mark[p * 2] += mark[p]; mark[p * 2 + 1] += mark[p]; tr[p * 2] -= mark[p]; tr[p * 2 + 1] -= mark[p]; mark[p] = 0; } int mid = (l + r) / 2; insert(p * 2, l, mid, x, u); insert(p * 2 + 1, mid + 1, r, x, u); tr[p] = max(tr[p * 2], tr[p * 2 + 1]); } void del(int p, int l, int r, int x, int y) { if (x > r || l > y) return; if (x <= l && r <= y) { tr[p]--; mark[p]++; return; } if (mark[p]) { mark[p * 2] += mark[p]; mark[p * 2 + 1] += mark[p]; tr[p * 2] -= mark[p]; tr[p * 2 + 1] -= mark[p]; mark[p] = 0; } int mid = (l + r) / 2; del(p * 2, l, mid, x, y); del(p * 2 + 1, mid + 1, r, x, y); tr[p] = max(tr[p * 2], tr[p * 2 + 1]); } int main() { scanf("%d%d", &n, &k); for (int i = 1; i <= n; i++) scanf("%d", &a[i]); a[n + 1] = n + 1; nx[n] = n + 1; for (int i = n - 1; i >= 1; i--) { nx[i] = i + 1; while (a[nx[i]] <= a[i]) nx[i] = nx[nx[i]]; G[nx[i]].push_back(i); } for (int i = n; i >= 1; i--) if (!dfn[i]) { deep[i] = 1; dfs(i); } for (int i = n; i >= n - k + 1; i--) insert(1, 1, n, dfn[i], deep[i]); ans[++cnt] = tr[1]; for (int i = n - k; i >= 1; i--) { insert(1, 1, n, dfn[i], deep[i]); del(1, 1, n, dfn[i + k], R[i + k]); ans[++cnt] = tr[1]; } for (int i = cnt; i >= 1; i--) printf("%d ", ans[i]); } ```
#include <bits/stdc++.h> using namespace std; mt19937 rnd(chrono::steady_clock::now().time_since_epoch().count()); mt19937 rnf(2106); const int N = 1000006; int n, k; int a[N]; int t[N * 4]; int laz[N * 4]; void shi(int pos) { t[pos * 2] += laz[pos]; laz[pos * 2] += laz[pos]; t[pos * 2 + 1] += laz[pos]; laz[pos * 2 + 1] += laz[pos]; laz[pos] = 0; } void ubds(int tl, int tr, int x, int y, int pos) { if (tl == tr) { t[pos] = y; return; } shi(pos); int m = (tl + tr) / 2; if (x <= m) ubds(tl, m, x, y, pos * 2); else ubds(m + 1, tr, x, y, pos * 2 + 1); t[pos] = min(t[pos * 2], t[pos * 2 + 1]); } int qrys(int tl, int tr, int l, int r, int pos) { if (l > r) return n + 1; if (tl == l && tr == r) return t[pos]; shi(pos); int m = (tl + tr) / 2; return min(qrys(tl, m, l, min(m, r), pos * 2), qrys(m + 1, tr, max(m + 1, l), r, pos * 2 + 1)); } void ubd0(int tl, int tr, int x, int y, int pos) { if (tl == tr) { t[pos] = y; return; } shi(pos); int m = (tl + tr) / 2; if (x <= m) ubd0(tl, m, x, y, pos * 2); else ubd0(m + 1, tr, x, y, pos * 2 + 1); t[pos] = max(t[pos * 2], t[pos * 2 + 1]); } int qry0(int tl, int tr, int x, int pos) { if (tl == tr) { return t[pos]; } shi(pos); int m = (tl + tr) / 2; if (x <= m) return qry0(tl, m, x, pos * 2); else return qry0(m + 1, tr, x, pos * 2 + 1); } void ubd(int tl, int tr, int l, int r, int y, int pos) { if (l > r) return; if (tl == l && tr == r) { t[pos] += y; laz[pos] += y; return; } shi(pos); int m = (tl + tr) / 2; ubd(tl, m, l, min(m, r), y, pos * 2); ubd(m + 1, tr, max(m + 1, l), r, y, pos * 2 + 1); t[pos] = max(t[pos * 2], t[pos * 2 + 1]); } int p[N]; vector<int> g[N]; int tin[N], tout[N], ti; void dfs0(int x) { tin[x] = ++ti; for (int i = 0; i < g[x].size(); ++i) { int h = g[x][i]; dfs0(h); } tout[x] = ti; } void solv() { scanf("%d%d", &n, &k); for (int i = 1; i <= n; ++i) scanf("%d", &a[i]); for (int i = 1; i <= n; ++i) ubds(1, n, i, n + 1, 1); for (int i = n; i >= 1; --i) { p[i] = qrys(1, n, a[i] + 1, n, 1); ubds(1, n, a[i], i, 1); } for (int i = 1; i <= n; ++i) g[p[i]].push_back(i); dfs0(n + 1); for (int i = 1; i <= n + 1; ++i) ubd0(1, n + 1, i, 0, 1); for (int i = n; i >= n - k + 1; --i) { ubd0(1, n + 1, tin[i], qry0(1, n + 1, tin[p[i]], 1) + 1, 1); } vector<int> ans; ans.push_back(t[1]); for (int i = n - k; i >= 1; --i) { ubd(1, n + 1, tin[i + k], tout[i + k], -1, 1); if (p[i] <= i + k - 1) ubd0(1, n + 1, tin[i], qry0(1, n + 1, tin[p[i]], 1) + 1, 1); else ubd0(1, n + 1, tin[i], 1, 1); ans.push_back(t[1]); } reverse((ans).begin(), (ans).end()); for (int i = 0; i < ((int)(ans).size()); ++i) printf("%d ", ans[i]); printf("\n"); } int main() { solv(); return 0; }
### Prompt Please formulate a Cpp solution to the following problem: For some array c, let's denote a greedy subsequence as a sequence of indices p_1, p_2, ..., p_l such that 1 ≀ p_1 < p_2 < ... < p_l ≀ |c|, and for each i ∈ [1, l - 1], p_{i + 1} is the minimum number such that p_{i + 1} > p_i and c[p_{i + 1}] > c[p_i]. You are given an array a_1, a_2, ..., a_n. For each its subsegment of length k, calculate the length of its longest greedy subsequence. Input The first line contains two integers n and k (1 ≀ k ≀ n ≀ 10^6) β€” the length of array a and the length of subsegments. The second line contains n integers a_1, a_2, ..., a_n (1 ≀ a_i ≀ n) β€” array a. Output Print n - k + 1 integers β€” the maximum lengths of greedy subsequences of each subsegment having length k. The first number should correspond to subsegment a[1..k], the second β€” to subsegment a[2..k + 1], and so on. Examples Input 6 4 1 5 2 5 3 6 Output 2 2 3 Input 7 6 4 5 2 5 3 6 6 Output 3 3 Note In the first example: * [1, 5, 2, 5] β€” the longest greedy subsequences are 1, 2 ([c_1, c_2] = [1, 5]) or 3, 4 ([c_3, c_4] = [2, 5]). * [5, 2, 5, 3] β€” the sequence is 2, 3 ([c_2, c_3] = [2, 5]). * [2, 5, 3, 6] β€” the sequence is 1, 2, 4 ([c_1, c_2, c_4] = [2, 5, 6]). In the second example: * [4, 5, 2, 5, 3, 6] β€” the longest greedy subsequences are 1, 2, 6 ([c_1, c_2, c_6] = [4, 5, 6]) or 3, 4, 6 ([c_3, c_4, c_6] = [2, 5, 6]). * [5, 2, 5, 3, 6, 6] β€” the subsequence is 2, 3, 5 ([c_2, c_3, c_5] = [2, 5, 6]). ### Response ```cpp #include <bits/stdc++.h> using namespace std; mt19937 rnd(chrono::steady_clock::now().time_since_epoch().count()); mt19937 rnf(2106); const int N = 1000006; int n, k; int a[N]; int t[N * 4]; int laz[N * 4]; void shi(int pos) { t[pos * 2] += laz[pos]; laz[pos * 2] += laz[pos]; t[pos * 2 + 1] += laz[pos]; laz[pos * 2 + 1] += laz[pos]; laz[pos] = 0; } void ubds(int tl, int tr, int x, int y, int pos) { if (tl == tr) { t[pos] = y; return; } shi(pos); int m = (tl + tr) / 2; if (x <= m) ubds(tl, m, x, y, pos * 2); else ubds(m + 1, tr, x, y, pos * 2 + 1); t[pos] = min(t[pos * 2], t[pos * 2 + 1]); } int qrys(int tl, int tr, int l, int r, int pos) { if (l > r) return n + 1; if (tl == l && tr == r) return t[pos]; shi(pos); int m = (tl + tr) / 2; return min(qrys(tl, m, l, min(m, r), pos * 2), qrys(m + 1, tr, max(m + 1, l), r, pos * 2 + 1)); } void ubd0(int tl, int tr, int x, int y, int pos) { if (tl == tr) { t[pos] = y; return; } shi(pos); int m = (tl + tr) / 2; if (x <= m) ubd0(tl, m, x, y, pos * 2); else ubd0(m + 1, tr, x, y, pos * 2 + 1); t[pos] = max(t[pos * 2], t[pos * 2 + 1]); } int qry0(int tl, int tr, int x, int pos) { if (tl == tr) { return t[pos]; } shi(pos); int m = (tl + tr) / 2; if (x <= m) return qry0(tl, m, x, pos * 2); else return qry0(m + 1, tr, x, pos * 2 + 1); } void ubd(int tl, int tr, int l, int r, int y, int pos) { if (l > r) return; if (tl == l && tr == r) { t[pos] += y; laz[pos] += y; return; } shi(pos); int m = (tl + tr) / 2; ubd(tl, m, l, min(m, r), y, pos * 2); ubd(m + 1, tr, max(m + 1, l), r, y, pos * 2 + 1); t[pos] = max(t[pos * 2], t[pos * 2 + 1]); } int p[N]; vector<int> g[N]; int tin[N], tout[N], ti; void dfs0(int x) { tin[x] = ++ti; for (int i = 0; i < g[x].size(); ++i) { int h = g[x][i]; dfs0(h); } tout[x] = ti; } void solv() { scanf("%d%d", &n, &k); for (int i = 1; i <= n; ++i) scanf("%d", &a[i]); for (int i = 1; i <= n; ++i) ubds(1, n, i, n + 1, 1); for (int i = n; i >= 1; --i) { p[i] = qrys(1, n, a[i] + 1, n, 1); ubds(1, n, a[i], i, 1); } for (int i = 1; i <= n; ++i) g[p[i]].push_back(i); dfs0(n + 1); for (int i = 1; i <= n + 1; ++i) ubd0(1, n + 1, i, 0, 1); for (int i = n; i >= n - k + 1; --i) { ubd0(1, n + 1, tin[i], qry0(1, n + 1, tin[p[i]], 1) + 1, 1); } vector<int> ans; ans.push_back(t[1]); for (int i = n - k; i >= 1; --i) { ubd(1, n + 1, tin[i + k], tout[i + k], -1, 1); if (p[i] <= i + k - 1) ubd0(1, n + 1, tin[i], qry0(1, n + 1, tin[p[i]], 1) + 1, 1); else ubd0(1, n + 1, tin[i], 1, 1); ans.push_back(t[1]); } reverse((ans).begin(), (ans).end()); for (int i = 0; i < ((int)(ans).size()); ++i) printf("%d ", ans[i]); printf("\n"); } int main() { solv(); return 0; } ```
#include <bits/stdc++.h> using namespace std; const int N = 1000005; int n, m, a[N], dp[N], fi[N], l, ne[N], zz[N], rk[N], size[N], tot; struct Tree { int l, r, num, flag; } T1[N * 4], T2[N * 4]; void jb(int x, int y) { ne[++tot] = fi[x]; fi[x] = tot; zz[tot] = y; } void build1(int x, int l, int r) { T1[x].l = l; T1[x].r = r; T1[x].num = 1e9; if (l == r) return; int mid = (l + r) / 2; build1(x * 2, l, mid); build1(x * 2 + 1, mid + 1, r); } void build2(int x, int l, int r) { T2[x].l = l; T2[x].r = r; if (l == r) return; int mid = (l + r) / 2; build2(x * 2, l, mid); build2(x * 2 + 1, mid + 1, r); } void insert1(int x, int y, int z) { T1[x].num = z; if (T1[x].l == T1[x].r) return; int mid = (T1[x].l + T1[x].r) / 2; if (y <= mid) insert1(x * 2, y, z); else insert1(x * 2 + 1, y, z); } int find1(int x, int l, int r) { if (T1[x].l > r || l > T1[x].r) return 1e9; if (T1[x].l >= l && T1[x].r <= r) return T1[x].num; return min(find1(x * 2, l, r), find1(x * 2 + 1, l, r)); } void down(int x) { T2[x * 2].num += T2[x].flag; T2[x * 2 + 1].num += T2[x].flag; T2[x * 2].flag += T2[x].flag; T2[x * 2 + 1].flag += T2[x].flag; T2[x].flag = 0; } void insert2(int x, int l, int r) { if (T2[x].l > r || l > T2[x].r) return; if (T2[x].l >= l && T2[x].r <= r) { T2[x].num++; T2[x].flag++; return; } down(x); insert2(x * 2, l, r); insert2(x * 2 + 1, l, r); T2[x].num = max(T2[x * 2].num, T2[x * 2 + 1].num); } void del(int x, int y) { if (T2[x].l == T2[x].r) { T2[x].num = -1e9; return; } down(x); int mid = (T1[x].l + T1[x].r) / 2; if (y <= mid) del(x * 2, y); else del(x * 2 + 1, y); T2[x].num = max(T2[x * 2].num, T2[x * 2 + 1].num); } void dfs(int x, int y) { size[x] = 1; rk[x] = ++l; for (int i = fi[x]; i; i = ne[i]) if (zz[i] != y) dfs(zz[i], x), size[x] += size[zz[i]]; } int main() { scanf("%d%d", &n, &m); for (int i = 1; i <= n; i++) scanf("%d", &a[i]); build1(1, 1, n + 1); insert1(1, n + 1, n + 1); for (int i = n; i; i--) { dp[i] = find1(1, a[i] + 1, n + 1); insert1(1, a[i], i); jb(dp[i], i); } dfs(n + 1, 0); build2(1, 1, n + 1); for (int i = 1; i <= m; i++) insert2(1, rk[i], size[i] + rk[i] - 1); printf("%d ", T2[1].num); for (int i = m + 1; i <= n; i++) { del(1, rk[i - m]); insert2(1, rk[i], size[i] + rk[i] - 1); printf("%d ", T2[1].num); } return 0; }
### Prompt In Cpp, your task is to solve the following problem: For some array c, let's denote a greedy subsequence as a sequence of indices p_1, p_2, ..., p_l such that 1 ≀ p_1 < p_2 < ... < p_l ≀ |c|, and for each i ∈ [1, l - 1], p_{i + 1} is the minimum number such that p_{i + 1} > p_i and c[p_{i + 1}] > c[p_i]. You are given an array a_1, a_2, ..., a_n. For each its subsegment of length k, calculate the length of its longest greedy subsequence. Input The first line contains two integers n and k (1 ≀ k ≀ n ≀ 10^6) β€” the length of array a and the length of subsegments. The second line contains n integers a_1, a_2, ..., a_n (1 ≀ a_i ≀ n) β€” array a. Output Print n - k + 1 integers β€” the maximum lengths of greedy subsequences of each subsegment having length k. The first number should correspond to subsegment a[1..k], the second β€” to subsegment a[2..k + 1], and so on. Examples Input 6 4 1 5 2 5 3 6 Output 2 2 3 Input 7 6 4 5 2 5 3 6 6 Output 3 3 Note In the first example: * [1, 5, 2, 5] β€” the longest greedy subsequences are 1, 2 ([c_1, c_2] = [1, 5]) or 3, 4 ([c_3, c_4] = [2, 5]). * [5, 2, 5, 3] β€” the sequence is 2, 3 ([c_2, c_3] = [2, 5]). * [2, 5, 3, 6] β€” the sequence is 1, 2, 4 ([c_1, c_2, c_4] = [2, 5, 6]). In the second example: * [4, 5, 2, 5, 3, 6] β€” the longest greedy subsequences are 1, 2, 6 ([c_1, c_2, c_6] = [4, 5, 6]) or 3, 4, 6 ([c_3, c_4, c_6] = [2, 5, 6]). * [5, 2, 5, 3, 6, 6] β€” the subsequence is 2, 3, 5 ([c_2, c_3, c_5] = [2, 5, 6]). ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int N = 1000005; int n, m, a[N], dp[N], fi[N], l, ne[N], zz[N], rk[N], size[N], tot; struct Tree { int l, r, num, flag; } T1[N * 4], T2[N * 4]; void jb(int x, int y) { ne[++tot] = fi[x]; fi[x] = tot; zz[tot] = y; } void build1(int x, int l, int r) { T1[x].l = l; T1[x].r = r; T1[x].num = 1e9; if (l == r) return; int mid = (l + r) / 2; build1(x * 2, l, mid); build1(x * 2 + 1, mid + 1, r); } void build2(int x, int l, int r) { T2[x].l = l; T2[x].r = r; if (l == r) return; int mid = (l + r) / 2; build2(x * 2, l, mid); build2(x * 2 + 1, mid + 1, r); } void insert1(int x, int y, int z) { T1[x].num = z; if (T1[x].l == T1[x].r) return; int mid = (T1[x].l + T1[x].r) / 2; if (y <= mid) insert1(x * 2, y, z); else insert1(x * 2 + 1, y, z); } int find1(int x, int l, int r) { if (T1[x].l > r || l > T1[x].r) return 1e9; if (T1[x].l >= l && T1[x].r <= r) return T1[x].num; return min(find1(x * 2, l, r), find1(x * 2 + 1, l, r)); } void down(int x) { T2[x * 2].num += T2[x].flag; T2[x * 2 + 1].num += T2[x].flag; T2[x * 2].flag += T2[x].flag; T2[x * 2 + 1].flag += T2[x].flag; T2[x].flag = 0; } void insert2(int x, int l, int r) { if (T2[x].l > r || l > T2[x].r) return; if (T2[x].l >= l && T2[x].r <= r) { T2[x].num++; T2[x].flag++; return; } down(x); insert2(x * 2, l, r); insert2(x * 2 + 1, l, r); T2[x].num = max(T2[x * 2].num, T2[x * 2 + 1].num); } void del(int x, int y) { if (T2[x].l == T2[x].r) { T2[x].num = -1e9; return; } down(x); int mid = (T1[x].l + T1[x].r) / 2; if (y <= mid) del(x * 2, y); else del(x * 2 + 1, y); T2[x].num = max(T2[x * 2].num, T2[x * 2 + 1].num); } void dfs(int x, int y) { size[x] = 1; rk[x] = ++l; for (int i = fi[x]; i; i = ne[i]) if (zz[i] != y) dfs(zz[i], x), size[x] += size[zz[i]]; } int main() { scanf("%d%d", &n, &m); for (int i = 1; i <= n; i++) scanf("%d", &a[i]); build1(1, 1, n + 1); insert1(1, n + 1, n + 1); for (int i = n; i; i--) { dp[i] = find1(1, a[i] + 1, n + 1); insert1(1, a[i], i); jb(dp[i], i); } dfs(n + 1, 0); build2(1, 1, n + 1); for (int i = 1; i <= m; i++) insert2(1, rk[i], size[i] + rk[i] - 1); printf("%d ", T2[1].num); for (int i = m + 1; i <= n; i++) { del(1, rk[i - m]); insert2(1, rk[i], size[i] + rk[i] - 1); printf("%d ", T2[1].num); } return 0; } ```
#include <bits/stdc++.h> using namespace std; const int MXN = 1e6 + 5; const int OFF = 1 << 20; int timer; int arr[MXN]; int sol[MXN]; int tin[MXN]; int tout[MXN]; int tree[2 * OFF]; int prop[2 * OFF]; vector<int> adj[MXN]; void update(int l, int r, int dx, int lo = 0, int hi = OFF, int x = 0) { if (l <= lo && hi <= r) { tree[x] += dx; prop[x] += dx; return; } int mid = (lo + hi) / 2; if (l < mid) update(l, r, dx, lo, mid, 2 * x + 1); if (mid < r) update(l, r, dx, mid, hi, 2 * x + 2); tree[x] = max(tree[2 * x + 1], tree[2 * x + 2]) + prop[x]; } void dfs(int x) { tin[x] = timer++; for (int y : adj[x]) { dfs(y); } tout[x] = timer; } int main() { ios::sync_with_stdio(0), cin.tie(0); int n, k; cin >> n >> k; for (int i = 0; i < n; ++i) { cin >> arr[i]; } stack<int> stk; for (int i = n - 1; i >= 0; --i) { while (stk.size() && arr[stk.top()] <= arr[i]) { stk.pop(); } if (stk.size()) { adj[stk.top()].push_back(i); } stk.push(i); } for (int i = n - 1; i >= 0; --i) { if (!tin[i]) { dfs(i); } } update(0, OFF, -MXN); for (int i = n - 1; i >= 0; --i) { if (n - i > k) { int j = i + k; update(tin[j], tout[j], -1); update(tin[j], tin[j] + 1, -MXN); } update(tin[i], tout[i], 1); update(tin[i], tin[i] + 1, MXN); sol[i] = tree[0]; } for (int i = 0; i <= n - k; ++i) { cout << sol[i] << ' '; } }
### Prompt Please formulate a CPP solution to the following problem: For some array c, let's denote a greedy subsequence as a sequence of indices p_1, p_2, ..., p_l such that 1 ≀ p_1 < p_2 < ... < p_l ≀ |c|, and for each i ∈ [1, l - 1], p_{i + 1} is the minimum number such that p_{i + 1} > p_i and c[p_{i + 1}] > c[p_i]. You are given an array a_1, a_2, ..., a_n. For each its subsegment of length k, calculate the length of its longest greedy subsequence. Input The first line contains two integers n and k (1 ≀ k ≀ n ≀ 10^6) β€” the length of array a and the length of subsegments. The second line contains n integers a_1, a_2, ..., a_n (1 ≀ a_i ≀ n) β€” array a. Output Print n - k + 1 integers β€” the maximum lengths of greedy subsequences of each subsegment having length k. The first number should correspond to subsegment a[1..k], the second β€” to subsegment a[2..k + 1], and so on. Examples Input 6 4 1 5 2 5 3 6 Output 2 2 3 Input 7 6 4 5 2 5 3 6 6 Output 3 3 Note In the first example: * [1, 5, 2, 5] β€” the longest greedy subsequences are 1, 2 ([c_1, c_2] = [1, 5]) or 3, 4 ([c_3, c_4] = [2, 5]). * [5, 2, 5, 3] β€” the sequence is 2, 3 ([c_2, c_3] = [2, 5]). * [2, 5, 3, 6] β€” the sequence is 1, 2, 4 ([c_1, c_2, c_4] = [2, 5, 6]). In the second example: * [4, 5, 2, 5, 3, 6] β€” the longest greedy subsequences are 1, 2, 6 ([c_1, c_2, c_6] = [4, 5, 6]) or 3, 4, 6 ([c_3, c_4, c_6] = [2, 5, 6]). * [5, 2, 5, 3, 6, 6] β€” the subsequence is 2, 3, 5 ([c_2, c_3, c_5] = [2, 5, 6]). ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int MXN = 1e6 + 5; const int OFF = 1 << 20; int timer; int arr[MXN]; int sol[MXN]; int tin[MXN]; int tout[MXN]; int tree[2 * OFF]; int prop[2 * OFF]; vector<int> adj[MXN]; void update(int l, int r, int dx, int lo = 0, int hi = OFF, int x = 0) { if (l <= lo && hi <= r) { tree[x] += dx; prop[x] += dx; return; } int mid = (lo + hi) / 2; if (l < mid) update(l, r, dx, lo, mid, 2 * x + 1); if (mid < r) update(l, r, dx, mid, hi, 2 * x + 2); tree[x] = max(tree[2 * x + 1], tree[2 * x + 2]) + prop[x]; } void dfs(int x) { tin[x] = timer++; for (int y : adj[x]) { dfs(y); } tout[x] = timer; } int main() { ios::sync_with_stdio(0), cin.tie(0); int n, k; cin >> n >> k; for (int i = 0; i < n; ++i) { cin >> arr[i]; } stack<int> stk; for (int i = n - 1; i >= 0; --i) { while (stk.size() && arr[stk.top()] <= arr[i]) { stk.pop(); } if (stk.size()) { adj[stk.top()].push_back(i); } stk.push(i); } for (int i = n - 1; i >= 0; --i) { if (!tin[i]) { dfs(i); } } update(0, OFF, -MXN); for (int i = n - 1; i >= 0; --i) { if (n - i > k) { int j = i + k; update(tin[j], tout[j], -1); update(tin[j], tin[j] + 1, -MXN); } update(tin[i], tout[i], 1); update(tin[i], tin[i] + 1, MXN); sol[i] = tree[0]; } for (int i = 0; i <= n - k; ++i) { cout << sol[i] << ' '; } } ```
#include <bits/stdc++.h> using namespace std; const int N = 1e6 + 10; int gi() { int x = 0, o = 1; char ch = getchar(); while (!isdigit(ch) && ch != '-') ch = getchar(); if (ch == '-') o = -1, ch = getchar(); while (isdigit(ch)) x = x * 10 + ch - '0', ch = getchar(); return x * o; } int n, k, a[N], st[N], tp = 0, tag[N << 2], mx[N << 2]; void mdf(int x, int v) { tag[x] += v, mx[x] += v; } void pushdown(int x) { if (tag[x]) mdf((x << 1), tag[x]), mdf((x << 1 | 1), tag[x]), tag[x] = 0; } void modify(int L, int R, int v, int x = 1, int l = 1, int r = n) { if (L <= l && r <= R) return mdf(x, v); pushdown(x); int mid = (l + r) >> 1; if (L <= mid) modify(L, R, v, (x << 1), l, mid); if (R > mid) modify(L, R, v, (x << 1 | 1), mid + 1, r); mx[x] = max(mx[(x << 1)], mx[(x << 1 | 1)]); } int query(int L, int R, int x = 1, int l = 1, int r = n) { if (L <= l && r <= R) return mx[x]; pushdown(x); int mid = (l + r) >> 1, ret = 0; if (L <= mid) ret = max(ret, query(L, R, (x << 1), l, mid)); if (R > mid) ret = max(ret, query(L, R, (x << 1 | 1), mid + 1, r)); return ret; } int main() { cin >> n >> k; for (int i = 1; i <= n; i++) { a[i] = gi(); while (tp && a[st[tp]] < a[i]) --tp; modify(st[tp] + 1, i, 1); st[++tp] = i; if (i >= k) cout << query(i - k + 1, i) << ' '; } return 0; }
### Prompt Develop a solution in Cpp to the problem described below: For some array c, let's denote a greedy subsequence as a sequence of indices p_1, p_2, ..., p_l such that 1 ≀ p_1 < p_2 < ... < p_l ≀ |c|, and for each i ∈ [1, l - 1], p_{i + 1} is the minimum number such that p_{i + 1} > p_i and c[p_{i + 1}] > c[p_i]. You are given an array a_1, a_2, ..., a_n. For each its subsegment of length k, calculate the length of its longest greedy subsequence. Input The first line contains two integers n and k (1 ≀ k ≀ n ≀ 10^6) β€” the length of array a and the length of subsegments. The second line contains n integers a_1, a_2, ..., a_n (1 ≀ a_i ≀ n) β€” array a. Output Print n - k + 1 integers β€” the maximum lengths of greedy subsequences of each subsegment having length k. The first number should correspond to subsegment a[1..k], the second β€” to subsegment a[2..k + 1], and so on. Examples Input 6 4 1 5 2 5 3 6 Output 2 2 3 Input 7 6 4 5 2 5 3 6 6 Output 3 3 Note In the first example: * [1, 5, 2, 5] β€” the longest greedy subsequences are 1, 2 ([c_1, c_2] = [1, 5]) or 3, 4 ([c_3, c_4] = [2, 5]). * [5, 2, 5, 3] β€” the sequence is 2, 3 ([c_2, c_3] = [2, 5]). * [2, 5, 3, 6] β€” the sequence is 1, 2, 4 ([c_1, c_2, c_4] = [2, 5, 6]). In the second example: * [4, 5, 2, 5, 3, 6] β€” the longest greedy subsequences are 1, 2, 6 ([c_1, c_2, c_6] = [4, 5, 6]) or 3, 4, 6 ([c_3, c_4, c_6] = [2, 5, 6]). * [5, 2, 5, 3, 6, 6] β€” the subsequence is 2, 3, 5 ([c_2, c_3, c_5] = [2, 5, 6]). ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int N = 1e6 + 10; int gi() { int x = 0, o = 1; char ch = getchar(); while (!isdigit(ch) && ch != '-') ch = getchar(); if (ch == '-') o = -1, ch = getchar(); while (isdigit(ch)) x = x * 10 + ch - '0', ch = getchar(); return x * o; } int n, k, a[N], st[N], tp = 0, tag[N << 2], mx[N << 2]; void mdf(int x, int v) { tag[x] += v, mx[x] += v; } void pushdown(int x) { if (tag[x]) mdf((x << 1), tag[x]), mdf((x << 1 | 1), tag[x]), tag[x] = 0; } void modify(int L, int R, int v, int x = 1, int l = 1, int r = n) { if (L <= l && r <= R) return mdf(x, v); pushdown(x); int mid = (l + r) >> 1; if (L <= mid) modify(L, R, v, (x << 1), l, mid); if (R > mid) modify(L, R, v, (x << 1 | 1), mid + 1, r); mx[x] = max(mx[(x << 1)], mx[(x << 1 | 1)]); } int query(int L, int R, int x = 1, int l = 1, int r = n) { if (L <= l && r <= R) return mx[x]; pushdown(x); int mid = (l + r) >> 1, ret = 0; if (L <= mid) ret = max(ret, query(L, R, (x << 1), l, mid)); if (R > mid) ret = max(ret, query(L, R, (x << 1 | 1), mid + 1, r)); return ret; } int main() { cin >> n >> k; for (int i = 1; i <= n; i++) { a[i] = gi(); while (tp && a[st[tp]] < a[i]) --tp; modify(st[tp] + 1, i, 1); st[++tp] = i; if (i >= k) cout << query(i - k + 1, i) << ' '; } return 0; } ```
#include <bits/stdc++.h> using namespace std; const int N = 1000010; inline int read() { int s = 0, w = 1; register char ch = getchar(); while (ch < '0' || ch > '9') { if (ch == '-') w = -1; ch = getchar(); } while (ch >= '0' && ch <= '9') s = (s << 3) + (s << 1) + (ch ^ 48), ch = getchar(); return s * w; } int n, K, a[N], pos[N]; vector<pair<int, int> > A; set<int> B; int sum[N << 2], flag[N << 2]; inline void pu(int x) { sum[x] = max(sum[(x << 1)], sum[(x << 1 | 1)]); } inline void pd(int x) { sum[(x << 1)] += flag[x]; sum[(x << 1 | 1)] += flag[x]; flag[(x << 1)] += flag[x]; flag[(x << 1 | 1)] += flag[x]; flag[x] = 0; } void UpDate(int u, int v, int l, int r, int x, int k) { if (l >= u && r <= v) { sum[x] += k; flag[x] += k; return; } if (flag[x]) pd(x); int mid = (l + r) / 2; if (u <= mid) UpDate(u, v, l, mid, (x << 1), k); if (v > mid) UpDate(u, v, mid + 1, r, (x << 1 | 1), k); pu(x); } int Ask(int u, int v, int l, int r, int x) { if (l >= u && r <= v) return sum[x]; if (flag[x]) pd(x); int mid = (l + r) / 2, tt = 0; if (u <= mid) tt = max(tt, Ask(u, v, l, mid, (x << 1))); if (v > mid) tt = max(tt, Ask(u, v, mid + 1, r, (x << 1 | 1))); return tt; } signed main() { n = read(), K = read(); for (register int i = 1; i <= n; i++) a[i] = read(), A.emplace_back(make_pair(a[i], -i)); sort(A.begin(), A.end()); reverse(A.begin(), A.end()); B.insert(0), B.insert(n + 1); for (register int i = 0; i < n; i++) { int id = -A[i].second; int tt = *(--B.lower_bound(id)); B.insert(id), pos[id] = tt + 1; } for (register int i = 1; i <= n; i++) { UpDate(pos[i], i, 1, n, 1, 1); if (i >= K) printf("%d ", Ask(i - K + 1, i, 1, n, 1)); } puts(""); return 0; }
### Prompt Develop a solution in CPP to the problem described below: For some array c, let's denote a greedy subsequence as a sequence of indices p_1, p_2, ..., p_l such that 1 ≀ p_1 < p_2 < ... < p_l ≀ |c|, and for each i ∈ [1, l - 1], p_{i + 1} is the minimum number such that p_{i + 1} > p_i and c[p_{i + 1}] > c[p_i]. You are given an array a_1, a_2, ..., a_n. For each its subsegment of length k, calculate the length of its longest greedy subsequence. Input The first line contains two integers n and k (1 ≀ k ≀ n ≀ 10^6) β€” the length of array a and the length of subsegments. The second line contains n integers a_1, a_2, ..., a_n (1 ≀ a_i ≀ n) β€” array a. Output Print n - k + 1 integers β€” the maximum lengths of greedy subsequences of each subsegment having length k. The first number should correspond to subsegment a[1..k], the second β€” to subsegment a[2..k + 1], and so on. Examples Input 6 4 1 5 2 5 3 6 Output 2 2 3 Input 7 6 4 5 2 5 3 6 6 Output 3 3 Note In the first example: * [1, 5, 2, 5] β€” the longest greedy subsequences are 1, 2 ([c_1, c_2] = [1, 5]) or 3, 4 ([c_3, c_4] = [2, 5]). * [5, 2, 5, 3] β€” the sequence is 2, 3 ([c_2, c_3] = [2, 5]). * [2, 5, 3, 6] β€” the sequence is 1, 2, 4 ([c_1, c_2, c_4] = [2, 5, 6]). In the second example: * [4, 5, 2, 5, 3, 6] β€” the longest greedy subsequences are 1, 2, 6 ([c_1, c_2, c_6] = [4, 5, 6]) or 3, 4, 6 ([c_3, c_4, c_6] = [2, 5, 6]). * [5, 2, 5, 3, 6, 6] β€” the subsequence is 2, 3, 5 ([c_2, c_3, c_5] = [2, 5, 6]). ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int N = 1000010; inline int read() { int s = 0, w = 1; register char ch = getchar(); while (ch < '0' || ch > '9') { if (ch == '-') w = -1; ch = getchar(); } while (ch >= '0' && ch <= '9') s = (s << 3) + (s << 1) + (ch ^ 48), ch = getchar(); return s * w; } int n, K, a[N], pos[N]; vector<pair<int, int> > A; set<int> B; int sum[N << 2], flag[N << 2]; inline void pu(int x) { sum[x] = max(sum[(x << 1)], sum[(x << 1 | 1)]); } inline void pd(int x) { sum[(x << 1)] += flag[x]; sum[(x << 1 | 1)] += flag[x]; flag[(x << 1)] += flag[x]; flag[(x << 1 | 1)] += flag[x]; flag[x] = 0; } void UpDate(int u, int v, int l, int r, int x, int k) { if (l >= u && r <= v) { sum[x] += k; flag[x] += k; return; } if (flag[x]) pd(x); int mid = (l + r) / 2; if (u <= mid) UpDate(u, v, l, mid, (x << 1), k); if (v > mid) UpDate(u, v, mid + 1, r, (x << 1 | 1), k); pu(x); } int Ask(int u, int v, int l, int r, int x) { if (l >= u && r <= v) return sum[x]; if (flag[x]) pd(x); int mid = (l + r) / 2, tt = 0; if (u <= mid) tt = max(tt, Ask(u, v, l, mid, (x << 1))); if (v > mid) tt = max(tt, Ask(u, v, mid + 1, r, (x << 1 | 1))); return tt; } signed main() { n = read(), K = read(); for (register int i = 1; i <= n; i++) a[i] = read(), A.emplace_back(make_pair(a[i], -i)); sort(A.begin(), A.end()); reverse(A.begin(), A.end()); B.insert(0), B.insert(n + 1); for (register int i = 0; i < n; i++) { int id = -A[i].second; int tt = *(--B.lower_bound(id)); B.insert(id), pos[id] = tt + 1; } for (register int i = 1; i <= n; i++) { UpDate(pos[i], i, 1, n, 1, 1); if (i >= K) printf("%d ", Ask(i - K + 1, i, 1, n, 1)); } puts(""); return 0; } ```
#include <bits/stdc++.h> using namespace std; const long long MOD = (1e9 + 7); const long long INF = (1e9 + 123456789); const long long INFL = (INF * INF); inline long long addm(long long a, long long b, long long m = MOD) { return ((a + b) % m); } inline long long subm(long long a, long long b, long long m = MOD) { return (((a - b) % m + m) % m); } inline long long mulm(long long a, long long b, long long m = MOD) { return ((a * b) % m); } long long powm(long long a, long long b, long long m = MOD) { long long ret = (!b) ? 1 : powm(a, b / 2, m); return (!b) ? 1 : mulm(mulm(ret, ret, m), b % 2 ? a : 1, m); } long long gcd(long long a, long long b) { return (!b) ? a : gcd(b, a % b); } long long lcm(long long a, long long b) { return a / gcd(a, b) * b; } long long inv(long long x, long long m = MOD) { return powm(x, m - 2, m); } const int N = 1000500; int a[N], lft[N], nxt[N]; vector<int> nodes, g[N]; struct SegmentTree { int f, t; SegmentTree *lc, *rc; bool has_child, has_lazy = false; int upd = 0; int vmax = 0; SegmentTree(int l, int r) { if (l == r) { f = t = l; lc = rc = NULL; has_child = false; } else { f = l; t = r; int mid = (l + r) / 2; lc = new SegmentTree(l, mid); rc = new SegmentTree(mid + 1, r); has_child = true; } } void change(int v) { vmax += v; upd += v; has_lazy = true; } void push() { if (!has_lazy) return; lc->change(upd); rc->change(upd); upd = 0; has_lazy = false; } void update(int l, int r, int x) { if (r < f || l > t) return; if (l <= f && t <= r) { change(x); return; } push(); lc->update(l, r, x); rc->update(l, r, x); vmax = max(lc->vmax, rc->vmax); } int query(int l, int r) { if (r < f || l > t) return 0; if (l <= f && t <= r) return vmax; return vmax = max(lc->query(l, r), rc->query(l, r)); } }; void solve() { int n, k; cin >> n >> k; for (int i = 0; i < n; i++) cin >> a[i]; stack<int> st; for (int i = n - 1; i >= 0; i--) { while (!st.empty() && a[st.top()] <= a[i]) st.pop(); if (!st.empty()) nxt[i] = st.top(); else nxt[i] = n; st.push(i); } for (int i = 0; i < n; i++) g[nxt[i]].push_back(i); function<void(int)> post = [&](int v) { int l = (int)(nodes).size(); for (int u : g[v]) post(u); lft[(int)(nodes).size()] = l; nodes.push_back(v); }; post(n); SegmentTree root(0, n); for (int i = 0; i < k; i++) root.update(lft[i], i, 1); vector<int> ans; ans.push_back(root.query(0, n)); for (int i = k; i < n; i++) { root.update(lft[i - k], i - k, -1); root.update(lft[i], i, 1); ans.push_back(root.query(0, n)); } for (int i = 0; i < (int)(ans).size(); i++) { if (i) cout << " "; cout << ans[i]; } cout << "\n"; } int main(int argc, char *argv[]) { cin.sync_with_stdio(0); cin.tie(NULL); solve(); return 0; }
### Prompt Develop a solution in cpp to the problem described below: For some array c, let's denote a greedy subsequence as a sequence of indices p_1, p_2, ..., p_l such that 1 ≀ p_1 < p_2 < ... < p_l ≀ |c|, and for each i ∈ [1, l - 1], p_{i + 1} is the minimum number such that p_{i + 1} > p_i and c[p_{i + 1}] > c[p_i]. You are given an array a_1, a_2, ..., a_n. For each its subsegment of length k, calculate the length of its longest greedy subsequence. Input The first line contains two integers n and k (1 ≀ k ≀ n ≀ 10^6) β€” the length of array a and the length of subsegments. The second line contains n integers a_1, a_2, ..., a_n (1 ≀ a_i ≀ n) β€” array a. Output Print n - k + 1 integers β€” the maximum lengths of greedy subsequences of each subsegment having length k. The first number should correspond to subsegment a[1..k], the second β€” to subsegment a[2..k + 1], and so on. Examples Input 6 4 1 5 2 5 3 6 Output 2 2 3 Input 7 6 4 5 2 5 3 6 6 Output 3 3 Note In the first example: * [1, 5, 2, 5] β€” the longest greedy subsequences are 1, 2 ([c_1, c_2] = [1, 5]) or 3, 4 ([c_3, c_4] = [2, 5]). * [5, 2, 5, 3] β€” the sequence is 2, 3 ([c_2, c_3] = [2, 5]). * [2, 5, 3, 6] β€” the sequence is 1, 2, 4 ([c_1, c_2, c_4] = [2, 5, 6]). In the second example: * [4, 5, 2, 5, 3, 6] β€” the longest greedy subsequences are 1, 2, 6 ([c_1, c_2, c_6] = [4, 5, 6]) or 3, 4, 6 ([c_3, c_4, c_6] = [2, 5, 6]). * [5, 2, 5, 3, 6, 6] β€” the subsequence is 2, 3, 5 ([c_2, c_3, c_5] = [2, 5, 6]). ### Response ```cpp #include <bits/stdc++.h> using namespace std; const long long MOD = (1e9 + 7); const long long INF = (1e9 + 123456789); const long long INFL = (INF * INF); inline long long addm(long long a, long long b, long long m = MOD) { return ((a + b) % m); } inline long long subm(long long a, long long b, long long m = MOD) { return (((a - b) % m + m) % m); } inline long long mulm(long long a, long long b, long long m = MOD) { return ((a * b) % m); } long long powm(long long a, long long b, long long m = MOD) { long long ret = (!b) ? 1 : powm(a, b / 2, m); return (!b) ? 1 : mulm(mulm(ret, ret, m), b % 2 ? a : 1, m); } long long gcd(long long a, long long b) { return (!b) ? a : gcd(b, a % b); } long long lcm(long long a, long long b) { return a / gcd(a, b) * b; } long long inv(long long x, long long m = MOD) { return powm(x, m - 2, m); } const int N = 1000500; int a[N], lft[N], nxt[N]; vector<int> nodes, g[N]; struct SegmentTree { int f, t; SegmentTree *lc, *rc; bool has_child, has_lazy = false; int upd = 0; int vmax = 0; SegmentTree(int l, int r) { if (l == r) { f = t = l; lc = rc = NULL; has_child = false; } else { f = l; t = r; int mid = (l + r) / 2; lc = new SegmentTree(l, mid); rc = new SegmentTree(mid + 1, r); has_child = true; } } void change(int v) { vmax += v; upd += v; has_lazy = true; } void push() { if (!has_lazy) return; lc->change(upd); rc->change(upd); upd = 0; has_lazy = false; } void update(int l, int r, int x) { if (r < f || l > t) return; if (l <= f && t <= r) { change(x); return; } push(); lc->update(l, r, x); rc->update(l, r, x); vmax = max(lc->vmax, rc->vmax); } int query(int l, int r) { if (r < f || l > t) return 0; if (l <= f && t <= r) return vmax; return vmax = max(lc->query(l, r), rc->query(l, r)); } }; void solve() { int n, k; cin >> n >> k; for (int i = 0; i < n; i++) cin >> a[i]; stack<int> st; for (int i = n - 1; i >= 0; i--) { while (!st.empty() && a[st.top()] <= a[i]) st.pop(); if (!st.empty()) nxt[i] = st.top(); else nxt[i] = n; st.push(i); } for (int i = 0; i < n; i++) g[nxt[i]].push_back(i); function<void(int)> post = [&](int v) { int l = (int)(nodes).size(); for (int u : g[v]) post(u); lft[(int)(nodes).size()] = l; nodes.push_back(v); }; post(n); SegmentTree root(0, n); for (int i = 0; i < k; i++) root.update(lft[i], i, 1); vector<int> ans; ans.push_back(root.query(0, n)); for (int i = k; i < n; i++) { root.update(lft[i - k], i - k, -1); root.update(lft[i], i, 1); ans.push_back(root.query(0, n)); } for (int i = 0; i < (int)(ans).size(); i++) { if (i) cout << " "; cout << ans[i]; } cout << "\n"; } int main(int argc, char *argv[]) { cin.sync_with_stdio(0); cin.tie(NULL); solve(); return 0; } ```
#include <bits/stdc++.h> using namespace std; const double pi = acos(-1); const int MOD = 1e9 + 7; const int INF = 1e9 + 7; const int MAXN = 1e6 + 5; const double eps = 1e-9; int a[MAXN], st[MAXN], en[MAXN]; vector<int> adj[MAXN]; int t = 0, tree[4 * MAXN], lazy[4 * MAXN]; void prop(int l, int r, int k) { if (l != r) { lazy[k * 2] += lazy[k]; lazy[k * 2 + 1] += lazy[k]; } lazy[k] = 0; } int qry(int l, int r, int k, int a, int b) { tree[k] += lazy[k]; prop(l, r, k); if (r < a || b < l) return 0; if (a <= l && r <= b) return tree[k]; int m = (l + r) / 2; return max(qry(l, m, k * 2, a, b), qry(m + 1, r, k * 2 + 1, a, b)); } void upd(int l, int r, int k, int a, int b, int v) { tree[k] += lazy[k]; prop(l, r, k); if (r < a || b < l) return; if (a <= l && r <= b) { tree[k] += v; lazy[k] += v; prop(l, r, k); return; } int m = (l + r) / 2; upd(l, m, k * 2, a, b, v); upd(m + 1, r, k * 2 + 1, a, b, v); tree[k] = max(tree[k * 2], tree[k * 2 + 1]); } void add(int u, int v) { adj[u].push_back(v); adj[v].push_back(u); } void dfs(int u, int p) { st[u] = t++; for (int v : adj[u]) if (v != p) dfs(v, u); en[u] = t; } int ind[MAXN]; int main() { int n, k; scanf("%d %d", &n, &k); for (int i = 0; i < (n); i++) scanf("%d", &(a[i])); deque<int> pq; vector<int> root; for (int i = n - 1; i >= 0; i--) { while (!pq.empty() && a[i] >= a[pq.back()]) pq.pop_back(); if (!pq.empty()) add(i, pq.back()); else root.push_back(i); pq.push_back(i); } for (int i = 0; i < n; i++) sort(adj[i].begin(), adj[i].end()); reverse(root.begin(), root.end()); for (int u : root) dfs(u, -1); for (int i = 0; i < n; i++) { upd(0, n - 1, 1, st[i], en[i] - 1, 1); if (i >= k - 1) { printf("%d ", qry(0, n - 1, 1, 0, n - 1)); upd(0, n - 1, 1, st[i - k + 1], en[i - k + 1] - 1, -1); } } return 0; }
### Prompt In cpp, your task is to solve the following problem: For some array c, let's denote a greedy subsequence as a sequence of indices p_1, p_2, ..., p_l such that 1 ≀ p_1 < p_2 < ... < p_l ≀ |c|, and for each i ∈ [1, l - 1], p_{i + 1} is the minimum number such that p_{i + 1} > p_i and c[p_{i + 1}] > c[p_i]. You are given an array a_1, a_2, ..., a_n. For each its subsegment of length k, calculate the length of its longest greedy subsequence. Input The first line contains two integers n and k (1 ≀ k ≀ n ≀ 10^6) β€” the length of array a and the length of subsegments. The second line contains n integers a_1, a_2, ..., a_n (1 ≀ a_i ≀ n) β€” array a. Output Print n - k + 1 integers β€” the maximum lengths of greedy subsequences of each subsegment having length k. The first number should correspond to subsegment a[1..k], the second β€” to subsegment a[2..k + 1], and so on. Examples Input 6 4 1 5 2 5 3 6 Output 2 2 3 Input 7 6 4 5 2 5 3 6 6 Output 3 3 Note In the first example: * [1, 5, 2, 5] β€” the longest greedy subsequences are 1, 2 ([c_1, c_2] = [1, 5]) or 3, 4 ([c_3, c_4] = [2, 5]). * [5, 2, 5, 3] β€” the sequence is 2, 3 ([c_2, c_3] = [2, 5]). * [2, 5, 3, 6] β€” the sequence is 1, 2, 4 ([c_1, c_2, c_4] = [2, 5, 6]). In the second example: * [4, 5, 2, 5, 3, 6] β€” the longest greedy subsequences are 1, 2, 6 ([c_1, c_2, c_6] = [4, 5, 6]) or 3, 4, 6 ([c_3, c_4, c_6] = [2, 5, 6]). * [5, 2, 5, 3, 6, 6] β€” the subsequence is 2, 3, 5 ([c_2, c_3, c_5] = [2, 5, 6]). ### Response ```cpp #include <bits/stdc++.h> using namespace std; const double pi = acos(-1); const int MOD = 1e9 + 7; const int INF = 1e9 + 7; const int MAXN = 1e6 + 5; const double eps = 1e-9; int a[MAXN], st[MAXN], en[MAXN]; vector<int> adj[MAXN]; int t = 0, tree[4 * MAXN], lazy[4 * MAXN]; void prop(int l, int r, int k) { if (l != r) { lazy[k * 2] += lazy[k]; lazy[k * 2 + 1] += lazy[k]; } lazy[k] = 0; } int qry(int l, int r, int k, int a, int b) { tree[k] += lazy[k]; prop(l, r, k); if (r < a || b < l) return 0; if (a <= l && r <= b) return tree[k]; int m = (l + r) / 2; return max(qry(l, m, k * 2, a, b), qry(m + 1, r, k * 2 + 1, a, b)); } void upd(int l, int r, int k, int a, int b, int v) { tree[k] += lazy[k]; prop(l, r, k); if (r < a || b < l) return; if (a <= l && r <= b) { tree[k] += v; lazy[k] += v; prop(l, r, k); return; } int m = (l + r) / 2; upd(l, m, k * 2, a, b, v); upd(m + 1, r, k * 2 + 1, a, b, v); tree[k] = max(tree[k * 2], tree[k * 2 + 1]); } void add(int u, int v) { adj[u].push_back(v); adj[v].push_back(u); } void dfs(int u, int p) { st[u] = t++; for (int v : adj[u]) if (v != p) dfs(v, u); en[u] = t; } int ind[MAXN]; int main() { int n, k; scanf("%d %d", &n, &k); for (int i = 0; i < (n); i++) scanf("%d", &(a[i])); deque<int> pq; vector<int> root; for (int i = n - 1; i >= 0; i--) { while (!pq.empty() && a[i] >= a[pq.back()]) pq.pop_back(); if (!pq.empty()) add(i, pq.back()); else root.push_back(i); pq.push_back(i); } for (int i = 0; i < n; i++) sort(adj[i].begin(), adj[i].end()); reverse(root.begin(), root.end()); for (int u : root) dfs(u, -1); for (int i = 0; i < n; i++) { upd(0, n - 1, 1, st[i], en[i] - 1, 1); if (i >= k - 1) { printf("%d ", qry(0, n - 1, 1, 0, n - 1)); upd(0, n - 1, 1, st[i - k + 1], en[i - k + 1] - 1, -1); } } return 0; } ```
#include <bits/stdc++.h> using namespace std; int better(int a, int b, const vector<int>& depth, const vector<vector<int>>& par) { if (depth[a] >= depth[b]) return 2 * depth.size(); int sb = b; for (int i = 19; i >= 0; --i) if (par[b][i] != -1 && depth[par[b][i]] >= depth[a]) b = par[b][i]; for (int i = 19; i >= 0; --i) if (par[a][i] != -1 && par[b][i] != -1 && par[a][i] != par[b][i]) { a = par[a][i]; b = par[b][i]; sb = par[sb][i]; } return par[sb][0]; } int main() { ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0); int n, k; cin >> n >> k; vector<int> a(n); for (auto& x : a) cin >> x; vector<int> f(n, -1); vector<int> depth(n, 0); vector<int> stk; for (int i = n - 1; i >= 0; --i) { while (stk.size() > 0 && a[stk.back()] <= a[i]) stk.pop_back(); if (stk.size() > 0) { f[i] = stk.back(); depth[i] = depth[f[i]] + 1; } stk.push_back(i); } vector<vector<int>> par(n, vector<int>(20, -1)); for (int i = 0; i < n; ++i) par[i][0] = f[i]; for (int s = 1; s < 20; ++s) for (int i = 0; i < n; ++i) if (par[i][s - 1] != -1) { par[i][s] = par[par[i][s - 1]][s - 1]; } deque<int> q; vector<int> res; for (int i = n - 1; i >= 0; --i) { while (q.size() > 1 && better(q[1], q[0], depth, par) >= i + k) { q.pop_front(); } while (q.size() > 0) { int x = better(i, q.back(), depth, par); if (x >= i + k) { q.pop_back(); continue; } if (q.size() == 1) break; int y = better(q.back(), q[q.size() - 2], depth, par); if (x >= y) { q.pop_back(); continue; } break; } q.push_back(i); if (i + k <= n) { int x = q.front(); int cnt = 0; for (int j = 19; j >= 0; --j) { if (par[x][j] != -1 && par[x][j] < i + k) { cnt += 1 << j; x = par[x][j]; } } res.push_back(cnt); } } for (int i = res.size() - 1; i >= 0; --i) cout << res[i] + 1 << " "; cout << endl; return 0; }
### Prompt Your task is to create a cpp solution to the following problem: For some array c, let's denote a greedy subsequence as a sequence of indices p_1, p_2, ..., p_l such that 1 ≀ p_1 < p_2 < ... < p_l ≀ |c|, and for each i ∈ [1, l - 1], p_{i + 1} is the minimum number such that p_{i + 1} > p_i and c[p_{i + 1}] > c[p_i]. You are given an array a_1, a_2, ..., a_n. For each its subsegment of length k, calculate the length of its longest greedy subsequence. Input The first line contains two integers n and k (1 ≀ k ≀ n ≀ 10^6) β€” the length of array a and the length of subsegments. The second line contains n integers a_1, a_2, ..., a_n (1 ≀ a_i ≀ n) β€” array a. Output Print n - k + 1 integers β€” the maximum lengths of greedy subsequences of each subsegment having length k. The first number should correspond to subsegment a[1..k], the second β€” to subsegment a[2..k + 1], and so on. Examples Input 6 4 1 5 2 5 3 6 Output 2 2 3 Input 7 6 4 5 2 5 3 6 6 Output 3 3 Note In the first example: * [1, 5, 2, 5] β€” the longest greedy subsequences are 1, 2 ([c_1, c_2] = [1, 5]) or 3, 4 ([c_3, c_4] = [2, 5]). * [5, 2, 5, 3] β€” the sequence is 2, 3 ([c_2, c_3] = [2, 5]). * [2, 5, 3, 6] β€” the sequence is 1, 2, 4 ([c_1, c_2, c_4] = [2, 5, 6]). In the second example: * [4, 5, 2, 5, 3, 6] β€” the longest greedy subsequences are 1, 2, 6 ([c_1, c_2, c_6] = [4, 5, 6]) or 3, 4, 6 ([c_3, c_4, c_6] = [2, 5, 6]). * [5, 2, 5, 3, 6, 6] β€” the subsequence is 2, 3, 5 ([c_2, c_3, c_5] = [2, 5, 6]). ### Response ```cpp #include <bits/stdc++.h> using namespace std; int better(int a, int b, const vector<int>& depth, const vector<vector<int>>& par) { if (depth[a] >= depth[b]) return 2 * depth.size(); int sb = b; for (int i = 19; i >= 0; --i) if (par[b][i] != -1 && depth[par[b][i]] >= depth[a]) b = par[b][i]; for (int i = 19; i >= 0; --i) if (par[a][i] != -1 && par[b][i] != -1 && par[a][i] != par[b][i]) { a = par[a][i]; b = par[b][i]; sb = par[sb][i]; } return par[sb][0]; } int main() { ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0); int n, k; cin >> n >> k; vector<int> a(n); for (auto& x : a) cin >> x; vector<int> f(n, -1); vector<int> depth(n, 0); vector<int> stk; for (int i = n - 1; i >= 0; --i) { while (stk.size() > 0 && a[stk.back()] <= a[i]) stk.pop_back(); if (stk.size() > 0) { f[i] = stk.back(); depth[i] = depth[f[i]] + 1; } stk.push_back(i); } vector<vector<int>> par(n, vector<int>(20, -1)); for (int i = 0; i < n; ++i) par[i][0] = f[i]; for (int s = 1; s < 20; ++s) for (int i = 0; i < n; ++i) if (par[i][s - 1] != -1) { par[i][s] = par[par[i][s - 1]][s - 1]; } deque<int> q; vector<int> res; for (int i = n - 1; i >= 0; --i) { while (q.size() > 1 && better(q[1], q[0], depth, par) >= i + k) { q.pop_front(); } while (q.size() > 0) { int x = better(i, q.back(), depth, par); if (x >= i + k) { q.pop_back(); continue; } if (q.size() == 1) break; int y = better(q.back(), q[q.size() - 2], depth, par); if (x >= y) { q.pop_back(); continue; } break; } q.push_back(i); if (i + k <= n) { int x = q.front(); int cnt = 0; for (int j = 19; j >= 0; --j) { if (par[x][j] != -1 && par[x][j] < i + k) { cnt += 1 << j; x = par[x][j]; } } res.push_back(cnt); } } for (int i = res.size() - 1; i >= 0; --i) cout << res[i] + 1 << " "; cout << endl; return 0; } ```
#include <bits/stdc++.h> using namespace std; int n, m, m1, len, top, a[1000005], size[1000005], dfn[1000005], nex[1000005], wen[1000005], hea[1000005], sta[1000005]; struct segment_tree { int a[4000005], lazy[4000005]; void pushdown(int k) { int t = lazy[k]; a[k << 1] += t; lazy[k << 1] += t; a[(k << 1) | 1] += t; lazy[(k << 1) | 1] += t; lazy[k] = 0; } void update(int l, int r, int k, int x, int y, int z) { if (l >= x && r <= y) { a[k] += z; lazy[k] += z; return; } pushdown(k); int mid = (l + r) >> 1; if (x <= mid) update(l, mid, k << 1, x, y, z); if (y > mid) update(mid + 1, r, (k << 1) | 1, x, y, z); a[k] = max(a[k << 1], a[(k << 1) | 1]); } int find(int l, int r, int k, int x, int y) { if (l >= x && r <= y) return a[k]; pushdown(k); int mid = (l + r) >> 1, ans = 0; if (x <= mid) ans = find(l, mid, k << 1, x, y); if (y > mid) ans = max(ans, find(mid + 1, r, (k << 1) | 1, x, y)); return ans; } } st; void add(int x, int y) { ++len; nex[len] = hea[x]; wen[len] = y; hea[x] = len; } void dfs(int x) { dfn[x] = ++m1; size[x] = 1; for (int i = hea[x]; i; i = nex[i]) { dfs(wen[i]); size[x] += size[wen[i]]; } } int main() { scanf("%d%d", &n, &m); for (int i = 1; i <= n; i++) scanf("%d", &a[i]); a[n + 1] = n + 1; ++n; for (int i = 1; i <= n; i++) { while (top && a[sta[top]] < a[i]) add(i, sta[top--]); sta[++top] = i; } dfs(n); for (int i = 1; i <= m; i++) st.update(1, n, 1, dfn[i], dfn[i] + size[i] - 1, 1); printf("%d", st.a[1]); for (int i = m + 1; i < n; i++) { st.update(1, n, 1, dfn[i], dfn[i] + size[i] - 1, 1); st.update(1, n, 1, dfn[i - m], dfn[i - m] + size[i - m] - 1, -1); printf(" %d", st.a[1]); } }
### Prompt Construct a CPP code solution to the problem outlined: For some array c, let's denote a greedy subsequence as a sequence of indices p_1, p_2, ..., p_l such that 1 ≀ p_1 < p_2 < ... < p_l ≀ |c|, and for each i ∈ [1, l - 1], p_{i + 1} is the minimum number such that p_{i + 1} > p_i and c[p_{i + 1}] > c[p_i]. You are given an array a_1, a_2, ..., a_n. For each its subsegment of length k, calculate the length of its longest greedy subsequence. Input The first line contains two integers n and k (1 ≀ k ≀ n ≀ 10^6) β€” the length of array a and the length of subsegments. The second line contains n integers a_1, a_2, ..., a_n (1 ≀ a_i ≀ n) β€” array a. Output Print n - k + 1 integers β€” the maximum lengths of greedy subsequences of each subsegment having length k. The first number should correspond to subsegment a[1..k], the second β€” to subsegment a[2..k + 1], and so on. Examples Input 6 4 1 5 2 5 3 6 Output 2 2 3 Input 7 6 4 5 2 5 3 6 6 Output 3 3 Note In the first example: * [1, 5, 2, 5] β€” the longest greedy subsequences are 1, 2 ([c_1, c_2] = [1, 5]) or 3, 4 ([c_3, c_4] = [2, 5]). * [5, 2, 5, 3] β€” the sequence is 2, 3 ([c_2, c_3] = [2, 5]). * [2, 5, 3, 6] β€” the sequence is 1, 2, 4 ([c_1, c_2, c_4] = [2, 5, 6]). In the second example: * [4, 5, 2, 5, 3, 6] β€” the longest greedy subsequences are 1, 2, 6 ([c_1, c_2, c_6] = [4, 5, 6]) or 3, 4, 6 ([c_3, c_4, c_6] = [2, 5, 6]). * [5, 2, 5, 3, 6, 6] β€” the subsequence is 2, 3, 5 ([c_2, c_3, c_5] = [2, 5, 6]). ### Response ```cpp #include <bits/stdc++.h> using namespace std; int n, m, m1, len, top, a[1000005], size[1000005], dfn[1000005], nex[1000005], wen[1000005], hea[1000005], sta[1000005]; struct segment_tree { int a[4000005], lazy[4000005]; void pushdown(int k) { int t = lazy[k]; a[k << 1] += t; lazy[k << 1] += t; a[(k << 1) | 1] += t; lazy[(k << 1) | 1] += t; lazy[k] = 0; } void update(int l, int r, int k, int x, int y, int z) { if (l >= x && r <= y) { a[k] += z; lazy[k] += z; return; } pushdown(k); int mid = (l + r) >> 1; if (x <= mid) update(l, mid, k << 1, x, y, z); if (y > mid) update(mid + 1, r, (k << 1) | 1, x, y, z); a[k] = max(a[k << 1], a[(k << 1) | 1]); } int find(int l, int r, int k, int x, int y) { if (l >= x && r <= y) return a[k]; pushdown(k); int mid = (l + r) >> 1, ans = 0; if (x <= mid) ans = find(l, mid, k << 1, x, y); if (y > mid) ans = max(ans, find(mid + 1, r, (k << 1) | 1, x, y)); return ans; } } st; void add(int x, int y) { ++len; nex[len] = hea[x]; wen[len] = y; hea[x] = len; } void dfs(int x) { dfn[x] = ++m1; size[x] = 1; for (int i = hea[x]; i; i = nex[i]) { dfs(wen[i]); size[x] += size[wen[i]]; } } int main() { scanf("%d%d", &n, &m); for (int i = 1; i <= n; i++) scanf("%d", &a[i]); a[n + 1] = n + 1; ++n; for (int i = 1; i <= n; i++) { while (top && a[sta[top]] < a[i]) add(i, sta[top--]); sta[++top] = i; } dfs(n); for (int i = 1; i <= m; i++) st.update(1, n, 1, dfn[i], dfn[i] + size[i] - 1, 1); printf("%d", st.a[1]); for (int i = m + 1; i < n; i++) { st.update(1, n, 1, dfn[i], dfn[i] + size[i] - 1, 1); st.update(1, n, 1, dfn[i - m], dfn[i - m] + size[i - m] - 1, -1); printf(" %d", st.a[1]); } } ```
#include <bits/stdc++.h> using namespace std; const int N = 1000004; int t[4 * N]; int d[4 * N]; void upd(int v, int x) { t[v] += x; d[v] += x; } void push(int v) { if (d[v]) { upd(2 * v + 1, d[v]); upd(2 * v + 2, d[v]); d[v] = 0; } } void upd(int v, int l, int r, int x, int tl = 0, int tr = N) { if (r <= tl || tr <= l) { return; } else if (l <= tl && tr <= r) { upd(v, x); } else { push(v); int tm = (tl + tr) / 2; upd(2 * v + 1, l, r, x, tl, tm); upd(2 * v + 2, l, r, x, tm, tr); t[v] = max(t[2 * v + 1], t[2 * v + 2]); } } int get(int v, int l, int r, int tl = 0, int tr = N) { if (r <= tl || tr <= l) { return 0; } else if (l <= tl && tr <= r) { return t[v]; } else { push(v); int tm = (tl + tr) / 2; return max(get(2 * v + 1, l, r, tl, tm), get(2 * v + 2, l, r, tm, tr)); } } vector<int> g[N]; int tin[N]; int tout[N]; int timer; void dfs(int v, int p = -1) { tin[v] = timer++; for (int to : g[v]) { if (to != p) { dfs(to, v); } } tout[v] = timer; } int main() { ios::sync_with_stdio(false); cin.tie(0); int n, k; cin >> n >> k; vector<int> a(n); for (int i = 0; i < n; i++) { cin >> a[i]; } vector<int> R(n); for (int i = n - 1; i >= 0; i--) { R[i] = i + 1; while (R[i] < n && a[i] >= a[R[i]]) { R[i] = R[R[i]]; } g[R[i]].push_back(i); } dfs(n); int j = 0; for (int i = 0; i + k <= n; i++) { while (j < i + k) { upd(0, tin[j], tout[j], 1); ++j; } cout << get(0, 0, N) << ' '; upd(0, tin[i], tin[i] + 1, -N); } cout << '\n'; return 0; }
### Prompt Generate a cpp solution to the following problem: For some array c, let's denote a greedy subsequence as a sequence of indices p_1, p_2, ..., p_l such that 1 ≀ p_1 < p_2 < ... < p_l ≀ |c|, and for each i ∈ [1, l - 1], p_{i + 1} is the minimum number such that p_{i + 1} > p_i and c[p_{i + 1}] > c[p_i]. You are given an array a_1, a_2, ..., a_n. For each its subsegment of length k, calculate the length of its longest greedy subsequence. Input The first line contains two integers n and k (1 ≀ k ≀ n ≀ 10^6) β€” the length of array a and the length of subsegments. The second line contains n integers a_1, a_2, ..., a_n (1 ≀ a_i ≀ n) β€” array a. Output Print n - k + 1 integers β€” the maximum lengths of greedy subsequences of each subsegment having length k. The first number should correspond to subsegment a[1..k], the second β€” to subsegment a[2..k + 1], and so on. Examples Input 6 4 1 5 2 5 3 6 Output 2 2 3 Input 7 6 4 5 2 5 3 6 6 Output 3 3 Note In the first example: * [1, 5, 2, 5] β€” the longest greedy subsequences are 1, 2 ([c_1, c_2] = [1, 5]) or 3, 4 ([c_3, c_4] = [2, 5]). * [5, 2, 5, 3] β€” the sequence is 2, 3 ([c_2, c_3] = [2, 5]). * [2, 5, 3, 6] β€” the sequence is 1, 2, 4 ([c_1, c_2, c_4] = [2, 5, 6]). In the second example: * [4, 5, 2, 5, 3, 6] β€” the longest greedy subsequences are 1, 2, 6 ([c_1, c_2, c_6] = [4, 5, 6]) or 3, 4, 6 ([c_3, c_4, c_6] = [2, 5, 6]). * [5, 2, 5, 3, 6, 6] β€” the subsequence is 2, 3, 5 ([c_2, c_3, c_5] = [2, 5, 6]). ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int N = 1000004; int t[4 * N]; int d[4 * N]; void upd(int v, int x) { t[v] += x; d[v] += x; } void push(int v) { if (d[v]) { upd(2 * v + 1, d[v]); upd(2 * v + 2, d[v]); d[v] = 0; } } void upd(int v, int l, int r, int x, int tl = 0, int tr = N) { if (r <= tl || tr <= l) { return; } else if (l <= tl && tr <= r) { upd(v, x); } else { push(v); int tm = (tl + tr) / 2; upd(2 * v + 1, l, r, x, tl, tm); upd(2 * v + 2, l, r, x, tm, tr); t[v] = max(t[2 * v + 1], t[2 * v + 2]); } } int get(int v, int l, int r, int tl = 0, int tr = N) { if (r <= tl || tr <= l) { return 0; } else if (l <= tl && tr <= r) { return t[v]; } else { push(v); int tm = (tl + tr) / 2; return max(get(2 * v + 1, l, r, tl, tm), get(2 * v + 2, l, r, tm, tr)); } } vector<int> g[N]; int tin[N]; int tout[N]; int timer; void dfs(int v, int p = -1) { tin[v] = timer++; for (int to : g[v]) { if (to != p) { dfs(to, v); } } tout[v] = timer; } int main() { ios::sync_with_stdio(false); cin.tie(0); int n, k; cin >> n >> k; vector<int> a(n); for (int i = 0; i < n; i++) { cin >> a[i]; } vector<int> R(n); for (int i = n - 1; i >= 0; i--) { R[i] = i + 1; while (R[i] < n && a[i] >= a[R[i]]) { R[i] = R[R[i]]; } g[R[i]].push_back(i); } dfs(n); int j = 0; for (int i = 0; i + k <= n; i++) { while (j < i + k) { upd(0, tin[j], tout[j], 1); ++j; } cout << get(0, 0, N) << ' '; upd(0, tin[i], tin[i] + 1, -N); } cout << '\n'; return 0; } ```
#include <bits/stdc++.h> using namespace std; const int maxn = 1e6 + 10; int n, k, p[maxn], stk[maxn], top, head[maxn], tid[maxn], siz[maxn], tot, cnt; struct abc { int to, nxt; } e[maxn * 2]; void add(int x, int y) { e[++cnt].nxt = head[x]; e[cnt].to = y; head[x] = cnt; } void dfs(int x) { tid[x] = ++tot; siz[x] = 1; for (int i = head[x]; i; i = e[i].nxt) { dfs(e[i].to); siz[x] += siz[e[i].to]; } } int tree[4 * maxn], tag[4 * maxn]; void down(int o) { tree[o << 1] += tag[o]; tree[o << 1 | 1] += tag[o]; tag[o << 1] += tag[o]; tag[o << 1 | 1] += tag[o]; tag[o] = 0; } void update(int l, int r, int o, int x, int y, int val) { if (x <= l && r <= y) { tree[o] += val; tag[o] += val; return; } int mid = (l + r) >> 1; down(o); if (x <= mid) update(l, mid, o << 1, x, y, val); if (y > mid) update(mid + 1, r, o << 1 | 1, x, y, val); tree[o] = max(tree[o << 1], tree[o << 1 | 1]); } int main() { scanf("%d%d", &n, &k); for (int i = 1; i <= n; ++i) scanf("%d", &p[i]); for (int i = 1; i <= n; ++i) { while (top && p[stk[top]] < p[i]) { add(i, stk[top]); --top; } stk[++top] = i; } while (top) { add(n + 1, stk[top]); --top; } dfs(n + 1); for (int i = 1; i <= k; ++i) update(1, n + 1, 1, tid[i], tid[i] + siz[i] - 1, 1); printf("%d", tree[1]); for (int i = k + 1; i <= n; ++i) { update(1, n + 1, 1, tid[i], tid[i] + siz[i] - 1, 1); update(1, n + 1, 1, tid[i - k], tid[i - k] + siz[i - k] - 1, -1); printf(" %d", tree[1]); } }
### Prompt Please formulate a CPP solution to the following problem: For some array c, let's denote a greedy subsequence as a sequence of indices p_1, p_2, ..., p_l such that 1 ≀ p_1 < p_2 < ... < p_l ≀ |c|, and for each i ∈ [1, l - 1], p_{i + 1} is the minimum number such that p_{i + 1} > p_i and c[p_{i + 1}] > c[p_i]. You are given an array a_1, a_2, ..., a_n. For each its subsegment of length k, calculate the length of its longest greedy subsequence. Input The first line contains two integers n and k (1 ≀ k ≀ n ≀ 10^6) β€” the length of array a and the length of subsegments. The second line contains n integers a_1, a_2, ..., a_n (1 ≀ a_i ≀ n) β€” array a. Output Print n - k + 1 integers β€” the maximum lengths of greedy subsequences of each subsegment having length k. The first number should correspond to subsegment a[1..k], the second β€” to subsegment a[2..k + 1], and so on. Examples Input 6 4 1 5 2 5 3 6 Output 2 2 3 Input 7 6 4 5 2 5 3 6 6 Output 3 3 Note In the first example: * [1, 5, 2, 5] β€” the longest greedy subsequences are 1, 2 ([c_1, c_2] = [1, 5]) or 3, 4 ([c_3, c_4] = [2, 5]). * [5, 2, 5, 3] β€” the sequence is 2, 3 ([c_2, c_3] = [2, 5]). * [2, 5, 3, 6] β€” the sequence is 1, 2, 4 ([c_1, c_2, c_4] = [2, 5, 6]). In the second example: * [4, 5, 2, 5, 3, 6] β€” the longest greedy subsequences are 1, 2, 6 ([c_1, c_2, c_6] = [4, 5, 6]) or 3, 4, 6 ([c_3, c_4, c_6] = [2, 5, 6]). * [5, 2, 5, 3, 6, 6] β€” the subsequence is 2, 3, 5 ([c_2, c_3, c_5] = [2, 5, 6]). ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int maxn = 1e6 + 10; int n, k, p[maxn], stk[maxn], top, head[maxn], tid[maxn], siz[maxn], tot, cnt; struct abc { int to, nxt; } e[maxn * 2]; void add(int x, int y) { e[++cnt].nxt = head[x]; e[cnt].to = y; head[x] = cnt; } void dfs(int x) { tid[x] = ++tot; siz[x] = 1; for (int i = head[x]; i; i = e[i].nxt) { dfs(e[i].to); siz[x] += siz[e[i].to]; } } int tree[4 * maxn], tag[4 * maxn]; void down(int o) { tree[o << 1] += tag[o]; tree[o << 1 | 1] += tag[o]; tag[o << 1] += tag[o]; tag[o << 1 | 1] += tag[o]; tag[o] = 0; } void update(int l, int r, int o, int x, int y, int val) { if (x <= l && r <= y) { tree[o] += val; tag[o] += val; return; } int mid = (l + r) >> 1; down(o); if (x <= mid) update(l, mid, o << 1, x, y, val); if (y > mid) update(mid + 1, r, o << 1 | 1, x, y, val); tree[o] = max(tree[o << 1], tree[o << 1 | 1]); } int main() { scanf("%d%d", &n, &k); for (int i = 1; i <= n; ++i) scanf("%d", &p[i]); for (int i = 1; i <= n; ++i) { while (top && p[stk[top]] < p[i]) { add(i, stk[top]); --top; } stk[++top] = i; } while (top) { add(n + 1, stk[top]); --top; } dfs(n + 1); for (int i = 1; i <= k; ++i) update(1, n + 1, 1, tid[i], tid[i] + siz[i] - 1, 1); printf("%d", tree[1]); for (int i = k + 1; i <= n; ++i) { update(1, n + 1, 1, tid[i], tid[i] + siz[i] - 1, 1); update(1, n + 1, 1, tid[i - k], tid[i - k] + siz[i - k] - 1, -1); printf(" %d", tree[1]); } } ```
#include <bits/stdc++.h> using namespace std; int dx8[] = {0, 0, 1, 1, 1, -1, -1, -1}; int dy8[] = {1, -1, 1, -1, 0, 0, -1, 1}; const double PI = acos(-1.0); const double EPS = 1e-6; const int MOD = (int)1e9 + 7; const int maxn = (int)1e6 + 5; const int LOGN = 20; int tree[4 * maxn], lazy[4 * maxn]; void propagate(int node, int b, int e) { if (lazy[node] == 0) return; tree[node] += lazy[node]; if (b != e) { lazy[2 * node] += lazy[node]; lazy[2 * node + 1] += lazy[node]; } lazy[node] = 0; } int query(int node, int b, int e, int l, int r) { propagate(node, b, e); if (l > e || r < b) return 0LL; if (b >= l && e <= r) return tree[node]; int Left = node * 2; int Right = node * 2 + 1; int mid = (b + e) / 2; return max(query(Left, b, mid, l, r), query(Right, mid + 1, e, l, r)); } void update(int node, int b, int e, int l, int r, int add) { propagate(node, b, e); if (l > e || r < b) return; if (b >= l && e <= r) { lazy[node] = add; propagate(node, b, e); return; } int Left = node * 2; int Right = node * 2 + 1; int mid = (b + e) / 2; update(Left, b, mid, l, r, add); update(Right, mid + 1, e, l, r, add); tree[node] = max(tree[Left], tree[Right]); } int a[maxn], ans[maxn]; int main() { ios_base::sync_with_stdio(0); cin.tie(NULL); cout.tie(NULL); int n, k; cin >> n >> k; vector<int> v; v.push_back(0); a[0] = INT_MAX; for (int i = 1; i <= (n); i++) { cin >> a[i]; while (!v.empty() && a[i] > a[v.back()]) v.pop_back(); update(1, 1, n, v.back() + 1, i, +1); v.push_back(i); if (i >= k) ans[i] = query(1, 1, n, i - k + 1, i); } for (int i = (k); i <= (n); i++) cout << ans[i] << " "; return 0; }
### Prompt Your task is to create a CPP solution to the following problem: For some array c, let's denote a greedy subsequence as a sequence of indices p_1, p_2, ..., p_l such that 1 ≀ p_1 < p_2 < ... < p_l ≀ |c|, and for each i ∈ [1, l - 1], p_{i + 1} is the minimum number such that p_{i + 1} > p_i and c[p_{i + 1}] > c[p_i]. You are given an array a_1, a_2, ..., a_n. For each its subsegment of length k, calculate the length of its longest greedy subsequence. Input The first line contains two integers n and k (1 ≀ k ≀ n ≀ 10^6) β€” the length of array a and the length of subsegments. The second line contains n integers a_1, a_2, ..., a_n (1 ≀ a_i ≀ n) β€” array a. Output Print n - k + 1 integers β€” the maximum lengths of greedy subsequences of each subsegment having length k. The first number should correspond to subsegment a[1..k], the second β€” to subsegment a[2..k + 1], and so on. Examples Input 6 4 1 5 2 5 3 6 Output 2 2 3 Input 7 6 4 5 2 5 3 6 6 Output 3 3 Note In the first example: * [1, 5, 2, 5] β€” the longest greedy subsequences are 1, 2 ([c_1, c_2] = [1, 5]) or 3, 4 ([c_3, c_4] = [2, 5]). * [5, 2, 5, 3] β€” the sequence is 2, 3 ([c_2, c_3] = [2, 5]). * [2, 5, 3, 6] β€” the sequence is 1, 2, 4 ([c_1, c_2, c_4] = [2, 5, 6]). In the second example: * [4, 5, 2, 5, 3, 6] β€” the longest greedy subsequences are 1, 2, 6 ([c_1, c_2, c_6] = [4, 5, 6]) or 3, 4, 6 ([c_3, c_4, c_6] = [2, 5, 6]). * [5, 2, 5, 3, 6, 6] β€” the subsequence is 2, 3, 5 ([c_2, c_3, c_5] = [2, 5, 6]). ### Response ```cpp #include <bits/stdc++.h> using namespace std; int dx8[] = {0, 0, 1, 1, 1, -1, -1, -1}; int dy8[] = {1, -1, 1, -1, 0, 0, -1, 1}; const double PI = acos(-1.0); const double EPS = 1e-6; const int MOD = (int)1e9 + 7; const int maxn = (int)1e6 + 5; const int LOGN = 20; int tree[4 * maxn], lazy[4 * maxn]; void propagate(int node, int b, int e) { if (lazy[node] == 0) return; tree[node] += lazy[node]; if (b != e) { lazy[2 * node] += lazy[node]; lazy[2 * node + 1] += lazy[node]; } lazy[node] = 0; } int query(int node, int b, int e, int l, int r) { propagate(node, b, e); if (l > e || r < b) return 0LL; if (b >= l && e <= r) return tree[node]; int Left = node * 2; int Right = node * 2 + 1; int mid = (b + e) / 2; return max(query(Left, b, mid, l, r), query(Right, mid + 1, e, l, r)); } void update(int node, int b, int e, int l, int r, int add) { propagate(node, b, e); if (l > e || r < b) return; if (b >= l && e <= r) { lazy[node] = add; propagate(node, b, e); return; } int Left = node * 2; int Right = node * 2 + 1; int mid = (b + e) / 2; update(Left, b, mid, l, r, add); update(Right, mid + 1, e, l, r, add); tree[node] = max(tree[Left], tree[Right]); } int a[maxn], ans[maxn]; int main() { ios_base::sync_with_stdio(0); cin.tie(NULL); cout.tie(NULL); int n, k; cin >> n >> k; vector<int> v; v.push_back(0); a[0] = INT_MAX; for (int i = 1; i <= (n); i++) { cin >> a[i]; while (!v.empty() && a[i] > a[v.back()]) v.pop_back(); update(1, 1, n, v.back() + 1, i, +1); v.push_back(i); if (i >= k) ans[i] = query(1, 1, n, i - k + 1, i); } for (int i = (k); i <= (n); i++) cout << ans[i] << " "; return 0; } ```
#include <bits/stdc++.h> using namespace std; const int maxn = 1e6 + 5; int n, k; int maxv[4 * maxn]; int addv[4 * maxn]; int a[maxn]; int L[maxn]; void pushup(int o) { maxv[o] = max(maxv[o * 2], maxv[o * 2 + 1]); } void pushdown(int o, int L, int R) { if (addv[o]) { addv[o * 2] += addv[o]; addv[o * 2 + 1] += addv[o]; maxv[o * 2] += addv[o]; maxv[o * 2 + 1] += addv[o]; addv[o] = 0; } } void update(int o, int L, int R, int ql, int qr, int v) { if (ql <= L && R <= qr) { addv[o] += v; maxv[o] += v; return; } pushdown(o, L, R); int M = (L + R) >> 1; if (ql <= M) update(o * 2, L, M, ql, qr, v); if (qr > M) update(o * 2 + 1, M + 1, R, ql, qr, v); pushup(o); } int query(int o, int L, int R, int ql, int qr) { if (ql <= L && R <= qr) { return maxv[o]; } pushdown(o, L, R); int ret = 0; int M = (L + R) >> 1; if (ql <= M) ret = max(ret, query(o * 2, L, M, ql, qr)); if (qr > M) ret = max(ret, query(o * 2 + 1, M + 1, R, ql, qr)); pushup(o); return ret; } int main() { cin >> n >> k; for (int i = 1; i <= n; i++) scanf("%d", &a[i]); a[0] = 1e7; L[1] = 0; for (int i = 2; i <= n; i++) { int j = i - 1; while (a[i] > a[j]) j = L[j]; L[i] = j; } for (int i = 1; i < k; i++) update(1, 1, n, L[i] + 1, i, 1); for (int i = 1, j = k; j <= n; i++, j++) { update(1, 1, n, L[j] + 1, j, 1); cout << query(1, 1, n, i, j) << " "; } return 0; }
### Prompt Construct a cpp code solution to the problem outlined: For some array c, let's denote a greedy subsequence as a sequence of indices p_1, p_2, ..., p_l such that 1 ≀ p_1 < p_2 < ... < p_l ≀ |c|, and for each i ∈ [1, l - 1], p_{i + 1} is the minimum number such that p_{i + 1} > p_i and c[p_{i + 1}] > c[p_i]. You are given an array a_1, a_2, ..., a_n. For each its subsegment of length k, calculate the length of its longest greedy subsequence. Input The first line contains two integers n and k (1 ≀ k ≀ n ≀ 10^6) β€” the length of array a and the length of subsegments. The second line contains n integers a_1, a_2, ..., a_n (1 ≀ a_i ≀ n) β€” array a. Output Print n - k + 1 integers β€” the maximum lengths of greedy subsequences of each subsegment having length k. The first number should correspond to subsegment a[1..k], the second β€” to subsegment a[2..k + 1], and so on. Examples Input 6 4 1 5 2 5 3 6 Output 2 2 3 Input 7 6 4 5 2 5 3 6 6 Output 3 3 Note In the first example: * [1, 5, 2, 5] β€” the longest greedy subsequences are 1, 2 ([c_1, c_2] = [1, 5]) or 3, 4 ([c_3, c_4] = [2, 5]). * [5, 2, 5, 3] β€” the sequence is 2, 3 ([c_2, c_3] = [2, 5]). * [2, 5, 3, 6] β€” the sequence is 1, 2, 4 ([c_1, c_2, c_4] = [2, 5, 6]). In the second example: * [4, 5, 2, 5, 3, 6] β€” the longest greedy subsequences are 1, 2, 6 ([c_1, c_2, c_6] = [4, 5, 6]) or 3, 4, 6 ([c_3, c_4, c_6] = [2, 5, 6]). * [5, 2, 5, 3, 6, 6] β€” the subsequence is 2, 3, 5 ([c_2, c_3, c_5] = [2, 5, 6]). ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int maxn = 1e6 + 5; int n, k; int maxv[4 * maxn]; int addv[4 * maxn]; int a[maxn]; int L[maxn]; void pushup(int o) { maxv[o] = max(maxv[o * 2], maxv[o * 2 + 1]); } void pushdown(int o, int L, int R) { if (addv[o]) { addv[o * 2] += addv[o]; addv[o * 2 + 1] += addv[o]; maxv[o * 2] += addv[o]; maxv[o * 2 + 1] += addv[o]; addv[o] = 0; } } void update(int o, int L, int R, int ql, int qr, int v) { if (ql <= L && R <= qr) { addv[o] += v; maxv[o] += v; return; } pushdown(o, L, R); int M = (L + R) >> 1; if (ql <= M) update(o * 2, L, M, ql, qr, v); if (qr > M) update(o * 2 + 1, M + 1, R, ql, qr, v); pushup(o); } int query(int o, int L, int R, int ql, int qr) { if (ql <= L && R <= qr) { return maxv[o]; } pushdown(o, L, R); int ret = 0; int M = (L + R) >> 1; if (ql <= M) ret = max(ret, query(o * 2, L, M, ql, qr)); if (qr > M) ret = max(ret, query(o * 2 + 1, M + 1, R, ql, qr)); pushup(o); return ret; } int main() { cin >> n >> k; for (int i = 1; i <= n; i++) scanf("%d", &a[i]); a[0] = 1e7; L[1] = 0; for (int i = 2; i <= n; i++) { int j = i - 1; while (a[i] > a[j]) j = L[j]; L[i] = j; } for (int i = 1; i < k; i++) update(1, 1, n, L[i] + 1, i, 1); for (int i = 1, j = k; j <= n; i++, j++) { update(1, 1, n, L[j] + 1, j, 1); cout << query(1, 1, n, i, j) << " "; } return 0; } ```
#include <bits/stdc++.h> using namespace std; int n, k; int num[1000001]; int L[1000001]; int sum_tree[1000001 * 3]; int max_tree[1000001 * 3]; void update(int a, int b, int i = 1, int start = 1, int end = n + 1) { if (start == a && end == b) { max_tree[i] += 1; sum_tree[i] += 1; return; } int mid = (start + end) / 2; if (a < mid) update(a, min(b, mid), i * 2, start, mid); if (b > mid) update(max(a, mid), b, i * 2 + 1, mid, end); max_tree[i] = max(max_tree[i * 2], max_tree[i * 2 + 1]) + sum_tree[i]; } int query(int a, int b, int i = 1, int start = 1, int end = n + 1) { if (start == a && end == b) return max_tree[i]; int mid = (start + end) / 2; int ans = 0; if (a < mid) ans = max(ans, query(a, min(b, mid), i * 2, start, mid)); if (b > mid) ans = max(ans, query(max(a, mid), b, i * 2 + 1, mid, end)); return ans + sum_tree[i]; } int main() { cin >> n >> k; num[0] = 1 << 30; for (int i = 1; i <= n; ++i) { cin >> num[i]; } for (int i = 1; i <= n; ++i) { int idx = i - 1; while (num[i] > num[idx]) { idx = L[idx]; } L[i] = idx; } for (int i = 1; i <= n; ++i) { update(L[i] + 1, i + 1); if (i >= k) { cout << query(i - k + 1, i + 1) << ' '; } } cout << '\n'; }
### Prompt Generate a cpp solution to the following problem: For some array c, let's denote a greedy subsequence as a sequence of indices p_1, p_2, ..., p_l such that 1 ≀ p_1 < p_2 < ... < p_l ≀ |c|, and for each i ∈ [1, l - 1], p_{i + 1} is the minimum number such that p_{i + 1} > p_i and c[p_{i + 1}] > c[p_i]. You are given an array a_1, a_2, ..., a_n. For each its subsegment of length k, calculate the length of its longest greedy subsequence. Input The first line contains two integers n and k (1 ≀ k ≀ n ≀ 10^6) β€” the length of array a and the length of subsegments. The second line contains n integers a_1, a_2, ..., a_n (1 ≀ a_i ≀ n) β€” array a. Output Print n - k + 1 integers β€” the maximum lengths of greedy subsequences of each subsegment having length k. The first number should correspond to subsegment a[1..k], the second β€” to subsegment a[2..k + 1], and so on. Examples Input 6 4 1 5 2 5 3 6 Output 2 2 3 Input 7 6 4 5 2 5 3 6 6 Output 3 3 Note In the first example: * [1, 5, 2, 5] β€” the longest greedy subsequences are 1, 2 ([c_1, c_2] = [1, 5]) or 3, 4 ([c_3, c_4] = [2, 5]). * [5, 2, 5, 3] β€” the sequence is 2, 3 ([c_2, c_3] = [2, 5]). * [2, 5, 3, 6] β€” the sequence is 1, 2, 4 ([c_1, c_2, c_4] = [2, 5, 6]). In the second example: * [4, 5, 2, 5, 3, 6] β€” the longest greedy subsequences are 1, 2, 6 ([c_1, c_2, c_6] = [4, 5, 6]) or 3, 4, 6 ([c_3, c_4, c_6] = [2, 5, 6]). * [5, 2, 5, 3, 6, 6] β€” the subsequence is 2, 3, 5 ([c_2, c_3, c_5] = [2, 5, 6]). ### Response ```cpp #include <bits/stdc++.h> using namespace std; int n, k; int num[1000001]; int L[1000001]; int sum_tree[1000001 * 3]; int max_tree[1000001 * 3]; void update(int a, int b, int i = 1, int start = 1, int end = n + 1) { if (start == a && end == b) { max_tree[i] += 1; sum_tree[i] += 1; return; } int mid = (start + end) / 2; if (a < mid) update(a, min(b, mid), i * 2, start, mid); if (b > mid) update(max(a, mid), b, i * 2 + 1, mid, end); max_tree[i] = max(max_tree[i * 2], max_tree[i * 2 + 1]) + sum_tree[i]; } int query(int a, int b, int i = 1, int start = 1, int end = n + 1) { if (start == a && end == b) return max_tree[i]; int mid = (start + end) / 2; int ans = 0; if (a < mid) ans = max(ans, query(a, min(b, mid), i * 2, start, mid)); if (b > mid) ans = max(ans, query(max(a, mid), b, i * 2 + 1, mid, end)); return ans + sum_tree[i]; } int main() { cin >> n >> k; num[0] = 1 << 30; for (int i = 1; i <= n; ++i) { cin >> num[i]; } for (int i = 1; i <= n; ++i) { int idx = i - 1; while (num[i] > num[idx]) { idx = L[idx]; } L[i] = idx; } for (int i = 1; i <= n; ++i) { update(L[i] + 1, i + 1); if (i >= k) { cout << query(i - k + 1, i + 1) << ' '; } } cout << '\n'; } ```
#include <bits/stdc++.h> using namespace std; int n, k; vector<int> a; int T = 0; vector<vector<int> > g; vector<int> tin, tout; void dfs(int v) { tin[v] = T++; for (int i = 0; i < g[v].size(); i++) { dfs(g[v][i]); } tout[v] = T; } vector<int> tmax, tadd; void push(int v) { tadd[2 * v + 1] += tadd[v]; tadd[2 * v + 2] += tadd[v]; tadd[v] = 0; } int getmax(int v) { return tmax[v] + tadd[v]; } void add(int v, int l, int r, int lf, int rg, int val) { if (l == lf && r == rg) { tadd[v] += val; return; } int m = (l + r) / 2; push(v); if (lf < m) add(2 * v + 1, l, m, lf, min(m, rg), val); if (rg > m) add(2 * v + 2, m, r, max(lf, m), rg, val); tmax[v] = max(getmax(2 * v + 1), getmax(2 * v + 2)); } int main() { cin.tie(NULL); cout.tie(NULL); ios_base::sync_with_stdio(0); cin >> n >> k; a.assign(n, 0); for (int i = 0; i < n; i++) { cin >> a[i]; } g.resize(n + 1); tin.resize(n + 1, 0); tout.resize(n + 1, 0); vector<int> st; for (int i = n - 1; i >= 0; i--) { while (!st.empty() && a[st.back()] <= a[i]) { st.pop_back(); } int next = st.empty() ? n : st.back(); g[next].push_back(i); st.push_back(i); } dfs(n); tmax.assign(4 * (n + 1), 0); tadd.assign(4 * (n + 1), 0); for (int i = 0; i < k - 1; i++) { add(0, 0, n + 1, tin[i], tout[i], +1); } for (int i = 0; i + k <= n; i++) { add(0, 0, n + 1, tin[i + k - 1], tout[i + k - 1], +1); cout << getmax(0) << " "; add(0, 0, n + 1, tin[i], tout[i], -1); } cout << "\n"; return 0; }
### Prompt Generate a cpp solution to the following problem: For some array c, let's denote a greedy subsequence as a sequence of indices p_1, p_2, ..., p_l such that 1 ≀ p_1 < p_2 < ... < p_l ≀ |c|, and for each i ∈ [1, l - 1], p_{i + 1} is the minimum number such that p_{i + 1} > p_i and c[p_{i + 1}] > c[p_i]. You are given an array a_1, a_2, ..., a_n. For each its subsegment of length k, calculate the length of its longest greedy subsequence. Input The first line contains two integers n and k (1 ≀ k ≀ n ≀ 10^6) β€” the length of array a and the length of subsegments. The second line contains n integers a_1, a_2, ..., a_n (1 ≀ a_i ≀ n) β€” array a. Output Print n - k + 1 integers β€” the maximum lengths of greedy subsequences of each subsegment having length k. The first number should correspond to subsegment a[1..k], the second β€” to subsegment a[2..k + 1], and so on. Examples Input 6 4 1 5 2 5 3 6 Output 2 2 3 Input 7 6 4 5 2 5 3 6 6 Output 3 3 Note In the first example: * [1, 5, 2, 5] β€” the longest greedy subsequences are 1, 2 ([c_1, c_2] = [1, 5]) or 3, 4 ([c_3, c_4] = [2, 5]). * [5, 2, 5, 3] β€” the sequence is 2, 3 ([c_2, c_3] = [2, 5]). * [2, 5, 3, 6] β€” the sequence is 1, 2, 4 ([c_1, c_2, c_4] = [2, 5, 6]). In the second example: * [4, 5, 2, 5, 3, 6] β€” the longest greedy subsequences are 1, 2, 6 ([c_1, c_2, c_6] = [4, 5, 6]) or 3, 4, 6 ([c_3, c_4, c_6] = [2, 5, 6]). * [5, 2, 5, 3, 6, 6] β€” the subsequence is 2, 3, 5 ([c_2, c_3, c_5] = [2, 5, 6]). ### Response ```cpp #include <bits/stdc++.h> using namespace std; int n, k; vector<int> a; int T = 0; vector<vector<int> > g; vector<int> tin, tout; void dfs(int v) { tin[v] = T++; for (int i = 0; i < g[v].size(); i++) { dfs(g[v][i]); } tout[v] = T; } vector<int> tmax, tadd; void push(int v) { tadd[2 * v + 1] += tadd[v]; tadd[2 * v + 2] += tadd[v]; tadd[v] = 0; } int getmax(int v) { return tmax[v] + tadd[v]; } void add(int v, int l, int r, int lf, int rg, int val) { if (l == lf && r == rg) { tadd[v] += val; return; } int m = (l + r) / 2; push(v); if (lf < m) add(2 * v + 1, l, m, lf, min(m, rg), val); if (rg > m) add(2 * v + 2, m, r, max(lf, m), rg, val); tmax[v] = max(getmax(2 * v + 1), getmax(2 * v + 2)); } int main() { cin.tie(NULL); cout.tie(NULL); ios_base::sync_with_stdio(0); cin >> n >> k; a.assign(n, 0); for (int i = 0; i < n; i++) { cin >> a[i]; } g.resize(n + 1); tin.resize(n + 1, 0); tout.resize(n + 1, 0); vector<int> st; for (int i = n - 1; i >= 0; i--) { while (!st.empty() && a[st.back()] <= a[i]) { st.pop_back(); } int next = st.empty() ? n : st.back(); g[next].push_back(i); st.push_back(i); } dfs(n); tmax.assign(4 * (n + 1), 0); tadd.assign(4 * (n + 1), 0); for (int i = 0; i < k - 1; i++) { add(0, 0, n + 1, tin[i], tout[i], +1); } for (int i = 0; i + k <= n; i++) { add(0, 0, n + 1, tin[i + k - 1], tout[i + k - 1], +1); cout << getmax(0) << " "; add(0, 0, n + 1, tin[i], tout[i], -1); } cout << "\n"; return 0; } ```
#include <bits/stdc++.h> using namespace std; int n, m, sz, timer; int p[1000005]; vector<int> v[1000005]; int tin[1000005], tout[1000005]; int t[4000005], tt[4000005]; int depth[1000005]; int a[1000005]; pair<int, int> q[1000005]; bool used[1000005]; void dfs(int x, int y = 0) { used[x] = true; tin[x] = ++timer; depth[x] = depth[y] + 1; for (int i = 0; i < v[x].size(); ++i) { int to = v[x][i]; dfs(to, x); } tout[x] = timer; return; } void update(int x, int y) { x += sz - 1; t[x] = y; x >>= 1; while (x) { t[x] = max(t[x + x], t[x + x + 1]); x >>= 1; } return; } int get(int l, int r, int ll, int rr, int x) { if (l > r || ll > r || l > rr || ll > rr) return 0; if (l >= ll && r <= rr) return t[x]; int mid = (l + r) >> 1; return max(get(l, mid, ll, rr, x + x), get(mid + 1, r, ll, rr, x + x + 1)); } void update2(int x, int y) { x += sz - 1; tt[x] = y; x >>= 1; while (x) { tt[x] = max(tt[x + x], tt[x + x + 1]); x >>= 1; } return; } int get_pred(int x) { if (x == p[x]) return x; return p[x] = get_pred(p[x]); } void update_val(int x) { int val = get(1, sz, tin[x], tout[x], 1) - depth[x] + 1; update2(x, val); return; } void add_vertex(int x) { for (int i = 0; i < v[x].size(); ++i) { int to = v[x][i]; update2(to, 0); to = get_pred(to); p[to] = x; } update(tin[x], depth[x]); update_val(x); return; } void del_vertex(int x) { update(tin[x], 0); x = get_pred(x); update_val(x); return; } int main(int argc, const char* argv[]) { ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0); cin >> n >> m; for (int i = 1; i <= n; ++i) { cin >> a[i]; } q[0] = {1e9, n + 1}; for (int i = n; i > 0; --i) { while (sz > 0 && q[sz].first <= a[i]) --sz; v[q[sz].second].push_back(i); q[++sz] = {a[i], i}; } for (int i = n + 1; i > 0; --i) if (!used[i]) dfs(i); for (int i = 1; i <= n + 1; ++i) p[i] = i; sz = 1; while (sz < n + 1) sz += sz; for (int i = 1; i <= m; ++i) { add_vertex(i); } cout << tt[1] << " "; for (int i = m + 1; i <= n; ++i) { add_vertex(i); del_vertex(i - m); cout << tt[1] << " "; } cout << '\n'; }
### Prompt Create a solution in Cpp for the following problem: For some array c, let's denote a greedy subsequence as a sequence of indices p_1, p_2, ..., p_l such that 1 ≀ p_1 < p_2 < ... < p_l ≀ |c|, and for each i ∈ [1, l - 1], p_{i + 1} is the minimum number such that p_{i + 1} > p_i and c[p_{i + 1}] > c[p_i]. You are given an array a_1, a_2, ..., a_n. For each its subsegment of length k, calculate the length of its longest greedy subsequence. Input The first line contains two integers n and k (1 ≀ k ≀ n ≀ 10^6) β€” the length of array a and the length of subsegments. The second line contains n integers a_1, a_2, ..., a_n (1 ≀ a_i ≀ n) β€” array a. Output Print n - k + 1 integers β€” the maximum lengths of greedy subsequences of each subsegment having length k. The first number should correspond to subsegment a[1..k], the second β€” to subsegment a[2..k + 1], and so on. Examples Input 6 4 1 5 2 5 3 6 Output 2 2 3 Input 7 6 4 5 2 5 3 6 6 Output 3 3 Note In the first example: * [1, 5, 2, 5] β€” the longest greedy subsequences are 1, 2 ([c_1, c_2] = [1, 5]) or 3, 4 ([c_3, c_4] = [2, 5]). * [5, 2, 5, 3] β€” the sequence is 2, 3 ([c_2, c_3] = [2, 5]). * [2, 5, 3, 6] β€” the sequence is 1, 2, 4 ([c_1, c_2, c_4] = [2, 5, 6]). In the second example: * [4, 5, 2, 5, 3, 6] β€” the longest greedy subsequences are 1, 2, 6 ([c_1, c_2, c_6] = [4, 5, 6]) or 3, 4, 6 ([c_3, c_4, c_6] = [2, 5, 6]). * [5, 2, 5, 3, 6, 6] β€” the subsequence is 2, 3, 5 ([c_2, c_3, c_5] = [2, 5, 6]). ### Response ```cpp #include <bits/stdc++.h> using namespace std; int n, m, sz, timer; int p[1000005]; vector<int> v[1000005]; int tin[1000005], tout[1000005]; int t[4000005], tt[4000005]; int depth[1000005]; int a[1000005]; pair<int, int> q[1000005]; bool used[1000005]; void dfs(int x, int y = 0) { used[x] = true; tin[x] = ++timer; depth[x] = depth[y] + 1; for (int i = 0; i < v[x].size(); ++i) { int to = v[x][i]; dfs(to, x); } tout[x] = timer; return; } void update(int x, int y) { x += sz - 1; t[x] = y; x >>= 1; while (x) { t[x] = max(t[x + x], t[x + x + 1]); x >>= 1; } return; } int get(int l, int r, int ll, int rr, int x) { if (l > r || ll > r || l > rr || ll > rr) return 0; if (l >= ll && r <= rr) return t[x]; int mid = (l + r) >> 1; return max(get(l, mid, ll, rr, x + x), get(mid + 1, r, ll, rr, x + x + 1)); } void update2(int x, int y) { x += sz - 1; tt[x] = y; x >>= 1; while (x) { tt[x] = max(tt[x + x], tt[x + x + 1]); x >>= 1; } return; } int get_pred(int x) { if (x == p[x]) return x; return p[x] = get_pred(p[x]); } void update_val(int x) { int val = get(1, sz, tin[x], tout[x], 1) - depth[x] + 1; update2(x, val); return; } void add_vertex(int x) { for (int i = 0; i < v[x].size(); ++i) { int to = v[x][i]; update2(to, 0); to = get_pred(to); p[to] = x; } update(tin[x], depth[x]); update_val(x); return; } void del_vertex(int x) { update(tin[x], 0); x = get_pred(x); update_val(x); return; } int main(int argc, const char* argv[]) { ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0); cin >> n >> m; for (int i = 1; i <= n; ++i) { cin >> a[i]; } q[0] = {1e9, n + 1}; for (int i = n; i > 0; --i) { while (sz > 0 && q[sz].first <= a[i]) --sz; v[q[sz].second].push_back(i); q[++sz] = {a[i], i}; } for (int i = n + 1; i > 0; --i) if (!used[i]) dfs(i); for (int i = 1; i <= n + 1; ++i) p[i] = i; sz = 1; while (sz < n + 1) sz += sz; for (int i = 1; i <= m; ++i) { add_vertex(i); } cout << tt[1] << " "; for (int i = m + 1; i <= n; ++i) { add_vertex(i); del_vertex(i - m); cout << tt[1] << " "; } cout << '\n'; } ```
#include <bits/stdc++.h> using namespace std; int n, k; int a[1000005]; stack<int> cur; int nxt[1000005]; vector<int> adj[1000005]; int in_t[1000005], out_t[1000005]; int timer = 0; void dfs(int x, int p) { in_t[x] = timer++; for (auto i : adj[x]) { if (i == p) continue; dfs(i, x); } out_t[x] = timer - 1; } int segtree[4 * 1000005]; int lazy[4 * 1000005]; void push(int x, int l, int r) { if (lazy[x] == 0) return; segtree[x] += lazy[x]; if (l != r) { lazy[2 * x + 1] += lazy[x]; lazy[2 * x + 2] += lazy[x]; } lazy[x] = 0; } void update(int x, int l, int r, int a, int b, int v) { push(x, l, r); if (r < a || b < l) return; if (a <= l && r <= b) { lazy[x] = v; push(x, l, r); return; } int m = (l + r) / 2; update(2 * x + 1, l, m, a, b, v); update(2 * x + 2, m + 1, r, a, b, v); segtree[x] = max(segtree[2 * x + 1], segtree[2 * x + 2]); } int main() { ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0); cin >> n >> k; for (int i = 0; i < n; i++) { cin >> a[i]; } for (int i = n - 1; i >= 0; i--) { while (cur.size() > 0 && a[cur.top()] <= a[i]) { cur.pop(); } nxt[i] = (cur.size() > 0 ? cur.top() : n); cur.push(i); } for (int i = 0; i < n; i++) { adj[i].push_back(nxt[i]); adj[nxt[i]].push_back(i); } dfs(n, -1); for (int i = 0; i < k; i++) { update(0, 0, n, in_t[i], out_t[i], 1); } cout << segtree[0] << " "; for (int i = 0; i < n - k; i++) { update(0, 0, n, in_t[i], out_t[i], -1); update(0, 0, n, in_t[i + k], out_t[i + k], 1); cout << segtree[0] << " "; } cout << endl; }
### Prompt Your task is to create a CPP solution to the following problem: For some array c, let's denote a greedy subsequence as a sequence of indices p_1, p_2, ..., p_l such that 1 ≀ p_1 < p_2 < ... < p_l ≀ |c|, and for each i ∈ [1, l - 1], p_{i + 1} is the minimum number such that p_{i + 1} > p_i and c[p_{i + 1}] > c[p_i]. You are given an array a_1, a_2, ..., a_n. For each its subsegment of length k, calculate the length of its longest greedy subsequence. Input The first line contains two integers n and k (1 ≀ k ≀ n ≀ 10^6) β€” the length of array a and the length of subsegments. The second line contains n integers a_1, a_2, ..., a_n (1 ≀ a_i ≀ n) β€” array a. Output Print n - k + 1 integers β€” the maximum lengths of greedy subsequences of each subsegment having length k. The first number should correspond to subsegment a[1..k], the second β€” to subsegment a[2..k + 1], and so on. Examples Input 6 4 1 5 2 5 3 6 Output 2 2 3 Input 7 6 4 5 2 5 3 6 6 Output 3 3 Note In the first example: * [1, 5, 2, 5] β€” the longest greedy subsequences are 1, 2 ([c_1, c_2] = [1, 5]) or 3, 4 ([c_3, c_4] = [2, 5]). * [5, 2, 5, 3] β€” the sequence is 2, 3 ([c_2, c_3] = [2, 5]). * [2, 5, 3, 6] β€” the sequence is 1, 2, 4 ([c_1, c_2, c_4] = [2, 5, 6]). In the second example: * [4, 5, 2, 5, 3, 6] β€” the longest greedy subsequences are 1, 2, 6 ([c_1, c_2, c_6] = [4, 5, 6]) or 3, 4, 6 ([c_3, c_4, c_6] = [2, 5, 6]). * [5, 2, 5, 3, 6, 6] β€” the subsequence is 2, 3, 5 ([c_2, c_3, c_5] = [2, 5, 6]). ### Response ```cpp #include <bits/stdc++.h> using namespace std; int n, k; int a[1000005]; stack<int> cur; int nxt[1000005]; vector<int> adj[1000005]; int in_t[1000005], out_t[1000005]; int timer = 0; void dfs(int x, int p) { in_t[x] = timer++; for (auto i : adj[x]) { if (i == p) continue; dfs(i, x); } out_t[x] = timer - 1; } int segtree[4 * 1000005]; int lazy[4 * 1000005]; void push(int x, int l, int r) { if (lazy[x] == 0) return; segtree[x] += lazy[x]; if (l != r) { lazy[2 * x + 1] += lazy[x]; lazy[2 * x + 2] += lazy[x]; } lazy[x] = 0; } void update(int x, int l, int r, int a, int b, int v) { push(x, l, r); if (r < a || b < l) return; if (a <= l && r <= b) { lazy[x] = v; push(x, l, r); return; } int m = (l + r) / 2; update(2 * x + 1, l, m, a, b, v); update(2 * x + 2, m + 1, r, a, b, v); segtree[x] = max(segtree[2 * x + 1], segtree[2 * x + 2]); } int main() { ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0); cin >> n >> k; for (int i = 0; i < n; i++) { cin >> a[i]; } for (int i = n - 1; i >= 0; i--) { while (cur.size() > 0 && a[cur.top()] <= a[i]) { cur.pop(); } nxt[i] = (cur.size() > 0 ? cur.top() : n); cur.push(i); } for (int i = 0; i < n; i++) { adj[i].push_back(nxt[i]); adj[nxt[i]].push_back(i); } dfs(n, -1); for (int i = 0; i < k; i++) { update(0, 0, n, in_t[i], out_t[i], 1); } cout << segtree[0] << " "; for (int i = 0; i < n - k; i++) { update(0, 0, n, in_t[i], out_t[i], -1); update(0, 0, n, in_t[i + k], out_t[i + k], 1); cout << segtree[0] << " "; } cout << endl; } ```
#include <bits/stdc++.h> using namespace std; unsigned int read() { unsigned int rt = 0; char c = getchar(); while (c < '0' || c > '9') c = getchar(); while (c >= '0' && c <= '9') { rt = rt * 10 + c - '0'; c = getchar(); } return rt; } struct Edge { unsigned int to, next; } ed[1000005 * 2]; unsigned int head[1000005], cnt; void add(int a, int b) { ed[++cnt].to = b; ed[cnt].next = head[a]; head[a] = cnt; } unsigned int sta[1000005], a[1000005], size[1000005]; unsigned int n, k, top; void init() { a[++n] = -1; sta[++top] = 1; size[1] = 1; for (int i = 2; i <= n; i++) { size[i] = 1; while (a[sta[top]] < a[i] && top) { add(i, sta[top]); size[i] += size[sta[top--]]; } sta[++top] = i; } } unsigned int beg[1000005], last[1000005], dfs; stack<int> q; void fuckldy() { q.push(n); while (!q.empty()) { int x = q.top(); q.pop(); beg[x] = ++dfs; for (int i = head[x]; i; i = ed[i].next) q.push(ed[i].to); } for (int i = 1; i <= n; i++) last[i] = beg[i] + size[i] - 1; } struct node { int flag, maxx; } nd[1000005 * 4]; void pushdown(int x) { nd[x << 1].maxx += nd[x].flag; nd[x << 1 | 1].maxx += nd[x].flag; nd[x << 1].flag += nd[x].flag; nd[x << 1 | 1].flag += nd[x].flag; nd[x].flag = 0; } void change(int l, int r, int x, int L, int R, int val) { if (l >= L && r <= R) { nd[x].flag += val; nd[x].maxx += val; return; } pushdown(x); int mid = l + r >> 1; if (L <= mid) change(l, mid, x << 1, L, R, val); if (R > mid) change(mid + 1, r, x << 1 | 1, L, R, val); nd[x].maxx = max(nd[x << 1].maxx, nd[x << 1 | 1].maxx); } int main() { n = read(), k = read(); for (int i = 1; i <= n; i++) a[i] = read(); init(); fuckldy(); for (int i = 1; i <= k; i++) change(1, n, 1, beg[i], last[i], 1); printf("%u ", nd[1].maxx); for (int i = k + 1, j = 1; i < n; i++, j++) { change(1, n, 1, beg[i], last[i], 1); change(1, n, 1, beg[j], last[j], -1); printf("%u ", nd[1].maxx); } return 0; }
### Prompt Create a solution in cpp for the following problem: For some array c, let's denote a greedy subsequence as a sequence of indices p_1, p_2, ..., p_l such that 1 ≀ p_1 < p_2 < ... < p_l ≀ |c|, and for each i ∈ [1, l - 1], p_{i + 1} is the minimum number such that p_{i + 1} > p_i and c[p_{i + 1}] > c[p_i]. You are given an array a_1, a_2, ..., a_n. For each its subsegment of length k, calculate the length of its longest greedy subsequence. Input The first line contains two integers n and k (1 ≀ k ≀ n ≀ 10^6) β€” the length of array a and the length of subsegments. The second line contains n integers a_1, a_2, ..., a_n (1 ≀ a_i ≀ n) β€” array a. Output Print n - k + 1 integers β€” the maximum lengths of greedy subsequences of each subsegment having length k. The first number should correspond to subsegment a[1..k], the second β€” to subsegment a[2..k + 1], and so on. Examples Input 6 4 1 5 2 5 3 6 Output 2 2 3 Input 7 6 4 5 2 5 3 6 6 Output 3 3 Note In the first example: * [1, 5, 2, 5] β€” the longest greedy subsequences are 1, 2 ([c_1, c_2] = [1, 5]) or 3, 4 ([c_3, c_4] = [2, 5]). * [5, 2, 5, 3] β€” the sequence is 2, 3 ([c_2, c_3] = [2, 5]). * [2, 5, 3, 6] β€” the sequence is 1, 2, 4 ([c_1, c_2, c_4] = [2, 5, 6]). In the second example: * [4, 5, 2, 5, 3, 6] β€” the longest greedy subsequences are 1, 2, 6 ([c_1, c_2, c_6] = [4, 5, 6]) or 3, 4, 6 ([c_3, c_4, c_6] = [2, 5, 6]). * [5, 2, 5, 3, 6, 6] β€” the subsequence is 2, 3, 5 ([c_2, c_3, c_5] = [2, 5, 6]). ### Response ```cpp #include <bits/stdc++.h> using namespace std; unsigned int read() { unsigned int rt = 0; char c = getchar(); while (c < '0' || c > '9') c = getchar(); while (c >= '0' && c <= '9') { rt = rt * 10 + c - '0'; c = getchar(); } return rt; } struct Edge { unsigned int to, next; } ed[1000005 * 2]; unsigned int head[1000005], cnt; void add(int a, int b) { ed[++cnt].to = b; ed[cnt].next = head[a]; head[a] = cnt; } unsigned int sta[1000005], a[1000005], size[1000005]; unsigned int n, k, top; void init() { a[++n] = -1; sta[++top] = 1; size[1] = 1; for (int i = 2; i <= n; i++) { size[i] = 1; while (a[sta[top]] < a[i] && top) { add(i, sta[top]); size[i] += size[sta[top--]]; } sta[++top] = i; } } unsigned int beg[1000005], last[1000005], dfs; stack<int> q; void fuckldy() { q.push(n); while (!q.empty()) { int x = q.top(); q.pop(); beg[x] = ++dfs; for (int i = head[x]; i; i = ed[i].next) q.push(ed[i].to); } for (int i = 1; i <= n; i++) last[i] = beg[i] + size[i] - 1; } struct node { int flag, maxx; } nd[1000005 * 4]; void pushdown(int x) { nd[x << 1].maxx += nd[x].flag; nd[x << 1 | 1].maxx += nd[x].flag; nd[x << 1].flag += nd[x].flag; nd[x << 1 | 1].flag += nd[x].flag; nd[x].flag = 0; } void change(int l, int r, int x, int L, int R, int val) { if (l >= L && r <= R) { nd[x].flag += val; nd[x].maxx += val; return; } pushdown(x); int mid = l + r >> 1; if (L <= mid) change(l, mid, x << 1, L, R, val); if (R > mid) change(mid + 1, r, x << 1 | 1, L, R, val); nd[x].maxx = max(nd[x << 1].maxx, nd[x << 1 | 1].maxx); } int main() { n = read(), k = read(); for (int i = 1; i <= n; i++) a[i] = read(); init(); fuckldy(); for (int i = 1; i <= k; i++) change(1, n, 1, beg[i], last[i], 1); printf("%u ", nd[1].maxx); for (int i = k + 1, j = 1; i < n; i++, j++) { change(1, n, 1, beg[i], last[i], 1); change(1, n, 1, beg[j], last[j], -1); printf("%u ", nd[1].maxx); } return 0; } ```
#include <bits/stdc++.h> using namespace std; const int maxn = 1e6 + 5; int mx[maxn * 4], tag[maxn * 4], cnt, sz[maxn], a[maxn], id[maxn]; vector<int> G[maxn]; stack<int> s; void dfs(int u) { sz[u] = 1; id[u] = ++cnt; for (int i = 0; i < G[u].size(); i++) { int v = G[u][i]; dfs(v); sz[u] += sz[v]; } } void pushdown(int o, int ls, int rs) { if (tag[o] != 0) { tag[ls] += tag[o], tag[rs] += tag[o]; mx[ls] += tag[o], mx[rs] += tag[o]; tag[o] = 0; } } void up(int o, int l, int r, int ql, int qr, int v) { int m = (l + r) / 2, ls = o * 2, rs = o * 2 + 1; if (l != r) pushdown(o, ls, rs); if (l >= ql && r <= qr) { mx[o] += v; tag[o] += v; return; } if (ql <= m) up(ls, l, m, ql, qr, v); if (qr > m) up(rs, m + 1, r, ql, qr, v); mx[o] = max(mx[ls], mx[rs]); } int main() { int n, k, ans = 0; scanf("%d%d", &n, &k); for (int i = 1; i <= n; i++) scanf("%d", &a[i]); for (int i = n; i; i--) { while (!s.empty() && a[i] >= a[s.top()]) s.pop(); if (!s.empty()) G[s.top()].push_back(i); s.push(i); } for (int i = n; i; i--) if (!id[i]) dfs(i); for (int i = 1; i <= k; i++) up(1, 1, n, id[i], id[i] + sz[i] - 1, 1); printf("%d", mx[1]); for (int i = k + 1; i <= n; i++) { up(1, 1, n, id[i - k], id[i - k], -10000000); up(1, 1, n, id[i], id[i] + sz[i] - 1, 1); printf(" %d", mx[1]); } }
### Prompt Generate a CPP solution to the following problem: For some array c, let's denote a greedy subsequence as a sequence of indices p_1, p_2, ..., p_l such that 1 ≀ p_1 < p_2 < ... < p_l ≀ |c|, and for each i ∈ [1, l - 1], p_{i + 1} is the minimum number such that p_{i + 1} > p_i and c[p_{i + 1}] > c[p_i]. You are given an array a_1, a_2, ..., a_n. For each its subsegment of length k, calculate the length of its longest greedy subsequence. Input The first line contains two integers n and k (1 ≀ k ≀ n ≀ 10^6) β€” the length of array a and the length of subsegments. The second line contains n integers a_1, a_2, ..., a_n (1 ≀ a_i ≀ n) β€” array a. Output Print n - k + 1 integers β€” the maximum lengths of greedy subsequences of each subsegment having length k. The first number should correspond to subsegment a[1..k], the second β€” to subsegment a[2..k + 1], and so on. Examples Input 6 4 1 5 2 5 3 6 Output 2 2 3 Input 7 6 4 5 2 5 3 6 6 Output 3 3 Note In the first example: * [1, 5, 2, 5] β€” the longest greedy subsequences are 1, 2 ([c_1, c_2] = [1, 5]) or 3, 4 ([c_3, c_4] = [2, 5]). * [5, 2, 5, 3] β€” the sequence is 2, 3 ([c_2, c_3] = [2, 5]). * [2, 5, 3, 6] β€” the sequence is 1, 2, 4 ([c_1, c_2, c_4] = [2, 5, 6]). In the second example: * [4, 5, 2, 5, 3, 6] β€” the longest greedy subsequences are 1, 2, 6 ([c_1, c_2, c_6] = [4, 5, 6]) or 3, 4, 6 ([c_3, c_4, c_6] = [2, 5, 6]). * [5, 2, 5, 3, 6, 6] β€” the subsequence is 2, 3, 5 ([c_2, c_3, c_5] = [2, 5, 6]). ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int maxn = 1e6 + 5; int mx[maxn * 4], tag[maxn * 4], cnt, sz[maxn], a[maxn], id[maxn]; vector<int> G[maxn]; stack<int> s; void dfs(int u) { sz[u] = 1; id[u] = ++cnt; for (int i = 0; i < G[u].size(); i++) { int v = G[u][i]; dfs(v); sz[u] += sz[v]; } } void pushdown(int o, int ls, int rs) { if (tag[o] != 0) { tag[ls] += tag[o], tag[rs] += tag[o]; mx[ls] += tag[o], mx[rs] += tag[o]; tag[o] = 0; } } void up(int o, int l, int r, int ql, int qr, int v) { int m = (l + r) / 2, ls = o * 2, rs = o * 2 + 1; if (l != r) pushdown(o, ls, rs); if (l >= ql && r <= qr) { mx[o] += v; tag[o] += v; return; } if (ql <= m) up(ls, l, m, ql, qr, v); if (qr > m) up(rs, m + 1, r, ql, qr, v); mx[o] = max(mx[ls], mx[rs]); } int main() { int n, k, ans = 0; scanf("%d%d", &n, &k); for (int i = 1; i <= n; i++) scanf("%d", &a[i]); for (int i = n; i; i--) { while (!s.empty() && a[i] >= a[s.top()]) s.pop(); if (!s.empty()) G[s.top()].push_back(i); s.push(i); } for (int i = n; i; i--) if (!id[i]) dfs(i); for (int i = 1; i <= k; i++) up(1, 1, n, id[i], id[i] + sz[i] - 1, 1); printf("%d", mx[1]); for (int i = k + 1; i <= n; i++) { up(1, 1, n, id[i - k], id[i - k], -10000000); up(1, 1, n, id[i], id[i] + sz[i] - 1, 1); printf(" %d", mx[1]); } } ```
#include <bits/stdc++.h> const int MAXN = 1e6 + 10; const double eps = 1e-8; using namespace std; const int inf = 1e9; struct edge { int t; edge *next; } e[MAXN << 1], *h[MAXN], *o = e; void add(int x, int y) { o->t = y; o->next = h[x]; h[x] = o++; } long long read() { long long x = 0, f = 1; char ch = getchar(); while (!isdigit(ch)) { if (ch == '-') f = -1; ch = getchar(); } while (isdigit(ch)) x = x * 10 + ch - '0', ch = getchar(); return x * f; } int n, k; int a[MAXN], key[MAXN]; int st[MAXN], tot, cnt; int fa[MAXN][21], dep[MAXN], p[MAXN], num[MAXN]; void dfs(int x, int pre, int deep) { fa[x][0] = pre; dep[x] = deep + 1; num[x] = 1; p[x] = ++cnt; key[x] = x; for (int i = 1; i <= 20; i++) fa[x][i] = fa[fa[x][i - 1]][i - 1]; for (edge *j = h[x]; j; j = j->next) { dfs(j->t, x, deep + 1); num[x] += num[j->t]; } } int St(int x, int y) { int p = x; for (int i = 20; i >= 0; i--) if (key[fa[x][i]] <= y) x = fa[x][i]; return dep[p] - dep[fa[x][0]]; } int maxx[MAXN << 2], tag[MAXN << 2]; void push(int x) { if (tag[x]) { maxx[x << 1] -= tag[x]; maxx[x << 1 | 1] -= tag[x]; tag[x << 1] += tag[x]; tag[x << 1 | 1] += tag[x]; tag[x] = 0; } } void up(int x) { maxx[x] = max(maxx[x << 1], maxx[x << 1 | 1]); } void built(int x, int l, int r) { if (l == r) { maxx[x] = -inf; return; } int mid = (l + r) >> 1; built(x << 1, l, mid); built(x << 1 | 1, mid + 1, r); up(x); } void update(int x, int l, int r, int ql, int qr) { if (ql <= l && r <= qr) { tag[x]++; maxx[x]--; return; } int mid = (l + r) >> 1; push(x); if (ql <= mid) update(x << 1, l, mid, ql, qr); if (qr > mid) update(x << 1 | 1, mid + 1, r, ql, qr); up(x); } void update1(int x, int l, int r, int t, int k) { if (l == r) { maxx[x] += k; return; } int mid = (l + r) >> 1; push(x); if (t <= mid) update1(x << 1, l, mid, t, k); else update1(x << 1 | 1, mid + 1, r, t, k); up(x); } int ans[MAXN]; int main() { n = read(); k = read(); key[0] = inf; for (int i = 1; i <= n; i++) a[i] = read(); for (int i = n; i >= 1; i--) { while (tot && a[st[tot]] <= a[i]) tot--; if (!tot) add(n + 1, i); else add(st[tot], i); st[++tot] = i; } dfs(n + 1, 0, 0); built(1, 1, n + 1); for (int i = n; i >= n - k + 1; i--) update1(1, 1, n + 1, p[i], dep[i] - 1 + inf); ans[n - k + 1] = maxx[1]; for (int i = n - k; i >= 1; i--) { update(1, 1, n + 1, p[i + k], p[i + k] + num[i + k] - 1); update1(1, 1, n + 1, p[i + k], -inf); update1(1, 1, n + 1, p[i], dep[i] + inf - 1); ans[i] = maxx[1]; } for (int i = 1; i <= n - k + 1; i++) printf("%d ", ans[i]); printf("\n"); return 0; }
### Prompt Your task is to create a CPP solution to the following problem: For some array c, let's denote a greedy subsequence as a sequence of indices p_1, p_2, ..., p_l such that 1 ≀ p_1 < p_2 < ... < p_l ≀ |c|, and for each i ∈ [1, l - 1], p_{i + 1} is the minimum number such that p_{i + 1} > p_i and c[p_{i + 1}] > c[p_i]. You are given an array a_1, a_2, ..., a_n. For each its subsegment of length k, calculate the length of its longest greedy subsequence. Input The first line contains two integers n and k (1 ≀ k ≀ n ≀ 10^6) β€” the length of array a and the length of subsegments. The second line contains n integers a_1, a_2, ..., a_n (1 ≀ a_i ≀ n) β€” array a. Output Print n - k + 1 integers β€” the maximum lengths of greedy subsequences of each subsegment having length k. The first number should correspond to subsegment a[1..k], the second β€” to subsegment a[2..k + 1], and so on. Examples Input 6 4 1 5 2 5 3 6 Output 2 2 3 Input 7 6 4 5 2 5 3 6 6 Output 3 3 Note In the first example: * [1, 5, 2, 5] β€” the longest greedy subsequences are 1, 2 ([c_1, c_2] = [1, 5]) or 3, 4 ([c_3, c_4] = [2, 5]). * [5, 2, 5, 3] β€” the sequence is 2, 3 ([c_2, c_3] = [2, 5]). * [2, 5, 3, 6] β€” the sequence is 1, 2, 4 ([c_1, c_2, c_4] = [2, 5, 6]). In the second example: * [4, 5, 2, 5, 3, 6] β€” the longest greedy subsequences are 1, 2, 6 ([c_1, c_2, c_6] = [4, 5, 6]) or 3, 4, 6 ([c_3, c_4, c_6] = [2, 5, 6]). * [5, 2, 5, 3, 6, 6] β€” the subsequence is 2, 3, 5 ([c_2, c_3, c_5] = [2, 5, 6]). ### Response ```cpp #include <bits/stdc++.h> const int MAXN = 1e6 + 10; const double eps = 1e-8; using namespace std; const int inf = 1e9; struct edge { int t; edge *next; } e[MAXN << 1], *h[MAXN], *o = e; void add(int x, int y) { o->t = y; o->next = h[x]; h[x] = o++; } long long read() { long long x = 0, f = 1; char ch = getchar(); while (!isdigit(ch)) { if (ch == '-') f = -1; ch = getchar(); } while (isdigit(ch)) x = x * 10 + ch - '0', ch = getchar(); return x * f; } int n, k; int a[MAXN], key[MAXN]; int st[MAXN], tot, cnt; int fa[MAXN][21], dep[MAXN], p[MAXN], num[MAXN]; void dfs(int x, int pre, int deep) { fa[x][0] = pre; dep[x] = deep + 1; num[x] = 1; p[x] = ++cnt; key[x] = x; for (int i = 1; i <= 20; i++) fa[x][i] = fa[fa[x][i - 1]][i - 1]; for (edge *j = h[x]; j; j = j->next) { dfs(j->t, x, deep + 1); num[x] += num[j->t]; } } int St(int x, int y) { int p = x; for (int i = 20; i >= 0; i--) if (key[fa[x][i]] <= y) x = fa[x][i]; return dep[p] - dep[fa[x][0]]; } int maxx[MAXN << 2], tag[MAXN << 2]; void push(int x) { if (tag[x]) { maxx[x << 1] -= tag[x]; maxx[x << 1 | 1] -= tag[x]; tag[x << 1] += tag[x]; tag[x << 1 | 1] += tag[x]; tag[x] = 0; } } void up(int x) { maxx[x] = max(maxx[x << 1], maxx[x << 1 | 1]); } void built(int x, int l, int r) { if (l == r) { maxx[x] = -inf; return; } int mid = (l + r) >> 1; built(x << 1, l, mid); built(x << 1 | 1, mid + 1, r); up(x); } void update(int x, int l, int r, int ql, int qr) { if (ql <= l && r <= qr) { tag[x]++; maxx[x]--; return; } int mid = (l + r) >> 1; push(x); if (ql <= mid) update(x << 1, l, mid, ql, qr); if (qr > mid) update(x << 1 | 1, mid + 1, r, ql, qr); up(x); } void update1(int x, int l, int r, int t, int k) { if (l == r) { maxx[x] += k; return; } int mid = (l + r) >> 1; push(x); if (t <= mid) update1(x << 1, l, mid, t, k); else update1(x << 1 | 1, mid + 1, r, t, k); up(x); } int ans[MAXN]; int main() { n = read(); k = read(); key[0] = inf; for (int i = 1; i <= n; i++) a[i] = read(); for (int i = n; i >= 1; i--) { while (tot && a[st[tot]] <= a[i]) tot--; if (!tot) add(n + 1, i); else add(st[tot], i); st[++tot] = i; } dfs(n + 1, 0, 0); built(1, 1, n + 1); for (int i = n; i >= n - k + 1; i--) update1(1, 1, n + 1, p[i], dep[i] - 1 + inf); ans[n - k + 1] = maxx[1]; for (int i = n - k; i >= 1; i--) { update(1, 1, n + 1, p[i + k], p[i + k] + num[i + k] - 1); update1(1, 1, n + 1, p[i + k], -inf); update1(1, 1, n + 1, p[i], dep[i] + inf - 1); ans[i] = maxx[1]; } for (int i = 1; i <= n - k + 1; i++) printf("%d ", ans[i]); printf("\n"); return 0; } ```
#include <bits/stdc++.h> #pragma comment(linker, "/STACK:102400000,102400000") using namespace std; const int N = 1e6 + 10; const int inf = 1 << 30; const long long md = 998244353; int n, k, a[N], lg[N], mx[N][20], head[N], pos, dfn[N], rnk[N], dfscnt, anc[N][20], siz[N]; struct edge { int nxt, to; } e[N << 1]; void add(int u, int v) { e[++pos] = (edge){head[u], v}; head[u] = pos; } int Query(int l, int r) { int k = lg[r - l + 1]; return max(mx[l][k], mx[r - (1 << k) + 1][k]); } int seg[N << 2], tag[N << 2]; void pushup(int rt) { seg[rt] = max(seg[rt << 1], seg[rt << 1 | 1]); } void pushdown(int rt) { if (tag[rt]) { seg[rt << 1] += tag[rt]; seg[rt << 1 | 1] += tag[rt]; tag[rt << 1] += tag[rt]; tag[rt << 1 | 1] += tag[rt]; tag[rt] = 0; } } void motify(int rt, int l, int r, int ql, int qr, int d) { if (ql <= l && r <= qr) { tag[rt] += d; seg[rt] += d; return; } int mid = l + r >> 1; pushdown(rt); if (mid >= ql) motify(rt << 1, l, mid, ql, qr, d); if (mid + 1 <= qr) motify(rt << 1 | 1, mid + 1, r, ql, qr, d); pushup(rt); } void dfs(int u, int fa) { int i; dfn[u] = ++dfscnt; rnk[dfscnt] = u; siz[u] = 1; for (i = head[u]; i; i = e[i].nxt) { if (e[i].to == fa) continue; dfs(e[i].to, u); siz[u] += siz[e[i].to]; anc[e[i].to][0] = u; } } void ins(int u) { motify(1, 1, n, dfn[u], dfn[u] + siz[u] - 1, 1); } void del(int u) { motify(1, 1, n, dfn[u], dfn[u], -inf); } int main() { scanf("%d%d", &n, &k); int i, j; for (i = 1; i <= n; ++i) scanf("%d", &a[i]), mx[i][0] = a[i]; for (j = 1; j <= 19; ++j) for (i = 1; i + (1 << j) - 1 <= n; ++i) mx[i][j] = max(mx[i][j - 1], mx[i + (1 << j - 1)][j - 1]); for (i = 2; i <= n; ++i) lg[i] = lg[i >> 1] + 1; for (i = 1; i <= n; ++i) { int l = i, r = n; if (Query(i, n) == a[i]) continue; while (l < r - 1) { int mid = l + r >> 1; if (Query(i, mid) > a[i]) r = mid; else l = mid + 1; } if (Query(i, l) > a[i]) add(i, l), add(l, i); else add(i, r), add(r, i); } for (i = n; i >= 1; --i) if (!dfn[i]) dfs(i, 0); for (j = 1; j <= 19; ++j) for (i = 1; i <= n; ++i) anc[i][j] = anc[anc[i][j - 1]][j - 1]; for (i = 1; i <= k; ++i) ins(i); printf("%d ", seg[1]); for (i = 2; i + k - 1 <= n; ++i) { ins(i + k - 1); del(i - 1); printf("%d ", seg[1]); } }
### Prompt Please formulate a cpp solution to the following problem: For some array c, let's denote a greedy subsequence as a sequence of indices p_1, p_2, ..., p_l such that 1 ≀ p_1 < p_2 < ... < p_l ≀ |c|, and for each i ∈ [1, l - 1], p_{i + 1} is the minimum number such that p_{i + 1} > p_i and c[p_{i + 1}] > c[p_i]. You are given an array a_1, a_2, ..., a_n. For each its subsegment of length k, calculate the length of its longest greedy subsequence. Input The first line contains two integers n and k (1 ≀ k ≀ n ≀ 10^6) β€” the length of array a and the length of subsegments. The second line contains n integers a_1, a_2, ..., a_n (1 ≀ a_i ≀ n) β€” array a. Output Print n - k + 1 integers β€” the maximum lengths of greedy subsequences of each subsegment having length k. The first number should correspond to subsegment a[1..k], the second β€” to subsegment a[2..k + 1], and so on. Examples Input 6 4 1 5 2 5 3 6 Output 2 2 3 Input 7 6 4 5 2 5 3 6 6 Output 3 3 Note In the first example: * [1, 5, 2, 5] β€” the longest greedy subsequences are 1, 2 ([c_1, c_2] = [1, 5]) or 3, 4 ([c_3, c_4] = [2, 5]). * [5, 2, 5, 3] β€” the sequence is 2, 3 ([c_2, c_3] = [2, 5]). * [2, 5, 3, 6] β€” the sequence is 1, 2, 4 ([c_1, c_2, c_4] = [2, 5, 6]). In the second example: * [4, 5, 2, 5, 3, 6] β€” the longest greedy subsequences are 1, 2, 6 ([c_1, c_2, c_6] = [4, 5, 6]) or 3, 4, 6 ([c_3, c_4, c_6] = [2, 5, 6]). * [5, 2, 5, 3, 6, 6] β€” the subsequence is 2, 3, 5 ([c_2, c_3, c_5] = [2, 5, 6]). ### Response ```cpp #include <bits/stdc++.h> #pragma comment(linker, "/STACK:102400000,102400000") using namespace std; const int N = 1e6 + 10; const int inf = 1 << 30; const long long md = 998244353; int n, k, a[N], lg[N], mx[N][20], head[N], pos, dfn[N], rnk[N], dfscnt, anc[N][20], siz[N]; struct edge { int nxt, to; } e[N << 1]; void add(int u, int v) { e[++pos] = (edge){head[u], v}; head[u] = pos; } int Query(int l, int r) { int k = lg[r - l + 1]; return max(mx[l][k], mx[r - (1 << k) + 1][k]); } int seg[N << 2], tag[N << 2]; void pushup(int rt) { seg[rt] = max(seg[rt << 1], seg[rt << 1 | 1]); } void pushdown(int rt) { if (tag[rt]) { seg[rt << 1] += tag[rt]; seg[rt << 1 | 1] += tag[rt]; tag[rt << 1] += tag[rt]; tag[rt << 1 | 1] += tag[rt]; tag[rt] = 0; } } void motify(int rt, int l, int r, int ql, int qr, int d) { if (ql <= l && r <= qr) { tag[rt] += d; seg[rt] += d; return; } int mid = l + r >> 1; pushdown(rt); if (mid >= ql) motify(rt << 1, l, mid, ql, qr, d); if (mid + 1 <= qr) motify(rt << 1 | 1, mid + 1, r, ql, qr, d); pushup(rt); } void dfs(int u, int fa) { int i; dfn[u] = ++dfscnt; rnk[dfscnt] = u; siz[u] = 1; for (i = head[u]; i; i = e[i].nxt) { if (e[i].to == fa) continue; dfs(e[i].to, u); siz[u] += siz[e[i].to]; anc[e[i].to][0] = u; } } void ins(int u) { motify(1, 1, n, dfn[u], dfn[u] + siz[u] - 1, 1); } void del(int u) { motify(1, 1, n, dfn[u], dfn[u], -inf); } int main() { scanf("%d%d", &n, &k); int i, j; for (i = 1; i <= n; ++i) scanf("%d", &a[i]), mx[i][0] = a[i]; for (j = 1; j <= 19; ++j) for (i = 1; i + (1 << j) - 1 <= n; ++i) mx[i][j] = max(mx[i][j - 1], mx[i + (1 << j - 1)][j - 1]); for (i = 2; i <= n; ++i) lg[i] = lg[i >> 1] + 1; for (i = 1; i <= n; ++i) { int l = i, r = n; if (Query(i, n) == a[i]) continue; while (l < r - 1) { int mid = l + r >> 1; if (Query(i, mid) > a[i]) r = mid; else l = mid + 1; } if (Query(i, l) > a[i]) add(i, l), add(l, i); else add(i, r), add(r, i); } for (i = n; i >= 1; --i) if (!dfn[i]) dfs(i, 0); for (j = 1; j <= 19; ++j) for (i = 1; i <= n; ++i) anc[i][j] = anc[anc[i][j - 1]][j - 1]; for (i = 1; i <= k; ++i) ins(i); printf("%d ", seg[1]); for (i = 2; i + k - 1 <= n; ++i) { ins(i + k - 1); del(i - 1); printf("%d ", seg[1]); } } ```
#include <bits/stdc++.h> using namespace std; int n, s, c, a[1000010], d[1000010], n1[1000010], n2[1000010], f1[1000010], f2[1000010], t[1000010]; bool v[1000010]; int main() { scanf("%d%d", &n, &s); if (s == 1) { for (int i = (1); i <= (n); ++i) printf("1 "); return 0; } for (int i = (1); i <= (n); ++i) scanf("%d", &a[i]); for (int i = n; i; --i) { while (c && d[c] <= a[i]) --c; d[++c] = a[i]; a[i] = c; t[i] = i; } for (int i = (1); i <= (n); ++i) { int x = i - 1; for (; x && (a[x] > a[i] || a[t[x]] - a[x] <= a[t[i]] - a[i]); x = f2[x]) { int y = x; for (; y && a[t[i]] >= a[y]; y = f1[y]) v[y] = 1; if (y) { n1[y] = t[i]; f1[t[i]] = y; t[i] = t[x]; } } if (x) n2[x] = i, f2[i] = x; else c = i; if (i >= s) { printf("%d ", a[t[c]] - a[c] + 1); if (!v[i - s + 1]) { v[i - s + 1] = 1; t[c] = n1[i - s + 1]; f1[n1[i - s + 1]] = 0; if (n2[c] && a[t[c]] - a[c] <= a[t[n2[c]]] - a[n2[c]]) { for (int j = i - s + 1; j; j = n1[j]) v[j] = 1; f2[n2[c]] = 0; c = n2[c]; } } } } }
### Prompt Construct a cpp code solution to the problem outlined: For some array c, let's denote a greedy subsequence as a sequence of indices p_1, p_2, ..., p_l such that 1 ≀ p_1 < p_2 < ... < p_l ≀ |c|, and for each i ∈ [1, l - 1], p_{i + 1} is the minimum number such that p_{i + 1} > p_i and c[p_{i + 1}] > c[p_i]. You are given an array a_1, a_2, ..., a_n. For each its subsegment of length k, calculate the length of its longest greedy subsequence. Input The first line contains two integers n and k (1 ≀ k ≀ n ≀ 10^6) β€” the length of array a and the length of subsegments. The second line contains n integers a_1, a_2, ..., a_n (1 ≀ a_i ≀ n) β€” array a. Output Print n - k + 1 integers β€” the maximum lengths of greedy subsequences of each subsegment having length k. The first number should correspond to subsegment a[1..k], the second β€” to subsegment a[2..k + 1], and so on. Examples Input 6 4 1 5 2 5 3 6 Output 2 2 3 Input 7 6 4 5 2 5 3 6 6 Output 3 3 Note In the first example: * [1, 5, 2, 5] β€” the longest greedy subsequences are 1, 2 ([c_1, c_2] = [1, 5]) or 3, 4 ([c_3, c_4] = [2, 5]). * [5, 2, 5, 3] β€” the sequence is 2, 3 ([c_2, c_3] = [2, 5]). * [2, 5, 3, 6] β€” the sequence is 1, 2, 4 ([c_1, c_2, c_4] = [2, 5, 6]). In the second example: * [4, 5, 2, 5, 3, 6] β€” the longest greedy subsequences are 1, 2, 6 ([c_1, c_2, c_6] = [4, 5, 6]) or 3, 4, 6 ([c_3, c_4, c_6] = [2, 5, 6]). * [5, 2, 5, 3, 6, 6] β€” the subsequence is 2, 3, 5 ([c_2, c_3, c_5] = [2, 5, 6]). ### Response ```cpp #include <bits/stdc++.h> using namespace std; int n, s, c, a[1000010], d[1000010], n1[1000010], n2[1000010], f1[1000010], f2[1000010], t[1000010]; bool v[1000010]; int main() { scanf("%d%d", &n, &s); if (s == 1) { for (int i = (1); i <= (n); ++i) printf("1 "); return 0; } for (int i = (1); i <= (n); ++i) scanf("%d", &a[i]); for (int i = n; i; --i) { while (c && d[c] <= a[i]) --c; d[++c] = a[i]; a[i] = c; t[i] = i; } for (int i = (1); i <= (n); ++i) { int x = i - 1; for (; x && (a[x] > a[i] || a[t[x]] - a[x] <= a[t[i]] - a[i]); x = f2[x]) { int y = x; for (; y && a[t[i]] >= a[y]; y = f1[y]) v[y] = 1; if (y) { n1[y] = t[i]; f1[t[i]] = y; t[i] = t[x]; } } if (x) n2[x] = i, f2[i] = x; else c = i; if (i >= s) { printf("%d ", a[t[c]] - a[c] + 1); if (!v[i - s + 1]) { v[i - s + 1] = 1; t[c] = n1[i - s + 1]; f1[n1[i - s + 1]] = 0; if (n2[c] && a[t[c]] - a[c] <= a[t[n2[c]]] - a[n2[c]]) { for (int j = i - s + 1; j; j = n1[j]) v[j] = 1; f2[n2[c]] = 0; c = n2[c]; } } } } } ```
#include <bits/stdc++.h> using namespace std; const int MAXN = 1e6 + 5; struct seg { int tr[MAXN << 2], lazy[MAXN << 2]; inline void push_up(int rt) { tr[rt] = max(tr[rt << 1], tr[rt << 1 | 1]); } inline void push_down(int rt) { if (lazy[rt]) { tr[rt << 1] += lazy[rt]; tr[rt << 1 | 1] += lazy[rt]; lazy[rt << 1] += lazy[rt]; lazy[rt << 1 | 1] += lazy[rt]; lazy[rt] = 0; } } void build(int l, int r, int rt) { tr[rt] = lazy[rt] = 0; if (l == r) return; int mid = (l + r) >> 1; build(l, mid, rt << 1); build(mid + 1, r, rt << 1 | 1); } void update(int L, int R, int val, int l, int r, int rt) { if (L <= l && r <= R) { tr[rt] += val; lazy[rt] += val; return; } int mid = (l + r) >> 1; push_down(rt); if (L <= mid) update(L, R, val, l, mid, rt << 1); if (mid < R) update(L, R, val, mid + 1, r, rt << 1 | 1); push_up(rt); } } se; stack<int> st; int a[MAXN], in[MAXN], out[MAXN], tim = 0; vector<int> E[MAXN]; void dfs(int now) { in[now] = ++tim; for (int v : E[now]) { dfs(v); } out[now] = tim; } int main() { int n, k; scanf("%d%d", &n, &k); for (int i = 1; i <= n; i++) scanf("%d", &a[i]); n++; a[n] = 1e9; for (int i = 1; i <= n; i++) { while (!st.empty() && a[st.top()] < a[i]) { E[i].push_back(st.top()); st.pop(); } st.push(i); } dfs(n); se.build(1, n, 1); for (int i = 1; i < n; i++) { se.update(in[i], out[i], 1, 1, n, 1); if (i > k) se.update(in[i - k], out[i - k], -1, 1, n, 1); if (i >= k) printf("%d ", se.tr[1]); } puts(""); return 0; }
### Prompt Please provide a Cpp coded solution to the problem described below: For some array c, let's denote a greedy subsequence as a sequence of indices p_1, p_2, ..., p_l such that 1 ≀ p_1 < p_2 < ... < p_l ≀ |c|, and for each i ∈ [1, l - 1], p_{i + 1} is the minimum number such that p_{i + 1} > p_i and c[p_{i + 1}] > c[p_i]. You are given an array a_1, a_2, ..., a_n. For each its subsegment of length k, calculate the length of its longest greedy subsequence. Input The first line contains two integers n and k (1 ≀ k ≀ n ≀ 10^6) β€” the length of array a and the length of subsegments. The second line contains n integers a_1, a_2, ..., a_n (1 ≀ a_i ≀ n) β€” array a. Output Print n - k + 1 integers β€” the maximum lengths of greedy subsequences of each subsegment having length k. The first number should correspond to subsegment a[1..k], the second β€” to subsegment a[2..k + 1], and so on. Examples Input 6 4 1 5 2 5 3 6 Output 2 2 3 Input 7 6 4 5 2 5 3 6 6 Output 3 3 Note In the first example: * [1, 5, 2, 5] β€” the longest greedy subsequences are 1, 2 ([c_1, c_2] = [1, 5]) or 3, 4 ([c_3, c_4] = [2, 5]). * [5, 2, 5, 3] β€” the sequence is 2, 3 ([c_2, c_3] = [2, 5]). * [2, 5, 3, 6] β€” the sequence is 1, 2, 4 ([c_1, c_2, c_4] = [2, 5, 6]). In the second example: * [4, 5, 2, 5, 3, 6] β€” the longest greedy subsequences are 1, 2, 6 ([c_1, c_2, c_6] = [4, 5, 6]) or 3, 4, 6 ([c_3, c_4, c_6] = [2, 5, 6]). * [5, 2, 5, 3, 6, 6] β€” the subsequence is 2, 3, 5 ([c_2, c_3, c_5] = [2, 5, 6]). ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int MAXN = 1e6 + 5; struct seg { int tr[MAXN << 2], lazy[MAXN << 2]; inline void push_up(int rt) { tr[rt] = max(tr[rt << 1], tr[rt << 1 | 1]); } inline void push_down(int rt) { if (lazy[rt]) { tr[rt << 1] += lazy[rt]; tr[rt << 1 | 1] += lazy[rt]; lazy[rt << 1] += lazy[rt]; lazy[rt << 1 | 1] += lazy[rt]; lazy[rt] = 0; } } void build(int l, int r, int rt) { tr[rt] = lazy[rt] = 0; if (l == r) return; int mid = (l + r) >> 1; build(l, mid, rt << 1); build(mid + 1, r, rt << 1 | 1); } void update(int L, int R, int val, int l, int r, int rt) { if (L <= l && r <= R) { tr[rt] += val; lazy[rt] += val; return; } int mid = (l + r) >> 1; push_down(rt); if (L <= mid) update(L, R, val, l, mid, rt << 1); if (mid < R) update(L, R, val, mid + 1, r, rt << 1 | 1); push_up(rt); } } se; stack<int> st; int a[MAXN], in[MAXN], out[MAXN], tim = 0; vector<int> E[MAXN]; void dfs(int now) { in[now] = ++tim; for (int v : E[now]) { dfs(v); } out[now] = tim; } int main() { int n, k; scanf("%d%d", &n, &k); for (int i = 1; i <= n; i++) scanf("%d", &a[i]); n++; a[n] = 1e9; for (int i = 1; i <= n; i++) { while (!st.empty() && a[st.top()] < a[i]) { E[i].push_back(st.top()); st.pop(); } st.push(i); } dfs(n); se.build(1, n, 1); for (int i = 1; i < n; i++) { se.update(in[i], out[i], 1, 1, n, 1); if (i > k) se.update(in[i - k], out[i - k], -1, 1, n, 1); if (i >= k) printf("%d ", se.tr[1]); } puts(""); return 0; } ```
#include <bits/stdc++.h> #pragma GCC optimize("Ofast") #pragma GCC optimize("unroll-loops") #pragma GCC optimize("O3") using namespace std; vector<vector<long long> > g; vector<long long> tin, tout; long long timer = 0; void dfs(long long v) { tin[v] = timer++; for (auto i : g[v]) { dfs(i); } tout[v] = timer - 1; } struct Node { long long mx, add; }; vector<Node> tree; void push(long long v) { if (tree[v].add != 0) { tree[v * 2 + 1].add += tree[v].add; tree[v * 2 + 1].mx += tree[v].add; tree[v * 2 + 2].add += tree[v].add; tree[v * 2 + 2].mx += tree[v].add; tree[v].add = 0; } } void addVal(long long v, long long tl, long long tr, long long l, long long r, long long val) { if (l > r) return; if (tl == l && tr == r) { tree[v].add += val; tree[v].mx += val; return; } long long tm = (tl + tr) / 2; push(v); addVal(v * 2 + 1, tl, tm, l, min(tm, r), val); addVal(v * 2 + 2, tm + 1, tr, max(tm + 1, l), r, val); tree[v].mx = max(tree[v * 2 + 1].mx, tree[v * 2 + 2].mx); } int main() { ios_base::sync_with_stdio(0); cin.tie(0); cout.tie(0); ; long long n, k; cin >> n >> k; g.resize(n + 1); vector<long long> a(n); for (long long i = 0; i < n; i++) { cin >> a[i]; } tin.resize(n + 2), tout.resize(n + 2); stack<long long> st; for (int i = n - 1; i >= 0; i--) { while (!st.empty() && a[st.top()] <= a[i]) { st.pop(); } long long nxt = st.empty() ? n : st.top(); g[nxt].push_back(i); st.push(i); } dfs(n); tree.resize(4 * (n + 1), Node({0, 0})); for (long long i = 0; i < k - 1; i++) { addVal(0, 0, n + 1, tin[i], tout[i], 1); if (0) { cout << i << " " << tin[i] << " " << tout[i] << " " << 1 << "\n"; } } for (long long l = 0; l + k <= n; l++) { addVal(0, 0, n + 1, tin[l + k - 1], tout[l + k - 1], +1); cout << tree[0].mx << " "; addVal(0, 0, n + 1, tin[l], tout[l], -1); if (0) { cout << l + k - 1 << " " << tin[l + k - 1] << " " << tout[l + k - 1] << " " << 1 << "\n"; ; cout << l << " " << tin[l] << " " << tout[l] << " " << -1 << "\n"; } } return 0; }
### Prompt Construct a CPP code solution to the problem outlined: For some array c, let's denote a greedy subsequence as a sequence of indices p_1, p_2, ..., p_l such that 1 ≀ p_1 < p_2 < ... < p_l ≀ |c|, and for each i ∈ [1, l - 1], p_{i + 1} is the minimum number such that p_{i + 1} > p_i and c[p_{i + 1}] > c[p_i]. You are given an array a_1, a_2, ..., a_n. For each its subsegment of length k, calculate the length of its longest greedy subsequence. Input The first line contains two integers n and k (1 ≀ k ≀ n ≀ 10^6) β€” the length of array a and the length of subsegments. The second line contains n integers a_1, a_2, ..., a_n (1 ≀ a_i ≀ n) β€” array a. Output Print n - k + 1 integers β€” the maximum lengths of greedy subsequences of each subsegment having length k. The first number should correspond to subsegment a[1..k], the second β€” to subsegment a[2..k + 1], and so on. Examples Input 6 4 1 5 2 5 3 6 Output 2 2 3 Input 7 6 4 5 2 5 3 6 6 Output 3 3 Note In the first example: * [1, 5, 2, 5] β€” the longest greedy subsequences are 1, 2 ([c_1, c_2] = [1, 5]) or 3, 4 ([c_3, c_4] = [2, 5]). * [5, 2, 5, 3] β€” the sequence is 2, 3 ([c_2, c_3] = [2, 5]). * [2, 5, 3, 6] β€” the sequence is 1, 2, 4 ([c_1, c_2, c_4] = [2, 5, 6]). In the second example: * [4, 5, 2, 5, 3, 6] β€” the longest greedy subsequences are 1, 2, 6 ([c_1, c_2, c_6] = [4, 5, 6]) or 3, 4, 6 ([c_3, c_4, c_6] = [2, 5, 6]). * [5, 2, 5, 3, 6, 6] β€” the subsequence is 2, 3, 5 ([c_2, c_3, c_5] = [2, 5, 6]). ### Response ```cpp #include <bits/stdc++.h> #pragma GCC optimize("Ofast") #pragma GCC optimize("unroll-loops") #pragma GCC optimize("O3") using namespace std; vector<vector<long long> > g; vector<long long> tin, tout; long long timer = 0; void dfs(long long v) { tin[v] = timer++; for (auto i : g[v]) { dfs(i); } tout[v] = timer - 1; } struct Node { long long mx, add; }; vector<Node> tree; void push(long long v) { if (tree[v].add != 0) { tree[v * 2 + 1].add += tree[v].add; tree[v * 2 + 1].mx += tree[v].add; tree[v * 2 + 2].add += tree[v].add; tree[v * 2 + 2].mx += tree[v].add; tree[v].add = 0; } } void addVal(long long v, long long tl, long long tr, long long l, long long r, long long val) { if (l > r) return; if (tl == l && tr == r) { tree[v].add += val; tree[v].mx += val; return; } long long tm = (tl + tr) / 2; push(v); addVal(v * 2 + 1, tl, tm, l, min(tm, r), val); addVal(v * 2 + 2, tm + 1, tr, max(tm + 1, l), r, val); tree[v].mx = max(tree[v * 2 + 1].mx, tree[v * 2 + 2].mx); } int main() { ios_base::sync_with_stdio(0); cin.tie(0); cout.tie(0); ; long long n, k; cin >> n >> k; g.resize(n + 1); vector<long long> a(n); for (long long i = 0; i < n; i++) { cin >> a[i]; } tin.resize(n + 2), tout.resize(n + 2); stack<long long> st; for (int i = n - 1; i >= 0; i--) { while (!st.empty() && a[st.top()] <= a[i]) { st.pop(); } long long nxt = st.empty() ? n : st.top(); g[nxt].push_back(i); st.push(i); } dfs(n); tree.resize(4 * (n + 1), Node({0, 0})); for (long long i = 0; i < k - 1; i++) { addVal(0, 0, n + 1, tin[i], tout[i], 1); if (0) { cout << i << " " << tin[i] << " " << tout[i] << " " << 1 << "\n"; } } for (long long l = 0; l + k <= n; l++) { addVal(0, 0, n + 1, tin[l + k - 1], tout[l + k - 1], +1); cout << tree[0].mx << " "; addVal(0, 0, n + 1, tin[l], tout[l], -1); if (0) { cout << l + k - 1 << " " << tin[l + k - 1] << " " << tout[l + k - 1] << " " << 1 << "\n"; ; cout << l << " " << tin[l] << " " << tout[l] << " " << -1 << "\n"; } } return 0; } ```
#include <bits/stdc++.h> using namespace std; int arr[1000005], st[1000005], et[1000005]; int tree[1000005 * 4], lazy[1000005 * 4]; vector<int> vv[1000005], ans; stack<int> SS; int tt; void dfs(int u, int par) { st[u] = ++tt; for (int i = 0; i < vv[u].size(); i++) { int v = vv[u][i]; if (v != par) dfs(v, u); } et[u] = tt; } void Down(int node, int left, int right) { if (lazy[node]) { tree[left] += lazy[node]; tree[right] += lazy[node]; lazy[left] += lazy[node]; lazy[right] += lazy[node]; lazy[node] = 0; } } void update(int node, int b, int e, int l, int r, int v) { if (b > r || e < l) return; if (b >= l && e <= r) { tree[node] += v; lazy[node] += v; return; } int left = 2 * node, right = left + 1, mid = (b + e) / 2; Down(node, left, right); update(left, b, mid, l, r, v); update(right, mid + 1, e, l, r, v); tree[node] = max(tree[left], tree[right]); } int main() { int n, k; scanf("%d %d", &n, &k); for (int i = 1; i <= n; i++) scanf("%d", &arr[i]); arr[0] = n + 5; SS.push(0); for (int i = n; i >= 1; i--) { while (arr[SS.top()] <= arr[i]) SS.pop(); if (SS.top() != 0) vv[SS.top()].push_back(i); SS.push(i); } for (int i = n; i >= 1; i--) { if (st[i] == 0) dfs(i, 0); } for (int i = k; i >= 1; i--) { update(1, 1, n, st[i], et[i], 1); } ans.push_back(tree[1]); for (int j = 1, i = k + 1; i <= n; i++, j++) { update(1, 1, n, st[j], st[j], -100000000); update(1, 1, n, st[i], et[i], 1); ans.push_back(tree[1]); } for (int i = 0; i < ans.size(); i++) printf("%d ", ans[i]); }
### Prompt Construct a Cpp code solution to the problem outlined: For some array c, let's denote a greedy subsequence as a sequence of indices p_1, p_2, ..., p_l such that 1 ≀ p_1 < p_2 < ... < p_l ≀ |c|, and for each i ∈ [1, l - 1], p_{i + 1} is the minimum number such that p_{i + 1} > p_i and c[p_{i + 1}] > c[p_i]. You are given an array a_1, a_2, ..., a_n. For each its subsegment of length k, calculate the length of its longest greedy subsequence. Input The first line contains two integers n and k (1 ≀ k ≀ n ≀ 10^6) β€” the length of array a and the length of subsegments. The second line contains n integers a_1, a_2, ..., a_n (1 ≀ a_i ≀ n) β€” array a. Output Print n - k + 1 integers β€” the maximum lengths of greedy subsequences of each subsegment having length k. The first number should correspond to subsegment a[1..k], the second β€” to subsegment a[2..k + 1], and so on. Examples Input 6 4 1 5 2 5 3 6 Output 2 2 3 Input 7 6 4 5 2 5 3 6 6 Output 3 3 Note In the first example: * [1, 5, 2, 5] β€” the longest greedy subsequences are 1, 2 ([c_1, c_2] = [1, 5]) or 3, 4 ([c_3, c_4] = [2, 5]). * [5, 2, 5, 3] β€” the sequence is 2, 3 ([c_2, c_3] = [2, 5]). * [2, 5, 3, 6] β€” the sequence is 1, 2, 4 ([c_1, c_2, c_4] = [2, 5, 6]). In the second example: * [4, 5, 2, 5, 3, 6] β€” the longest greedy subsequences are 1, 2, 6 ([c_1, c_2, c_6] = [4, 5, 6]) or 3, 4, 6 ([c_3, c_4, c_6] = [2, 5, 6]). * [5, 2, 5, 3, 6, 6] β€” the subsequence is 2, 3, 5 ([c_2, c_3, c_5] = [2, 5, 6]). ### Response ```cpp #include <bits/stdc++.h> using namespace std; int arr[1000005], st[1000005], et[1000005]; int tree[1000005 * 4], lazy[1000005 * 4]; vector<int> vv[1000005], ans; stack<int> SS; int tt; void dfs(int u, int par) { st[u] = ++tt; for (int i = 0; i < vv[u].size(); i++) { int v = vv[u][i]; if (v != par) dfs(v, u); } et[u] = tt; } void Down(int node, int left, int right) { if (lazy[node]) { tree[left] += lazy[node]; tree[right] += lazy[node]; lazy[left] += lazy[node]; lazy[right] += lazy[node]; lazy[node] = 0; } } void update(int node, int b, int e, int l, int r, int v) { if (b > r || e < l) return; if (b >= l && e <= r) { tree[node] += v; lazy[node] += v; return; } int left = 2 * node, right = left + 1, mid = (b + e) / 2; Down(node, left, right); update(left, b, mid, l, r, v); update(right, mid + 1, e, l, r, v); tree[node] = max(tree[left], tree[right]); } int main() { int n, k; scanf("%d %d", &n, &k); for (int i = 1; i <= n; i++) scanf("%d", &arr[i]); arr[0] = n + 5; SS.push(0); for (int i = n; i >= 1; i--) { while (arr[SS.top()] <= arr[i]) SS.pop(); if (SS.top() != 0) vv[SS.top()].push_back(i); SS.push(i); } for (int i = n; i >= 1; i--) { if (st[i] == 0) dfs(i, 0); } for (int i = k; i >= 1; i--) { update(1, 1, n, st[i], et[i], 1); } ans.push_back(tree[1]); for (int j = 1, i = k + 1; i <= n; i++, j++) { update(1, 1, n, st[j], st[j], -100000000); update(1, 1, n, st[i], et[i], 1); ans.push_back(tree[1]); } for (int i = 0; i < ans.size(); i++) printf("%d ", ans[i]); } ```
#include <bits/stdc++.h> using namespace std; int n, k; int a[1000005]; struct edge { int from; int to; int next; } E[1000005 << 1]; int head[1000005]; int sz = 1; void add_edge(int u, int v) { sz++; E[sz].from = u; E[sz].to = v; E[sz].next = head[u]; head[u] = sz; } int cnt = 0; int lb[1000005], rb[1000005]; void dfs(int x, int fa) { lb[x] = ++cnt; for (int i = head[x]; i; i = E[i].next) { int y = E[i].to; if (y != fa) { dfs(y, x); } } rb[x] = cnt; } struct node { int l; int r; int v; int mark; } tree[1000005 << 2]; void push_up(int pos) { tree[pos].v = max(tree[pos << 1].v, tree[pos << 1 | 1].v); } void build(int l, int r, int pos) { tree[pos].l = l; tree[pos].r = r; if (l == r) { return; } int mid = (l + r) >> 1; build(l, mid, pos << 1); build(mid + 1, r, pos << 1 | 1); push_up(pos); } void push_down(int pos) { if (tree[pos].mark) { tree[pos << 1].v += tree[pos].mark; tree[pos << 1].mark += tree[pos].mark; tree[pos << 1 | 1].v += tree[pos].mark; tree[pos << 1 | 1].mark += tree[pos].mark; tree[pos].mark = 0; } } void update(int L, int R, int v, int pos) { if (L <= tree[pos].l && R >= tree[pos].r) { tree[pos].v += v; tree[pos].mark += v; return; } push_down(pos); int mid = (tree[pos].l + tree[pos].r) >> 1; if (L <= mid) update(L, R, v, pos << 1); if (R > mid) update(L, R, v, pos << 1 | 1); push_up(pos); } int query(int L, int R, int pos) { if (L <= tree[pos].l && R >= tree[pos].r) { return tree[pos].v; } push_down(pos); int mid = (tree[pos].l + tree[pos].r) >> 1; int ans = 0; if (L <= mid) ans = max(ans, query(L, R, pos << 1)); if (R > mid) ans = max(ans, query(L, R, pos << 1 | 1)); return ans; } int nex[1000005]; void init() { stack<int> s; for (int i = n; i >= 1; i--) { while (!s.empty() && a[s.top()] <= a[i]) s.pop(); if (!s.empty()) { int p = s.top(); add_edge(p, i); add_edge(i, p); } else { add_edge(n + 1, i); add_edge(i, n + 1); } s.push(i); } dfs(n + 1, 0); } int main() { scanf("%d %d", &n, &k); for (int i = 1; i <= n; i++) { scanf("%d", &a[i]); } init(); build(1, n + 1, 1); for (int i = 1; i <= k; i++) { update(lb[i], rb[i], 1, 1); } for (int i = 1; i + k - 1 <= n; i++) { int r = i + k - 1; printf("%d ", query(1, n + 1, 1)); update(lb[i], rb[i], -1, 1); update(lb[r + 1], rb[r + 1], 1, 1); } }
### Prompt Please formulate a CPP solution to the following problem: For some array c, let's denote a greedy subsequence as a sequence of indices p_1, p_2, ..., p_l such that 1 ≀ p_1 < p_2 < ... < p_l ≀ |c|, and for each i ∈ [1, l - 1], p_{i + 1} is the minimum number such that p_{i + 1} > p_i and c[p_{i + 1}] > c[p_i]. You are given an array a_1, a_2, ..., a_n. For each its subsegment of length k, calculate the length of its longest greedy subsequence. Input The first line contains two integers n and k (1 ≀ k ≀ n ≀ 10^6) β€” the length of array a and the length of subsegments. The second line contains n integers a_1, a_2, ..., a_n (1 ≀ a_i ≀ n) β€” array a. Output Print n - k + 1 integers β€” the maximum lengths of greedy subsequences of each subsegment having length k. The first number should correspond to subsegment a[1..k], the second β€” to subsegment a[2..k + 1], and so on. Examples Input 6 4 1 5 2 5 3 6 Output 2 2 3 Input 7 6 4 5 2 5 3 6 6 Output 3 3 Note In the first example: * [1, 5, 2, 5] β€” the longest greedy subsequences are 1, 2 ([c_1, c_2] = [1, 5]) or 3, 4 ([c_3, c_4] = [2, 5]). * [5, 2, 5, 3] β€” the sequence is 2, 3 ([c_2, c_3] = [2, 5]). * [2, 5, 3, 6] β€” the sequence is 1, 2, 4 ([c_1, c_2, c_4] = [2, 5, 6]). In the second example: * [4, 5, 2, 5, 3, 6] β€” the longest greedy subsequences are 1, 2, 6 ([c_1, c_2, c_6] = [4, 5, 6]) or 3, 4, 6 ([c_3, c_4, c_6] = [2, 5, 6]). * [5, 2, 5, 3, 6, 6] β€” the subsequence is 2, 3, 5 ([c_2, c_3, c_5] = [2, 5, 6]). ### Response ```cpp #include <bits/stdc++.h> using namespace std; int n, k; int a[1000005]; struct edge { int from; int to; int next; } E[1000005 << 1]; int head[1000005]; int sz = 1; void add_edge(int u, int v) { sz++; E[sz].from = u; E[sz].to = v; E[sz].next = head[u]; head[u] = sz; } int cnt = 0; int lb[1000005], rb[1000005]; void dfs(int x, int fa) { lb[x] = ++cnt; for (int i = head[x]; i; i = E[i].next) { int y = E[i].to; if (y != fa) { dfs(y, x); } } rb[x] = cnt; } struct node { int l; int r; int v; int mark; } tree[1000005 << 2]; void push_up(int pos) { tree[pos].v = max(tree[pos << 1].v, tree[pos << 1 | 1].v); } void build(int l, int r, int pos) { tree[pos].l = l; tree[pos].r = r; if (l == r) { return; } int mid = (l + r) >> 1; build(l, mid, pos << 1); build(mid + 1, r, pos << 1 | 1); push_up(pos); } void push_down(int pos) { if (tree[pos].mark) { tree[pos << 1].v += tree[pos].mark; tree[pos << 1].mark += tree[pos].mark; tree[pos << 1 | 1].v += tree[pos].mark; tree[pos << 1 | 1].mark += tree[pos].mark; tree[pos].mark = 0; } } void update(int L, int R, int v, int pos) { if (L <= tree[pos].l && R >= tree[pos].r) { tree[pos].v += v; tree[pos].mark += v; return; } push_down(pos); int mid = (tree[pos].l + tree[pos].r) >> 1; if (L <= mid) update(L, R, v, pos << 1); if (R > mid) update(L, R, v, pos << 1 | 1); push_up(pos); } int query(int L, int R, int pos) { if (L <= tree[pos].l && R >= tree[pos].r) { return tree[pos].v; } push_down(pos); int mid = (tree[pos].l + tree[pos].r) >> 1; int ans = 0; if (L <= mid) ans = max(ans, query(L, R, pos << 1)); if (R > mid) ans = max(ans, query(L, R, pos << 1 | 1)); return ans; } int nex[1000005]; void init() { stack<int> s; for (int i = n; i >= 1; i--) { while (!s.empty() && a[s.top()] <= a[i]) s.pop(); if (!s.empty()) { int p = s.top(); add_edge(p, i); add_edge(i, p); } else { add_edge(n + 1, i); add_edge(i, n + 1); } s.push(i); } dfs(n + 1, 0); } int main() { scanf("%d %d", &n, &k); for (int i = 1; i <= n; i++) { scanf("%d", &a[i]); } init(); build(1, n + 1, 1); for (int i = 1; i <= k; i++) { update(lb[i], rb[i], 1, 1); } for (int i = 1; i + k - 1 <= n; i++) { int r = i + k - 1; printf("%d ", query(1, n + 1, 1)); update(lb[i], rb[i], -1, 1); update(lb[r + 1], rb[r + 1], 1, 1); } } ```
#include <bits/stdc++.h> using namespace std; const int N = int(1e6 + 10); int a[N]; set<pair<int, int> > mst; int in[N], out[N]; int n, k; int T = 1; vector<int> adj[N]; void dfs(int u) { in[u] = T; for (int v : adj[u]) { T++; dfs(v); } out[u] = T; } int segtree[N << 3]; int lazzy[N << 3]; void push(int node) { segtree[node] += lazzy[node]; int lf = node << 1; int rg = lf + 1; lazzy[lf] += lazzy[node]; lazzy[rg] += lazzy[node]; lazzy[node] = 0; } void update(int node, int i, int j, int l, int r, int val) { if (lazzy[node]) { push(node); } if (i > r || j < l) { return; } if (l <= i && j <= r) { lazzy[node] += val; push(node); } else { int mid = (i + j) >> 1; int lf = node << 1; int rg = lf + 1; update(lf, i, mid, l, r, val); update(rg, mid + 1, j, l, r, val); segtree[node] = max(segtree[lf], segtree[rg]); } } int main() { ios::sync_with_stdio(false); cin.tie(NULL); cin >> n >> k; for (int i = 1; i <= n; i++) { cin >> a[i]; while (mst.size() && (*mst.begin()).first < a[i]) { adj[i].push_back((*mst.begin()).second); mst.erase(mst.begin()); } mst.insert({a[i], i}); } while (mst.size()) { adj[n + 1].push_back((*mst.begin()).second); mst.erase(mst.begin()); } dfs(n + 1); for (int i = 1; i <= k - 1; i++) { update(1, 1, n + 1, in[i], out[i], 1); } for (int i = k; i <= n; i++) { update(1, 1, n + 1, in[i], out[i], 1); cout << segtree[1] << " "; update(1, 1, n + 1, in[i - k + 1], out[i - k + 1], -1); } cout << endl; return 0; }
### Prompt Construct a CPP code solution to the problem outlined: For some array c, let's denote a greedy subsequence as a sequence of indices p_1, p_2, ..., p_l such that 1 ≀ p_1 < p_2 < ... < p_l ≀ |c|, and for each i ∈ [1, l - 1], p_{i + 1} is the minimum number such that p_{i + 1} > p_i and c[p_{i + 1}] > c[p_i]. You are given an array a_1, a_2, ..., a_n. For each its subsegment of length k, calculate the length of its longest greedy subsequence. Input The first line contains two integers n and k (1 ≀ k ≀ n ≀ 10^6) β€” the length of array a and the length of subsegments. The second line contains n integers a_1, a_2, ..., a_n (1 ≀ a_i ≀ n) β€” array a. Output Print n - k + 1 integers β€” the maximum lengths of greedy subsequences of each subsegment having length k. The first number should correspond to subsegment a[1..k], the second β€” to subsegment a[2..k + 1], and so on. Examples Input 6 4 1 5 2 5 3 6 Output 2 2 3 Input 7 6 4 5 2 5 3 6 6 Output 3 3 Note In the first example: * [1, 5, 2, 5] β€” the longest greedy subsequences are 1, 2 ([c_1, c_2] = [1, 5]) or 3, 4 ([c_3, c_4] = [2, 5]). * [5, 2, 5, 3] β€” the sequence is 2, 3 ([c_2, c_3] = [2, 5]). * [2, 5, 3, 6] β€” the sequence is 1, 2, 4 ([c_1, c_2, c_4] = [2, 5, 6]). In the second example: * [4, 5, 2, 5, 3, 6] β€” the longest greedy subsequences are 1, 2, 6 ([c_1, c_2, c_6] = [4, 5, 6]) or 3, 4, 6 ([c_3, c_4, c_6] = [2, 5, 6]). * [5, 2, 5, 3, 6, 6] β€” the subsequence is 2, 3, 5 ([c_2, c_3, c_5] = [2, 5, 6]). ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int N = int(1e6 + 10); int a[N]; set<pair<int, int> > mst; int in[N], out[N]; int n, k; int T = 1; vector<int> adj[N]; void dfs(int u) { in[u] = T; for (int v : adj[u]) { T++; dfs(v); } out[u] = T; } int segtree[N << 3]; int lazzy[N << 3]; void push(int node) { segtree[node] += lazzy[node]; int lf = node << 1; int rg = lf + 1; lazzy[lf] += lazzy[node]; lazzy[rg] += lazzy[node]; lazzy[node] = 0; } void update(int node, int i, int j, int l, int r, int val) { if (lazzy[node]) { push(node); } if (i > r || j < l) { return; } if (l <= i && j <= r) { lazzy[node] += val; push(node); } else { int mid = (i + j) >> 1; int lf = node << 1; int rg = lf + 1; update(lf, i, mid, l, r, val); update(rg, mid + 1, j, l, r, val); segtree[node] = max(segtree[lf], segtree[rg]); } } int main() { ios::sync_with_stdio(false); cin.tie(NULL); cin >> n >> k; for (int i = 1; i <= n; i++) { cin >> a[i]; while (mst.size() && (*mst.begin()).first < a[i]) { adj[i].push_back((*mst.begin()).second); mst.erase(mst.begin()); } mst.insert({a[i], i}); } while (mst.size()) { adj[n + 1].push_back((*mst.begin()).second); mst.erase(mst.begin()); } dfs(n + 1); for (int i = 1; i <= k - 1; i++) { update(1, 1, n + 1, in[i], out[i], 1); } for (int i = k; i <= n; i++) { update(1, 1, n + 1, in[i], out[i], 1); cout << segtree[1] << " "; update(1, 1, n + 1, in[i - k + 1], out[i - k + 1], -1); } cout << endl; return 0; } ```
#include <bits/stdc++.h> using namespace std; int n, k; vector<int> a; inline bool read() { if (!(cin >> n >> k)) return false; a.assign(n, 0); for (int i = int(0); i < int(n); i++) cin >> a[i]; return true; } int T = 0; vector<vector<int> > g; vector<int> tin, tout; void dfs(int v) { tin[v] = T++; for (int to : g[v]) dfs(to); tout[v] = T; } vector<int> Tmax, Tadd; inline void push(int v) { Tadd[2 * v + 1] += Tadd[v]; Tadd[2 * v + 2] += Tadd[v]; Tadd[v] = 0; } inline int getmax(int v) { return Tmax[v] + Tadd[v]; } void addVal(int v, int l, int r, int lf, int rg, int val) { if (l == lf && r == rg) { Tadd[v] += val; return; } int mid = (l + r) >> 1; push(v); if (lf < mid) addVal(2 * v + 1, l, mid, lf, min(mid, rg), val); if (rg > mid) addVal(2 * v + 2, mid, r, max(lf, mid), rg, val); Tmax[v] = max(getmax(2 * v + 1), getmax(2 * v + 2)); } inline void solve() { g.resize(n + 1); tin.resize(n + 1, 0); tout.resize(n + 1, 0); vector<int> st; for (int i = n - 1; i >= 0; i--) { while (!st.empty() && a[st.back()] <= a[i]) st.pop_back(); int nxt = st.empty() ? n : st.back(); g[nxt].push_back(i); st.push_back(i); } dfs(n); Tmax.assign(4 * (n + 1), 0); Tadd.assign(4 * (n + 1), 0); for (int i = int(0); i < int(k - 1); i++) addVal(0, 0, n + 1, tin[i], tout[i], +1); for (int l = 0; l + k <= n; l++) { addVal(0, 0, n + 1, tin[l + k - 1], tout[l + k - 1], +1); cout << getmax(0) << " "; addVal(0, 0, n + 1, tin[l], tout[l], -1); } cout << endl; } int main() { ios_base::sync_with_stdio(0); cin.tie(0), cout.tie(0); cout << fixed << setprecision(15); if (read()) { solve(); } return 0; }
### Prompt Generate a cpp solution to the following problem: For some array c, let's denote a greedy subsequence as a sequence of indices p_1, p_2, ..., p_l such that 1 ≀ p_1 < p_2 < ... < p_l ≀ |c|, and for each i ∈ [1, l - 1], p_{i + 1} is the minimum number such that p_{i + 1} > p_i and c[p_{i + 1}] > c[p_i]. You are given an array a_1, a_2, ..., a_n. For each its subsegment of length k, calculate the length of its longest greedy subsequence. Input The first line contains two integers n and k (1 ≀ k ≀ n ≀ 10^6) β€” the length of array a and the length of subsegments. The second line contains n integers a_1, a_2, ..., a_n (1 ≀ a_i ≀ n) β€” array a. Output Print n - k + 1 integers β€” the maximum lengths of greedy subsequences of each subsegment having length k. The first number should correspond to subsegment a[1..k], the second β€” to subsegment a[2..k + 1], and so on. Examples Input 6 4 1 5 2 5 3 6 Output 2 2 3 Input 7 6 4 5 2 5 3 6 6 Output 3 3 Note In the first example: * [1, 5, 2, 5] β€” the longest greedy subsequences are 1, 2 ([c_1, c_2] = [1, 5]) or 3, 4 ([c_3, c_4] = [2, 5]). * [5, 2, 5, 3] β€” the sequence is 2, 3 ([c_2, c_3] = [2, 5]). * [2, 5, 3, 6] β€” the sequence is 1, 2, 4 ([c_1, c_2, c_4] = [2, 5, 6]). In the second example: * [4, 5, 2, 5, 3, 6] β€” the longest greedy subsequences are 1, 2, 6 ([c_1, c_2, c_6] = [4, 5, 6]) or 3, 4, 6 ([c_3, c_4, c_6] = [2, 5, 6]). * [5, 2, 5, 3, 6, 6] β€” the subsequence is 2, 3, 5 ([c_2, c_3, c_5] = [2, 5, 6]). ### Response ```cpp #include <bits/stdc++.h> using namespace std; int n, k; vector<int> a; inline bool read() { if (!(cin >> n >> k)) return false; a.assign(n, 0); for (int i = int(0); i < int(n); i++) cin >> a[i]; return true; } int T = 0; vector<vector<int> > g; vector<int> tin, tout; void dfs(int v) { tin[v] = T++; for (int to : g[v]) dfs(to); tout[v] = T; } vector<int> Tmax, Tadd; inline void push(int v) { Tadd[2 * v + 1] += Tadd[v]; Tadd[2 * v + 2] += Tadd[v]; Tadd[v] = 0; } inline int getmax(int v) { return Tmax[v] + Tadd[v]; } void addVal(int v, int l, int r, int lf, int rg, int val) { if (l == lf && r == rg) { Tadd[v] += val; return; } int mid = (l + r) >> 1; push(v); if (lf < mid) addVal(2 * v + 1, l, mid, lf, min(mid, rg), val); if (rg > mid) addVal(2 * v + 2, mid, r, max(lf, mid), rg, val); Tmax[v] = max(getmax(2 * v + 1), getmax(2 * v + 2)); } inline void solve() { g.resize(n + 1); tin.resize(n + 1, 0); tout.resize(n + 1, 0); vector<int> st; for (int i = n - 1; i >= 0; i--) { while (!st.empty() && a[st.back()] <= a[i]) st.pop_back(); int nxt = st.empty() ? n : st.back(); g[nxt].push_back(i); st.push_back(i); } dfs(n); Tmax.assign(4 * (n + 1), 0); Tadd.assign(4 * (n + 1), 0); for (int i = int(0); i < int(k - 1); i++) addVal(0, 0, n + 1, tin[i], tout[i], +1); for (int l = 0; l + k <= n; l++) { addVal(0, 0, n + 1, tin[l + k - 1], tout[l + k - 1], +1); cout << getmax(0) << " "; addVal(0, 0, n + 1, tin[l], tout[l], -1); } cout << endl; } int main() { ios_base::sync_with_stdio(0); cin.tie(0), cout.tie(0); cout << fixed << setprecision(15); if (read()) { solve(); } return 0; } ```
#include <bits/stdc++.h> using namespace std; const int MAXN = 1000005; const int MAXSEG = 1 << 21; const int INFTY = 1 << 29; int N, K; int A[MAXN]; vector<int> adj[MAXN]; int deg[MAXN]; int R[MAXN][2], ind = 0; int seg[MAXSEG]; int lazy[MAXSEG]; void dfs(int cur) { R[cur][0] = ++ind; for (auto nxt : adj[cur]) dfs(nxt); R[cur][1] = ind; } void down(int node) { if (lazy[node] != 0) { seg[2 * node] += lazy[node]; seg[2 * node + 1] += lazy[node]; lazy[2 * node] += lazy[node]; lazy[2 * node + 1] += lazy[node]; lazy[node] = 0; } } void range_update(int node, int left, int right, int ql, int qr) { if (left > right || ql > qr || right < ql || qr < left) return; if (ql <= left && right <= qr) { seg[node]++; lazy[node]++; return; } down(node); int mid = (left + right) / 2; range_update(2 * node, left, mid, ql, qr); range_update(2 * node + 1, mid + 1, right, ql, qr); seg[node] = max(seg[2 * node], seg[2 * node + 1]); } void point_update(int node, int left, int right, int idx) { if (left == idx && idx == right) { seg[node] = -INFTY; return; } down(node); int mid = (left + right) / 2; if (idx <= mid) point_update(2 * node, left, mid, idx); else point_update(2 * node + 1, mid + 1, right, idx); seg[node] = max(seg[2 * node], seg[2 * node + 1]); } int main() { scanf("%d%d", &N, &K); for (int i = 1; i <= N; i++) scanf("%d", &A[i]); vector<int> stk; for (int i = N; i >= 1; i--) { while (!stk.empty() && A[i] >= A[stk.back()]) stk.pop_back(); if (!stk.empty()) { adj[stk.back()].push_back(i); deg[i]++; } stk.push_back(i); } for (int i = 1; i <= N; i++) if (deg[i] == 0) dfs(i); for (int i = 1; i <= K; i++) range_update(1, 1, N, R[i][0], R[i][1]); printf("%d", seg[1]); for (int i = 2; i + K - 1 <= N; i++) { point_update(1, 1, N, R[i - 1][0]); range_update(1, 1, N, R[i + K - 1][0], R[i + K - 1][1]); printf(" %d", seg[1]); } printf("\n"); return 0; }
### Prompt Create a solution in Cpp for the following problem: For some array c, let's denote a greedy subsequence as a sequence of indices p_1, p_2, ..., p_l such that 1 ≀ p_1 < p_2 < ... < p_l ≀ |c|, and for each i ∈ [1, l - 1], p_{i + 1} is the minimum number such that p_{i + 1} > p_i and c[p_{i + 1}] > c[p_i]. You are given an array a_1, a_2, ..., a_n. For each its subsegment of length k, calculate the length of its longest greedy subsequence. Input The first line contains two integers n and k (1 ≀ k ≀ n ≀ 10^6) β€” the length of array a and the length of subsegments. The second line contains n integers a_1, a_2, ..., a_n (1 ≀ a_i ≀ n) β€” array a. Output Print n - k + 1 integers β€” the maximum lengths of greedy subsequences of each subsegment having length k. The first number should correspond to subsegment a[1..k], the second β€” to subsegment a[2..k + 1], and so on. Examples Input 6 4 1 5 2 5 3 6 Output 2 2 3 Input 7 6 4 5 2 5 3 6 6 Output 3 3 Note In the first example: * [1, 5, 2, 5] β€” the longest greedy subsequences are 1, 2 ([c_1, c_2] = [1, 5]) or 3, 4 ([c_3, c_4] = [2, 5]). * [5, 2, 5, 3] β€” the sequence is 2, 3 ([c_2, c_3] = [2, 5]). * [2, 5, 3, 6] β€” the sequence is 1, 2, 4 ([c_1, c_2, c_4] = [2, 5, 6]). In the second example: * [4, 5, 2, 5, 3, 6] β€” the longest greedy subsequences are 1, 2, 6 ([c_1, c_2, c_6] = [4, 5, 6]) or 3, 4, 6 ([c_3, c_4, c_6] = [2, 5, 6]). * [5, 2, 5, 3, 6, 6] β€” the subsequence is 2, 3, 5 ([c_2, c_3, c_5] = [2, 5, 6]). ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int MAXN = 1000005; const int MAXSEG = 1 << 21; const int INFTY = 1 << 29; int N, K; int A[MAXN]; vector<int> adj[MAXN]; int deg[MAXN]; int R[MAXN][2], ind = 0; int seg[MAXSEG]; int lazy[MAXSEG]; void dfs(int cur) { R[cur][0] = ++ind; for (auto nxt : adj[cur]) dfs(nxt); R[cur][1] = ind; } void down(int node) { if (lazy[node] != 0) { seg[2 * node] += lazy[node]; seg[2 * node + 1] += lazy[node]; lazy[2 * node] += lazy[node]; lazy[2 * node + 1] += lazy[node]; lazy[node] = 0; } } void range_update(int node, int left, int right, int ql, int qr) { if (left > right || ql > qr || right < ql || qr < left) return; if (ql <= left && right <= qr) { seg[node]++; lazy[node]++; return; } down(node); int mid = (left + right) / 2; range_update(2 * node, left, mid, ql, qr); range_update(2 * node + 1, mid + 1, right, ql, qr); seg[node] = max(seg[2 * node], seg[2 * node + 1]); } void point_update(int node, int left, int right, int idx) { if (left == idx && idx == right) { seg[node] = -INFTY; return; } down(node); int mid = (left + right) / 2; if (idx <= mid) point_update(2 * node, left, mid, idx); else point_update(2 * node + 1, mid + 1, right, idx); seg[node] = max(seg[2 * node], seg[2 * node + 1]); } int main() { scanf("%d%d", &N, &K); for (int i = 1; i <= N; i++) scanf("%d", &A[i]); vector<int> stk; for (int i = N; i >= 1; i--) { while (!stk.empty() && A[i] >= A[stk.back()]) stk.pop_back(); if (!stk.empty()) { adj[stk.back()].push_back(i); deg[i]++; } stk.push_back(i); } for (int i = 1; i <= N; i++) if (deg[i] == 0) dfs(i); for (int i = 1; i <= K; i++) range_update(1, 1, N, R[i][0], R[i][1]); printf("%d", seg[1]); for (int i = 2; i + K - 1 <= N; i++) { point_update(1, 1, N, R[i - 1][0]); range_update(1, 1, N, R[i + K - 1][0], R[i + K - 1][1]); printf(" %d", seg[1]); } printf("\n"); return 0; } ```
#include <bits/stdc++.h> using namespace std; using ll = long long; using ull = unsigned long long; using ld = long double; template <typename T1, typename T2> inline void chkmin(T1& x, const T2& y) { if (y < x) x = y; } template <typename T1, typename T2> inline void chkmax(T1& x, const T2& y) { if (x < y) x = y; } mt19937 rnd(time(0)); int n, k; const int MAXN = 2e6 + 228; const int lgg = 20; int nxt[MAXN]; int root; int a[MAXN]; vector<int> g[MAXN]; int tin[MAXN]; int tout[MAXN]; int tl = 0; int t[4 * MAXN]; int add[4 * MAXN]; void push(int v, int l, int r) { if (l != r - 1) { add[2 * v + 1] += add[v]; add[2 * v + 2] += add[v]; } t[v] += add[v]; add[v] = 0; } void upd(int v, int l, int r, int ql, int qr, int x) { push(v, l, r); if (l >= qr || ql >= r) return; if (l >= ql && r <= qr) { add[v] += x; push(v, l, r); return; } upd(2 * v + 1, l, (l + r) / 2, ql, qr, x); upd(2 * v + 2, (l + r) / 2, r, ql, qr, x); t[v] = max(t[2 * v + 1], t[2 * v + 2]); } void dfs(int v, int p) { tin[v] = tl++; for (int i : g[v]) { if (i != p) dfs(i, v); } tout[v] = tl++; } signed main() { ios_base::sync_with_stdio(0), cin.tie(0), cout.tie(0); cout.precision(20), cout.setf(ios::fixed); cin >> n >> k; for (int i = 0; i < n; ++i) { cin >> a[i]; } vector<pair<int, int>> st; root = n; fill(nxt, nxt + n, n); for (int i = 0; i < n; ++i) { while (st.size() && st.back().first < a[i]) { nxt[st.back().second] = i; st.pop_back(); } st.push_back({a[i], i}); } for (int i = 0; i < n; ++i) { g[nxt[i]].push_back(i); } dfs(root, root); for (int i = 0; i < k; ++i) { upd(0, 0, MAXN, tin[i], tout[i], 1); } for (int i = 0; i + k - 1 < n; ++i) { cout << t[0] << ' '; if (i + k < n) { upd(0, 0, MAXN, tin[i + k], tout[i + k], 1); } upd(0, 0, MAXN, tin[i], tout[i], -2); } }
### Prompt Develop a solution in CPP to the problem described below: For some array c, let's denote a greedy subsequence as a sequence of indices p_1, p_2, ..., p_l such that 1 ≀ p_1 < p_2 < ... < p_l ≀ |c|, and for each i ∈ [1, l - 1], p_{i + 1} is the minimum number such that p_{i + 1} > p_i and c[p_{i + 1}] > c[p_i]. You are given an array a_1, a_2, ..., a_n. For each its subsegment of length k, calculate the length of its longest greedy subsequence. Input The first line contains two integers n and k (1 ≀ k ≀ n ≀ 10^6) β€” the length of array a and the length of subsegments. The second line contains n integers a_1, a_2, ..., a_n (1 ≀ a_i ≀ n) β€” array a. Output Print n - k + 1 integers β€” the maximum lengths of greedy subsequences of each subsegment having length k. The first number should correspond to subsegment a[1..k], the second β€” to subsegment a[2..k + 1], and so on. Examples Input 6 4 1 5 2 5 3 6 Output 2 2 3 Input 7 6 4 5 2 5 3 6 6 Output 3 3 Note In the first example: * [1, 5, 2, 5] β€” the longest greedy subsequences are 1, 2 ([c_1, c_2] = [1, 5]) or 3, 4 ([c_3, c_4] = [2, 5]). * [5, 2, 5, 3] β€” the sequence is 2, 3 ([c_2, c_3] = [2, 5]). * [2, 5, 3, 6] β€” the sequence is 1, 2, 4 ([c_1, c_2, c_4] = [2, 5, 6]). In the second example: * [4, 5, 2, 5, 3, 6] β€” the longest greedy subsequences are 1, 2, 6 ([c_1, c_2, c_6] = [4, 5, 6]) or 3, 4, 6 ([c_3, c_4, c_6] = [2, 5, 6]). * [5, 2, 5, 3, 6, 6] β€” the subsequence is 2, 3, 5 ([c_2, c_3, c_5] = [2, 5, 6]). ### Response ```cpp #include <bits/stdc++.h> using namespace std; using ll = long long; using ull = unsigned long long; using ld = long double; template <typename T1, typename T2> inline void chkmin(T1& x, const T2& y) { if (y < x) x = y; } template <typename T1, typename T2> inline void chkmax(T1& x, const T2& y) { if (x < y) x = y; } mt19937 rnd(time(0)); int n, k; const int MAXN = 2e6 + 228; const int lgg = 20; int nxt[MAXN]; int root; int a[MAXN]; vector<int> g[MAXN]; int tin[MAXN]; int tout[MAXN]; int tl = 0; int t[4 * MAXN]; int add[4 * MAXN]; void push(int v, int l, int r) { if (l != r - 1) { add[2 * v + 1] += add[v]; add[2 * v + 2] += add[v]; } t[v] += add[v]; add[v] = 0; } void upd(int v, int l, int r, int ql, int qr, int x) { push(v, l, r); if (l >= qr || ql >= r) return; if (l >= ql && r <= qr) { add[v] += x; push(v, l, r); return; } upd(2 * v + 1, l, (l + r) / 2, ql, qr, x); upd(2 * v + 2, (l + r) / 2, r, ql, qr, x); t[v] = max(t[2 * v + 1], t[2 * v + 2]); } void dfs(int v, int p) { tin[v] = tl++; for (int i : g[v]) { if (i != p) dfs(i, v); } tout[v] = tl++; } signed main() { ios_base::sync_with_stdio(0), cin.tie(0), cout.tie(0); cout.precision(20), cout.setf(ios::fixed); cin >> n >> k; for (int i = 0; i < n; ++i) { cin >> a[i]; } vector<pair<int, int>> st; root = n; fill(nxt, nxt + n, n); for (int i = 0; i < n; ++i) { while (st.size() && st.back().first < a[i]) { nxt[st.back().second] = i; st.pop_back(); } st.push_back({a[i], i}); } for (int i = 0; i < n; ++i) { g[nxt[i]].push_back(i); } dfs(root, root); for (int i = 0; i < k; ++i) { upd(0, 0, MAXN, tin[i], tout[i], 1); } for (int i = 0; i + k - 1 < n; ++i) { cout << t[0] << ' '; if (i + k < n) { upd(0, 0, MAXN, tin[i + k], tout[i + k], 1); } upd(0, 0, MAXN, tin[i], tout[i], -2); } } ```
#include <bits/stdc++.h> using namespace std; const int N = 1000006; const int inf = 1000000009; int n, k, a[N], go[N], in[N], out[N], tin = 0; vector<int> g[N]; template <class T> struct lazy_seg { public: vector<T> st, lazy; lazy_seg(int n) { st.resize(4 * n + 1, 0), lazy.resize(4 * n + 1, 0); } lazy_seg() = default; void push(int l, int r, int curr) { if (lazy[curr] != 0) { st[curr] += lazy[curr]; if (l != r) lazy[2 * curr] += lazy[curr], lazy[2 * curr + 1] += lazy[curr]; lazy[curr] = 0; } } void pull(int l, int r, int curr) { push(l, r, curr); int mid = l + (r - l) / 2; if (l != r) push(l, mid, 2 * curr), push(mid + 1, r, 2 * curr + 1); st[curr] = max(st[2 * curr], st[2 * curr + 1]); } void upd(int x, int y, T v, int l, int r, int curr) { int mid = (l + r) / 2; push(l, r, curr); if (l == x && r == y) { lazy[curr] += v; push(l, r, curr); return; } if (y <= mid) upd(x, y, v, l, mid, 2 * curr); else if (x > mid) upd(x, y, v, mid + 1, r, 2 * curr + 1); else upd(x, mid, v, l, mid, 2 * curr), upd(mid + 1, y, v, mid + 1, r, 2 * curr + 1); pull(l, r, curr); } T qry(int x, int y, int l, int r, int curr) { int mid = (l + r) / 2; push(l, r, curr); if (l == x && r == y) return st[curr]; if (y <= mid) return qry(x, y, l, mid, 2 * curr); else if (x > mid) return qry(x, y, mid + 1, r, 2 * curr + 1); return max(qry(x, mid, l, mid, 2 * curr), qry(mid + 1, y, mid + 1, r, 2 * curr + 1)); } void build(int l, int r, int curr) { int mid = (l + r) / 2; if (l == r) { st[curr] = 0; return; } build(l, mid, 2 * curr); build(mid + 1, r, 2 * curr + 1); st[curr] = (st[2 * curr] + st[2 * curr + 1]); } }; bool vis[N]; void dfs(int x) { vis[x] = true; in[x] = ++tin; for (auto w : g[x]) { if (!vis[w]) dfs(w); } out[x] = tin; } int32_t main() { scanf("%d%d", &n, &k); for (int i = 1; i <= n; i++) { scanf("%d", &a[i]); } stack<int> cur; lazy_seg<int> seg(n); for (int i = n; i >= 1; i--) { while ((int)(cur).size() && a[i] >= a[cur.top()]) cur.pop(); if ((int)(cur).size()) { g[i].push_back(cur.top()); g[cur.top()].push_back(i); } cur.push(i); } for (int i = n; i >= 1; i--) { if (!vis[i]) { dfs(i); } } for (int i = 1; i <= n; i++) { if (i > k) { seg.upd(in[i - k], out[i - k], -1, 1, n, 1); } seg.upd(in[i], out[i], 1, 1, n, 1); if (i >= k) { printf("%d ", seg.qry(1, n, 1, n, 1)); } } printf("\n"); }
### Prompt Your challenge is to write a Cpp solution to the following problem: For some array c, let's denote a greedy subsequence as a sequence of indices p_1, p_2, ..., p_l such that 1 ≀ p_1 < p_2 < ... < p_l ≀ |c|, and for each i ∈ [1, l - 1], p_{i + 1} is the minimum number such that p_{i + 1} > p_i and c[p_{i + 1}] > c[p_i]. You are given an array a_1, a_2, ..., a_n. For each its subsegment of length k, calculate the length of its longest greedy subsequence. Input The first line contains two integers n and k (1 ≀ k ≀ n ≀ 10^6) β€” the length of array a and the length of subsegments. The second line contains n integers a_1, a_2, ..., a_n (1 ≀ a_i ≀ n) β€” array a. Output Print n - k + 1 integers β€” the maximum lengths of greedy subsequences of each subsegment having length k. The first number should correspond to subsegment a[1..k], the second β€” to subsegment a[2..k + 1], and so on. Examples Input 6 4 1 5 2 5 3 6 Output 2 2 3 Input 7 6 4 5 2 5 3 6 6 Output 3 3 Note In the first example: * [1, 5, 2, 5] β€” the longest greedy subsequences are 1, 2 ([c_1, c_2] = [1, 5]) or 3, 4 ([c_3, c_4] = [2, 5]). * [5, 2, 5, 3] β€” the sequence is 2, 3 ([c_2, c_3] = [2, 5]). * [2, 5, 3, 6] β€” the sequence is 1, 2, 4 ([c_1, c_2, c_4] = [2, 5, 6]). In the second example: * [4, 5, 2, 5, 3, 6] β€” the longest greedy subsequences are 1, 2, 6 ([c_1, c_2, c_6] = [4, 5, 6]) or 3, 4, 6 ([c_3, c_4, c_6] = [2, 5, 6]). * [5, 2, 5, 3, 6, 6] β€” the subsequence is 2, 3, 5 ([c_2, c_3, c_5] = [2, 5, 6]). ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int N = 1000006; const int inf = 1000000009; int n, k, a[N], go[N], in[N], out[N], tin = 0; vector<int> g[N]; template <class T> struct lazy_seg { public: vector<T> st, lazy; lazy_seg(int n) { st.resize(4 * n + 1, 0), lazy.resize(4 * n + 1, 0); } lazy_seg() = default; void push(int l, int r, int curr) { if (lazy[curr] != 0) { st[curr] += lazy[curr]; if (l != r) lazy[2 * curr] += lazy[curr], lazy[2 * curr + 1] += lazy[curr]; lazy[curr] = 0; } } void pull(int l, int r, int curr) { push(l, r, curr); int mid = l + (r - l) / 2; if (l != r) push(l, mid, 2 * curr), push(mid + 1, r, 2 * curr + 1); st[curr] = max(st[2 * curr], st[2 * curr + 1]); } void upd(int x, int y, T v, int l, int r, int curr) { int mid = (l + r) / 2; push(l, r, curr); if (l == x && r == y) { lazy[curr] += v; push(l, r, curr); return; } if (y <= mid) upd(x, y, v, l, mid, 2 * curr); else if (x > mid) upd(x, y, v, mid + 1, r, 2 * curr + 1); else upd(x, mid, v, l, mid, 2 * curr), upd(mid + 1, y, v, mid + 1, r, 2 * curr + 1); pull(l, r, curr); } T qry(int x, int y, int l, int r, int curr) { int mid = (l + r) / 2; push(l, r, curr); if (l == x && r == y) return st[curr]; if (y <= mid) return qry(x, y, l, mid, 2 * curr); else if (x > mid) return qry(x, y, mid + 1, r, 2 * curr + 1); return max(qry(x, mid, l, mid, 2 * curr), qry(mid + 1, y, mid + 1, r, 2 * curr + 1)); } void build(int l, int r, int curr) { int mid = (l + r) / 2; if (l == r) { st[curr] = 0; return; } build(l, mid, 2 * curr); build(mid + 1, r, 2 * curr + 1); st[curr] = (st[2 * curr] + st[2 * curr + 1]); } }; bool vis[N]; void dfs(int x) { vis[x] = true; in[x] = ++tin; for (auto w : g[x]) { if (!vis[w]) dfs(w); } out[x] = tin; } int32_t main() { scanf("%d%d", &n, &k); for (int i = 1; i <= n; i++) { scanf("%d", &a[i]); } stack<int> cur; lazy_seg<int> seg(n); for (int i = n; i >= 1; i--) { while ((int)(cur).size() && a[i] >= a[cur.top()]) cur.pop(); if ((int)(cur).size()) { g[i].push_back(cur.top()); g[cur.top()].push_back(i); } cur.push(i); } for (int i = n; i >= 1; i--) { if (!vis[i]) { dfs(i); } } for (int i = 1; i <= n; i++) { if (i > k) { seg.upd(in[i - k], out[i - k], -1, 1, n, 1); } seg.upd(in[i], out[i], 1, 1, n, 1); if (i >= k) { printf("%d ", seg.qry(1, n, 1, n, 1)); } } printf("\n"); } ```
#include <bits/stdc++.h> using namespace std; template <typename T1, typename T2> istream &operator>>(istream &in, pair<T1, T2> &a) { in >> a.first >> a.second; return in; } template <typename T1, typename T2> ostream &operator<<(ostream &out, pair<T1, T2> a) { out << a.first << " " << a.second; return out; } template <typename T, typename T1> T maxs(T &a, T1 b) { if (b > a) a = b; return a; } template <typename T, typename T1> T mins(T &a, T1 b) { if (b < a) a = b; return a; } const long long N = 1000005; struct node { long long a = 0; node(long long val = 0) { a = val; } void merge(node &n1, node &n2) { this->a = max(n1.a, n2.a); } }; struct update { long long val = 0; update(long long t = 0) { val = t; } void combine(update &par, long long tl, long long tr) { val += par.val; } void apply(node &node) { node.a += val; val = 0; } }; template <typename node, typename update> struct segtree { node t[4 * N]; bool lazy[4 * N]; update zaker[4 * N]; long long tl[4 * N]; long long tr[4 * N]; node nul; inline void pushdown(long long v) { if (lazy[v]) { apply(zaker[v], v); lazy[v] = 0; zaker[v].apply(t[v]); } } inline void apply(update &u, long long v) { if (tl[v] != tr[v]) { lazy[2 * v] = lazy[2 * v + 1] = 1; zaker[2 * v].combine(u, tl[2 * v], tr[2 * v]); zaker[2 * v + 1].combine(u, tl[2 * v + 1], tr[2 * v + 1]); } } void build(long long v, long long start, long long end) { tl[v] = start; tr[v] = end; if (start == end) { t[v].a = 0; } else { long long m = (start + end) / 2; build(2 * v, start, m); build(2 * v + 1, m + 1, end); t[v].merge(t[2 * v], t[2 * v + 1]); } } void zeno(long long v, long long l, long long r, update val) { pushdown(v); if (tr[v] < l || tl[v] > r) return; if (l <= tl[v] && tr[v] <= r) { t[v].a += val.val; apply(val, v); return; } zeno(2 * v, l, r, val); zeno(2 * v + 1, l, r, val); t[v].merge(t[2 * v], t[2 * v + 1]); } node query(long long v, long long l, long long r) { if (tr[v] < l || tl[v] > r) return nul; pushdown(v); if (l <= tl[v] && tr[v] <= r) { return t[v]; } node a = query(2 * v, l, r); node b = query(2 * v + 1, l, r); node ans; ans.merge(a, b); return ans; } public: node query(long long l, long long r) { return query(1, l, r); } void upd(long long l, long long r, update val) { return zeno(1, l, r, val); } }; segtree<node, update> seg; vector<long long> g[N]; long long eu[N], tin[N], tout[N]; long long t = 0; void dfs(long long u, long long p) { tin[u] = ++t; eu[t] = u; for (auto i : g[u]) { if (i != p) dfs(i, u); } tout[u] = t; } long long solve() { long long n, k; cin >> n >> k; vector<long long> a(n + 1); for (long long i = 1; i < n + 1; i++) { cin >> a[i]; } vector<long long> nxt(n + 1); stack<pair<long long, long long> > st; for (long long i = 1; i <= n; i++) { while (!st.empty() && st.top().first < a[i]) { nxt[st.top().second] = i; st.pop(); } st.push({a[i], i}); } while (!st.empty()) { nxt[st.top().second] = n + 1; st.pop(); } for (long long i = 1; i <= n; i++) { g[nxt[i]].push_back(i); } dfs(n + 1, 0); seg.build(1, 1, n + 1); update upd1, upd2; upd1.val = 1, upd2.val = -1; for (long long i = 1; i <= k; i++) seg.upd(tin[i], tout[i], upd1); cout << seg.query(1, n + 1).a << " "; for (long long i = 2; i + k - 1 <= n; i++) { seg.upd(tin[i - 1], tout[i - 1], upd2); seg.upd(tin[i + k - 1], tout[i + k - 1], upd1); cout << seg.query(1, n + 1).a << " "; } return 0; } signed main() { ios_base::sync_with_stdio(0); cin.tie(0); cout.tie(0); long long t = 1; while (t--) { solve(); } return 0; }
### Prompt Please create a solution in cpp to the following problem: For some array c, let's denote a greedy subsequence as a sequence of indices p_1, p_2, ..., p_l such that 1 ≀ p_1 < p_2 < ... < p_l ≀ |c|, and for each i ∈ [1, l - 1], p_{i + 1} is the minimum number such that p_{i + 1} > p_i and c[p_{i + 1}] > c[p_i]. You are given an array a_1, a_2, ..., a_n. For each its subsegment of length k, calculate the length of its longest greedy subsequence. Input The first line contains two integers n and k (1 ≀ k ≀ n ≀ 10^6) β€” the length of array a and the length of subsegments. The second line contains n integers a_1, a_2, ..., a_n (1 ≀ a_i ≀ n) β€” array a. Output Print n - k + 1 integers β€” the maximum lengths of greedy subsequences of each subsegment having length k. The first number should correspond to subsegment a[1..k], the second β€” to subsegment a[2..k + 1], and so on. Examples Input 6 4 1 5 2 5 3 6 Output 2 2 3 Input 7 6 4 5 2 5 3 6 6 Output 3 3 Note In the first example: * [1, 5, 2, 5] β€” the longest greedy subsequences are 1, 2 ([c_1, c_2] = [1, 5]) or 3, 4 ([c_3, c_4] = [2, 5]). * [5, 2, 5, 3] β€” the sequence is 2, 3 ([c_2, c_3] = [2, 5]). * [2, 5, 3, 6] β€” the sequence is 1, 2, 4 ([c_1, c_2, c_4] = [2, 5, 6]). In the second example: * [4, 5, 2, 5, 3, 6] β€” the longest greedy subsequences are 1, 2, 6 ([c_1, c_2, c_6] = [4, 5, 6]) or 3, 4, 6 ([c_3, c_4, c_6] = [2, 5, 6]). * [5, 2, 5, 3, 6, 6] β€” the subsequence is 2, 3, 5 ([c_2, c_3, c_5] = [2, 5, 6]). ### Response ```cpp #include <bits/stdc++.h> using namespace std; template <typename T1, typename T2> istream &operator>>(istream &in, pair<T1, T2> &a) { in >> a.first >> a.second; return in; } template <typename T1, typename T2> ostream &operator<<(ostream &out, pair<T1, T2> a) { out << a.first << " " << a.second; return out; } template <typename T, typename T1> T maxs(T &a, T1 b) { if (b > a) a = b; return a; } template <typename T, typename T1> T mins(T &a, T1 b) { if (b < a) a = b; return a; } const long long N = 1000005; struct node { long long a = 0; node(long long val = 0) { a = val; } void merge(node &n1, node &n2) { this->a = max(n1.a, n2.a); } }; struct update { long long val = 0; update(long long t = 0) { val = t; } void combine(update &par, long long tl, long long tr) { val += par.val; } void apply(node &node) { node.a += val; val = 0; } }; template <typename node, typename update> struct segtree { node t[4 * N]; bool lazy[4 * N]; update zaker[4 * N]; long long tl[4 * N]; long long tr[4 * N]; node nul; inline void pushdown(long long v) { if (lazy[v]) { apply(zaker[v], v); lazy[v] = 0; zaker[v].apply(t[v]); } } inline void apply(update &u, long long v) { if (tl[v] != tr[v]) { lazy[2 * v] = lazy[2 * v + 1] = 1; zaker[2 * v].combine(u, tl[2 * v], tr[2 * v]); zaker[2 * v + 1].combine(u, tl[2 * v + 1], tr[2 * v + 1]); } } void build(long long v, long long start, long long end) { tl[v] = start; tr[v] = end; if (start == end) { t[v].a = 0; } else { long long m = (start + end) / 2; build(2 * v, start, m); build(2 * v + 1, m + 1, end); t[v].merge(t[2 * v], t[2 * v + 1]); } } void zeno(long long v, long long l, long long r, update val) { pushdown(v); if (tr[v] < l || tl[v] > r) return; if (l <= tl[v] && tr[v] <= r) { t[v].a += val.val; apply(val, v); return; } zeno(2 * v, l, r, val); zeno(2 * v + 1, l, r, val); t[v].merge(t[2 * v], t[2 * v + 1]); } node query(long long v, long long l, long long r) { if (tr[v] < l || tl[v] > r) return nul; pushdown(v); if (l <= tl[v] && tr[v] <= r) { return t[v]; } node a = query(2 * v, l, r); node b = query(2 * v + 1, l, r); node ans; ans.merge(a, b); return ans; } public: node query(long long l, long long r) { return query(1, l, r); } void upd(long long l, long long r, update val) { return zeno(1, l, r, val); } }; segtree<node, update> seg; vector<long long> g[N]; long long eu[N], tin[N], tout[N]; long long t = 0; void dfs(long long u, long long p) { tin[u] = ++t; eu[t] = u; for (auto i : g[u]) { if (i != p) dfs(i, u); } tout[u] = t; } long long solve() { long long n, k; cin >> n >> k; vector<long long> a(n + 1); for (long long i = 1; i < n + 1; i++) { cin >> a[i]; } vector<long long> nxt(n + 1); stack<pair<long long, long long> > st; for (long long i = 1; i <= n; i++) { while (!st.empty() && st.top().first < a[i]) { nxt[st.top().second] = i; st.pop(); } st.push({a[i], i}); } while (!st.empty()) { nxt[st.top().second] = n + 1; st.pop(); } for (long long i = 1; i <= n; i++) { g[nxt[i]].push_back(i); } dfs(n + 1, 0); seg.build(1, 1, n + 1); update upd1, upd2; upd1.val = 1, upd2.val = -1; for (long long i = 1; i <= k; i++) seg.upd(tin[i], tout[i], upd1); cout << seg.query(1, n + 1).a << " "; for (long long i = 2; i + k - 1 <= n; i++) { seg.upd(tin[i - 1], tout[i - 1], upd2); seg.upd(tin[i + k - 1], tout[i + k - 1], upd1); cout << seg.query(1, n + 1).a << " "; } return 0; } signed main() { ios_base::sync_with_stdio(0); cin.tie(0); cout.tie(0); long long t = 1; while (t--) { solve(); } return 0; } ```
#include <bits/stdc++.h> using namespace std; template <typename T> string to_string(const vector<T>& vc, int w) { if (vc.empty()) return ""; if (w + 1 == vc.size()) return to_string(vc[w]); return to_string(vc[w]) + "," + to_string(vc, w + 1); } template <typename T> string to_string(const vector<T>& vc) { return "{" + to_string(vc, 0) + "}"; } void debug_out() { cerr << endl; } template <typename Head, typename... Tail> void debug_out(Head H, Tail... T) { cerr << " " << to_string(H); debug_out(T...); } class DebugStream { } LOG; template <typename T> DebugStream& operator<<(DebugStream& s, const T&) { return s; } mt19937 rnd(chrono::steady_clock::now().time_since_epoch().count()); const int maxN = 1e6 + 9, maxV = 1e6 + 9, MOD = 1e9 + 7, SQ = 335, lg = 20, bs = 29; int T[maxN << 1], d[maxN], n, arr[maxN], ky[maxN], k; void apply(int w, int x) { T[w] += x; if (w < n) d[w] += x; } void pushDown(int w) { for (int u = lg; u > 0; u--) { int c = w >> u; if (d[c]) { apply(c << 1, d[c]); apply(c << 1 | 1, d[c]); d[c] = 0; } } } void pullUp(int w) { while (w > 1) { w >>= 1; T[w] = max(T[w << 1], T[w << 1 | 1]) + d[w]; } } void upd(int l, int r) { l += n, r += n; int l0 = l, r0 = r; for (; l < r; l >>= 1, r >>= 1) { if (l & 1) apply(l++, 1); if (r & 1) apply(--r, 1); } pullUp(l0); pullUp(r0 - 1); } int qry(int l, int r) { l += n, r += n; pushDown(l); pushDown(r - 1); int ret = 0; for (; l < r; l >>= 1, r >>= 1) { if (l & 1) ret = max(ret, T[l++]); if (r & 1) ret = max(ret, T[--r]); } return ret; } int main() { ios::sync_with_stdio(false); cin.tie(0); cout.tie(0); cin >> n >> k; for (int i = 0; i < n; i++) cin >> arr[i]; stack<int> stc; stc.push(-1); for (int i = 0; i < n; i++) { while (stc.top() >= 0 && arr[stc.top()] < arr[i]) stc.pop(); ky[i] = stc.top() + 1; stc.push(i); } for (int i = 0; i + 1 < k; i++) upd(ky[i], i + 1); for (int i = k - 1; i < n; i++) { upd(ky[i], i + 1); cout << qry(i - k + 1, i + 1) << ' '; } cout << '\n'; }
### Prompt Please formulate a cpp solution to the following problem: For some array c, let's denote a greedy subsequence as a sequence of indices p_1, p_2, ..., p_l such that 1 ≀ p_1 < p_2 < ... < p_l ≀ |c|, and for each i ∈ [1, l - 1], p_{i + 1} is the minimum number such that p_{i + 1} > p_i and c[p_{i + 1}] > c[p_i]. You are given an array a_1, a_2, ..., a_n. For each its subsegment of length k, calculate the length of its longest greedy subsequence. Input The first line contains two integers n and k (1 ≀ k ≀ n ≀ 10^6) β€” the length of array a and the length of subsegments. The second line contains n integers a_1, a_2, ..., a_n (1 ≀ a_i ≀ n) β€” array a. Output Print n - k + 1 integers β€” the maximum lengths of greedy subsequences of each subsegment having length k. The first number should correspond to subsegment a[1..k], the second β€” to subsegment a[2..k + 1], and so on. Examples Input 6 4 1 5 2 5 3 6 Output 2 2 3 Input 7 6 4 5 2 5 3 6 6 Output 3 3 Note In the first example: * [1, 5, 2, 5] β€” the longest greedy subsequences are 1, 2 ([c_1, c_2] = [1, 5]) or 3, 4 ([c_3, c_4] = [2, 5]). * [5, 2, 5, 3] β€” the sequence is 2, 3 ([c_2, c_3] = [2, 5]). * [2, 5, 3, 6] β€” the sequence is 1, 2, 4 ([c_1, c_2, c_4] = [2, 5, 6]). In the second example: * [4, 5, 2, 5, 3, 6] β€” the longest greedy subsequences are 1, 2, 6 ([c_1, c_2, c_6] = [4, 5, 6]) or 3, 4, 6 ([c_3, c_4, c_6] = [2, 5, 6]). * [5, 2, 5, 3, 6, 6] β€” the subsequence is 2, 3, 5 ([c_2, c_3, c_5] = [2, 5, 6]). ### Response ```cpp #include <bits/stdc++.h> using namespace std; template <typename T> string to_string(const vector<T>& vc, int w) { if (vc.empty()) return ""; if (w + 1 == vc.size()) return to_string(vc[w]); return to_string(vc[w]) + "," + to_string(vc, w + 1); } template <typename T> string to_string(const vector<T>& vc) { return "{" + to_string(vc, 0) + "}"; } void debug_out() { cerr << endl; } template <typename Head, typename... Tail> void debug_out(Head H, Tail... T) { cerr << " " << to_string(H); debug_out(T...); } class DebugStream { } LOG; template <typename T> DebugStream& operator<<(DebugStream& s, const T&) { return s; } mt19937 rnd(chrono::steady_clock::now().time_since_epoch().count()); const int maxN = 1e6 + 9, maxV = 1e6 + 9, MOD = 1e9 + 7, SQ = 335, lg = 20, bs = 29; int T[maxN << 1], d[maxN], n, arr[maxN], ky[maxN], k; void apply(int w, int x) { T[w] += x; if (w < n) d[w] += x; } void pushDown(int w) { for (int u = lg; u > 0; u--) { int c = w >> u; if (d[c]) { apply(c << 1, d[c]); apply(c << 1 | 1, d[c]); d[c] = 0; } } } void pullUp(int w) { while (w > 1) { w >>= 1; T[w] = max(T[w << 1], T[w << 1 | 1]) + d[w]; } } void upd(int l, int r) { l += n, r += n; int l0 = l, r0 = r; for (; l < r; l >>= 1, r >>= 1) { if (l & 1) apply(l++, 1); if (r & 1) apply(--r, 1); } pullUp(l0); pullUp(r0 - 1); } int qry(int l, int r) { l += n, r += n; pushDown(l); pushDown(r - 1); int ret = 0; for (; l < r; l >>= 1, r >>= 1) { if (l & 1) ret = max(ret, T[l++]); if (r & 1) ret = max(ret, T[--r]); } return ret; } int main() { ios::sync_with_stdio(false); cin.tie(0); cout.tie(0); cin >> n >> k; for (int i = 0; i < n; i++) cin >> arr[i]; stack<int> stc; stc.push(-1); for (int i = 0; i < n; i++) { while (stc.top() >= 0 && arr[stc.top()] < arr[i]) stc.pop(); ky[i] = stc.top() + 1; stc.push(i); } for (int i = 0; i + 1 < k; i++) upd(ky[i], i + 1); for (int i = k - 1; i < n; i++) { upd(ky[i], i + 1); cout << qry(i - k + 1, i + 1) << ' '; } cout << '\n'; } ```
#include <bits/stdc++.h> using namespace std; const double pi = acos(-1); const double eps = 1e-9; const int mod = 1e9 + 7; int n, k, a[1000005], nxt[1000005]; vector<int> g[1000005]; int td[1000005], tf[1000005], v, lev[1000005]; bool di[1000005]; int lca[1000005][25]; void dfs(int nod) { td[nod] = tf[nod] = ++v; for (int i = 1; i <= 20; i++) lca[nod][i] = lca[lca[nod][i - 1]][i - 1]; for (int newn : g[nod]) { lev[newn] = lev[nod] + 1; lca[newn][0] = nod; dfs(newn); tf[nod] = tf[newn]; } } int t[1000005 * 4]; void update(int ini, int fin, int lv, int pos, int v) { if (ini == fin) { t[lv] = v; return; } int piv = (ini + fin) >> 1; if (pos <= piv) update(ini, piv, lv * 2, pos, v); else update(piv + 1, fin, lv * 2 + 1, pos, v); t[lv] = max(t[lv * 2], t[lv * 2 + 1]); } int query(int ini, int fin, int lv, int a, int b) { if (a > fin || b < ini) return 0; if (a <= ini && b >= fin) return t[lv]; int piv = (ini + fin) >> 1; return max(query(ini, piv, lv * 2, a, b), query(piv + 1, fin, lv * 2 + 1, a, b)); } int main() { ios_base::sync_with_stdio(0); cin.tie(0); cin >> n >> k; for (int i = 1; i <= n; i++) cin >> a[i]; a[n + 1] = 1 << 30; for (int i = n; i >= 1; i--) { nxt[i] = i + 1; while (a[nxt[i]] <= a[i]) nxt[i] = nxt[nxt[i]]; if (nxt[i] != n + 1) { g[nxt[i]].push_back(i); di[i] = true; } } for (int i = 1; i <= n; i++) if (!di[i]) { lev[i] = 1; dfs(i); } multiset<int> m; vector<int> s(n + 1); auto agrega = [&](int nod, int l, int r) { int val = 0; update(1, n, 1, td[nod], lev[nod]); for (int newn : g[nod]) { if (newn > r || newn < l) continue; m.erase(m.find(s[newn])); val = max(val, s[newn]); } s[nod] = val + 1; m.insert(s[nod]); }; auto find_root = [&](int nod, int l, int r) { int root = nod; for (int i = 20; i >= 0; i--) if (lca[root][i] && lca[root][i] <= r) root = lca[root][i]; return root; }; auto elimina = [&](int nod, int l, int r) { update(1, n, 1, td[nod], 0); int root = find_root(nod, l, r); m.erase(m.find(s[root])); if (nod == root) return; s[root] = query(1, n, 1, td[root], tf[root]) - lev[root] + 1; m.insert(s[root]); }; for (int i = 1; i <= n; i++) { if (i > k) elimina(i - k, i - k, i - 1); agrega(i, max(1, i - k + 1), i); if (i >= k) cout << *m.rbegin() << " \n"[i == n]; } return 0; }
### Prompt Your task is to create a cpp solution to the following problem: For some array c, let's denote a greedy subsequence as a sequence of indices p_1, p_2, ..., p_l such that 1 ≀ p_1 < p_2 < ... < p_l ≀ |c|, and for each i ∈ [1, l - 1], p_{i + 1} is the minimum number such that p_{i + 1} > p_i and c[p_{i + 1}] > c[p_i]. You are given an array a_1, a_2, ..., a_n. For each its subsegment of length k, calculate the length of its longest greedy subsequence. Input The first line contains two integers n and k (1 ≀ k ≀ n ≀ 10^6) β€” the length of array a and the length of subsegments. The second line contains n integers a_1, a_2, ..., a_n (1 ≀ a_i ≀ n) β€” array a. Output Print n - k + 1 integers β€” the maximum lengths of greedy subsequences of each subsegment having length k. The first number should correspond to subsegment a[1..k], the second β€” to subsegment a[2..k + 1], and so on. Examples Input 6 4 1 5 2 5 3 6 Output 2 2 3 Input 7 6 4 5 2 5 3 6 6 Output 3 3 Note In the first example: * [1, 5, 2, 5] β€” the longest greedy subsequences are 1, 2 ([c_1, c_2] = [1, 5]) or 3, 4 ([c_3, c_4] = [2, 5]). * [5, 2, 5, 3] β€” the sequence is 2, 3 ([c_2, c_3] = [2, 5]). * [2, 5, 3, 6] β€” the sequence is 1, 2, 4 ([c_1, c_2, c_4] = [2, 5, 6]). In the second example: * [4, 5, 2, 5, 3, 6] β€” the longest greedy subsequences are 1, 2, 6 ([c_1, c_2, c_6] = [4, 5, 6]) or 3, 4, 6 ([c_3, c_4, c_6] = [2, 5, 6]). * [5, 2, 5, 3, 6, 6] β€” the subsequence is 2, 3, 5 ([c_2, c_3, c_5] = [2, 5, 6]). ### Response ```cpp #include <bits/stdc++.h> using namespace std; const double pi = acos(-1); const double eps = 1e-9; const int mod = 1e9 + 7; int n, k, a[1000005], nxt[1000005]; vector<int> g[1000005]; int td[1000005], tf[1000005], v, lev[1000005]; bool di[1000005]; int lca[1000005][25]; void dfs(int nod) { td[nod] = tf[nod] = ++v; for (int i = 1; i <= 20; i++) lca[nod][i] = lca[lca[nod][i - 1]][i - 1]; for (int newn : g[nod]) { lev[newn] = lev[nod] + 1; lca[newn][0] = nod; dfs(newn); tf[nod] = tf[newn]; } } int t[1000005 * 4]; void update(int ini, int fin, int lv, int pos, int v) { if (ini == fin) { t[lv] = v; return; } int piv = (ini + fin) >> 1; if (pos <= piv) update(ini, piv, lv * 2, pos, v); else update(piv + 1, fin, lv * 2 + 1, pos, v); t[lv] = max(t[lv * 2], t[lv * 2 + 1]); } int query(int ini, int fin, int lv, int a, int b) { if (a > fin || b < ini) return 0; if (a <= ini && b >= fin) return t[lv]; int piv = (ini + fin) >> 1; return max(query(ini, piv, lv * 2, a, b), query(piv + 1, fin, lv * 2 + 1, a, b)); } int main() { ios_base::sync_with_stdio(0); cin.tie(0); cin >> n >> k; for (int i = 1; i <= n; i++) cin >> a[i]; a[n + 1] = 1 << 30; for (int i = n; i >= 1; i--) { nxt[i] = i + 1; while (a[nxt[i]] <= a[i]) nxt[i] = nxt[nxt[i]]; if (nxt[i] != n + 1) { g[nxt[i]].push_back(i); di[i] = true; } } for (int i = 1; i <= n; i++) if (!di[i]) { lev[i] = 1; dfs(i); } multiset<int> m; vector<int> s(n + 1); auto agrega = [&](int nod, int l, int r) { int val = 0; update(1, n, 1, td[nod], lev[nod]); for (int newn : g[nod]) { if (newn > r || newn < l) continue; m.erase(m.find(s[newn])); val = max(val, s[newn]); } s[nod] = val + 1; m.insert(s[nod]); }; auto find_root = [&](int nod, int l, int r) { int root = nod; for (int i = 20; i >= 0; i--) if (lca[root][i] && lca[root][i] <= r) root = lca[root][i]; return root; }; auto elimina = [&](int nod, int l, int r) { update(1, n, 1, td[nod], 0); int root = find_root(nod, l, r); m.erase(m.find(s[root])); if (nod == root) return; s[root] = query(1, n, 1, td[root], tf[root]) - lev[root] + 1; m.insert(s[root]); }; for (int i = 1; i <= n; i++) { if (i > k) elimina(i - k, i - k, i - 1); agrega(i, max(1, i - k + 1), i); if (i >= k) cout << *m.rbegin() << " \n"[i == n]; } return 0; } ```
#include <bits/stdc++.h> using namespace std; const int N = 1000050; const int M = 2 * N; int lid[N], rid[N], tid; vector<int> E[N]; void DFS(int u) { lid[u] = ++tid; for (int v : E[u]) DFS(v); rid[u] = tid; } int ls[M], rs[M], tsz, root, mx[M], lzy[M]; void Set(int &c, int ss, int se, int qs, int qe, int f) { if (qs > qe || qs > se || ss > qe) return; if (!c) c = ++tsz; if (qs <= ss && qe >= se) { mx[c] += f; lzy[c] += f; return; } int mid = ss + se >> 1; Set(ls[c], ss, mid, qs, qe, f); Set(rs[c], mid + 1, se, qs, qe, f); mx[c] = max(mx[ls[c]], mx[rs[c]]) + lzy[c]; } int a[N], S[N], c; int main() { int n, k, i; scanf("%i %i", &n, &k); for (i = 1; i <= n; i++) scanf("%i", &a[i]); for (i = n; i >= 1; i--) { while (c && a[S[c]] <= a[i]) c--; E[S[c]].push_back(i); S[++c] = i; } DFS(0); for (i = 1; i < k; i++) Set(root, 1, tid, lid[i], rid[i], 1); for (i = k; i <= n; i++) { Set(root, 1, tid, lid[i], rid[i], 1); if (i > k) Set(root, 1, tid, lid[i - k], rid[i - k], -1); printf("%i ", mx[root]); } return 0; }
### Prompt Please formulate a Cpp solution to the following problem: For some array c, let's denote a greedy subsequence as a sequence of indices p_1, p_2, ..., p_l such that 1 ≀ p_1 < p_2 < ... < p_l ≀ |c|, and for each i ∈ [1, l - 1], p_{i + 1} is the minimum number such that p_{i + 1} > p_i and c[p_{i + 1}] > c[p_i]. You are given an array a_1, a_2, ..., a_n. For each its subsegment of length k, calculate the length of its longest greedy subsequence. Input The first line contains two integers n and k (1 ≀ k ≀ n ≀ 10^6) β€” the length of array a and the length of subsegments. The second line contains n integers a_1, a_2, ..., a_n (1 ≀ a_i ≀ n) β€” array a. Output Print n - k + 1 integers β€” the maximum lengths of greedy subsequences of each subsegment having length k. The first number should correspond to subsegment a[1..k], the second β€” to subsegment a[2..k + 1], and so on. Examples Input 6 4 1 5 2 5 3 6 Output 2 2 3 Input 7 6 4 5 2 5 3 6 6 Output 3 3 Note In the first example: * [1, 5, 2, 5] β€” the longest greedy subsequences are 1, 2 ([c_1, c_2] = [1, 5]) or 3, 4 ([c_3, c_4] = [2, 5]). * [5, 2, 5, 3] β€” the sequence is 2, 3 ([c_2, c_3] = [2, 5]). * [2, 5, 3, 6] β€” the sequence is 1, 2, 4 ([c_1, c_2, c_4] = [2, 5, 6]). In the second example: * [4, 5, 2, 5, 3, 6] β€” the longest greedy subsequences are 1, 2, 6 ([c_1, c_2, c_6] = [4, 5, 6]) or 3, 4, 6 ([c_3, c_4, c_6] = [2, 5, 6]). * [5, 2, 5, 3, 6, 6] β€” the subsequence is 2, 3, 5 ([c_2, c_3, c_5] = [2, 5, 6]). ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int N = 1000050; const int M = 2 * N; int lid[N], rid[N], tid; vector<int> E[N]; void DFS(int u) { lid[u] = ++tid; for (int v : E[u]) DFS(v); rid[u] = tid; } int ls[M], rs[M], tsz, root, mx[M], lzy[M]; void Set(int &c, int ss, int se, int qs, int qe, int f) { if (qs > qe || qs > se || ss > qe) return; if (!c) c = ++tsz; if (qs <= ss && qe >= se) { mx[c] += f; lzy[c] += f; return; } int mid = ss + se >> 1; Set(ls[c], ss, mid, qs, qe, f); Set(rs[c], mid + 1, se, qs, qe, f); mx[c] = max(mx[ls[c]], mx[rs[c]]) + lzy[c]; } int a[N], S[N], c; int main() { int n, k, i; scanf("%i %i", &n, &k); for (i = 1; i <= n; i++) scanf("%i", &a[i]); for (i = n; i >= 1; i--) { while (c && a[S[c]] <= a[i]) c--; E[S[c]].push_back(i); S[++c] = i; } DFS(0); for (i = 1; i < k; i++) Set(root, 1, tid, lid[i], rid[i], 1); for (i = k; i <= n; i++) { Set(root, 1, tid, lid[i], rid[i], 1); if (i > k) Set(root, 1, tid, lid[i - k], rid[i - k], -1); printf("%i ", mx[root]); } return 0; } ```
#include <bits/stdc++.h> using namespace std; int s[1000100]; int e[1000100]; int a[1000100]; int cnt = 0, n; vector<int> pre[1000100]; struct IT { int d[4000100]; int lz[4000100]; void upd(int num, int l, int r, int x, int y, int val) { if (l > r || l > y || r < x) return; if (l >= x && r <= y) { lz[num] += val; d[num] += val; return; } upd(num * 2, l, (l + r) / 2, x, y, val); upd(num * 2 + 1, (l + r) / 2 + 1, r, x, y, val); d[num] = max(d[num * 2], d[num * 2 + 1]) + lz[num]; } int get(int num, int l, int r, int x, int y) { if (l > r || l > y || r < x) return 0; if (l >= x && r <= y) { return d[num]; } return max(get(num * 2, l, (l + r) / 2, x, y), get(num * 2 + 1, (l + r) / 2 + 1, r, x, y)) + lz[num]; } } it; void init_dfs(int x) { s[x] = ++cnt; for (int i = 0; i < pre[x].size(); i++) { init_dfs(pre[x][i]); } e[x] = cnt; } void add(int x) { it.upd(1, 1, n, s[x], e[x], 1); } void rmv(int x) { it.upd(1, 1, n, s[x], e[x], -1); } stack<int> st; int main() { int k; ios_base::sync_with_stdio(0); cin >> n >> k; for (int i = 1; i <= n; i++) { cin >> a[i]; } for (int i = n; i >= 1; i--) { while (st.size() && a[i] >= a[st.top()]) st.pop(); if (st.size()) { pre[st.top()].push_back(i); } else { pre[n + 1].push_back(i); } st.push(i); } n++; init_dfs(n); for (int i = 1; i <= k; i++) { add(i); } cout << it.get(1, 1, n, 1, n) << " "; for (int i = k + 1; i < n; i++) { add(i); rmv(i - k); cout << it.get(1, 1, n, 1, n) << " "; } }
### Prompt Please create a solution in cpp to the following problem: For some array c, let's denote a greedy subsequence as a sequence of indices p_1, p_2, ..., p_l such that 1 ≀ p_1 < p_2 < ... < p_l ≀ |c|, and for each i ∈ [1, l - 1], p_{i + 1} is the minimum number such that p_{i + 1} > p_i and c[p_{i + 1}] > c[p_i]. You are given an array a_1, a_2, ..., a_n. For each its subsegment of length k, calculate the length of its longest greedy subsequence. Input The first line contains two integers n and k (1 ≀ k ≀ n ≀ 10^6) β€” the length of array a and the length of subsegments. The second line contains n integers a_1, a_2, ..., a_n (1 ≀ a_i ≀ n) β€” array a. Output Print n - k + 1 integers β€” the maximum lengths of greedy subsequences of each subsegment having length k. The first number should correspond to subsegment a[1..k], the second β€” to subsegment a[2..k + 1], and so on. Examples Input 6 4 1 5 2 5 3 6 Output 2 2 3 Input 7 6 4 5 2 5 3 6 6 Output 3 3 Note In the first example: * [1, 5, 2, 5] β€” the longest greedy subsequences are 1, 2 ([c_1, c_2] = [1, 5]) or 3, 4 ([c_3, c_4] = [2, 5]). * [5, 2, 5, 3] β€” the sequence is 2, 3 ([c_2, c_3] = [2, 5]). * [2, 5, 3, 6] β€” the sequence is 1, 2, 4 ([c_1, c_2, c_4] = [2, 5, 6]). In the second example: * [4, 5, 2, 5, 3, 6] β€” the longest greedy subsequences are 1, 2, 6 ([c_1, c_2, c_6] = [4, 5, 6]) or 3, 4, 6 ([c_3, c_4, c_6] = [2, 5, 6]). * [5, 2, 5, 3, 6, 6] β€” the subsequence is 2, 3, 5 ([c_2, c_3, c_5] = [2, 5, 6]). ### Response ```cpp #include <bits/stdc++.h> using namespace std; int s[1000100]; int e[1000100]; int a[1000100]; int cnt = 0, n; vector<int> pre[1000100]; struct IT { int d[4000100]; int lz[4000100]; void upd(int num, int l, int r, int x, int y, int val) { if (l > r || l > y || r < x) return; if (l >= x && r <= y) { lz[num] += val; d[num] += val; return; } upd(num * 2, l, (l + r) / 2, x, y, val); upd(num * 2 + 1, (l + r) / 2 + 1, r, x, y, val); d[num] = max(d[num * 2], d[num * 2 + 1]) + lz[num]; } int get(int num, int l, int r, int x, int y) { if (l > r || l > y || r < x) return 0; if (l >= x && r <= y) { return d[num]; } return max(get(num * 2, l, (l + r) / 2, x, y), get(num * 2 + 1, (l + r) / 2 + 1, r, x, y)) + lz[num]; } } it; void init_dfs(int x) { s[x] = ++cnt; for (int i = 0; i < pre[x].size(); i++) { init_dfs(pre[x][i]); } e[x] = cnt; } void add(int x) { it.upd(1, 1, n, s[x], e[x], 1); } void rmv(int x) { it.upd(1, 1, n, s[x], e[x], -1); } stack<int> st; int main() { int k; ios_base::sync_with_stdio(0); cin >> n >> k; for (int i = 1; i <= n; i++) { cin >> a[i]; } for (int i = n; i >= 1; i--) { while (st.size() && a[i] >= a[st.top()]) st.pop(); if (st.size()) { pre[st.top()].push_back(i); } else { pre[n + 1].push_back(i); } st.push(i); } n++; init_dfs(n); for (int i = 1; i <= k; i++) { add(i); } cout << it.get(1, 1, n, 1, n) << " "; for (int i = k + 1; i < n; i++) { add(i); rmv(i - k); cout << it.get(1, 1, n, 1, n) << " "; } } ```
#include <bits/stdc++.h> using namespace std; const int N = 1e6 + 10, INF = 2147483647; struct Edge { int to, nex; } edge[N]; int idx; int h[N]; void add_edge(int u, int v) { edge[++idx] = {v, h[u]}; h[u] = idx; } struct Segment_Tree { int l, r; int sum; int add; } tree[N << 2]; int dep[N], siz[N]; int id[N], timestamp; int big[N], stk[N], top; int a[N], vis[N]; int n, k; void dfs(int p, int fa) { id[p] = ++timestamp; siz[p] = 1; if (~fa) dep[p] = dep[fa] + 1; for (int i = h[p]; ~i; i = edge[i].nex) { int to = edge[i].to; dfs(to, p); siz[p] += siz[to]; } } void push_up(int p) { tree[p].sum = max(tree[p << 1].sum, tree[p << 1 | 1].sum); } void spread(int p) { if (tree[p].add) { tree[p << 1].sum += tree[p].add; tree[p << 1 | 1].sum += tree[p].add; tree[p << 1].add += tree[p].add; tree[p << 1 | 1].add += tree[p].add; tree[p].add = 0; } } void build(int p, int l, int r) { tree[p].l = l, tree[p].r = r; if (l == r) return; int mid = l + r >> 1; build(p << 1, l, mid); build(p << 1 | 1, mid + 1, r); push_up(p); } void update(int p, int l, int r, int v) { if (l <= tree[p].l && r >= tree[p].r) { tree[p].sum += v; tree[p].add += v; return; } spread(p); int mid = tree[p].l + tree[p].r >> 1; if (l <= mid) update(p << 1, l, r, v); if (r > mid) update(p << 1 | 1, l, r, v); push_up(p); } int main() { scanf("%d%d", &n, &k); memset(h, -1, sizeof h); for (int i = 1; i <= n; i++) scanf("%d", &a[i]); for (int i = n; i; i--) { while (top && a[i] >= a[stk[top]]) top--; big[i] = stk[top]; add_edge(stk[top], i); stk[++top] = i; } dfs(0, -1); build(1, 1, n + 1); for (int i = 1; i <= k - 1; i++) update(1, id[i], id[i] + siz[i] - 1, 1); for (int l = 1, r = k; r <= n; l++, r++) { update(1, id[r], id[r] + siz[r] - 1, 1); printf("%d ", tree[1].sum); update(1, id[l], id[l] + siz[l] - 1, -1); } return 0; }
### Prompt Please create a solution in cpp to the following problem: For some array c, let's denote a greedy subsequence as a sequence of indices p_1, p_2, ..., p_l such that 1 ≀ p_1 < p_2 < ... < p_l ≀ |c|, and for each i ∈ [1, l - 1], p_{i + 1} is the minimum number such that p_{i + 1} > p_i and c[p_{i + 1}] > c[p_i]. You are given an array a_1, a_2, ..., a_n. For each its subsegment of length k, calculate the length of its longest greedy subsequence. Input The first line contains two integers n and k (1 ≀ k ≀ n ≀ 10^6) β€” the length of array a and the length of subsegments. The second line contains n integers a_1, a_2, ..., a_n (1 ≀ a_i ≀ n) β€” array a. Output Print n - k + 1 integers β€” the maximum lengths of greedy subsequences of each subsegment having length k. The first number should correspond to subsegment a[1..k], the second β€” to subsegment a[2..k + 1], and so on. Examples Input 6 4 1 5 2 5 3 6 Output 2 2 3 Input 7 6 4 5 2 5 3 6 6 Output 3 3 Note In the first example: * [1, 5, 2, 5] β€” the longest greedy subsequences are 1, 2 ([c_1, c_2] = [1, 5]) or 3, 4 ([c_3, c_4] = [2, 5]). * [5, 2, 5, 3] β€” the sequence is 2, 3 ([c_2, c_3] = [2, 5]). * [2, 5, 3, 6] β€” the sequence is 1, 2, 4 ([c_1, c_2, c_4] = [2, 5, 6]). In the second example: * [4, 5, 2, 5, 3, 6] β€” the longest greedy subsequences are 1, 2, 6 ([c_1, c_2, c_6] = [4, 5, 6]) or 3, 4, 6 ([c_3, c_4, c_6] = [2, 5, 6]). * [5, 2, 5, 3, 6, 6] β€” the subsequence is 2, 3, 5 ([c_2, c_3, c_5] = [2, 5, 6]). ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int N = 1e6 + 10, INF = 2147483647; struct Edge { int to, nex; } edge[N]; int idx; int h[N]; void add_edge(int u, int v) { edge[++idx] = {v, h[u]}; h[u] = idx; } struct Segment_Tree { int l, r; int sum; int add; } tree[N << 2]; int dep[N], siz[N]; int id[N], timestamp; int big[N], stk[N], top; int a[N], vis[N]; int n, k; void dfs(int p, int fa) { id[p] = ++timestamp; siz[p] = 1; if (~fa) dep[p] = dep[fa] + 1; for (int i = h[p]; ~i; i = edge[i].nex) { int to = edge[i].to; dfs(to, p); siz[p] += siz[to]; } } void push_up(int p) { tree[p].sum = max(tree[p << 1].sum, tree[p << 1 | 1].sum); } void spread(int p) { if (tree[p].add) { tree[p << 1].sum += tree[p].add; tree[p << 1 | 1].sum += tree[p].add; tree[p << 1].add += tree[p].add; tree[p << 1 | 1].add += tree[p].add; tree[p].add = 0; } } void build(int p, int l, int r) { tree[p].l = l, tree[p].r = r; if (l == r) return; int mid = l + r >> 1; build(p << 1, l, mid); build(p << 1 | 1, mid + 1, r); push_up(p); } void update(int p, int l, int r, int v) { if (l <= tree[p].l && r >= tree[p].r) { tree[p].sum += v; tree[p].add += v; return; } spread(p); int mid = tree[p].l + tree[p].r >> 1; if (l <= mid) update(p << 1, l, r, v); if (r > mid) update(p << 1 | 1, l, r, v); push_up(p); } int main() { scanf("%d%d", &n, &k); memset(h, -1, sizeof h); for (int i = 1; i <= n; i++) scanf("%d", &a[i]); for (int i = n; i; i--) { while (top && a[i] >= a[stk[top]]) top--; big[i] = stk[top]; add_edge(stk[top], i); stk[++top] = i; } dfs(0, -1); build(1, 1, n + 1); for (int i = 1; i <= k - 1; i++) update(1, id[i], id[i] + siz[i] - 1, 1); for (int l = 1, r = k; r <= n; l++, r++) { update(1, id[r], id[r] + siz[r] - 1, 1); printf("%d ", tree[1].sum); update(1, id[l], id[l] + siz[l] - 1, -1); } return 0; } ```
#include <bits/stdc++.h> using namespace std; int n, m, a[1200000], stk[1200000], dfn[1200000], head[1200000], tot, clk, fst[1200000], lst[1200000], seg[1200000 << 2], fa[1200000], mx[1200000], dep[1200000]; struct edge { int v, nxt; } e[1200000]; multiset<int> se; int gfa(int x) { return x == fa[x] ? x : fa[x] = gfa(fa[x]); } void add(int x, int y) { e[++tot].v = y; e[tot].nxt = head[x]; head[x] = tot; } void dfs(int u) { dfn[u] = ++clk; fst[u] = lst[u] = clk; for (int i = head[u], v; i; i = e[i].nxt) { dep[v = e[i].v] = dep[u] + 1; dfs(v); lst[u] = clk; } } void mdf(int x, int l, int r, int t, int k) { if (l == r) { seg[x] = k; return; } int mid = (l + r) >> 1; if (t <= mid) mdf((x << 1), l, mid, t, k); else mdf((x << 1 | 1), mid + 1, r, t, k); seg[x] = max(seg[(x << 1)], seg[(x << 1 | 1)]); } int qry(int x, int l, int r, int L, int R) { if (l >= L && r <= R) return seg[x]; int mid = (l + r) >> 1, tmp = 0; if (L <= mid) tmp = max(tmp, qry((x << 1), l, mid, L, R)); if (R > mid) tmp = max(tmp, qry((x << 1 | 1), mid + 1, r, L, R)); return tmp; } void del(int x) { se.erase(se.find(mx[x])); } void renew(int x) { se.insert(mx[x] = qry(1, 1, n + 1, fst[x], lst[x]) - dep[x] + 1); } int main() { scanf("%d%d", &n, &m); for (int i = 1; i <= n; ++i) scanf("%d", a + i); int tp = 0; for (int i = 1; i <= n; ++i) { for (; tp && a[i] > a[stk[tp]]; --tp) add(i, stk[tp]); stk[++tp] = i; } for (; tp; --tp) add(0, stk[tp]); dfs(0); for (int i = 1; i <= n; ++i) fa[i] = i; for (int i = 1, j = 1; i <= n - m + 1; ++i) { if (i - 1) { mdf(1, 1, n + 1, dfn[i - 1], 0); del(gfa(i - 1)); renew(gfa(i - 1)); } for (; j < i + m; ++j) { mdf(1, 1, n + 1, dfn[j], dep[j]); for (int k = head[j]; k; k = e[k].nxt) { del(e[k].v); fa[e[k].v] = j; } renew(j); } printf("%d ", *(--se.end())); } puts(""); return 0; }
### Prompt Please create a solution in Cpp to the following problem: For some array c, let's denote a greedy subsequence as a sequence of indices p_1, p_2, ..., p_l such that 1 ≀ p_1 < p_2 < ... < p_l ≀ |c|, and for each i ∈ [1, l - 1], p_{i + 1} is the minimum number such that p_{i + 1} > p_i and c[p_{i + 1}] > c[p_i]. You are given an array a_1, a_2, ..., a_n. For each its subsegment of length k, calculate the length of its longest greedy subsequence. Input The first line contains two integers n and k (1 ≀ k ≀ n ≀ 10^6) β€” the length of array a and the length of subsegments. The second line contains n integers a_1, a_2, ..., a_n (1 ≀ a_i ≀ n) β€” array a. Output Print n - k + 1 integers β€” the maximum lengths of greedy subsequences of each subsegment having length k. The first number should correspond to subsegment a[1..k], the second β€” to subsegment a[2..k + 1], and so on. Examples Input 6 4 1 5 2 5 3 6 Output 2 2 3 Input 7 6 4 5 2 5 3 6 6 Output 3 3 Note In the first example: * [1, 5, 2, 5] β€” the longest greedy subsequences are 1, 2 ([c_1, c_2] = [1, 5]) or 3, 4 ([c_3, c_4] = [2, 5]). * [5, 2, 5, 3] β€” the sequence is 2, 3 ([c_2, c_3] = [2, 5]). * [2, 5, 3, 6] β€” the sequence is 1, 2, 4 ([c_1, c_2, c_4] = [2, 5, 6]). In the second example: * [4, 5, 2, 5, 3, 6] β€” the longest greedy subsequences are 1, 2, 6 ([c_1, c_2, c_6] = [4, 5, 6]) or 3, 4, 6 ([c_3, c_4, c_6] = [2, 5, 6]). * [5, 2, 5, 3, 6, 6] β€” the subsequence is 2, 3, 5 ([c_2, c_3, c_5] = [2, 5, 6]). ### Response ```cpp #include <bits/stdc++.h> using namespace std; int n, m, a[1200000], stk[1200000], dfn[1200000], head[1200000], tot, clk, fst[1200000], lst[1200000], seg[1200000 << 2], fa[1200000], mx[1200000], dep[1200000]; struct edge { int v, nxt; } e[1200000]; multiset<int> se; int gfa(int x) { return x == fa[x] ? x : fa[x] = gfa(fa[x]); } void add(int x, int y) { e[++tot].v = y; e[tot].nxt = head[x]; head[x] = tot; } void dfs(int u) { dfn[u] = ++clk; fst[u] = lst[u] = clk; for (int i = head[u], v; i; i = e[i].nxt) { dep[v = e[i].v] = dep[u] + 1; dfs(v); lst[u] = clk; } } void mdf(int x, int l, int r, int t, int k) { if (l == r) { seg[x] = k; return; } int mid = (l + r) >> 1; if (t <= mid) mdf((x << 1), l, mid, t, k); else mdf((x << 1 | 1), mid + 1, r, t, k); seg[x] = max(seg[(x << 1)], seg[(x << 1 | 1)]); } int qry(int x, int l, int r, int L, int R) { if (l >= L && r <= R) return seg[x]; int mid = (l + r) >> 1, tmp = 0; if (L <= mid) tmp = max(tmp, qry((x << 1), l, mid, L, R)); if (R > mid) tmp = max(tmp, qry((x << 1 | 1), mid + 1, r, L, R)); return tmp; } void del(int x) { se.erase(se.find(mx[x])); } void renew(int x) { se.insert(mx[x] = qry(1, 1, n + 1, fst[x], lst[x]) - dep[x] + 1); } int main() { scanf("%d%d", &n, &m); for (int i = 1; i <= n; ++i) scanf("%d", a + i); int tp = 0; for (int i = 1; i <= n; ++i) { for (; tp && a[i] > a[stk[tp]]; --tp) add(i, stk[tp]); stk[++tp] = i; } for (; tp; --tp) add(0, stk[tp]); dfs(0); for (int i = 1; i <= n; ++i) fa[i] = i; for (int i = 1, j = 1; i <= n - m + 1; ++i) { if (i - 1) { mdf(1, 1, n + 1, dfn[i - 1], 0); del(gfa(i - 1)); renew(gfa(i - 1)); } for (; j < i + m; ++j) { mdf(1, 1, n + 1, dfn[j], dep[j]); for (int k = head[j]; k; k = e[k].nxt) { del(e[k].v); fa[e[k].v] = j; } renew(j); } printf("%d ", *(--se.end())); } puts(""); return 0; } ```
#include <bits/stdc++.h> using namespace std; const int MAXN = 1e6 + 5; const int MAXLog = 20; int n, k; int a[MAXN]; int nxt[MAXN]; int sparse[MAXLog + 5][MAXN]; void init() { stack<int> st; for (int i = n - 1; i >= 0; i--) { while (st.empty() == false && a[st.top()] <= a[i]) st.pop(); nxt[i] = ((st.empty() == true) ? n : st.top()); st.push(i); } for (int i = 0; i < n; i++) sparse[0][i] = nxt[i]; for (int i = 1; i <= MAXLog; i++) { for (int j = 0; j < n; j++) { if (sparse[i - 1][j] == n) sparse[i][j] = n; else sparse[i][j] = sparse[i - 1][sparse[i - 1][j]]; } } } int getNext(int ind, int steps) { int ans = ind; for (int i = MAXLog; i >= 0; i--) { if (((steps >> i) & 1) == 1) { ans = sparse[i][ans]; if (ans == n) return ans; } } return ans; } int getFitting(int ind, int lim) { int ans = 0; for (int i = MAXLog; i >= 0; i--) { if (sparse[i][ind] <= lim) { ans += (1 << i); ind = sparse[i][ind]; } } return ans; } int getAns(deque<int> &opt, int lim) { int answer = 0, iter = 0; ; auto it = opt.end(); it--; while (true) { answer = max(answer, getFitting(*it, lim)); iter++; if (iter == 15) break; if (it == opt.begin()) break; else it--; } return answer + 1; } int main() { ios::sync_with_stdio(false); cin.tie(NULL); vector<int> output; double average = 0; cin >> n >> k; for (int i = 0; i < n; i++) cin >> a[i]; init(); int answer = 0; deque<int> opt; for (int i = n - 1; i >= n - k; i--) { while (opt.empty() == false && getFitting(i, n - 1) >= getFitting(opt.front(), n - 1)) opt.pop_front(); opt.push_front(i); } output.push_back(getAns(opt, n - 1)); for (int i = n - 2; i >= k - 1; i--) { while (opt.empty() == false && getFitting(i - k + 1, i) >= getFitting(opt.front(), i)) opt.pop_front(); opt.push_front(i - k + 1); while (opt.size() >= 2) { auto it1 = opt.end(); it1--; auto it2 = it1; it2--; if (getFitting(*it2, i) >= getFitting(*it1, i)) opt.pop_back(); else break; } average += opt.size(); output.push_back(getAns(opt, i)); } reverse(output.begin(), output.end()); for (int x : output) cout << x << " "; cout << '\n'; }
### Prompt Construct a cpp code solution to the problem outlined: For some array c, let's denote a greedy subsequence as a sequence of indices p_1, p_2, ..., p_l such that 1 ≀ p_1 < p_2 < ... < p_l ≀ |c|, and for each i ∈ [1, l - 1], p_{i + 1} is the minimum number such that p_{i + 1} > p_i and c[p_{i + 1}] > c[p_i]. You are given an array a_1, a_2, ..., a_n. For each its subsegment of length k, calculate the length of its longest greedy subsequence. Input The first line contains two integers n and k (1 ≀ k ≀ n ≀ 10^6) β€” the length of array a and the length of subsegments. The second line contains n integers a_1, a_2, ..., a_n (1 ≀ a_i ≀ n) β€” array a. Output Print n - k + 1 integers β€” the maximum lengths of greedy subsequences of each subsegment having length k. The first number should correspond to subsegment a[1..k], the second β€” to subsegment a[2..k + 1], and so on. Examples Input 6 4 1 5 2 5 3 6 Output 2 2 3 Input 7 6 4 5 2 5 3 6 6 Output 3 3 Note In the first example: * [1, 5, 2, 5] β€” the longest greedy subsequences are 1, 2 ([c_1, c_2] = [1, 5]) or 3, 4 ([c_3, c_4] = [2, 5]). * [5, 2, 5, 3] β€” the sequence is 2, 3 ([c_2, c_3] = [2, 5]). * [2, 5, 3, 6] β€” the sequence is 1, 2, 4 ([c_1, c_2, c_4] = [2, 5, 6]). In the second example: * [4, 5, 2, 5, 3, 6] β€” the longest greedy subsequences are 1, 2, 6 ([c_1, c_2, c_6] = [4, 5, 6]) or 3, 4, 6 ([c_3, c_4, c_6] = [2, 5, 6]). * [5, 2, 5, 3, 6, 6] β€” the subsequence is 2, 3, 5 ([c_2, c_3, c_5] = [2, 5, 6]). ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int MAXN = 1e6 + 5; const int MAXLog = 20; int n, k; int a[MAXN]; int nxt[MAXN]; int sparse[MAXLog + 5][MAXN]; void init() { stack<int> st; for (int i = n - 1; i >= 0; i--) { while (st.empty() == false && a[st.top()] <= a[i]) st.pop(); nxt[i] = ((st.empty() == true) ? n : st.top()); st.push(i); } for (int i = 0; i < n; i++) sparse[0][i] = nxt[i]; for (int i = 1; i <= MAXLog; i++) { for (int j = 0; j < n; j++) { if (sparse[i - 1][j] == n) sparse[i][j] = n; else sparse[i][j] = sparse[i - 1][sparse[i - 1][j]]; } } } int getNext(int ind, int steps) { int ans = ind; for (int i = MAXLog; i >= 0; i--) { if (((steps >> i) & 1) == 1) { ans = sparse[i][ans]; if (ans == n) return ans; } } return ans; } int getFitting(int ind, int lim) { int ans = 0; for (int i = MAXLog; i >= 0; i--) { if (sparse[i][ind] <= lim) { ans += (1 << i); ind = sparse[i][ind]; } } return ans; } int getAns(deque<int> &opt, int lim) { int answer = 0, iter = 0; ; auto it = opt.end(); it--; while (true) { answer = max(answer, getFitting(*it, lim)); iter++; if (iter == 15) break; if (it == opt.begin()) break; else it--; } return answer + 1; } int main() { ios::sync_with_stdio(false); cin.tie(NULL); vector<int> output; double average = 0; cin >> n >> k; for (int i = 0; i < n; i++) cin >> a[i]; init(); int answer = 0; deque<int> opt; for (int i = n - 1; i >= n - k; i--) { while (opt.empty() == false && getFitting(i, n - 1) >= getFitting(opt.front(), n - 1)) opt.pop_front(); opt.push_front(i); } output.push_back(getAns(opt, n - 1)); for (int i = n - 2; i >= k - 1; i--) { while (opt.empty() == false && getFitting(i - k + 1, i) >= getFitting(opt.front(), i)) opt.pop_front(); opt.push_front(i - k + 1); while (opt.size() >= 2) { auto it1 = opt.end(); it1--; auto it2 = it1; it2--; if (getFitting(*it2, i) >= getFitting(*it1, i)) opt.pop_back(); else break; } average += opt.size(); output.push_back(getAns(opt, i)); } reverse(output.begin(), output.end()); for (int x : output) cout << x << " "; cout << '\n'; } ```
#include <bits/stdc++.h> using namespace std; const long long MOD = (1e9 + 7); const long long INF = (1e9 + 123456789); const long long INFL = (INF * INF); inline long long addm(long long a, long long b, long long m = MOD) { return ((a + b) % m); } inline long long subm(long long a, long long b, long long m = MOD) { return (((a - b) % m + m) % m); } inline long long mulm(long long a, long long b, long long m = MOD) { return ((a * b) % m); } long long powm(long long a, long long b, long long m = MOD) { long long ret = (!b) ? 1 : powm(a, b / 2, m); return (!b) ? 1 : mulm(mulm(ret, ret, m), b % 2 ? a : 1, m); } long long gcd(long long a, long long b) { return (!b) ? a : gcd(b, a % b); } long long lcm(long long a, long long b) { return a / gcd(a, b) * b; } long long inv(long long x, long long m = MOD) { return powm(x, m - 2, m); } const int N = 1500500; int a[N], lft[N], nxt[N]; vector<int> nodes, g[N]; struct SegmentTree { int f, t; SegmentTree *lc, *rc; bool has_child, has_lazy = false; int upd = 0; int vmax = 0; SegmentTree(int l, int r) { if (l == r) { f = t = l; lc = rc = NULL; has_child = false; } else { f = l; t = r; int mid = (l + r) / 2; lc = new SegmentTree(l, mid); rc = new SegmentTree(mid + 1, r); has_child = true; } } void change(int v) { vmax += v; upd += v; has_lazy = true; } void push() { if (!has_lazy) return; lc->change(upd); rc->change(upd); upd = 0; has_lazy = false; } void update(int l, int r, int x) { if (r < f || l > t) return; if (l <= f && t <= r) { change(x); return; } push(); lc->update(l, r, x); rc->update(l, r, x); vmax = max(lc->vmax, rc->vmax); } int query(int l, int r) { if (r < f || l > t) return 0; if (l <= f && t <= r) return vmax; return vmax = max(lc->query(l, r), rc->query(l, r)); } }; void solve() { int n, k; cin >> n >> k; for (int i = 0; i < n; i++) cin >> a[i]; stack<int> st; for (int i = n - 1; i >= 0; i--) { while (!st.empty() && a[st.top()] <= a[i]) st.pop(); if (!st.empty()) nxt[i] = st.top(); else nxt[i] = n; st.push(i); } for (int i = 0; i < n; i++) g[nxt[i]].push_back(i); function<void(int)> post = [&](int v) { int l = (int)(nodes).size(); for (int u : g[v]) post(u); lft[(int)(nodes).size()] = l; nodes.push_back(v); }; post(n); SegmentTree root(0, n); for (int i = 0; i < k; i++) root.update(lft[i], i, 1); vector<int> ans; ans.push_back(root.query(0, n)); for (int i = k; i < n; i++) { root.update(lft[i - k], i - k, -1); root.update(lft[i], i, 1); ans.push_back(root.query(0, n)); } for (int i = 0; i < (int)(ans).size(); i++) { if (i) cout << " "; cout << ans[i]; } cout << "\n"; } int main(int argc, char *argv[]) { cin.sync_with_stdio(0); cin.tie(NULL); solve(); return 0; }
### Prompt Construct a Cpp code solution to the problem outlined: For some array c, let's denote a greedy subsequence as a sequence of indices p_1, p_2, ..., p_l such that 1 ≀ p_1 < p_2 < ... < p_l ≀ |c|, and for each i ∈ [1, l - 1], p_{i + 1} is the minimum number such that p_{i + 1} > p_i and c[p_{i + 1}] > c[p_i]. You are given an array a_1, a_2, ..., a_n. For each its subsegment of length k, calculate the length of its longest greedy subsequence. Input The first line contains two integers n and k (1 ≀ k ≀ n ≀ 10^6) β€” the length of array a and the length of subsegments. The second line contains n integers a_1, a_2, ..., a_n (1 ≀ a_i ≀ n) β€” array a. Output Print n - k + 1 integers β€” the maximum lengths of greedy subsequences of each subsegment having length k. The first number should correspond to subsegment a[1..k], the second β€” to subsegment a[2..k + 1], and so on. Examples Input 6 4 1 5 2 5 3 6 Output 2 2 3 Input 7 6 4 5 2 5 3 6 6 Output 3 3 Note In the first example: * [1, 5, 2, 5] β€” the longest greedy subsequences are 1, 2 ([c_1, c_2] = [1, 5]) or 3, 4 ([c_3, c_4] = [2, 5]). * [5, 2, 5, 3] β€” the sequence is 2, 3 ([c_2, c_3] = [2, 5]). * [2, 5, 3, 6] β€” the sequence is 1, 2, 4 ([c_1, c_2, c_4] = [2, 5, 6]). In the second example: * [4, 5, 2, 5, 3, 6] β€” the longest greedy subsequences are 1, 2, 6 ([c_1, c_2, c_6] = [4, 5, 6]) or 3, 4, 6 ([c_3, c_4, c_6] = [2, 5, 6]). * [5, 2, 5, 3, 6, 6] β€” the subsequence is 2, 3, 5 ([c_2, c_3, c_5] = [2, 5, 6]). ### Response ```cpp #include <bits/stdc++.h> using namespace std; const long long MOD = (1e9 + 7); const long long INF = (1e9 + 123456789); const long long INFL = (INF * INF); inline long long addm(long long a, long long b, long long m = MOD) { return ((a + b) % m); } inline long long subm(long long a, long long b, long long m = MOD) { return (((a - b) % m + m) % m); } inline long long mulm(long long a, long long b, long long m = MOD) { return ((a * b) % m); } long long powm(long long a, long long b, long long m = MOD) { long long ret = (!b) ? 1 : powm(a, b / 2, m); return (!b) ? 1 : mulm(mulm(ret, ret, m), b % 2 ? a : 1, m); } long long gcd(long long a, long long b) { return (!b) ? a : gcd(b, a % b); } long long lcm(long long a, long long b) { return a / gcd(a, b) * b; } long long inv(long long x, long long m = MOD) { return powm(x, m - 2, m); } const int N = 1500500; int a[N], lft[N], nxt[N]; vector<int> nodes, g[N]; struct SegmentTree { int f, t; SegmentTree *lc, *rc; bool has_child, has_lazy = false; int upd = 0; int vmax = 0; SegmentTree(int l, int r) { if (l == r) { f = t = l; lc = rc = NULL; has_child = false; } else { f = l; t = r; int mid = (l + r) / 2; lc = new SegmentTree(l, mid); rc = new SegmentTree(mid + 1, r); has_child = true; } } void change(int v) { vmax += v; upd += v; has_lazy = true; } void push() { if (!has_lazy) return; lc->change(upd); rc->change(upd); upd = 0; has_lazy = false; } void update(int l, int r, int x) { if (r < f || l > t) return; if (l <= f && t <= r) { change(x); return; } push(); lc->update(l, r, x); rc->update(l, r, x); vmax = max(lc->vmax, rc->vmax); } int query(int l, int r) { if (r < f || l > t) return 0; if (l <= f && t <= r) return vmax; return vmax = max(lc->query(l, r), rc->query(l, r)); } }; void solve() { int n, k; cin >> n >> k; for (int i = 0; i < n; i++) cin >> a[i]; stack<int> st; for (int i = n - 1; i >= 0; i--) { while (!st.empty() && a[st.top()] <= a[i]) st.pop(); if (!st.empty()) nxt[i] = st.top(); else nxt[i] = n; st.push(i); } for (int i = 0; i < n; i++) g[nxt[i]].push_back(i); function<void(int)> post = [&](int v) { int l = (int)(nodes).size(); for (int u : g[v]) post(u); lft[(int)(nodes).size()] = l; nodes.push_back(v); }; post(n); SegmentTree root(0, n); for (int i = 0; i < k; i++) root.update(lft[i], i, 1); vector<int> ans; ans.push_back(root.query(0, n)); for (int i = k; i < n; i++) { root.update(lft[i - k], i - k, -1); root.update(lft[i], i, 1); ans.push_back(root.query(0, n)); } for (int i = 0; i < (int)(ans).size(); i++) { if (i) cout << " "; cout << ans[i]; } cout << "\n"; } int main(int argc, char *argv[]) { cin.sync_with_stdio(0); cin.tie(NULL); solve(); return 0; } ```
#include <bits/stdc++.h> using namespace std; const long long MOD = (1e9 + 7); const long long INF = (1e9 + 123456789); const long long INFL = (INF * INF); inline long long addm(long long a, long long b, long long m = MOD) { return ((a + b) % m); } inline long long subm(long long a, long long b, long long m = MOD) { return (((a - b) % m + m) % m); } inline long long mulm(long long a, long long b, long long m = MOD) { return ((a * b) % m); } long long powm(long long a, long long b, long long m = MOD) { long long ret = (!b) ? 1 : powm(a, b / 2, m); return (!b) ? 1 : mulm(mulm(ret, ret, m), b % 2 ? a : 1, m); } long long gcd(long long a, long long b) { return (!b) ? a : gcd(b, a % b); } long long lcm(long long a, long long b) { return a / gcd(a, b) * b; } long long inv(long long x, long long m = MOD) { return powm(x, m - 2, m); } const int N = 1000500; int a[N], lft[N], nxt[N]; vector<int> nodes, g[N]; struct SegmentTree { int f, t; SegmentTree *lc, *rc; bool has_child, has_lazy = false; int upd = 0; int vmax = 0; SegmentTree(int l, int r) { if (l == r) { f = t = l; lc = rc = NULL; has_child = false; } else { f = l; t = r; int mid = (l + r) / 2; lc = new SegmentTree(l, mid); rc = new SegmentTree(mid + 1, r); has_child = true; } } void change(int v) { vmax += v; upd += v; has_lazy = true; } void push() { if (!has_lazy) return; lc->change(upd); rc->change(upd); upd = 0; has_lazy = false; } void update(int l, int r, int x) { if (r < f || l > t) return; if (l <= f && t <= r) { change(x); return; } push(); lc->update(l, r, x); rc->update(l, r, x); vmax = max(lc->vmax, rc->vmax); } int query(int l, int r) { if (r < f || l > t) return 0; if (l <= f && t <= r) return vmax; push(); return vmax = max(lc->query(l, r), rc->query(l, r)); } }; void solve() { int n, k; cin >> n >> k; for (int i = 0; i < n; i++) cin >> a[i]; stack<int> st; for (int i = n - 1; i >= 0; i--) { while (!st.empty() && a[st.top()] <= a[i]) st.pop(); if (!st.empty()) nxt[i] = st.top(); else nxt[i] = n; st.push(i); } for (int i = 0; i < n; i++) g[nxt[i]].push_back(i); function<void(int)> post = [&](int v) { int l = (int)(nodes).size(); for (int u : g[v]) post(u); lft[(int)(nodes).size()] = l; nodes.push_back(v); }; post(n); SegmentTree root(0, n); for (int i = 0; i < k; i++) root.update(lft[i], i, 1); vector<int> ans; ans.push_back(root.query(0, n)); for (int i = k; i < n; i++) { root.update(lft[i - k], i - k, -1); root.update(lft[i], i, 1); ans.push_back(root.query(0, n)); } for (int i = 0; i < (int)(ans).size(); i++) { if (i) cout << " "; cout << ans[i]; } cout << "\n"; } int main(int argc, char *argv[]) { cin.sync_with_stdio(0); cin.tie(NULL); solve(); return 0; }
### Prompt Please create a solution in CPP to the following problem: For some array c, let's denote a greedy subsequence as a sequence of indices p_1, p_2, ..., p_l such that 1 ≀ p_1 < p_2 < ... < p_l ≀ |c|, and for each i ∈ [1, l - 1], p_{i + 1} is the minimum number such that p_{i + 1} > p_i and c[p_{i + 1}] > c[p_i]. You are given an array a_1, a_2, ..., a_n. For each its subsegment of length k, calculate the length of its longest greedy subsequence. Input The first line contains two integers n and k (1 ≀ k ≀ n ≀ 10^6) β€” the length of array a and the length of subsegments. The second line contains n integers a_1, a_2, ..., a_n (1 ≀ a_i ≀ n) β€” array a. Output Print n - k + 1 integers β€” the maximum lengths of greedy subsequences of each subsegment having length k. The first number should correspond to subsegment a[1..k], the second β€” to subsegment a[2..k + 1], and so on. Examples Input 6 4 1 5 2 5 3 6 Output 2 2 3 Input 7 6 4 5 2 5 3 6 6 Output 3 3 Note In the first example: * [1, 5, 2, 5] β€” the longest greedy subsequences are 1, 2 ([c_1, c_2] = [1, 5]) or 3, 4 ([c_3, c_4] = [2, 5]). * [5, 2, 5, 3] β€” the sequence is 2, 3 ([c_2, c_3] = [2, 5]). * [2, 5, 3, 6] β€” the sequence is 1, 2, 4 ([c_1, c_2, c_4] = [2, 5, 6]). In the second example: * [4, 5, 2, 5, 3, 6] β€” the longest greedy subsequences are 1, 2, 6 ([c_1, c_2, c_6] = [4, 5, 6]) or 3, 4, 6 ([c_3, c_4, c_6] = [2, 5, 6]). * [5, 2, 5, 3, 6, 6] β€” the subsequence is 2, 3, 5 ([c_2, c_3, c_5] = [2, 5, 6]). ### Response ```cpp #include <bits/stdc++.h> using namespace std; const long long MOD = (1e9 + 7); const long long INF = (1e9 + 123456789); const long long INFL = (INF * INF); inline long long addm(long long a, long long b, long long m = MOD) { return ((a + b) % m); } inline long long subm(long long a, long long b, long long m = MOD) { return (((a - b) % m + m) % m); } inline long long mulm(long long a, long long b, long long m = MOD) { return ((a * b) % m); } long long powm(long long a, long long b, long long m = MOD) { long long ret = (!b) ? 1 : powm(a, b / 2, m); return (!b) ? 1 : mulm(mulm(ret, ret, m), b % 2 ? a : 1, m); } long long gcd(long long a, long long b) { return (!b) ? a : gcd(b, a % b); } long long lcm(long long a, long long b) { return a / gcd(a, b) * b; } long long inv(long long x, long long m = MOD) { return powm(x, m - 2, m); } const int N = 1000500; int a[N], lft[N], nxt[N]; vector<int> nodes, g[N]; struct SegmentTree { int f, t; SegmentTree *lc, *rc; bool has_child, has_lazy = false; int upd = 0; int vmax = 0; SegmentTree(int l, int r) { if (l == r) { f = t = l; lc = rc = NULL; has_child = false; } else { f = l; t = r; int mid = (l + r) / 2; lc = new SegmentTree(l, mid); rc = new SegmentTree(mid + 1, r); has_child = true; } } void change(int v) { vmax += v; upd += v; has_lazy = true; } void push() { if (!has_lazy) return; lc->change(upd); rc->change(upd); upd = 0; has_lazy = false; } void update(int l, int r, int x) { if (r < f || l > t) return; if (l <= f && t <= r) { change(x); return; } push(); lc->update(l, r, x); rc->update(l, r, x); vmax = max(lc->vmax, rc->vmax); } int query(int l, int r) { if (r < f || l > t) return 0; if (l <= f && t <= r) return vmax; push(); return vmax = max(lc->query(l, r), rc->query(l, r)); } }; void solve() { int n, k; cin >> n >> k; for (int i = 0; i < n; i++) cin >> a[i]; stack<int> st; for (int i = n - 1; i >= 0; i--) { while (!st.empty() && a[st.top()] <= a[i]) st.pop(); if (!st.empty()) nxt[i] = st.top(); else nxt[i] = n; st.push(i); } for (int i = 0; i < n; i++) g[nxt[i]].push_back(i); function<void(int)> post = [&](int v) { int l = (int)(nodes).size(); for (int u : g[v]) post(u); lft[(int)(nodes).size()] = l; nodes.push_back(v); }; post(n); SegmentTree root(0, n); for (int i = 0; i < k; i++) root.update(lft[i], i, 1); vector<int> ans; ans.push_back(root.query(0, n)); for (int i = k; i < n; i++) { root.update(lft[i - k], i - k, -1); root.update(lft[i], i, 1); ans.push_back(root.query(0, n)); } for (int i = 0; i < (int)(ans).size(); i++) { if (i) cout << " "; cout << ans[i]; } cout << "\n"; } int main(int argc, char *argv[]) { cin.sync_with_stdio(0); cin.tie(NULL); solve(); return 0; } ```
#include <bits/stdc++.h> using namespace std; const int inf = 1e9; const int N = 1e6 + 10; const long long mod = 1e9 + 7; const int bits = 20; const long double pi = 3.14159265358979323846; vector<int> adj[N]; int st[N], en[N], ptr; void dfs(int node) { st[node] = ++ptr; for (int nxt : adj[node]) { dfs(nxt); } en[node] = ptr; } int tree[4 * N], lazy[4 * N]; void pushdown(int si, int ss, int se) { tree[si] += lazy[si]; if (ss != se) { lazy[2 * si + 1] += lazy[si]; lazy[2 * si + 2] += lazy[si]; } lazy[si] = 0; } int query(int qs, int qe, int ss, int se, int si) { pushdown(si, ss, se); if (qs > se || qe < ss) { return -inf; } if (ss >= qs && se <= qe) { return tree[si]; } int mid = (se + ss) / 2; return min(query(qs, qe, ss, mid, 2 * si + 1), query(qs, qe, mid + 1, se, 2 * si + 2)); } void upd(int qs, int qe, int ss, int se, int si, int v) { pushdown(si, ss, se); if (qs > se || qe < ss || qs > qe) { return; } if (ss >= qs && se <= qe) { lazy[si] = v; pushdown(si, ss, se); return; } int mid = (se + ss) / 2; upd(qs, qe, ss, mid, 2 * si + 1, v); upd(qs, qe, mid + 1, se, 2 * si + 2, v); tree[si] = max(tree[2 * si + 1], tree[2 * si + 2]); } void solve() { int n, k; cin >> n >> k; vector<int> arr(n + 1); for (int i = 1; i <= n; i++) { cin >> arr[i]; } stack<int> stk; for (int i = n; i >= 1; i--) { while (stk.size() && arr[stk.top()] <= arr[i]) stk.pop(); if (stk.size()) { adj[stk.top()].push_back(i); } else { adj[n + 1].push_back(i); } stk.push(i); } dfs(n + 1); for (int i = 1; i <= k; i++) { upd(st[i], en[i], 0, ptr, 0, 1); } cout << tree[0] << " "; for (int i = k + 1; i <= n; i++) { upd(st[i], en[i], 0, ptr, 0, 1); upd(st[i - k], en[i - k], 0, ptr, 0, -1); cout << tree[0] << " "; } cout << "\n"; } int main() { ios_base::sync_with_stdio(false); cin.tie(NULL); cout.tie(NULL); ; std::cout << std::fixed << std::setprecision(20); ; int t = 1; while (t--) { solve(); } }
### Prompt Construct a CPP code solution to the problem outlined: For some array c, let's denote a greedy subsequence as a sequence of indices p_1, p_2, ..., p_l such that 1 ≀ p_1 < p_2 < ... < p_l ≀ |c|, and for each i ∈ [1, l - 1], p_{i + 1} is the minimum number such that p_{i + 1} > p_i and c[p_{i + 1}] > c[p_i]. You are given an array a_1, a_2, ..., a_n. For each its subsegment of length k, calculate the length of its longest greedy subsequence. Input The first line contains two integers n and k (1 ≀ k ≀ n ≀ 10^6) β€” the length of array a and the length of subsegments. The second line contains n integers a_1, a_2, ..., a_n (1 ≀ a_i ≀ n) β€” array a. Output Print n - k + 1 integers β€” the maximum lengths of greedy subsequences of each subsegment having length k. The first number should correspond to subsegment a[1..k], the second β€” to subsegment a[2..k + 1], and so on. Examples Input 6 4 1 5 2 5 3 6 Output 2 2 3 Input 7 6 4 5 2 5 3 6 6 Output 3 3 Note In the first example: * [1, 5, 2, 5] β€” the longest greedy subsequences are 1, 2 ([c_1, c_2] = [1, 5]) or 3, 4 ([c_3, c_4] = [2, 5]). * [5, 2, 5, 3] β€” the sequence is 2, 3 ([c_2, c_3] = [2, 5]). * [2, 5, 3, 6] β€” the sequence is 1, 2, 4 ([c_1, c_2, c_4] = [2, 5, 6]). In the second example: * [4, 5, 2, 5, 3, 6] β€” the longest greedy subsequences are 1, 2, 6 ([c_1, c_2, c_6] = [4, 5, 6]) or 3, 4, 6 ([c_3, c_4, c_6] = [2, 5, 6]). * [5, 2, 5, 3, 6, 6] β€” the subsequence is 2, 3, 5 ([c_2, c_3, c_5] = [2, 5, 6]). ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int inf = 1e9; const int N = 1e6 + 10; const long long mod = 1e9 + 7; const int bits = 20; const long double pi = 3.14159265358979323846; vector<int> adj[N]; int st[N], en[N], ptr; void dfs(int node) { st[node] = ++ptr; for (int nxt : adj[node]) { dfs(nxt); } en[node] = ptr; } int tree[4 * N], lazy[4 * N]; void pushdown(int si, int ss, int se) { tree[si] += lazy[si]; if (ss != se) { lazy[2 * si + 1] += lazy[si]; lazy[2 * si + 2] += lazy[si]; } lazy[si] = 0; } int query(int qs, int qe, int ss, int se, int si) { pushdown(si, ss, se); if (qs > se || qe < ss) { return -inf; } if (ss >= qs && se <= qe) { return tree[si]; } int mid = (se + ss) / 2; return min(query(qs, qe, ss, mid, 2 * si + 1), query(qs, qe, mid + 1, se, 2 * si + 2)); } void upd(int qs, int qe, int ss, int se, int si, int v) { pushdown(si, ss, se); if (qs > se || qe < ss || qs > qe) { return; } if (ss >= qs && se <= qe) { lazy[si] = v; pushdown(si, ss, se); return; } int mid = (se + ss) / 2; upd(qs, qe, ss, mid, 2 * si + 1, v); upd(qs, qe, mid + 1, se, 2 * si + 2, v); tree[si] = max(tree[2 * si + 1], tree[2 * si + 2]); } void solve() { int n, k; cin >> n >> k; vector<int> arr(n + 1); for (int i = 1; i <= n; i++) { cin >> arr[i]; } stack<int> stk; for (int i = n; i >= 1; i--) { while (stk.size() && arr[stk.top()] <= arr[i]) stk.pop(); if (stk.size()) { adj[stk.top()].push_back(i); } else { adj[n + 1].push_back(i); } stk.push(i); } dfs(n + 1); for (int i = 1; i <= k; i++) { upd(st[i], en[i], 0, ptr, 0, 1); } cout << tree[0] << " "; for (int i = k + 1; i <= n; i++) { upd(st[i], en[i], 0, ptr, 0, 1); upd(st[i - k], en[i - k], 0, ptr, 0, -1); cout << tree[0] << " "; } cout << "\n"; } int main() { ios_base::sync_with_stdio(false); cin.tie(NULL); cout.tie(NULL); ; std::cout << std::fixed << std::setprecision(20); ; int t = 1; while (t--) { solve(); } } ```
#include <bits/stdc++.h> using namespace std; int n, k, a[1000005]; stack<int> s; int par[1000005]; vector<int> adj[1000006]; int st[1000005], en[1000005]; int in = 1; int tree[4 * 1000005]; int lazy[4 * 1000005]; void dfs(int i) { st[i] = in++; for (auto j : adj[i]) dfs(j); en[i] = in; } void lazify(int s, int e, int i) { if (lazy[i]) { tree[i] += lazy[i]; if (s != e) { lazy[2 * i] += lazy[i]; lazy[2 * i + 1] += lazy[i]; } lazy[i] = 0; } } void upd(int l, int r, int s, int e, int i, int x) { lazify(s, e, i); if (s > r || e < l || l > r) return; if (s >= l && e <= r) { lazy[i] += x; lazify(s, e, i); return; } int mid = (s + e) >> 1; upd(l, r, s, mid, 2 * i, x); upd(l, r, mid + 1, e, 2 * i + 1, x); tree[i] = max(tree[2 * i], tree[2 * i + 1]); } int main() { ios::sync_with_stdio(false); cin.tie(0); cout.tie(0); cin >> n >> k; for (int i = 1; i <= n; i++) cin >> a[i]; s.push(n); par[n] = n + 1; adj[n + 1].push_back(n); for (int i = n - 1; i >= 1; i--) { while (s.size() && a[s.top()] <= a[i]) s.pop(); if (s.size()) par[i] = s.top(), adj[s.top()].push_back(i); else par[i] = n + 1, adj[n + 1].push_back(i); s.push(i); } dfs(n + 1); for (int i = 1; i <= k; i++) upd(st[i], en[i] - 1, 1, in - 1, 1, 1); lazify(1, in - 1, 1); cout << tree[1] << " "; for (int i = k + 1; i <= n; i++) { upd(st[i], en[i] - 1, 1, in - 1, 1, 1); upd(st[i - k], st[i - k], 1, in - 1, 1, -1000000000); lazify(1, in - 1, 1); cout << tree[1] << " "; } cout << '\n'; return 0; }
### Prompt Please create a solution in Cpp to the following problem: For some array c, let's denote a greedy subsequence as a sequence of indices p_1, p_2, ..., p_l such that 1 ≀ p_1 < p_2 < ... < p_l ≀ |c|, and for each i ∈ [1, l - 1], p_{i + 1} is the minimum number such that p_{i + 1} > p_i and c[p_{i + 1}] > c[p_i]. You are given an array a_1, a_2, ..., a_n. For each its subsegment of length k, calculate the length of its longest greedy subsequence. Input The first line contains two integers n and k (1 ≀ k ≀ n ≀ 10^6) β€” the length of array a and the length of subsegments. The second line contains n integers a_1, a_2, ..., a_n (1 ≀ a_i ≀ n) β€” array a. Output Print n - k + 1 integers β€” the maximum lengths of greedy subsequences of each subsegment having length k. The first number should correspond to subsegment a[1..k], the second β€” to subsegment a[2..k + 1], and so on. Examples Input 6 4 1 5 2 5 3 6 Output 2 2 3 Input 7 6 4 5 2 5 3 6 6 Output 3 3 Note In the first example: * [1, 5, 2, 5] β€” the longest greedy subsequences are 1, 2 ([c_1, c_2] = [1, 5]) or 3, 4 ([c_3, c_4] = [2, 5]). * [5, 2, 5, 3] β€” the sequence is 2, 3 ([c_2, c_3] = [2, 5]). * [2, 5, 3, 6] β€” the sequence is 1, 2, 4 ([c_1, c_2, c_4] = [2, 5, 6]). In the second example: * [4, 5, 2, 5, 3, 6] β€” the longest greedy subsequences are 1, 2, 6 ([c_1, c_2, c_6] = [4, 5, 6]) or 3, 4, 6 ([c_3, c_4, c_6] = [2, 5, 6]). * [5, 2, 5, 3, 6, 6] β€” the subsequence is 2, 3, 5 ([c_2, c_3, c_5] = [2, 5, 6]). ### Response ```cpp #include <bits/stdc++.h> using namespace std; int n, k, a[1000005]; stack<int> s; int par[1000005]; vector<int> adj[1000006]; int st[1000005], en[1000005]; int in = 1; int tree[4 * 1000005]; int lazy[4 * 1000005]; void dfs(int i) { st[i] = in++; for (auto j : adj[i]) dfs(j); en[i] = in; } void lazify(int s, int e, int i) { if (lazy[i]) { tree[i] += lazy[i]; if (s != e) { lazy[2 * i] += lazy[i]; lazy[2 * i + 1] += lazy[i]; } lazy[i] = 0; } } void upd(int l, int r, int s, int e, int i, int x) { lazify(s, e, i); if (s > r || e < l || l > r) return; if (s >= l && e <= r) { lazy[i] += x; lazify(s, e, i); return; } int mid = (s + e) >> 1; upd(l, r, s, mid, 2 * i, x); upd(l, r, mid + 1, e, 2 * i + 1, x); tree[i] = max(tree[2 * i], tree[2 * i + 1]); } int main() { ios::sync_with_stdio(false); cin.tie(0); cout.tie(0); cin >> n >> k; for (int i = 1; i <= n; i++) cin >> a[i]; s.push(n); par[n] = n + 1; adj[n + 1].push_back(n); for (int i = n - 1; i >= 1; i--) { while (s.size() && a[s.top()] <= a[i]) s.pop(); if (s.size()) par[i] = s.top(), adj[s.top()].push_back(i); else par[i] = n + 1, adj[n + 1].push_back(i); s.push(i); } dfs(n + 1); for (int i = 1; i <= k; i++) upd(st[i], en[i] - 1, 1, in - 1, 1, 1); lazify(1, in - 1, 1); cout << tree[1] << " "; for (int i = k + 1; i <= n; i++) { upd(st[i], en[i] - 1, 1, in - 1, 1, 1); upd(st[i - k], st[i - k], 1, in - 1, 1, -1000000000); lazify(1, in - 1, 1); cout << tree[1] << " "; } cout << '\n'; return 0; } ```
#include <bits/stdc++.h> using namespace std; const int dx[4] = {-1, 0, 1, 0}, dy[4] = {0, 1, 0, -1}; const int dxx[8] = {-1, -1, 0, 1, 1, 1, 0, -1}, dyy[8] = {0, 1, 1, 1, 0, -1, -1, -1}; const long long mod = 1000000007; const int base = 311; const int N = 1e6 + 5; struct segtree { vector<int> st, lz; void kc(int n) { st.assign(4 * n + 5, 0); lz.assign(4 * n + 5, 0); } void down(int i) { int &t = lz[i]; lz[i << 1] += t; lz[i << 1 | 1] += t; st[i << 1] += t; st[i << 1 | 1] += t; t = 0; } void upd(int i, int l, int r, int u, int v, int val) { if (u > r || v < l) return; if (u <= l && r <= v) { st[i] += val; lz[i] += val; return; } int mid = (l + r) >> 1; down(i); upd(i << 1, l, mid, u, v, val); upd(i << 1 | 1, mid + 1, r, u, v, val); st[i] = max(st[i << 1], st[i << 1 | 1]); } int get(int i, int l, int r, int u, int v, int val) { if (u > r || v < l) return 0; if (u <= l && r <= v) return st[i]; down(i); int mid = (l + r) >> 1; return max(get(i << 1, l, mid, u, v, val), get(i << 1 | 1, mid + 1, r, u, v, val)); } }; int n, k, a[N]; vector<int> dsk[N]; int tin[N], tout[N], cnt = 0; void dfs(int u) { tin[u] = ++cnt; for (int v : dsk[u]) dfs(v); tout[u] = cnt; } void gogo() { cin >> n >> k; for (int i = 1; i <= n; ++i) cin >> a[i]; stack<int> stk; stk.push(n + 1); a[n + 1] = 1e9; for (int i = n; i >= 1; --i) { while (((int)(stk).size()) && a[stk.top()] <= a[i]) stk.pop(); dsk[stk.top()].push_back(i); stk.push(i); } dfs(n + 1); segtree st; st.kc(n + 5); for (int i = 1, j = 0; i + k - 1 <= n; ++i) { while (j < i + k - 1) { j++; st.upd(1, 1, n + 1, tin[j], tout[j], 1); } cout << st.st[1] << ' '; st.upd(1, 1, n + 1, tin[i], tout[i], -1); } } int main() { ios_base::sync_with_stdio(0); cin.tie(0); if (fopen("sol" ".inp", "r")) { freopen( "sol" ".inp", "r", stdin); freopen( "sol" ".out", "w", stdout); } gogo(); }
### Prompt Please formulate a cpp solution to the following problem: For some array c, let's denote a greedy subsequence as a sequence of indices p_1, p_2, ..., p_l such that 1 ≀ p_1 < p_2 < ... < p_l ≀ |c|, and for each i ∈ [1, l - 1], p_{i + 1} is the minimum number such that p_{i + 1} > p_i and c[p_{i + 1}] > c[p_i]. You are given an array a_1, a_2, ..., a_n. For each its subsegment of length k, calculate the length of its longest greedy subsequence. Input The first line contains two integers n and k (1 ≀ k ≀ n ≀ 10^6) β€” the length of array a and the length of subsegments. The second line contains n integers a_1, a_2, ..., a_n (1 ≀ a_i ≀ n) β€” array a. Output Print n - k + 1 integers β€” the maximum lengths of greedy subsequences of each subsegment having length k. The first number should correspond to subsegment a[1..k], the second β€” to subsegment a[2..k + 1], and so on. Examples Input 6 4 1 5 2 5 3 6 Output 2 2 3 Input 7 6 4 5 2 5 3 6 6 Output 3 3 Note In the first example: * [1, 5, 2, 5] β€” the longest greedy subsequences are 1, 2 ([c_1, c_2] = [1, 5]) or 3, 4 ([c_3, c_4] = [2, 5]). * [5, 2, 5, 3] β€” the sequence is 2, 3 ([c_2, c_3] = [2, 5]). * [2, 5, 3, 6] β€” the sequence is 1, 2, 4 ([c_1, c_2, c_4] = [2, 5, 6]). In the second example: * [4, 5, 2, 5, 3, 6] β€” the longest greedy subsequences are 1, 2, 6 ([c_1, c_2, c_6] = [4, 5, 6]) or 3, 4, 6 ([c_3, c_4, c_6] = [2, 5, 6]). * [5, 2, 5, 3, 6, 6] β€” the subsequence is 2, 3, 5 ([c_2, c_3, c_5] = [2, 5, 6]). ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int dx[4] = {-1, 0, 1, 0}, dy[4] = {0, 1, 0, -1}; const int dxx[8] = {-1, -1, 0, 1, 1, 1, 0, -1}, dyy[8] = {0, 1, 1, 1, 0, -1, -1, -1}; const long long mod = 1000000007; const int base = 311; const int N = 1e6 + 5; struct segtree { vector<int> st, lz; void kc(int n) { st.assign(4 * n + 5, 0); lz.assign(4 * n + 5, 0); } void down(int i) { int &t = lz[i]; lz[i << 1] += t; lz[i << 1 | 1] += t; st[i << 1] += t; st[i << 1 | 1] += t; t = 0; } void upd(int i, int l, int r, int u, int v, int val) { if (u > r || v < l) return; if (u <= l && r <= v) { st[i] += val; lz[i] += val; return; } int mid = (l + r) >> 1; down(i); upd(i << 1, l, mid, u, v, val); upd(i << 1 | 1, mid + 1, r, u, v, val); st[i] = max(st[i << 1], st[i << 1 | 1]); } int get(int i, int l, int r, int u, int v, int val) { if (u > r || v < l) return 0; if (u <= l && r <= v) return st[i]; down(i); int mid = (l + r) >> 1; return max(get(i << 1, l, mid, u, v, val), get(i << 1 | 1, mid + 1, r, u, v, val)); } }; int n, k, a[N]; vector<int> dsk[N]; int tin[N], tout[N], cnt = 0; void dfs(int u) { tin[u] = ++cnt; for (int v : dsk[u]) dfs(v); tout[u] = cnt; } void gogo() { cin >> n >> k; for (int i = 1; i <= n; ++i) cin >> a[i]; stack<int> stk; stk.push(n + 1); a[n + 1] = 1e9; for (int i = n; i >= 1; --i) { while (((int)(stk).size()) && a[stk.top()] <= a[i]) stk.pop(); dsk[stk.top()].push_back(i); stk.push(i); } dfs(n + 1); segtree st; st.kc(n + 5); for (int i = 1, j = 0; i + k - 1 <= n; ++i) { while (j < i + k - 1) { j++; st.upd(1, 1, n + 1, tin[j], tout[j], 1); } cout << st.st[1] << ' '; st.upd(1, 1, n + 1, tin[i], tout[i], -1); } } int main() { ios_base::sync_with_stdio(0); cin.tie(0); if (fopen("sol" ".inp", "r")) { freopen( "sol" ".inp", "r", stdin); freopen( "sol" ".out", "w", stdout); } gogo(); } ```
#include <bits/stdc++.h> using namespace std; const int sz = 1e6 + 527; int n, k; int cnt, T; int x, y, z; int head[sz]; int a[sz], ans[sz]; int dfn[sz], lev[sz]; stack<int> s; struct Edge { int v, nxt; } edge[sz]; struct node { int tag, mx; } tr[sz << 2]; void add(int u, int v) { edge[++cnt] = (Edge){v, head[u]}; head[u] = cnt; } void update(int o) { tr[o << 1].tag += tr[o].tag; tr[o << 1 | 1].tag += tr[o].tag; tr[o << 1].mx += tr[o].tag; tr[o << 1 | 1].mx += tr[o].tag; tr[o].tag = 0; } void modify(int o, int l, int r) { if (x <= l && r <= y) return (void)(tr[o].mx += z, tr[o].tag += z); if (tr[o].tag) update(o); int mid = (l + r) >> 1; if (x <= mid) modify(o << 1, l, mid); if (y > mid) modify(o << 1 | 1, mid + 1, r); tr[o].mx = max(tr[o << 1].mx, tr[o << 1 | 1].mx); } void dfs(int x) { dfn[x] = ++T; for (int i = head[x]; i; i = edge[i].nxt) dfs(edge[i].v); lev[x] = T; } int main() { scanf("%d%d", &n, &k); for (int i = 1; i <= n; i++) { scanf("%d", &a[i]); while (!s.empty() && a[s.top()] < a[i]) { add(i, s.top()); s.pop(); } s.push(i); } n++; while (!s.empty()) { add(n, s.top()); s.pop(); } dfs(n); for (int i = 1; i <= k; i++) { x = dfn[i], y = lev[i], z = 1; modify(1, 1, n); } ans[1] = tr[1].mx; for (int i = k + 1; i < n; i++) { x = dfn[i], y = lev[i], z = 1; modify(1, 1, n); x = dfn[i - k], y = lev[i - k], z = -1; modify(1, 1, n); ans[i - k + 1] = tr[1].mx; } for (int i = 1; i <= n - k; i++) printf("%d ", ans[i]); }
### Prompt Please provide a Cpp coded solution to the problem described below: For some array c, let's denote a greedy subsequence as a sequence of indices p_1, p_2, ..., p_l such that 1 ≀ p_1 < p_2 < ... < p_l ≀ |c|, and for each i ∈ [1, l - 1], p_{i + 1} is the minimum number such that p_{i + 1} > p_i and c[p_{i + 1}] > c[p_i]. You are given an array a_1, a_2, ..., a_n. For each its subsegment of length k, calculate the length of its longest greedy subsequence. Input The first line contains two integers n and k (1 ≀ k ≀ n ≀ 10^6) β€” the length of array a and the length of subsegments. The second line contains n integers a_1, a_2, ..., a_n (1 ≀ a_i ≀ n) β€” array a. Output Print n - k + 1 integers β€” the maximum lengths of greedy subsequences of each subsegment having length k. The first number should correspond to subsegment a[1..k], the second β€” to subsegment a[2..k + 1], and so on. Examples Input 6 4 1 5 2 5 3 6 Output 2 2 3 Input 7 6 4 5 2 5 3 6 6 Output 3 3 Note In the first example: * [1, 5, 2, 5] β€” the longest greedy subsequences are 1, 2 ([c_1, c_2] = [1, 5]) or 3, 4 ([c_3, c_4] = [2, 5]). * [5, 2, 5, 3] β€” the sequence is 2, 3 ([c_2, c_3] = [2, 5]). * [2, 5, 3, 6] β€” the sequence is 1, 2, 4 ([c_1, c_2, c_4] = [2, 5, 6]). In the second example: * [4, 5, 2, 5, 3, 6] β€” the longest greedy subsequences are 1, 2, 6 ([c_1, c_2, c_6] = [4, 5, 6]) or 3, 4, 6 ([c_3, c_4, c_6] = [2, 5, 6]). * [5, 2, 5, 3, 6, 6] β€” the subsequence is 2, 3, 5 ([c_2, c_3, c_5] = [2, 5, 6]). ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int sz = 1e6 + 527; int n, k; int cnt, T; int x, y, z; int head[sz]; int a[sz], ans[sz]; int dfn[sz], lev[sz]; stack<int> s; struct Edge { int v, nxt; } edge[sz]; struct node { int tag, mx; } tr[sz << 2]; void add(int u, int v) { edge[++cnt] = (Edge){v, head[u]}; head[u] = cnt; } void update(int o) { tr[o << 1].tag += tr[o].tag; tr[o << 1 | 1].tag += tr[o].tag; tr[o << 1].mx += tr[o].tag; tr[o << 1 | 1].mx += tr[o].tag; tr[o].tag = 0; } void modify(int o, int l, int r) { if (x <= l && r <= y) return (void)(tr[o].mx += z, tr[o].tag += z); if (tr[o].tag) update(o); int mid = (l + r) >> 1; if (x <= mid) modify(o << 1, l, mid); if (y > mid) modify(o << 1 | 1, mid + 1, r); tr[o].mx = max(tr[o << 1].mx, tr[o << 1 | 1].mx); } void dfs(int x) { dfn[x] = ++T; for (int i = head[x]; i; i = edge[i].nxt) dfs(edge[i].v); lev[x] = T; } int main() { scanf("%d%d", &n, &k); for (int i = 1; i <= n; i++) { scanf("%d", &a[i]); while (!s.empty() && a[s.top()] < a[i]) { add(i, s.top()); s.pop(); } s.push(i); } n++; while (!s.empty()) { add(n, s.top()); s.pop(); } dfs(n); for (int i = 1; i <= k; i++) { x = dfn[i], y = lev[i], z = 1; modify(1, 1, n); } ans[1] = tr[1].mx; for (int i = k + 1; i < n; i++) { x = dfn[i], y = lev[i], z = 1; modify(1, 1, n); x = dfn[i - k], y = lev[i - k], z = -1; modify(1, 1, n); ans[i - k + 1] = tr[1].mx; } for (int i = 1; i <= n - k; i++) printf("%d ", ans[i]); } ```
#include <bits/stdc++.h> using namespace std; int a[1000010], pre[1000010]; int mx[1000010 << 2], flag[1000010 << 2]; void push_up(int u) { mx[u] = max(mx[(u << 1)], mx[((u << 1) | 1)]); } void push_down(int u) { if (!flag[u]) return; mx[(u << 1)] += flag[u]; mx[((u << 1) | 1)] += flag[u]; flag[(u << 1)] += flag[u]; flag[((u << 1) | 1)] += flag[u]; flag[u] = 0; } void update(int u, int L, int R, int st, int ed) { if (st >= R || ed <= L) return; if (st <= L && ed >= R) { mx[u]++; flag[u]++; return; } push_down(u); update((u << 1), L, (L + R >> 1), st, ed); update(((u << 1) | 1), (L + R >> 1), R, st, ed); push_up(u); } int calc(int u, int L, int R, int st, int ed) { if (st >= R || ed <= L) return 0; if (st <= L && ed >= R) return mx[u]; push_down(u); return max(calc((u << 1), L, (L + R >> 1), st, ed), calc(((u << 1) | 1), (L + R >> 1), R, st, ed)); } int main() { ios_base ::sync_with_stdio(0); cin.tie(0); cout.tie(0); int n, k; cin >> n >> k; for (int i = 1; i <= n; i++) { cin >> a[i]; int st = i - 1; while (st && a[st] < a[i]) st = pre[st]; pre[i] = st; update(1, 1, n + 1, pre[i] + 1, i + 1); if (i >= k) cout << calc(1, 1, n + 1, i - k + 1, i + 1) << ' '; } }
### Prompt Your challenge is to write a Cpp solution to the following problem: For some array c, let's denote a greedy subsequence as a sequence of indices p_1, p_2, ..., p_l such that 1 ≀ p_1 < p_2 < ... < p_l ≀ |c|, and for each i ∈ [1, l - 1], p_{i + 1} is the minimum number such that p_{i + 1} > p_i and c[p_{i + 1}] > c[p_i]. You are given an array a_1, a_2, ..., a_n. For each its subsegment of length k, calculate the length of its longest greedy subsequence. Input The first line contains two integers n and k (1 ≀ k ≀ n ≀ 10^6) β€” the length of array a and the length of subsegments. The second line contains n integers a_1, a_2, ..., a_n (1 ≀ a_i ≀ n) β€” array a. Output Print n - k + 1 integers β€” the maximum lengths of greedy subsequences of each subsegment having length k. The first number should correspond to subsegment a[1..k], the second β€” to subsegment a[2..k + 1], and so on. Examples Input 6 4 1 5 2 5 3 6 Output 2 2 3 Input 7 6 4 5 2 5 3 6 6 Output 3 3 Note In the first example: * [1, 5, 2, 5] β€” the longest greedy subsequences are 1, 2 ([c_1, c_2] = [1, 5]) or 3, 4 ([c_3, c_4] = [2, 5]). * [5, 2, 5, 3] β€” the sequence is 2, 3 ([c_2, c_3] = [2, 5]). * [2, 5, 3, 6] β€” the sequence is 1, 2, 4 ([c_1, c_2, c_4] = [2, 5, 6]). In the second example: * [4, 5, 2, 5, 3, 6] β€” the longest greedy subsequences are 1, 2, 6 ([c_1, c_2, c_6] = [4, 5, 6]) or 3, 4, 6 ([c_3, c_4, c_6] = [2, 5, 6]). * [5, 2, 5, 3, 6, 6] β€” the subsequence is 2, 3, 5 ([c_2, c_3, c_5] = [2, 5, 6]). ### Response ```cpp #include <bits/stdc++.h> using namespace std; int a[1000010], pre[1000010]; int mx[1000010 << 2], flag[1000010 << 2]; void push_up(int u) { mx[u] = max(mx[(u << 1)], mx[((u << 1) | 1)]); } void push_down(int u) { if (!flag[u]) return; mx[(u << 1)] += flag[u]; mx[((u << 1) | 1)] += flag[u]; flag[(u << 1)] += flag[u]; flag[((u << 1) | 1)] += flag[u]; flag[u] = 0; } void update(int u, int L, int R, int st, int ed) { if (st >= R || ed <= L) return; if (st <= L && ed >= R) { mx[u]++; flag[u]++; return; } push_down(u); update((u << 1), L, (L + R >> 1), st, ed); update(((u << 1) | 1), (L + R >> 1), R, st, ed); push_up(u); } int calc(int u, int L, int R, int st, int ed) { if (st >= R || ed <= L) return 0; if (st <= L && ed >= R) return mx[u]; push_down(u); return max(calc((u << 1), L, (L + R >> 1), st, ed), calc(((u << 1) | 1), (L + R >> 1), R, st, ed)); } int main() { ios_base ::sync_with_stdio(0); cin.tie(0); cout.tie(0); int n, k; cin >> n >> k; for (int i = 1; i <= n; i++) { cin >> a[i]; int st = i - 1; while (st && a[st] < a[i]) st = pre[st]; pre[i] = st; update(1, 1, n + 1, pre[i] + 1, i + 1); if (i >= k) cout << calc(1, 1, n + 1, i - k + 1, i + 1) << ' '; } } ```
#include <bits/stdc++.h> using namespace std; const int N = 1000010; int n, k, sm, a[N], L[N], fa[N], v[N]; int get(int x) { return x == fa[x] ? x : fa[x] = get(fa[x]); } int main() { scanf("%d%d", &n, &k); int r = 1; for (int i = (1); i <= (n); i++) scanf("%d", &a[i]); for (int i = (1); i <= (n); i++) { L[i] = i - 1; while (L[i] && a[L[i]] < a[i]) L[i] = L[L[i]]; } for (int i = (1); i <= (n); i++) { fa[i] = i; int l = get(L[i] + 1); if (l <= r) sm++; v[l]++; v[i + 1]--; if (l) fa[l] = l - 1; if (i >= k) printf("%d ", sm), sm += v[++r]; } return 0; }
### Prompt Create a solution in Cpp for the following problem: For some array c, let's denote a greedy subsequence as a sequence of indices p_1, p_2, ..., p_l such that 1 ≀ p_1 < p_2 < ... < p_l ≀ |c|, and for each i ∈ [1, l - 1], p_{i + 1} is the minimum number such that p_{i + 1} > p_i and c[p_{i + 1}] > c[p_i]. You are given an array a_1, a_2, ..., a_n. For each its subsegment of length k, calculate the length of its longest greedy subsequence. Input The first line contains two integers n and k (1 ≀ k ≀ n ≀ 10^6) β€” the length of array a and the length of subsegments. The second line contains n integers a_1, a_2, ..., a_n (1 ≀ a_i ≀ n) β€” array a. Output Print n - k + 1 integers β€” the maximum lengths of greedy subsequences of each subsegment having length k. The first number should correspond to subsegment a[1..k], the second β€” to subsegment a[2..k + 1], and so on. Examples Input 6 4 1 5 2 5 3 6 Output 2 2 3 Input 7 6 4 5 2 5 3 6 6 Output 3 3 Note In the first example: * [1, 5, 2, 5] β€” the longest greedy subsequences are 1, 2 ([c_1, c_2] = [1, 5]) or 3, 4 ([c_3, c_4] = [2, 5]). * [5, 2, 5, 3] β€” the sequence is 2, 3 ([c_2, c_3] = [2, 5]). * [2, 5, 3, 6] β€” the sequence is 1, 2, 4 ([c_1, c_2, c_4] = [2, 5, 6]). In the second example: * [4, 5, 2, 5, 3, 6] β€” the longest greedy subsequences are 1, 2, 6 ([c_1, c_2, c_6] = [4, 5, 6]) or 3, 4, 6 ([c_3, c_4, c_6] = [2, 5, 6]). * [5, 2, 5, 3, 6, 6] β€” the subsequence is 2, 3, 5 ([c_2, c_3, c_5] = [2, 5, 6]). ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int N = 1000010; int n, k, sm, a[N], L[N], fa[N], v[N]; int get(int x) { return x == fa[x] ? x : fa[x] = get(fa[x]); } int main() { scanf("%d%d", &n, &k); int r = 1; for (int i = (1); i <= (n); i++) scanf("%d", &a[i]); for (int i = (1); i <= (n); i++) { L[i] = i - 1; while (L[i] && a[L[i]] < a[i]) L[i] = L[L[i]]; } for (int i = (1); i <= (n); i++) { fa[i] = i; int l = get(L[i] + 1); if (l <= r) sm++; v[l]++; v[i + 1]--; if (l) fa[l] = l - 1; if (i >= k) printf("%d ", sm), sm += v[++r]; } return 0; } ```
#include <bits/stdc++.h> using namespace std; const long long INF = 1e18 + 10; const int SZ = 1e6 + 10; const int mod = 1e9 + 7; const double PI = acos(-1); const double eps = 1e-7; long long read() { long long n = 0; char a = getchar(); bool flag = 0; while (a > '9' || a < '0') { if (a == '-') flag = 1; a = getchar(); } while (a <= '9' && a >= '0') { n = n * 10 + a - '0', a = getchar(); } if (flag) n = -n; return n; } int n, k, a[SZ]; vector<int> g[SZ]; void build_graph() { stack<int> S; for (int i = n; i >= 1; i--) { while (S.size() && a[S.top()] <= a[i]) S.pop(); if (S.size()) g[S.top()].push_back(i); S.push(i); } } struct seg { int l, r; int add, maxn; } tree[SZ * 4]; void update(int p) { tree[p].maxn = max(tree[p << 1].maxn, tree[p << 1 | 1].maxn); } void build(int p, int l, int r) { tree[p].l = l; tree[p].r = r; if (l == r) return; int mid = l + r >> 1; build(p << 1, l, mid); build(p << 1 | 1, mid + 1, r); } void pushadd(int p, int d) { tree[p].add += d; tree[p].maxn += d; } void pushdown(int p) { if (tree[p].add) { pushadd(p << 1, tree[p].add); pushadd(p << 1 | 1, tree[p].add); tree[p].add = 0; } } void change(int p, int l, int r, int d) { if (l <= tree[p].l && tree[p].r <= r) { pushadd(p, d); return; } pushdown(p); int mid = tree[p].l + tree[p].r >> 1; if (l <= mid) change(p << 1, l, r, d); if (mid < r) change(p << 1 | 1, l, r, d); update(p); } int dfn[SZ], sz[SZ], dfs_clock; void dfs(int u) { dfn[u] = ++dfs_clock; sz[u] = 1; for (int v : g[u]) { dfs(v); sz[u] += sz[v]; } } int main() { n = read(), k = read(); for (int i = 1; i <= n; i++) a[i] = read(); build_graph(); for (int i = n; i >= 1; i--) if (!dfn[i]) dfs(i); build(1, 1, n); for (int i = 1; i <= k; i++) change(1, dfn[i], dfn[i] + sz[i] - 1, 1); for (int i = k; i <= n; i++) { printf("%d ", tree[1].maxn); if (i < n) change(1, dfn[i + 1], dfn[i + 1] + sz[i + 1] - 1, 1); change(1, dfn[i - k + 1], dfn[i - k + 1] + sz[i - k + 1] - 1, -1); } }
### Prompt Construct a cpp code solution to the problem outlined: For some array c, let's denote a greedy subsequence as a sequence of indices p_1, p_2, ..., p_l such that 1 ≀ p_1 < p_2 < ... < p_l ≀ |c|, and for each i ∈ [1, l - 1], p_{i + 1} is the minimum number such that p_{i + 1} > p_i and c[p_{i + 1}] > c[p_i]. You are given an array a_1, a_2, ..., a_n. For each its subsegment of length k, calculate the length of its longest greedy subsequence. Input The first line contains two integers n and k (1 ≀ k ≀ n ≀ 10^6) β€” the length of array a and the length of subsegments. The second line contains n integers a_1, a_2, ..., a_n (1 ≀ a_i ≀ n) β€” array a. Output Print n - k + 1 integers β€” the maximum lengths of greedy subsequences of each subsegment having length k. The first number should correspond to subsegment a[1..k], the second β€” to subsegment a[2..k + 1], and so on. Examples Input 6 4 1 5 2 5 3 6 Output 2 2 3 Input 7 6 4 5 2 5 3 6 6 Output 3 3 Note In the first example: * [1, 5, 2, 5] β€” the longest greedy subsequences are 1, 2 ([c_1, c_2] = [1, 5]) or 3, 4 ([c_3, c_4] = [2, 5]). * [5, 2, 5, 3] β€” the sequence is 2, 3 ([c_2, c_3] = [2, 5]). * [2, 5, 3, 6] β€” the sequence is 1, 2, 4 ([c_1, c_2, c_4] = [2, 5, 6]). In the second example: * [4, 5, 2, 5, 3, 6] β€” the longest greedy subsequences are 1, 2, 6 ([c_1, c_2, c_6] = [4, 5, 6]) or 3, 4, 6 ([c_3, c_4, c_6] = [2, 5, 6]). * [5, 2, 5, 3, 6, 6] β€” the subsequence is 2, 3, 5 ([c_2, c_3, c_5] = [2, 5, 6]). ### Response ```cpp #include <bits/stdc++.h> using namespace std; const long long INF = 1e18 + 10; const int SZ = 1e6 + 10; const int mod = 1e9 + 7; const double PI = acos(-1); const double eps = 1e-7; long long read() { long long n = 0; char a = getchar(); bool flag = 0; while (a > '9' || a < '0') { if (a == '-') flag = 1; a = getchar(); } while (a <= '9' && a >= '0') { n = n * 10 + a - '0', a = getchar(); } if (flag) n = -n; return n; } int n, k, a[SZ]; vector<int> g[SZ]; void build_graph() { stack<int> S; for (int i = n; i >= 1; i--) { while (S.size() && a[S.top()] <= a[i]) S.pop(); if (S.size()) g[S.top()].push_back(i); S.push(i); } } struct seg { int l, r; int add, maxn; } tree[SZ * 4]; void update(int p) { tree[p].maxn = max(tree[p << 1].maxn, tree[p << 1 | 1].maxn); } void build(int p, int l, int r) { tree[p].l = l; tree[p].r = r; if (l == r) return; int mid = l + r >> 1; build(p << 1, l, mid); build(p << 1 | 1, mid + 1, r); } void pushadd(int p, int d) { tree[p].add += d; tree[p].maxn += d; } void pushdown(int p) { if (tree[p].add) { pushadd(p << 1, tree[p].add); pushadd(p << 1 | 1, tree[p].add); tree[p].add = 0; } } void change(int p, int l, int r, int d) { if (l <= tree[p].l && tree[p].r <= r) { pushadd(p, d); return; } pushdown(p); int mid = tree[p].l + tree[p].r >> 1; if (l <= mid) change(p << 1, l, r, d); if (mid < r) change(p << 1 | 1, l, r, d); update(p); } int dfn[SZ], sz[SZ], dfs_clock; void dfs(int u) { dfn[u] = ++dfs_clock; sz[u] = 1; for (int v : g[u]) { dfs(v); sz[u] += sz[v]; } } int main() { n = read(), k = read(); for (int i = 1; i <= n; i++) a[i] = read(); build_graph(); for (int i = n; i >= 1; i--) if (!dfn[i]) dfs(i); build(1, 1, n); for (int i = 1; i <= k; i++) change(1, dfn[i], dfn[i] + sz[i] - 1, 1); for (int i = k; i <= n; i++) { printf("%d ", tree[1].maxn); if (i < n) change(1, dfn[i + 1], dfn[i + 1] + sz[i + 1] - 1, 1); change(1, dfn[i - k + 1], dfn[i - k + 1] + sz[i - k + 1] - 1, -1); } } ```
#include <bits/stdc++.h> using namespace std; using ll = long long int; template <typename T> ostream &operator+(ostream &out, const vector<T> &vec) { for (const auto &x : vec) { out << x << " "; } out << "\n"; return out; } template <typename T> ostream &operator*(ostream &out, const vector<T> &vec) { for (const auto &x : vec) { out + x; } return out; } template <typename T> istream &operator>>(istream &in, vector<T> &vec) { for (auto &x : vec) { in >> x; } return in; } struct Tree { int n; vector<vector<int>> adj; Tree(int n) : n(n) { adj.resize(n); } void addedge(int u, int v) { adj[u].push_back(v); adj[v].push_back(u); } }; struct EulerTour : Tree { private: int t; void dfs(int u, int p) { tin[u] = t++; eulertour.push_back(u); for (const auto &v : adj[u]) { if (v != p) dfs(v, u); } tout[u] = t++; eulertour.push_back(u); } public: vector<int> tin, tout, eulertour; void ComputeEulerTour(int root = 0) { t = 0; tin.resize(n), tout.resize(n), eulertour.reserve(n << 1); dfs(root, root); } bool isanc(int u, int v) { return tin[u] <= tin[v] && tout[u] >= tout[v]; } EulerTour(int n) : Tree(n) {} }; template <typename T, typename U> struct lazy_segment_tree { int n; int H; T base; vector<T> segtree; vector<U> lazytree; vector<bool> isempty; function<T(const T &, const T &)> join; function<T(int, const U &, const T &)> assign; function<U(const U &, const U &)> lazyassign; lazy_segment_tree(vector<T> &seq, function<T(const T &, const T &)> join, function<T(int, const U &, const T &)> assign, function<U(const U &, const U &)> lazyassign, T base) : join(join), assign(assign), lazyassign(lazyassign), base(base) { n = seq.size(); H = 32 - __builtin_clz(n); segtree.resize(2 * n); lazytree.resize(n); isempty.resize(n, 1); for (int i = 0; i < n; i++) { segtree[n + i] = seq[i]; } for (int i = n - 1; i >= 1; i--) { segtree[i] = join(segtree[(i << 1)], segtree[(i << 1) | 1]); } } lazy_segment_tree(int n, function<T(const T &, const T &)> join, function<T(int, const U &, const T &)> assign, function<U(const U &, const U &)> lazyassign, T base) : join(join), assign(assign), lazyassign(lazyassign), base(base), n(n) { H = 32 - __builtin_clz(n); segtree.resize(2 * n); lazytree.resize(n); isempty.resize(n, 1); } void calc(int pos, int h) { segtree[pos] = join(segtree[(pos << 1)], segtree[(pos << 1) | 1]); if (!isempty[pos]) { segtree[pos] = assign(h, lazytree[pos], segtree[pos]); } } void apply(int pos, U value, int h) { segtree[pos] = assign(h, value, segtree[pos]); if (pos < n) { if (!isempty[pos]) { lazytree[pos] = lazyassign(value, lazytree[pos]); } else { lazytree[pos] = value; } isempty[pos] = 0; } } void updatenode(int pos) { int h = 0; pos += n; while (pos > 1) { h++; pos >>= 1; calc(pos, h); } } void push(int pos) { int h = H; for (pos += n; h; --h) { int x = (pos >> h); if (!isempty[x]) { apply((x << 1), lazytree[x], h - 1); apply((x << 1) | 1, lazytree[x], h - 1); isempty[x] = 1; } } } void updaterange(int l, int r, U value) { push(l); push(r); int k = 0; int l0 = l, r0 = r; for (l += n, r += n + 1; l < r; l >>= 1, r >>= 1, k++) { if (l & 1) { apply(l++, value, k); } if (r & 1) { apply(--r, value, k); } } updatenode(l0); updatenode(r0); } T query(int l, int r) { push(l); push(r); T ansl = base; T ansr = base; for (l += n, r += n + 1; l < r; l >>= 1, r >>= 1) { if (l & 1) { ansl = join(ansl, segtree[l++]); } if (r & 1) { ansr = join(segtree[--r], ansr); } } return join(ansl, ansr); } }; const int INF = 1e9; void solve() { int n, k; cin >> n >> k; vector<int> seq(n); cin >> seq; EulerTour tree(n + 1); stack<int> values; for (int i = n - 1; i >= 0; --i) { while (!values.empty() && seq[values.top()] <= seq[i]) { values.pop(); } if (values.empty()) { tree.addedge(i, n); } else { tree.addedge(i, values.top()); } values.push(i); } tree.ComputeEulerTour(n); lazy_segment_tree<ll, ll> segtree( 2 * n + 2, [&](ll x, ll y) { return max(x, y); }, [&](int h, ll l, ll x) { return l + x; }, [&](ll x, ll y) { return x + y; }, -INF); for (int i = 0; i < k; i++) { segtree.updaterange(tree.tin[i], tree.tout[i], 1); } cout << segtree.query(0, 2 * n + 1) << " "; for (int i = k; i < n; i++) { segtree.updaterange(tree.tin[i - k], tree.tout[i - k], -INF); segtree.updaterange(tree.tin[i], tree.tout[i], 1); cout << segtree.query(0, 2 * n + 1) << " "; } } int main() { ios_base::sync_with_stdio(false); cin.tie(NULL); solve(); }
### Prompt Construct a CPP code solution to the problem outlined: For some array c, let's denote a greedy subsequence as a sequence of indices p_1, p_2, ..., p_l such that 1 ≀ p_1 < p_2 < ... < p_l ≀ |c|, and for each i ∈ [1, l - 1], p_{i + 1} is the minimum number such that p_{i + 1} > p_i and c[p_{i + 1}] > c[p_i]. You are given an array a_1, a_2, ..., a_n. For each its subsegment of length k, calculate the length of its longest greedy subsequence. Input The first line contains two integers n and k (1 ≀ k ≀ n ≀ 10^6) β€” the length of array a and the length of subsegments. The second line contains n integers a_1, a_2, ..., a_n (1 ≀ a_i ≀ n) β€” array a. Output Print n - k + 1 integers β€” the maximum lengths of greedy subsequences of each subsegment having length k. The first number should correspond to subsegment a[1..k], the second β€” to subsegment a[2..k + 1], and so on. Examples Input 6 4 1 5 2 5 3 6 Output 2 2 3 Input 7 6 4 5 2 5 3 6 6 Output 3 3 Note In the first example: * [1, 5, 2, 5] β€” the longest greedy subsequences are 1, 2 ([c_1, c_2] = [1, 5]) or 3, 4 ([c_3, c_4] = [2, 5]). * [5, 2, 5, 3] β€” the sequence is 2, 3 ([c_2, c_3] = [2, 5]). * [2, 5, 3, 6] β€” the sequence is 1, 2, 4 ([c_1, c_2, c_4] = [2, 5, 6]). In the second example: * [4, 5, 2, 5, 3, 6] β€” the longest greedy subsequences are 1, 2, 6 ([c_1, c_2, c_6] = [4, 5, 6]) or 3, 4, 6 ([c_3, c_4, c_6] = [2, 5, 6]). * [5, 2, 5, 3, 6, 6] β€” the subsequence is 2, 3, 5 ([c_2, c_3, c_5] = [2, 5, 6]). ### Response ```cpp #include <bits/stdc++.h> using namespace std; using ll = long long int; template <typename T> ostream &operator+(ostream &out, const vector<T> &vec) { for (const auto &x : vec) { out << x << " "; } out << "\n"; return out; } template <typename T> ostream &operator*(ostream &out, const vector<T> &vec) { for (const auto &x : vec) { out + x; } return out; } template <typename T> istream &operator>>(istream &in, vector<T> &vec) { for (auto &x : vec) { in >> x; } return in; } struct Tree { int n; vector<vector<int>> adj; Tree(int n) : n(n) { adj.resize(n); } void addedge(int u, int v) { adj[u].push_back(v); adj[v].push_back(u); } }; struct EulerTour : Tree { private: int t; void dfs(int u, int p) { tin[u] = t++; eulertour.push_back(u); for (const auto &v : adj[u]) { if (v != p) dfs(v, u); } tout[u] = t++; eulertour.push_back(u); } public: vector<int> tin, tout, eulertour; void ComputeEulerTour(int root = 0) { t = 0; tin.resize(n), tout.resize(n), eulertour.reserve(n << 1); dfs(root, root); } bool isanc(int u, int v) { return tin[u] <= tin[v] && tout[u] >= tout[v]; } EulerTour(int n) : Tree(n) {} }; template <typename T, typename U> struct lazy_segment_tree { int n; int H; T base; vector<T> segtree; vector<U> lazytree; vector<bool> isempty; function<T(const T &, const T &)> join; function<T(int, const U &, const T &)> assign; function<U(const U &, const U &)> lazyassign; lazy_segment_tree(vector<T> &seq, function<T(const T &, const T &)> join, function<T(int, const U &, const T &)> assign, function<U(const U &, const U &)> lazyassign, T base) : join(join), assign(assign), lazyassign(lazyassign), base(base) { n = seq.size(); H = 32 - __builtin_clz(n); segtree.resize(2 * n); lazytree.resize(n); isempty.resize(n, 1); for (int i = 0; i < n; i++) { segtree[n + i] = seq[i]; } for (int i = n - 1; i >= 1; i--) { segtree[i] = join(segtree[(i << 1)], segtree[(i << 1) | 1]); } } lazy_segment_tree(int n, function<T(const T &, const T &)> join, function<T(int, const U &, const T &)> assign, function<U(const U &, const U &)> lazyassign, T base) : join(join), assign(assign), lazyassign(lazyassign), base(base), n(n) { H = 32 - __builtin_clz(n); segtree.resize(2 * n); lazytree.resize(n); isempty.resize(n, 1); } void calc(int pos, int h) { segtree[pos] = join(segtree[(pos << 1)], segtree[(pos << 1) | 1]); if (!isempty[pos]) { segtree[pos] = assign(h, lazytree[pos], segtree[pos]); } } void apply(int pos, U value, int h) { segtree[pos] = assign(h, value, segtree[pos]); if (pos < n) { if (!isempty[pos]) { lazytree[pos] = lazyassign(value, lazytree[pos]); } else { lazytree[pos] = value; } isempty[pos] = 0; } } void updatenode(int pos) { int h = 0; pos += n; while (pos > 1) { h++; pos >>= 1; calc(pos, h); } } void push(int pos) { int h = H; for (pos += n; h; --h) { int x = (pos >> h); if (!isempty[x]) { apply((x << 1), lazytree[x], h - 1); apply((x << 1) | 1, lazytree[x], h - 1); isempty[x] = 1; } } } void updaterange(int l, int r, U value) { push(l); push(r); int k = 0; int l0 = l, r0 = r; for (l += n, r += n + 1; l < r; l >>= 1, r >>= 1, k++) { if (l & 1) { apply(l++, value, k); } if (r & 1) { apply(--r, value, k); } } updatenode(l0); updatenode(r0); } T query(int l, int r) { push(l); push(r); T ansl = base; T ansr = base; for (l += n, r += n + 1; l < r; l >>= 1, r >>= 1) { if (l & 1) { ansl = join(ansl, segtree[l++]); } if (r & 1) { ansr = join(segtree[--r], ansr); } } return join(ansl, ansr); } }; const int INF = 1e9; void solve() { int n, k; cin >> n >> k; vector<int> seq(n); cin >> seq; EulerTour tree(n + 1); stack<int> values; for (int i = n - 1; i >= 0; --i) { while (!values.empty() && seq[values.top()] <= seq[i]) { values.pop(); } if (values.empty()) { tree.addedge(i, n); } else { tree.addedge(i, values.top()); } values.push(i); } tree.ComputeEulerTour(n); lazy_segment_tree<ll, ll> segtree( 2 * n + 2, [&](ll x, ll y) { return max(x, y); }, [&](int h, ll l, ll x) { return l + x; }, [&](ll x, ll y) { return x + y; }, -INF); for (int i = 0; i < k; i++) { segtree.updaterange(tree.tin[i], tree.tout[i], 1); } cout << segtree.query(0, 2 * n + 1) << " "; for (int i = k; i < n; i++) { segtree.updaterange(tree.tin[i - k], tree.tout[i - k], -INF); segtree.updaterange(tree.tin[i], tree.tout[i], 1); cout << segtree.query(0, 2 * n + 1) << " "; } } int main() { ios_base::sync_with_stdio(false); cin.tie(NULL); solve(); } ```
#include <bits/stdc++.h> using namespace std; const int INF = 1e6 + 5; int N, K, A[INF], Id[INF], Size[INF], F[4 * INF], mrk[4 * INF], l = 1, cnt, ans; stack<pair<int, int> > S; vector<int> V[INF]; void dfs(int n) { Id[n] = ++cnt; Size[n] = 1; for (int i = 0, zj; i < V[n].size(); i++) { zj = V[n][i]; dfs(zj); Size[n] += Size[zj]; } } void pu(int O) { F[O * 2] += mrk[O]; F[O * 2 + 1] += mrk[O]; mrk[O * 2] += mrk[O]; mrk[O * 2 + 1] += mrk[O]; mrk[O] = 0; } void add(int O, int l, int r, int s, int t) { if (l == s && r == t) { F[O]++; mrk[O]++; return; } if (mrk[O]) pu(O); int mid = (l + r) / 2; if (t <= mid) add(O * 2, l, mid, s, t); else if (s > mid) add(O * 2 + 1, mid + 1, r, s, t); else { add(O * 2, l, mid, s, mid); add(O * 2 + 1, mid + 1, r, mid + 1, t); } F[O] = max(F[O * 2], F[O * 2 + 1]); } void del(int O, int l, int r, int s, int t) { if (l == s && r == t) { F[O]--; mrk[O]--; return; } if (mrk[O]) pu(O); int mid = (l + r) / 2; if (t <= mid) del(O * 2, l, mid, s, t); else if (s > mid) del(O * 2 + 1, mid + 1, r, s, t); else { del(O * 2, l, mid, s, mid); del(O * 2 + 1, mid + 1, r, mid + 1, t); } F[O] = max(F[O * 2], F[O * 2 + 1]); } int qu(int O, int l, int r, int s, int t) { if (l == s && r == t) return F[O]; if (mrk[O]) pu(O); int mid = (l + r) / 2; if (t <= mid) return qu(O * 2, l, mid, s, t); else if (s > mid) return qu(O * 2 + 1, mid + 1, r, s, t); else return max(qu(O * 2, l, mid, s, mid), qu(O * 2 + 1, mid + 1, r, mid + 1, t)); } int main() { scanf("%d %d", &N, &K); for (int i = 1; i <= N; i++) scanf("%d", &A[i]); for (int i = 1; i <= N; i++) { while (!S.empty() && S.top().first < A[i]) { V[i].push_back(S.top().second); S.pop(); } S.push(make_pair(A[i], i)); } while (!S.empty()) { V[N + 1].push_back(S.top().second); S.pop(); } dfs(N + 1); for (int i = 1; i <= K; i++) add(1, 1, N + 1, Id[i], Id[i] + Size[i] - 1); ans = qu(1, 1, N + 1, 1, N + 1); printf("%d ", ans); for (int i = K + 1; i <= N; i++) { add(1, 1, N + 1, Id[i], Id[i] + Size[i] - 1); if (i - l + 1 > K) { del(1, 1, N + 1, Id[l], Id[l] + Size[l] - 1); l++; } ans = qu(1, 1, N + 1, 1, N + 1); printf("%d ", ans); } return 0; }
### Prompt Please provide a cpp coded solution to the problem described below: For some array c, let's denote a greedy subsequence as a sequence of indices p_1, p_2, ..., p_l such that 1 ≀ p_1 < p_2 < ... < p_l ≀ |c|, and for each i ∈ [1, l - 1], p_{i + 1} is the minimum number such that p_{i + 1} > p_i and c[p_{i + 1}] > c[p_i]. You are given an array a_1, a_2, ..., a_n. For each its subsegment of length k, calculate the length of its longest greedy subsequence. Input The first line contains two integers n and k (1 ≀ k ≀ n ≀ 10^6) β€” the length of array a and the length of subsegments. The second line contains n integers a_1, a_2, ..., a_n (1 ≀ a_i ≀ n) β€” array a. Output Print n - k + 1 integers β€” the maximum lengths of greedy subsequences of each subsegment having length k. The first number should correspond to subsegment a[1..k], the second β€” to subsegment a[2..k + 1], and so on. Examples Input 6 4 1 5 2 5 3 6 Output 2 2 3 Input 7 6 4 5 2 5 3 6 6 Output 3 3 Note In the first example: * [1, 5, 2, 5] β€” the longest greedy subsequences are 1, 2 ([c_1, c_2] = [1, 5]) or 3, 4 ([c_3, c_4] = [2, 5]). * [5, 2, 5, 3] β€” the sequence is 2, 3 ([c_2, c_3] = [2, 5]). * [2, 5, 3, 6] β€” the sequence is 1, 2, 4 ([c_1, c_2, c_4] = [2, 5, 6]). In the second example: * [4, 5, 2, 5, 3, 6] β€” the longest greedy subsequences are 1, 2, 6 ([c_1, c_2, c_6] = [4, 5, 6]) or 3, 4, 6 ([c_3, c_4, c_6] = [2, 5, 6]). * [5, 2, 5, 3, 6, 6] β€” the subsequence is 2, 3, 5 ([c_2, c_3, c_5] = [2, 5, 6]). ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int INF = 1e6 + 5; int N, K, A[INF], Id[INF], Size[INF], F[4 * INF], mrk[4 * INF], l = 1, cnt, ans; stack<pair<int, int> > S; vector<int> V[INF]; void dfs(int n) { Id[n] = ++cnt; Size[n] = 1; for (int i = 0, zj; i < V[n].size(); i++) { zj = V[n][i]; dfs(zj); Size[n] += Size[zj]; } } void pu(int O) { F[O * 2] += mrk[O]; F[O * 2 + 1] += mrk[O]; mrk[O * 2] += mrk[O]; mrk[O * 2 + 1] += mrk[O]; mrk[O] = 0; } void add(int O, int l, int r, int s, int t) { if (l == s && r == t) { F[O]++; mrk[O]++; return; } if (mrk[O]) pu(O); int mid = (l + r) / 2; if (t <= mid) add(O * 2, l, mid, s, t); else if (s > mid) add(O * 2 + 1, mid + 1, r, s, t); else { add(O * 2, l, mid, s, mid); add(O * 2 + 1, mid + 1, r, mid + 1, t); } F[O] = max(F[O * 2], F[O * 2 + 1]); } void del(int O, int l, int r, int s, int t) { if (l == s && r == t) { F[O]--; mrk[O]--; return; } if (mrk[O]) pu(O); int mid = (l + r) / 2; if (t <= mid) del(O * 2, l, mid, s, t); else if (s > mid) del(O * 2 + 1, mid + 1, r, s, t); else { del(O * 2, l, mid, s, mid); del(O * 2 + 1, mid + 1, r, mid + 1, t); } F[O] = max(F[O * 2], F[O * 2 + 1]); } int qu(int O, int l, int r, int s, int t) { if (l == s && r == t) return F[O]; if (mrk[O]) pu(O); int mid = (l + r) / 2; if (t <= mid) return qu(O * 2, l, mid, s, t); else if (s > mid) return qu(O * 2 + 1, mid + 1, r, s, t); else return max(qu(O * 2, l, mid, s, mid), qu(O * 2 + 1, mid + 1, r, mid + 1, t)); } int main() { scanf("%d %d", &N, &K); for (int i = 1; i <= N; i++) scanf("%d", &A[i]); for (int i = 1; i <= N; i++) { while (!S.empty() && S.top().first < A[i]) { V[i].push_back(S.top().second); S.pop(); } S.push(make_pair(A[i], i)); } while (!S.empty()) { V[N + 1].push_back(S.top().second); S.pop(); } dfs(N + 1); for (int i = 1; i <= K; i++) add(1, 1, N + 1, Id[i], Id[i] + Size[i] - 1); ans = qu(1, 1, N + 1, 1, N + 1); printf("%d ", ans); for (int i = K + 1; i <= N; i++) { add(1, 1, N + 1, Id[i], Id[i] + Size[i] - 1); if (i - l + 1 > K) { del(1, 1, N + 1, Id[l], Id[l] + Size[l] - 1); l++; } ans = qu(1, 1, N + 1, 1, N + 1); printf("%d ", ans); } return 0; } ```
#include <bits/stdc++.h> using namespace std; const long long INF = 200000000000000000LL; const long double EPS = 1e-9; const int inf = 0x3f3f3f3f; struct SegmentTree { int Tree[4 * 1000007], Lazy[4 * 1000007]; SegmentTree() {} void pushdown(int at) { if (Lazy[at]) { Lazy[(at << 1)] += Lazy[at]; Lazy[((at << 1) | 1)] += Lazy[at]; Tree[(at << 1)] += Lazy[at]; Tree[((at << 1) | 1)] += Lazy[at]; Lazy[at] = 0; } } void build(int at, int l, int r) { Lazy[at] = 0; if (l == r) { Tree[at] = 0; return; } int mid = (l + r) / 2; build((at << 1), l, mid); build(((at << 1) | 1), mid + 1, r); Tree[at] = max(Tree[(at << 1)], Tree[((at << 1) | 1)]); Lazy[at] = 0; } void update(int at, int l, int r, int x, int y, int val) { if (x > r || y < l) return; if (x <= l && r <= y) { Tree[at] += val; Lazy[at] += val; return; } if (l != r) pushdown(at); int mid = (l + r) / 2; update((at << 1), l, mid, x, y, val); update(((at << 1) | 1), mid + 1, r, x, y, val); Tree[at] = max(Tree[(at << 1)], Tree[((at << 1) | 1)]); } int query(int at, int l, int r, int x, int y) { if (x > r || y < l) return -inf; if (x <= l && r <= y) return Tree[at]; if (l != r) pushdown(at); int mid = (l + r) / 2; return max(query((at << 1), l, mid, x, y), query(((at << 1) | 1), mid + 1, r, x, y)); } } seg; const int N = 1e6 + 7; vector<int> g[N]; int a[N]; int in[N], out[N], counter = 0; int n, k; void dfs(int u) { in[u] = ++counter; for (int v : g[u]) dfs(v); out[u] = counter; } int main() { ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0); ; cin >> n >> k; for (int i = 1; i <= n; ++i) cin >> a[i]; a[n + 1] = inf; stack<int> st; st.push(n + 1); for (int i = n; i > 0; --i) { while (!st.empty() and a[st.top()] <= a[i]) { st.pop(); } int pos = st.top(); g[pos].push_back(i); st.push(i); } counter = 0; dfs(n + 1); seg.build(1, 1, counter); for (int i = 1; i <= n; ++i) { seg.update(1, 1, counter, in[i], out[i], 1); int ep = i - k; if (ep > 0) seg.update(1, 1, counter, in[ep], out[ep], -1); if (i >= k) { int res = seg.query(1, 1, counter, 1, counter); cout << res << " "; } } cout << "\n"; return 0; }
### Prompt Generate a CPP solution to the following problem: For some array c, let's denote a greedy subsequence as a sequence of indices p_1, p_2, ..., p_l such that 1 ≀ p_1 < p_2 < ... < p_l ≀ |c|, and for each i ∈ [1, l - 1], p_{i + 1} is the minimum number such that p_{i + 1} > p_i and c[p_{i + 1}] > c[p_i]. You are given an array a_1, a_2, ..., a_n. For each its subsegment of length k, calculate the length of its longest greedy subsequence. Input The first line contains two integers n and k (1 ≀ k ≀ n ≀ 10^6) β€” the length of array a and the length of subsegments. The second line contains n integers a_1, a_2, ..., a_n (1 ≀ a_i ≀ n) β€” array a. Output Print n - k + 1 integers β€” the maximum lengths of greedy subsequences of each subsegment having length k. The first number should correspond to subsegment a[1..k], the second β€” to subsegment a[2..k + 1], and so on. Examples Input 6 4 1 5 2 5 3 6 Output 2 2 3 Input 7 6 4 5 2 5 3 6 6 Output 3 3 Note In the first example: * [1, 5, 2, 5] β€” the longest greedy subsequences are 1, 2 ([c_1, c_2] = [1, 5]) or 3, 4 ([c_3, c_4] = [2, 5]). * [5, 2, 5, 3] β€” the sequence is 2, 3 ([c_2, c_3] = [2, 5]). * [2, 5, 3, 6] β€” the sequence is 1, 2, 4 ([c_1, c_2, c_4] = [2, 5, 6]). In the second example: * [4, 5, 2, 5, 3, 6] β€” the longest greedy subsequences are 1, 2, 6 ([c_1, c_2, c_6] = [4, 5, 6]) or 3, 4, 6 ([c_3, c_4, c_6] = [2, 5, 6]). * [5, 2, 5, 3, 6, 6] β€” the subsequence is 2, 3, 5 ([c_2, c_3, c_5] = [2, 5, 6]). ### Response ```cpp #include <bits/stdc++.h> using namespace std; const long long INF = 200000000000000000LL; const long double EPS = 1e-9; const int inf = 0x3f3f3f3f; struct SegmentTree { int Tree[4 * 1000007], Lazy[4 * 1000007]; SegmentTree() {} void pushdown(int at) { if (Lazy[at]) { Lazy[(at << 1)] += Lazy[at]; Lazy[((at << 1) | 1)] += Lazy[at]; Tree[(at << 1)] += Lazy[at]; Tree[((at << 1) | 1)] += Lazy[at]; Lazy[at] = 0; } } void build(int at, int l, int r) { Lazy[at] = 0; if (l == r) { Tree[at] = 0; return; } int mid = (l + r) / 2; build((at << 1), l, mid); build(((at << 1) | 1), mid + 1, r); Tree[at] = max(Tree[(at << 1)], Tree[((at << 1) | 1)]); Lazy[at] = 0; } void update(int at, int l, int r, int x, int y, int val) { if (x > r || y < l) return; if (x <= l && r <= y) { Tree[at] += val; Lazy[at] += val; return; } if (l != r) pushdown(at); int mid = (l + r) / 2; update((at << 1), l, mid, x, y, val); update(((at << 1) | 1), mid + 1, r, x, y, val); Tree[at] = max(Tree[(at << 1)], Tree[((at << 1) | 1)]); } int query(int at, int l, int r, int x, int y) { if (x > r || y < l) return -inf; if (x <= l && r <= y) return Tree[at]; if (l != r) pushdown(at); int mid = (l + r) / 2; return max(query((at << 1), l, mid, x, y), query(((at << 1) | 1), mid + 1, r, x, y)); } } seg; const int N = 1e6 + 7; vector<int> g[N]; int a[N]; int in[N], out[N], counter = 0; int n, k; void dfs(int u) { in[u] = ++counter; for (int v : g[u]) dfs(v); out[u] = counter; } int main() { ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0); ; cin >> n >> k; for (int i = 1; i <= n; ++i) cin >> a[i]; a[n + 1] = inf; stack<int> st; st.push(n + 1); for (int i = n; i > 0; --i) { while (!st.empty() and a[st.top()] <= a[i]) { st.pop(); } int pos = st.top(); g[pos].push_back(i); st.push(i); } counter = 0; dfs(n + 1); seg.build(1, 1, counter); for (int i = 1; i <= n; ++i) { seg.update(1, 1, counter, in[i], out[i], 1); int ep = i - k; if (ep > 0) seg.update(1, 1, counter, in[ep], out[ep], -1); if (i >= k) { int res = seg.query(1, 1, counter, 1, counter); cout << res << " "; } } cout << "\n"; return 0; } ```
#include <bits/stdc++.h> using namespace std; const int mxN = 1e6; int n, k, a[mxN], l[mxN]; struct dsu { int p[mxN], ld[mxN], lb[mxN]; void init() { iota(p, p + n, 0); iota(lb, lb + n, 0); } int find(int x) { return x == p[x] ? x : (p[x] = find(p[x])); } void join(int x, int y) { x = find(x), y = find(y); p[x] = y; lb[y] = lb[x]; ld[y] += ld[x]; } void upd(int i, int j) { i = find(i); ++ld[i]; if (j < n) --ld[j]; while (ld[i] >= 0 && lb[i]) join(lb[i] - 1, i); } void upd2(int i) { if (i < k) return; int j = find(i - k + 1); while (lb[j] > i - k) join(lb[j] - 1, j); } int qry() { return ld[find(0)]; } } d; int main() { ios::sync_with_stdio(0); cin.tie(0); cin >> n >> k; for (int i = 0; i < n; ++i) cin >> a[i]; d.init(); for (int i = 0; i < n; ++i) { d.upd2(i); l[i] = i - 1; while (l[i] >= 0 && a[l[i]] < a[i]) { l[i] = l[l[i]]; } d.upd(l[i] + 1, i + 1); if (i >= k - 1) cout << d.qry() << " "; } return 0; }
### Prompt Generate a CPP solution to the following problem: For some array c, let's denote a greedy subsequence as a sequence of indices p_1, p_2, ..., p_l such that 1 ≀ p_1 < p_2 < ... < p_l ≀ |c|, and for each i ∈ [1, l - 1], p_{i + 1} is the minimum number such that p_{i + 1} > p_i and c[p_{i + 1}] > c[p_i]. You are given an array a_1, a_2, ..., a_n. For each its subsegment of length k, calculate the length of its longest greedy subsequence. Input The first line contains two integers n and k (1 ≀ k ≀ n ≀ 10^6) β€” the length of array a and the length of subsegments. The second line contains n integers a_1, a_2, ..., a_n (1 ≀ a_i ≀ n) β€” array a. Output Print n - k + 1 integers β€” the maximum lengths of greedy subsequences of each subsegment having length k. The first number should correspond to subsegment a[1..k], the second β€” to subsegment a[2..k + 1], and so on. Examples Input 6 4 1 5 2 5 3 6 Output 2 2 3 Input 7 6 4 5 2 5 3 6 6 Output 3 3 Note In the first example: * [1, 5, 2, 5] β€” the longest greedy subsequences are 1, 2 ([c_1, c_2] = [1, 5]) or 3, 4 ([c_3, c_4] = [2, 5]). * [5, 2, 5, 3] β€” the sequence is 2, 3 ([c_2, c_3] = [2, 5]). * [2, 5, 3, 6] β€” the sequence is 1, 2, 4 ([c_1, c_2, c_4] = [2, 5, 6]). In the second example: * [4, 5, 2, 5, 3, 6] β€” the longest greedy subsequences are 1, 2, 6 ([c_1, c_2, c_6] = [4, 5, 6]) or 3, 4, 6 ([c_3, c_4, c_6] = [2, 5, 6]). * [5, 2, 5, 3, 6, 6] β€” the subsequence is 2, 3, 5 ([c_2, c_3, c_5] = [2, 5, 6]). ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int mxN = 1e6; int n, k, a[mxN], l[mxN]; struct dsu { int p[mxN], ld[mxN], lb[mxN]; void init() { iota(p, p + n, 0); iota(lb, lb + n, 0); } int find(int x) { return x == p[x] ? x : (p[x] = find(p[x])); } void join(int x, int y) { x = find(x), y = find(y); p[x] = y; lb[y] = lb[x]; ld[y] += ld[x]; } void upd(int i, int j) { i = find(i); ++ld[i]; if (j < n) --ld[j]; while (ld[i] >= 0 && lb[i]) join(lb[i] - 1, i); } void upd2(int i) { if (i < k) return; int j = find(i - k + 1); while (lb[j] > i - k) join(lb[j] - 1, j); } int qry() { return ld[find(0)]; } } d; int main() { ios::sync_with_stdio(0); cin.tie(0); cin >> n >> k; for (int i = 0; i < n; ++i) cin >> a[i]; d.init(); for (int i = 0; i < n; ++i) { d.upd2(i); l[i] = i - 1; while (l[i] >= 0 && a[l[i]] < a[i]) { l[i] = l[l[i]]; } d.upd(l[i] + 1, i + 1); if (i >= k - 1) cout << d.qry() << " "; } return 0; } ```
#include <bits/stdc++.h> using namespace std; const int const1 = 998244353; vector<vector<int> > g; vector<int> tin, tout; int timer = 0; void dfs(int v) { tin[v] = timer++; for (int i = 0; i < g[v].size(); i++) { int to = g[v][i]; dfs(to); } tout[v] = timer++; } vector<int> tree, upd; void push(int v, int l, int r) { if (l == r) { return; } tree[v * 2] += upd[v]; upd[v * 2] += upd[v]; tree[v * 2 + 1] += upd[v]; upd[v * 2 + 1] += upd[v]; upd[v] = 0; } void update(int v, int l, int r, int al, int ar, int val) { if (l >= al && r <= ar) { upd[v] += val; tree[v] += val; } else if (l <= ar && r >= al) { push(v, l, r); update(v * 2, l, (r + l) / 2, al, ar, val); update(v * 2 + 1, (r + l) / 2 + 1, r, al, ar, val); tree[v] = max(tree[v * 2 + 1], tree[v * 2]); } } signed main() { ios_base::sync_with_stdio(false); cin.tie(NULL); cout.tie(NULL); int n, k; cin >> n >> k; tin.resize(n + 1); tout.resize(n + 1); g.resize(n + 1); vector<int> a(n); for (int i = 0; i < n; i++) { cin >> a[i]; a[i]--; } stack<int> q; for (int i = n - 1; i >= 0; i--) { while (q.size() > 0 && a[q.top()] <= a[i]) { q.pop(); } if (q.size() == 0) { g[0].push_back(i + 1); } else { g[q.top() + 1].push_back(i + 1); } q.push(i); } dfs(0); tree.resize(4 * timer); upd.resize(4 * timer); for (int i = 0; i < n; i++) { update(1, 0, timer, tin[i + 1], tout[i + 1], 1); if (i >= k) { update(1, 0, timer, tin[i + 1 - k], tout[i + 1 - k], -1); } if (i >= k - 1) { cout << tree[1] << " "; } } return 0; }
### Prompt Please create a solution in cpp to the following problem: For some array c, let's denote a greedy subsequence as a sequence of indices p_1, p_2, ..., p_l such that 1 ≀ p_1 < p_2 < ... < p_l ≀ |c|, and for each i ∈ [1, l - 1], p_{i + 1} is the minimum number such that p_{i + 1} > p_i and c[p_{i + 1}] > c[p_i]. You are given an array a_1, a_2, ..., a_n. For each its subsegment of length k, calculate the length of its longest greedy subsequence. Input The first line contains two integers n and k (1 ≀ k ≀ n ≀ 10^6) β€” the length of array a and the length of subsegments. The second line contains n integers a_1, a_2, ..., a_n (1 ≀ a_i ≀ n) β€” array a. Output Print n - k + 1 integers β€” the maximum lengths of greedy subsequences of each subsegment having length k. The first number should correspond to subsegment a[1..k], the second β€” to subsegment a[2..k + 1], and so on. Examples Input 6 4 1 5 2 5 3 6 Output 2 2 3 Input 7 6 4 5 2 5 3 6 6 Output 3 3 Note In the first example: * [1, 5, 2, 5] β€” the longest greedy subsequences are 1, 2 ([c_1, c_2] = [1, 5]) or 3, 4 ([c_3, c_4] = [2, 5]). * [5, 2, 5, 3] β€” the sequence is 2, 3 ([c_2, c_3] = [2, 5]). * [2, 5, 3, 6] β€” the sequence is 1, 2, 4 ([c_1, c_2, c_4] = [2, 5, 6]). In the second example: * [4, 5, 2, 5, 3, 6] β€” the longest greedy subsequences are 1, 2, 6 ([c_1, c_2, c_6] = [4, 5, 6]) or 3, 4, 6 ([c_3, c_4, c_6] = [2, 5, 6]). * [5, 2, 5, 3, 6, 6] β€” the subsequence is 2, 3, 5 ([c_2, c_3, c_5] = [2, 5, 6]). ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int const1 = 998244353; vector<vector<int> > g; vector<int> tin, tout; int timer = 0; void dfs(int v) { tin[v] = timer++; for (int i = 0; i < g[v].size(); i++) { int to = g[v][i]; dfs(to); } tout[v] = timer++; } vector<int> tree, upd; void push(int v, int l, int r) { if (l == r) { return; } tree[v * 2] += upd[v]; upd[v * 2] += upd[v]; tree[v * 2 + 1] += upd[v]; upd[v * 2 + 1] += upd[v]; upd[v] = 0; } void update(int v, int l, int r, int al, int ar, int val) { if (l >= al && r <= ar) { upd[v] += val; tree[v] += val; } else if (l <= ar && r >= al) { push(v, l, r); update(v * 2, l, (r + l) / 2, al, ar, val); update(v * 2 + 1, (r + l) / 2 + 1, r, al, ar, val); tree[v] = max(tree[v * 2 + 1], tree[v * 2]); } } signed main() { ios_base::sync_with_stdio(false); cin.tie(NULL); cout.tie(NULL); int n, k; cin >> n >> k; tin.resize(n + 1); tout.resize(n + 1); g.resize(n + 1); vector<int> a(n); for (int i = 0; i < n; i++) { cin >> a[i]; a[i]--; } stack<int> q; for (int i = n - 1; i >= 0; i--) { while (q.size() > 0 && a[q.top()] <= a[i]) { q.pop(); } if (q.size() == 0) { g[0].push_back(i + 1); } else { g[q.top() + 1].push_back(i + 1); } q.push(i); } dfs(0); tree.resize(4 * timer); upd.resize(4 * timer); for (int i = 0; i < n; i++) { update(1, 0, timer, tin[i + 1], tout[i + 1], 1); if (i >= k) { update(1, 0, timer, tin[i + 1 - k], tout[i + 1 - k], -1); } if (i >= k - 1) { cout << tree[1] << " "; } } return 0; } ```
#include <bits/stdc++.h> using namespace std; template <class TH> void _dbg(const char *sdbg, TH h) { cerr << sdbg << "=" << h << "\n"; } template <class TH, class... TA> void _dbg(const char *sdbg, TH h, TA... a) { while (*sdbg != ',') cerr << *sdbg++; cerr << "=" << h << ","; _dbg(sdbg + 1, a...); } mt19937 r(chrono::steady_clock::now().time_since_epoch().count()); long long rand_range(long long a, long long b) { assert(a <= b); return a + r() % (b - a + 1); } const long long K = 1000; const long long KK = K * K; const long long MIL = KK * K; const long long INF = MIL * MIL; const long long MOD = MIL + 7; const long long N = 1e6 + 10; vector<long long> G[N]; bool vis[N]; long long tim = 0; pair<long long, long long> czas[N]; void dfs(long long x) { czas[x].first = tim++; vis[x] = true; for (long long i : G[x]) if (!vis[i]) dfs(i); czas[x].second = tim - 1; } struct Node { Node() : Node(0){}; Node(long long v) { val[0] = v; val[1] = 0; } Node(Node a, Node b) { val[0] = max(a.val[0], b.val[0]); val[1] = 0; } void take(Node node, long long len) { val[0] += node.val[1]; val[1] += node.val[1]; } void reset() { val[1] = 0; } void add(long long v, long long len) { val[0] += v; val[1] += v; } long long val[2]; }; template <typename Nod, typename Vobj> struct RangeRangeTree { long long base; vector<Nod> drz; vector<bool> brud; RangeRangeTree(Vobj &o) { base = 1; while (base < (long long)((o).size())) base *= 2; drz.resize(2 * base); brud.resize(2 * base); for (long long i = ((0)); i <= (((long long)((o).size())) - 1); i++) drz[base + i] = Nod(o[i]); for (long long i = (base - 1); i >= (1); i--) drz[i] = Nod(drz[2 * i], drz[2 * i + 1]); } void czysc(long long x, long long len) { drz[2 * x].take(drz[x], len); drz[2 * x + 1].take(drz[x], len); drz[x].reset(); brud[2 * x] = brud[2 * x + 1] = 1; brud[x] = 0; } void update(long long l, long long r, long long v, long long p, long long k, long long x) { if (r < p || l > k) return; if (l <= p && k <= r) { drz[x].add(v, k - p + 1); brud[x] = 1; return; } if (brud[x]) czysc(x, (k - p + 1) / 2); long long sr = (p + k) / 2; update(l, r, v, p, sr, 2 * x); update(l, r, v, sr + 1, k, 2 * x + 1); drz[x] = Nod(drz[2 * x], drz[2 * x + 1]); } void update(long long l, long long r, long long v) { update(l, r, v, 0, base - 1, 1); } Nod query(long long l, long long r, long long p, long long k, long long x) { if (r < p || l > k) return Node(); if (l <= p && k <= r) { Nod pom = drz[x]; return drz[x]; } if (brud[x]) czysc(x, (k - p + 1) / 2); long long sr = (p + k) / 2; return Nod(query(l, r, p, sr, 2 * x), query(l, r, sr + 1, k, 2 * x + 1)); } Nod query(long long l, long long r) { return query(l, r, 0, base - 1, 1); } }; void solve() { long long n, k; cin >> n >> k; vector<long long> a(n + 1); for (long long i = ((0)); i <= ((n)-1); i++) cin >> a[i]; a[n] = MIL; vector<pair<long long, long long> > stos; stos.emplace_back(MIL, n); for (long long i = (n - 1); i >= (0); i--) { while (stos.back().first <= a[i]) stos.pop_back(); G[i].emplace_back(stos.back().second); G[stos.back().second].emplace_back(i); stos.emplace_back(a[i], i); } dfs(n); vector<long long> vpom(n + 1, 0); struct RangeRangeTree<Node, vector<long long> > drz(vpom); for (long long i = ((0)); i <= ((k - 1) - 1); i++) drz.update(czas[i].first, czas[i].second, 1); for (long long i = ((k - 1)); i <= ((n)-1); i++) { drz.update(czas[i].first, czas[i].second, 1); cout << drz.drz[1].val[0] << " "; drz.update(czas[i - k + 1].first, czas[i - k + 1].second, -1); } } int32_t main() { ios_base::sync_with_stdio(0); cin.tie(0); cout.tie(0); cerr.tie(0); cout << setprecision(9) << fixed; cerr << setprecision(6) << fixed; long long test = 1; while (test--) { solve(); } }
### Prompt Please provide a Cpp coded solution to the problem described below: For some array c, let's denote a greedy subsequence as a sequence of indices p_1, p_2, ..., p_l such that 1 ≀ p_1 < p_2 < ... < p_l ≀ |c|, and for each i ∈ [1, l - 1], p_{i + 1} is the minimum number such that p_{i + 1} > p_i and c[p_{i + 1}] > c[p_i]. You are given an array a_1, a_2, ..., a_n. For each its subsegment of length k, calculate the length of its longest greedy subsequence. Input The first line contains two integers n and k (1 ≀ k ≀ n ≀ 10^6) β€” the length of array a and the length of subsegments. The second line contains n integers a_1, a_2, ..., a_n (1 ≀ a_i ≀ n) β€” array a. Output Print n - k + 1 integers β€” the maximum lengths of greedy subsequences of each subsegment having length k. The first number should correspond to subsegment a[1..k], the second β€” to subsegment a[2..k + 1], and so on. Examples Input 6 4 1 5 2 5 3 6 Output 2 2 3 Input 7 6 4 5 2 5 3 6 6 Output 3 3 Note In the first example: * [1, 5, 2, 5] β€” the longest greedy subsequences are 1, 2 ([c_1, c_2] = [1, 5]) or 3, 4 ([c_3, c_4] = [2, 5]). * [5, 2, 5, 3] β€” the sequence is 2, 3 ([c_2, c_3] = [2, 5]). * [2, 5, 3, 6] β€” the sequence is 1, 2, 4 ([c_1, c_2, c_4] = [2, 5, 6]). In the second example: * [4, 5, 2, 5, 3, 6] β€” the longest greedy subsequences are 1, 2, 6 ([c_1, c_2, c_6] = [4, 5, 6]) or 3, 4, 6 ([c_3, c_4, c_6] = [2, 5, 6]). * [5, 2, 5, 3, 6, 6] β€” the subsequence is 2, 3, 5 ([c_2, c_3, c_5] = [2, 5, 6]). ### Response ```cpp #include <bits/stdc++.h> using namespace std; template <class TH> void _dbg(const char *sdbg, TH h) { cerr << sdbg << "=" << h << "\n"; } template <class TH, class... TA> void _dbg(const char *sdbg, TH h, TA... a) { while (*sdbg != ',') cerr << *sdbg++; cerr << "=" << h << ","; _dbg(sdbg + 1, a...); } mt19937 r(chrono::steady_clock::now().time_since_epoch().count()); long long rand_range(long long a, long long b) { assert(a <= b); return a + r() % (b - a + 1); } const long long K = 1000; const long long KK = K * K; const long long MIL = KK * K; const long long INF = MIL * MIL; const long long MOD = MIL + 7; const long long N = 1e6 + 10; vector<long long> G[N]; bool vis[N]; long long tim = 0; pair<long long, long long> czas[N]; void dfs(long long x) { czas[x].first = tim++; vis[x] = true; for (long long i : G[x]) if (!vis[i]) dfs(i); czas[x].second = tim - 1; } struct Node { Node() : Node(0){}; Node(long long v) { val[0] = v; val[1] = 0; } Node(Node a, Node b) { val[0] = max(a.val[0], b.val[0]); val[1] = 0; } void take(Node node, long long len) { val[0] += node.val[1]; val[1] += node.val[1]; } void reset() { val[1] = 0; } void add(long long v, long long len) { val[0] += v; val[1] += v; } long long val[2]; }; template <typename Nod, typename Vobj> struct RangeRangeTree { long long base; vector<Nod> drz; vector<bool> brud; RangeRangeTree(Vobj &o) { base = 1; while (base < (long long)((o).size())) base *= 2; drz.resize(2 * base); brud.resize(2 * base); for (long long i = ((0)); i <= (((long long)((o).size())) - 1); i++) drz[base + i] = Nod(o[i]); for (long long i = (base - 1); i >= (1); i--) drz[i] = Nod(drz[2 * i], drz[2 * i + 1]); } void czysc(long long x, long long len) { drz[2 * x].take(drz[x], len); drz[2 * x + 1].take(drz[x], len); drz[x].reset(); brud[2 * x] = brud[2 * x + 1] = 1; brud[x] = 0; } void update(long long l, long long r, long long v, long long p, long long k, long long x) { if (r < p || l > k) return; if (l <= p && k <= r) { drz[x].add(v, k - p + 1); brud[x] = 1; return; } if (brud[x]) czysc(x, (k - p + 1) / 2); long long sr = (p + k) / 2; update(l, r, v, p, sr, 2 * x); update(l, r, v, sr + 1, k, 2 * x + 1); drz[x] = Nod(drz[2 * x], drz[2 * x + 1]); } void update(long long l, long long r, long long v) { update(l, r, v, 0, base - 1, 1); } Nod query(long long l, long long r, long long p, long long k, long long x) { if (r < p || l > k) return Node(); if (l <= p && k <= r) { Nod pom = drz[x]; return drz[x]; } if (brud[x]) czysc(x, (k - p + 1) / 2); long long sr = (p + k) / 2; return Nod(query(l, r, p, sr, 2 * x), query(l, r, sr + 1, k, 2 * x + 1)); } Nod query(long long l, long long r) { return query(l, r, 0, base - 1, 1); } }; void solve() { long long n, k; cin >> n >> k; vector<long long> a(n + 1); for (long long i = ((0)); i <= ((n)-1); i++) cin >> a[i]; a[n] = MIL; vector<pair<long long, long long> > stos; stos.emplace_back(MIL, n); for (long long i = (n - 1); i >= (0); i--) { while (stos.back().first <= a[i]) stos.pop_back(); G[i].emplace_back(stos.back().second); G[stos.back().second].emplace_back(i); stos.emplace_back(a[i], i); } dfs(n); vector<long long> vpom(n + 1, 0); struct RangeRangeTree<Node, vector<long long> > drz(vpom); for (long long i = ((0)); i <= ((k - 1) - 1); i++) drz.update(czas[i].first, czas[i].second, 1); for (long long i = ((k - 1)); i <= ((n)-1); i++) { drz.update(czas[i].first, czas[i].second, 1); cout << drz.drz[1].val[0] << " "; drz.update(czas[i - k + 1].first, czas[i - k + 1].second, -1); } } int32_t main() { ios_base::sync_with_stdio(0); cin.tie(0); cout.tie(0); cerr.tie(0); cout << setprecision(9) << fixed; cerr << setprecision(6) << fixed; long long test = 1; while (test--) { solve(); } } ```
#include <bits/stdc++.h> using namespace std; template <typename A, typename B> inline void chmin(A &a, B b) { if (a > b) a = b; } template <typename A, typename B> inline void chmax(A &a, B b) { if (a < b) a = b; } template <class W, long long lg = 1> struct WeightedTree { struct Edge { long long to; W cost; Edge(long long to, W cost) : to(to), cost(cost) {} }; long long V; long long root; vector<vector<Edge>> G; vector<vector<long long>> par; vector<long long> dep, sz, head; vector<long long> tin, tout; vector<W> dist; WeightedTree(long long V = 0, long long root = 0) : V(V), root(root), G(V), par(lg, vector<long long>(V)), sz(V), dep(V), head(V), dist(V), tin(V), tout(V) {} void addEdge(long long a, long long b, W c = W(1)) { G[a].push_back(Edge(b, c)); G[b].push_back(Edge(a, c)); } void dfs(long long v, long long p, long long d, W c) { par[0][v] = p; dep[v] = d; sz[v] = 1; dist[v] = c; for (auto &e : G[v]) { if (e.to == p) continue; dfs(e.to, v, d + 1, c + e.cost); sz[v] += sz[e.to]; if (G[v][0].to == p || sz[e.to] > sz[G[v][0].to]) swap(G[v][0], e); } } void dfs_hld(long long v, long long &tt) { tin[v] = tt++; for (auto &e : G[v]) { if (e.to == par[0][v]) continue; head[e.to] = (e.to == G[v][0].to) ? head[v] : e.to; dfs_hld(e.to, tt); } tout[v] = tt; } void init() { dfs(root, -1, 0, W(0)); long long tt = 0; dfs_hld(root, tt); for (long long i = 0; i + 1 < lg; i++) { for (long long j = 0; j < V; j++) { if (par[i][j] == -1) par[i + 1][j] = -1; else par[i + 1][j] = par[i][par[i][j]]; } } } long long getLCA(long long u, long long v) { if (dep[u] < dep[v]) swap(u, v); for (long long i = 0; i < (lg); i++) if ((dep[u] - dep[v]) >> i & 1) u = par[i][u]; if (u == v) return u; for (long long i = lg - 1; i >= 0; i--) if (par[i][u] != par[i][v]) u = par[i][u], v = par[i][v]; return par[0][v]; } long long getLength(long long a, long long b = 0) { long long l = getLCA(a, b); return dep[a] + dep[b] - 2 * dep[l]; } W getDistance(long long a, long long b = 0) { long long l = getLCA(a, b); return dist[a] + dist[b] - 2 * dist[l]; } long long getParent(long long v, long long k = 0) { return par[k][v]; } long long getDepth(long long v) { return dep[v]; } long long getIn(long long v) { return tin[v]; } long long getOut(long long v) { return tout[v]; } }; WeightedTree<long long> T; const long long SEG = 1 << 20; long long dat[SEG * 2], put[SEG * 2]; void add(long long a, long long b, long long x, long long k = 0, long long l = 0, long long r = SEG) { if (r <= a || b <= l) return; if (a <= l && r <= b) { put[k] += x; return; } add(a, b, x, k * 2 + 1, l, (l + r) / 2); add(a, b, x, k * 2 + 2, (l + r) / 2, r); dat[k] = max(dat[k * 2 + 1] + put[k * 2 + 1], dat[k * 2 + 2] + put[k * 2 + 2]); } long long query(long long a, long long b, long long k = 0, long long l = 0, long long r = SEG) { if (r <= a || b <= l) return 0; if (a <= l && r <= b) return dat[k] + put[k]; return max(query(a, b, k * 2 + 1, l, (l + r) / 2), query(a, b, k * 2 + 2, (l + r) / 2, r)) + put[k]; } signed main() { long long N, K; scanf("%lld%lld", &N, &K); vector<long long> A(N); for (long long i = 0; i < (N); i++) scanf("%lld", &A[i]); T = WeightedTree<long long>(N + 1, N); vector<long long> stk; for (long long i = N - 1; i >= 0; i--) { while (stk.size() && A[stk.back()] <= A[i]) stk.pop_back(); if (stk.size()) { T.addEdge(i, stk.back()); } else { T.addEdge(N, i); } stk.push_back(i); } long long sum = 0; for (long long i = 0; i < (N + 1); i++) sum += T.G[i].size(); T.init(); for (long long i = 0; i < (K - 1); i++) { add(T.getIn(i), T.getOut(i), 1); } for (long long i = 0; i + K <= N; i++) { add(T.getIn(i + K - 1), T.getOut(i + K - 1), 1); if (i) printf(" "); printf("%lld", query(T.getIn(N), T.getOut(N))); add(T.getIn(i), T.getOut(i), -1); } return 0; }
### Prompt Please formulate a cpp solution to the following problem: For some array c, let's denote a greedy subsequence as a sequence of indices p_1, p_2, ..., p_l such that 1 ≀ p_1 < p_2 < ... < p_l ≀ |c|, and for each i ∈ [1, l - 1], p_{i + 1} is the minimum number such that p_{i + 1} > p_i and c[p_{i + 1}] > c[p_i]. You are given an array a_1, a_2, ..., a_n. For each its subsegment of length k, calculate the length of its longest greedy subsequence. Input The first line contains two integers n and k (1 ≀ k ≀ n ≀ 10^6) β€” the length of array a and the length of subsegments. The second line contains n integers a_1, a_2, ..., a_n (1 ≀ a_i ≀ n) β€” array a. Output Print n - k + 1 integers β€” the maximum lengths of greedy subsequences of each subsegment having length k. The first number should correspond to subsegment a[1..k], the second β€” to subsegment a[2..k + 1], and so on. Examples Input 6 4 1 5 2 5 3 6 Output 2 2 3 Input 7 6 4 5 2 5 3 6 6 Output 3 3 Note In the first example: * [1, 5, 2, 5] β€” the longest greedy subsequences are 1, 2 ([c_1, c_2] = [1, 5]) or 3, 4 ([c_3, c_4] = [2, 5]). * [5, 2, 5, 3] β€” the sequence is 2, 3 ([c_2, c_3] = [2, 5]). * [2, 5, 3, 6] β€” the sequence is 1, 2, 4 ([c_1, c_2, c_4] = [2, 5, 6]). In the second example: * [4, 5, 2, 5, 3, 6] β€” the longest greedy subsequences are 1, 2, 6 ([c_1, c_2, c_6] = [4, 5, 6]) or 3, 4, 6 ([c_3, c_4, c_6] = [2, 5, 6]). * [5, 2, 5, 3, 6, 6] β€” the subsequence is 2, 3, 5 ([c_2, c_3, c_5] = [2, 5, 6]). ### Response ```cpp #include <bits/stdc++.h> using namespace std; template <typename A, typename B> inline void chmin(A &a, B b) { if (a > b) a = b; } template <typename A, typename B> inline void chmax(A &a, B b) { if (a < b) a = b; } template <class W, long long lg = 1> struct WeightedTree { struct Edge { long long to; W cost; Edge(long long to, W cost) : to(to), cost(cost) {} }; long long V; long long root; vector<vector<Edge>> G; vector<vector<long long>> par; vector<long long> dep, sz, head; vector<long long> tin, tout; vector<W> dist; WeightedTree(long long V = 0, long long root = 0) : V(V), root(root), G(V), par(lg, vector<long long>(V)), sz(V), dep(V), head(V), dist(V), tin(V), tout(V) {} void addEdge(long long a, long long b, W c = W(1)) { G[a].push_back(Edge(b, c)); G[b].push_back(Edge(a, c)); } void dfs(long long v, long long p, long long d, W c) { par[0][v] = p; dep[v] = d; sz[v] = 1; dist[v] = c; for (auto &e : G[v]) { if (e.to == p) continue; dfs(e.to, v, d + 1, c + e.cost); sz[v] += sz[e.to]; if (G[v][0].to == p || sz[e.to] > sz[G[v][0].to]) swap(G[v][0], e); } } void dfs_hld(long long v, long long &tt) { tin[v] = tt++; for (auto &e : G[v]) { if (e.to == par[0][v]) continue; head[e.to] = (e.to == G[v][0].to) ? head[v] : e.to; dfs_hld(e.to, tt); } tout[v] = tt; } void init() { dfs(root, -1, 0, W(0)); long long tt = 0; dfs_hld(root, tt); for (long long i = 0; i + 1 < lg; i++) { for (long long j = 0; j < V; j++) { if (par[i][j] == -1) par[i + 1][j] = -1; else par[i + 1][j] = par[i][par[i][j]]; } } } long long getLCA(long long u, long long v) { if (dep[u] < dep[v]) swap(u, v); for (long long i = 0; i < (lg); i++) if ((dep[u] - dep[v]) >> i & 1) u = par[i][u]; if (u == v) return u; for (long long i = lg - 1; i >= 0; i--) if (par[i][u] != par[i][v]) u = par[i][u], v = par[i][v]; return par[0][v]; } long long getLength(long long a, long long b = 0) { long long l = getLCA(a, b); return dep[a] + dep[b] - 2 * dep[l]; } W getDistance(long long a, long long b = 0) { long long l = getLCA(a, b); return dist[a] + dist[b] - 2 * dist[l]; } long long getParent(long long v, long long k = 0) { return par[k][v]; } long long getDepth(long long v) { return dep[v]; } long long getIn(long long v) { return tin[v]; } long long getOut(long long v) { return tout[v]; } }; WeightedTree<long long> T; const long long SEG = 1 << 20; long long dat[SEG * 2], put[SEG * 2]; void add(long long a, long long b, long long x, long long k = 0, long long l = 0, long long r = SEG) { if (r <= a || b <= l) return; if (a <= l && r <= b) { put[k] += x; return; } add(a, b, x, k * 2 + 1, l, (l + r) / 2); add(a, b, x, k * 2 + 2, (l + r) / 2, r); dat[k] = max(dat[k * 2 + 1] + put[k * 2 + 1], dat[k * 2 + 2] + put[k * 2 + 2]); } long long query(long long a, long long b, long long k = 0, long long l = 0, long long r = SEG) { if (r <= a || b <= l) return 0; if (a <= l && r <= b) return dat[k] + put[k]; return max(query(a, b, k * 2 + 1, l, (l + r) / 2), query(a, b, k * 2 + 2, (l + r) / 2, r)) + put[k]; } signed main() { long long N, K; scanf("%lld%lld", &N, &K); vector<long long> A(N); for (long long i = 0; i < (N); i++) scanf("%lld", &A[i]); T = WeightedTree<long long>(N + 1, N); vector<long long> stk; for (long long i = N - 1; i >= 0; i--) { while (stk.size() && A[stk.back()] <= A[i]) stk.pop_back(); if (stk.size()) { T.addEdge(i, stk.back()); } else { T.addEdge(N, i); } stk.push_back(i); } long long sum = 0; for (long long i = 0; i < (N + 1); i++) sum += T.G[i].size(); T.init(); for (long long i = 0; i < (K - 1); i++) { add(T.getIn(i), T.getOut(i), 1); } for (long long i = 0; i + K <= N; i++) { add(T.getIn(i + K - 1), T.getOut(i + K - 1), 1); if (i) printf(" "); printf("%lld", query(T.getIn(N), T.getOut(N))); add(T.getIn(i), T.getOut(i), -1); } return 0; } ```
#include <bits/stdc++.h> using namespace std; const long long int INF = 9223372036854775807; int MOD(int a, int b) { if (a > b) return a - b; else return b - a; } int max3(int a, int b, int c) { return max(c, max(a, b)); } int min3(int a, int b, int c) { return min(a, min(b, c)); } long long int power(long long int x, long long int y) { long long int res = 1; while (y > 0) { if (y & 1) res = (res * x) % 1000000007; y = y >> 1; x = (x * x) % 1000000007; } return res % 1000000007; } long long int logg(long long int a) { long long int x = 0; while (a > 1) { x++; a /= 2; } return x; } long long int gcd(long long int a, long long int b) { if (a == 0) return b; return gcd(b % a, a); } long long int abso(long long int x) { if (x < 0) { return -x; } return x; } long long int ceiling(long long int a, long long int b) { if (a % b == 0) { return a / b; } else { return a / b + 1; } } long long int modinv(long long int x) { return power(x, 1000000007 - 2); } vector<int> cnt; vector<int> r; int n, k; vector<int> a; int start; int fin; vector<int> ans; vector<int> tree; vector<int> lazy; void build(int node, int start, int end) { if (start == end) { tree[node] = ans[start]; } else { int mid = (start + end) / 2; build(2 * node, start, mid); build(2 * node + 1, mid + 1, end); tree[node] = max(tree[2 * node], tree[2 * node + 1]); } } void del(int ind) { if (fin <= n + 1 && r[fin] == ind) { cnt[fin] = INF; r[fin] = -1; fin--; } } int add(int ind) { int temp_index = lower_bound(cnt.begin() + start, cnt.begin() + fin, a[ind]) - cnt.begin(); temp_index--; start = temp_index; cnt[start] = a[ind]; r[start] = ind; if (start + 1 >= cnt.size() || cnt[start + 1] == INF) { return r[start] - k + 1; } else { return r[start + 1] + 1; } } void updateRange(int node, int start, int end, int l, int r, int val) { if (lazy[node] != 0) { tree[node] += lazy[node]; if (start != end) { lazy[node * 2] += lazy[node]; lazy[node * 2 + 1] += lazy[node]; } lazy[node] = 0; } if (start > end or start > r or end < l) return; if (start >= l and end <= r) { tree[node] += val; if (start != end) { lazy[node * 2] += val; lazy[node * 2 + 1] += val; } return; } int mid = (start + end) / 2; updateRange(node * 2, start, mid, l, r, val); updateRange(node * 2 + 1, mid + 1, end, l, r, val); tree[node] = max(tree[node * 2], tree[node * 2 + 1]); } int queryRange(int node, int start, int end, int l, int r) { if (start > end or start > r or end < l) return 0; if (lazy[node] != 0) { tree[node] += lazy[node]; if (start != end) { lazy[node * 2] += lazy[node]; lazy[node * 2 + 1] += lazy[node]; } lazy[node] = 0; } if (start >= l and end <= r) return tree[node]; int mid = (start + end) / 2; int p1 = queryRange(node * 2, start, mid, l, r); int p2 = queryRange(node * 2 + 1, mid + 1, end, l, r); return (max(p1, p2)); } int main() { ios_base::sync_with_stdio(false); cin.tie(NULL); cout.tie(NULL); ; cin >> n >> k; start = n + 2; fin = n + 2; a.resize(n); tree.resize(4 * n + 50); lazy.resize(4 * n + 50); for (int i = 0; i < n; i++) { cin >> a[i]; } cnt.resize(n + 2, -1); ans.resize(n, 0); r.resize(n + 2, -1); build(1, 0, n - 1); for (int i = 0; i < k; i++) { int ind = add(i); updateRange(1, 0, n - 1, max(0, ind), i, 1); } cout << queryRange(1, 0, n - 1, 0, k - 1) << ' '; for (int i = 1; i + k - 1 < n; i++) { del(i - 1); int cur_index = add(i + k - 1); updateRange(1, 0, n - 1, max(0, cur_index), min(n - 1, i + k - 1), 1); cout << queryRange(1, 0, n - 1, i, i + k - 1) << ' '; } }
### Prompt Create a solution in cpp for the following problem: For some array c, let's denote a greedy subsequence as a sequence of indices p_1, p_2, ..., p_l such that 1 ≀ p_1 < p_2 < ... < p_l ≀ |c|, and for each i ∈ [1, l - 1], p_{i + 1} is the minimum number such that p_{i + 1} > p_i and c[p_{i + 1}] > c[p_i]. You are given an array a_1, a_2, ..., a_n. For each its subsegment of length k, calculate the length of its longest greedy subsequence. Input The first line contains two integers n and k (1 ≀ k ≀ n ≀ 10^6) β€” the length of array a and the length of subsegments. The second line contains n integers a_1, a_2, ..., a_n (1 ≀ a_i ≀ n) β€” array a. Output Print n - k + 1 integers β€” the maximum lengths of greedy subsequences of each subsegment having length k. The first number should correspond to subsegment a[1..k], the second β€” to subsegment a[2..k + 1], and so on. Examples Input 6 4 1 5 2 5 3 6 Output 2 2 3 Input 7 6 4 5 2 5 3 6 6 Output 3 3 Note In the first example: * [1, 5, 2, 5] β€” the longest greedy subsequences are 1, 2 ([c_1, c_2] = [1, 5]) or 3, 4 ([c_3, c_4] = [2, 5]). * [5, 2, 5, 3] β€” the sequence is 2, 3 ([c_2, c_3] = [2, 5]). * [2, 5, 3, 6] β€” the sequence is 1, 2, 4 ([c_1, c_2, c_4] = [2, 5, 6]). In the second example: * [4, 5, 2, 5, 3, 6] β€” the longest greedy subsequences are 1, 2, 6 ([c_1, c_2, c_6] = [4, 5, 6]) or 3, 4, 6 ([c_3, c_4, c_6] = [2, 5, 6]). * [5, 2, 5, 3, 6, 6] β€” the subsequence is 2, 3, 5 ([c_2, c_3, c_5] = [2, 5, 6]). ### Response ```cpp #include <bits/stdc++.h> using namespace std; const long long int INF = 9223372036854775807; int MOD(int a, int b) { if (a > b) return a - b; else return b - a; } int max3(int a, int b, int c) { return max(c, max(a, b)); } int min3(int a, int b, int c) { return min(a, min(b, c)); } long long int power(long long int x, long long int y) { long long int res = 1; while (y > 0) { if (y & 1) res = (res * x) % 1000000007; y = y >> 1; x = (x * x) % 1000000007; } return res % 1000000007; } long long int logg(long long int a) { long long int x = 0; while (a > 1) { x++; a /= 2; } return x; } long long int gcd(long long int a, long long int b) { if (a == 0) return b; return gcd(b % a, a); } long long int abso(long long int x) { if (x < 0) { return -x; } return x; } long long int ceiling(long long int a, long long int b) { if (a % b == 0) { return a / b; } else { return a / b + 1; } } long long int modinv(long long int x) { return power(x, 1000000007 - 2); } vector<int> cnt; vector<int> r; int n, k; vector<int> a; int start; int fin; vector<int> ans; vector<int> tree; vector<int> lazy; void build(int node, int start, int end) { if (start == end) { tree[node] = ans[start]; } else { int mid = (start + end) / 2; build(2 * node, start, mid); build(2 * node + 1, mid + 1, end); tree[node] = max(tree[2 * node], tree[2 * node + 1]); } } void del(int ind) { if (fin <= n + 1 && r[fin] == ind) { cnt[fin] = INF; r[fin] = -1; fin--; } } int add(int ind) { int temp_index = lower_bound(cnt.begin() + start, cnt.begin() + fin, a[ind]) - cnt.begin(); temp_index--; start = temp_index; cnt[start] = a[ind]; r[start] = ind; if (start + 1 >= cnt.size() || cnt[start + 1] == INF) { return r[start] - k + 1; } else { return r[start + 1] + 1; } } void updateRange(int node, int start, int end, int l, int r, int val) { if (lazy[node] != 0) { tree[node] += lazy[node]; if (start != end) { lazy[node * 2] += lazy[node]; lazy[node * 2 + 1] += lazy[node]; } lazy[node] = 0; } if (start > end or start > r or end < l) return; if (start >= l and end <= r) { tree[node] += val; if (start != end) { lazy[node * 2] += val; lazy[node * 2 + 1] += val; } return; } int mid = (start + end) / 2; updateRange(node * 2, start, mid, l, r, val); updateRange(node * 2 + 1, mid + 1, end, l, r, val); tree[node] = max(tree[node * 2], tree[node * 2 + 1]); } int queryRange(int node, int start, int end, int l, int r) { if (start > end or start > r or end < l) return 0; if (lazy[node] != 0) { tree[node] += lazy[node]; if (start != end) { lazy[node * 2] += lazy[node]; lazy[node * 2 + 1] += lazy[node]; } lazy[node] = 0; } if (start >= l and end <= r) return tree[node]; int mid = (start + end) / 2; int p1 = queryRange(node * 2, start, mid, l, r); int p2 = queryRange(node * 2 + 1, mid + 1, end, l, r); return (max(p1, p2)); } int main() { ios_base::sync_with_stdio(false); cin.tie(NULL); cout.tie(NULL); ; cin >> n >> k; start = n + 2; fin = n + 2; a.resize(n); tree.resize(4 * n + 50); lazy.resize(4 * n + 50); for (int i = 0; i < n; i++) { cin >> a[i]; } cnt.resize(n + 2, -1); ans.resize(n, 0); r.resize(n + 2, -1); build(1, 0, n - 1); for (int i = 0; i < k; i++) { int ind = add(i); updateRange(1, 0, n - 1, max(0, ind), i, 1); } cout << queryRange(1, 0, n - 1, 0, k - 1) << ' '; for (int i = 1; i + k - 1 < n; i++) { del(i - 1); int cur_index = add(i + k - 1); updateRange(1, 0, n - 1, max(0, cur_index), min(n - 1, i + k - 1), 1); cout << queryRange(1, 0, n - 1, i, i + k - 1) << ' '; } } ```
#include <bits/stdc++.h> #pragma comment(linker, "/STACK:16000000") using namespace std; const int Maxn = 1000005; const int Maxm = 4194304; int n, k; vector<int> neigh[Maxn]; int cur, lef[Maxn], rig[Maxn]; int st[Maxm], flag[Maxm]; void Traverse(int v) { lef[v] = ++cur; for (int i = 0; i < neigh[v].size(); i++) Traverse(neigh[v][i]); rig[v] = cur; } void downOn(int v, int f) { st[v] += f; flag[v] += f; } void Down(int v) { if (flag[v]) { downOn(2 * v, flag[v]); downOn(2 * v + 1, flag[v]); flag[v] = 0; } } void Union(int v) { st[v] = max(st[2 * v], st[2 * v + 1]); } void Update(int v, int l, int r, int a, int b, int val) { if (l == a && r == b) downOn(v, val); else { int m = l + r >> 1; Down(v); if (a <= m) Update(2 * v, l, m, a, min(m, b), val); if (m + 1 <= b) Update(2 * v + 1, m + 1, r, max(m + 1, a), b, val); Union(v); } } int main() { scanf("%d %d", &n, &k); vector<pair<int, int> > S; for (int i = 1; i <= n; i++) { int a; scanf("%d", &a); while (!S.empty() && S.back().first < a) { neigh[i].push_back(S.back().second); S.pop_back(); } S.push_back(pair<int, int>(a, i)); } for (int i = n; i > 0; i--) if (!lef[i]) Traverse(i); for (int i = 1; i < k; i++) Update(1, 1, n, lef[i], rig[i], 1); for (int i = k; i <= n; i++) { Update(1, 1, n, lef[i], rig[i], 1); printf("%d%c", st[1], i + 1 <= n ? ' ' : '\n'); Update(1, 1, n, lef[i - (k - 1)], rig[i - (k - 1)], -1); } return 0; }
### Prompt Develop a solution in cpp to the problem described below: For some array c, let's denote a greedy subsequence as a sequence of indices p_1, p_2, ..., p_l such that 1 ≀ p_1 < p_2 < ... < p_l ≀ |c|, and for each i ∈ [1, l - 1], p_{i + 1} is the minimum number such that p_{i + 1} > p_i and c[p_{i + 1}] > c[p_i]. You are given an array a_1, a_2, ..., a_n. For each its subsegment of length k, calculate the length of its longest greedy subsequence. Input The first line contains two integers n and k (1 ≀ k ≀ n ≀ 10^6) β€” the length of array a and the length of subsegments. The second line contains n integers a_1, a_2, ..., a_n (1 ≀ a_i ≀ n) β€” array a. Output Print n - k + 1 integers β€” the maximum lengths of greedy subsequences of each subsegment having length k. The first number should correspond to subsegment a[1..k], the second β€” to subsegment a[2..k + 1], and so on. Examples Input 6 4 1 5 2 5 3 6 Output 2 2 3 Input 7 6 4 5 2 5 3 6 6 Output 3 3 Note In the first example: * [1, 5, 2, 5] β€” the longest greedy subsequences are 1, 2 ([c_1, c_2] = [1, 5]) or 3, 4 ([c_3, c_4] = [2, 5]). * [5, 2, 5, 3] β€” the sequence is 2, 3 ([c_2, c_3] = [2, 5]). * [2, 5, 3, 6] β€” the sequence is 1, 2, 4 ([c_1, c_2, c_4] = [2, 5, 6]). In the second example: * [4, 5, 2, 5, 3, 6] β€” the longest greedy subsequences are 1, 2, 6 ([c_1, c_2, c_6] = [4, 5, 6]) or 3, 4, 6 ([c_3, c_4, c_6] = [2, 5, 6]). * [5, 2, 5, 3, 6, 6] β€” the subsequence is 2, 3, 5 ([c_2, c_3, c_5] = [2, 5, 6]). ### Response ```cpp #include <bits/stdc++.h> #pragma comment(linker, "/STACK:16000000") using namespace std; const int Maxn = 1000005; const int Maxm = 4194304; int n, k; vector<int> neigh[Maxn]; int cur, lef[Maxn], rig[Maxn]; int st[Maxm], flag[Maxm]; void Traverse(int v) { lef[v] = ++cur; for (int i = 0; i < neigh[v].size(); i++) Traverse(neigh[v][i]); rig[v] = cur; } void downOn(int v, int f) { st[v] += f; flag[v] += f; } void Down(int v) { if (flag[v]) { downOn(2 * v, flag[v]); downOn(2 * v + 1, flag[v]); flag[v] = 0; } } void Union(int v) { st[v] = max(st[2 * v], st[2 * v + 1]); } void Update(int v, int l, int r, int a, int b, int val) { if (l == a && r == b) downOn(v, val); else { int m = l + r >> 1; Down(v); if (a <= m) Update(2 * v, l, m, a, min(m, b), val); if (m + 1 <= b) Update(2 * v + 1, m + 1, r, max(m + 1, a), b, val); Union(v); } } int main() { scanf("%d %d", &n, &k); vector<pair<int, int> > S; for (int i = 1; i <= n; i++) { int a; scanf("%d", &a); while (!S.empty() && S.back().first < a) { neigh[i].push_back(S.back().second); S.pop_back(); } S.push_back(pair<int, int>(a, i)); } for (int i = n; i > 0; i--) if (!lef[i]) Traverse(i); for (int i = 1; i < k; i++) Update(1, 1, n, lef[i], rig[i], 1); for (int i = k; i <= n; i++) { Update(1, 1, n, lef[i], rig[i], 1); printf("%d%c", st[1], i + 1 <= n ? ' ' : '\n'); Update(1, 1, n, lef[i - (k - 1)], rig[i - (k - 1)], -1); } return 0; } ```
#include <bits/stdc++.h> using namespace std; const int MAXN = 1000000 + 5; const int inf = 0x3f3f3f3f; int n, k, dfs_clock, A[MAXN], dfn[MAXN], sz[MAXN]; vector<int> G[MAXN]; stack<pair<int, int> > s; inline void add(int u, int v) { G[u].push_back(v); } void dfs(int u) { sz[u] = 1, dfn[u] = ++dfs_clock; for (int i = 0; i < (int)G[u].size(); ++i) dfs(G[u][i]), sz[u] += sz[G[u][i]]; } int maxv[MAXN << 2], addv[MAXN << 2]; inline void up(int o) { maxv[o] = max(maxv[(o << 1)], maxv[((o << 1) | 1)]); } inline void Add(int o, int k) { maxv[o] += k, addv[o] += k; } inline void down(int o) { if (addv[o]) { Add((o << 1), addv[o]); Add(((o << 1) | 1), addv[o]); addv[o] = 0; } } inline void modify(int o, int l, int r, int ql, int qr, int k) { if (qr < l || ql > r) return; if (ql <= l && r <= qr) return Add(o, k); down(o); modify((o << 1), l, ((l + r) >> 1), ql, qr, k); modify(((o << 1) | 1), ((l + r) >> 1) + 1, r, ql, qr, k); up(o); } int main() { scanf("%d %d", &n, &k); for (int i = 1; i <= n; ++i) scanf("%d", A + i); A[++n] = inf; for (int i = 1; i <= n; ++i) { while (!s.empty() && s.top().first < A[i]) add(i, s.top().second), s.pop(); s.push(make_pair(A[i], i)); } dfs(n); for (int i = 1; i <= k; ++i) modify(1, 1, n, dfn[i], dfn[i] + sz[i] - 1, 1); printf("%d ", maxv[1]); for (int i = k + 1; i < n; ++i) { modify(1, 1, n, dfn[i], dfn[i] + sz[i] - 1, 1); modify(1, 1, n, dfn[i - k], dfn[i - k] + sz[i - k] - 1, -1); printf("%d ", maxv[1]); } return 0; }
### Prompt Please formulate a Cpp solution to the following problem: For some array c, let's denote a greedy subsequence as a sequence of indices p_1, p_2, ..., p_l such that 1 ≀ p_1 < p_2 < ... < p_l ≀ |c|, and for each i ∈ [1, l - 1], p_{i + 1} is the minimum number such that p_{i + 1} > p_i and c[p_{i + 1}] > c[p_i]. You are given an array a_1, a_2, ..., a_n. For each its subsegment of length k, calculate the length of its longest greedy subsequence. Input The first line contains two integers n and k (1 ≀ k ≀ n ≀ 10^6) β€” the length of array a and the length of subsegments. The second line contains n integers a_1, a_2, ..., a_n (1 ≀ a_i ≀ n) β€” array a. Output Print n - k + 1 integers β€” the maximum lengths of greedy subsequences of each subsegment having length k. The first number should correspond to subsegment a[1..k], the second β€” to subsegment a[2..k + 1], and so on. Examples Input 6 4 1 5 2 5 3 6 Output 2 2 3 Input 7 6 4 5 2 5 3 6 6 Output 3 3 Note In the first example: * [1, 5, 2, 5] β€” the longest greedy subsequences are 1, 2 ([c_1, c_2] = [1, 5]) or 3, 4 ([c_3, c_4] = [2, 5]). * [5, 2, 5, 3] β€” the sequence is 2, 3 ([c_2, c_3] = [2, 5]). * [2, 5, 3, 6] β€” the sequence is 1, 2, 4 ([c_1, c_2, c_4] = [2, 5, 6]). In the second example: * [4, 5, 2, 5, 3, 6] β€” the longest greedy subsequences are 1, 2, 6 ([c_1, c_2, c_6] = [4, 5, 6]) or 3, 4, 6 ([c_3, c_4, c_6] = [2, 5, 6]). * [5, 2, 5, 3, 6, 6] β€” the subsequence is 2, 3, 5 ([c_2, c_3, c_5] = [2, 5, 6]). ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int MAXN = 1000000 + 5; const int inf = 0x3f3f3f3f; int n, k, dfs_clock, A[MAXN], dfn[MAXN], sz[MAXN]; vector<int> G[MAXN]; stack<pair<int, int> > s; inline void add(int u, int v) { G[u].push_back(v); } void dfs(int u) { sz[u] = 1, dfn[u] = ++dfs_clock; for (int i = 0; i < (int)G[u].size(); ++i) dfs(G[u][i]), sz[u] += sz[G[u][i]]; } int maxv[MAXN << 2], addv[MAXN << 2]; inline void up(int o) { maxv[o] = max(maxv[(o << 1)], maxv[((o << 1) | 1)]); } inline void Add(int o, int k) { maxv[o] += k, addv[o] += k; } inline void down(int o) { if (addv[o]) { Add((o << 1), addv[o]); Add(((o << 1) | 1), addv[o]); addv[o] = 0; } } inline void modify(int o, int l, int r, int ql, int qr, int k) { if (qr < l || ql > r) return; if (ql <= l && r <= qr) return Add(o, k); down(o); modify((o << 1), l, ((l + r) >> 1), ql, qr, k); modify(((o << 1) | 1), ((l + r) >> 1) + 1, r, ql, qr, k); up(o); } int main() { scanf("%d %d", &n, &k); for (int i = 1; i <= n; ++i) scanf("%d", A + i); A[++n] = inf; for (int i = 1; i <= n; ++i) { while (!s.empty() && s.top().first < A[i]) add(i, s.top().second), s.pop(); s.push(make_pair(A[i], i)); } dfs(n); for (int i = 1; i <= k; ++i) modify(1, 1, n, dfn[i], dfn[i] + sz[i] - 1, 1); printf("%d ", maxv[1]); for (int i = k + 1; i < n; ++i) { modify(1, 1, n, dfn[i], dfn[i] + sz[i] - 1, 1); modify(1, 1, n, dfn[i - k], dfn[i - k] + sz[i - k] - 1, -1); printf("%d ", maxv[1]); } return 0; } ```
#include <bits/stdc++.h> using namespace std; int n, k, i, a[2000005], tin[2000005], tout[2000005], timer; int t[2000005 * 4], flag[2000005 * 4]; vector<int> g[2000005]; vector<pair<int, int> > st; void push(int v, int l, int r) { if (!flag[v]) return; if (l != r) { t[v * 2] += flag[v]; t[v * 2 + 1] += flag[v]; flag[v * 2] += flag[v]; flag[v * 2 + 1] += flag[v]; } flag[v] = 0; } void upd(int v, int tl, int tr, int l, int r, int x) { int m = (tl + tr) / 2; push(v, tl, tr); if (l > r) return; if (tl == l && tr == r) { t[v] = max(-1000000000, t[v] + x); flag[v] += x; return; } upd(v * 2, tl, m, l, min(r, m), x); upd(v * 2 + 1, m + 1, tr, max(l, m + 1), r, x); t[v] = max(t[v * 2], t[v * 2 + 1]); } void dfs(int v) { int i, to; tin[v] = timer++; for (i = 0; i < g[v].size(); i++) { to = g[v][i]; dfs(to); } tout[v] = timer++; } int main() { ios_base ::sync_with_stdio(); cin.tie(0); scanf("%d%d", &n, &k); for (i = 0; i < n; i++) { scanf("%d", &a[i]); while (st.size() > 0 && st.back().first < a[i]) { g[i].push_back(st.back().second); st.pop_back(); } st.push_back(make_pair(a[i], i)); } while (st.size() != 0) { dfs(st.back().second); st.pop_back(); } for (i = 0; i < n; i++) { if (i - k >= 0) upd(1, 0, 2 * n, tin[i - k], tout[i - k], -n); upd(1, 0, 2 * n, tin[i], tout[i], 1); if (i >= k - 1) printf("%d ", t[1]); } return 0; }
### Prompt Please create a solution in CPP to the following problem: For some array c, let's denote a greedy subsequence as a sequence of indices p_1, p_2, ..., p_l such that 1 ≀ p_1 < p_2 < ... < p_l ≀ |c|, and for each i ∈ [1, l - 1], p_{i + 1} is the minimum number such that p_{i + 1} > p_i and c[p_{i + 1}] > c[p_i]. You are given an array a_1, a_2, ..., a_n. For each its subsegment of length k, calculate the length of its longest greedy subsequence. Input The first line contains two integers n and k (1 ≀ k ≀ n ≀ 10^6) β€” the length of array a and the length of subsegments. The second line contains n integers a_1, a_2, ..., a_n (1 ≀ a_i ≀ n) β€” array a. Output Print n - k + 1 integers β€” the maximum lengths of greedy subsequences of each subsegment having length k. The first number should correspond to subsegment a[1..k], the second β€” to subsegment a[2..k + 1], and so on. Examples Input 6 4 1 5 2 5 3 6 Output 2 2 3 Input 7 6 4 5 2 5 3 6 6 Output 3 3 Note In the first example: * [1, 5, 2, 5] β€” the longest greedy subsequences are 1, 2 ([c_1, c_2] = [1, 5]) or 3, 4 ([c_3, c_4] = [2, 5]). * [5, 2, 5, 3] β€” the sequence is 2, 3 ([c_2, c_3] = [2, 5]). * [2, 5, 3, 6] β€” the sequence is 1, 2, 4 ([c_1, c_2, c_4] = [2, 5, 6]). In the second example: * [4, 5, 2, 5, 3, 6] β€” the longest greedy subsequences are 1, 2, 6 ([c_1, c_2, c_6] = [4, 5, 6]) or 3, 4, 6 ([c_3, c_4, c_6] = [2, 5, 6]). * [5, 2, 5, 3, 6, 6] β€” the subsequence is 2, 3, 5 ([c_2, c_3, c_5] = [2, 5, 6]). ### Response ```cpp #include <bits/stdc++.h> using namespace std; int n, k, i, a[2000005], tin[2000005], tout[2000005], timer; int t[2000005 * 4], flag[2000005 * 4]; vector<int> g[2000005]; vector<pair<int, int> > st; void push(int v, int l, int r) { if (!flag[v]) return; if (l != r) { t[v * 2] += flag[v]; t[v * 2 + 1] += flag[v]; flag[v * 2] += flag[v]; flag[v * 2 + 1] += flag[v]; } flag[v] = 0; } void upd(int v, int tl, int tr, int l, int r, int x) { int m = (tl + tr) / 2; push(v, tl, tr); if (l > r) return; if (tl == l && tr == r) { t[v] = max(-1000000000, t[v] + x); flag[v] += x; return; } upd(v * 2, tl, m, l, min(r, m), x); upd(v * 2 + 1, m + 1, tr, max(l, m + 1), r, x); t[v] = max(t[v * 2], t[v * 2 + 1]); } void dfs(int v) { int i, to; tin[v] = timer++; for (i = 0; i < g[v].size(); i++) { to = g[v][i]; dfs(to); } tout[v] = timer++; } int main() { ios_base ::sync_with_stdio(); cin.tie(0); scanf("%d%d", &n, &k); for (i = 0; i < n; i++) { scanf("%d", &a[i]); while (st.size() > 0 && st.back().first < a[i]) { g[i].push_back(st.back().second); st.pop_back(); } st.push_back(make_pair(a[i], i)); } while (st.size() != 0) { dfs(st.back().second); st.pop_back(); } for (i = 0; i < n; i++) { if (i - k >= 0) upd(1, 0, 2 * n, tin[i - k], tout[i - k], -n); upd(1, 0, 2 * n, tin[i], tout[i], 1); if (i >= k - 1) printf("%d ", t[1]); } return 0; } ```
#include <bits/stdc++.h> using namespace std; int n, k, a[1000006], nxt[1000006], tin[1000006], tout[1000006]; vector<int> s, g[1000006], ord; int t[4 * 1000006], d[4 * 1000006]; void dfs(int v) { ord.push_back(v); tin[v] = ord.size() - 1; for (int i = 0; i < g[v].size(); i++) { int to = g[v][i]; dfs(to); } tout[v] = ord.size() - 1; } void push(int v, int l, int r, bool f = 1) { if (d[v] == 0) return; if (l != r) { int m = (l + r) / 2; d[v * 2] += d[v]; d[v * 2 + 1] += d[v]; if (f) { push(v * 2, l, m, 0); push(v * 2 + 1, m + 1, r, 0); } } t[v] += d[v]; d[v] = 0; } void add(int v, int l, int r, int i, int j, int val) { if (i > j) return; push(v, l, r); if (l == i && r == j) { d[v] += val; push(v, l, r); return; } int m = (l + r) / 2; add(v * 2, l, m, i, min(m, j), val); add(v * 2 + 1, m + 1, r, max(m + 1, i), j, val); push(v * 2, l, m); push(v * 2 + 1, m + 1, r); t[v] = max(t[v * 2], t[v * 2 + 1]); } int main() { cin >> n >> k; for (int i = 1; i <= n; i++) scanf("%d", a + i); a[n + 1] = 1000000007ll; s.push_back(n + 1); for (int i = n; i >= 1; i--) { while (a[s.back()] <= a[i]) s.pop_back(); nxt[i] = s.back(); s.push_back(i); g[nxt[i]].push_back(i); } dfs(n + 1); for (int i = 1; i <= k; i++) add(1, 0, ord.size() - 1, tin[i], tout[i], 1); printf("%d ", t[1]); for (int i = k + 1; i <= n; i++) { add(1, 0, ord.size() - 1, tin[i], tout[i], 1); add(1, 0, ord.size() - 1, tin[i - k], tout[i - k], -1); printf("%d ", t[1]); } cout << endl; return 0; }
### Prompt Please provide a cpp coded solution to the problem described below: For some array c, let's denote a greedy subsequence as a sequence of indices p_1, p_2, ..., p_l such that 1 ≀ p_1 < p_2 < ... < p_l ≀ |c|, and for each i ∈ [1, l - 1], p_{i + 1} is the minimum number such that p_{i + 1} > p_i and c[p_{i + 1}] > c[p_i]. You are given an array a_1, a_2, ..., a_n. For each its subsegment of length k, calculate the length of its longest greedy subsequence. Input The first line contains two integers n and k (1 ≀ k ≀ n ≀ 10^6) β€” the length of array a and the length of subsegments. The second line contains n integers a_1, a_2, ..., a_n (1 ≀ a_i ≀ n) β€” array a. Output Print n - k + 1 integers β€” the maximum lengths of greedy subsequences of each subsegment having length k. The first number should correspond to subsegment a[1..k], the second β€” to subsegment a[2..k + 1], and so on. Examples Input 6 4 1 5 2 5 3 6 Output 2 2 3 Input 7 6 4 5 2 5 3 6 6 Output 3 3 Note In the first example: * [1, 5, 2, 5] β€” the longest greedy subsequences are 1, 2 ([c_1, c_2] = [1, 5]) or 3, 4 ([c_3, c_4] = [2, 5]). * [5, 2, 5, 3] β€” the sequence is 2, 3 ([c_2, c_3] = [2, 5]). * [2, 5, 3, 6] β€” the sequence is 1, 2, 4 ([c_1, c_2, c_4] = [2, 5, 6]). In the second example: * [4, 5, 2, 5, 3, 6] β€” the longest greedy subsequences are 1, 2, 6 ([c_1, c_2, c_6] = [4, 5, 6]) or 3, 4, 6 ([c_3, c_4, c_6] = [2, 5, 6]). * [5, 2, 5, 3, 6, 6] β€” the subsequence is 2, 3, 5 ([c_2, c_3, c_5] = [2, 5, 6]). ### Response ```cpp #include <bits/stdc++.h> using namespace std; int n, k, a[1000006], nxt[1000006], tin[1000006], tout[1000006]; vector<int> s, g[1000006], ord; int t[4 * 1000006], d[4 * 1000006]; void dfs(int v) { ord.push_back(v); tin[v] = ord.size() - 1; for (int i = 0; i < g[v].size(); i++) { int to = g[v][i]; dfs(to); } tout[v] = ord.size() - 1; } void push(int v, int l, int r, bool f = 1) { if (d[v] == 0) return; if (l != r) { int m = (l + r) / 2; d[v * 2] += d[v]; d[v * 2 + 1] += d[v]; if (f) { push(v * 2, l, m, 0); push(v * 2 + 1, m + 1, r, 0); } } t[v] += d[v]; d[v] = 0; } void add(int v, int l, int r, int i, int j, int val) { if (i > j) return; push(v, l, r); if (l == i && r == j) { d[v] += val; push(v, l, r); return; } int m = (l + r) / 2; add(v * 2, l, m, i, min(m, j), val); add(v * 2 + 1, m + 1, r, max(m + 1, i), j, val); push(v * 2, l, m); push(v * 2 + 1, m + 1, r); t[v] = max(t[v * 2], t[v * 2 + 1]); } int main() { cin >> n >> k; for (int i = 1; i <= n; i++) scanf("%d", a + i); a[n + 1] = 1000000007ll; s.push_back(n + 1); for (int i = n; i >= 1; i--) { while (a[s.back()] <= a[i]) s.pop_back(); nxt[i] = s.back(); s.push_back(i); g[nxt[i]].push_back(i); } dfs(n + 1); for (int i = 1; i <= k; i++) add(1, 0, ord.size() - 1, tin[i], tout[i], 1); printf("%d ", t[1]); for (int i = k + 1; i <= n; i++) { add(1, 0, ord.size() - 1, tin[i], tout[i], 1); add(1, 0, ord.size() - 1, tin[i - k], tout[i - k], -1); printf("%d ", t[1]); } cout << endl; return 0; } ```
#include <bits/stdc++.h> using namespace std; int n, m, m1, len, top, a[1000005], size[1000005], dfn[1000005], nex[1000005], wen[1000005], hea[1000005], sta[1000005]; struct segment_tree { int a[4000005], lazy[4000005]; void pushdown(int k) { int t = lazy[k]; a[k << 1] += t; lazy[k << 1] += t; a[(k << 1) | 1] += t; lazy[(k << 1) | 1] += t; lazy[k] = 0; } void update(int l, int r, int k, int x, int y, int z) { if (l >= x && r <= y) { a[k] += z; lazy[k] += z; return; } pushdown(k); int mid = (l + r) >> 1; if (x <= mid) update(l, mid, k << 1, x, y, z); if (y > mid) update(mid + 1, r, (k << 1) | 1, x, y, z); a[k] = max(a[k << 1], a[(k << 1) | 1]); } int find(int l, int r, int k, int x, int y) { if (l >= x && r <= y) return a[k]; pushdown(k); int mid = (l + r) >> 1, ans = 0; if (x <= mid) ans = find(l, mid, k << 1, x, y); if (y > mid) ans = max(ans, find(mid + 1, r, (k << 1) | 1, x, y)); return ans; } } st; void add(int x, int y) { ++len; nex[len] = hea[x]; wen[len] = y; hea[x] = len; } void dfs(int x) { dfn[x] = ++m1; size[x] = 1; for (int i = hea[x]; i; i = nex[i]) { dfs(wen[i]); size[x] += size[wen[i]]; } } int main() { scanf("%d%d", &n, &m); for (int i = 1; i <= n; i++) scanf("%d", &a[i]); a[n + 1] = n + 1; ++n; for (int i = 1; i <= n; i++) { while (top && a[sta[top]] < a[i]) add(i, sta[top--]); sta[++top] = i; } dfs(n); for (int i = 1; i <= m; i++) st.update(1, n, 1, dfn[i], dfn[i] + size[i] - 1, 1); printf("%d", st.a[1]); for (int i = m + 1; i < n; i++) { st.update(1, n, 1, dfn[i], dfn[i] + size[i] - 1, 1); st.update(1, n, 1, dfn[i - m], dfn[i - m] + size[i - m] - 1, -1); printf(" %d", st.a[1]); } return 0; }
### Prompt Construct a cpp code solution to the problem outlined: For some array c, let's denote a greedy subsequence as a sequence of indices p_1, p_2, ..., p_l such that 1 ≀ p_1 < p_2 < ... < p_l ≀ |c|, and for each i ∈ [1, l - 1], p_{i + 1} is the minimum number such that p_{i + 1} > p_i and c[p_{i + 1}] > c[p_i]. You are given an array a_1, a_2, ..., a_n. For each its subsegment of length k, calculate the length of its longest greedy subsequence. Input The first line contains two integers n and k (1 ≀ k ≀ n ≀ 10^6) β€” the length of array a and the length of subsegments. The second line contains n integers a_1, a_2, ..., a_n (1 ≀ a_i ≀ n) β€” array a. Output Print n - k + 1 integers β€” the maximum lengths of greedy subsequences of each subsegment having length k. The first number should correspond to subsegment a[1..k], the second β€” to subsegment a[2..k + 1], and so on. Examples Input 6 4 1 5 2 5 3 6 Output 2 2 3 Input 7 6 4 5 2 5 3 6 6 Output 3 3 Note In the first example: * [1, 5, 2, 5] β€” the longest greedy subsequences are 1, 2 ([c_1, c_2] = [1, 5]) or 3, 4 ([c_3, c_4] = [2, 5]). * [5, 2, 5, 3] β€” the sequence is 2, 3 ([c_2, c_3] = [2, 5]). * [2, 5, 3, 6] β€” the sequence is 1, 2, 4 ([c_1, c_2, c_4] = [2, 5, 6]). In the second example: * [4, 5, 2, 5, 3, 6] β€” the longest greedy subsequences are 1, 2, 6 ([c_1, c_2, c_6] = [4, 5, 6]) or 3, 4, 6 ([c_3, c_4, c_6] = [2, 5, 6]). * [5, 2, 5, 3, 6, 6] β€” the subsequence is 2, 3, 5 ([c_2, c_3, c_5] = [2, 5, 6]). ### Response ```cpp #include <bits/stdc++.h> using namespace std; int n, m, m1, len, top, a[1000005], size[1000005], dfn[1000005], nex[1000005], wen[1000005], hea[1000005], sta[1000005]; struct segment_tree { int a[4000005], lazy[4000005]; void pushdown(int k) { int t = lazy[k]; a[k << 1] += t; lazy[k << 1] += t; a[(k << 1) | 1] += t; lazy[(k << 1) | 1] += t; lazy[k] = 0; } void update(int l, int r, int k, int x, int y, int z) { if (l >= x && r <= y) { a[k] += z; lazy[k] += z; return; } pushdown(k); int mid = (l + r) >> 1; if (x <= mid) update(l, mid, k << 1, x, y, z); if (y > mid) update(mid + 1, r, (k << 1) | 1, x, y, z); a[k] = max(a[k << 1], a[(k << 1) | 1]); } int find(int l, int r, int k, int x, int y) { if (l >= x && r <= y) return a[k]; pushdown(k); int mid = (l + r) >> 1, ans = 0; if (x <= mid) ans = find(l, mid, k << 1, x, y); if (y > mid) ans = max(ans, find(mid + 1, r, (k << 1) | 1, x, y)); return ans; } } st; void add(int x, int y) { ++len; nex[len] = hea[x]; wen[len] = y; hea[x] = len; } void dfs(int x) { dfn[x] = ++m1; size[x] = 1; for (int i = hea[x]; i; i = nex[i]) { dfs(wen[i]); size[x] += size[wen[i]]; } } int main() { scanf("%d%d", &n, &m); for (int i = 1; i <= n; i++) scanf("%d", &a[i]); a[n + 1] = n + 1; ++n; for (int i = 1; i <= n; i++) { while (top && a[sta[top]] < a[i]) add(i, sta[top--]); sta[++top] = i; } dfs(n); for (int i = 1; i <= m; i++) st.update(1, n, 1, dfn[i], dfn[i] + size[i] - 1, 1); printf("%d", st.a[1]); for (int i = m + 1; i < n; i++) { st.update(1, n, 1, dfn[i], dfn[i] + size[i] - 1, 1); st.update(1, n, 1, dfn[i - m], dfn[i - m] + size[i - m] - 1, -1); printf(" %d", st.a[1]); } return 0; } ```
#include <bits/stdc++.h> using namespace std; #pragma GCC optimize("Ofast") template <typename T> inline void read(T &x) { x = 0; bool sign = false; char ch = getchar(); while (ch < '0' || '9' < ch) { sign |= ch == '-'; ch = getchar(); } while ('0' <= ch && ch <= '9') { x = (x << 3) + (x << 1) + (ch ^ 48); ch = getchar(); } x = sign ? -x : x; } template <typename T> inline void print(T x) { static char outp[128]; int tot = 0; if (!x) { putchar('0'); return; } else if (x < 0) { x = -x; putchar('-'); } while (x) { outp[tot++] = x % 10, x /= 10; } while (tot) { putchar(outp[--tot] + 48); } } const int MAXN = 1e6 + 10; struct Segtree { struct Node { int add, val; int stdl, stdr; Node() : add(0), val(0) {} } tree[((1 << 21) + 16)]; inline void buildtree(int root, int l, int r) { tree[root].stdl = l; tree[root].stdr = r; if (l == r) return; buildtree((root << 1), l, ((tree[root].stdl + tree[root].stdr) >> 1)); buildtree((root << 1 | 1), ((tree[root].stdl + tree[root].stdr) >> 1) + 1, r); } inline void buildtree(int r) { buildtree(1, 0, r + 1); } inline void pushdown(int root) { tree[(root << 1)].add += tree[root].add; tree[(root << 1)].val += tree[root].add; tree[(root << 1 | 1)].add += tree[root].add; tree[(root << 1 | 1)].val += tree[root].add; tree[root].add = 0; } inline void update(int root) { tree[root].val = max(tree[(root << 1)].val, tree[(root << 1 | 1)].val); } inline void add(int root, int l, int r, int p) { if (l <= tree[root].stdl && tree[root].stdr <= r) { tree[root].add += p; tree[root].val += p; return; } pushdown(root); if (l <= ((tree[root].stdl + tree[root].stdr) >> 1)) add((root << 1), l, r, p); if (r >= ((tree[root].stdl + tree[root].stdr) >> 1) + 1) add((root << 1 | 1), l, r, p); update(root); } inline void add(int l, int r, int p) { add(1, l, r, p); } } Tree; int a[MAXN], n, k; vector<int> edge[MAXN]; int bg[MAXN], ed[MAXN]; inline void dfs(int u) { static int T = 0; bg[u] = T++; for (auto v : edge[u]) { dfs(v); } ed[u] = T - 1; } int main() { read(n), read(k); for (register int i = 0; i <= n - 1; ++i) { read(a[i]); } stack<int> sta; for (register int i = n - 1; i >= 0; --i) { while (!sta.empty() && a[sta.top()] <= a[i]) sta.pop(); edge[sta.empty() ? n : sta.top()].push_back(i), sta.push(i); } dfs(n); Tree.buildtree(n); for (register int i = 0; i <= k - 2; ++i) { Tree.add(bg[i], ed[i], 1); } for (register int i = 0; i <= n - k; ++i) { Tree.add(bg[i + k - 1], ed[i + k - 1], 1); print(Tree.tree[1].val), putchar(' '); Tree.add(bg[i], ed[i], -1); } putchar('\n'); return 0; }
### Prompt Your challenge is to write a CPP solution to the following problem: For some array c, let's denote a greedy subsequence as a sequence of indices p_1, p_2, ..., p_l such that 1 ≀ p_1 < p_2 < ... < p_l ≀ |c|, and for each i ∈ [1, l - 1], p_{i + 1} is the minimum number such that p_{i + 1} > p_i and c[p_{i + 1}] > c[p_i]. You are given an array a_1, a_2, ..., a_n. For each its subsegment of length k, calculate the length of its longest greedy subsequence. Input The first line contains two integers n and k (1 ≀ k ≀ n ≀ 10^6) β€” the length of array a and the length of subsegments. The second line contains n integers a_1, a_2, ..., a_n (1 ≀ a_i ≀ n) β€” array a. Output Print n - k + 1 integers β€” the maximum lengths of greedy subsequences of each subsegment having length k. The first number should correspond to subsegment a[1..k], the second β€” to subsegment a[2..k + 1], and so on. Examples Input 6 4 1 5 2 5 3 6 Output 2 2 3 Input 7 6 4 5 2 5 3 6 6 Output 3 3 Note In the first example: * [1, 5, 2, 5] β€” the longest greedy subsequences are 1, 2 ([c_1, c_2] = [1, 5]) or 3, 4 ([c_3, c_4] = [2, 5]). * [5, 2, 5, 3] β€” the sequence is 2, 3 ([c_2, c_3] = [2, 5]). * [2, 5, 3, 6] β€” the sequence is 1, 2, 4 ([c_1, c_2, c_4] = [2, 5, 6]). In the second example: * [4, 5, 2, 5, 3, 6] β€” the longest greedy subsequences are 1, 2, 6 ([c_1, c_2, c_6] = [4, 5, 6]) or 3, 4, 6 ([c_3, c_4, c_6] = [2, 5, 6]). * [5, 2, 5, 3, 6, 6] β€” the subsequence is 2, 3, 5 ([c_2, c_3, c_5] = [2, 5, 6]). ### Response ```cpp #include <bits/stdc++.h> using namespace std; #pragma GCC optimize("Ofast") template <typename T> inline void read(T &x) { x = 0; bool sign = false; char ch = getchar(); while (ch < '0' || '9' < ch) { sign |= ch == '-'; ch = getchar(); } while ('0' <= ch && ch <= '9') { x = (x << 3) + (x << 1) + (ch ^ 48); ch = getchar(); } x = sign ? -x : x; } template <typename T> inline void print(T x) { static char outp[128]; int tot = 0; if (!x) { putchar('0'); return; } else if (x < 0) { x = -x; putchar('-'); } while (x) { outp[tot++] = x % 10, x /= 10; } while (tot) { putchar(outp[--tot] + 48); } } const int MAXN = 1e6 + 10; struct Segtree { struct Node { int add, val; int stdl, stdr; Node() : add(0), val(0) {} } tree[((1 << 21) + 16)]; inline void buildtree(int root, int l, int r) { tree[root].stdl = l; tree[root].stdr = r; if (l == r) return; buildtree((root << 1), l, ((tree[root].stdl + tree[root].stdr) >> 1)); buildtree((root << 1 | 1), ((tree[root].stdl + tree[root].stdr) >> 1) + 1, r); } inline void buildtree(int r) { buildtree(1, 0, r + 1); } inline void pushdown(int root) { tree[(root << 1)].add += tree[root].add; tree[(root << 1)].val += tree[root].add; tree[(root << 1 | 1)].add += tree[root].add; tree[(root << 1 | 1)].val += tree[root].add; tree[root].add = 0; } inline void update(int root) { tree[root].val = max(tree[(root << 1)].val, tree[(root << 1 | 1)].val); } inline void add(int root, int l, int r, int p) { if (l <= tree[root].stdl && tree[root].stdr <= r) { tree[root].add += p; tree[root].val += p; return; } pushdown(root); if (l <= ((tree[root].stdl + tree[root].stdr) >> 1)) add((root << 1), l, r, p); if (r >= ((tree[root].stdl + tree[root].stdr) >> 1) + 1) add((root << 1 | 1), l, r, p); update(root); } inline void add(int l, int r, int p) { add(1, l, r, p); } } Tree; int a[MAXN], n, k; vector<int> edge[MAXN]; int bg[MAXN], ed[MAXN]; inline void dfs(int u) { static int T = 0; bg[u] = T++; for (auto v : edge[u]) { dfs(v); } ed[u] = T - 1; } int main() { read(n), read(k); for (register int i = 0; i <= n - 1; ++i) { read(a[i]); } stack<int> sta; for (register int i = n - 1; i >= 0; --i) { while (!sta.empty() && a[sta.top()] <= a[i]) sta.pop(); edge[sta.empty() ? n : sta.top()].push_back(i), sta.push(i); } dfs(n); Tree.buildtree(n); for (register int i = 0; i <= k - 2; ++i) { Tree.add(bg[i], ed[i], 1); } for (register int i = 0; i <= n - k; ++i) { Tree.add(bg[i + k - 1], ed[i + k - 1], 1); print(Tree.tree[1].val), putchar(' '); Tree.add(bg[i], ed[i], -1); } putchar('\n'); return 0; } ```
#include <bits/stdc++.h> using namespace std; vector<int> v[1000005]; int ans[1000005]; struct node { node *l, *r; int a, b; long long Max; long long tag; node(int _a, int _b) : l(NULL), r(NULL), a(_a), b(_b), Max(0), tag(0) {} } * root; long long Max(node *n) { return n->Max + n->tag; } void push(node *n) { n->l->tag += n->tag; n->r->tag += n->tag; n->tag = 0; } void pull(node *n) { n->Max = max(Max(n->l), Max(n->r)); } void build(node *n) { if (n->a == n->b) return; int mid = (n->a + n->b) / 2; n->l = new node(n->a, mid); n->r = new node(mid + 1, n->b); build(n->l); build(n->r); } void add(node *n, int l, int r, int k) { if (n->a >= l && n->b <= r) { n->tag += k; return; } if (n->b < l || n->a > r) return; push(n); add(n->l, l, r, k); add(n->r, l, r, k); pull(n); } int in[1000005]; int out[1000005]; int t; int a[1000005]; void dfs(int first) { in[first] = ++t; for (auto it : v[first]) { dfs(it); } out[first] = t; } int main() { int n, k; scanf("%d %d", &n, &k); for (int i = 1; i <= n; i++) scanf("%d", &a[i]); a[n + 1] = 1e9; vector<pair<int, int> > mystk; mystk.push_back(make_pair(1e9 + 1, 0)); for (int i = 1; i <= n + 1; i++) { while (mystk.back().first < a[i]) { v[i].push_back(mystk.back().second); mystk.pop_back(); } mystk.push_back(make_pair(a[i], i)); } dfs(n + 1); root = new node(1, n + 1); build(root); for (int i = 1; i <= k; i++) { add(root, in[i], out[i], 1); } for (int i = k + 1; i <= n + 1; i++) { printf("%lld ", Max(root)); add(root, in[i - k], in[i - k], -1e9); add(root, in[i], out[i], 1); } }
### Prompt Your task is to create a CPP solution to the following problem: For some array c, let's denote a greedy subsequence as a sequence of indices p_1, p_2, ..., p_l such that 1 ≀ p_1 < p_2 < ... < p_l ≀ |c|, and for each i ∈ [1, l - 1], p_{i + 1} is the minimum number such that p_{i + 1} > p_i and c[p_{i + 1}] > c[p_i]. You are given an array a_1, a_2, ..., a_n. For each its subsegment of length k, calculate the length of its longest greedy subsequence. Input The first line contains two integers n and k (1 ≀ k ≀ n ≀ 10^6) β€” the length of array a and the length of subsegments. The second line contains n integers a_1, a_2, ..., a_n (1 ≀ a_i ≀ n) β€” array a. Output Print n - k + 1 integers β€” the maximum lengths of greedy subsequences of each subsegment having length k. The first number should correspond to subsegment a[1..k], the second β€” to subsegment a[2..k + 1], and so on. Examples Input 6 4 1 5 2 5 3 6 Output 2 2 3 Input 7 6 4 5 2 5 3 6 6 Output 3 3 Note In the first example: * [1, 5, 2, 5] β€” the longest greedy subsequences are 1, 2 ([c_1, c_2] = [1, 5]) or 3, 4 ([c_3, c_4] = [2, 5]). * [5, 2, 5, 3] β€” the sequence is 2, 3 ([c_2, c_3] = [2, 5]). * [2, 5, 3, 6] β€” the sequence is 1, 2, 4 ([c_1, c_2, c_4] = [2, 5, 6]). In the second example: * [4, 5, 2, 5, 3, 6] β€” the longest greedy subsequences are 1, 2, 6 ([c_1, c_2, c_6] = [4, 5, 6]) or 3, 4, 6 ([c_3, c_4, c_6] = [2, 5, 6]). * [5, 2, 5, 3, 6, 6] β€” the subsequence is 2, 3, 5 ([c_2, c_3, c_5] = [2, 5, 6]). ### Response ```cpp #include <bits/stdc++.h> using namespace std; vector<int> v[1000005]; int ans[1000005]; struct node { node *l, *r; int a, b; long long Max; long long tag; node(int _a, int _b) : l(NULL), r(NULL), a(_a), b(_b), Max(0), tag(0) {} } * root; long long Max(node *n) { return n->Max + n->tag; } void push(node *n) { n->l->tag += n->tag; n->r->tag += n->tag; n->tag = 0; } void pull(node *n) { n->Max = max(Max(n->l), Max(n->r)); } void build(node *n) { if (n->a == n->b) return; int mid = (n->a + n->b) / 2; n->l = new node(n->a, mid); n->r = new node(mid + 1, n->b); build(n->l); build(n->r); } void add(node *n, int l, int r, int k) { if (n->a >= l && n->b <= r) { n->tag += k; return; } if (n->b < l || n->a > r) return; push(n); add(n->l, l, r, k); add(n->r, l, r, k); pull(n); } int in[1000005]; int out[1000005]; int t; int a[1000005]; void dfs(int first) { in[first] = ++t; for (auto it : v[first]) { dfs(it); } out[first] = t; } int main() { int n, k; scanf("%d %d", &n, &k); for (int i = 1; i <= n; i++) scanf("%d", &a[i]); a[n + 1] = 1e9; vector<pair<int, int> > mystk; mystk.push_back(make_pair(1e9 + 1, 0)); for (int i = 1; i <= n + 1; i++) { while (mystk.back().first < a[i]) { v[i].push_back(mystk.back().second); mystk.pop_back(); } mystk.push_back(make_pair(a[i], i)); } dfs(n + 1); root = new node(1, n + 1); build(root); for (int i = 1; i <= k; i++) { add(root, in[i], out[i], 1); } for (int i = k + 1; i <= n + 1; i++) { printf("%lld ", Max(root)); add(root, in[i - k], in[i - k], -1e9); add(root, in[i], out[i], 1); } } ```
#include <bits/stdc++.h> using namespace std; int n, k; int a[1000005], st[4 * 1000005], lazy[4 * 1000005] = {}; void update(int start, int end, int l, int r, int dif, int node) { if (l > r) return; if (lazy[node] != 0) { st[node] += lazy[node]; if (start != end) { lazy[2 * node + 1] += lazy[node]; lazy[2 * node + 2] += lazy[node]; } lazy[node] = 0; } if (start > r or end < l) return; else if (start >= l and end <= r) { st[node] += dif; if (start != end) { lazy[2 * node + 1] += dif; lazy[2 * node + 2] += dif; } return; } int mid = (start + end) / 2; update(start, mid, l, r, dif, 2 * node + 1); update(mid + 1, end, l, r, dif, 2 * node + 2); st[node] = max(st[2 * node + 1], st[2 * node + 2]); } int queryMin(int start, int end, int l, int r, int node) { if (lazy[node] != 0) { st[node] += lazy[node]; if (start != end) { lazy[2 * node + 1] += lazy[node]; lazy[2 * node + 2] += lazy[node]; } lazy[node] = 0; } if (start > r or end < l) return 1; else if (start >= l and end <= r) return st[node]; else { int mid = (start + end) / 2, left = 2 * node + 1, right = left + 1; return max(queryMin(start, mid, l, r, left), queryMin(mid + 1, end, l, r, right)); } } int main() { ios_base::sync_with_stdio(false); cin.tie(NULL); cin >> n >> k; for (int i = 0; i < n; i++) { cin >> a[i]; } fill(st, st + 4 * 1000005, 1); vector<int> root; for (int i = 0; i < n; i++) { while (root.size() && a[root.back()] < a[i]) { root.pop_back(); } int l; if (root.size()) { l = root.back() + 1; } else { l = 0; } root.push_back(i); update(0, n - 1, l, i - 1, 1, 0); if (i >= k - 1) { cout << queryMin(0, n - 1, i - k + 1, i, 0) << " "; } } cout << endl; return 0; }
### Prompt Develop a solution in CPP to the problem described below: For some array c, let's denote a greedy subsequence as a sequence of indices p_1, p_2, ..., p_l such that 1 ≀ p_1 < p_2 < ... < p_l ≀ |c|, and for each i ∈ [1, l - 1], p_{i + 1} is the minimum number such that p_{i + 1} > p_i and c[p_{i + 1}] > c[p_i]. You are given an array a_1, a_2, ..., a_n. For each its subsegment of length k, calculate the length of its longest greedy subsequence. Input The first line contains two integers n and k (1 ≀ k ≀ n ≀ 10^6) β€” the length of array a and the length of subsegments. The second line contains n integers a_1, a_2, ..., a_n (1 ≀ a_i ≀ n) β€” array a. Output Print n - k + 1 integers β€” the maximum lengths of greedy subsequences of each subsegment having length k. The first number should correspond to subsegment a[1..k], the second β€” to subsegment a[2..k + 1], and so on. Examples Input 6 4 1 5 2 5 3 6 Output 2 2 3 Input 7 6 4 5 2 5 3 6 6 Output 3 3 Note In the first example: * [1, 5, 2, 5] β€” the longest greedy subsequences are 1, 2 ([c_1, c_2] = [1, 5]) or 3, 4 ([c_3, c_4] = [2, 5]). * [5, 2, 5, 3] β€” the sequence is 2, 3 ([c_2, c_3] = [2, 5]). * [2, 5, 3, 6] β€” the sequence is 1, 2, 4 ([c_1, c_2, c_4] = [2, 5, 6]). In the second example: * [4, 5, 2, 5, 3, 6] β€” the longest greedy subsequences are 1, 2, 6 ([c_1, c_2, c_6] = [4, 5, 6]) or 3, 4, 6 ([c_3, c_4, c_6] = [2, 5, 6]). * [5, 2, 5, 3, 6, 6] β€” the subsequence is 2, 3, 5 ([c_2, c_3, c_5] = [2, 5, 6]). ### Response ```cpp #include <bits/stdc++.h> using namespace std; int n, k; int a[1000005], st[4 * 1000005], lazy[4 * 1000005] = {}; void update(int start, int end, int l, int r, int dif, int node) { if (l > r) return; if (lazy[node] != 0) { st[node] += lazy[node]; if (start != end) { lazy[2 * node + 1] += lazy[node]; lazy[2 * node + 2] += lazy[node]; } lazy[node] = 0; } if (start > r or end < l) return; else if (start >= l and end <= r) { st[node] += dif; if (start != end) { lazy[2 * node + 1] += dif; lazy[2 * node + 2] += dif; } return; } int mid = (start + end) / 2; update(start, mid, l, r, dif, 2 * node + 1); update(mid + 1, end, l, r, dif, 2 * node + 2); st[node] = max(st[2 * node + 1], st[2 * node + 2]); } int queryMin(int start, int end, int l, int r, int node) { if (lazy[node] != 0) { st[node] += lazy[node]; if (start != end) { lazy[2 * node + 1] += lazy[node]; lazy[2 * node + 2] += lazy[node]; } lazy[node] = 0; } if (start > r or end < l) return 1; else if (start >= l and end <= r) return st[node]; else { int mid = (start + end) / 2, left = 2 * node + 1, right = left + 1; return max(queryMin(start, mid, l, r, left), queryMin(mid + 1, end, l, r, right)); } } int main() { ios_base::sync_with_stdio(false); cin.tie(NULL); cin >> n >> k; for (int i = 0; i < n; i++) { cin >> a[i]; } fill(st, st + 4 * 1000005, 1); vector<int> root; for (int i = 0; i < n; i++) { while (root.size() && a[root.back()] < a[i]) { root.pop_back(); } int l; if (root.size()) { l = root.back() + 1; } else { l = 0; } root.push_back(i); update(0, n - 1, l, i - 1, 1, 0); if (i >= k - 1) { cout << queryMin(0, n - 1, i - k + 1, i, 0) << " "; } } cout << endl; return 0; } ```
#include <bits/stdc++.h> using namespace std; int dp[2097292 >> 1]; int n; int arr[2097292 >> 1]; int rt[2097292 >> 1]; vector<int> g[2097292 >> 1]; int k = 1; int dfsord[2097292 >> 1]; int subsz[2097292 >> 1]; struct segt { int lz; int value; }; segt tree[2097292]; void dfs(int v) { subsz[v] = 1; dfsord[v] = k++; for (auto nextv : g[v]) { dfs(nextv); subsz[v] += subsz[nextv]; } } void pushdown(int l, int r, int index) { if (tree[index].lz) { if (l != r) { tree[index * 2].value += tree[index].lz; tree[index * 2 + 1].value += tree[index].lz; tree[index * 2].lz += tree[index].lz; tree[index * 2 + 1].lz += tree[index].lz; } tree[index].lz = 0; } } void update(int start, int end, int l, int r, int index, int val) { if (start > end || l > r) return; pushdown(l, r, index); if (start > r || l > end) return; if (start <= l && r <= end) { tree[index].value += val; tree[index].lz += val; return; } int mid = l + (r - l) / 2; update(start, end, l, mid, index * 2, val); update(start, end, mid + 1, r, index * 2 + 1, val); tree[index].value = max(tree[index * 2].value, tree[index * 2 + 1].value); } void rmv(int pt, int l, int r, int index) { if (l > r) return; pushdown(l, r, index); if (l == r && r == pt) { tree[index].value = -4194304; return; } int mid = l + (r - l) / 2; if (pt <= mid) rmv(pt, l, mid, index * 2); else { rmv(pt, mid + 1, r, index * 2 + 1); } tree[index].value = max(tree[index * 2].value, tree[index * 2 + 1].value); } int query() { return tree[1].value; } int main() { int k; scanf("%d%d", &n, &k); stack<int> st; int i; for (i = 1; i <= n; i++) { scanf("%d", &arr[i]); } for (i = n; i >= 1; i--) { if (st.empty()) { rt[i] = -1; dp[i] = 1; } else { while (!st.empty() && arr[st.top()] <= arr[i]) { st.pop(); } if (st.empty()) { rt[i] = -1; dp[i] = 1; } else { rt[i] = st.top(); dp[i] = dp[st.top()] + 1; } } st.push(i); } for (i = 1; i <= n; i++) { if (rt[i] != -1) { g[rt[i]].push_back(i); } } for (i = n; i >= 1; i--) { if (!dfsord[i]) { dfs(i); } } vector<int> ans; for (i = n; i >= 1; i--) { update(dfsord[i], dfsord[i], 1, n, 1, dp[i]); if (i + k - 1 <= n) { ans.push_back(query()); update(dfsord[i + k - 1], dfsord[i + k - 1] + subsz[i + k - 1] - 1, 1, n, 1, -1); rmv(dfsord[i + k - 1], 1, n, 1); } } for (i = (int)ans.size() - 1; i >= 0; i--) { printf("%d ", ans[i]); } printf("\n"); return 0; }
### Prompt Please formulate a CPP solution to the following problem: For some array c, let's denote a greedy subsequence as a sequence of indices p_1, p_2, ..., p_l such that 1 ≀ p_1 < p_2 < ... < p_l ≀ |c|, and for each i ∈ [1, l - 1], p_{i + 1} is the minimum number such that p_{i + 1} > p_i and c[p_{i + 1}] > c[p_i]. You are given an array a_1, a_2, ..., a_n. For each its subsegment of length k, calculate the length of its longest greedy subsequence. Input The first line contains two integers n and k (1 ≀ k ≀ n ≀ 10^6) β€” the length of array a and the length of subsegments. The second line contains n integers a_1, a_2, ..., a_n (1 ≀ a_i ≀ n) β€” array a. Output Print n - k + 1 integers β€” the maximum lengths of greedy subsequences of each subsegment having length k. The first number should correspond to subsegment a[1..k], the second β€” to subsegment a[2..k + 1], and so on. Examples Input 6 4 1 5 2 5 3 6 Output 2 2 3 Input 7 6 4 5 2 5 3 6 6 Output 3 3 Note In the first example: * [1, 5, 2, 5] β€” the longest greedy subsequences are 1, 2 ([c_1, c_2] = [1, 5]) or 3, 4 ([c_3, c_4] = [2, 5]). * [5, 2, 5, 3] β€” the sequence is 2, 3 ([c_2, c_3] = [2, 5]). * [2, 5, 3, 6] β€” the sequence is 1, 2, 4 ([c_1, c_2, c_4] = [2, 5, 6]). In the second example: * [4, 5, 2, 5, 3, 6] β€” the longest greedy subsequences are 1, 2, 6 ([c_1, c_2, c_6] = [4, 5, 6]) or 3, 4, 6 ([c_3, c_4, c_6] = [2, 5, 6]). * [5, 2, 5, 3, 6, 6] β€” the subsequence is 2, 3, 5 ([c_2, c_3, c_5] = [2, 5, 6]). ### Response ```cpp #include <bits/stdc++.h> using namespace std; int dp[2097292 >> 1]; int n; int arr[2097292 >> 1]; int rt[2097292 >> 1]; vector<int> g[2097292 >> 1]; int k = 1; int dfsord[2097292 >> 1]; int subsz[2097292 >> 1]; struct segt { int lz; int value; }; segt tree[2097292]; void dfs(int v) { subsz[v] = 1; dfsord[v] = k++; for (auto nextv : g[v]) { dfs(nextv); subsz[v] += subsz[nextv]; } } void pushdown(int l, int r, int index) { if (tree[index].lz) { if (l != r) { tree[index * 2].value += tree[index].lz; tree[index * 2 + 1].value += tree[index].lz; tree[index * 2].lz += tree[index].lz; tree[index * 2 + 1].lz += tree[index].lz; } tree[index].lz = 0; } } void update(int start, int end, int l, int r, int index, int val) { if (start > end || l > r) return; pushdown(l, r, index); if (start > r || l > end) return; if (start <= l && r <= end) { tree[index].value += val; tree[index].lz += val; return; } int mid = l + (r - l) / 2; update(start, end, l, mid, index * 2, val); update(start, end, mid + 1, r, index * 2 + 1, val); tree[index].value = max(tree[index * 2].value, tree[index * 2 + 1].value); } void rmv(int pt, int l, int r, int index) { if (l > r) return; pushdown(l, r, index); if (l == r && r == pt) { tree[index].value = -4194304; return; } int mid = l + (r - l) / 2; if (pt <= mid) rmv(pt, l, mid, index * 2); else { rmv(pt, mid + 1, r, index * 2 + 1); } tree[index].value = max(tree[index * 2].value, tree[index * 2 + 1].value); } int query() { return tree[1].value; } int main() { int k; scanf("%d%d", &n, &k); stack<int> st; int i; for (i = 1; i <= n; i++) { scanf("%d", &arr[i]); } for (i = n; i >= 1; i--) { if (st.empty()) { rt[i] = -1; dp[i] = 1; } else { while (!st.empty() && arr[st.top()] <= arr[i]) { st.pop(); } if (st.empty()) { rt[i] = -1; dp[i] = 1; } else { rt[i] = st.top(); dp[i] = dp[st.top()] + 1; } } st.push(i); } for (i = 1; i <= n; i++) { if (rt[i] != -1) { g[rt[i]].push_back(i); } } for (i = n; i >= 1; i--) { if (!dfsord[i]) { dfs(i); } } vector<int> ans; for (i = n; i >= 1; i--) { update(dfsord[i], dfsord[i], 1, n, 1, dp[i]); if (i + k - 1 <= n) { ans.push_back(query()); update(dfsord[i + k - 1], dfsord[i + k - 1] + subsz[i + k - 1] - 1, 1, n, 1, -1); rmv(dfsord[i + k - 1], 1, n, 1); } } for (i = (int)ans.size() - 1; i >= 0; i--) { printf("%d ", ans[i]); } printf("\n"); return 0; } ```
#include <bits/stdc++.h> using namespace std; const int N = 1e6 + 7; int a[N], c[N]; struct o_O { int max, lazy; } f[N * 4]; void pushdown(int x) { if (f[x].max == -1) return; f[x * 2].max += f[x].lazy; f[x * 2 + 1].max += f[x].lazy; f[x * 2].lazy += f[x].lazy; f[x * 2 + 1].lazy += f[x].lazy; f[x].lazy = 0; } int query(int x, int l, int r, int left, int right) { if (l > right || r < left) return 0; if (left <= l && right >= r) return f[x].max; pushdown(x); return max(query(x * 2, l, (l + r) / 2, left, right), query(x * 2 + 1, (l + r) / 2 + 1, r, left, right)); } void update(int x, int l, int r, int left, int right) { if (l > right || r < left) return; if (left <= l && right >= r) { if (f[x].max != -1) { f[x].max += 1; f[x].lazy += 1; } return; } pushdown(x); update(x * 2, l, (l + r) / 2, left, right); update(x * 2 + 1, (l + r) / 2 + 1, r, left, right); f[x].max = max(f[x * 2].max, f[x * 2 + 1].max); } void update0(int x, int l, int r, int index) { if (l > index || r < index) return; if (l == r) { f[x].max = -1; return; } pushdown(x); update0(x * 2, l, (l + r) / 2, index); update0(x * 2 + 1, (l + r) / 2 + 1, r, index); f[x].max = max(f[x * 2].max, f[x * 2 + 1].max); } int main() { int n, k; scanf("%d%d", &n, &k); for (int i = 1; i <= n; i++) scanf("%d", &a[i]); int l = 0, r = 0; c[0] = 0; for (int i = 1; i <= n; i++) { while (r > l && a[i] > a[c[r]]) r--; update(1, 1, n, c[r] + 1, i); c[++r] = i; if (i >= k) { printf("%d ", query(1, 1, n, i - k + 1, i)); update0(1, 1, n, i - k + 1); } } return 0; }
### Prompt Generate a Cpp solution to the following problem: For some array c, let's denote a greedy subsequence as a sequence of indices p_1, p_2, ..., p_l such that 1 ≀ p_1 < p_2 < ... < p_l ≀ |c|, and for each i ∈ [1, l - 1], p_{i + 1} is the minimum number such that p_{i + 1} > p_i and c[p_{i + 1}] > c[p_i]. You are given an array a_1, a_2, ..., a_n. For each its subsegment of length k, calculate the length of its longest greedy subsequence. Input The first line contains two integers n and k (1 ≀ k ≀ n ≀ 10^6) β€” the length of array a and the length of subsegments. The second line contains n integers a_1, a_2, ..., a_n (1 ≀ a_i ≀ n) β€” array a. Output Print n - k + 1 integers β€” the maximum lengths of greedy subsequences of each subsegment having length k. The first number should correspond to subsegment a[1..k], the second β€” to subsegment a[2..k + 1], and so on. Examples Input 6 4 1 5 2 5 3 6 Output 2 2 3 Input 7 6 4 5 2 5 3 6 6 Output 3 3 Note In the first example: * [1, 5, 2, 5] β€” the longest greedy subsequences are 1, 2 ([c_1, c_2] = [1, 5]) or 3, 4 ([c_3, c_4] = [2, 5]). * [5, 2, 5, 3] β€” the sequence is 2, 3 ([c_2, c_3] = [2, 5]). * [2, 5, 3, 6] β€” the sequence is 1, 2, 4 ([c_1, c_2, c_4] = [2, 5, 6]). In the second example: * [4, 5, 2, 5, 3, 6] β€” the longest greedy subsequences are 1, 2, 6 ([c_1, c_2, c_6] = [4, 5, 6]) or 3, 4, 6 ([c_3, c_4, c_6] = [2, 5, 6]). * [5, 2, 5, 3, 6, 6] β€” the subsequence is 2, 3, 5 ([c_2, c_3, c_5] = [2, 5, 6]). ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int N = 1e6 + 7; int a[N], c[N]; struct o_O { int max, lazy; } f[N * 4]; void pushdown(int x) { if (f[x].max == -1) return; f[x * 2].max += f[x].lazy; f[x * 2 + 1].max += f[x].lazy; f[x * 2].lazy += f[x].lazy; f[x * 2 + 1].lazy += f[x].lazy; f[x].lazy = 0; } int query(int x, int l, int r, int left, int right) { if (l > right || r < left) return 0; if (left <= l && right >= r) return f[x].max; pushdown(x); return max(query(x * 2, l, (l + r) / 2, left, right), query(x * 2 + 1, (l + r) / 2 + 1, r, left, right)); } void update(int x, int l, int r, int left, int right) { if (l > right || r < left) return; if (left <= l && right >= r) { if (f[x].max != -1) { f[x].max += 1; f[x].lazy += 1; } return; } pushdown(x); update(x * 2, l, (l + r) / 2, left, right); update(x * 2 + 1, (l + r) / 2 + 1, r, left, right); f[x].max = max(f[x * 2].max, f[x * 2 + 1].max); } void update0(int x, int l, int r, int index) { if (l > index || r < index) return; if (l == r) { f[x].max = -1; return; } pushdown(x); update0(x * 2, l, (l + r) / 2, index); update0(x * 2 + 1, (l + r) / 2 + 1, r, index); f[x].max = max(f[x * 2].max, f[x * 2 + 1].max); } int main() { int n, k; scanf("%d%d", &n, &k); for (int i = 1; i <= n; i++) scanf("%d", &a[i]); int l = 0, r = 0; c[0] = 0; for (int i = 1; i <= n; i++) { while (r > l && a[i] > a[c[r]]) r--; update(1, 1, n, c[r] + 1, i); c[++r] = i; if (i >= k) { printf("%d ", query(1, 1, n, i - k + 1, i)); update0(1, 1, n, i - k + 1); } } return 0; } ```
#include <bits/stdc++.h> const long long MOD = 1e9 + 7; const long long MAXN = 2e6 + 55; using namespace std; long long readInt() { bool minus1 = false; long long result = 0; char ch; ch = getchar(); while (true) { if (ch == '-') break; if (ch >= '0' && ch <= '9') break; ch = getchar(); } if (ch == '-') minus1 = true; else result = ch - '0'; while (true) { ch = getchar(); if (ch < '0' || ch > '9') break; result = result * 10 + (ch - '0'); } if (minus1) return -result; else return result; } int timer = 0; int a[MAXN]; int tin[MAXN]; int tout[MAXN]; vector<int> g[MAXN]; int used[MAXN]; void dfs(int v) { timer++; used[v] = 1; tin[v] = timer; for (int i : g[v]) { if (!used[i]) dfs(i); } tout[v] = timer; } long long t[MAXN * 4], to[MAXN * 4]; void Push(long long v) { if (to[v]) { t[v * 2] += to[v]; t[v * 2 + 1] += to[v]; to[v * 2] += to[v]; to[v * 2 + 1] += to[v]; to[v] = 0; } } void Upd(long long v, long long tl, long long tr, long long l, long long r, long long x) { Push(v); if (l > r) return; if (l == tl && r == tr) { t[v] += x; to[v] += x; } else { long long tm = (tl + tr) / 2; Upd(v * 2, tl, tm, l, min(r, tm), x); Upd(v * 2 + 1, tm + 1, tr, max(l, tm + 1), r, x); t[v] = max(t[v * 2], t[v * 2 + 1]); } } long long Get_Max(long long v, long long tl, long long tr, long long l, long long r) { Push(v); if (l > r) return 0; if (l == tl && r == tr) { return t[v]; } else { long long tm = (tl + tr) / 2; return max(Get_Max(v * 2, tl, tm, l, min(r, tm)), Get_Max(v * 2 + 1, tm + 1, tr, max(l, tm + 1), r)); } } int main() { int n = readInt(), k = readInt(); for (int i = 1; i <= n; i++) { a[i] = readInt(); } vector<int> st; for (int i = n; i >= 1; i--) { while (!st.empty() && a[st.back()] <= a[i]) { st.pop_back(); } int nxt = st.empty() ? (n + 1) : st.back(); g[nxt].push_back(i); st.push_back(i); } dfs(n + 1); for (int i = 1; i < k; i++) { Upd(1, 1, n + 1, tin[i], tout[i], 1); } for (int i = 0; i < n - k + 1; i++) { Upd(1, 1, n + 1, tin[i + k], tout[i + k], 1); cout << t[1] << ' '; Upd(1, 1, n + 1, tin[i + 1], tout[i + 1], -1); } return 0; }
### Prompt Please formulate a cpp solution to the following problem: For some array c, let's denote a greedy subsequence as a sequence of indices p_1, p_2, ..., p_l such that 1 ≀ p_1 < p_2 < ... < p_l ≀ |c|, and for each i ∈ [1, l - 1], p_{i + 1} is the minimum number such that p_{i + 1} > p_i and c[p_{i + 1}] > c[p_i]. You are given an array a_1, a_2, ..., a_n. For each its subsegment of length k, calculate the length of its longest greedy subsequence. Input The first line contains two integers n and k (1 ≀ k ≀ n ≀ 10^6) β€” the length of array a and the length of subsegments. The second line contains n integers a_1, a_2, ..., a_n (1 ≀ a_i ≀ n) β€” array a. Output Print n - k + 1 integers β€” the maximum lengths of greedy subsequences of each subsegment having length k. The first number should correspond to subsegment a[1..k], the second β€” to subsegment a[2..k + 1], and so on. Examples Input 6 4 1 5 2 5 3 6 Output 2 2 3 Input 7 6 4 5 2 5 3 6 6 Output 3 3 Note In the first example: * [1, 5, 2, 5] β€” the longest greedy subsequences are 1, 2 ([c_1, c_2] = [1, 5]) or 3, 4 ([c_3, c_4] = [2, 5]). * [5, 2, 5, 3] β€” the sequence is 2, 3 ([c_2, c_3] = [2, 5]). * [2, 5, 3, 6] β€” the sequence is 1, 2, 4 ([c_1, c_2, c_4] = [2, 5, 6]). In the second example: * [4, 5, 2, 5, 3, 6] β€” the longest greedy subsequences are 1, 2, 6 ([c_1, c_2, c_6] = [4, 5, 6]) or 3, 4, 6 ([c_3, c_4, c_6] = [2, 5, 6]). * [5, 2, 5, 3, 6, 6] β€” the subsequence is 2, 3, 5 ([c_2, c_3, c_5] = [2, 5, 6]). ### Response ```cpp #include <bits/stdc++.h> const long long MOD = 1e9 + 7; const long long MAXN = 2e6 + 55; using namespace std; long long readInt() { bool minus1 = false; long long result = 0; char ch; ch = getchar(); while (true) { if (ch == '-') break; if (ch >= '0' && ch <= '9') break; ch = getchar(); } if (ch == '-') minus1 = true; else result = ch - '0'; while (true) { ch = getchar(); if (ch < '0' || ch > '9') break; result = result * 10 + (ch - '0'); } if (minus1) return -result; else return result; } int timer = 0; int a[MAXN]; int tin[MAXN]; int tout[MAXN]; vector<int> g[MAXN]; int used[MAXN]; void dfs(int v) { timer++; used[v] = 1; tin[v] = timer; for (int i : g[v]) { if (!used[i]) dfs(i); } tout[v] = timer; } long long t[MAXN * 4], to[MAXN * 4]; void Push(long long v) { if (to[v]) { t[v * 2] += to[v]; t[v * 2 + 1] += to[v]; to[v * 2] += to[v]; to[v * 2 + 1] += to[v]; to[v] = 0; } } void Upd(long long v, long long tl, long long tr, long long l, long long r, long long x) { Push(v); if (l > r) return; if (l == tl && r == tr) { t[v] += x; to[v] += x; } else { long long tm = (tl + tr) / 2; Upd(v * 2, tl, tm, l, min(r, tm), x); Upd(v * 2 + 1, tm + 1, tr, max(l, tm + 1), r, x); t[v] = max(t[v * 2], t[v * 2 + 1]); } } long long Get_Max(long long v, long long tl, long long tr, long long l, long long r) { Push(v); if (l > r) return 0; if (l == tl && r == tr) { return t[v]; } else { long long tm = (tl + tr) / 2; return max(Get_Max(v * 2, tl, tm, l, min(r, tm)), Get_Max(v * 2 + 1, tm + 1, tr, max(l, tm + 1), r)); } } int main() { int n = readInt(), k = readInt(); for (int i = 1; i <= n; i++) { a[i] = readInt(); } vector<int> st; for (int i = n; i >= 1; i--) { while (!st.empty() && a[st.back()] <= a[i]) { st.pop_back(); } int nxt = st.empty() ? (n + 1) : st.back(); g[nxt].push_back(i); st.push_back(i); } dfs(n + 1); for (int i = 1; i < k; i++) { Upd(1, 1, n + 1, tin[i], tout[i], 1); } for (int i = 0; i < n - k + 1; i++) { Upd(1, 1, n + 1, tin[i + k], tout[i + k], 1); cout << t[1] << ' '; Upd(1, 1, n + 1, tin[i + 1], tout[i + 1], -1); } return 0; } ```
#include <bits/stdc++.h> using namespace std; const int N = 1e6 + 100; const int M = 1e6; const long long mod = 998244353; const long long MOD = 998244353; const long double eps = 0.000000001; const int P = 1336; const int inf = 1e9 + 7; mt19937 gen(chrono::high_resolution_clock::now().time_since_epoch().count()); vector<int> no, t, add; int tin[N], tout[N], tim = -1; int a[N]; vector<int> g[N]; int n, k; void push(int v) { t[v * 2] += add[v]; t[v * 2 + 1] += add[v]; add[v * 2] += add[v]; add[v * 2 + 1] += add[v]; add[v] = 0; } void upd(int l, int r, int v, int cl, int cr, int zn) { if (cr < l || r < cl) return; if (l <= cl && cr <= r) { t[v] += zn; add[v] += zn; return; } if (cl != cr) push(v); int mid = (cl + cr) / 2; upd(l, r, v * 2, cl, mid, zn); upd(l, r, v * 2 + 1, mid + 1, cr, zn); t[v] = max(t[v * 2], t[v * 2 + 1]); } int maxx(int l, int r, int v, int cl, int cr) { if (cr < l || r < cl) return -inf; if (l <= cl && cr <= r) return t[v]; if (cl != cr) push(v); int mid = (cl + cr) / 2; return max(maxx(l, r, v * 2, cl, mid), maxx(l, r, v * 2 + 1, mid + 1, cr)); } void update(int v, int zn) { no[v] = zn; v /= 2; while (v) { no[v] = min(no[v * 2], no[v * 2 + 1]); v /= 2; } } int minn(int l, int r, int v, int cl, int cr) { if (cr < l || r < cl) return n; if (l <= cl && cr <= r) return no[v]; int mid = (cl + cr) / 2; return min(minn(l, r, v * 2, cl, mid), minn(l, r, v * 2 + 1, mid + 1, cr)); } void DFS(int v) { tim++; tin[v] = tim; for (auto to : g[v]) { DFS(to); } tim++; tout[v] = tim; } int32_t main() { ios_base::sync_with_stdio(0); cin.tie(0); cout.tie(0); srand(time(0)); cin >> n >> k; for (int i = 0; i < n; i++) { cin >> a[i]; } long long pr = 1; while (pr < n) pr *= 2; no.resize(2 * pr); for (int i = 0; i < pr + pr; i++) { no[i] = n; } for (int i = n - 1; i >= 0; i--) { int x = minn(a[i], n - 1, 1, 0, pr - 1); g[x].push_back(i); update(pr + a[i] - 1, i); } DFS(n); pr *= 2; t.resize(2 * pr); add.resize(2 * pr); for (int i = 0; i < k; i++) { upd(tin[i], tout[i] - 1, 1, 0, pr - 1, 1); } cout << t[1] << " "; for (int i = k; i < n; i++) { upd(tin[i - k], tout[i - k] - 1, 1, 0, pr - 1, -1); upd(tin[i], tout[i] - 1, 1, 0, pr - 1, 1); cout << t[1] << " "; } }
### Prompt Develop a solution in CPP to the problem described below: For some array c, let's denote a greedy subsequence as a sequence of indices p_1, p_2, ..., p_l such that 1 ≀ p_1 < p_2 < ... < p_l ≀ |c|, and for each i ∈ [1, l - 1], p_{i + 1} is the minimum number such that p_{i + 1} > p_i and c[p_{i + 1}] > c[p_i]. You are given an array a_1, a_2, ..., a_n. For each its subsegment of length k, calculate the length of its longest greedy subsequence. Input The first line contains two integers n and k (1 ≀ k ≀ n ≀ 10^6) β€” the length of array a and the length of subsegments. The second line contains n integers a_1, a_2, ..., a_n (1 ≀ a_i ≀ n) β€” array a. Output Print n - k + 1 integers β€” the maximum lengths of greedy subsequences of each subsegment having length k. The first number should correspond to subsegment a[1..k], the second β€” to subsegment a[2..k + 1], and so on. Examples Input 6 4 1 5 2 5 3 6 Output 2 2 3 Input 7 6 4 5 2 5 3 6 6 Output 3 3 Note In the first example: * [1, 5, 2, 5] β€” the longest greedy subsequences are 1, 2 ([c_1, c_2] = [1, 5]) or 3, 4 ([c_3, c_4] = [2, 5]). * [5, 2, 5, 3] β€” the sequence is 2, 3 ([c_2, c_3] = [2, 5]). * [2, 5, 3, 6] β€” the sequence is 1, 2, 4 ([c_1, c_2, c_4] = [2, 5, 6]). In the second example: * [4, 5, 2, 5, 3, 6] β€” the longest greedy subsequences are 1, 2, 6 ([c_1, c_2, c_6] = [4, 5, 6]) or 3, 4, 6 ([c_3, c_4, c_6] = [2, 5, 6]). * [5, 2, 5, 3, 6, 6] β€” the subsequence is 2, 3, 5 ([c_2, c_3, c_5] = [2, 5, 6]). ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int N = 1e6 + 100; const int M = 1e6; const long long mod = 998244353; const long long MOD = 998244353; const long double eps = 0.000000001; const int P = 1336; const int inf = 1e9 + 7; mt19937 gen(chrono::high_resolution_clock::now().time_since_epoch().count()); vector<int> no, t, add; int tin[N], tout[N], tim = -1; int a[N]; vector<int> g[N]; int n, k; void push(int v) { t[v * 2] += add[v]; t[v * 2 + 1] += add[v]; add[v * 2] += add[v]; add[v * 2 + 1] += add[v]; add[v] = 0; } void upd(int l, int r, int v, int cl, int cr, int zn) { if (cr < l || r < cl) return; if (l <= cl && cr <= r) { t[v] += zn; add[v] += zn; return; } if (cl != cr) push(v); int mid = (cl + cr) / 2; upd(l, r, v * 2, cl, mid, zn); upd(l, r, v * 2 + 1, mid + 1, cr, zn); t[v] = max(t[v * 2], t[v * 2 + 1]); } int maxx(int l, int r, int v, int cl, int cr) { if (cr < l || r < cl) return -inf; if (l <= cl && cr <= r) return t[v]; if (cl != cr) push(v); int mid = (cl + cr) / 2; return max(maxx(l, r, v * 2, cl, mid), maxx(l, r, v * 2 + 1, mid + 1, cr)); } void update(int v, int zn) { no[v] = zn; v /= 2; while (v) { no[v] = min(no[v * 2], no[v * 2 + 1]); v /= 2; } } int minn(int l, int r, int v, int cl, int cr) { if (cr < l || r < cl) return n; if (l <= cl && cr <= r) return no[v]; int mid = (cl + cr) / 2; return min(minn(l, r, v * 2, cl, mid), minn(l, r, v * 2 + 1, mid + 1, cr)); } void DFS(int v) { tim++; tin[v] = tim; for (auto to : g[v]) { DFS(to); } tim++; tout[v] = tim; } int32_t main() { ios_base::sync_with_stdio(0); cin.tie(0); cout.tie(0); srand(time(0)); cin >> n >> k; for (int i = 0; i < n; i++) { cin >> a[i]; } long long pr = 1; while (pr < n) pr *= 2; no.resize(2 * pr); for (int i = 0; i < pr + pr; i++) { no[i] = n; } for (int i = n - 1; i >= 0; i--) { int x = minn(a[i], n - 1, 1, 0, pr - 1); g[x].push_back(i); update(pr + a[i] - 1, i); } DFS(n); pr *= 2; t.resize(2 * pr); add.resize(2 * pr); for (int i = 0; i < k; i++) { upd(tin[i], tout[i] - 1, 1, 0, pr - 1, 1); } cout << t[1] << " "; for (int i = k; i < n; i++) { upd(tin[i - k], tout[i - k] - 1, 1, 0, pr - 1, -1); upd(tin[i], tout[i] - 1, 1, 0, pr - 1, 1); cout << t[1] << " "; } } ```
#include <bits/stdc++.h> using namespace std; const int N = 1e6 + 6, LG = 22; int n, k; int arr[N], nxt[N]; vector<int> adj[N]; int st[N], en[N], eul[N], dfstime; int btree[4 * N], lazy[4 * N]; void dfs(int x) { st[x] = dfstime; eul[dfstime++] = x; for (int i : adj[x]) dfs(i); en[x] = dfstime - 1; } void prob(int node, int l, int r) { btree[node] += lazy[node]; if (l != r) { lazy[node << 1] += lazy[node]; lazy[(node << 1) | 1] += lazy[node]; } lazy[node] = 0; } void update(int node, int l, int r, int ql, int qr, int val) { if (lazy[node]) prob(node, l, r); if (r < ql || qr < l) return; if (ql <= l && r <= qr) { lazy[node] += val; prob(node, l, r); return; } int mid = (l + r) >> 1; update(node << 1, l, mid, ql, qr, val); update((node << 1) | 1, mid + 1, r, ql, qr, val); btree[node] = max(btree[node << 1], btree[(node << 1) | 1]); } int main() { scanf("%d %d", &n, &k); for (int i = 0; i < n; i++) scanf("%d", &arr[i]); stack<int> stk; for (int i = n - 1; i >= 0; i--) { while (stk.size() && arr[stk.top()] <= arr[i]) stk.pop(); if (stk.size()) nxt[i] = stk.top(); else nxt[i] = n; adj[nxt[i]].push_back(i); stk.push(i); } dfs(n); for (int i = 0; i < k; i++) { update(1, 0, n, st[i], en[i], 1); } printf("%d", btree[1]); for (int i = k; i < n; i++) { update(1, 0, n, st[i - k], en[i - k], -1); update(1, 0, n, st[i], en[i], 1); prob(1, 0, n); printf(" %d", btree[1]); } puts(""); }
### Prompt Your challenge is to write a Cpp solution to the following problem: For some array c, let's denote a greedy subsequence as a sequence of indices p_1, p_2, ..., p_l such that 1 ≀ p_1 < p_2 < ... < p_l ≀ |c|, and for each i ∈ [1, l - 1], p_{i + 1} is the minimum number such that p_{i + 1} > p_i and c[p_{i + 1}] > c[p_i]. You are given an array a_1, a_2, ..., a_n. For each its subsegment of length k, calculate the length of its longest greedy subsequence. Input The first line contains two integers n and k (1 ≀ k ≀ n ≀ 10^6) β€” the length of array a and the length of subsegments. The second line contains n integers a_1, a_2, ..., a_n (1 ≀ a_i ≀ n) β€” array a. Output Print n - k + 1 integers β€” the maximum lengths of greedy subsequences of each subsegment having length k. The first number should correspond to subsegment a[1..k], the second β€” to subsegment a[2..k + 1], and so on. Examples Input 6 4 1 5 2 5 3 6 Output 2 2 3 Input 7 6 4 5 2 5 3 6 6 Output 3 3 Note In the first example: * [1, 5, 2, 5] β€” the longest greedy subsequences are 1, 2 ([c_1, c_2] = [1, 5]) or 3, 4 ([c_3, c_4] = [2, 5]). * [5, 2, 5, 3] β€” the sequence is 2, 3 ([c_2, c_3] = [2, 5]). * [2, 5, 3, 6] β€” the sequence is 1, 2, 4 ([c_1, c_2, c_4] = [2, 5, 6]). In the second example: * [4, 5, 2, 5, 3, 6] β€” the longest greedy subsequences are 1, 2, 6 ([c_1, c_2, c_6] = [4, 5, 6]) or 3, 4, 6 ([c_3, c_4, c_6] = [2, 5, 6]). * [5, 2, 5, 3, 6, 6] β€” the subsequence is 2, 3, 5 ([c_2, c_3, c_5] = [2, 5, 6]). ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int N = 1e6 + 6, LG = 22; int n, k; int arr[N], nxt[N]; vector<int> adj[N]; int st[N], en[N], eul[N], dfstime; int btree[4 * N], lazy[4 * N]; void dfs(int x) { st[x] = dfstime; eul[dfstime++] = x; for (int i : adj[x]) dfs(i); en[x] = dfstime - 1; } void prob(int node, int l, int r) { btree[node] += lazy[node]; if (l != r) { lazy[node << 1] += lazy[node]; lazy[(node << 1) | 1] += lazy[node]; } lazy[node] = 0; } void update(int node, int l, int r, int ql, int qr, int val) { if (lazy[node]) prob(node, l, r); if (r < ql || qr < l) return; if (ql <= l && r <= qr) { lazy[node] += val; prob(node, l, r); return; } int mid = (l + r) >> 1; update(node << 1, l, mid, ql, qr, val); update((node << 1) | 1, mid + 1, r, ql, qr, val); btree[node] = max(btree[node << 1], btree[(node << 1) | 1]); } int main() { scanf("%d %d", &n, &k); for (int i = 0; i < n; i++) scanf("%d", &arr[i]); stack<int> stk; for (int i = n - 1; i >= 0; i--) { while (stk.size() && arr[stk.top()] <= arr[i]) stk.pop(); if (stk.size()) nxt[i] = stk.top(); else nxt[i] = n; adj[nxt[i]].push_back(i); stk.push(i); } dfs(n); for (int i = 0; i < k; i++) { update(1, 0, n, st[i], en[i], 1); } printf("%d", btree[1]); for (int i = k; i < n; i++) { update(1, 0, n, st[i - k], en[i - k], -1); update(1, 0, n, st[i], en[i], 1); prob(1, 0, n); printf(" %d", btree[1]); } puts(""); } ```
#include <bits/stdc++.h> #pragma GCC optimize("Ofast,no-stack-protector,unroll-loops,fast-math") using namespace std; const int N = 1e6 + 10; int nxt[N]; pair<int, int> seg[N * 4]; int mp[N]; void upd(int nod, int l, int r, int id, int val) { if (r - l == 1) { seg[nod] = {mp[l], val}; return; } int mid = (r + l) / 2; if (mid > id) upd(nod * 2, l, mid, id, val); else upd(nod * 2 + 1, mid, r, id, val); seg[nod].second = max(seg[nod * 2].second, seg[nod * 2 + 1].second); if (seg[nod].second == seg[nod * 2].second) seg[nod] = seg[nod * 2]; else seg[nod] = seg[nod * 2 + 1]; return; } pair<int, int> get(int nod, int l, int r, int L, int R) { if (l >= R || L >= r) return {0, 0}; if (l >= L && r <= R) return seg[nod]; int mid = (r + l) / 2; pair<int, int> a = get(nod * 2, l, mid, L, R); pair<int, int> b = get(nod * 2 + 1, mid, r, L, R); if (a.second > b.second) return a; return b; } vector<int> g[N]; int st[N], fn[N], hi[N], ts = 1; void dfs(int v, int p, int h) { st[v] = ts; hi[v] = h; for (auto u : g[v]) { if (u == p) continue; ts++; dfs(u, v, h + 1); } fn[v] = ts; } int a[N]; set<pair<int, int> > s; int par[N]; int ans[N]; int32_t main() { ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0); int n, k; cin >> n >> k; for (int i = 1; i <= n; i++) { cin >> a[i]; } a[n + 1] = n + 1; vector<int> agh; agh.push_back(n + 1); for (int i = n; i; i--) { while (a[agh.back()] <= a[i]) agh.pop_back(); nxt[i] = agh.back(); g[nxt[i]].push_back(i); agh.push_back(i); } dfs(n + 1, n + 1, 1); for (int i = 1; i <= n + 1; i++) mp[st[i]] = i; for (int i = 1; i <= k; i++) { upd(1, 1, N, st[i], hi[i]); pair<int, int> t = get(1, 1, N, st[i], fn[i] + 1); for (auto u : g[i]) { s.erase({ans[u], u}); ans[u] = -1; } par[t.first] = i; ans[i] = t.second - hi[i]; s.insert({ans[i], i}); } for (int i = k + 1; i <= n + 1; i++) { cout << s.rbegin()->first + 1 << " "; int p = par[i - k]; s.erase({ans[p], p}); upd(1, 1, N, st[i - k], 0); if (p > i - k && ans[p] != -1) { pair<int, int> z = get(1, 1, N, st[p], fn[p] + 1); par[z.first] = p; ans[p] = z.second - hi[p]; s.insert({ans[p], p}); } upd(1, 1, N, st[i], hi[i]); pair<int, int> z = get(1, 1, N, st[i], fn[i] + 1); for (auto u : g[i]) { s.erase({ans[u], u}); ans[u] = -1; } par[z.first] = i; ans[i] = z.second - hi[i]; s.insert({ans[i], i}); } }
### Prompt Your task is to create a CPP solution to the following problem: For some array c, let's denote a greedy subsequence as a sequence of indices p_1, p_2, ..., p_l such that 1 ≀ p_1 < p_2 < ... < p_l ≀ |c|, and for each i ∈ [1, l - 1], p_{i + 1} is the minimum number such that p_{i + 1} > p_i and c[p_{i + 1}] > c[p_i]. You are given an array a_1, a_2, ..., a_n. For each its subsegment of length k, calculate the length of its longest greedy subsequence. Input The first line contains two integers n and k (1 ≀ k ≀ n ≀ 10^6) β€” the length of array a and the length of subsegments. The second line contains n integers a_1, a_2, ..., a_n (1 ≀ a_i ≀ n) β€” array a. Output Print n - k + 1 integers β€” the maximum lengths of greedy subsequences of each subsegment having length k. The first number should correspond to subsegment a[1..k], the second β€” to subsegment a[2..k + 1], and so on. Examples Input 6 4 1 5 2 5 3 6 Output 2 2 3 Input 7 6 4 5 2 5 3 6 6 Output 3 3 Note In the first example: * [1, 5, 2, 5] β€” the longest greedy subsequences are 1, 2 ([c_1, c_2] = [1, 5]) or 3, 4 ([c_3, c_4] = [2, 5]). * [5, 2, 5, 3] β€” the sequence is 2, 3 ([c_2, c_3] = [2, 5]). * [2, 5, 3, 6] β€” the sequence is 1, 2, 4 ([c_1, c_2, c_4] = [2, 5, 6]). In the second example: * [4, 5, 2, 5, 3, 6] β€” the longest greedy subsequences are 1, 2, 6 ([c_1, c_2, c_6] = [4, 5, 6]) or 3, 4, 6 ([c_3, c_4, c_6] = [2, 5, 6]). * [5, 2, 5, 3, 6, 6] β€” the subsequence is 2, 3, 5 ([c_2, c_3, c_5] = [2, 5, 6]). ### Response ```cpp #include <bits/stdc++.h> #pragma GCC optimize("Ofast,no-stack-protector,unroll-loops,fast-math") using namespace std; const int N = 1e6 + 10; int nxt[N]; pair<int, int> seg[N * 4]; int mp[N]; void upd(int nod, int l, int r, int id, int val) { if (r - l == 1) { seg[nod] = {mp[l], val}; return; } int mid = (r + l) / 2; if (mid > id) upd(nod * 2, l, mid, id, val); else upd(nod * 2 + 1, mid, r, id, val); seg[nod].second = max(seg[nod * 2].second, seg[nod * 2 + 1].second); if (seg[nod].second == seg[nod * 2].second) seg[nod] = seg[nod * 2]; else seg[nod] = seg[nod * 2 + 1]; return; } pair<int, int> get(int nod, int l, int r, int L, int R) { if (l >= R || L >= r) return {0, 0}; if (l >= L && r <= R) return seg[nod]; int mid = (r + l) / 2; pair<int, int> a = get(nod * 2, l, mid, L, R); pair<int, int> b = get(nod * 2 + 1, mid, r, L, R); if (a.second > b.second) return a; return b; } vector<int> g[N]; int st[N], fn[N], hi[N], ts = 1; void dfs(int v, int p, int h) { st[v] = ts; hi[v] = h; for (auto u : g[v]) { if (u == p) continue; ts++; dfs(u, v, h + 1); } fn[v] = ts; } int a[N]; set<pair<int, int> > s; int par[N]; int ans[N]; int32_t main() { ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0); int n, k; cin >> n >> k; for (int i = 1; i <= n; i++) { cin >> a[i]; } a[n + 1] = n + 1; vector<int> agh; agh.push_back(n + 1); for (int i = n; i; i--) { while (a[agh.back()] <= a[i]) agh.pop_back(); nxt[i] = agh.back(); g[nxt[i]].push_back(i); agh.push_back(i); } dfs(n + 1, n + 1, 1); for (int i = 1; i <= n + 1; i++) mp[st[i]] = i; for (int i = 1; i <= k; i++) { upd(1, 1, N, st[i], hi[i]); pair<int, int> t = get(1, 1, N, st[i], fn[i] + 1); for (auto u : g[i]) { s.erase({ans[u], u}); ans[u] = -1; } par[t.first] = i; ans[i] = t.second - hi[i]; s.insert({ans[i], i}); } for (int i = k + 1; i <= n + 1; i++) { cout << s.rbegin()->first + 1 << " "; int p = par[i - k]; s.erase({ans[p], p}); upd(1, 1, N, st[i - k], 0); if (p > i - k && ans[p] != -1) { pair<int, int> z = get(1, 1, N, st[p], fn[p] + 1); par[z.first] = p; ans[p] = z.second - hi[p]; s.insert({ans[p], p}); } upd(1, 1, N, st[i], hi[i]); pair<int, int> z = get(1, 1, N, st[i], fn[i] + 1); for (auto u : g[i]) { s.erase({ans[u], u}); ans[u] = -1; } par[z.first] = i; ans[i] = z.second - hi[i]; s.insert({ans[i], i}); } } ```