output
stringlengths
52
181k
instruction
stringlengths
296
182k
#include <bits/stdc++.h> using namespace std; long long jc[14]; long long ans[14]; int n, k; int vis[14]; void f(long long k, int dep) { if (dep == 0) { return; } if (jc[dep - 1] > k) { for (int i = 1; i <= n; i++) { if (!vis[i]) { ans[min(n, 13) - dep] = i; vis[i] = 1; f(k, dep - 1); return; } } } else { int d = 1; while (dep != 1 && jc[dep - 1] * (d) <= k) { d++; } int ff = 0; int i; for (i = 1; i <= n; i++) { if (!vis[i]) { ff++; } if (ff == d) { vis[i] = 1; break; } } ans[min(n, 13) - dep] = i; f(k - jc[dep - 1] * (d - 1), dep - 1); } } bool is(int p) { if (p == 0) return false; while (p) { if (p % 10 != 4 && p % 10 != 7) return false; p /= 10; } return true; } int main(int argc, char** argv) { scanf("%d%d", &n, &k); jc[0] = 0; jc[1] = 1; int p = n, st = 1; for (int i = 2; i <= 13; i++) { jc[i] = jc[i - 1] * i; } k--; if (n <= 13 && jc[n] <= k) { cout << -1; return 0; } if (n > 13) { p = 13; st = n - 13 + 1; } f(k, min(13, n)); int anss = 0; int qq = n - p, fl = 1; if (qq) for (int k = 1; k <= 9; k++) { for (int i = 0; i < (1 << k); i++) { long long g = 0; long long q = 1; for (int j = 0; j < k; j++) { if ((1 << j) & i) { g += 7 * q; } else { g += 4 * q; } q *= 10; } if (g > qq) { fl = 0; break; } if (g <= qq) anss++; } if (!fl) break; } for (int i = 0; i < p; i++) { if (is(ans[i] - 1 + st) && is(i + st)) { anss++; } } cout << anss; return 0; }
### Prompt Construct a Cpp code solution to the problem outlined: Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4. ### Response ```cpp #include <bits/stdc++.h> using namespace std; long long jc[14]; long long ans[14]; int n, k; int vis[14]; void f(long long k, int dep) { if (dep == 0) { return; } if (jc[dep - 1] > k) { for (int i = 1; i <= n; i++) { if (!vis[i]) { ans[min(n, 13) - dep] = i; vis[i] = 1; f(k, dep - 1); return; } } } else { int d = 1; while (dep != 1 && jc[dep - 1] * (d) <= k) { d++; } int ff = 0; int i; for (i = 1; i <= n; i++) { if (!vis[i]) { ff++; } if (ff == d) { vis[i] = 1; break; } } ans[min(n, 13) - dep] = i; f(k - jc[dep - 1] * (d - 1), dep - 1); } } bool is(int p) { if (p == 0) return false; while (p) { if (p % 10 != 4 && p % 10 != 7) return false; p /= 10; } return true; } int main(int argc, char** argv) { scanf("%d%d", &n, &k); jc[0] = 0; jc[1] = 1; int p = n, st = 1; for (int i = 2; i <= 13; i++) { jc[i] = jc[i - 1] * i; } k--; if (n <= 13 && jc[n] <= k) { cout << -1; return 0; } if (n > 13) { p = 13; st = n - 13 + 1; } f(k, min(13, n)); int anss = 0; int qq = n - p, fl = 1; if (qq) for (int k = 1; k <= 9; k++) { for (int i = 0; i < (1 << k); i++) { long long g = 0; long long q = 1; for (int j = 0; j < k; j++) { if ((1 << j) & i) { g += 7 * q; } else { g += 4 * q; } q *= 10; } if (g > qq) { fl = 0; break; } if (g <= qq) anss++; } if (!fl) break; } for (int i = 0; i < p; i++) { if (is(ans[i] - 1 + st) && is(i + st)) { anss++; } } cout << anss; return 0; } ```
#include <bits/stdc++.h> using namespace std; int findFirstNumIndex(int& k, int n) { if (n == 1) return 0; n--; int first_num_index; int n_partial_fact = n; while (k >= n_partial_fact && n > 1) { n_partial_fact = n_partial_fact * (n - 1); n--; } first_num_index = k / n_partial_fact; k = k % n_partial_fact; return first_num_index; } vector<int> findKthPermutation(int n, int k) { vector<int> ans; set<int> s; for (int i = 1; i <= n; i++) s.insert(i); set<int>::iterator itr; itr = s.begin(); k = k - 1; for (int i = 0; i < n; i++) { int index = findFirstNumIndex(k, n - i); advance(itr, index); ans.push_back((*itr)); s.erase(itr); itr = s.begin(); } return ans; } bool islucky(int n) { while (n > 0) { if ((n % 10 != 4) && (n % 10 != 7)) return false; n /= 10; } return true; } int getans(long long x, int n) { if (x > n) return 0; return getans(x * 10LL + 4LL, n) + getans(x * 10LL + 7LL, n) + (x != 0); } int main() { int n, k; cin >> n >> k; vector<long long> fact(14); fact[0] = 1; for (long long i = 1; i < 14; i++) { fact[i] = fact[i - 1] * i; } if (n < 14 && fact[n] < k) { cout << -1 << endl; return 0; } int y = min(13, n); vector<int> ans = findKthPermutation(y, k); long long cnt = 0; map<int, int> mm; for (int i = n, j = y; i > n - y; --i, --j) { mm[j] = i; } for (int i = 0; i < ans.size(); i++) { ans[i] = mm[ans[i]]; } cnt += (getans(0, n - y)); for (int x = n - y + 1, i = 0; x <= n; ++x, ++i) { cnt += (islucky(x) && islucky(ans[i])); } cout << cnt << endl; return 0; }
### Prompt Create a solution in Cpp for the following problem: Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4. ### Response ```cpp #include <bits/stdc++.h> using namespace std; int findFirstNumIndex(int& k, int n) { if (n == 1) return 0; n--; int first_num_index; int n_partial_fact = n; while (k >= n_partial_fact && n > 1) { n_partial_fact = n_partial_fact * (n - 1); n--; } first_num_index = k / n_partial_fact; k = k % n_partial_fact; return first_num_index; } vector<int> findKthPermutation(int n, int k) { vector<int> ans; set<int> s; for (int i = 1; i <= n; i++) s.insert(i); set<int>::iterator itr; itr = s.begin(); k = k - 1; for (int i = 0; i < n; i++) { int index = findFirstNumIndex(k, n - i); advance(itr, index); ans.push_back((*itr)); s.erase(itr); itr = s.begin(); } return ans; } bool islucky(int n) { while (n > 0) { if ((n % 10 != 4) && (n % 10 != 7)) return false; n /= 10; } return true; } int getans(long long x, int n) { if (x > n) return 0; return getans(x * 10LL + 4LL, n) + getans(x * 10LL + 7LL, n) + (x != 0); } int main() { int n, k; cin >> n >> k; vector<long long> fact(14); fact[0] = 1; for (long long i = 1; i < 14; i++) { fact[i] = fact[i - 1] * i; } if (n < 14 && fact[n] < k) { cout << -1 << endl; return 0; } int y = min(13, n); vector<int> ans = findKthPermutation(y, k); long long cnt = 0; map<int, int> mm; for (int i = n, j = y; i > n - y; --i, --j) { mm[j] = i; } for (int i = 0; i < ans.size(); i++) { ans[i] = mm[ans[i]]; } cnt += (getans(0, n - y)); for (int x = n - y + 1, i = 0; x <= n; ++x, ++i) { cnt += (islucky(x) && islucky(ans[i])); } cout << cnt << endl; return 0; } ```
#include <bits/stdc++.h> using namespace std; map<long long, int> ha; long long n, m, mm; int ans; int a[20], s, vis[20]; long long p[10000]; long long ch[20]; void dfs(int k, long long t) { long long tt; if (k == 10) return; tt = t * 10 + 4; p[++s] = tt; ha[tt] = 1; dfs(k + 1, tt); tt = t * 10 + 7; p[++s] = tt; ha[tt] = 1; dfs(k + 1, tt); } void work() { int i, j, len, k; memset(vis, 0, sizeof(vis)); ch[0] = 1; for (i = 1; i <= 13; i++) ch[i] = ch[i - 1] * i; m--; for (i = 1; i <= 13; i++) { k = 13 - i; for (j = 1; j <= 13; j++) { if (vis[j]) continue; if (m >= ch[k]) m -= ch[k]; else { a[i] = j; vis[j] = 1; break; } } } } void solve() { int i, j, k; ans = 0; if (n > 13) { for (i = 1; i <= s; i++) if (p[i] <= n - 13) ans++; else break; for (i = 1; i <= 13; i++) if (ha[a[i] + n - 13] > 0 && ha[n - 13 + i] > 0) ans++; } else { if (ch[n] < mm) { printf("-1\n"); return; } k = 13 - n; for (i = 1; i <= n; i++) if (ha[a[i + k] - k] && ha[i]) ans++; } printf("%d\n", ans); } int main() { int i, j, k; s = 0; ha.clear(); dfs(0, 0); sort(p + 1, p + s + 1); scanf("%I64d%I64d", &n, &m); mm = m; work(); solve(); return 0; }
### Prompt Construct a cpp code solution to the problem outlined: Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4. ### Response ```cpp #include <bits/stdc++.h> using namespace std; map<long long, int> ha; long long n, m, mm; int ans; int a[20], s, vis[20]; long long p[10000]; long long ch[20]; void dfs(int k, long long t) { long long tt; if (k == 10) return; tt = t * 10 + 4; p[++s] = tt; ha[tt] = 1; dfs(k + 1, tt); tt = t * 10 + 7; p[++s] = tt; ha[tt] = 1; dfs(k + 1, tt); } void work() { int i, j, len, k; memset(vis, 0, sizeof(vis)); ch[0] = 1; for (i = 1; i <= 13; i++) ch[i] = ch[i - 1] * i; m--; for (i = 1; i <= 13; i++) { k = 13 - i; for (j = 1; j <= 13; j++) { if (vis[j]) continue; if (m >= ch[k]) m -= ch[k]; else { a[i] = j; vis[j] = 1; break; } } } } void solve() { int i, j, k; ans = 0; if (n > 13) { for (i = 1; i <= s; i++) if (p[i] <= n - 13) ans++; else break; for (i = 1; i <= 13; i++) if (ha[a[i] + n - 13] > 0 && ha[n - 13 + i] > 0) ans++; } else { if (ch[n] < mm) { printf("-1\n"); return; } k = 13 - n; for (i = 1; i <= n; i++) if (ha[a[i + k] - k] && ha[i]) ans++; } printf("%d\n", ans); } int main() { int i, j, k; s = 0; ha.clear(); dfs(0, 0); sort(p + 1, p + s + 1); scanf("%I64d%I64d", &n, &m); mm = m; work(); solve(); return 0; } ```
#include <bits/stdc++.h> std::vector<long long> generateLuckyNumbers(long long limit) { std::vector<long long> result; std::queue<long long> Q; Q.push(4); Q.push(7); while (!Q.empty()) { long long x = Q.front(); Q.pop(); if (x <= limit) { result.push_back(x); Q.push(x * 10 + 4); Q.push(x * 10 + 7); } } sort(result.begin(), result.end()); return result; } inline bool is_lucky(long long n) { std::stringstream ss; ss << n; std::string s; ss >> s; for (int i = 0; i < (s.size()); ++i) if (s[i] != '4' && s[i] != '7') { return false; } return true; } long long silnie[16]; bool used[16]; int main() { silnie[0] = 1; for (int i = (1); i <= (14); ++i) silnie[i] = silnie[i - 1] * i; long long n, k; std::cin >> n >> k; long long limit = 1, silnia = 1; while (silnia < k) { ++limit; silnia *= limit; } if (limit > n) { std::cout << -1 << std::endl; return 0; } std::vector<int> permutacja; for (int i = 0; i < (limit); ++i) { used[i] = false; } for (int i = 0; i < (limit); ++i) { int wskaznik = 0; while (used[wskaznik]) { ++wskaznik; } while (k > silnie[limit - i - 1]) { k -= silnie[limit - i - 1]; do { ++wskaznik; } while (used[wskaznik]); } permutacja.push_back(wskaznik); used[wskaznik] = true; } std::vector<long long> luckyNums = generateLuckyNumbers(n); std::vector<int> wartosci; for (int i = (n - limit + 1); i <= (n); ++i) { if (std::find(luckyNums.begin(), luckyNums.end(), i) != luckyNums.end()) { wartosci.push_back(1); } else { wartosci.push_back(0); } } int dodatek = 0; for (int i = 0; i < (limit); ++i) if (wartosci[i] && is_lucky(permutacja[i] + n - limit + 1)) { ++dodatek; } int ilu_najpierw = std::upper_bound(luckyNums.begin(), luckyNums.end(), n - limit) - luckyNums.begin(); std::cout << ilu_najpierw + dodatek << std::endl; }
### Prompt Please formulate a CPP solution to the following problem: Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4. ### Response ```cpp #include <bits/stdc++.h> std::vector<long long> generateLuckyNumbers(long long limit) { std::vector<long long> result; std::queue<long long> Q; Q.push(4); Q.push(7); while (!Q.empty()) { long long x = Q.front(); Q.pop(); if (x <= limit) { result.push_back(x); Q.push(x * 10 + 4); Q.push(x * 10 + 7); } } sort(result.begin(), result.end()); return result; } inline bool is_lucky(long long n) { std::stringstream ss; ss << n; std::string s; ss >> s; for (int i = 0; i < (s.size()); ++i) if (s[i] != '4' && s[i] != '7') { return false; } return true; } long long silnie[16]; bool used[16]; int main() { silnie[0] = 1; for (int i = (1); i <= (14); ++i) silnie[i] = silnie[i - 1] * i; long long n, k; std::cin >> n >> k; long long limit = 1, silnia = 1; while (silnia < k) { ++limit; silnia *= limit; } if (limit > n) { std::cout << -1 << std::endl; return 0; } std::vector<int> permutacja; for (int i = 0; i < (limit); ++i) { used[i] = false; } for (int i = 0; i < (limit); ++i) { int wskaznik = 0; while (used[wskaznik]) { ++wskaznik; } while (k > silnie[limit - i - 1]) { k -= silnie[limit - i - 1]; do { ++wskaznik; } while (used[wskaznik]); } permutacja.push_back(wskaznik); used[wskaznik] = true; } std::vector<long long> luckyNums = generateLuckyNumbers(n); std::vector<int> wartosci; for (int i = (n - limit + 1); i <= (n); ++i) { if (std::find(luckyNums.begin(), luckyNums.end(), i) != luckyNums.end()) { wartosci.push_back(1); } else { wartosci.push_back(0); } } int dodatek = 0; for (int i = 0; i < (limit); ++i) if (wartosci[i] && is_lucky(permutacja[i] + n - limit + 1)) { ++dodatek; } int ilu_najpierw = std::upper_bound(luckyNums.begin(), luckyNums.end(), n - limit) - luckyNums.begin(); std::cout << ilu_najpierw + dodatek << std::endl; } ```
#include <bits/stdc++.h> using namespace std; long long fac[14]; vector<long long> lucky; bool isLucky(long long n) { int x; while (n) { x = n % 10; n /= 10; if (x == 4 || x == 7) continue; return 0; } return 1; } void gen(long long n) { long long x = n * 10; if (x > 1000000000ll) return; x += 4; lucky.push_back(x); gen(x); x += 3; lucky.push_back(x); gen(x); } int main() { int i, j, r, ans; long long n, k, m; cin >> n >> k; fac[0] = 1; for (i = 1; i < 14; i++) fac[i] = i * fac[i - 1]; if (n < 14 && fac[n] < k) { cout << -1; return 0; } gen(0); lucky.push_back(4444444444ll); sort(lucky.begin(), lucky.end()); m = max(n - 13, 0ll); ans = upper_bound(lucky.begin(), lucky.end(), m) - lucky.begin(); vector<bool> used(n - m + 1, false); for (i = n - m; i >= 1; i--) { r = (k + fac[i - 1] - 1) / fac[i - 1]; k -= (r - 1) * fac[i - 1]; for (j = 1;; j++) if (!used[j]) { r--; if (!r) break; } used[j] = 1; if (isLucky(n - i + 1) && isLucky(m + j)) ans++; } cout << ans; return 0; }
### Prompt Please create a solution in Cpp to the following problem: Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4. ### Response ```cpp #include <bits/stdc++.h> using namespace std; long long fac[14]; vector<long long> lucky; bool isLucky(long long n) { int x; while (n) { x = n % 10; n /= 10; if (x == 4 || x == 7) continue; return 0; } return 1; } void gen(long long n) { long long x = n * 10; if (x > 1000000000ll) return; x += 4; lucky.push_back(x); gen(x); x += 3; lucky.push_back(x); gen(x); } int main() { int i, j, r, ans; long long n, k, m; cin >> n >> k; fac[0] = 1; for (i = 1; i < 14; i++) fac[i] = i * fac[i - 1]; if (n < 14 && fac[n] < k) { cout << -1; return 0; } gen(0); lucky.push_back(4444444444ll); sort(lucky.begin(), lucky.end()); m = max(n - 13, 0ll); ans = upper_bound(lucky.begin(), lucky.end(), m) - lucky.begin(); vector<bool> used(n - m + 1, false); for (i = n - m; i >= 1; i--) { r = (k + fac[i - 1] - 1) / fac[i - 1]; k -= (r - 1) * fac[i - 1]; for (j = 1;; j++) if (!used[j]) { r--; if (!r) break; } used[j] = 1; if (isLucky(n - i + 1) && isLucky(m + j)) ans++; } cout << ans; return 0; } ```
#include <bits/stdc++.h> const double eps = 1e-9; const int int_inf = 1 << 31 - 1; const long long i64_inf = 1ll << 63 - 1; const double pi = acos(-1.0); using namespace std; int n; long long k; int res = 0; int a[20]; int b[20]; long long fac[20]; vector<int> L; void gen(int a = 0, int len = 0) { L.push_back(a); if (len == 9) return; gen(a * 10 + 4, len + 1); gen(a * 10 + 7, len + 1); } int lucky(int a) { if (a < 4) return 0; int l = 0; int r = L.size(); while (l != r - 1) { int m = (l + r) >> 1; if (L[m] <= a) l = m; else r = m; } return l; } bool isluck(int a) { return *lower_bound(L.begin(), L.end(), a) == a; } int main() { fac[1] = 1ll; for (int i = 2; i < 15; i++) fac[i] = fac[i - 1] * 1ll * (long long)i; gen(); sort(L.begin(), L.end()); cin >> n >> k; if (n <= 13 && fac[n] < k) { puts("-1"); return 0; } int sz = min(n, 13); for (int i = sz - 1; i >= 0; i--) a[i] = n - (sz - i - 1); for (int i = 0; i < sz; i++) { sort(a + i, a + sz); for (int j = i; j < sz; j++) { long long m = j - i; if (k <= fac[sz - i - 1] * (m + 1)) { swap(a[i], a[j]); k -= fac[sz - i - 1] * m; break; } } } for (int i = sz - 1; i >= 0; i--) b[i] = n - (sz - i - 1); res = lucky(n - 13); for (int i = 0; i < sz; i++) res += isluck(a[i]) && isluck(b[i]); cout << res << "\n"; return 0; }
### Prompt Please provide a Cpp coded solution to the problem described below: Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4. ### Response ```cpp #include <bits/stdc++.h> const double eps = 1e-9; const int int_inf = 1 << 31 - 1; const long long i64_inf = 1ll << 63 - 1; const double pi = acos(-1.0); using namespace std; int n; long long k; int res = 0; int a[20]; int b[20]; long long fac[20]; vector<int> L; void gen(int a = 0, int len = 0) { L.push_back(a); if (len == 9) return; gen(a * 10 + 4, len + 1); gen(a * 10 + 7, len + 1); } int lucky(int a) { if (a < 4) return 0; int l = 0; int r = L.size(); while (l != r - 1) { int m = (l + r) >> 1; if (L[m] <= a) l = m; else r = m; } return l; } bool isluck(int a) { return *lower_bound(L.begin(), L.end(), a) == a; } int main() { fac[1] = 1ll; for (int i = 2; i < 15; i++) fac[i] = fac[i - 1] * 1ll * (long long)i; gen(); sort(L.begin(), L.end()); cin >> n >> k; if (n <= 13 && fac[n] < k) { puts("-1"); return 0; } int sz = min(n, 13); for (int i = sz - 1; i >= 0; i--) a[i] = n - (sz - i - 1); for (int i = 0; i < sz; i++) { sort(a + i, a + sz); for (int j = i; j < sz; j++) { long long m = j - i; if (k <= fac[sz - i - 1] * (m + 1)) { swap(a[i], a[j]); k -= fac[sz - i - 1] * m; break; } } } for (int i = sz - 1; i >= 0; i--) b[i] = n - (sz - i - 1); res = lucky(n - 13); for (int i = 0; i < sz; i++) res += isluck(a[i]) && isluck(b[i]); cout << res << "\n"; return 0; } ```
#include <bits/stdc++.h> using namespace std; bool ok(long long n, long long k) { if (n >= 13) return true; long long r = 1; for (int i = 0; i < n; i++) r *= (i + 1); if (r > k) return true; return false; } long long fact(int n) { if (n >= 13) return 10000000007ll; long long ret = 1ll; for (int i = 0; i < n; i++) ret *= 1ll * (i + 1ll); return ret; } bool islucky(long long a) { while (a) { if (a % 10 != 4 && a % 10 != 7) return false; a /= 10ll; } return true; } long long n, k; void oku() { cin >> n >> k; k--; int cnt = 0; if (!ok(n, k)) { cout << -1; return; } set<int> s; for (int len = 1; len < 10; len++) for (int mask = 0; mask < 1 << len; mask++) { long long sum = 0; for (int j = 0; j < len; j++) if ((mask & (1 << j)) > 0) sum = sum * 10 + 4ll; else sum = sum * 10 + 7ll; if (sum < n - 50 && islucky(sum)) cnt++; } int index = 0; for (int i = max(n - 50, 0ll); i < n; i++) s.insert(i + 1); for (int i = max(n - 50ll, 0ll); i < n; i++) { long long left = n - i - 1; long long fct = fact(left); if (fct > k) { if (islucky(i + 1) && islucky(*s.begin())) cnt++; s.erase(s.begin()); continue; } long long a1 = k / fct; k -= fct * a1; int take; for (typeof((s).begin()) it = (s).begin(); it != (s).end(); it++) { if (a1 == 0) { take = *it; if (islucky(i + 1) && islucky(take)) cnt++; s.erase(it); break; } a1--; } } cout << cnt; } int main() { oku(); return 0; }
### Prompt Generate a Cpp solution to the following problem: Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4. ### Response ```cpp #include <bits/stdc++.h> using namespace std; bool ok(long long n, long long k) { if (n >= 13) return true; long long r = 1; for (int i = 0; i < n; i++) r *= (i + 1); if (r > k) return true; return false; } long long fact(int n) { if (n >= 13) return 10000000007ll; long long ret = 1ll; for (int i = 0; i < n; i++) ret *= 1ll * (i + 1ll); return ret; } bool islucky(long long a) { while (a) { if (a % 10 != 4 && a % 10 != 7) return false; a /= 10ll; } return true; } long long n, k; void oku() { cin >> n >> k; k--; int cnt = 0; if (!ok(n, k)) { cout << -1; return; } set<int> s; for (int len = 1; len < 10; len++) for (int mask = 0; mask < 1 << len; mask++) { long long sum = 0; for (int j = 0; j < len; j++) if ((mask & (1 << j)) > 0) sum = sum * 10 + 4ll; else sum = sum * 10 + 7ll; if (sum < n - 50 && islucky(sum)) cnt++; } int index = 0; for (int i = max(n - 50, 0ll); i < n; i++) s.insert(i + 1); for (int i = max(n - 50ll, 0ll); i < n; i++) { long long left = n - i - 1; long long fct = fact(left); if (fct > k) { if (islucky(i + 1) && islucky(*s.begin())) cnt++; s.erase(s.begin()); continue; } long long a1 = k / fct; k -= fct * a1; int take; for (typeof((s).begin()) it = (s).begin(); it != (s).end(); it++) { if (a1 == 0) { take = *it; if (islucky(i + 1) && islucky(take)) cnt++; s.erase(it); break; } a1--; } } cout << cnt; } int main() { oku(); return 0; } ```
#include <bits/stdc++.h> using namespace std; const int N = 1e5 + 5; long long f[15], all[15]; long long n, k; int solve(int rem) { if (!rem) return 1; return solve(rem - 1) * 2; } long long solve(int i, string& str) { if (i == str.size()) return 1; long long ret = solve(i + 1, str); if (str[i] == '1') ret += all[str.size() - i - 1]; return ret; } bool lucky(long long x) { while (x) { if (x % 10 != 4 && x % 10 != 7) return 0; x /= 10; } return 1; } int main() { all[0] = f[0] = 1; for (int i = 1; i < 15; ++i) { f[i] = f[i - 1] * i; all[i] = 2ll * all[i - 1]; } cin >> n >> k; if (n < 15 && f[n] < k) return cout << -1, 0; long long nn = n; int rem = 0; for (int i = 0; i < 14; ++i) if (f[i] < k) rem = i; long long ans = 0; set<long long> rem_num; if (n > rem + 1) { long long m = n - rem - 1; string cur = "", s = ""; stringstream mycin; mycin << m; mycin >> cur; bool ok = 0, is = 0; int lstseven = -1; for (int i = 0; i < cur.size(); ++i) { int ch = cur[i] - '0'; if (ok) break; if (ch < 4) { is = 1; break; } else if (ch > 7) ok = 1, lstseven = 1e9 + 5; else if (ch == 7) lstseven = max(lstseven, i); else if (ch > 4) ok = 1; } if (is && lstseven == -1) { int sz = cur.size(); --sz; while (sz--) s += '1'; } else { ok = 0; for (int i = 0; i < cur.size(); ++i) { int ch = cur[i] - '0'; if (ok) s += '1'; else if (is && lstseven == i) s += '0', ok = 1; else if (ch > 7) ok = 1, s += '1'; else if (ch == 7) s += '1'; else if (ch > 4) s += '0', ok = 1; else s += '0'; } } if (s.size()) { ans += solve(0, s); for (int i = 1; i < s.size(); ++i) ans += all[i]; } for (int i = n; rem_num.size() <= rem; --i) rem_num.insert(i); n = rem + 1; } else for (int i = 1; i <= n; ++i) rem_num.insert(i); for (int i = nn - n + 1; i <= nn; ++i) { vector<int> v; while (f[nn - i] < k) { k -= f[nn - i]; v.push_back(*rem_num.begin()); rem_num.erase(rem_num.begin()); } int x = *rem_num.begin(); rem_num.erase(rem_num.begin()); for (int j : v) rem_num.insert(j); ans += lucky(i) && lucky(x); } cout << ans; return 0; }
### Prompt Your challenge is to write a cpp solution to the following problem: Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4. ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int N = 1e5 + 5; long long f[15], all[15]; long long n, k; int solve(int rem) { if (!rem) return 1; return solve(rem - 1) * 2; } long long solve(int i, string& str) { if (i == str.size()) return 1; long long ret = solve(i + 1, str); if (str[i] == '1') ret += all[str.size() - i - 1]; return ret; } bool lucky(long long x) { while (x) { if (x % 10 != 4 && x % 10 != 7) return 0; x /= 10; } return 1; } int main() { all[0] = f[0] = 1; for (int i = 1; i < 15; ++i) { f[i] = f[i - 1] * i; all[i] = 2ll * all[i - 1]; } cin >> n >> k; if (n < 15 && f[n] < k) return cout << -1, 0; long long nn = n; int rem = 0; for (int i = 0; i < 14; ++i) if (f[i] < k) rem = i; long long ans = 0; set<long long> rem_num; if (n > rem + 1) { long long m = n - rem - 1; string cur = "", s = ""; stringstream mycin; mycin << m; mycin >> cur; bool ok = 0, is = 0; int lstseven = -1; for (int i = 0; i < cur.size(); ++i) { int ch = cur[i] - '0'; if (ok) break; if (ch < 4) { is = 1; break; } else if (ch > 7) ok = 1, lstseven = 1e9 + 5; else if (ch == 7) lstseven = max(lstseven, i); else if (ch > 4) ok = 1; } if (is && lstseven == -1) { int sz = cur.size(); --sz; while (sz--) s += '1'; } else { ok = 0; for (int i = 0; i < cur.size(); ++i) { int ch = cur[i] - '0'; if (ok) s += '1'; else if (is && lstseven == i) s += '0', ok = 1; else if (ch > 7) ok = 1, s += '1'; else if (ch == 7) s += '1'; else if (ch > 4) s += '0', ok = 1; else s += '0'; } } if (s.size()) { ans += solve(0, s); for (int i = 1; i < s.size(); ++i) ans += all[i]; } for (int i = n; rem_num.size() <= rem; --i) rem_num.insert(i); n = rem + 1; } else for (int i = 1; i <= n; ++i) rem_num.insert(i); for (int i = nn - n + 1; i <= nn; ++i) { vector<int> v; while (f[nn - i] < k) { k -= f[nn - i]; v.push_back(*rem_num.begin()); rem_num.erase(rem_num.begin()); } int x = *rem_num.begin(); rem_num.erase(rem_num.begin()); for (int j : v) rem_num.insert(j); ans += lucky(i) && lucky(x); } cout << ans; return 0; } ```
#include <bits/stdc++.h> using namespace std; const int N = 1 << 20; long long fac[20]; vector<long long> lst; vector<long long> lucky; void prepare(int cnt, int all, long long now) { if (cnt == all) { lucky.push_back(now); return; } prepare(cnt + 1, all, now * 10 + 4); prepare(cnt + 1, all, now * 10 + 7); } inline bool chk(long long x) { while (x) { if (x % 10 != 4 && x % 10 != 7) return false; x /= 10; } return true; } int main() { ios::sync_with_stdio(false); for (int i = 0; i <= 10; i++) prepare(0, i, 0); fac[0] = 1; for (int i = 1; i < 20; i++) fac[i] = fac[i - 1] * i; long long n, k; cin >> n >> k; long long p = 1; while (fac[p] < k) p++; if (p > n) return cout << -1 << '\n', 0; k--; for (long long i = n - p + 1; i <= n; i++) lst.push_back(i); while (k) { int i; for (i = p; ~i; i--) if (fac[i] <= k) break; int w = k / fac[i]; k -= fac[i] * w; for (int s = 0; s < w; s++) swap(lst[p - 1 - i], lst[p - i + s]); } long long res = upper_bound(lucky.begin(), lucky.end(), n - p) - lucky.begin() - 1; for (int i = 0; i < lst.size(); i++) if (chk(n - p + i + 1) && chk(lst[i])) res++; cout << res << '\n'; return 0; }
### Prompt Your challenge is to write a Cpp solution to the following problem: Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4. ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int N = 1 << 20; long long fac[20]; vector<long long> lst; vector<long long> lucky; void prepare(int cnt, int all, long long now) { if (cnt == all) { lucky.push_back(now); return; } prepare(cnt + 1, all, now * 10 + 4); prepare(cnt + 1, all, now * 10 + 7); } inline bool chk(long long x) { while (x) { if (x % 10 != 4 && x % 10 != 7) return false; x /= 10; } return true; } int main() { ios::sync_with_stdio(false); for (int i = 0; i <= 10; i++) prepare(0, i, 0); fac[0] = 1; for (int i = 1; i < 20; i++) fac[i] = fac[i - 1] * i; long long n, k; cin >> n >> k; long long p = 1; while (fac[p] < k) p++; if (p > n) return cout << -1 << '\n', 0; k--; for (long long i = n - p + 1; i <= n; i++) lst.push_back(i); while (k) { int i; for (i = p; ~i; i--) if (fac[i] <= k) break; int w = k / fac[i]; k -= fac[i] * w; for (int s = 0; s < w; s++) swap(lst[p - 1 - i], lst[p - i + s]); } long long res = upper_bound(lucky.begin(), lucky.end(), n - p) - lucky.begin() - 1; for (int i = 0; i < lst.size(); i++) if (chk(n - p + i + 1) && chk(lst[i])) res++; cout << res << '\n'; return 0; } ```
#include <bits/stdc++.h> using namespace std; const double EPS = 1e-9; const double PI = acos(-1.); template <class T> inline T sq(T x) { return x * x; } template <class T> inline void upd_min(T &lhs, T rhs) { if (lhs > rhs) lhs = rhs; } template <class T> inline void upd_max(T &lhs, T rhs) { if (lhs < rhs) lhs = rhs; } long long fact[16] = {1}; void gen() { for (int i = (1); i < (16); ++i) fact[i] = i * fact[i - 1]; } long long lucky(int n, int k) { return k ? (n & 1 ? 7 : 4) + lucky(n >> 1, k - 1) * 10 : 0; } bool isLucky(long long n) { return n ? (n % 10 == 4 || n % 10 == 7) && isLucky(n / 10) : true; } void solve() { gen(); int n, k; cin >> n >> k; if (n < 14 && fact[n] < k) { cout << -1 << endl; return; } vector<int> perm1; int _k = k - 1; for (int i = 13; i >= 0; --i) { perm1.push_back(_k / fact[i]); _k -= _k / fact[i] * fact[i]; } vector<int> perm2; for (int i = (0); i < (14); ++i) perm2.push_back(i + 1); vector<int> perm; for (int i = (0); i < (14); ++i) { perm.push_back(perm2[perm1[i]]); perm2.erase(perm2.begin() + perm1[i]); } vector<long long> luckys; for (int i = (1); i < (11); ++i) { for (int j = (0); j < (1 << i); ++j) { luckys.push_back(lucky(j, i)); } } sort((luckys).begin(), (luckys).end()); int ans = 0; for (int i = 0; luckys[i] <= n - 14; ++i) { ++ans; } if (n < 14) { for (int i = 0; i < n; ++i) { if ((i + 1 == 4 || i + 1 == 7) && isLucky(perm[14 - n + i] - (14 - n))) { ++ans; } } } else { for (int i = 0; i < 14; ++i) { if (isLucky(n - 14 + i + 1) && isLucky(n - 14 + perm[i])) { ++ans; } } } cout << ans << endl; } int main() { solve(); return 0; }
### Prompt Create a solution in CPP for the following problem: Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4. ### Response ```cpp #include <bits/stdc++.h> using namespace std; const double EPS = 1e-9; const double PI = acos(-1.); template <class T> inline T sq(T x) { return x * x; } template <class T> inline void upd_min(T &lhs, T rhs) { if (lhs > rhs) lhs = rhs; } template <class T> inline void upd_max(T &lhs, T rhs) { if (lhs < rhs) lhs = rhs; } long long fact[16] = {1}; void gen() { for (int i = (1); i < (16); ++i) fact[i] = i * fact[i - 1]; } long long lucky(int n, int k) { return k ? (n & 1 ? 7 : 4) + lucky(n >> 1, k - 1) * 10 : 0; } bool isLucky(long long n) { return n ? (n % 10 == 4 || n % 10 == 7) && isLucky(n / 10) : true; } void solve() { gen(); int n, k; cin >> n >> k; if (n < 14 && fact[n] < k) { cout << -1 << endl; return; } vector<int> perm1; int _k = k - 1; for (int i = 13; i >= 0; --i) { perm1.push_back(_k / fact[i]); _k -= _k / fact[i] * fact[i]; } vector<int> perm2; for (int i = (0); i < (14); ++i) perm2.push_back(i + 1); vector<int> perm; for (int i = (0); i < (14); ++i) { perm.push_back(perm2[perm1[i]]); perm2.erase(perm2.begin() + perm1[i]); } vector<long long> luckys; for (int i = (1); i < (11); ++i) { for (int j = (0); j < (1 << i); ++j) { luckys.push_back(lucky(j, i)); } } sort((luckys).begin(), (luckys).end()); int ans = 0; for (int i = 0; luckys[i] <= n - 14; ++i) { ++ans; } if (n < 14) { for (int i = 0; i < n; ++i) { if ((i + 1 == 4 || i + 1 == 7) && isLucky(perm[14 - n + i] - (14 - n))) { ++ans; } } } else { for (int i = 0; i < 14; ++i) { if (isLucky(n - 14 + i + 1) && isLucky(n - 14 + perm[i])) { ++ans; } } } cout << ans << endl; } int main() { solve(); return 0; } ```
#include <bits/stdc++.h> using namespace std; set<long long> S; void go(const long long &x, const int &M, const long long &U) { if (x > U) return; if (x > M) S.insert(x); go(10 * x + 4, M, U), go(10 * x + 7, M, U); } bool ok(long long x) { for (; x; x /= 10) { int a = x % 10; if (a != 4 && a != 7) return false; } return true; } int main() { long long N, K; cin >> N >> K; int M = 1; for (long long f = 1; f * M < K; f *= M, M++) ; if (M > (int)N) { cout << -1 << endl; return 0; } M = min((int)N, 20); go(0, 0, N - M); vector<long long> a(M); for (int _n(M), i(0); i < _n; i++) a[i] = N - M + i + 1; for (long long k = K - 1; k > 0;) { long long f = 1; int i = 1; while (f * (i + 1) <= k) f *= ++i; int j = k / f; swap(a[M - i - 1], a[M - i + j - 1]); sort(&a[0] + M - i, &a[0] + M); k -= f * j; } int ans = 0; for (int _n(M), i(0); i < _n; i++) if (ok(N - M + i + 1) && ok(a[i])) ans++; ans += S.size(); cout << ans << endl; return 0; }
### Prompt Your challenge is to write a cpp solution to the following problem: Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4. ### Response ```cpp #include <bits/stdc++.h> using namespace std; set<long long> S; void go(const long long &x, const int &M, const long long &U) { if (x > U) return; if (x > M) S.insert(x); go(10 * x + 4, M, U), go(10 * x + 7, M, U); } bool ok(long long x) { for (; x; x /= 10) { int a = x % 10; if (a != 4 && a != 7) return false; } return true; } int main() { long long N, K; cin >> N >> K; int M = 1; for (long long f = 1; f * M < K; f *= M, M++) ; if (M > (int)N) { cout << -1 << endl; return 0; } M = min((int)N, 20); go(0, 0, N - M); vector<long long> a(M); for (int _n(M), i(0); i < _n; i++) a[i] = N - M + i + 1; for (long long k = K - 1; k > 0;) { long long f = 1; int i = 1; while (f * (i + 1) <= k) f *= ++i; int j = k / f; swap(a[M - i - 1], a[M - i + j - 1]); sort(&a[0] + M - i, &a[0] + M); k -= f * j; } int ans = 0; for (int _n(M), i(0); i < _n; i++) if (ok(N - M + i + 1) && ok(a[i])) ans++; ans += S.size(); cout << ans << endl; return 0; } ```
#include <bits/stdc++.h> using namespace std; long long a[100010], fac[20], vis[20], ans1[20], ans; int n, k, tmp1, tmp2; void dfs(long long now) { if (now <= tmp2 && now) { ans++; } if (now >= 1000000000) { return; } dfs(now * 10 + 4); dfs(now * 10 + 7); } void solve(int now) { if (now > tmp1) { return; } int l = 1; while (vis[l]) l++; while (k >= fac[tmp1 - now]) { l++; while (vis[l]) { l++; } k -= fac[tmp1 - now]; } while (vis[l]) l++; ans1[now] = l + tmp2; vis[l] = 1; solve(now + 1); } int main() { fac[0] = 1LL; for (int i = 1; i <= 14; i++) { fac[i] = 1LL * i * fac[i - 1]; } scanf("%d%d", &n, &k); if (n <= 14 && fac[n] < k) { puts("-1"); return 0; } for (int i = 0; i <= 14; i++) { if (fac[i] >= k) { tmp1 = i; break; } } tmp2 = n - tmp1; dfs(0); k--; solve(1); for (int i = tmp2 + 1; i <= n; i++) { int flag = 1; int tmp3 = i; while (tmp3) { if (tmp3 % 10 == 4 || tmp3 % 10 == 7) { } else { flag = 0; break; } tmp3 /= 10; } tmp3 = ans1[i - tmp2]; while (tmp3) { if (tmp3 % 10 == 4 || tmp3 % 10 == 7) { } else { flag = 0; break; } tmp3 /= 10; } if (flag) { ans++; } } printf("%lld\n", ans); }
### Prompt Your task is to create a cpp solution to the following problem: Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4. ### Response ```cpp #include <bits/stdc++.h> using namespace std; long long a[100010], fac[20], vis[20], ans1[20], ans; int n, k, tmp1, tmp2; void dfs(long long now) { if (now <= tmp2 && now) { ans++; } if (now >= 1000000000) { return; } dfs(now * 10 + 4); dfs(now * 10 + 7); } void solve(int now) { if (now > tmp1) { return; } int l = 1; while (vis[l]) l++; while (k >= fac[tmp1 - now]) { l++; while (vis[l]) { l++; } k -= fac[tmp1 - now]; } while (vis[l]) l++; ans1[now] = l + tmp2; vis[l] = 1; solve(now + 1); } int main() { fac[0] = 1LL; for (int i = 1; i <= 14; i++) { fac[i] = 1LL * i * fac[i - 1]; } scanf("%d%d", &n, &k); if (n <= 14 && fac[n] < k) { puts("-1"); return 0; } for (int i = 0; i <= 14; i++) { if (fac[i] >= k) { tmp1 = i; break; } } tmp2 = n - tmp1; dfs(0); k--; solve(1); for (int i = tmp2 + 1; i <= n; i++) { int flag = 1; int tmp3 = i; while (tmp3) { if (tmp3 % 10 == 4 || tmp3 % 10 == 7) { } else { flag = 0; break; } tmp3 /= 10; } tmp3 = ans1[i - tmp2]; while (tmp3) { if (tmp3 % 10 == 4 || tmp3 % 10 == 7) { } else { flag = 0; break; } tmp3 /= 10; } if (flag) { ans++; } } printf("%lld\n", ans); } ```
#include <bits/stdc++.h> using namespace std; const int maxn = 200; vector<long long> luck; void dfs(long long a, long long len) { if (len > 11) return; if (a) luck.push_back(a); dfs(a * 10 + 4, len + 1); dfs(a * 10 + 7, len + 1); } long long fact[30]; long long arr[50]; void find(long long n, long long x) { vector<long long> v; for (int i = 0; i < n; i++) v.push_back(i + 1); for (int i = 0; i < n; i++) { long long y = x / (fact[n - i - 1]); arr[i] = v[y]; v.erase(v.begin() + y); x %= (fact[n - i - 1]); } } bool isl(long long a) { if (!a) return 0; while (a) { int g = a % 10; if (g != 4 && g != 7) return 0; a /= 10; } return true; } int main() { dfs(0, 0); sort(luck.begin(), luck.end()); long long n, k; cin >> n >> k; fact[0] = 1; for (int i = 1; i < 30; i++) fact[i] = fact[i - 1] * i; if (n <= 20 && k > fact[n]) { cout << -1 << endl; return 0; } long long len = min(20ll, n); find(len, k - 1); long long p = n - len; long long ind = upper_bound(luck.begin(), luck.end(), p) - luck.begin(); long long ans = ind; for (int i = 0; i < len; i++) { arr[i] += p; if (isl(arr[i]) && isl(i + p + 1)) ans++; } cout << ans << endl; }
### Prompt Your challenge is to write a CPP solution to the following problem: Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4. ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int maxn = 200; vector<long long> luck; void dfs(long long a, long long len) { if (len > 11) return; if (a) luck.push_back(a); dfs(a * 10 + 4, len + 1); dfs(a * 10 + 7, len + 1); } long long fact[30]; long long arr[50]; void find(long long n, long long x) { vector<long long> v; for (int i = 0; i < n; i++) v.push_back(i + 1); for (int i = 0; i < n; i++) { long long y = x / (fact[n - i - 1]); arr[i] = v[y]; v.erase(v.begin() + y); x %= (fact[n - i - 1]); } } bool isl(long long a) { if (!a) return 0; while (a) { int g = a % 10; if (g != 4 && g != 7) return 0; a /= 10; } return true; } int main() { dfs(0, 0); sort(luck.begin(), luck.end()); long long n, k; cin >> n >> k; fact[0] = 1; for (int i = 1; i < 30; i++) fact[i] = fact[i - 1] * i; if (n <= 20 && k > fact[n]) { cout << -1 << endl; return 0; } long long len = min(20ll, n); find(len, k - 1); long long p = n - len; long long ind = upper_bound(luck.begin(), luck.end(), p) - luck.begin(); long long ans = ind; for (int i = 0; i < len; i++) { arr[i] += p; if (isl(arr[i]) && isl(i + p + 1)) ans++; } cout << ans << endl; } ```
#include <bits/stdc++.h> using namespace std; template <typename T> vector<T> readvector(size_t size) { vector<T> res(size); for (size_t i = 0; i < size; ++i) { cin >> res[i]; } return res; } template <typename T> void printvector(vector<T>& arr, string sep = " ", string ends = "\n") { for (size_t i = 0; i < arr.size(); ++i) { cout << arr.at(i) << sep; } cout << ends; } const long long MAXN = 1e5; bool is_lucky(long long n) { while (n) { if (n % 10 != 4 && n % 10 != 7) return 0; n /= 10; } return 1; } vector<long long> lucky = { 4, 7, 44, 47, 74, 77, 444, 447, 474, 477, 744, 747, 774, 777, 4444, 4447, 4474, 4477, 4744, 4747, 4774, 4777, 7444, 7447, 7474, 7477, 7744, 7747, 7774, 7777, 44444, 44447, 44474, 44477, 44744, 44747, 44774, 44777, 47444, 47447, 47474, 47477, 47744, 47747, 47774, 47777, 74444, 74447, 74474, 74477, 74744, 74747, 74774, 74777, 77444, 77447, 77474, 77477, 77744, 77747, 77774, 77777, 444444, 444447, 444474, 444477, 444744, 444747, 444774, 444777, 447444, 447447, 447474, 447477, 447744, 447747, 447774, 447777, 474444, 474447, 474474, 474477, 474744, 474747, 474774, 474777, 477444, 477447, 477474, 477477, 477744, 477747, 477774, 477777, 744444, 744447, 744474, 744477, 744744, 744747, 744774, 744777, 747444, 747447, 747474, 747477, 747744, 747747, 747774, 747777, 774444, 774447, 774474, 774477, 774744, 774747, 774774, 774777, 777444, 777447, 777474, 777477, 777744, 777747, 777774, 777777, 4444444, 4444447, 4444474, 4444477, 4444744, 4444747, 4444774, 4444777, 4447444, 4447447, 4447474, 4447477, 4447744, 4447747, 4447774, 4447777, 4474444, 4474447, 4474474, 4474477, 4474744, 4474747, 4474774, 4474777, 4477444, 4477447, 4477474, 4477477, 4477744, 4477747, 4477774, 4477777, 4744444, 4744447, 4744474, 4744477, 4744744, 4744747, 4744774, 4744777, 4747444, 4747447, 4747474, 4747477, 4747744, 4747747, 4747774, 4747777, 4774444, 4774447, 4774474, 4774477, 4774744, 4774747, 4774774, 4774777, 4777444, 4777447, 4777474, 4777477, 4777744, 4777747, 4777774, 4777777, 7444444, 7444447, 7444474, 7444477, 7444744, 7444747, 7444774, 7444777, 7447444, 7447447, 7447474, 7447477, 7447744, 7447747, 7447774, 7447777, 7474444, 7474447, 7474474, 7474477, 7474744, 7474747, 7474774, 7474777, 7477444, 7477447, 7477474, 7477477, 7477744, 7477747, 7477774, 7477777, 7744444, 7744447, 7744474, 7744477, 7744744, 7744747, 7744774, 7744777, 7747444, 7747447, 7747474, 7747477, 7747744, 7747747, 7747774, 7747777, 7774444, 7774447, 7774474, 7774477, 7774744, 7774747, 7774774, 7774777, 7777444, 7777447, 7777474, 7777477, 7777744, 7777747, 7777774, 7777777, 44444444, 44444447, 44444474, 44444477, 44444744, 44444747, 44444774, 44444777, 44447444, 44447447, 44447474, 44447477, 44447744, 44447747, 44447774, 44447777, 44474444, 44474447, 44474474, 44474477, 44474744, 44474747, 44474774, 44474777, 44477444, 44477447, 44477474, 44477477, 44477744, 44477747, 44477774, 44477777, 44744444, 44744447, 44744474, 44744477, 44744744, 44744747, 44744774, 44744777, 44747444, 44747447, 44747474, 44747477, 44747744, 44747747, 44747774, 44747777, 44774444, 44774447, 44774474, 44774477, 44774744, 44774747, 44774774, 44774777, 44777444, 44777447, 44777474, 44777477, 44777744, 44777747, 44777774, 44777777, 47444444, 47444447, 47444474, 47444477, 47444744, 47444747, 47444774, 47444777, 47447444, 47447447, 47447474, 47447477, 47447744, 47447747, 47447774, 47447777, 47474444, 47474447, 47474474, 47474477, 47474744, 47474747, 47474774, 47474777, 47477444, 47477447, 47477474, 47477477, 47477744, 47477747, 47477774, 47477777, 47744444, 47744447, 47744474, 47744477, 47744744, 47744747, 47744774, 47744777, 47747444, 47747447, 47747474, 47747477, 47747744, 47747747, 47747774, 47747777, 47774444, 47774447, 47774474, 47774477, 47774744, 47774747, 47774774, 47774777, 47777444, 47777447, 47777474, 47777477, 47777744, 47777747, 47777774, 47777777, 74444444, 74444447, 74444474, 74444477, 74444744, 74444747, 74444774, 74444777, 74447444, 74447447, 74447474, 74447477, 74447744, 74447747, 74447774, 74447777, 74474444, 74474447, 74474474, 74474477, 74474744, 74474747, 74474774, 74474777, 74477444, 74477447, 74477474, 74477477, 74477744, 74477747, 74477774, 74477777, 74744444, 74744447, 74744474, 74744477, 74744744, 74744747, 74744774, 74744777, 74747444, 74747447, 74747474, 74747477, 74747744, 74747747, 74747774, 74747777, 74774444, 74774447, 74774474, 74774477, 74774744, 74774747, 74774774, 74774777, 74777444, 74777447, 74777474, 74777477, 74777744, 74777747, 74777774, 74777777, 77444444, 77444447, 77444474, 77444477, 77444744, 77444747, 77444774, 77444777, 77447444, 77447447, 77447474, 77447477, 77447744, 77447747, 77447774, 77447777, 77474444, 77474447, 77474474, 77474477, 77474744, 77474747, 77474774, 77474777, 77477444, 77477447, 77477474, 77477477, 77477744, 77477747, 77477774, 77477777, 77744444, 77744447, 77744474, 77744477, 77744744, 77744747, 77744774, 77744777, 77747444, 77747447, 77747474, 77747477, 77747744, 77747747, 77747774, 77747777, 77774444, 77774447, 77774474, 77774477, 77774744, 77774747, 77774774, 77774777, 77777444, 77777447, 77777474, 77777477, 77777744, 77777747, 77777774, 77777777, 444444444, 444444447, 444444474, 444444477, 444444744, 444444747, 444444774, 444444777, 444447444, 444447447, 444447474, 444447477, 444447744, 444447747, 444447774, 444447777, 444474444, 444474447, 444474474, 444474477, 444474744, 444474747, 444474774, 444474777, 444477444, 444477447, 444477474, 444477477, 444477744, 444477747, 444477774, 444477777, 444744444, 444744447, 444744474, 444744477, 444744744, 444744747, 444744774, 444744777, 444747444, 444747447, 444747474, 444747477, 444747744, 444747747, 444747774, 444747777, 444774444, 444774447, 444774474, 444774477, 444774744, 444774747, 444774774, 444774777, 444777444, 444777447, 444777474, 444777477, 444777744, 444777747, 444777774, 444777777, 447444444, 447444447, 447444474, 447444477, 447444744, 447444747, 447444774, 447444777, 447447444, 447447447, 447447474, 447447477, 447447744, 447447747, 447447774, 447447777, 447474444, 447474447, 447474474, 447474477, 447474744, 447474747, 447474774, 447474777, 447477444, 447477447, 447477474, 447477477, 447477744, 447477747, 447477774, 447477777, 447744444, 447744447, 447744474, 447744477, 447744744, 447744747, 447744774, 447744777, 447747444, 447747447, 447747474, 447747477, 447747744, 447747747, 447747774, 447747777, 447774444, 447774447, 447774474, 447774477, 447774744, 447774747, 447774774, 447774777, 447777444, 447777447, 447777474, 447777477, 447777744, 447777747, 447777774, 447777777, 474444444, 474444447, 474444474, 474444477, 474444744, 474444747, 474444774, 474444777, 474447444, 474447447, 474447474, 474447477, 474447744, 474447747, 474447774, 474447777, 474474444, 474474447, 474474474, 474474477, 474474744, 474474747, 474474774, 474474777, 474477444, 474477447, 474477474, 474477477, 474477744, 474477747, 474477774, 474477777, 474744444, 474744447, 474744474, 474744477, 474744744, 474744747, 474744774, 474744777, 474747444, 474747447, 474747474, 474747477, 474747744, 474747747, 474747774, 474747777, 474774444, 474774447, 474774474, 474774477, 474774744, 474774747, 474774774, 474774777, 474777444, 474777447, 474777474, 474777477, 474777744, 474777747, 474777774, 474777777, 477444444, 477444447, 477444474, 477444477, 477444744, 477444747, 477444774, 477444777, 477447444, 477447447, 477447474, 477447477, 477447744, 477447747, 477447774, 477447777, 477474444, 477474447, 477474474, 477474477, 477474744, 477474747, 477474774, 477474777, 477477444, 477477447, 477477474, 477477477, 477477744, 477477747, 477477774, 477477777, 477744444, 477744447, 477744474, 477744477, 477744744, 477744747, 477744774, 477744777, 477747444, 477747447, 477747474, 477747477, 477747744, 477747747, 477747774, 477747777, 477774444, 477774447, 477774474, 477774477, 477774744, 477774747, 477774774, 477774777, 477777444, 477777447, 477777474, 477777477, 477777744, 477777747, 477777774, 477777777, 744444444, 744444447, 744444474, 744444477, 744444744, 744444747, 744444774, 744444777, 744447444, 744447447, 744447474, 744447477, 744447744, 744447747, 744447774, 744447777, 744474444, 744474447, 744474474, 744474477, 744474744, 744474747, 744474774, 744474777, 744477444, 744477447, 744477474, 744477477, 744477744, 744477747, 744477774, 744477777, 744744444, 744744447, 744744474, 744744477, 744744744, 744744747, 744744774, 744744777, 744747444, 744747447, 744747474, 744747477, 744747744, 744747747, 744747774, 744747777, 744774444, 744774447, 744774474, 744774477, 744774744, 744774747, 744774774, 744774777, 744777444, 744777447, 744777474, 744777477, 744777744, 744777747, 744777774, 744777777, 747444444, 747444447, 747444474, 747444477, 747444744, 747444747, 747444774, 747444777, 747447444, 747447447, 747447474, 747447477, 747447744, 747447747, 747447774, 747447777, 747474444, 747474447, 747474474, 747474477, 747474744, 747474747, 747474774, 747474777, 747477444, 747477447, 747477474, 747477477, 747477744, 747477747, 747477774, 747477777, 747744444, 747744447, 747744474, 747744477, 747744744, 747744747, 747744774, 747744777, 747747444, 747747447, 747747474, 747747477, 747747744, 747747747, 747747774, 747747777, 747774444, 747774447, 747774474, 747774477, 747774744, 747774747, 747774774, 747774777, 747777444, 747777447, 747777474, 747777477, 747777744, 747777747, 747777774, 747777777, 774444444, 774444447, 774444474, 774444477, 774444744, 774444747, 774444774, 774444777, 774447444, 774447447, 774447474, 774447477, 774447744, 774447747, 774447774, 774447777, 774474444, 774474447, 774474474, 774474477, 774474744, 774474747, 774474774, 774474777, 774477444, 774477447, 774477474, 774477477, 774477744, 774477747, 774477774, 774477777, 774744444, 774744447, 774744474, 774744477, 774744744, 774744747, 774744774, 774744777, 774747444, 774747447, 774747474, 774747477, 774747744, 774747747, 774747774, 774747777, 774774444, 774774447, 774774474, 774774477, 774774744, 774774747, 774774774, 774774777, 774777444, 774777447, 774777474, 774777477, 774777744, 774777747, 774777774, 774777777, 777444444, 777444447, 777444474, 777444477, 777444744, 777444747, 777444774, 777444777, 777447444, 777447447, 777447474, 777447477, 777447744, 777447747, 777447774, 777447777, 777474444, 777474447, 777474474, 777474477, 777474744, 777474747, 777474774, 777474777, 777477444, 777477447, 777477474, 777477477, 777477744, 777477747, 777477774, 777477777, 777744444, 777744447, 777744474, 777744477, 777744744, 777744747, 777744774, 777744777, 777747444, 777747447, 777747474, 777747477, 777747744, 777747747, 777747774, 777747777, 777774444, 777774447, 777774474, 777774477, 777774744, 777774747, 777774774, 777774777, 777777444, 777777447, 777777474, 777777477, 777777744, 777777747, 777777774, 777777777, 4444444444}; long long safe_fact(long long n) { if (n >= 20) return 1e18; long long ans = 1; while (n) { ans *= (n--); } return ans; } vector<long long> generate(vector<long long> left, long long k) { if (left.empty()) return std::vector<long long>(0); long long step = safe_fact(left.size() - 1); long long ind = k / step; long long elem = left[ind]; left.erase(left.begin() + ind); auto e = generate(left, k % step); e.insert(e.begin(), elem); return e; } signed main() { ios_base::sync_with_stdio(false); cin.tie(NULL); cout.tie(NULL); long long n, k; cin >> n >> k; if (safe_fact(n) < k) { cout << -1 << endl; return 0; } long long m = min(19ll, n); vector<long long> generated; for (long long i = n - m + 1; i <= n; i++) { generated.push_back(i); } generated = generate(generated, k - 1); long long ans = 0; for (auto e : lucky) { if (e < n - m + 1) { ans++; } } for (long long i = 0; i < m; i++) { long long pos = n - m + 1 + i; long long elem = generated[i]; if (is_lucky(pos) && is_lucky(elem)) ans++; } cout << ans << endl; return 0; }
### Prompt Generate a cpp solution to the following problem: Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4. ### Response ```cpp #include <bits/stdc++.h> using namespace std; template <typename T> vector<T> readvector(size_t size) { vector<T> res(size); for (size_t i = 0; i < size; ++i) { cin >> res[i]; } return res; } template <typename T> void printvector(vector<T>& arr, string sep = " ", string ends = "\n") { for (size_t i = 0; i < arr.size(); ++i) { cout << arr.at(i) << sep; } cout << ends; } const long long MAXN = 1e5; bool is_lucky(long long n) { while (n) { if (n % 10 != 4 && n % 10 != 7) return 0; n /= 10; } return 1; } vector<long long> lucky = { 4, 7, 44, 47, 74, 77, 444, 447, 474, 477, 744, 747, 774, 777, 4444, 4447, 4474, 4477, 4744, 4747, 4774, 4777, 7444, 7447, 7474, 7477, 7744, 7747, 7774, 7777, 44444, 44447, 44474, 44477, 44744, 44747, 44774, 44777, 47444, 47447, 47474, 47477, 47744, 47747, 47774, 47777, 74444, 74447, 74474, 74477, 74744, 74747, 74774, 74777, 77444, 77447, 77474, 77477, 77744, 77747, 77774, 77777, 444444, 444447, 444474, 444477, 444744, 444747, 444774, 444777, 447444, 447447, 447474, 447477, 447744, 447747, 447774, 447777, 474444, 474447, 474474, 474477, 474744, 474747, 474774, 474777, 477444, 477447, 477474, 477477, 477744, 477747, 477774, 477777, 744444, 744447, 744474, 744477, 744744, 744747, 744774, 744777, 747444, 747447, 747474, 747477, 747744, 747747, 747774, 747777, 774444, 774447, 774474, 774477, 774744, 774747, 774774, 774777, 777444, 777447, 777474, 777477, 777744, 777747, 777774, 777777, 4444444, 4444447, 4444474, 4444477, 4444744, 4444747, 4444774, 4444777, 4447444, 4447447, 4447474, 4447477, 4447744, 4447747, 4447774, 4447777, 4474444, 4474447, 4474474, 4474477, 4474744, 4474747, 4474774, 4474777, 4477444, 4477447, 4477474, 4477477, 4477744, 4477747, 4477774, 4477777, 4744444, 4744447, 4744474, 4744477, 4744744, 4744747, 4744774, 4744777, 4747444, 4747447, 4747474, 4747477, 4747744, 4747747, 4747774, 4747777, 4774444, 4774447, 4774474, 4774477, 4774744, 4774747, 4774774, 4774777, 4777444, 4777447, 4777474, 4777477, 4777744, 4777747, 4777774, 4777777, 7444444, 7444447, 7444474, 7444477, 7444744, 7444747, 7444774, 7444777, 7447444, 7447447, 7447474, 7447477, 7447744, 7447747, 7447774, 7447777, 7474444, 7474447, 7474474, 7474477, 7474744, 7474747, 7474774, 7474777, 7477444, 7477447, 7477474, 7477477, 7477744, 7477747, 7477774, 7477777, 7744444, 7744447, 7744474, 7744477, 7744744, 7744747, 7744774, 7744777, 7747444, 7747447, 7747474, 7747477, 7747744, 7747747, 7747774, 7747777, 7774444, 7774447, 7774474, 7774477, 7774744, 7774747, 7774774, 7774777, 7777444, 7777447, 7777474, 7777477, 7777744, 7777747, 7777774, 7777777, 44444444, 44444447, 44444474, 44444477, 44444744, 44444747, 44444774, 44444777, 44447444, 44447447, 44447474, 44447477, 44447744, 44447747, 44447774, 44447777, 44474444, 44474447, 44474474, 44474477, 44474744, 44474747, 44474774, 44474777, 44477444, 44477447, 44477474, 44477477, 44477744, 44477747, 44477774, 44477777, 44744444, 44744447, 44744474, 44744477, 44744744, 44744747, 44744774, 44744777, 44747444, 44747447, 44747474, 44747477, 44747744, 44747747, 44747774, 44747777, 44774444, 44774447, 44774474, 44774477, 44774744, 44774747, 44774774, 44774777, 44777444, 44777447, 44777474, 44777477, 44777744, 44777747, 44777774, 44777777, 47444444, 47444447, 47444474, 47444477, 47444744, 47444747, 47444774, 47444777, 47447444, 47447447, 47447474, 47447477, 47447744, 47447747, 47447774, 47447777, 47474444, 47474447, 47474474, 47474477, 47474744, 47474747, 47474774, 47474777, 47477444, 47477447, 47477474, 47477477, 47477744, 47477747, 47477774, 47477777, 47744444, 47744447, 47744474, 47744477, 47744744, 47744747, 47744774, 47744777, 47747444, 47747447, 47747474, 47747477, 47747744, 47747747, 47747774, 47747777, 47774444, 47774447, 47774474, 47774477, 47774744, 47774747, 47774774, 47774777, 47777444, 47777447, 47777474, 47777477, 47777744, 47777747, 47777774, 47777777, 74444444, 74444447, 74444474, 74444477, 74444744, 74444747, 74444774, 74444777, 74447444, 74447447, 74447474, 74447477, 74447744, 74447747, 74447774, 74447777, 74474444, 74474447, 74474474, 74474477, 74474744, 74474747, 74474774, 74474777, 74477444, 74477447, 74477474, 74477477, 74477744, 74477747, 74477774, 74477777, 74744444, 74744447, 74744474, 74744477, 74744744, 74744747, 74744774, 74744777, 74747444, 74747447, 74747474, 74747477, 74747744, 74747747, 74747774, 74747777, 74774444, 74774447, 74774474, 74774477, 74774744, 74774747, 74774774, 74774777, 74777444, 74777447, 74777474, 74777477, 74777744, 74777747, 74777774, 74777777, 77444444, 77444447, 77444474, 77444477, 77444744, 77444747, 77444774, 77444777, 77447444, 77447447, 77447474, 77447477, 77447744, 77447747, 77447774, 77447777, 77474444, 77474447, 77474474, 77474477, 77474744, 77474747, 77474774, 77474777, 77477444, 77477447, 77477474, 77477477, 77477744, 77477747, 77477774, 77477777, 77744444, 77744447, 77744474, 77744477, 77744744, 77744747, 77744774, 77744777, 77747444, 77747447, 77747474, 77747477, 77747744, 77747747, 77747774, 77747777, 77774444, 77774447, 77774474, 77774477, 77774744, 77774747, 77774774, 77774777, 77777444, 77777447, 77777474, 77777477, 77777744, 77777747, 77777774, 77777777, 444444444, 444444447, 444444474, 444444477, 444444744, 444444747, 444444774, 444444777, 444447444, 444447447, 444447474, 444447477, 444447744, 444447747, 444447774, 444447777, 444474444, 444474447, 444474474, 444474477, 444474744, 444474747, 444474774, 444474777, 444477444, 444477447, 444477474, 444477477, 444477744, 444477747, 444477774, 444477777, 444744444, 444744447, 444744474, 444744477, 444744744, 444744747, 444744774, 444744777, 444747444, 444747447, 444747474, 444747477, 444747744, 444747747, 444747774, 444747777, 444774444, 444774447, 444774474, 444774477, 444774744, 444774747, 444774774, 444774777, 444777444, 444777447, 444777474, 444777477, 444777744, 444777747, 444777774, 444777777, 447444444, 447444447, 447444474, 447444477, 447444744, 447444747, 447444774, 447444777, 447447444, 447447447, 447447474, 447447477, 447447744, 447447747, 447447774, 447447777, 447474444, 447474447, 447474474, 447474477, 447474744, 447474747, 447474774, 447474777, 447477444, 447477447, 447477474, 447477477, 447477744, 447477747, 447477774, 447477777, 447744444, 447744447, 447744474, 447744477, 447744744, 447744747, 447744774, 447744777, 447747444, 447747447, 447747474, 447747477, 447747744, 447747747, 447747774, 447747777, 447774444, 447774447, 447774474, 447774477, 447774744, 447774747, 447774774, 447774777, 447777444, 447777447, 447777474, 447777477, 447777744, 447777747, 447777774, 447777777, 474444444, 474444447, 474444474, 474444477, 474444744, 474444747, 474444774, 474444777, 474447444, 474447447, 474447474, 474447477, 474447744, 474447747, 474447774, 474447777, 474474444, 474474447, 474474474, 474474477, 474474744, 474474747, 474474774, 474474777, 474477444, 474477447, 474477474, 474477477, 474477744, 474477747, 474477774, 474477777, 474744444, 474744447, 474744474, 474744477, 474744744, 474744747, 474744774, 474744777, 474747444, 474747447, 474747474, 474747477, 474747744, 474747747, 474747774, 474747777, 474774444, 474774447, 474774474, 474774477, 474774744, 474774747, 474774774, 474774777, 474777444, 474777447, 474777474, 474777477, 474777744, 474777747, 474777774, 474777777, 477444444, 477444447, 477444474, 477444477, 477444744, 477444747, 477444774, 477444777, 477447444, 477447447, 477447474, 477447477, 477447744, 477447747, 477447774, 477447777, 477474444, 477474447, 477474474, 477474477, 477474744, 477474747, 477474774, 477474777, 477477444, 477477447, 477477474, 477477477, 477477744, 477477747, 477477774, 477477777, 477744444, 477744447, 477744474, 477744477, 477744744, 477744747, 477744774, 477744777, 477747444, 477747447, 477747474, 477747477, 477747744, 477747747, 477747774, 477747777, 477774444, 477774447, 477774474, 477774477, 477774744, 477774747, 477774774, 477774777, 477777444, 477777447, 477777474, 477777477, 477777744, 477777747, 477777774, 477777777, 744444444, 744444447, 744444474, 744444477, 744444744, 744444747, 744444774, 744444777, 744447444, 744447447, 744447474, 744447477, 744447744, 744447747, 744447774, 744447777, 744474444, 744474447, 744474474, 744474477, 744474744, 744474747, 744474774, 744474777, 744477444, 744477447, 744477474, 744477477, 744477744, 744477747, 744477774, 744477777, 744744444, 744744447, 744744474, 744744477, 744744744, 744744747, 744744774, 744744777, 744747444, 744747447, 744747474, 744747477, 744747744, 744747747, 744747774, 744747777, 744774444, 744774447, 744774474, 744774477, 744774744, 744774747, 744774774, 744774777, 744777444, 744777447, 744777474, 744777477, 744777744, 744777747, 744777774, 744777777, 747444444, 747444447, 747444474, 747444477, 747444744, 747444747, 747444774, 747444777, 747447444, 747447447, 747447474, 747447477, 747447744, 747447747, 747447774, 747447777, 747474444, 747474447, 747474474, 747474477, 747474744, 747474747, 747474774, 747474777, 747477444, 747477447, 747477474, 747477477, 747477744, 747477747, 747477774, 747477777, 747744444, 747744447, 747744474, 747744477, 747744744, 747744747, 747744774, 747744777, 747747444, 747747447, 747747474, 747747477, 747747744, 747747747, 747747774, 747747777, 747774444, 747774447, 747774474, 747774477, 747774744, 747774747, 747774774, 747774777, 747777444, 747777447, 747777474, 747777477, 747777744, 747777747, 747777774, 747777777, 774444444, 774444447, 774444474, 774444477, 774444744, 774444747, 774444774, 774444777, 774447444, 774447447, 774447474, 774447477, 774447744, 774447747, 774447774, 774447777, 774474444, 774474447, 774474474, 774474477, 774474744, 774474747, 774474774, 774474777, 774477444, 774477447, 774477474, 774477477, 774477744, 774477747, 774477774, 774477777, 774744444, 774744447, 774744474, 774744477, 774744744, 774744747, 774744774, 774744777, 774747444, 774747447, 774747474, 774747477, 774747744, 774747747, 774747774, 774747777, 774774444, 774774447, 774774474, 774774477, 774774744, 774774747, 774774774, 774774777, 774777444, 774777447, 774777474, 774777477, 774777744, 774777747, 774777774, 774777777, 777444444, 777444447, 777444474, 777444477, 777444744, 777444747, 777444774, 777444777, 777447444, 777447447, 777447474, 777447477, 777447744, 777447747, 777447774, 777447777, 777474444, 777474447, 777474474, 777474477, 777474744, 777474747, 777474774, 777474777, 777477444, 777477447, 777477474, 777477477, 777477744, 777477747, 777477774, 777477777, 777744444, 777744447, 777744474, 777744477, 777744744, 777744747, 777744774, 777744777, 777747444, 777747447, 777747474, 777747477, 777747744, 777747747, 777747774, 777747777, 777774444, 777774447, 777774474, 777774477, 777774744, 777774747, 777774774, 777774777, 777777444, 777777447, 777777474, 777777477, 777777744, 777777747, 777777774, 777777777, 4444444444}; long long safe_fact(long long n) { if (n >= 20) return 1e18; long long ans = 1; while (n) { ans *= (n--); } return ans; } vector<long long> generate(vector<long long> left, long long k) { if (left.empty()) return std::vector<long long>(0); long long step = safe_fact(left.size() - 1); long long ind = k / step; long long elem = left[ind]; left.erase(left.begin() + ind); auto e = generate(left, k % step); e.insert(e.begin(), elem); return e; } signed main() { ios_base::sync_with_stdio(false); cin.tie(NULL); cout.tie(NULL); long long n, k; cin >> n >> k; if (safe_fact(n) < k) { cout << -1 << endl; return 0; } long long m = min(19ll, n); vector<long long> generated; for (long long i = n - m + 1; i <= n; i++) { generated.push_back(i); } generated = generate(generated, k - 1); long long ans = 0; for (auto e : lucky) { if (e < n - m + 1) { ans++; } } for (long long i = 0; i < m; i++) { long long pos = n - m + 1 + i; long long elem = generated[i]; if (is_lucky(pos) && is_lucky(elem)) ans++; } cout << ans << endl; return 0; } ```
#include <bits/stdc++.h> using namespace std; long long n, k, f[25]; vector<long long> v, sol; set<long long> s; void dfs(long long now) { if (now > 1000000000) return; v.push_back(now); s.insert(now); dfs(now * 10 + 4); dfs(now * 10 + 7); } void build() { dfs(4); dfs(7); sort(v.begin(), v.end()); f[0] = 1; for (int i = 1; i < 20; i++) f[i] = i * f[i - 1]; } bool che(long long now) { return s.count(now); } long long getnum(int now) { long long cnt = 0, num = 0; for (int i = 0; i < sol.size(); i++) { if (sol[i] != -1000000000) cnt++; if (cnt == now) { num = sol[i]; sol[i] = -1000000000; break; } } return num; } int main() { build(); cin >> n >> k; if (n <= 15 && k > f[n]) { cout << -1 << '\n'; return 0; } long long pos = n - 14, ans = 0; for (auto i : v) { if (i < pos) ans++; } for (int i = 14; i >= 0; i--) sol.push_back(n - i); for (int i = 15; i >= 1; i--) { int cnt = 1; while (k > f[i - 1]) { k -= f[i - 1]; cnt++; } long long now = getnum(cnt); if (che(pos) && che(now)) ans++; pos++; } cout << ans << '\n'; return 0; }
### Prompt In cpp, your task is to solve the following problem: Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4. ### Response ```cpp #include <bits/stdc++.h> using namespace std; long long n, k, f[25]; vector<long long> v, sol; set<long long> s; void dfs(long long now) { if (now > 1000000000) return; v.push_back(now); s.insert(now); dfs(now * 10 + 4); dfs(now * 10 + 7); } void build() { dfs(4); dfs(7); sort(v.begin(), v.end()); f[0] = 1; for (int i = 1; i < 20; i++) f[i] = i * f[i - 1]; } bool che(long long now) { return s.count(now); } long long getnum(int now) { long long cnt = 0, num = 0; for (int i = 0; i < sol.size(); i++) { if (sol[i] != -1000000000) cnt++; if (cnt == now) { num = sol[i]; sol[i] = -1000000000; break; } } return num; } int main() { build(); cin >> n >> k; if (n <= 15 && k > f[n]) { cout << -1 << '\n'; return 0; } long long pos = n - 14, ans = 0; for (auto i : v) { if (i < pos) ans++; } for (int i = 14; i >= 0; i--) sol.push_back(n - i); for (int i = 15; i >= 1; i--) { int cnt = 1; while (k > f[i - 1]) { k -= f[i - 1]; cnt++; } long long now = getnum(cnt); if (che(pos) && che(now)) ans++; pos++; } cout << ans << '\n'; return 0; } ```
#include <bits/stdc++.h> long long permu[14]; bool is_used[14]; int permu_pos[14]; long long lucks[2000]; int luck_cnt; int main() { long long i, j, k; int N, K, p1, p2, t1, t2, t3, m = 1e9; permu[0] = 1; for (i = 1; i < 14; i++) { permu[i] = 1; for (j = 1, k = 1; j <= i; j++) permu[i] *= j; } luck_cnt = 0; lucks[luck_cnt++] = 4; lucks[luck_cnt++] = 7; for (i = 0; true; i++) { lucks[luck_cnt++] = lucks[i] * 10 + 4; if (lucks[luck_cnt - 1] >= m) break; lucks[luck_cnt++] = lucks[i] * 10 + 7; if (lucks[luck_cnt - 1] >= m) break; } scanf("%d %d", &N, &K); p1 = N > 13 ? N - 13 : 0; p2 = N > 13 ? p1 + 1 : 1; j = N - p1; if ((long long)K > permu[j]) { printf("-1\n"); return 0; } for (i = j - 1; i >= 0; i--) { t1 = (((long long)K + permu[i] - 1) / permu[i]); for (k = 1, t2 = 0; t2 < t1; k++) if (!is_used[k]) t2++; permu_pos[j - i] = k - 1; is_used[k - 1] = true; K -= (t1 - 1) * permu[i]; } for (i = 0; lucks[i] <= p1; i++) ; t3 = i; for (i = 1; i <= N - p1; i++) { t1 = permu_pos[i] + p1; t2 = i + p1; for (j = 0, k = 0; j < luck_cnt && k < 2; j++) { if (t1 == lucks[j]) k++; if (t2 == lucks[j]) k++; } if (k == 2) t3++; } printf("%d\n", t3); return 0; }
### Prompt Construct a cpp code solution to the problem outlined: Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4. ### Response ```cpp #include <bits/stdc++.h> long long permu[14]; bool is_used[14]; int permu_pos[14]; long long lucks[2000]; int luck_cnt; int main() { long long i, j, k; int N, K, p1, p2, t1, t2, t3, m = 1e9; permu[0] = 1; for (i = 1; i < 14; i++) { permu[i] = 1; for (j = 1, k = 1; j <= i; j++) permu[i] *= j; } luck_cnt = 0; lucks[luck_cnt++] = 4; lucks[luck_cnt++] = 7; for (i = 0; true; i++) { lucks[luck_cnt++] = lucks[i] * 10 + 4; if (lucks[luck_cnt - 1] >= m) break; lucks[luck_cnt++] = lucks[i] * 10 + 7; if (lucks[luck_cnt - 1] >= m) break; } scanf("%d %d", &N, &K); p1 = N > 13 ? N - 13 : 0; p2 = N > 13 ? p1 + 1 : 1; j = N - p1; if ((long long)K > permu[j]) { printf("-1\n"); return 0; } for (i = j - 1; i >= 0; i--) { t1 = (((long long)K + permu[i] - 1) / permu[i]); for (k = 1, t2 = 0; t2 < t1; k++) if (!is_used[k]) t2++; permu_pos[j - i] = k - 1; is_used[k - 1] = true; K -= (t1 - 1) * permu[i]; } for (i = 0; lucks[i] <= p1; i++) ; t3 = i; for (i = 1; i <= N - p1; i++) { t1 = permu_pos[i] + p1; t2 = i + p1; for (j = 0, k = 0; j < luck_cnt && k < 2; j++) { if (t1 == lucks[j]) k++; if (t2 == lucks[j]) k++; } if (k == 2) t3++; } printf("%d\n", t3); return 0; } ```
#include <bits/stdc++.h> using namespace std; long long n, k, i, j, Length, result, a[30]; queue<long long> q, q2; bool check[30]; bool Lucky(long long x) { while (x > 0) { if (x % 10 != 4 && x % 10 != 7) return false; x /= 10; } return true; } void process() { long long t, t2; q2.push(4); q2.push(7); while (!q2.empty()) { t = q2.front(); q2.pop(); q.push(t); if (t * 10 + 4 <= n) q2.push(t * 10 + 4); if (t * 10 + 7 <= n) q2.push(t * 10 + 7); } t = 1; memset(check, true, sizeof(check)); for (Length = 1; Length < 15; ++Length) { t *= Length; if (t >= k) break; a[i] = Length; } if (Length > n) { cout << "-1"; return; } if (k > 0) { for (i = 1; i <= Length; ++i) { t /= (Length - i + 1); t2 = (k - 1) / t; for (j = 1; j <= Length; ++j) if (check[j] && t2 == 0) { a[i] = j; check[j] = false; break; } else if (check[j]) --t2; t2 = a[i] - 1; for (j = 1; j <= Length; ++j) if (j == a[i]) break; else if (!check[j]) --t2; k -= (t2 * t); if (k == 0) { for (j = 1; j <= Length; ++j) if (check[j]) a[i++] = j; break; } } } result = 0; for (i = 1; i <= Length; ++i) a[i] += (n - Length); while (!q.empty()) { t = q.front(); q.pop(); if (t <= n - Length) ++result; else if (t > n) break; else { t -= (n - Length); if (Lucky(a[t])) ++result; } } cout << result; } int main() { scanf("%d %d", &n, &k); process(); return 0; }
### Prompt Create a solution in CPP for the following problem: Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4. ### Response ```cpp #include <bits/stdc++.h> using namespace std; long long n, k, i, j, Length, result, a[30]; queue<long long> q, q2; bool check[30]; bool Lucky(long long x) { while (x > 0) { if (x % 10 != 4 && x % 10 != 7) return false; x /= 10; } return true; } void process() { long long t, t2; q2.push(4); q2.push(7); while (!q2.empty()) { t = q2.front(); q2.pop(); q.push(t); if (t * 10 + 4 <= n) q2.push(t * 10 + 4); if (t * 10 + 7 <= n) q2.push(t * 10 + 7); } t = 1; memset(check, true, sizeof(check)); for (Length = 1; Length < 15; ++Length) { t *= Length; if (t >= k) break; a[i] = Length; } if (Length > n) { cout << "-1"; return; } if (k > 0) { for (i = 1; i <= Length; ++i) { t /= (Length - i + 1); t2 = (k - 1) / t; for (j = 1; j <= Length; ++j) if (check[j] && t2 == 0) { a[i] = j; check[j] = false; break; } else if (check[j]) --t2; t2 = a[i] - 1; for (j = 1; j <= Length; ++j) if (j == a[i]) break; else if (!check[j]) --t2; k -= (t2 * t); if (k == 0) { for (j = 1; j <= Length; ++j) if (check[j]) a[i++] = j; break; } } } result = 0; for (i = 1; i <= Length; ++i) a[i] += (n - Length); while (!q.empty()) { t = q.front(); q.pop(); if (t <= n - Length) ++result; else if (t > n) break; else { t -= (n - Length); if (Lucky(a[t])) ++result; } } cout << result; } int main() { scanf("%d %d", &n, &k); process(); return 0; } ```
#include <bits/stdc++.h> using namespace std; long long fact[20]; int offset[20]; int vals[20]; vector<int> lidx; bool islucky(int x) { while (x > 0) { if (x % 10 != 4 && x % 10 != 7) return false; x /= 10; } return true; } int main() { fact[0] = fact[1] = 1; for (int i = 2; i < 20; i++) fact[i] = (fact[i - 1] * i); int N, K; cin >> N >> K; K -= 1; for (int i = min(13, N - 1); i >= 0; i--) { offset[i] = K / fact[i]; if (offset[i] > i) { cout << -1 << endl; return 0; } K -= fact[i] * offset[i]; } set<int> rem; for (int i = max(1, N - 13); i <= N; i++) rem.insert(i); for (int i = min(13, N - 1); i >= 0; i--) { auto it = rem.begin(); for (int j = 0; j < offset[i]; j++, it++) ; vals[i] = (*it); rem.erase(it); } queue<long long> q; q.push(4); q.push(7); while (!q.empty()) { long long x = q.front(); q.pop(); if (x > N) continue; else lidx.push_back(x); q.push(x * 10 + 4); q.push(x * 10 + 7); } sort(lidx.begin(), lidx.end()); int total = 0; for (auto x : lidx) if (N - x > 13) total += 1; for (int i = min(13, N - 1), j = max(N - 13, 1); i >= 0; i--, j++) if (islucky(j) && islucky(vals[i])) total += 1; cout << total << endl; return 0; }
### Prompt In Cpp, your task is to solve the following problem: Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4. ### Response ```cpp #include <bits/stdc++.h> using namespace std; long long fact[20]; int offset[20]; int vals[20]; vector<int> lidx; bool islucky(int x) { while (x > 0) { if (x % 10 != 4 && x % 10 != 7) return false; x /= 10; } return true; } int main() { fact[0] = fact[1] = 1; for (int i = 2; i < 20; i++) fact[i] = (fact[i - 1] * i); int N, K; cin >> N >> K; K -= 1; for (int i = min(13, N - 1); i >= 0; i--) { offset[i] = K / fact[i]; if (offset[i] > i) { cout << -1 << endl; return 0; } K -= fact[i] * offset[i]; } set<int> rem; for (int i = max(1, N - 13); i <= N; i++) rem.insert(i); for (int i = min(13, N - 1); i >= 0; i--) { auto it = rem.begin(); for (int j = 0; j < offset[i]; j++, it++) ; vals[i] = (*it); rem.erase(it); } queue<long long> q; q.push(4); q.push(7); while (!q.empty()) { long long x = q.front(); q.pop(); if (x > N) continue; else lidx.push_back(x); q.push(x * 10 + 4); q.push(x * 10 + 7); } sort(lidx.begin(), lidx.end()); int total = 0; for (auto x : lidx) if (N - x > 13) total += 1; for (int i = min(13, N - 1), j = max(N - 13, 1); i >= 0; i--, j++) if (islucky(j) && islucky(vals[i])) total += 1; cout << total << endl; return 0; } ```
#include <bits/stdc++.h> using namespace std; signed main() { cin.tie(0); cout.tie(0); ios_base::sync_with_stdio(false); long long n, k; cin >> n >> k; auto lucky_check = [&](long long x) { while (x) { if (x % 10 != 4 and x % 10 != 7) return false; x /= 10; } return true; }; vector<long long> lucky_nos; for (long long mask = 1; mask < (1 << 10); mask++) { long long num1 = 0, num2 = 0; bool ok = 0; for (long long i = 0; i < 10; i++) { num1 *= 10; num2 *= 10; if (mask >> i & 1) ok = 1; if (ok) num1 += ((mask >> i) & 1) ? 7 : 4, num2 += ((mask >> i) & 1) ? 4 : 7; } lucky_nos.push_back(num1); lucky_nos.push_back(num2); } sort(begin(lucky_nos), end(lucky_nos)); map<long long, long long> m; long long fac[14] = {1}; for (long long i = 1; i <= 13; i++) fac[i] = (fac[i - 1] * i); k--; for (long long i = n - 13; i <= n; i++) { long long temp = (k / fac[n - i]); k -= temp * fac[n - i]; for (long long j = 13; j >= 0; j--) { if (temp == 0 and !m.count(n - j)) { m[n - j] = i; break; } if (!m.count(n - j)) temp--; } } for (auto x : m) { if (x.first <= 0 and x.second != x.first) return cout << "-1\n", 0; } long long ans = 0; for (auto x : lucky_nos) { if (x > n) break; if (n - x <= 13) { long long pos = m[x]; ans += lucky_check(pos); } else ans++; } cout << ans << '\n'; }
### Prompt Develop a solution in CPP to the problem described below: Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4. ### Response ```cpp #include <bits/stdc++.h> using namespace std; signed main() { cin.tie(0); cout.tie(0); ios_base::sync_with_stdio(false); long long n, k; cin >> n >> k; auto lucky_check = [&](long long x) { while (x) { if (x % 10 != 4 and x % 10 != 7) return false; x /= 10; } return true; }; vector<long long> lucky_nos; for (long long mask = 1; mask < (1 << 10); mask++) { long long num1 = 0, num2 = 0; bool ok = 0; for (long long i = 0; i < 10; i++) { num1 *= 10; num2 *= 10; if (mask >> i & 1) ok = 1; if (ok) num1 += ((mask >> i) & 1) ? 7 : 4, num2 += ((mask >> i) & 1) ? 4 : 7; } lucky_nos.push_back(num1); lucky_nos.push_back(num2); } sort(begin(lucky_nos), end(lucky_nos)); map<long long, long long> m; long long fac[14] = {1}; for (long long i = 1; i <= 13; i++) fac[i] = (fac[i - 1] * i); k--; for (long long i = n - 13; i <= n; i++) { long long temp = (k / fac[n - i]); k -= temp * fac[n - i]; for (long long j = 13; j >= 0; j--) { if (temp == 0 and !m.count(n - j)) { m[n - j] = i; break; } if (!m.count(n - j)) temp--; } } for (auto x : m) { if (x.first <= 0 and x.second != x.first) return cout << "-1\n", 0; } long long ans = 0; for (auto x : lucky_nos) { if (x > n) break; if (n - x <= 13) { long long pos = m[x]; ans += lucky_check(pos); } else ans++; } cout << ans << '\n'; } ```
#include <bits/stdc++.h> using namespace std; vector<unsigned long long> luck; unsigned long long f[15]; vector<unsigned long long> v; int L; set<unsigned long long> S; void build() { int cnt = 2; luck.push_back(4); luck.push_back(7); for (int i = 2; i <= 9; ++i) { int p = ((int)luck.size()); for (int w = 0; w < cnt; w++) { p--; luck.push_back(luck[p] * 10 + 4); luck.push_back(luck[p] * 10 + 7); } cnt *= 2; } for (int i = 0; i < ((int)luck.size()); ++i) S.insert(luck[i]); } unsigned long long go(unsigned long long p, unsigned long long n) { unsigned long long ans = 0; for (int i = 0; i < ((int)luck.size()); ++i) { if (p <= luck[i] && luck[i] <= n) ans++; } return ans; } int get(unsigned long long n) { int ans = 0; while (f[ans] < n) { ans++; } return ans - 1; } int main() { ios_base::sync_with_stdio(0); cin.tie(0); ; build(); unsigned long long n, k; cin >> n >> k; f[0] = 1; for (int i = 1; i < 15; ++i) { f[i] = i * f[i - 1]; } unsigned long long m; for (int i = 2; i < 15; ++i) { if (f[i - 1] < k && k <= f[i]) { break; m = i - 1; } } if (n < 13 && f[n] < k) { cout << "-1" << endl; return 0; } if (k == 1) cout << go(1, n); else { int w = get(k); L = w; unsigned long long ans = go(1, n - w - 1); for (int i = n - w; i <= n; ++i) v.push_back(i); while (k != 1) { sort(v.begin() + L - w, v.end()); w = get(k); int t = (k - 1) / f[w]; k -= t * f[w]; unsigned long long aux = v[L - w]; v[L - w] = v[L - w + t]; v[L - w + t] = aux; w--; } for (int i = 0; i < L + 1; ++i) { if (S.find(n - L + i) != S.end() && S.find(v[i]) != S.end()) ans++; } cout << ans << endl; } return 0; }
### Prompt Please provide a CPP coded solution to the problem described below: Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4. ### Response ```cpp #include <bits/stdc++.h> using namespace std; vector<unsigned long long> luck; unsigned long long f[15]; vector<unsigned long long> v; int L; set<unsigned long long> S; void build() { int cnt = 2; luck.push_back(4); luck.push_back(7); for (int i = 2; i <= 9; ++i) { int p = ((int)luck.size()); for (int w = 0; w < cnt; w++) { p--; luck.push_back(luck[p] * 10 + 4); luck.push_back(luck[p] * 10 + 7); } cnt *= 2; } for (int i = 0; i < ((int)luck.size()); ++i) S.insert(luck[i]); } unsigned long long go(unsigned long long p, unsigned long long n) { unsigned long long ans = 0; for (int i = 0; i < ((int)luck.size()); ++i) { if (p <= luck[i] && luck[i] <= n) ans++; } return ans; } int get(unsigned long long n) { int ans = 0; while (f[ans] < n) { ans++; } return ans - 1; } int main() { ios_base::sync_with_stdio(0); cin.tie(0); ; build(); unsigned long long n, k; cin >> n >> k; f[0] = 1; for (int i = 1; i < 15; ++i) { f[i] = i * f[i - 1]; } unsigned long long m; for (int i = 2; i < 15; ++i) { if (f[i - 1] < k && k <= f[i]) { break; m = i - 1; } } if (n < 13 && f[n] < k) { cout << "-1" << endl; return 0; } if (k == 1) cout << go(1, n); else { int w = get(k); L = w; unsigned long long ans = go(1, n - w - 1); for (int i = n - w; i <= n; ++i) v.push_back(i); while (k != 1) { sort(v.begin() + L - w, v.end()); w = get(k); int t = (k - 1) / f[w]; k -= t * f[w]; unsigned long long aux = v[L - w]; v[L - w] = v[L - w + t]; v[L - w + t] = aux; w--; } for (int i = 0; i < L + 1; ++i) { if (S.find(n - L + i) != S.end() && S.find(v[i]) != S.end()) ans++; } cout << ans << endl; } return 0; } ```
#include <bits/stdc++.h> using namespace std; const long long maxn = 1e5 + 10, maxe = 15; long long n, k, x, ans = -1; long long fact[maxe], A[maxe], use[maxe]; void lucky_generator(long long a) { if (a > x) return; ans++; lucky_generator(a * 10 + 4); lucky_generator(a * 10 + 7); } bool is_lucky(long long a) { if (a < 3) return 0; a++; while (a) { if (a % 10 != 4 && a % 10 != 7) return 0; a /= 10; } return 1; } void solve(long long index, long long size) { if (index == size) return; int a = k / fact[size - index - 1] + 1, i = 0; k -= (a - 1) * fact[size - index - 1]; for (;; i++) { if (!use[i]) { a--; if (!a) break; } } A[index] = i; use[i] = 1; if (is_lucky(index + x) && is_lucky(i + x)) { ans++; } solve(index + 1, size); } int main() { fact[0] = 1; for (int i = 1; i < maxe + 1; i++) fact[i] = i * fact[i - 1]; cin >> n >> k; k--; if (n < maxe && k >= fact[n]) { cout << "-1\n"; return 0; } x = max(0ll, n - maxe); lucky_generator(0); solve(0ll, n - x); cout << ans << endl; }
### Prompt Your task is to create a CPP solution to the following problem: Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4. ### Response ```cpp #include <bits/stdc++.h> using namespace std; const long long maxn = 1e5 + 10, maxe = 15; long long n, k, x, ans = -1; long long fact[maxe], A[maxe], use[maxe]; void lucky_generator(long long a) { if (a > x) return; ans++; lucky_generator(a * 10 + 4); lucky_generator(a * 10 + 7); } bool is_lucky(long long a) { if (a < 3) return 0; a++; while (a) { if (a % 10 != 4 && a % 10 != 7) return 0; a /= 10; } return 1; } void solve(long long index, long long size) { if (index == size) return; int a = k / fact[size - index - 1] + 1, i = 0; k -= (a - 1) * fact[size - index - 1]; for (;; i++) { if (!use[i]) { a--; if (!a) break; } } A[index] = i; use[i] = 1; if (is_lucky(index + x) && is_lucky(i + x)) { ans++; } solve(index + 1, size); } int main() { fact[0] = 1; for (int i = 1; i < maxe + 1; i++) fact[i] = i * fact[i - 1]; cin >> n >> k; k--; if (n < maxe && k >= fact[n]) { cout << "-1\n"; return 0; } x = max(0ll, n - maxe); lucky_generator(0); solve(0ll, n - x); cout << ans << endl; } ```
#include <bits/stdc++.h> using namespace std; int N, num = 0, co = 0, tempo[16], tag[17]; long long temp[10001], K, dp[16], ans[16]; void DFS(long long now) { if (now > N) { temp[num++] = now; return; } temp[num++] = now; DFS(now * 10 + 4); DFS(now * 10 + 7); } int Check(long long key) { for (int i = 1; i < num; i++) if (temp[i] == key) return true; return false; } int main() { scanf("%d%I64d", &N, &K); K--; DFS(0); sort(temp, temp + num); dp[0] = 1; for (long long i = 1; dp[i - 1] * i <= K; i++) dp[i] = dp[i - 1] * i, co++; for (int i = co; i >= 0; i--) { long long x = (K / dp[i]); int gg = 0; for (int j = 0; j <= x; j++) if (tag[j] == 1) gg++; while (gg > 0) { x++; if (tag[x] == 1) gg++; gg--; } tag[x] = 1; ans[i] = x; K -= (K / dp[i]) * dp[i]; } if (co >= N) printf("-1\n"); else { int show = 0, run = 1; for (; run < num && temp[run] <= N - co - 1; run++) show++; run--; for (int i = co; i >= 0; i--) { if (Check(N - i) && Check(ans[i] + 1 + (N - co - 1))) show++; } printf("%d\n", show); } return 0; }
### Prompt Create a solution in CPP for the following problem: Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4. ### Response ```cpp #include <bits/stdc++.h> using namespace std; int N, num = 0, co = 0, tempo[16], tag[17]; long long temp[10001], K, dp[16], ans[16]; void DFS(long long now) { if (now > N) { temp[num++] = now; return; } temp[num++] = now; DFS(now * 10 + 4); DFS(now * 10 + 7); } int Check(long long key) { for (int i = 1; i < num; i++) if (temp[i] == key) return true; return false; } int main() { scanf("%d%I64d", &N, &K); K--; DFS(0); sort(temp, temp + num); dp[0] = 1; for (long long i = 1; dp[i - 1] * i <= K; i++) dp[i] = dp[i - 1] * i, co++; for (int i = co; i >= 0; i--) { long long x = (K / dp[i]); int gg = 0; for (int j = 0; j <= x; j++) if (tag[j] == 1) gg++; while (gg > 0) { x++; if (tag[x] == 1) gg++; gg--; } tag[x] = 1; ans[i] = x; K -= (K / dp[i]) * dp[i]; } if (co >= N) printf("-1\n"); else { int show = 0, run = 1; for (; run < num && temp[run] <= N - co - 1; run++) show++; run--; for (int i = co; i >= 0; i--) { if (Check(N - i) && Check(ans[i] + 1 + (N - co - 1))) show++; } printf("%d\n", show); } return 0; } ```
#include <bits/stdc++.h> using namespace std; long long P[2000], sz, Ans, N, K; long long Q[10000]; int size; void Dfs(int k, long long s) { Q[++size] = s; if (k == 11) { return; } Dfs(k + 1, s * 10 + 4); Dfs(k + 1, s * 10 + 7); } void Init() { Dfs(1, 0); sort(Q + 1, Q + size + 1); } long long Fac(long long s) { if (s == 1) return 1; return s * Fac(s - 1); } bool Check(long long n) { stringstream ss; string s; ss << n; ss >> s; bool f = 1; for (int i = 0; i < s.size(); i++) if (s[i] != '4' && s[i] != '7') { f = 0; break; } return f; } int main() { scanf("%I64d%I64d", &N, &K); K--; long long last = 1; Init(); for (int i = 1; i <= size; i++) if (Q[i] < max(1ll, N - 13) && Check(Q[i])) Ans++; for (int i = max(1ll, N - 13); i < N; i++) { long long tmp = Fac(N - i); long long l = 0, r = N - i, mid, ans = 0; while (l <= r) { mid = (l + r) >> 1; if (mid * tmp > K) r = mid - 1; else ans = mid, l = mid + 1; } K -= ans * tmp; last += ans; ans++; for (int j = 1; j <= sz; j++) if (P[j] <= ans) ans++; P[++sz] = ans; sort(P + 1, P + sz + 1); if (Check(i) && Check(max(0ll, N - 14) + ans)) Ans++; } long long ans = 1; for (int j = 1; j <= sz; j++) if (P[j] <= ans) ans++; if (Check(N) && Check(max(0ll, N - 14) + ans)) Ans++; if (K > 0) puts("-1"); else printf("%I64d\n", Ans); }
### Prompt Your task is to create a CPP solution to the following problem: Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4. ### Response ```cpp #include <bits/stdc++.h> using namespace std; long long P[2000], sz, Ans, N, K; long long Q[10000]; int size; void Dfs(int k, long long s) { Q[++size] = s; if (k == 11) { return; } Dfs(k + 1, s * 10 + 4); Dfs(k + 1, s * 10 + 7); } void Init() { Dfs(1, 0); sort(Q + 1, Q + size + 1); } long long Fac(long long s) { if (s == 1) return 1; return s * Fac(s - 1); } bool Check(long long n) { stringstream ss; string s; ss << n; ss >> s; bool f = 1; for (int i = 0; i < s.size(); i++) if (s[i] != '4' && s[i] != '7') { f = 0; break; } return f; } int main() { scanf("%I64d%I64d", &N, &K); K--; long long last = 1; Init(); for (int i = 1; i <= size; i++) if (Q[i] < max(1ll, N - 13) && Check(Q[i])) Ans++; for (int i = max(1ll, N - 13); i < N; i++) { long long tmp = Fac(N - i); long long l = 0, r = N - i, mid, ans = 0; while (l <= r) { mid = (l + r) >> 1; if (mid * tmp > K) r = mid - 1; else ans = mid, l = mid + 1; } K -= ans * tmp; last += ans; ans++; for (int j = 1; j <= sz; j++) if (P[j] <= ans) ans++; P[++sz] = ans; sort(P + 1, P + sz + 1); if (Check(i) && Check(max(0ll, N - 14) + ans)) Ans++; } long long ans = 1; for (int j = 1; j <= sz; j++) if (P[j] <= ans) ans++; if (Check(N) && Check(max(0ll, N - 14) + ans)) Ans++; if (K > 0) puts("-1"); else printf("%I64d\n", Ans); } ```
#include <bits/stdc++.h> using namespace std; const int INF = 1e9 + 10; const long long int INFLL = 1e18 + 10; const long double EPS = 1e-8; const long double EPSLD = 1e-14; const long long int MOD = 1e9 + 7; template <class T> T &chmin(T &a, const T &b) { return a = min(a, b); } template <class T> T &chmax(T &a, const T &b) { return a = max(a, b); } long long int mask_to_luckynumber(int mask) { long long int base = 1; long long int res = 0; bool end = false; for (int i = (0); i < (int)(10); i++) { if (mask % 3 == 0) end = true; else if (end) return INFLL; if (mask % 3 == 1) res += base * 4; if (mask % 3 == 2) res += base * 7; base *= 10; mask /= 3; } return res; } long long int fact[72]; int n; long long int k; bool used[72]; int res[72]; int main() { fact[0] = 1; for (int i = (1); i < (int)(16); i++) fact[i] = fact[i - 1] * i; cin >> n >> k; if (n < 16 && fact[n] < k) return puts("-1"); if (n < 4) return puts("0"); if (n < 7) { vector<int> v(0); for (int i = (0); i < (int)(n); i++) v.emplace_back(i); do { k--; if (k == 0) break; } while (next_permutation((v).begin(), (v).end())); if (v[3] == 3) return puts("1"); return puts("0"); } for (int i = (0); i < (int)(min(n, 15)); i++) { int p = 0; while (used[p]) p++; while (k > fact[min(n, 15) - 1 - i]) { k -= fact[min(n, 15) - 1 - i]; p++; while (used[p]) p++; } res[i] = p; used[p] = true; } int ans = 0; long long int e = 1; for (int i = (0); i < (int)(10); i++) e *= 3; vector<int> v; for (int mask = (1); mask < (int)(e); mask++) { long long int lucky = mask_to_luckynumber(mask); if (lucky == INFLL) continue; if (lucky < n - 14) ans++; else if (lucky <= n) v.emplace_back(lucky); } for (auto &w : v) for (auto &ww : v) if (res[min(n, 15) - 1 - (n - w)] == min(n, 15) - 1 - (n - ww)) ans++; cout << ans << endl; return 0; }
### Prompt Develop a solution in cpp to the problem described below: Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4. ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int INF = 1e9 + 10; const long long int INFLL = 1e18 + 10; const long double EPS = 1e-8; const long double EPSLD = 1e-14; const long long int MOD = 1e9 + 7; template <class T> T &chmin(T &a, const T &b) { return a = min(a, b); } template <class T> T &chmax(T &a, const T &b) { return a = max(a, b); } long long int mask_to_luckynumber(int mask) { long long int base = 1; long long int res = 0; bool end = false; for (int i = (0); i < (int)(10); i++) { if (mask % 3 == 0) end = true; else if (end) return INFLL; if (mask % 3 == 1) res += base * 4; if (mask % 3 == 2) res += base * 7; base *= 10; mask /= 3; } return res; } long long int fact[72]; int n; long long int k; bool used[72]; int res[72]; int main() { fact[0] = 1; for (int i = (1); i < (int)(16); i++) fact[i] = fact[i - 1] * i; cin >> n >> k; if (n < 16 && fact[n] < k) return puts("-1"); if (n < 4) return puts("0"); if (n < 7) { vector<int> v(0); for (int i = (0); i < (int)(n); i++) v.emplace_back(i); do { k--; if (k == 0) break; } while (next_permutation((v).begin(), (v).end())); if (v[3] == 3) return puts("1"); return puts("0"); } for (int i = (0); i < (int)(min(n, 15)); i++) { int p = 0; while (used[p]) p++; while (k > fact[min(n, 15) - 1 - i]) { k -= fact[min(n, 15) - 1 - i]; p++; while (used[p]) p++; } res[i] = p; used[p] = true; } int ans = 0; long long int e = 1; for (int i = (0); i < (int)(10); i++) e *= 3; vector<int> v; for (int mask = (1); mask < (int)(e); mask++) { long long int lucky = mask_to_luckynumber(mask); if (lucky == INFLL) continue; if (lucky < n - 14) ans++; else if (lucky <= n) v.emplace_back(lucky); } for (auto &w : v) for (auto &ww : v) if (res[min(n, 15) - 1 - (n - w)] == min(n, 15) - 1 - (n - ww)) ans++; cout << ans << endl; return 0; } ```
#include <bits/stdc++.h> using namespace std; void ga(int N, int *A) { for (int i(0); i < N; i++) scanf("%d", A + i); } long long f[(20) + 1] = {1}; int C[26], X; char s[666], r[666]; void nth(long long K, char *o, char *s) { if (!X++) for (int k(1); k < (20) + 1; k++) f[k] = f[k - 1] * k; long long L(strlen(s)), X(f[L]), T, l(0); (memset(C, o[L] = 0, sizeof(C))); for (int i(0); i < L; i++) ++C[s[i] - 97]; for (int i(0); i < 26; i++) X /= f[C[i]]; if (K > X) { *o = 0; return; }; for (int i(0); i < L; i++) for (int j(0); j < 26; j++) if (C[j]) { --C[j]; T = f[L - i - 1]; for (int i(0); i < 26; i++) T /= f[C[i]]; if (K <= T) { o[l++] = 'a' + j; break; } ++C[j], K -= T; } } long long fc(int a) { return a ? fc(a - 1) * a : 1; } int N, K, T; void rc(int r, long long S) { if (S > N - (20)) return; if (!r) { ++T; return; } rc(r - 1, S * 10 + 4), rc(r - 1, S * 10 + 7); } bool LC(int N) { while (N) { if (N % 10 != 7 && N % 10 != 4) return 0; N /= 10; } return 1; } int main(void) { scanf("%d%d", &N, &K); if (N <= (20) && fc(N) < K) return puts("-1"); if (N < (20)) { for (int i(0); i < N; i++) s[i] = r[i] = 97 + i; nth(K, s, r); for (int i(0); i < N; i++) T += LC(s[i] - 96) && LC(i + 1); printf("%d\n", T); return 0; } for (int i(0); i < 10; i++) rc(i + 1, 0); for (int i(0); i < (20); i++) s[i] = r[i] = 97 + i; nth(K, s, r); for (int i(0); i < (20); i++) T += LC(s[i] - 96 + N - (20)) && LC(N - (20) + i + 1); printf("%d\n", T); return 0; }
### Prompt Please create a solution in CPP to the following problem: Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4. ### Response ```cpp #include <bits/stdc++.h> using namespace std; void ga(int N, int *A) { for (int i(0); i < N; i++) scanf("%d", A + i); } long long f[(20) + 1] = {1}; int C[26], X; char s[666], r[666]; void nth(long long K, char *o, char *s) { if (!X++) for (int k(1); k < (20) + 1; k++) f[k] = f[k - 1] * k; long long L(strlen(s)), X(f[L]), T, l(0); (memset(C, o[L] = 0, sizeof(C))); for (int i(0); i < L; i++) ++C[s[i] - 97]; for (int i(0); i < 26; i++) X /= f[C[i]]; if (K > X) { *o = 0; return; }; for (int i(0); i < L; i++) for (int j(0); j < 26; j++) if (C[j]) { --C[j]; T = f[L - i - 1]; for (int i(0); i < 26; i++) T /= f[C[i]]; if (K <= T) { o[l++] = 'a' + j; break; } ++C[j], K -= T; } } long long fc(int a) { return a ? fc(a - 1) * a : 1; } int N, K, T; void rc(int r, long long S) { if (S > N - (20)) return; if (!r) { ++T; return; } rc(r - 1, S * 10 + 4), rc(r - 1, S * 10 + 7); } bool LC(int N) { while (N) { if (N % 10 != 7 && N % 10 != 4) return 0; N /= 10; } return 1; } int main(void) { scanf("%d%d", &N, &K); if (N <= (20) && fc(N) < K) return puts("-1"); if (N < (20)) { for (int i(0); i < N; i++) s[i] = r[i] = 97 + i; nth(K, s, r); for (int i(0); i < N; i++) T += LC(s[i] - 96) && LC(i + 1); printf("%d\n", T); return 0; } for (int i(0); i < 10; i++) rc(i + 1, 0); for (int i(0); i < (20); i++) s[i] = r[i] = 97 + i; nth(K, s, r); for (int i(0); i < (20); i++) T += LC(s[i] - 96 + N - (20)) && LC(N - (20) + i + 1); printf("%d\n", T); return 0; } ```
#include <bits/stdc++.h> #pragma comment(linker, "/STACK:256777216") using namespace std; long long num[10000]; int nn = 0; long long fact[] = {1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, 39916800, 479001600, 6227020800, 87178291200}; void gen(long long x) { if (x > 4444444447) { return; } num[nn] = x * 10 + 4; nn++; num[nn] = x * 10 + 7; nn++; gen(x * 10 + 4); gen(x * 10 + 7); } int notUsed(vector<bool> &used, int blockNum) { int j, pos = 0; for (j = 1; j < used.size(); j++) { if (!used[j]) pos++; if (blockNum == pos) break; } return j; } vector<int> permutation_by_num(int n, int num) { vector<int> res(n); vector<bool> used(n + 1, false); for (int i = 0; i < n; i++) { long long blockNum = (num - 1) / fact[n - i - 1] + 1; long long j = notUsed(used, blockNum); res[i] = j; used[j] = true; num = (num - 1) % fact[n - i - 1] + 1; } return res; } bool f(long long a) { if (a == 0) return false; while (a != 0) { if (a % 10 != 7 && a % 10 != 4) return false; a /= 10; } return true; } bool prov(long long a, long long b) { return f(a) && f(b); } int main() { gen(0); sort(num, num + nn); long long n, k; cin >> n >> k; int t = 14; if (n < 14) { t = n; } if (k > fact[t]) { cout << -1; return 0; } vector<int> ansMs = permutation_by_num(t, k); int ans = 0; if (t == 14) { for (int i = 0; i < nn; i++) { if (num[i] > n - 14) { ans = i; break; } } for (int i = 0; i < t; i++) { if (prov(n - 14 + i + 1, ansMs[i] + n - 14)) ans++; } } else { for (int i = 0; i < t; i++) { if (prov(1 + i, ansMs[i])) ans++; } } cout << endl; cout << ans; return 0; }
### Prompt Develop a solution in cpp to the problem described below: Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4. ### Response ```cpp #include <bits/stdc++.h> #pragma comment(linker, "/STACK:256777216") using namespace std; long long num[10000]; int nn = 0; long long fact[] = {1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, 39916800, 479001600, 6227020800, 87178291200}; void gen(long long x) { if (x > 4444444447) { return; } num[nn] = x * 10 + 4; nn++; num[nn] = x * 10 + 7; nn++; gen(x * 10 + 4); gen(x * 10 + 7); } int notUsed(vector<bool> &used, int blockNum) { int j, pos = 0; for (j = 1; j < used.size(); j++) { if (!used[j]) pos++; if (blockNum == pos) break; } return j; } vector<int> permutation_by_num(int n, int num) { vector<int> res(n); vector<bool> used(n + 1, false); for (int i = 0; i < n; i++) { long long blockNum = (num - 1) / fact[n - i - 1] + 1; long long j = notUsed(used, blockNum); res[i] = j; used[j] = true; num = (num - 1) % fact[n - i - 1] + 1; } return res; } bool f(long long a) { if (a == 0) return false; while (a != 0) { if (a % 10 != 7 && a % 10 != 4) return false; a /= 10; } return true; } bool prov(long long a, long long b) { return f(a) && f(b); } int main() { gen(0); sort(num, num + nn); long long n, k; cin >> n >> k; int t = 14; if (n < 14) { t = n; } if (k > fact[t]) { cout << -1; return 0; } vector<int> ansMs = permutation_by_num(t, k); int ans = 0; if (t == 14) { for (int i = 0; i < nn; i++) { if (num[i] > n - 14) { ans = i; break; } } for (int i = 0; i < t; i++) { if (prov(n - 14 + i + 1, ansMs[i] + n - 14)) ans++; } } else { for (int i = 0; i < t; i++) { if (prov(1 + i, ansMs[i])) ans++; } } cout << endl; cout << ans; return 0; } ```
#include <bits/stdc++.h> using namespace std; map<long long int, bool> mp; int N, sayi = 1, dizi[20], ekle, mark[20], T, end = 0, Q, bsmk, sayac; long long int K, carp = 1, carp2 = 1; int bul(int X) { int T = 0; for (int i = 1; i <= Q; i++) { if (!mark[i]) T++; if (T == X) return i; } } void Kth(int N) { carp = 1; for (int i = 2; i <= N - 1; i++) carp *= i; T = N - 1; while (sayi != N) { if (K % carp == 0 && K != 0) ekle = K / carp; else ekle = K / carp + 1; K -= (ekle - 1) * carp; ekle = bul(ekle); mark[ekle] = 1; dizi[sayi] = ekle; sayi++; carp /= T--; } dizi[N] = bul(1); } int bol(int K) { while (K > 0) { K /= 10; bsmk++; } return bsmk; } void rec(int H, long long int K) { if (H <= bsmk) { if (K >= 1 && K <= N - Q) sayac++; if (H == bsmk) return; } rec(H + 1, K * 10 + 4); rec(H + 1, K * 10 + 7); } bool isluck(long long int P) { int tzv; while (P > 0) { tzv = P % 10; P /= 10; if (tzv != 4 && tzv != 7) return 0; } return 1; } int main() { scanf("%d %lli", &N, &K); for (int i = 2; i < 16; i++) carp *= i; Q = 15; while (carp >= K && Q != 0) carp /= Q--; Q++; if (Q > N) { printf("-1\n"); return 0; } T = Q - 1; bsmk = bol(N - Q); rec(0, 0); Kth(Q); for (int i = 1; i <= Q; i++) { if (isluck(dizi[i] + N - Q) && isluck(i + N - Q)) sayac++; } printf("%d\n", sayac); }
### Prompt Please create a solution in Cpp to the following problem: Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4. ### Response ```cpp #include <bits/stdc++.h> using namespace std; map<long long int, bool> mp; int N, sayi = 1, dizi[20], ekle, mark[20], T, end = 0, Q, bsmk, sayac; long long int K, carp = 1, carp2 = 1; int bul(int X) { int T = 0; for (int i = 1; i <= Q; i++) { if (!mark[i]) T++; if (T == X) return i; } } void Kth(int N) { carp = 1; for (int i = 2; i <= N - 1; i++) carp *= i; T = N - 1; while (sayi != N) { if (K % carp == 0 && K != 0) ekle = K / carp; else ekle = K / carp + 1; K -= (ekle - 1) * carp; ekle = bul(ekle); mark[ekle] = 1; dizi[sayi] = ekle; sayi++; carp /= T--; } dizi[N] = bul(1); } int bol(int K) { while (K > 0) { K /= 10; bsmk++; } return bsmk; } void rec(int H, long long int K) { if (H <= bsmk) { if (K >= 1 && K <= N - Q) sayac++; if (H == bsmk) return; } rec(H + 1, K * 10 + 4); rec(H + 1, K * 10 + 7); } bool isluck(long long int P) { int tzv; while (P > 0) { tzv = P % 10; P /= 10; if (tzv != 4 && tzv != 7) return 0; } return 1; } int main() { scanf("%d %lli", &N, &K); for (int i = 2; i < 16; i++) carp *= i; Q = 15; while (carp >= K && Q != 0) carp /= Q--; Q++; if (Q > N) { printf("-1\n"); return 0; } T = Q - 1; bsmk = bol(N - Q); rec(0, 0); Kth(Q); for (int i = 1; i <= Q; i++) { if (isluck(dizi[i] + N - Q) && isluck(i + N - Q)) sayac++; } printf("%d\n", sayac); } ```
#include <bits/stdc++.h> using namespace std; set<long long> lucky; void gen(long long g, long long lim) { if (g + 4 > lim) return; else lucky.insert(g + 4); gen(10 * (g + 4), lim); if (g + 7 > lim) return; else gen(10 * (g + 7), lim); lucky.insert(g + 7); } bool check(long long num) { for (long long x = num; x > 0; x /= 10) { if (x % 10 != 4 && x % 10 != 7) { return false; } } return true; } int main() { ios_base::sync_with_stdio(false); cin.tie(NULL); cout.tie(NULL); long long n, k; cin >> n >> k; if (n < 13) { long long fat = 1; for (int i = 2; i <= n; ++i) fat *= i; if (fat < k) { cout << -1 << '\n'; return 0; } } --k; stack<int> f; for (int i = 1; k > 0; ++i) { f.push(k % i); k /= i; } gen(0, n - f.size()); int len = f.size(); vector<long long> nums(len), perm(len, 0); iota(nums.begin(), nums.end(), n - len + 1); for (long long i = 0; i < len; ++i) { perm[i] = nums[f.top()]; nums.erase(nums.begin() + f.top()); f.pop(); } long long ans = lucky.size(); for (long long j = n - len, i = 0; i < len; ++i, ++j) { if (check(j + 1) && check(perm[i])) { ++ans; } } cout << ans << '\n'; return 0; }
### Prompt Generate a Cpp solution to the following problem: Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4. ### Response ```cpp #include <bits/stdc++.h> using namespace std; set<long long> lucky; void gen(long long g, long long lim) { if (g + 4 > lim) return; else lucky.insert(g + 4); gen(10 * (g + 4), lim); if (g + 7 > lim) return; else gen(10 * (g + 7), lim); lucky.insert(g + 7); } bool check(long long num) { for (long long x = num; x > 0; x /= 10) { if (x % 10 != 4 && x % 10 != 7) { return false; } } return true; } int main() { ios_base::sync_with_stdio(false); cin.tie(NULL); cout.tie(NULL); long long n, k; cin >> n >> k; if (n < 13) { long long fat = 1; for (int i = 2; i <= n; ++i) fat *= i; if (fat < k) { cout << -1 << '\n'; return 0; } } --k; stack<int> f; for (int i = 1; k > 0; ++i) { f.push(k % i); k /= i; } gen(0, n - f.size()); int len = f.size(); vector<long long> nums(len), perm(len, 0); iota(nums.begin(), nums.end(), n - len + 1); for (long long i = 0; i < len; ++i) { perm[i] = nums[f.top()]; nums.erase(nums.begin() + f.top()); f.pop(); } long long ans = lucky.size(); for (long long j = n - len, i = 0; i < len; ++i, ++j) { if (check(j + 1) && check(perm[i])) { ++ans; } } cout << ans << '\n'; return 0; } ```
#include <bits/stdc++.h> using namespace std; vector<long long> lucky, f; vector<int> u; long long n, k; void dfs(long long v) { if (v > 7777777777LL) return; if (v) lucky.push_back(v); dfs(v * 10 + 4); dfs(v * 10 + 7); } int main() { dfs(0); sort(lucky.begin(), lucky.end()); f.push_back(1); cin >> n >> k; for (int i = 2; i <= n; i++) { if (f.back() >= k) break; f.push_back(f.back() * i); } if (f.size() == n && k > f.back()) { puts("-1"); return 0; } int cnt = 0; for (int i = 0; i < (int)lucky.size(); i++) if (lucky[i] > n - (int)f.size()) break; else cnt++; u.resize(f.size()); reverse(f.begin(), f.end()); f.push_back(2000); k--; for (int i = 0; i < (int)u.size(); i++) { int c = 0, a; while (k >= f[i + 1]) { k -= f[i + 1]; c++; } for (int j = 0; j < (int)u.size(); j++) if (!u[j]) if (c) c--; else { a = j; u[j] = 1; break; } a += n - (int)u.size() + 1; int j = i + n - (int)u.size() + 1; if (binary_search(lucky.begin(), lucky.end(), a) && binary_search(lucky.begin(), lucky.end(), j)) cnt++; } cout << cnt << endl; return 0; }
### Prompt Please create a solution in Cpp to the following problem: Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4. ### Response ```cpp #include <bits/stdc++.h> using namespace std; vector<long long> lucky, f; vector<int> u; long long n, k; void dfs(long long v) { if (v > 7777777777LL) return; if (v) lucky.push_back(v); dfs(v * 10 + 4); dfs(v * 10 + 7); } int main() { dfs(0); sort(lucky.begin(), lucky.end()); f.push_back(1); cin >> n >> k; for (int i = 2; i <= n; i++) { if (f.back() >= k) break; f.push_back(f.back() * i); } if (f.size() == n && k > f.back()) { puts("-1"); return 0; } int cnt = 0; for (int i = 0; i < (int)lucky.size(); i++) if (lucky[i] > n - (int)f.size()) break; else cnt++; u.resize(f.size()); reverse(f.begin(), f.end()); f.push_back(2000); k--; for (int i = 0; i < (int)u.size(); i++) { int c = 0, a; while (k >= f[i + 1]) { k -= f[i + 1]; c++; } for (int j = 0; j < (int)u.size(); j++) if (!u[j]) if (c) c--; else { a = j; u[j] = 1; break; } a += n - (int)u.size() + 1; int j = i + n - (int)u.size() + 1; if (binary_search(lucky.begin(), lucky.end(), a) && binary_search(lucky.begin(), lucky.end(), j)) cnt++; } cout << cnt << endl; return 0; } ```
#include <bits/stdc++.h> using namespace std; inline void read(register int *n) { register char c; *n = 0; do { c = getchar(); } while (c < '0' || c > '9'); do { *n = c - '0' + *n * 10; c = getchar(); } while (c >= '0' && c <= '9'); } vector<int> kperm(vector<int> V, long long k) { k--; vector<int> res; long long fac[20] = {1}; for (register int i = (1); i < (20); ++i) fac[i] = i * fac[i - 1]; if (k >= fac[((int)(V).size())]) { cout << -1 << "\n"; exit(0); } while (!V.empty()) { long long f = fac[((int)(V).size()) - 1]; res.push_back(V[k / f]); V.erase(V.begin() + k / f); k %= f; } return res; } vector<long long> V; void gen(long long x) { if (x > 0) V.push_back(x); if (x > 1000LL * 1000 * 1000 * 100) return; gen(x * 10 + 7); gen(x * 10 + 4); } bool islucky(int x) { while (x % 10 == 7 || x % 10 == 4) x /= 10; return x == 0; } int main(int argv, char **argc) { gen(0); long long n, k, m; cin >> n >> k; m = min(16LL, n); vector<int> tmp; for (register int i = (0); i < (m); ++i) tmp.push_back(n - i); sort((tmp).begin(), (tmp).end()); int cnt = 0; for (register int i = (0); i < (((int)(V).size())); ++i) if (V[i] <= n - 16) cnt++; tmp = kperm(tmp, k); for (register int i = (0); i < (m); ++i) if (islucky(tmp[((int)(tmp).size()) - 1 - i]) && islucky(n - i)) cnt++; cout << cnt << "\n"; return 0; }
### Prompt Create a solution in Cpp for the following problem: Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4. ### Response ```cpp #include <bits/stdc++.h> using namespace std; inline void read(register int *n) { register char c; *n = 0; do { c = getchar(); } while (c < '0' || c > '9'); do { *n = c - '0' + *n * 10; c = getchar(); } while (c >= '0' && c <= '9'); } vector<int> kperm(vector<int> V, long long k) { k--; vector<int> res; long long fac[20] = {1}; for (register int i = (1); i < (20); ++i) fac[i] = i * fac[i - 1]; if (k >= fac[((int)(V).size())]) { cout << -1 << "\n"; exit(0); } while (!V.empty()) { long long f = fac[((int)(V).size()) - 1]; res.push_back(V[k / f]); V.erase(V.begin() + k / f); k %= f; } return res; } vector<long long> V; void gen(long long x) { if (x > 0) V.push_back(x); if (x > 1000LL * 1000 * 1000 * 100) return; gen(x * 10 + 7); gen(x * 10 + 4); } bool islucky(int x) { while (x % 10 == 7 || x % 10 == 4) x /= 10; return x == 0; } int main(int argv, char **argc) { gen(0); long long n, k, m; cin >> n >> k; m = min(16LL, n); vector<int> tmp; for (register int i = (0); i < (m); ++i) tmp.push_back(n - i); sort((tmp).begin(), (tmp).end()); int cnt = 0; for (register int i = (0); i < (((int)(V).size())); ++i) if (V[i] <= n - 16) cnt++; tmp = kperm(tmp, k); for (register int i = (0); i < (m); ++i) if (islucky(tmp[((int)(tmp).size()) - 1 - i]) && islucky(n - i)) cnt++; cout << cnt << "\n"; return 0; } ```
#include <bits/stdc++.h> using std::cin; using std::cout; using std::endl; using std::min; using std::string; using std::vector; long long next(long long x) { if (x == 0) return 0; if (x % 10 <= 4) { long long a = next(x / 10); return a * 10 + 4; } if (x % 10 <= 7) { long long a = next(x / 10); if (a > x / 10) return a * 10 + 4; else return a * 10 + 7; } return next((x + 10 - (x % 10)) / 10) * 10 + 4; } struct pair { int x, y; }; int main() { int n, k; cin >> n >> k; long long x = 1; int i = 1; vector<int> fac; fac.push_back(1); while (x < k) { ++i; x *= i; fac.push_back(x); } if (i > n) { cout << -1 << endl; return 0; } int out = 0; long long l = 4; while (l <= n - i) { ++out; l = next(l + 1); } vector<pair> data(i); for (int j = 0; j < i; ++j) { data[j].x = j + n - i + 1; if (i == j + 1) data[j].y = 1 + data[j].x; else { int q = k / fac[i - j - 2]; ++q; if (k % fac[i - j - 2] == 0) --q; k = k - (q - 1) * fac[i - j - 2]; data[j].y = q + data[j].x; } } vector<bool> use(i, false); for (int j = 0; j < i; ++j) { int num = data[j].y - data[j].x; int qq = 0; while ((num > 1) || (use[qq])) { if (!use[qq]) --num; ++qq; } data[j].y = data[0].x + qq; use[qq] = true; if ((data[j].x == next(data[j].x)) && (data[j].y == next(data[j].y))) ++out; } cout << out << endl; return 0; }
### Prompt Please create a solution in CPP to the following problem: Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4. ### Response ```cpp #include <bits/stdc++.h> using std::cin; using std::cout; using std::endl; using std::min; using std::string; using std::vector; long long next(long long x) { if (x == 0) return 0; if (x % 10 <= 4) { long long a = next(x / 10); return a * 10 + 4; } if (x % 10 <= 7) { long long a = next(x / 10); if (a > x / 10) return a * 10 + 4; else return a * 10 + 7; } return next((x + 10 - (x % 10)) / 10) * 10 + 4; } struct pair { int x, y; }; int main() { int n, k; cin >> n >> k; long long x = 1; int i = 1; vector<int> fac; fac.push_back(1); while (x < k) { ++i; x *= i; fac.push_back(x); } if (i > n) { cout << -1 << endl; return 0; } int out = 0; long long l = 4; while (l <= n - i) { ++out; l = next(l + 1); } vector<pair> data(i); for (int j = 0; j < i; ++j) { data[j].x = j + n - i + 1; if (i == j + 1) data[j].y = 1 + data[j].x; else { int q = k / fac[i - j - 2]; ++q; if (k % fac[i - j - 2] == 0) --q; k = k - (q - 1) * fac[i - j - 2]; data[j].y = q + data[j].x; } } vector<bool> use(i, false); for (int j = 0; j < i; ++j) { int num = data[j].y - data[j].x; int qq = 0; while ((num > 1) || (use[qq])) { if (!use[qq]) --num; ++qq; } data[j].y = data[0].x + qq; use[qq] = true; if ((data[j].x == next(data[j].x)) && (data[j].y == next(data[j].y))) ++out; } cout << out << endl; return 0; } ```
#include <bits/stdc++.h> using namespace std; int n, k; long long fact[14] = {1}; bool cmp(int p) { if (p > 13 || fact[p] >= k) return true; k -= fact[p]; return false; } bool check(int x) { while (x) { if (x % 10 != 4 && x % 10 != 7) return false; x /= 10; } return true; } bool used[16]; int s; int calc(int i) { if (i > n) return 0; for (int j = s; j <= n; ++j) if (!used[j - s] && cmp(n - i)) { used[j - s] = true; return (check(i) && check(j)) + calc(i + 1); } return -1; } long long all[2046] = {4, 7}; int allC = 2; int main() { for (int i = 1; i < 14; ++i) fact[i] = fact[i - 1] * i; scanf("%d%d", &n, &k); if (n < 14 && k > fact[n]) { printf("-1"); return 0; } s = 1; if (n < 14) printf("%d", calc(1)); else { for (int i = 0; all[allC - 1] < 7777777777LL; ++i) { all[allC++] = all[i] * 10 + 4; all[allC++] = all[i] * 10 + 7; } s = n - 13; printf("%d", lower_bound(all, all + allC, s) - all + calc(s)); } return 0; }
### Prompt Please create a solution in Cpp to the following problem: Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4. ### Response ```cpp #include <bits/stdc++.h> using namespace std; int n, k; long long fact[14] = {1}; bool cmp(int p) { if (p > 13 || fact[p] >= k) return true; k -= fact[p]; return false; } bool check(int x) { while (x) { if (x % 10 != 4 && x % 10 != 7) return false; x /= 10; } return true; } bool used[16]; int s; int calc(int i) { if (i > n) return 0; for (int j = s; j <= n; ++j) if (!used[j - s] && cmp(n - i)) { used[j - s] = true; return (check(i) && check(j)) + calc(i + 1); } return -1; } long long all[2046] = {4, 7}; int allC = 2; int main() { for (int i = 1; i < 14; ++i) fact[i] = fact[i - 1] * i; scanf("%d%d", &n, &k); if (n < 14 && k > fact[n]) { printf("-1"); return 0; } s = 1; if (n < 14) printf("%d", calc(1)); else { for (int i = 0; all[allC - 1] < 7777777777LL; ++i) { all[allC++] = all[i] * 10 + 4; all[allC++] = all[i] * 10 + 7; } s = n - 13; printf("%d", lower_bound(all, all + allC, s) - all + calc(s)); } return 0; } ```
#include <bits/stdc++.h> using namespace std; const int maxn = 1e6 + 7; const long long mod = 998244353; const long long INF = 5e18 + 7; const int inf = 1e9 + 7; const long long maxx = 1e6 + 700; long long n, k; long long fac[maxn]; vector<int> v; int ans = 0; int find(int x) { sort(v.begin(), v.end()); int t = v[x]; v.erase(v.begin() + x); return t; } bool check(int x) { while (x) { if ((x % 10) != 4 && (x % 10) != 7) return 0; x /= 10; } return 1; } void dfs(long long x, long long y) { if (x > y) return; if (x != 0) ans++; dfs(x * 10 + 4, y); dfs(x * 10 + 7, y); } int main() { scanf("%lld%lld", &n, &k); k = k - 1; long long T = -1; fac[0] = 1; for (int i = 1; i <= n; i++) { fac[i] = i * fac[i - 1]; v.push_back(n - i + 1); if (fac[i] > k) { T = i; break; } } if (T == -1) { puts("-1"); return 0; } dfs(0, n - T); for (int i = T; i >= 1; i--) { int t = find(k / fac[i - 1]), pos = n - i + 1; if (check(pos) && check(t)) ans++; k = k % fac[i - 1]; } printf("%d\n", ans); }
### Prompt Generate a Cpp solution to the following problem: Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4. ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int maxn = 1e6 + 7; const long long mod = 998244353; const long long INF = 5e18 + 7; const int inf = 1e9 + 7; const long long maxx = 1e6 + 700; long long n, k; long long fac[maxn]; vector<int> v; int ans = 0; int find(int x) { sort(v.begin(), v.end()); int t = v[x]; v.erase(v.begin() + x); return t; } bool check(int x) { while (x) { if ((x % 10) != 4 && (x % 10) != 7) return 0; x /= 10; } return 1; } void dfs(long long x, long long y) { if (x > y) return; if (x != 0) ans++; dfs(x * 10 + 4, y); dfs(x * 10 + 7, y); } int main() { scanf("%lld%lld", &n, &k); k = k - 1; long long T = -1; fac[0] = 1; for (int i = 1; i <= n; i++) { fac[i] = i * fac[i - 1]; v.push_back(n - i + 1); if (fac[i] > k) { T = i; break; } } if (T == -1) { puts("-1"); return 0; } dfs(0, n - T); for (int i = T; i >= 1; i--) { int t = find(k / fac[i - 1]), pos = n - i + 1; if (check(pos) && check(t)) ans++; k = k % fac[i - 1]; } printf("%d\n", ans); } ```
#include <bits/stdc++.h> using namespace std; map<int, bool> mp; map<int, bool>::iterator it; long long p[1 << 11] = {0}, psum = 1; long long q[20]; bool flag[20]; void Init() { mp.clear(); memset(flag, 0x00, sizeof(flag)); for (int i = 0; i < psum; i++) { if (p[i] < 1e9) { p[psum++] = p[i] * 10 + 4; p[psum++] = p[i] * 10 + 7; } if (i) mp[p[i]] = true; } q[0] = 1LL; for (int i = 1; i < 14; i++) { q[i] = q[i - 1] * i; } } int n, k; int getNum(int x); int main() { Init(); scanf("%d%d", &n, &k); if (n < 13 && k > q[n]) { printf("-1\n"); return 0; } k--; int x = n > 13 ? n - 13 : 0; int y = n > 13 ? 13 : n; int ans = 0; for (int i = 1; i < psum; i++, ans++) if (p[i] > x) break; for (int i = y; i; i--) { int num = getNum(k / q[i - 1] + 1); k %= q[i - 1]; it = mp.find(x + num); if (it == mp.end()) continue; it = mp.find(x + y - i + 1); if (it == mp.end()) continue; ans++; } printf("%d\n", ans); return 0; } int getNum(int x) { int cnt = 0; for (int i = 1; true; i++) { if (!flag[i]) cnt++; if (cnt == x) { flag[i] = true; return i; } } }
### Prompt Your challenge is to write a Cpp solution to the following problem: Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4. ### Response ```cpp #include <bits/stdc++.h> using namespace std; map<int, bool> mp; map<int, bool>::iterator it; long long p[1 << 11] = {0}, psum = 1; long long q[20]; bool flag[20]; void Init() { mp.clear(); memset(flag, 0x00, sizeof(flag)); for (int i = 0; i < psum; i++) { if (p[i] < 1e9) { p[psum++] = p[i] * 10 + 4; p[psum++] = p[i] * 10 + 7; } if (i) mp[p[i]] = true; } q[0] = 1LL; for (int i = 1; i < 14; i++) { q[i] = q[i - 1] * i; } } int n, k; int getNum(int x); int main() { Init(); scanf("%d%d", &n, &k); if (n < 13 && k > q[n]) { printf("-1\n"); return 0; } k--; int x = n > 13 ? n - 13 : 0; int y = n > 13 ? 13 : n; int ans = 0; for (int i = 1; i < psum; i++, ans++) if (p[i] > x) break; for (int i = y; i; i--) { int num = getNum(k / q[i - 1] + 1); k %= q[i - 1]; it = mp.find(x + num); if (it == mp.end()) continue; it = mp.find(x + y - i + 1); if (it == mp.end()) continue; ans++; } printf("%d\n", ans); return 0; } int getNum(int x) { int cnt = 0; for (int i = 1; true; i++) { if (!flag[i]) cnt++; if (cnt == x) { flag[i] = true; return i; } } } ```
#include <bits/stdc++.h> using namespace std; const long long MAXN = 1e6 + 1, mod = 1e9 + 7, INF = 1e9 + 10; const double eps = 1e-9; template <typename A, typename B> inline bool chmin(A &a, B b) { if (a > b) { a = b; return 1; } return 0; } template <typename A, typename B> inline bool chmax(A &a, B b) { if (a < b) { a = b; return 1; } return 0; } template <typename A, typename B> inline long long add(A x, B y) { if (x + y < 0) return x + y + mod; return x + y >= mod ? x + y - mod : x + y; } template <typename A, typename B> inline void add2(A &x, B y) { if (x + y < 0) x = x + y + mod; else x = (x + y >= mod ? x + y - mod : x + y); } template <typename A, typename B> inline long long mul(A x, B y) { return 1ll * x * y % mod; } template <typename A, typename B> inline void mul2(A &x, B y) { x = (1ll * x * y % mod + mod) % mod; } template <typename A> inline void debug(A a) { cout << a << '\n'; } template <typename A> inline long long sqr(A x) { return 1ll * x * x; } inline long long read() { char c = getchar(); long long x = 0, f = 1; while (c < '0' || c > '9') { if (c == '-') f = -1; c = getchar(); } while (c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar(); return x * f; } long long N, K, fac[MAXN]; vector<long long> res; long long find(long long x) { sort(res.begin(), res.end()); long long t = res[x]; res.erase(res.begin() + x); return t; } bool check(long long x) { while (x) { if ((x % 10) != 4 && (x % 10) != 7) return 0; x /= 10; } return 1; } long long ans; void dfs(long long x, long long Lim) { if (x > Lim) return; if (x != 0) ans++; dfs(x * 10 + 4, Lim); dfs(x * 10 + 7, Lim); } signed main() { N = read(); K = read() - 1; long long T = -1; fac[0] = 1; for (long long i = 1; i <= N; i++) { fac[i] = i * fac[i - 1]; res.push_back(N - i + 1); if (fac[i] > K) { T = i; break; } } if (T == -1) { puts("-1"); return 0; } dfs(0, N - T); for (long long i = T; i >= 1; i--) { long long t = find(K / fac[i - 1]), pos = N - i + 1; if (check(pos) && check(t)) ans++; K = K % fac[i - 1]; } cout << ans; return 0; }
### Prompt Your challenge is to write a cpp solution to the following problem: Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4. ### Response ```cpp #include <bits/stdc++.h> using namespace std; const long long MAXN = 1e6 + 1, mod = 1e9 + 7, INF = 1e9 + 10; const double eps = 1e-9; template <typename A, typename B> inline bool chmin(A &a, B b) { if (a > b) { a = b; return 1; } return 0; } template <typename A, typename B> inline bool chmax(A &a, B b) { if (a < b) { a = b; return 1; } return 0; } template <typename A, typename B> inline long long add(A x, B y) { if (x + y < 0) return x + y + mod; return x + y >= mod ? x + y - mod : x + y; } template <typename A, typename B> inline void add2(A &x, B y) { if (x + y < 0) x = x + y + mod; else x = (x + y >= mod ? x + y - mod : x + y); } template <typename A, typename B> inline long long mul(A x, B y) { return 1ll * x * y % mod; } template <typename A, typename B> inline void mul2(A &x, B y) { x = (1ll * x * y % mod + mod) % mod; } template <typename A> inline void debug(A a) { cout << a << '\n'; } template <typename A> inline long long sqr(A x) { return 1ll * x * x; } inline long long read() { char c = getchar(); long long x = 0, f = 1; while (c < '0' || c > '9') { if (c == '-') f = -1; c = getchar(); } while (c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar(); return x * f; } long long N, K, fac[MAXN]; vector<long long> res; long long find(long long x) { sort(res.begin(), res.end()); long long t = res[x]; res.erase(res.begin() + x); return t; } bool check(long long x) { while (x) { if ((x % 10) != 4 && (x % 10) != 7) return 0; x /= 10; } return 1; } long long ans; void dfs(long long x, long long Lim) { if (x > Lim) return; if (x != 0) ans++; dfs(x * 10 + 4, Lim); dfs(x * 10 + 7, Lim); } signed main() { N = read(); K = read() - 1; long long T = -1; fac[0] = 1; for (long long i = 1; i <= N; i++) { fac[i] = i * fac[i - 1]; res.push_back(N - i + 1); if (fac[i] > K) { T = i; break; } } if (T == -1) { puts("-1"); return 0; } dfs(0, N - T); for (long long i = T; i >= 1; i--) { long long t = find(K / fac[i - 1]), pos = N - i + 1; if (check(pos) && check(t)) ans++; K = K % fac[i - 1]; } cout << ans; return 0; } ```
#include <bits/stdc++.h> using namespace std; long long rev(long long t) { long long res = 0; while (t) { if (t % 2) res *= 10, res += 7; else res *= 10, res += 4; t /= 10; } return res; } long long conv(long long t, int len) { long long res = 0, ans = 0, k = 0; while (t) { k++; if (t % 2) res *= 10, res += 7; else res *= 10, res += 4; t /= 2; } res = rev(res); for (int i = 0; i < len - k; i++) ans *= 10, ans += 4; for (int i = 0; i < k; i++) ans *= 10; ans += res; return ans; } const int MAXN = 15; vector<int> num; int n, k, ls, ans; bool se[MAXN + 10]; long long f[MAXN]; bool isluck(int a) { while (a) { if (a % 10 != 4 && a % 10 != 7) return false; a /= 10; } return true; } int main() { cin >> n >> k; f[0] = 1; for (int i = 1; i < MAXN; i++) f[i] = f[i - 1] * i; if (n < 15 && k > f[n]) return cout << -1, 0; for (int i = 1; i <= min(n, MAXN); i++) num.push_back(i); ls = n - num.size(); for (int i = 0; i < num.size(); i++) { int j = 1; while (se[j]) j++; while (k > f[num.size() - i - 1]) { k -= f[num.size() - i - 1]; j++; while (se[j]) j++; } num[i] = j; se[j] = 1; } bool R = 0; for (int i = 1; i < 30; i++) { if (R) break; for (int j = 0; j < (1 << i); j++) { long long t = conv(j, i); if (t > ls) { R = 1; break; } ans++; } } for (int i = 0; i < num.size(); i++) if (isluck(i + ls + 1) && isluck(ls + num[i])) ans++; cout << ans; }
### Prompt In CPP, your task is to solve the following problem: Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4. ### Response ```cpp #include <bits/stdc++.h> using namespace std; long long rev(long long t) { long long res = 0; while (t) { if (t % 2) res *= 10, res += 7; else res *= 10, res += 4; t /= 10; } return res; } long long conv(long long t, int len) { long long res = 0, ans = 0, k = 0; while (t) { k++; if (t % 2) res *= 10, res += 7; else res *= 10, res += 4; t /= 2; } res = rev(res); for (int i = 0; i < len - k; i++) ans *= 10, ans += 4; for (int i = 0; i < k; i++) ans *= 10; ans += res; return ans; } const int MAXN = 15; vector<int> num; int n, k, ls, ans; bool se[MAXN + 10]; long long f[MAXN]; bool isluck(int a) { while (a) { if (a % 10 != 4 && a % 10 != 7) return false; a /= 10; } return true; } int main() { cin >> n >> k; f[0] = 1; for (int i = 1; i < MAXN; i++) f[i] = f[i - 1] * i; if (n < 15 && k > f[n]) return cout << -1, 0; for (int i = 1; i <= min(n, MAXN); i++) num.push_back(i); ls = n - num.size(); for (int i = 0; i < num.size(); i++) { int j = 1; while (se[j]) j++; while (k > f[num.size() - i - 1]) { k -= f[num.size() - i - 1]; j++; while (se[j]) j++; } num[i] = j; se[j] = 1; } bool R = 0; for (int i = 1; i < 30; i++) { if (R) break; for (int j = 0; j < (1 << i); j++) { long long t = conv(j, i); if (t > ls) { R = 1; break; } ans++; } } for (int i = 0; i < num.size(); i++) if (isluck(i + ls + 1) && isluck(ls + num[i])) ans++; cout << ans; } ```
#include <bits/stdc++.h> using namespace std; long long a[10000], jc[20]; int t, o[20], p[20]; int cal(long long x) { if (x <= 0) return 0; int ans = 0; for (int i = (1); i <= (t); i++) if (a[i] <= x) ans++; else { break; }; return ans; } void init() { t = 0; for (int i = (1); i <= (10); i++) for (int j = (0); j <= ((1 << i) - 1); j++) { long long s = 0; for (int k = (i - 1); k >= (0); k--) if ((j >> k) & 1) s = s * 10 + 7; else s = s * 10 + 4; a[++t] = s; }; } bool luck(long long x) { while (x > 0) { if (x % 10 != 4 && x % 10 != 7) return 0; x /= 10; }; return 1; } int main() { int n, k; scanf("%d%d", &n, &k); jc[0] = 1; for (int i = (1); i <= (13); i++) jc[i] = jc[i - 1] * i; if (n < 13) { long long ss = 1; for (int i = (1); i <= (n); i++) ss *= i; if (ss < k) { puts("-1"); return 0; }; }; int ans = 0; k--; for (int i = (12); i >= (0); i--) { long long nh = k / jc[i]; k = k % jc[i]; for (int j = (0); j <= (12); j++) if (!o[j]) { if (!nh) { p[i] = j; o[j] = 1; break; }; nh--; }; if (i < n) { cerr << n - 12 + p[i] << endl; if (luck(n - i) && luck(n - 12 + p[i])) ans++; }; }; init(); printf("%d", cal(n - 13) + ans); return 0; }
### Prompt Develop a solution in Cpp to the problem described below: Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4. ### Response ```cpp #include <bits/stdc++.h> using namespace std; long long a[10000], jc[20]; int t, o[20], p[20]; int cal(long long x) { if (x <= 0) return 0; int ans = 0; for (int i = (1); i <= (t); i++) if (a[i] <= x) ans++; else { break; }; return ans; } void init() { t = 0; for (int i = (1); i <= (10); i++) for (int j = (0); j <= ((1 << i) - 1); j++) { long long s = 0; for (int k = (i - 1); k >= (0); k--) if ((j >> k) & 1) s = s * 10 + 7; else s = s * 10 + 4; a[++t] = s; }; } bool luck(long long x) { while (x > 0) { if (x % 10 != 4 && x % 10 != 7) return 0; x /= 10; }; return 1; } int main() { int n, k; scanf("%d%d", &n, &k); jc[0] = 1; for (int i = (1); i <= (13); i++) jc[i] = jc[i - 1] * i; if (n < 13) { long long ss = 1; for (int i = (1); i <= (n); i++) ss *= i; if (ss < k) { puts("-1"); return 0; }; }; int ans = 0; k--; for (int i = (12); i >= (0); i--) { long long nh = k / jc[i]; k = k % jc[i]; for (int j = (0); j <= (12); j++) if (!o[j]) { if (!nh) { p[i] = j; o[j] = 1; break; }; nh--; }; if (i < n) { cerr << n - 12 + p[i] << endl; if (luck(n - i) && luck(n - 12 + p[i])) ans++; }; }; init(); printf("%d", cal(n - 13) + ans); return 0; } ```
#include <bits/stdc++.h> using namespace std; vector<long long> lucky; long long l, r; void gen(long long x) { if (x >= 4444444444ll) return; lucky.push_back(x); gen(x * 10 + 4); gen(x * 10 + 7); } bool islucky(int x) { if (!x) return (false); while (x) { if (x % 10 != 4 && x % 10 != 7) return (false); x /= 10; } return (true); } int main() { int n, k, r; long long x = 1; scanf("%d %d", &n, &k); bool ok = false; for (int i = 1; i <= n; i++) { x *= i; if (x >= k) { ok = true; r = i; break; } } if (!ok) return (!printf("-1\n")); gen(0); sort(lucky.begin(), lucky.end()); int res = 0; for (int i = 0; i < lucky.size(); i++) { if (lucky[i] && lucky[i] <= n - r) res++; } bool used[128]; int num[128]; memset(used, false, sizeof(used)); for (int i = 1; i <= r; i++) { int t = 1; x = 1; for (int m = 1; m <= r - i; m++) x *= m; while (t * x < k) t++; int cnt = 0; for (int j = 1; j <= r; j++) { if (!used[j]) cnt++; if (cnt == t && !used[j]) { num[i] = j; used[j] = 1; break; } } k -= (t - 1) * x; if (k <= 0) k = 1; } for (int i = 1; i <= r; i++) { if (islucky(num[i] + n - r) && islucky(i + n - r)) res++; } printf("%d\n", res); return (0); }
### Prompt Please formulate a CPP solution to the following problem: Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4. ### Response ```cpp #include <bits/stdc++.h> using namespace std; vector<long long> lucky; long long l, r; void gen(long long x) { if (x >= 4444444444ll) return; lucky.push_back(x); gen(x * 10 + 4); gen(x * 10 + 7); } bool islucky(int x) { if (!x) return (false); while (x) { if (x % 10 != 4 && x % 10 != 7) return (false); x /= 10; } return (true); } int main() { int n, k, r; long long x = 1; scanf("%d %d", &n, &k); bool ok = false; for (int i = 1; i <= n; i++) { x *= i; if (x >= k) { ok = true; r = i; break; } } if (!ok) return (!printf("-1\n")); gen(0); sort(lucky.begin(), lucky.end()); int res = 0; for (int i = 0; i < lucky.size(); i++) { if (lucky[i] && lucky[i] <= n - r) res++; } bool used[128]; int num[128]; memset(used, false, sizeof(used)); for (int i = 1; i <= r; i++) { int t = 1; x = 1; for (int m = 1; m <= r - i; m++) x *= m; while (t * x < k) t++; int cnt = 0; for (int j = 1; j <= r; j++) { if (!used[j]) cnt++; if (cnt == t && !used[j]) { num[i] = j; used[j] = 1; break; } } k -= (t - 1) * x; if (k <= 0) k = 1; } for (int i = 1; i <= r; i++) { if (islucky(num[i] + n - r) && islucky(i + n - r)) res++; } printf("%d\n", res); return (0); } ```
#include <bits/stdc++.h> using namespace std; void file_open() { freopen("test.txt", "rt", stdin); freopen("test.out", "wt", stdout); } bool check(unsigned long long x) { while (x) { if (x % 10 != 7 && x % 10 != 4) return false; x /= 10; } return true; } void swap(int &a, int &b) { int tmp = a; a = b; b = tmp; } int main() { unsigned long long gt[20] = {}, a[20]; queue<int> qu; qu.push(4); qu.push(7); unsigned long long n, k, t, dem, tmp, tmp2; cin >> n >> k; t = 1; gt[t] = 1; gt[0] = 1; while (gt[t] < k) { ++t; gt[t] = gt[t - 1] * t; } if (t > n) { printf("-1"); return 0; } for (int i = t; i >= 1; --i) a[i] = n - t + i; dem = 0; tmp = 4; tmp2 = 1; while (tmp <= n) { if (qu.empty()) break; tmp = qu.front(); if (tmp > n) break; qu.pop(); if (tmp * 10 + 4 <= n) qu.push(tmp * 10 + 4); if (tmp * 10 + 7 <= n) qu.push(tmp * 10 + 7); if (n - tmp >= t) ++dem; else { while (n - tmp < t) { --t; int i = tmp2; while (k > gt[t]) { k -= gt[t]; ++i; swap(a[i], a[tmp2]); } tmp2++; } if (check(a[tmp2 - 1])) ++dem; } } cout << dem; return 0; }
### Prompt Develop a solution in cpp to the problem described below: Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4. ### Response ```cpp #include <bits/stdc++.h> using namespace std; void file_open() { freopen("test.txt", "rt", stdin); freopen("test.out", "wt", stdout); } bool check(unsigned long long x) { while (x) { if (x % 10 != 7 && x % 10 != 4) return false; x /= 10; } return true; } void swap(int &a, int &b) { int tmp = a; a = b; b = tmp; } int main() { unsigned long long gt[20] = {}, a[20]; queue<int> qu; qu.push(4); qu.push(7); unsigned long long n, k, t, dem, tmp, tmp2; cin >> n >> k; t = 1; gt[t] = 1; gt[0] = 1; while (gt[t] < k) { ++t; gt[t] = gt[t - 1] * t; } if (t > n) { printf("-1"); return 0; } for (int i = t; i >= 1; --i) a[i] = n - t + i; dem = 0; tmp = 4; tmp2 = 1; while (tmp <= n) { if (qu.empty()) break; tmp = qu.front(); if (tmp > n) break; qu.pop(); if (tmp * 10 + 4 <= n) qu.push(tmp * 10 + 4); if (tmp * 10 + 7 <= n) qu.push(tmp * 10 + 7); if (n - tmp >= t) ++dem; else { while (n - tmp < t) { --t; int i = tmp2; while (k > gt[t]) { k -= gt[t]; ++i; swap(a[i], a[tmp2]); } tmp2++; } if (check(a[tmp2 - 1])) ++dem; } } cout << dem; return 0; } ```
#include <bits/stdc++.h> using namespace std; template <typename X> ostream& operator<<(ostream& x, const vector<X>& v) { for (long long i = 0; i < v.size(); ++i) x << v[i] << " "; return x; } template <typename X> ostream& operator<<(ostream& x, const set<X>& v) { for (auto it : v) x << it << " "; return x; } template <typename X, typename Y> ostream& operator<<(ostream& x, const pair<X, Y>& v) { x << v.ff << " " << v.ss; return x; } template <typename T, typename S> ostream& operator<<(ostream& os, const map<T, S>& v) { for (auto it : v) os << it.first << "=>" << it.second << endl; return os; } struct pair_hash { inline std::size_t operator()( const std::pair<long long, long long>& v) const { return v.first * 31 + v.second; } }; #pragma comment(linker, "/stack:200000000") #pragma GCC optimize("O3") #pragma GCC optimize("unroll-loops") #pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native") long long fct[33]; bool chk(int n) { for (int i = n; i > 0; i /= 10) { if (i % 10 != 4 && i % 10 != 7) { return false; } } return true; } vector<long long> arr; int xp; void f(vector<long long> rr, int k, int i) { if (arr.size() == xp) { return; } int xx = (k + fct[i - 1] - 1) / fct[i - 1]; xx--; vector<long long> pp; arr.push_back(rr[xx]); for (long long j = 0; j < rr.size(); j++) { if (arr[arr.size() - 1] != rr[j]) { pp.push_back(rr[j]); } } sort(pp.begin(), pp.end()); f(pp, k - (xx * (fct[i - 1])), i - 1); } int main() { fct[0] = 1; long long i = 0; while (fct[i] < 1e13) { fct[i + 1] = (i + 1) * fct[i]; i++; } long long n, k; cin >> n >> k; if (n < i) { if (k > fct[n]) { cout << -1 << endl; return 0; } } i = 0; while (fct[i] <= k) { i++; } i--; if (k != fct[i]) { i++; } xp = i; vector<long long> rr; for (long long j = 0; j < i; j++) { rr.push_back(n - i + 1 + j); } f(rr, k, i); int ans = 0; for (long long j = 0; j < i; j++) { int xx = arr[j]; int poss = n - i + 1 + j; if (chk(poss) && chk(xx)) { ans++; } } vector<long long> xx; for (long long k = 1; k < 11; k++) { for (long long j = 0; j < (1 << k); j++) { string s; for (long long l = 0; l < k; l++) { if (j & (1 << l)) { s += '4'; } else { s += '7'; } } xx.push_back(stoll(s)); } } sort(xx.begin(), xx.end()); for (long long j = 0; j < xx.size(); j++) { if (chk(xx[j])) { if (xx[j] <= n - i) { ans++; } } } cout << ans << endl; }
### Prompt Please formulate a cpp solution to the following problem: Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4. ### Response ```cpp #include <bits/stdc++.h> using namespace std; template <typename X> ostream& operator<<(ostream& x, const vector<X>& v) { for (long long i = 0; i < v.size(); ++i) x << v[i] << " "; return x; } template <typename X> ostream& operator<<(ostream& x, const set<X>& v) { for (auto it : v) x << it << " "; return x; } template <typename X, typename Y> ostream& operator<<(ostream& x, const pair<X, Y>& v) { x << v.ff << " " << v.ss; return x; } template <typename T, typename S> ostream& operator<<(ostream& os, const map<T, S>& v) { for (auto it : v) os << it.first << "=>" << it.second << endl; return os; } struct pair_hash { inline std::size_t operator()( const std::pair<long long, long long>& v) const { return v.first * 31 + v.second; } }; #pragma comment(linker, "/stack:200000000") #pragma GCC optimize("O3") #pragma GCC optimize("unroll-loops") #pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native") long long fct[33]; bool chk(int n) { for (int i = n; i > 0; i /= 10) { if (i % 10 != 4 && i % 10 != 7) { return false; } } return true; } vector<long long> arr; int xp; void f(vector<long long> rr, int k, int i) { if (arr.size() == xp) { return; } int xx = (k + fct[i - 1] - 1) / fct[i - 1]; xx--; vector<long long> pp; arr.push_back(rr[xx]); for (long long j = 0; j < rr.size(); j++) { if (arr[arr.size() - 1] != rr[j]) { pp.push_back(rr[j]); } } sort(pp.begin(), pp.end()); f(pp, k - (xx * (fct[i - 1])), i - 1); } int main() { fct[0] = 1; long long i = 0; while (fct[i] < 1e13) { fct[i + 1] = (i + 1) * fct[i]; i++; } long long n, k; cin >> n >> k; if (n < i) { if (k > fct[n]) { cout << -1 << endl; return 0; } } i = 0; while (fct[i] <= k) { i++; } i--; if (k != fct[i]) { i++; } xp = i; vector<long long> rr; for (long long j = 0; j < i; j++) { rr.push_back(n - i + 1 + j); } f(rr, k, i); int ans = 0; for (long long j = 0; j < i; j++) { int xx = arr[j]; int poss = n - i + 1 + j; if (chk(poss) && chk(xx)) { ans++; } } vector<long long> xx; for (long long k = 1; k < 11; k++) { for (long long j = 0; j < (1 << k); j++) { string s; for (long long l = 0; l < k; l++) { if (j & (1 << l)) { s += '4'; } else { s += '7'; } } xx.push_back(stoll(s)); } } sort(xx.begin(), xx.end()); for (long long j = 0; j < xx.size(); j++) { if (chk(xx[j])) { if (xx[j] <= n - i) { ans++; } } } cout << ans << endl; } ```
#include <bits/stdc++.h> using namespace std; const double eps = 1e-9; long long perm[18]; set<long long> lu; void gen_luck(long long x) { if (x > 100000000000LL) return; lu.insert(x); gen_luck(x * 10LL + 4LL); gen_luck(x * 10LL + 7LL); } int sz; bool ud[21]; vector<int> res, val; void get_res(int x, int k) { if (x <= 0) return; for (int y = 0; y < sz; ++y) if (!ud[y]) { if (k > perm[x - 1]) k -= perm[x - 1]; else { res.push_back(y); ud[y] = true; get_res(x - 1, k); break; } } } bool luck(int x) { while (x > 0) { if ((x % 10 != 7) && (x % 10 != 4)) return false; x /= 10; } return true; } int main() { gen_luck(4LL); gen_luck(7LL); perm[0] = 1LL; for (int x = 1; x < 15; ++x) perm[x] = perm[x - 1] * x; int n, ans = 0; long long k; scanf("%d%I64d", &n, &k); if ((n < 14) && (perm[n] < k)) { printf("-1\n"); return 0; } sz = min(n, 13); get_res(sz, k); for (int x = n - sz; x < n; ++x) val.push_back(x + 1); for (int x = 0; x < sz; ++x) res[x] = val[res[x]]; k = n - sz; for (__typeof((res).begin()) it = (res).begin(); it != (res).end(); ++it) { if ((lu.count(*it)) && luck(k + 1)) ++ans; ++k; } k = *lu.lower_bound(n - sz + 1); for (__typeof((lu).begin()) it = (lu).begin(); it != (lu).end(); ++it) { if (*it == k) break; else ++ans; } printf("%d\n", ans); return 0; }
### Prompt Please formulate a cpp solution to the following problem: Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4. ### Response ```cpp #include <bits/stdc++.h> using namespace std; const double eps = 1e-9; long long perm[18]; set<long long> lu; void gen_luck(long long x) { if (x > 100000000000LL) return; lu.insert(x); gen_luck(x * 10LL + 4LL); gen_luck(x * 10LL + 7LL); } int sz; bool ud[21]; vector<int> res, val; void get_res(int x, int k) { if (x <= 0) return; for (int y = 0; y < sz; ++y) if (!ud[y]) { if (k > perm[x - 1]) k -= perm[x - 1]; else { res.push_back(y); ud[y] = true; get_res(x - 1, k); break; } } } bool luck(int x) { while (x > 0) { if ((x % 10 != 7) && (x % 10 != 4)) return false; x /= 10; } return true; } int main() { gen_luck(4LL); gen_luck(7LL); perm[0] = 1LL; for (int x = 1; x < 15; ++x) perm[x] = perm[x - 1] * x; int n, ans = 0; long long k; scanf("%d%I64d", &n, &k); if ((n < 14) && (perm[n] < k)) { printf("-1\n"); return 0; } sz = min(n, 13); get_res(sz, k); for (int x = n - sz; x < n; ++x) val.push_back(x + 1); for (int x = 0; x < sz; ++x) res[x] = val[res[x]]; k = n - sz; for (__typeof((res).begin()) it = (res).begin(); it != (res).end(); ++it) { if ((lu.count(*it)) && luck(k + 1)) ++ans; ++k; } k = *lu.lower_bound(n - sz + 1); for (__typeof((lu).begin()) it = (lu).begin(); it != (lu).end(); ++it) { if (*it == k) break; else ++ans; } printf("%d\n", ans); return 0; } ```
#include <bits/stdc++.h> using namespace std; vector<int> lucky; void init() { lucky.push_back(0); for (size_t i = 0; i < lucky.size(); i++) { if (lucky[i] >= 100000000) break; lucky.push_back(lucky[i] * 10 + 4); lucky.push_back(lucky[i] * 10 + 7); } lucky.erase(lucky.begin()); } bool islucky(int x) { do if (x % 10 != 7 && x % 10 != 4) return false; while (x /= 10); return true; } int main() { init(); int n, m, len = 0, ans = 0; long long s = 1; scanf("%d%d", &n, &m); while (s < m) s *= ++len; if (n < len) return puts("-1") & 0; vector<int> u; for (int i = 1; i <= len; i++) u.push_back(n - len + i); for (int i = 1; i <= len; i++) { s /= len + 1 - i; int x = (m - 1) / s; if (islucky(n - len + i) && islucky(u[x])) ans++; u.erase(u.begin() + x); m -= x * s; } ans += upper_bound(lucky.begin(), lucky.end(), n - len) - lucky.begin(); printf("%d\n", ans); }
### Prompt In Cpp, your task is to solve the following problem: Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4. ### Response ```cpp #include <bits/stdc++.h> using namespace std; vector<int> lucky; void init() { lucky.push_back(0); for (size_t i = 0; i < lucky.size(); i++) { if (lucky[i] >= 100000000) break; lucky.push_back(lucky[i] * 10 + 4); lucky.push_back(lucky[i] * 10 + 7); } lucky.erase(lucky.begin()); } bool islucky(int x) { do if (x % 10 != 7 && x % 10 != 4) return false; while (x /= 10); return true; } int main() { init(); int n, m, len = 0, ans = 0; long long s = 1; scanf("%d%d", &n, &m); while (s < m) s *= ++len; if (n < len) return puts("-1") & 0; vector<int> u; for (int i = 1; i <= len; i++) u.push_back(n - len + i); for (int i = 1; i <= len; i++) { s /= len + 1 - i; int x = (m - 1) / s; if (islucky(n - len + i) && islucky(u[x])) ans++; u.erase(u.begin() + x); m -= x * s; } ans += upper_bound(lucky.begin(), lucky.end(), n - len) - lucky.begin(); printf("%d\n", ans); } ```
#include <bits/stdc++.h> using namespace std; long long lucky[1024 * 4]; long long fact[14]; int cnt; void func(long long cur, int pos, int maxpos) { if (pos == maxpos) { lucky[++cnt] = cur * 10 + 4; lucky[++cnt] = cur * 10 + 7; return; } func(cur * 10 + 4, pos + 1, maxpos); func(cur * 10 + 7, pos + 1, maxpos); } void pre() { cnt = 0; for (int d = 1; d <= 10; d++) { func(0, 1, d); } sort(lucky, lucky + cnt); fact[0] = 1; for (int i = 1; i < 14; i++) fact[i] = i * fact[i - 1]; } long long n, k; void in() { cin >> n >> k; } int arr[14] = {0}; int brr[14] = {0}; void rec(int p, long long k, int coun) { if (coun == p) return; int b = (k + fact[p - 1 - coun] - 1) / fact[p - 1 - coun]; int c = 0; for (int i = 0; i < 14; i++) { if (brr[i] == 0) c++; if (b == c) { brr[i] = 1; arr[coun] = i; rec(p, k - fact[p - 1 - coun] * (b - 1), coun + 1); break; } } return; } bool luck(long long q) { for (int i = 0; i < cnt; i++) { if (lucky[i] == q) return true; if (lucky[i] > q) return false; } return false; } void solve() { int p = 0; while (fact[p] < k) p++; if (n < 14 && k > fact[n]) { cout << -1 << endl; return; } rec(p, k, 0); for (int i = 0; i < p; i++) { arr[i] += n - p + 1; } int ans = 1; while (lucky[ans] <= n - p) { ans++; } ans--; for (long long i = n - p + 1; i <= n; i++) { if (luck(i) && luck(arr[i - n - 1 + p])) ans++; } cout << ans << endl; } int main() { pre(); in(); solve(); }
### Prompt Construct a CPP code solution to the problem outlined: Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4. ### Response ```cpp #include <bits/stdc++.h> using namespace std; long long lucky[1024 * 4]; long long fact[14]; int cnt; void func(long long cur, int pos, int maxpos) { if (pos == maxpos) { lucky[++cnt] = cur * 10 + 4; lucky[++cnt] = cur * 10 + 7; return; } func(cur * 10 + 4, pos + 1, maxpos); func(cur * 10 + 7, pos + 1, maxpos); } void pre() { cnt = 0; for (int d = 1; d <= 10; d++) { func(0, 1, d); } sort(lucky, lucky + cnt); fact[0] = 1; for (int i = 1; i < 14; i++) fact[i] = i * fact[i - 1]; } long long n, k; void in() { cin >> n >> k; } int arr[14] = {0}; int brr[14] = {0}; void rec(int p, long long k, int coun) { if (coun == p) return; int b = (k + fact[p - 1 - coun] - 1) / fact[p - 1 - coun]; int c = 0; for (int i = 0; i < 14; i++) { if (brr[i] == 0) c++; if (b == c) { brr[i] = 1; arr[coun] = i; rec(p, k - fact[p - 1 - coun] * (b - 1), coun + 1); break; } } return; } bool luck(long long q) { for (int i = 0; i < cnt; i++) { if (lucky[i] == q) return true; if (lucky[i] > q) return false; } return false; } void solve() { int p = 0; while (fact[p] < k) p++; if (n < 14 && k > fact[n]) { cout << -1 << endl; return; } rec(p, k, 0); for (int i = 0; i < p; i++) { arr[i] += n - p + 1; } int ans = 1; while (lucky[ans] <= n - p) { ans++; } ans--; for (long long i = n - p + 1; i <= n; i++) { if (luck(i) && luck(arr[i - n - 1 + p])) ans++; } cout << ans << endl; } int main() { pre(); in(); solve(); } ```
#include <bits/stdc++.h> using namespace std; long long n, k; long long F[15]; vector<long long> p; void dfs(long long c, long long mx) { if (c > mx) return; if (c) p.push_back(c); dfs(10 * c + 4, mx); dfs(10 * c + 7, mx); } int main() { F[0] = 1; for (int i = 1; i < 15; i++) F[i] = F[i - 1] * i; cin >> n >> k; if (n < 15 && F[n] < k) cout << -1 << endl; else { int m = min(n, 15LL); vector<long long> d; for (long long i = n - m + 1; i <= n; i++) d.push_back(i); vector<long long> pp; int K = --k; for (int i = 0; i < m; i++) { int t = 0; while (K >= F[m - i - 1]) { K -= F[m - i - 1]; t++; } pp.push_back(d[t]); d.erase(d.begin() + t); } long long r = 0; dfs(0, n); sort(p.begin(), p.end()); for (int i = 0; i < p.size(); i++) if (p[i] <= n - m) r++; for (int i = 1; i <= m; i++) { if (binary_search(p.begin(), p.end(), n - m + i) && binary_search(p.begin(), p.end(), pp[i - 1])) r++; } cout << r << endl; } return 0; }
### Prompt Generate a CPP solution to the following problem: Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4. ### Response ```cpp #include <bits/stdc++.h> using namespace std; long long n, k; long long F[15]; vector<long long> p; void dfs(long long c, long long mx) { if (c > mx) return; if (c) p.push_back(c); dfs(10 * c + 4, mx); dfs(10 * c + 7, mx); } int main() { F[0] = 1; for (int i = 1; i < 15; i++) F[i] = F[i - 1] * i; cin >> n >> k; if (n < 15 && F[n] < k) cout << -1 << endl; else { int m = min(n, 15LL); vector<long long> d; for (long long i = n - m + 1; i <= n; i++) d.push_back(i); vector<long long> pp; int K = --k; for (int i = 0; i < m; i++) { int t = 0; while (K >= F[m - i - 1]) { K -= F[m - i - 1]; t++; } pp.push_back(d[t]); d.erase(d.begin() + t); } long long r = 0; dfs(0, n); sort(p.begin(), p.end()); for (int i = 0; i < p.size(); i++) if (p[i] <= n - m) r++; for (int i = 1; i <= m; i++) { if (binary_search(p.begin(), p.end(), n - m + i) && binary_search(p.begin(), p.end(), pp[i - 1])) r++; } cout << r << endl; } return 0; } ```
#include <bits/stdc++.h> using namespace std; long long k; int n; vector<long long> v; long long fact[15]; bool esta[20]; map<long long, bool> es; void go(long long num, int pos) { if (pos > 11) return; v.push_back(num); go(num * 10 + 4, pos + 1); go(num * 10 + 7, pos + 1); } vector<int> get_permutation(int n, long long k) { memset(esta, false, sizeof esta); vector<int> r; long long acu = 0; int cant = n - 1; for (int i = 0; i < n; i++) { acu = 0; for (int j = 0; j < n; j++) { if (esta[j]) continue; if (acu + fact[cant] >= k) { k -= acu; esta[j] = true; r.push_back(j); cant--; break; } acu += fact[cant]; } } return r; } int main() { go(4, 1); go(7, 1); sort((v).begin(), (v).end()); for (int i = 0; i < v.size(); i++) es[v[i]] = true; fact[0] = 1; fact[1] = 1; for (int i = 2; i < 15; i++) fact[i] = fact[i - 1] * i; cin >> n >> k; vector<int> vv; if (n > 13) { vv = get_permutation(13, k); int n2 = n - 13; int res = 0; for (int i = 0; i < v.size(); i++) if (v[i] > n2) break; else res++; int pos = n2 + 1; for (int i = 0; i < 13; i++) if (es[pos++] && es[vv[i] + n2 + 1]) res++; cout << res << endl; } else { if (fact[n] < k) { printf("-1\n"); return 0; } for (int i = 0; i < n; i++) vv.push_back(i); vv = get_permutation(n, k); for (int i = 0; i < n; i++) vv[i]++; int res = 0; for (int i = 0; i < n; i++) if (es[i + 1] && es[vv[i]]) res++; cout << res << endl; } }
### Prompt In cpp, your task is to solve the following problem: Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4. ### Response ```cpp #include <bits/stdc++.h> using namespace std; long long k; int n; vector<long long> v; long long fact[15]; bool esta[20]; map<long long, bool> es; void go(long long num, int pos) { if (pos > 11) return; v.push_back(num); go(num * 10 + 4, pos + 1); go(num * 10 + 7, pos + 1); } vector<int> get_permutation(int n, long long k) { memset(esta, false, sizeof esta); vector<int> r; long long acu = 0; int cant = n - 1; for (int i = 0; i < n; i++) { acu = 0; for (int j = 0; j < n; j++) { if (esta[j]) continue; if (acu + fact[cant] >= k) { k -= acu; esta[j] = true; r.push_back(j); cant--; break; } acu += fact[cant]; } } return r; } int main() { go(4, 1); go(7, 1); sort((v).begin(), (v).end()); for (int i = 0; i < v.size(); i++) es[v[i]] = true; fact[0] = 1; fact[1] = 1; for (int i = 2; i < 15; i++) fact[i] = fact[i - 1] * i; cin >> n >> k; vector<int> vv; if (n > 13) { vv = get_permutation(13, k); int n2 = n - 13; int res = 0; for (int i = 0; i < v.size(); i++) if (v[i] > n2) break; else res++; int pos = n2 + 1; for (int i = 0; i < 13; i++) if (es[pos++] && es[vv[i] + n2 + 1]) res++; cout << res << endl; } else { if (fact[n] < k) { printf("-1\n"); return 0; } for (int i = 0; i < n; i++) vv.push_back(i); vv = get_permutation(n, k); for (int i = 0; i < n; i++) vv[i]++; int res = 0; for (int i = 0; i < n; i++) if (es[i + 1] && es[vv[i]]) res++; cout << res << endl; } } ```
#include <bits/stdc++.h> using namespace std; int countbit(int n) { return (n == 0) ? 0 : (1 + countbit(n & (n - 1))); } int lowbit(int n) { return (n ^ (n - 1)) & n; } const double pi = acos(-1.0); const double eps = 1e-11; long long p[20]; int N, K; vector<int> path; vector<long long> lucky; int exist; void proc(vector<int> seq, int size, int kth) { if (size == 0 || exist == 0) return; vector<int> next; int r = kth / p[size - 1]; int m = kth % p[size - 1]; if (r >= size) { exist = 0; return; } path.push_back(seq[r]); for (int i = 0; i < size; ++i) if (i != r) next.push_back(seq[i]); proc(next, size - 1, m); } void get(long long n) { if (n) lucky.push_back(n); if (n < 1000000000) { get(n * 10 + 4); get(n * 10 + 7); } } bool isLucky(int n) { while (n) { if (n % 10 != 4 && n % 10 != 7) return false; n /= 10; } return true; } int main() { p[0] = 1; for (int i = 1; i <= 15; ++i) p[i] = i * p[i - 1]; cin >> N >> K; vector<int> seq; int size; if (N < 15) size = N; else size = 15; for (int i = 0; i < size; ++i) seq.push_back(N - i); sort(seq.begin(), seq.end()); K--; exist = 1; proc(seq, size, K); get(0); sort(lucky.begin(), lucky.end()); int ans = 0; if (N < 15) { for (int i = 0; i < path.size(); ++i) if (isLucky(i + 1) && isLucky(path[i])) ans++; } else { int index; for (int i = 0; i < lucky.size(); ++i) { if (lucky[i] > N - 15) { ans += i; break; } } for (int i = 0; i < path.size(); ++i) if (isLucky(i + N - 14) && isLucky(path[i])) ans++; } printf("%d\n", exist ? ans : -1); return 0; }
### Prompt Your task is to create a cpp solution to the following problem: Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4. ### Response ```cpp #include <bits/stdc++.h> using namespace std; int countbit(int n) { return (n == 0) ? 0 : (1 + countbit(n & (n - 1))); } int lowbit(int n) { return (n ^ (n - 1)) & n; } const double pi = acos(-1.0); const double eps = 1e-11; long long p[20]; int N, K; vector<int> path; vector<long long> lucky; int exist; void proc(vector<int> seq, int size, int kth) { if (size == 0 || exist == 0) return; vector<int> next; int r = kth / p[size - 1]; int m = kth % p[size - 1]; if (r >= size) { exist = 0; return; } path.push_back(seq[r]); for (int i = 0; i < size; ++i) if (i != r) next.push_back(seq[i]); proc(next, size - 1, m); } void get(long long n) { if (n) lucky.push_back(n); if (n < 1000000000) { get(n * 10 + 4); get(n * 10 + 7); } } bool isLucky(int n) { while (n) { if (n % 10 != 4 && n % 10 != 7) return false; n /= 10; } return true; } int main() { p[0] = 1; for (int i = 1; i <= 15; ++i) p[i] = i * p[i - 1]; cin >> N >> K; vector<int> seq; int size; if (N < 15) size = N; else size = 15; for (int i = 0; i < size; ++i) seq.push_back(N - i); sort(seq.begin(), seq.end()); K--; exist = 1; proc(seq, size, K); get(0); sort(lucky.begin(), lucky.end()); int ans = 0; if (N < 15) { for (int i = 0; i < path.size(); ++i) if (isLucky(i + 1) && isLucky(path[i])) ans++; } else { int index; for (int i = 0; i < lucky.size(); ++i) { if (lucky[i] > N - 15) { ans += i; break; } } for (int i = 0; i < path.size(); ++i) if (isLucky(i + N - 14) && isLucky(path[i])) ans++; } printf("%d\n", exist ? ans : -1); return 0; } ```
#include <bits/stdc++.h> using namespace std; int bound[15]; int n, k, ans; long long lucky[3000]; int num; void dfs(long long x, int pos) { long long c1 = x * 10ll + 4ll, c2 = x * 10ll + 7ll; if (pos <= 10) { lucky[num++] = c1; lucky[num++] = c2; dfs(c1, pos + 1); dfs(c2, pos + 1); } } int main() { lucky[num++] = 0; dfs(0, 1); sort(lucky, lucky + num); bound[0] = 0; bound[1] = 1; for (int i = 2; i <= 12; ++i) bound[i] = bound[i - 1] * i; ans = 0; scanf("%d%d", &n, &k); if (n <= 12 && k > bound[n]) puts("-1"); else { int st = (((1) > (n - 12)) ? (1) : (n - 12)); bool used[20]; memset(used, 0, sizeof(used)); ans = lower_bound(lucky, lucky + num, st) - lucky - 1; int c = 0; for (int i = (((12) < (n - 1)) ? (12) : (n - 1)); i >= 1; --i) { while (k > bound[i]) { ++c; k -= bound[i]; } int count = -1; for (int j = 0; j <= (((12) < (n)) ? (12) : (n)); ++j) { if (!used[j]) ++count; if (count == c) { used[j] = 1; int tmp = lower_bound(lucky, lucky + num, st + j) - lucky; int tmp2 = lower_bound(lucky, lucky + num, n - i) - lucky; if (lucky[tmp] == st + j && lucky[tmp2] == n - i) ++ans; break; } } c = 0; } for (int i = 0; i <= (((12) < (n)) ? (12) : (n)); ++i) { if (!used[i]) { int tmp = lower_bound(lucky, lucky + num, st + i) - lucky; int tmp2 = lower_bound(lucky, lucky + num, n) - lucky; if (lucky[tmp] == st + i && lucky[tmp2] == n) ++ans; break; } } printf("%d\n", ans); } return 0; }
### Prompt In Cpp, your task is to solve the following problem: Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4. ### Response ```cpp #include <bits/stdc++.h> using namespace std; int bound[15]; int n, k, ans; long long lucky[3000]; int num; void dfs(long long x, int pos) { long long c1 = x * 10ll + 4ll, c2 = x * 10ll + 7ll; if (pos <= 10) { lucky[num++] = c1; lucky[num++] = c2; dfs(c1, pos + 1); dfs(c2, pos + 1); } } int main() { lucky[num++] = 0; dfs(0, 1); sort(lucky, lucky + num); bound[0] = 0; bound[1] = 1; for (int i = 2; i <= 12; ++i) bound[i] = bound[i - 1] * i; ans = 0; scanf("%d%d", &n, &k); if (n <= 12 && k > bound[n]) puts("-1"); else { int st = (((1) > (n - 12)) ? (1) : (n - 12)); bool used[20]; memset(used, 0, sizeof(used)); ans = lower_bound(lucky, lucky + num, st) - lucky - 1; int c = 0; for (int i = (((12) < (n - 1)) ? (12) : (n - 1)); i >= 1; --i) { while (k > bound[i]) { ++c; k -= bound[i]; } int count = -1; for (int j = 0; j <= (((12) < (n)) ? (12) : (n)); ++j) { if (!used[j]) ++count; if (count == c) { used[j] = 1; int tmp = lower_bound(lucky, lucky + num, st + j) - lucky; int tmp2 = lower_bound(lucky, lucky + num, n - i) - lucky; if (lucky[tmp] == st + j && lucky[tmp2] == n - i) ++ans; break; } } c = 0; } for (int i = 0; i <= (((12) < (n)) ? (12) : (n)); ++i) { if (!used[i]) { int tmp = lower_bound(lucky, lucky + num, st + i) - lucky; int tmp2 = lower_bound(lucky, lucky + num, n) - lucky; if (lucky[tmp] == st + i && lucky[tmp2] == n) ++ans; break; } } printf("%d\n", ans); } return 0; } ```
#include <bits/stdc++.h> using namespace std; const int MAX_N = 15 + 5; long long fact[MAX_N] = {1}; bool mark[MAX_N]; int a[MAX_N]; void Permutation(int k, int id) { if (id == 15) return; int x = (k - 1) / fact[14 - id]; k -= x * fact[14 - id]; for (int i = 0; i < 15; i++) { if (!mark[i] && x) x--; else if (!mark[i]) { a[id] = i, mark[i] = true; return Permutation(k, id + 1); } } } bool isLucky(int n) { return n ? (n % 10 == 4 || n % 10 == 7) && isLucky(n / 10) : true; } int countLucky(int n, long long num = 0) { return num <= n ? (num > 0) + countLucky(n, num * 10 + 4) + countLucky(n, num * 10 + 7) : 0; } int main() { ios_base ::sync_with_stdio(false), cin.tie(NULL), cout.tie(NULL); int n, k; cin >> n >> k; for (int i = 1; i < MAX_N; i++) fact[i] = fact[i - 1] * i; if (n < MAX_N && k > fact[n]) return cout << "-1\n", 0; Permutation(k, 0); int tmp = n, ans = 0; for (int i = 0; i < 15; i++) if (a[i] != i) { tmp -= 15 - i; for (int j = i; j < 15; j++) ans += (isLucky(tmp + j - i + 1) && isLucky(tmp + a[j] - i + 1)); break; } cout << ans + countLucky(tmp) << endl; return 0; }
### Prompt Please formulate a cpp solution to the following problem: Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4. ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int MAX_N = 15 + 5; long long fact[MAX_N] = {1}; bool mark[MAX_N]; int a[MAX_N]; void Permutation(int k, int id) { if (id == 15) return; int x = (k - 1) / fact[14 - id]; k -= x * fact[14 - id]; for (int i = 0; i < 15; i++) { if (!mark[i] && x) x--; else if (!mark[i]) { a[id] = i, mark[i] = true; return Permutation(k, id + 1); } } } bool isLucky(int n) { return n ? (n % 10 == 4 || n % 10 == 7) && isLucky(n / 10) : true; } int countLucky(int n, long long num = 0) { return num <= n ? (num > 0) + countLucky(n, num * 10 + 4) + countLucky(n, num * 10 + 7) : 0; } int main() { ios_base ::sync_with_stdio(false), cin.tie(NULL), cout.tie(NULL); int n, k; cin >> n >> k; for (int i = 1; i < MAX_N; i++) fact[i] = fact[i - 1] * i; if (n < MAX_N && k > fact[n]) return cout << "-1\n", 0; Permutation(k, 0); int tmp = n, ans = 0; for (int i = 0; i < 15; i++) if (a[i] != i) { tmp -= 15 - i; for (int j = i; j < 15; j++) ans += (isLucky(tmp + j - i + 1) && isLucky(tmp + a[j] - i + 1)); break; } cout << ans + countLucky(tmp) << endl; return 0; } ```
#include <bits/stdc++.h> using namespace std; std::vector<long long> v; long long c(long long i) { while (i) { if (i % 10 == 4 || i % 10 == 7) { } else return 0; i /= 10; } return 1; } long long MAXN = 1e10; int32_t main() { ios::sync_with_stdio(false); cin.tie(NULL); cout.precision(10); std::vector<long long> fact = { 1ll, 1ll, 2ll, 6ll, 24ll, 120ll, 720ll, 5040ll, 40320ll, 362880ll, 3628800ll, 39916800ll, 479001600ll, 6227020800ll, 87178291200ll}; priority_queue<long long, std::vector<long long>, greater<long long> > pq; pq.push(4); pq.push(7); while (!pq.empty()) { long long o = pq.top(); pq.pop(); v.emplace_back(o); if (o * 10ll + 7ll <= MAXN) { pq.push(o * 10ll + 7ll); pq.push(o * 10ll + 4ll); } else if (o * 10ll + 4ll <= MAXN) { pq.push(o * 10ll + 4ll); } } long long n; cin >> n; long long k; cin >> k; if (n <= 13 && fact[n] < k) { cout << -1; exit(0); } long long rem = min(n, 13ll); std::vector<long long> vv; for (long long i = rem - 1; i >= 0; --i) { vv.emplace_back(n - i); } long long r = 0; for (long long vvv : v) if (vvv <= (n - rem)) r++; std::vector<long long> v1; while (rem) { long long y = 0; rem--; while (fact[rem] < k) { k -= fact[rem]; y++; } v1.emplace_back(vv[y]); vv.erase(vv.begin() + y); } rem = min(n, 13ll); for (long long i = 0; i < rem; ++i) { if (c(n - i) && c(v1[rem - i - 1])) { r++; } } cout << r; }
### Prompt Develop a solution in CPP to the problem described below: Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4. ### Response ```cpp #include <bits/stdc++.h> using namespace std; std::vector<long long> v; long long c(long long i) { while (i) { if (i % 10 == 4 || i % 10 == 7) { } else return 0; i /= 10; } return 1; } long long MAXN = 1e10; int32_t main() { ios::sync_with_stdio(false); cin.tie(NULL); cout.precision(10); std::vector<long long> fact = { 1ll, 1ll, 2ll, 6ll, 24ll, 120ll, 720ll, 5040ll, 40320ll, 362880ll, 3628800ll, 39916800ll, 479001600ll, 6227020800ll, 87178291200ll}; priority_queue<long long, std::vector<long long>, greater<long long> > pq; pq.push(4); pq.push(7); while (!pq.empty()) { long long o = pq.top(); pq.pop(); v.emplace_back(o); if (o * 10ll + 7ll <= MAXN) { pq.push(o * 10ll + 7ll); pq.push(o * 10ll + 4ll); } else if (o * 10ll + 4ll <= MAXN) { pq.push(o * 10ll + 4ll); } } long long n; cin >> n; long long k; cin >> k; if (n <= 13 && fact[n] < k) { cout << -1; exit(0); } long long rem = min(n, 13ll); std::vector<long long> vv; for (long long i = rem - 1; i >= 0; --i) { vv.emplace_back(n - i); } long long r = 0; for (long long vvv : v) if (vvv <= (n - rem)) r++; std::vector<long long> v1; while (rem) { long long y = 0; rem--; while (fact[rem] < k) { k -= fact[rem]; y++; } v1.emplace_back(vv[y]); vv.erase(vv.begin() + y); } rem = min(n, 13ll); for (long long i = 0; i < rem; ++i) { if (c(n - i) && c(v1[rem - i - 1])) { r++; } } cout << r; } ```
#include <bits/stdc++.h> using namespace std; const int N = 1e6 + 11; const long long MOD = 1e18; long long n, k; int ans = 0; vector<long long> vv; bool good(long long c) { while (c > 0) { if (c % 10 == 4 || c % 10 == 7) { } else return false; c /= 10; } return true; } void dfs(long long l) { if (l > n) return; if (l >= 1) { if (l < n - 15ll) { ans++; } else { long long pos = l - max(1ll, (n - 15)); if (good(vv[pos])) ans++; } } dfs(l * 10ll + 4ll); dfs(l * 10ll + 7ll); } long long kol_perm(long long x) { long long k = 1; for (long long i = 1; i <= x; i++) k *= i; return k; } int main() { ios_base::sync_with_stdio(0); cin.tie(0); cout.tie(0); cin >> n >> k; if (n <= 15 && kol_perm(n) < k) { cout << "-1" << endl; return 0; } vector<long long> v, dd; for (int i = max(1ll, n - 15ll); i <= n; i++) v.push_back(i); int t = min(16ll, n); for (int i = 1; i <= t; i++) { int c = 0; for (long long j = 0; j < v.size(); j++) if (kol_perm(t - i) * (j + 1) >= k) { vv.push_back(v[j]); c = j; k -= kol_perm(t - i) * j; break; } dd.clear(); for (int j = 0; j < c; j++) dd.push_back(v[j]); for (int j = c + 1; j < v.size(); j++) dd.push_back(v[j]); v = dd; } dfs(0); cout << ans << endl; }
### Prompt Your challenge is to write a Cpp solution to the following problem: Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4. ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int N = 1e6 + 11; const long long MOD = 1e18; long long n, k; int ans = 0; vector<long long> vv; bool good(long long c) { while (c > 0) { if (c % 10 == 4 || c % 10 == 7) { } else return false; c /= 10; } return true; } void dfs(long long l) { if (l > n) return; if (l >= 1) { if (l < n - 15ll) { ans++; } else { long long pos = l - max(1ll, (n - 15)); if (good(vv[pos])) ans++; } } dfs(l * 10ll + 4ll); dfs(l * 10ll + 7ll); } long long kol_perm(long long x) { long long k = 1; for (long long i = 1; i <= x; i++) k *= i; return k; } int main() { ios_base::sync_with_stdio(0); cin.tie(0); cout.tie(0); cin >> n >> k; if (n <= 15 && kol_perm(n) < k) { cout << "-1" << endl; return 0; } vector<long long> v, dd; for (int i = max(1ll, n - 15ll); i <= n; i++) v.push_back(i); int t = min(16ll, n); for (int i = 1; i <= t; i++) { int c = 0; for (long long j = 0; j < v.size(); j++) if (kol_perm(t - i) * (j + 1) >= k) { vv.push_back(v[j]); c = j; k -= kol_perm(t - i) * j; break; } dd.clear(); for (int j = 0; j < c; j++) dd.push_back(v[j]); for (int j = c + 1; j < v.size(); j++) dd.push_back(v[j]); v = dd; } dfs(0); cout << ans << endl; } ```
#include <bits/stdc++.h> using namespace std; long long Fact[20]; vector<int> v; vector<int> nthPerm(vector<int>& identity, int nth) { vector<int> perm(identity.size()); int len = identity.size(); for (int i = identity.size() - 1; i >= 0; i--) { int p = nth / Fact[i]; perm[len - 1 - i] = identity[p]; identity.erase(identity.begin() + p); nth %= Fact[i]; } return perm; } set<long long> lucky; void f(long long x) { if (x > 1e9) return; if (x) lucky.insert(x); f(x * 10 + 4); f(x * 10 + 7); } int main() { Fact[0] = Fact[1] = 1; for (int i = 2; i < 20; i++) Fact[i] = Fact[i - 1] * i; int n, k; cin >> n >> k; if (n <= 13 && Fact[n] < k) { cout << -1 << endl; return 0; } int r = n, l = max(1, n - 13); for (int i = l; i <= r; i++) v.push_back(i); k--; vector<int> perm = nthPerm(v, k); f(0); int ans = 0; for (int i = 0; i < perm.size(); i++) { int idx = i + l; if (lucky.find(idx) != lucky.end() && lucky.find(perm[i]) != lucky.end()) ans++; } for (auto it = lucky.begin(); *it < l; it++) { ans++; } cout << ans << endl; return 0; }
### Prompt Develop a solution in CPP to the problem described below: Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4. ### Response ```cpp #include <bits/stdc++.h> using namespace std; long long Fact[20]; vector<int> v; vector<int> nthPerm(vector<int>& identity, int nth) { vector<int> perm(identity.size()); int len = identity.size(); for (int i = identity.size() - 1; i >= 0; i--) { int p = nth / Fact[i]; perm[len - 1 - i] = identity[p]; identity.erase(identity.begin() + p); nth %= Fact[i]; } return perm; } set<long long> lucky; void f(long long x) { if (x > 1e9) return; if (x) lucky.insert(x); f(x * 10 + 4); f(x * 10 + 7); } int main() { Fact[0] = Fact[1] = 1; for (int i = 2; i < 20; i++) Fact[i] = Fact[i - 1] * i; int n, k; cin >> n >> k; if (n <= 13 && Fact[n] < k) { cout << -1 << endl; return 0; } int r = n, l = max(1, n - 13); for (int i = l; i <= r; i++) v.push_back(i); k--; vector<int> perm = nthPerm(v, k); f(0); int ans = 0; for (int i = 0; i < perm.size(); i++) { int idx = i + l; if (lucky.find(idx) != lucky.end() && lucky.find(perm[i]) != lucky.end()) ans++; } for (auto it = lucky.begin(); *it < l; it++) { ans++; } cout << ans << endl; return 0; } ```
#include <bits/stdc++.h> bool DEBUG = false; using namespace std; int val[5000]; int l, cur, n, k, result; int sel[15], sl, perm[15]; bool used[15]; int fact[13], os; int main() { l = 0; val[l++] = 4; val[l++] = 7; cur = 0; while (l < 1000) { int tmp = l; for (int i = (cur); i < (tmp); ++i) { val[l++] = val[i] * 10 + 4; val[l++] = val[i] * 10 + 7; } cur = tmp; } scanf("%d%d", &n, &k); result = 0; for (int i = 0; i < (l); ++i) if (val[i] < n - 12) result++; fact[0] = 1; for (int i = (1); i < (13); ++i) fact[i] = i * fact[i - 1]; if (n > 13) os = n - 12; else os = 1; sl = 0; for (int i = (os); i <= (n); ++i) sel[sl++] = i; if (DEBUG) { cout << "sel" << ": "; for (int innercounter = 0; innercounter < (sl); ++innercounter) cout << sel[innercounter] << " "; cout << endl; }; if (sl < 13 && k > fact[sl]) { puts("-1"); return 0; } memset(used, 0, sizeof(used)); for (int i = 0; i < (sl); ++i) { int shft = (k - 1) / fact[sl - i - 1]; if (DEBUG) { cout << "shft" << ": " << (shft) << endl; }; cur = 0; for (int j = 0; j < (sl); ++j) if (!used[j]) { if (DEBUG) { cout << "sel[j]" << ": " << (sel[j]) << endl; }; if (cur < shft) cur++; else { perm[i] = sel[j]; used[j] = true; break; } } k -= shft * fact[sl - i - 1]; } if (DEBUG) { cout << "perm" << ": "; for (int innercounter = 0; innercounter < (sl); ++innercounter) cout << perm[innercounter] << " "; cout << endl; }; set<int> vals; for (int i = 0; i < (l); ++i) vals.insert(val[i]); if (DEBUG) { cout << "os" << ": " << (os) << endl; }; if (DEBUG) { cout << "n" << ": " << (n) << endl; }; if (DEBUG) { cout << "l" << ": " << (l) << endl; }; for (int i = 0; i < (l); ++i) { if (val[i] >= os && val[i] <= n) { if (DEBUG) { cout << "val[i]" << ": " << (val[i]) << endl; }; if (vals.find(perm[val[i] - os]) != vals.end()) result++; } } cout << result; return 0; }
### Prompt Please create a solution in cpp to the following problem: Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4. ### Response ```cpp #include <bits/stdc++.h> bool DEBUG = false; using namespace std; int val[5000]; int l, cur, n, k, result; int sel[15], sl, perm[15]; bool used[15]; int fact[13], os; int main() { l = 0; val[l++] = 4; val[l++] = 7; cur = 0; while (l < 1000) { int tmp = l; for (int i = (cur); i < (tmp); ++i) { val[l++] = val[i] * 10 + 4; val[l++] = val[i] * 10 + 7; } cur = tmp; } scanf("%d%d", &n, &k); result = 0; for (int i = 0; i < (l); ++i) if (val[i] < n - 12) result++; fact[0] = 1; for (int i = (1); i < (13); ++i) fact[i] = i * fact[i - 1]; if (n > 13) os = n - 12; else os = 1; sl = 0; for (int i = (os); i <= (n); ++i) sel[sl++] = i; if (DEBUG) { cout << "sel" << ": "; for (int innercounter = 0; innercounter < (sl); ++innercounter) cout << sel[innercounter] << " "; cout << endl; }; if (sl < 13 && k > fact[sl]) { puts("-1"); return 0; } memset(used, 0, sizeof(used)); for (int i = 0; i < (sl); ++i) { int shft = (k - 1) / fact[sl - i - 1]; if (DEBUG) { cout << "shft" << ": " << (shft) << endl; }; cur = 0; for (int j = 0; j < (sl); ++j) if (!used[j]) { if (DEBUG) { cout << "sel[j]" << ": " << (sel[j]) << endl; }; if (cur < shft) cur++; else { perm[i] = sel[j]; used[j] = true; break; } } k -= shft * fact[sl - i - 1]; } if (DEBUG) { cout << "perm" << ": "; for (int innercounter = 0; innercounter < (sl); ++innercounter) cout << perm[innercounter] << " "; cout << endl; }; set<int> vals; for (int i = 0; i < (l); ++i) vals.insert(val[i]); if (DEBUG) { cout << "os" << ": " << (os) << endl; }; if (DEBUG) { cout << "n" << ": " << (n) << endl; }; if (DEBUG) { cout << "l" << ": " << (l) << endl; }; for (int i = 0; i < (l); ++i) { if (val[i] >= os && val[i] <= n) { if (DEBUG) { cout << "val[i]" << ": " << (val[i]) << endl; }; if (vals.find(perm[val[i] - os]) != vals.end()) result++; } } cout << result; return 0; } ```
#include <bits/stdc++.h> using namespace std; const double pi = acos(-1.0); const double eps = 1e-11; const int inf = 0x7FFFFFFF; template <class T> inline void checkmin(T &a, T b) { if (b < a) a = b; } template <class T> inline void checkmax(T &a, T b) { if (b > a) a = b; } template <class T> inline T sqr(T x) { return x * x; } template <class T> void show(T a, int n) { for (int i = 0; i < n; ++i) cout << a[i] << ' '; cout << endl; } template <class T> void show(T a, int r, int l) { for (int i = 0; i < r; ++i) show(a[i], l); cout << endl; } long long lk[100007], cnt, M = 1e11, ten[15], ni[15]; void init(long long i) { if (i && i <= M) lk[cnt++] = i; if (i <= M) { init(i * 10 + 4); init(i * 10 + 7); } } bool lucky(long long a) { if (a == 0) return false; while (a) { if (!(a % 10 == 4 || a % 10 == 7)) return false; a /= 10; } return true; } void ntoP(long long n, long long t) { for (int i = n - 1; i >= 0; i--) ni[i] = t % (n - i), t /= (n - i); for (int i = n - 1; i != 0; i--) for (int j = i - 1; j >= 0; j--) if (ni[j] <= ni[i]) ni[i]++; } int main() { init(0); sort(lk, lk + cnt); ten[0] = 1; for (int i = 1; i < 15; i++) ten[i] = ten[i - 1] * i; long long n, k; while (cin >> n >> k) { int mx = 1; while (ten[mx] < k) mx++; if (mx > n) { cout << -1 << endl; continue; } long long bas = n - mx, sum = 0; ntoP(mx, k - 1); for (int j = 1; j <= mx; j++) { if (lucky(bas + j) && lucky(ni[j - 1] + bas + 1)) sum++; } for (int i = 0; i < cnt; i++) if (lk[i] <= bas) sum++; else break; cout << sum << endl; } return 0; }
### Prompt Construct a CPP code solution to the problem outlined: Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4. ### Response ```cpp #include <bits/stdc++.h> using namespace std; const double pi = acos(-1.0); const double eps = 1e-11; const int inf = 0x7FFFFFFF; template <class T> inline void checkmin(T &a, T b) { if (b < a) a = b; } template <class T> inline void checkmax(T &a, T b) { if (b > a) a = b; } template <class T> inline T sqr(T x) { return x * x; } template <class T> void show(T a, int n) { for (int i = 0; i < n; ++i) cout << a[i] << ' '; cout << endl; } template <class T> void show(T a, int r, int l) { for (int i = 0; i < r; ++i) show(a[i], l); cout << endl; } long long lk[100007], cnt, M = 1e11, ten[15], ni[15]; void init(long long i) { if (i && i <= M) lk[cnt++] = i; if (i <= M) { init(i * 10 + 4); init(i * 10 + 7); } } bool lucky(long long a) { if (a == 0) return false; while (a) { if (!(a % 10 == 4 || a % 10 == 7)) return false; a /= 10; } return true; } void ntoP(long long n, long long t) { for (int i = n - 1; i >= 0; i--) ni[i] = t % (n - i), t /= (n - i); for (int i = n - 1; i != 0; i--) for (int j = i - 1; j >= 0; j--) if (ni[j] <= ni[i]) ni[i]++; } int main() { init(0); sort(lk, lk + cnt); ten[0] = 1; for (int i = 1; i < 15; i++) ten[i] = ten[i - 1] * i; long long n, k; while (cin >> n >> k) { int mx = 1; while (ten[mx] < k) mx++; if (mx > n) { cout << -1 << endl; continue; } long long bas = n - mx, sum = 0; ntoP(mx, k - 1); for (int j = 1; j <= mx; j++) { if (lucky(bas + j) && lucky(ni[j - 1] + bas + 1)) sum++; } for (int i = 0; i < cnt; i++) if (lk[i] <= bas) sum++; else break; cout << sum << endl; } return 0; } ```
#include <bits/stdc++.h> using namespace std; template <class T> T _abs(T n) { return (n < 0 ? -n : n); } template <class T> T _max(T a, T b) { return (!(a < b) ? a : b); } template <class T> T _min(T a, T b) { return (a < b ? a : b); } template <class T> T sq(T x) { return x * x; } const double EPS = 1e-9; const int INF = 0x7f7f7f7f; bool isL(int d) { while (d) { if (d % 10 != 4 && d % 10 != 7) return false; d /= 10; } return true; } long long fc[16]; int pr[100100]; void kFact(int k, int p, set<int> &d) { if (p < 0) return; for (auto a : d) { if (fc[p] <= k) k -= fc[p]; else { pr[p] = a; d.erase(a); return kFact(k, p - 1, d); } } } int main() { set<int> d; int i, j, n, k; cin >> n >> k; fc[0] = 1; for (i = 1; i <= 13; i++) fc[i] = i * fc[i - 1]; if (n <= 13 && k > fc[n]) { puts("-1"); return 0; } for (i = n, j = 13; i && j; i--, j--) { d.insert(i); } int st = i, l = d.size(); ; kFact(k - 1, l - 1, d); int r = 0; for (i = 1; i <= l; i++) if (isL(st + i) && isL(pr[l - i])) r++; vector<int> v; if (st >= 4) v.push_back(4); if (st >= 7) v.push_back(7); long long t; for (i = 0; i < v.size(); i++) { t = v[i]; t *= 10; if (t + 4 <= st) v.push_back(t + 4); if (t + 7 <= st) v.push_back(t + 7); } r += v.size(); cout << r << '\n'; return 0; }
### Prompt Create a solution in Cpp for the following problem: Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4. ### Response ```cpp #include <bits/stdc++.h> using namespace std; template <class T> T _abs(T n) { return (n < 0 ? -n : n); } template <class T> T _max(T a, T b) { return (!(a < b) ? a : b); } template <class T> T _min(T a, T b) { return (a < b ? a : b); } template <class T> T sq(T x) { return x * x; } const double EPS = 1e-9; const int INF = 0x7f7f7f7f; bool isL(int d) { while (d) { if (d % 10 != 4 && d % 10 != 7) return false; d /= 10; } return true; } long long fc[16]; int pr[100100]; void kFact(int k, int p, set<int> &d) { if (p < 0) return; for (auto a : d) { if (fc[p] <= k) k -= fc[p]; else { pr[p] = a; d.erase(a); return kFact(k, p - 1, d); } } } int main() { set<int> d; int i, j, n, k; cin >> n >> k; fc[0] = 1; for (i = 1; i <= 13; i++) fc[i] = i * fc[i - 1]; if (n <= 13 && k > fc[n]) { puts("-1"); return 0; } for (i = n, j = 13; i && j; i--, j--) { d.insert(i); } int st = i, l = d.size(); ; kFact(k - 1, l - 1, d); int r = 0; for (i = 1; i <= l; i++) if (isL(st + i) && isL(pr[l - i])) r++; vector<int> v; if (st >= 4) v.push_back(4); if (st >= 7) v.push_back(7); long long t; for (i = 0; i < v.size(); i++) { t = v[i]; t *= 10; if (t + 4 <= st) v.push_back(t + 4); if (t + 7 <= st) v.push_back(t + 7); } r += v.size(); cout << r << '\n'; return 0; } ```
#include <bits/stdc++.h> using namespace std; const int maxn = 20 + 5, mod = 1e9 + 7, inf = 0x3f3f3f3f; double eps = 1e-8; template <class T> T QuickMod(T a, T b, T c) { T ans = 1; while (b) { if (b & 1) ans = ans * a % c; b >>= 1; a = (a * a) % c; } return ans; } template <class T> T Gcd(T a, T b) { return b != 0 ? Gcd(b, a % b) : a; } template <class T> T Lcm(T a, T b) { return a / Gcd(a, b) * b; } template <class T> void outln(T x) { cout << x << endl; } long long fact[maxn] = {1}; int ans, n, k, p[maxn]; long long a[100000], c; void CantorR(int index, int n) { bool vis[maxn]; memset(vis, false, sizeof vis); index--; for (int i = 0; i < n; i++) { int t = index / fact[n - i - 1]; for (int j = 0; j <= t; j++) if (vis[j]) t++; p[i] = t + 1; vis[t] = true; index %= fact[n - i - 1]; } } void dfs(long long num) { if (num > 1e10) return; a[c++] = num; dfs(num * 10 + 4); dfs(num * 10 + 7); } int main() { for (int i = 1; fact[i - 1] <= mod; i++) fact[i] = fact[i - 1] * i; scanf("%d%d", &n, &k); if (n <= 12 && k > fact[n]) puts("-1"); else { int pos = 13; for (int i = 1; i <= 12; i++) { if (k < fact[i]) { pos = i; break; } } CantorR(k, pos); int rest = n - pos; dfs(0); sort(a, a + c); for (int i = 1; i < c && a[i] <= n; i++) { if (a[i] <= rest) ans++; else { int num = p[a[i] - rest - 1] + rest; for (int j = 1; j < c && a[j] <= n; j++) { if (a[j] == num) { ans++; break; } } } } printf("%d\n", ans); } return 0; }
### Prompt Develop a solution in Cpp to the problem described below: Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4. ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int maxn = 20 + 5, mod = 1e9 + 7, inf = 0x3f3f3f3f; double eps = 1e-8; template <class T> T QuickMod(T a, T b, T c) { T ans = 1; while (b) { if (b & 1) ans = ans * a % c; b >>= 1; a = (a * a) % c; } return ans; } template <class T> T Gcd(T a, T b) { return b != 0 ? Gcd(b, a % b) : a; } template <class T> T Lcm(T a, T b) { return a / Gcd(a, b) * b; } template <class T> void outln(T x) { cout << x << endl; } long long fact[maxn] = {1}; int ans, n, k, p[maxn]; long long a[100000], c; void CantorR(int index, int n) { bool vis[maxn]; memset(vis, false, sizeof vis); index--; for (int i = 0; i < n; i++) { int t = index / fact[n - i - 1]; for (int j = 0; j <= t; j++) if (vis[j]) t++; p[i] = t + 1; vis[t] = true; index %= fact[n - i - 1]; } } void dfs(long long num) { if (num > 1e10) return; a[c++] = num; dfs(num * 10 + 4); dfs(num * 10 + 7); } int main() { for (int i = 1; fact[i - 1] <= mod; i++) fact[i] = fact[i - 1] * i; scanf("%d%d", &n, &k); if (n <= 12 && k > fact[n]) puts("-1"); else { int pos = 13; for (int i = 1; i <= 12; i++) { if (k < fact[i]) { pos = i; break; } } CantorR(k, pos); int rest = n - pos; dfs(0); sort(a, a + c); for (int i = 1; i < c && a[i] <= n; i++) { if (a[i] <= rest) ans++; else { int num = p[a[i] - rest - 1] + rest; for (int j = 1; j < c && a[j] <= n; j++) { if (a[j] == num) { ans++; break; } } } } printf("%d\n", ans); } return 0; } ```
#include <bits/stdc++.h> using namespace std; inline void OPEN(const string &file_name) { freopen((file_name + ".in").c_str(), "r", stdin); freopen((file_name + ".out").c_str(), "w", stdout); } long long fact[50]; inline void initfact() { fact[0] = 1; for (int i = (1), _b = (49); i <= _b; i++) fact[i] = fact[i - 1] * i; } vector<long long> lucky; inline void generate() { for (int i = (1), _b = (10); i <= _b; i++) { for (int b = 0, _n = (1 << i); b < _n; b++) { long long tmp = 0; for (int j = 0, _n = (i); j < _n; j++) { tmp *= 10; if (b & (1 << j)) tmp += 4; else tmp += 7; } lucky.push_back(tmp); } } sort((lucky).begin(), (lucky).end()); } int ret = 0; vector<int> v, permut; char s[100]; int n, k; inline bool islucky(int x) { sprintf(s, "%d", x); for (int i = 0; s[i]; i++) { if (s[i] != '4' && s[i] != '7') return false; } return true; } inline void get_kth(int x) { for (int i = (n - x + 1), _b = (n); i <= _b; i++) { v.push_back(i); } for (int i = (1), _b = (x); i <= _b; i++) { long long cnt = 0; for (int j = 0, _n = (x - i + 1); j < _n; j++) { cnt += fact[x - i]; if (cnt >= k) { permut.push_back(v[j]); v.erase(v.begin() + j); cnt -= fact[x - i]; k -= cnt; break; } } } int j = 0; for (int i = (n - x + 1), _b = (n); i <= _b; i++) { if (islucky(i) && islucky(permut[j])) { ret++; } j++; } } int main() { initfact(); cin >> n >> k; generate(); int x = 0; for (; fact[x] < k; x++) ; if (x > n) { puts("-1"); return 0; } ret = 0; for (int i = 0, _n = ((lucky).size()); i < _n; i++) { if (lucky[i] <= n - x) ret++; } get_kth(x); cout << ret << endl; return 0; }
### Prompt Construct a CPP code solution to the problem outlined: Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4. ### Response ```cpp #include <bits/stdc++.h> using namespace std; inline void OPEN(const string &file_name) { freopen((file_name + ".in").c_str(), "r", stdin); freopen((file_name + ".out").c_str(), "w", stdout); } long long fact[50]; inline void initfact() { fact[0] = 1; for (int i = (1), _b = (49); i <= _b; i++) fact[i] = fact[i - 1] * i; } vector<long long> lucky; inline void generate() { for (int i = (1), _b = (10); i <= _b; i++) { for (int b = 0, _n = (1 << i); b < _n; b++) { long long tmp = 0; for (int j = 0, _n = (i); j < _n; j++) { tmp *= 10; if (b & (1 << j)) tmp += 4; else tmp += 7; } lucky.push_back(tmp); } } sort((lucky).begin(), (lucky).end()); } int ret = 0; vector<int> v, permut; char s[100]; int n, k; inline bool islucky(int x) { sprintf(s, "%d", x); for (int i = 0; s[i]; i++) { if (s[i] != '4' && s[i] != '7') return false; } return true; } inline void get_kth(int x) { for (int i = (n - x + 1), _b = (n); i <= _b; i++) { v.push_back(i); } for (int i = (1), _b = (x); i <= _b; i++) { long long cnt = 0; for (int j = 0, _n = (x - i + 1); j < _n; j++) { cnt += fact[x - i]; if (cnt >= k) { permut.push_back(v[j]); v.erase(v.begin() + j); cnt -= fact[x - i]; k -= cnt; break; } } } int j = 0; for (int i = (n - x + 1), _b = (n); i <= _b; i++) { if (islucky(i) && islucky(permut[j])) { ret++; } j++; } } int main() { initfact(); cin >> n >> k; generate(); int x = 0; for (; fact[x] < k; x++) ; if (x > n) { puts("-1"); return 0; } ret = 0; for (int i = 0, _n = ((lucky).size()); i < _n; i++) { if (lucky[i] <= n - x) ret++; } get_kth(x); cout << ret << endl; return 0; } ```
#include <bits/stdc++.h> using namespace std; int N; long long K; long long F[12]; vector<long long> S; void DFS(int a) { if (a > 10) { long long res = 0, flag = 0; for (int i = 1; i <= 10; i++) { if (F[i] == 0) { if (flag) return; } else if (F[i] == 1) { res = res * 10 + 4; flag = 1; } else res = res * 10 + 7, flag = 1; } S.push_back(res); return; } F[a] = 0; DFS(a + 1); F[a] = 1; DFS(a + 1); F[a] = 2; DFS(a + 1); } int C[200], A[200]; long long P[200]; int check(int a) { while (a > 0) { if (a % 10 != 7 && a % 10 != 4) return 0; a /= 10; } return 1; } int main() { DFS(1); scanf("%d%lld", &N, &K); long long pow = 1; bool flag = 0; for (int i = 1; i <= N; i++) if (pow * i >= K) { flag = 1; break; } else pow *= i; if (!flag) { puts("-1"); return 0; } P[1] = P[0] = 1; for (int i = 2; P[i - 1] < 10000000000LL; i++) P[i] = P[i - 1] * (long long)i; pow = 1; int start; for (int i = 1; i <= N; i++) { if (pow * (long long)i >= K) { start = N - i + 1; break; } pow *= (long long)i; } int nn = N - start + 1; for (int i = 1; i <= nn; i++) { for (int j = nn; j >= 1; j--) if (!C[j]) { int x = 0; for (int k = 1; k < j; k++) if (!C[k]) x++; if (x * P[nn - i] < K) { C[j] = 1; A[i] = j; K -= (long long)x * P[nn - i]; break; } } } for (int i = 1; i <= nn; i++) if (!C[i]) A[nn] = i; for (int i = 1; i <= nn; i++) A[i] += start - 1; sort(S.begin(), S.end()); int cnt = 0; for (int i = 1; i < S.size(); i++) { if (start <= S[i]) break; cnt++; } for (int i = 1; i <= nn; i++) { if (check(A[i]) && check(start + i - 1)) cnt++; } printf("%d\n", cnt); return 0; }
### Prompt Please formulate a Cpp solution to the following problem: Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4. ### Response ```cpp #include <bits/stdc++.h> using namespace std; int N; long long K; long long F[12]; vector<long long> S; void DFS(int a) { if (a > 10) { long long res = 0, flag = 0; for (int i = 1; i <= 10; i++) { if (F[i] == 0) { if (flag) return; } else if (F[i] == 1) { res = res * 10 + 4; flag = 1; } else res = res * 10 + 7, flag = 1; } S.push_back(res); return; } F[a] = 0; DFS(a + 1); F[a] = 1; DFS(a + 1); F[a] = 2; DFS(a + 1); } int C[200], A[200]; long long P[200]; int check(int a) { while (a > 0) { if (a % 10 != 7 && a % 10 != 4) return 0; a /= 10; } return 1; } int main() { DFS(1); scanf("%d%lld", &N, &K); long long pow = 1; bool flag = 0; for (int i = 1; i <= N; i++) if (pow * i >= K) { flag = 1; break; } else pow *= i; if (!flag) { puts("-1"); return 0; } P[1] = P[0] = 1; for (int i = 2; P[i - 1] < 10000000000LL; i++) P[i] = P[i - 1] * (long long)i; pow = 1; int start; for (int i = 1; i <= N; i++) { if (pow * (long long)i >= K) { start = N - i + 1; break; } pow *= (long long)i; } int nn = N - start + 1; for (int i = 1; i <= nn; i++) { for (int j = nn; j >= 1; j--) if (!C[j]) { int x = 0; for (int k = 1; k < j; k++) if (!C[k]) x++; if (x * P[nn - i] < K) { C[j] = 1; A[i] = j; K -= (long long)x * P[nn - i]; break; } } } for (int i = 1; i <= nn; i++) if (!C[i]) A[nn] = i; for (int i = 1; i <= nn; i++) A[i] += start - 1; sort(S.begin(), S.end()); int cnt = 0; for (int i = 1; i < S.size(); i++) { if (start <= S[i]) break; cnt++; } for (int i = 1; i <= nn; i++) { if (check(A[i]) && check(start + i - 1)) cnt++; } printf("%d\n", cnt); return 0; } ```
#include <bits/stdc++.h> using namespace std; int p[11]; bool used[15]; long long f[15]; vector<int> g; bool is_good(long long x) { if (x < 4) return false; while (x > 0) { if (x % 10 != 4 && x % 10 != 7) return false; x /= 10; } return true; } int main() { int n, ans = 0; long long k; cin >> n >> k; f[1] = f[0] = 1; for (long long i = 2; i < 15; ++i) f[i] = i * f[i - 1]; if (n < 14 && k > f[n]) { cout << -1; return 0; } while (true) { int j = 0; p[j]++; while (p[j] > 2) { p[j] = 0; p[++j]++; } if (p[9] != 0) break; bool good = true; int cur = 0, mul = 1, cnt = 0; for (int i = 0; i < 9; ++i) { if (p[i] != 0) { cur += mul * (p[i] == 1 ? 4 : 7); if (!good) cnt++; } else good = false; mul *= 10; } if (cnt == 0 && cur > 0 && cur <= n - 14) ans++; } int len = (n >= 14 ? 14 : n); vector<int> perm(len); for (int i = 0; i < len; ++i) { int dig = -1; for (int j = 0; j < len && dig == -1; ++j) if (!used[j]) { if (k > f[len - i - 1]) k -= f[len - i - 1]; else { dig = j; used[j] = true; } } perm[i] = max(dig, 0) + (n - len) + 1; } for (int i = 0; i < perm.size(); ++i) if (is_good(perm[i]) && is_good(i + (n - len) + 1)) ans++; cout << ans; return 0; }
### Prompt Please provide a Cpp coded solution to the problem described below: Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4. ### Response ```cpp #include <bits/stdc++.h> using namespace std; int p[11]; bool used[15]; long long f[15]; vector<int> g; bool is_good(long long x) { if (x < 4) return false; while (x > 0) { if (x % 10 != 4 && x % 10 != 7) return false; x /= 10; } return true; } int main() { int n, ans = 0; long long k; cin >> n >> k; f[1] = f[0] = 1; for (long long i = 2; i < 15; ++i) f[i] = i * f[i - 1]; if (n < 14 && k > f[n]) { cout << -1; return 0; } while (true) { int j = 0; p[j]++; while (p[j] > 2) { p[j] = 0; p[++j]++; } if (p[9] != 0) break; bool good = true; int cur = 0, mul = 1, cnt = 0; for (int i = 0; i < 9; ++i) { if (p[i] != 0) { cur += mul * (p[i] == 1 ? 4 : 7); if (!good) cnt++; } else good = false; mul *= 10; } if (cnt == 0 && cur > 0 && cur <= n - 14) ans++; } int len = (n >= 14 ? 14 : n); vector<int> perm(len); for (int i = 0; i < len; ++i) { int dig = -1; for (int j = 0; j < len && dig == -1; ++j) if (!used[j]) { if (k > f[len - i - 1]) k -= f[len - i - 1]; else { dig = j; used[j] = true; } } perm[i] = max(dig, 0) + (n - len) + 1; } for (int i = 0; i < perm.size(); ++i) if (is_good(perm[i]) && is_good(i + (n - len) + 1)) ans++; cout << ans; return 0; } ```
#include <bits/stdc++.h> using namespace std; const int N = 14; vector<int64_t> fact(N, 1); vector<int64_t> happies; vector<int> k_perm(int64_t n, int64_t k) { --k; vector<int> a(n); vector<bool> used(n + 1); for (int i = 0; i < n; ++i) { int64_t alreadyWas = k / fact[n - i - 1]; k %= fact[n - i - 1]; int64_t curFree = 0; for (int j = 1; j <= n; ++j) { if (!used[j]) { ++curFree; if (curFree == alreadyWas + 1) { a[i] = j; used[j] = true; break; } } } } return a; } bool is_happy(int64_t x) { while (x > 0) { int64_t c = x % 10; if (c != 4 && c != 7) return false; x /= 10; } return true; } int first_i(int64_t k) { for (int i = 0; i < N; ++i) { if (k <= fact[i]) { return i; } } return 0; } int main() { ios_base::sync_with_stdio(false); int64_t n, k; cin >> n >> k; for (int i = 2; i < N; ++i) { fact[i] = i * fact[i - 1]; } if (n < N && k > fact[n]) { cout << -1; return 0; } for (int i = 1; i <= 9; ++i) { int64_t jn = 1 << i; for (int j = 0; j < jn; ++j) { int64_t j2 = j, x = 0; j2 = j; while (j2 > 0) { if (j2 & 1) x = x * 10 + 7; else x = x * 10 + 4; j2 >>= 1; } j2 = jn; while (j2 > j) { x = x * 10 + 4; j2 >>= 1; } x /= 10; int64_t x1 = 0; while (x > 0) { x1 = x1 * 10 + x % 10; x /= 10; } happies.push_back(x1); } } int64_t hc = happies.size(); int64_t n1 = n - first_i(k); int64_t ans = 0; for (int i = 0; i < hc; ++i) { if (happies[i] > n1) { ans = i; break; } } if (n1 >= happies.back()) { ans = hc; } vector<int> a = k_perm(n - n1, k % fact[n - n1]); int64_t n2 = a.size(); for (int i = 0; i < n2; ++i) { int64_t ai = a[i] + n1, i1 = i + n1 + 1; if (is_happy(ai) && is_happy(i1)) { ++ans; } } cout << ans; return 0; }
### Prompt Please formulate a Cpp solution to the following problem: Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4. ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int N = 14; vector<int64_t> fact(N, 1); vector<int64_t> happies; vector<int> k_perm(int64_t n, int64_t k) { --k; vector<int> a(n); vector<bool> used(n + 1); for (int i = 0; i < n; ++i) { int64_t alreadyWas = k / fact[n - i - 1]; k %= fact[n - i - 1]; int64_t curFree = 0; for (int j = 1; j <= n; ++j) { if (!used[j]) { ++curFree; if (curFree == alreadyWas + 1) { a[i] = j; used[j] = true; break; } } } } return a; } bool is_happy(int64_t x) { while (x > 0) { int64_t c = x % 10; if (c != 4 && c != 7) return false; x /= 10; } return true; } int first_i(int64_t k) { for (int i = 0; i < N; ++i) { if (k <= fact[i]) { return i; } } return 0; } int main() { ios_base::sync_with_stdio(false); int64_t n, k; cin >> n >> k; for (int i = 2; i < N; ++i) { fact[i] = i * fact[i - 1]; } if (n < N && k > fact[n]) { cout << -1; return 0; } for (int i = 1; i <= 9; ++i) { int64_t jn = 1 << i; for (int j = 0; j < jn; ++j) { int64_t j2 = j, x = 0; j2 = j; while (j2 > 0) { if (j2 & 1) x = x * 10 + 7; else x = x * 10 + 4; j2 >>= 1; } j2 = jn; while (j2 > j) { x = x * 10 + 4; j2 >>= 1; } x /= 10; int64_t x1 = 0; while (x > 0) { x1 = x1 * 10 + x % 10; x /= 10; } happies.push_back(x1); } } int64_t hc = happies.size(); int64_t n1 = n - first_i(k); int64_t ans = 0; for (int i = 0; i < hc; ++i) { if (happies[i] > n1) { ans = i; break; } } if (n1 >= happies.back()) { ans = hc; } vector<int> a = k_perm(n - n1, k % fact[n - n1]); int64_t n2 = a.size(); for (int i = 0; i < n2; ++i) { int64_t ai = a[i] + n1, i1 = i + n1 + 1; if (is_happy(ai) && is_happy(i1)) { ++ans; } } cout << ans; return 0; } ```
#include <bits/stdc++.h> using namespace std; long long n, k; vector<long long> perm; bool used[20]; string hf = "4"; int ans; bool ish(long long q) { while (q > 0) { if (q % 10 != 4 && q % 10 != 7) return false; q /= 10; } return true; } long long ltoa() { long long ten = 1; long long ta = 0; for (int i = hf.length() - 1; i >= 0; i--) { ta += ten * (hf[i] - '0'); ten *= 10; } return ta; } void np() { bool ch = false; for (int i = hf.length() - 1; i >= 0; i--) { if (hf[i] == '4') { hf[i] = '7'; ch = true; break; } else { hf[i] = '4'; } } if (!ch) hf.insert(0, 1, '4'); } int main() { long long real = 1, qup = 1; cin >> n >> k; k--; for (; qup <= k; real++) qup *= real; real--; if (real > n) { cout << -1; return 0; } if (k > 0) qup /= real; int mod = n - real; while (ltoa() <= mod) { ans++; np(); } for (long long i = real - 1; i >= 1; i--) { int u = k / qup; for (int i = 0; i < 20; i++) { if (!used[i]) { u--; if (u < 0) { used[i] = true; perm.push_back(i + mod); break; } } } k %= qup; qup /= i; } for (int i = 0; i < 20; i++) if (!used[i]) { perm.push_back(i + mod); break; } for (int i = 0; i < perm.size(); i++) { if (ish(i + mod + 1) && ish(perm[i] + 1)) ans++; } cout << ans; }
### Prompt Construct a cpp code solution to the problem outlined: Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4. ### Response ```cpp #include <bits/stdc++.h> using namespace std; long long n, k; vector<long long> perm; bool used[20]; string hf = "4"; int ans; bool ish(long long q) { while (q > 0) { if (q % 10 != 4 && q % 10 != 7) return false; q /= 10; } return true; } long long ltoa() { long long ten = 1; long long ta = 0; for (int i = hf.length() - 1; i >= 0; i--) { ta += ten * (hf[i] - '0'); ten *= 10; } return ta; } void np() { bool ch = false; for (int i = hf.length() - 1; i >= 0; i--) { if (hf[i] == '4') { hf[i] = '7'; ch = true; break; } else { hf[i] = '4'; } } if (!ch) hf.insert(0, 1, '4'); } int main() { long long real = 1, qup = 1; cin >> n >> k; k--; for (; qup <= k; real++) qup *= real; real--; if (real > n) { cout << -1; return 0; } if (k > 0) qup /= real; int mod = n - real; while (ltoa() <= mod) { ans++; np(); } for (long long i = real - 1; i >= 1; i--) { int u = k / qup; for (int i = 0; i < 20; i++) { if (!used[i]) { u--; if (u < 0) { used[i] = true; perm.push_back(i + mod); break; } } } k %= qup; qup /= i; } for (int i = 0; i < 20; i++) if (!used[i]) { perm.push_back(i + mod); break; } for (int i = 0; i < perm.size(); i++) { if (ish(i + mod + 1) && ish(perm[i] + 1)) ans++; } cout << ans; } ```
#include <bits/stdc++.h> using namespace std; map<long long, int> lucky; void func(long long num) { if (num > 1000000007) return; if (num > 0) { lucky[num] = 1; } func(num * 10 + 4); func(num * 10 + 7); } int main() { func(0); vector<long long> fact(21); fact[0] = 1; for (int i = 1; i < 21; i++) { fact[i] = fact[i - 1] * i; } int n; long long k; cin >> n >> k; if (n <= 20 && fact[n] < k) { cout << -1; return 0; } int ans = 0; for (auto g : lucky) { if (g.first < n - 20) ans++; } map<int, bool> vis; for (int i = max(n - 20, 1); i <= n; i++) { if (fact[n - i] < k) { long long val = 0; for (int j = max(n - 20, 1); j <= n; j++) { if (!vis[j]) { val += fact[n - i]; if (val >= k) { ans += (lucky[i] == true && lucky[j] == true); vis[j] = true; k -= (val - fact[n - i]); break; } } } } else { for (int j = max(n - 20, 1); j <= n; j++) { if (!vis[j]) { ans += (lucky[i] == true && lucky[j] == true); vis[j] = true; break; } } } } cout << ans; }
### Prompt Create a solution in cpp for the following problem: Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4. ### Response ```cpp #include <bits/stdc++.h> using namespace std; map<long long, int> lucky; void func(long long num) { if (num > 1000000007) return; if (num > 0) { lucky[num] = 1; } func(num * 10 + 4); func(num * 10 + 7); } int main() { func(0); vector<long long> fact(21); fact[0] = 1; for (int i = 1; i < 21; i++) { fact[i] = fact[i - 1] * i; } int n; long long k; cin >> n >> k; if (n <= 20 && fact[n] < k) { cout << -1; return 0; } int ans = 0; for (auto g : lucky) { if (g.first < n - 20) ans++; } map<int, bool> vis; for (int i = max(n - 20, 1); i <= n; i++) { if (fact[n - i] < k) { long long val = 0; for (int j = max(n - 20, 1); j <= n; j++) { if (!vis[j]) { val += fact[n - i]; if (val >= k) { ans += (lucky[i] == true && lucky[j] == true); vis[j] = true; k -= (val - fact[n - i]); break; } } } } else { for (int j = max(n - 20, 1); j <= n; j++) { if (!vis[j]) { ans += (lucky[i] == true && lucky[j] == true); vis[j] = true; break; } } } } cout << ans; } ```
#include <bits/stdc++.h> using namespace std; long long fac[1000000]; long long recursive(long long zxcv, long long hi) { if (zxcv >= hi) return 0; return 1 + recursive(zxcv * 10 + 4, hi) + recursive(zxcv * 10 + 7, hi); } int main() { long long n, k; cin >> n >> k; long long d = 1; fac[0] = 1; for (long long i = 1; i <= n; i++) { d *= i; if (d >= k) break; } if (d < k) { cout << -1; return 0; } d = 1; for (long long i = 1; i <= 20; i++) { d *= i; fac[i] = d; } vector<long long> vi; long long on = 1; for (long long i = max(n - 15, on); i <= n; i++) { vi.push_back(i); } k--; while (k) { for (long long i = n; i >= 1; i--) { long long hi = n - i + 1; if (fac[hi] > k) { long long l = k / fac[hi - 1]; int qwer = n - i; qwer = vi.size() - qwer; swap(vi[qwer - 1], vi[qwer - 1 + l]); sort(vi.begin() + qwer, vi.end()); k -= l * fac[hi - 1]; break; } } } long long u = max(n - 15, on), tot = 0; for (long long i = 0; i < vi.size(); i++) { string asdf = to_string(vi[i]), uio = to_string(u); bool is = true; for (long long j = 0; j < asdf.size(); j++) { if (asdf[j] != '7' && asdf[j] != '4') is = false; if (uio[j] != '7' && uio[j] != '4') is = false; } if (is) tot++; u++; } if (n > 15) { n -= 15; tot += recursive(4, n) + recursive(7, n); } cout << tot; return 0; }
### Prompt Your task is to create a cpp solution to the following problem: Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4. ### Response ```cpp #include <bits/stdc++.h> using namespace std; long long fac[1000000]; long long recursive(long long zxcv, long long hi) { if (zxcv >= hi) return 0; return 1 + recursive(zxcv * 10 + 4, hi) + recursive(zxcv * 10 + 7, hi); } int main() { long long n, k; cin >> n >> k; long long d = 1; fac[0] = 1; for (long long i = 1; i <= n; i++) { d *= i; if (d >= k) break; } if (d < k) { cout << -1; return 0; } d = 1; for (long long i = 1; i <= 20; i++) { d *= i; fac[i] = d; } vector<long long> vi; long long on = 1; for (long long i = max(n - 15, on); i <= n; i++) { vi.push_back(i); } k--; while (k) { for (long long i = n; i >= 1; i--) { long long hi = n - i + 1; if (fac[hi] > k) { long long l = k / fac[hi - 1]; int qwer = n - i; qwer = vi.size() - qwer; swap(vi[qwer - 1], vi[qwer - 1 + l]); sort(vi.begin() + qwer, vi.end()); k -= l * fac[hi - 1]; break; } } } long long u = max(n - 15, on), tot = 0; for (long long i = 0; i < vi.size(); i++) { string asdf = to_string(vi[i]), uio = to_string(u); bool is = true; for (long long j = 0; j < asdf.size(); j++) { if (asdf[j] != '7' && asdf[j] != '4') is = false; if (uio[j] != '7' && uio[j] != '4') is = false; } if (is) tot++; u++; } if (n > 15) { n -= 15; tot += recursive(4, n) + recursive(7, n); } cout << tot; return 0; } ```
#include <bits/stdc++.h> using namespace std; const signed long long Infinity = 1000000001; const long double Pi = 2.0L * asinl(1.0L); const long double Epsilon = 0.000000001; template <class T, class U> ostream& operator<<(ostream& os, const pair<T, U>& p) { return os << "(" << p.first << "," << p.second << ")"; } template <class T> ostream& operator<<(ostream& os, const vector<T>& V) { for (typeof(V.begin()) i = V.begin(); i != V.end(); ++i) os << *i << " "; return os; } template <class T> ostream& operator<<(ostream& os, const set<T>& S) { for (typeof(S.begin()) i = S.begin(); i != S.end(); ++i) os << *i << " "; return os; } template <class T, class U> ostream& operator<<(ostream& os, const map<T, U>& M) { for (typeof(M.begin()) i = M.begin(); i != M.end(); ++i) os << *i << " "; return os; } vector<signed long long> S; void findLuckies() { for (int(k) = (1); (k) < (12); (k)++) for (int(i) = (0); (i) < (1 << k); (i)++) { signed long long t = i; signed long long r = 0; for (int(j) = (1); (j) <= (k); (j)++) { if (t % 2 == 1) { r *= 10; r += 7; } else { r *= 10; r += 4; } t /= 2; } S.push_back(r); } sort(S.begin(), S.end()); } signed long long factorial(signed long long n) { if (n > 20) return Infinity * Infinity; signed long long result = 1; for (int(i) = (1); (i) <= (n); (i)++) result *= i; return result; } vector<signed long long> kThPermutation(vector<signed long long> A, int k) { k--; vector<signed long long> R; int n = A.size(); for (int(i) = (n); (i) >= (2); (i)--) { int t = i; signed long long q = factorial(i - 1); t = k / q; k -= q * t; R.push_back(A[t]); A.erase(A.begin() + t); } R.push_back(A.front()); return R; } const int Q = 20; bool isLucky(signed long long q) { return binary_search(S.begin(), S.end(), q); } int result() { signed long long n, k; cin >> n >> k; if (k > factorial(n)) return -1; else { vector<signed long long> T; signed long long result = 0; int i = 0; while (S[i] < n - Q) { result++; i++; } int w; if (i > 0) w = S[i - 1] + 1; else w = 0; int b = max(n - Q, (signed long long)w); for (int(j) = (b); (j) <= (n); (j)++) { T.push_back(j); } T = kThPermutation(T, k); for (int(j) = (0); (j) < (T.size()); (j)++) if (isLucky(j + b) and isLucky(T[j])) result++; return result; } } int main() { findLuckies(); cout << result(); return 0; }
### Prompt Please formulate a cpp solution to the following problem: Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4. ### Response ```cpp #include <bits/stdc++.h> using namespace std; const signed long long Infinity = 1000000001; const long double Pi = 2.0L * asinl(1.0L); const long double Epsilon = 0.000000001; template <class T, class U> ostream& operator<<(ostream& os, const pair<T, U>& p) { return os << "(" << p.first << "," << p.second << ")"; } template <class T> ostream& operator<<(ostream& os, const vector<T>& V) { for (typeof(V.begin()) i = V.begin(); i != V.end(); ++i) os << *i << " "; return os; } template <class T> ostream& operator<<(ostream& os, const set<T>& S) { for (typeof(S.begin()) i = S.begin(); i != S.end(); ++i) os << *i << " "; return os; } template <class T, class U> ostream& operator<<(ostream& os, const map<T, U>& M) { for (typeof(M.begin()) i = M.begin(); i != M.end(); ++i) os << *i << " "; return os; } vector<signed long long> S; void findLuckies() { for (int(k) = (1); (k) < (12); (k)++) for (int(i) = (0); (i) < (1 << k); (i)++) { signed long long t = i; signed long long r = 0; for (int(j) = (1); (j) <= (k); (j)++) { if (t % 2 == 1) { r *= 10; r += 7; } else { r *= 10; r += 4; } t /= 2; } S.push_back(r); } sort(S.begin(), S.end()); } signed long long factorial(signed long long n) { if (n > 20) return Infinity * Infinity; signed long long result = 1; for (int(i) = (1); (i) <= (n); (i)++) result *= i; return result; } vector<signed long long> kThPermutation(vector<signed long long> A, int k) { k--; vector<signed long long> R; int n = A.size(); for (int(i) = (n); (i) >= (2); (i)--) { int t = i; signed long long q = factorial(i - 1); t = k / q; k -= q * t; R.push_back(A[t]); A.erase(A.begin() + t); } R.push_back(A.front()); return R; } const int Q = 20; bool isLucky(signed long long q) { return binary_search(S.begin(), S.end(), q); } int result() { signed long long n, k; cin >> n >> k; if (k > factorial(n)) return -1; else { vector<signed long long> T; signed long long result = 0; int i = 0; while (S[i] < n - Q) { result++; i++; } int w; if (i > 0) w = S[i - 1] + 1; else w = 0; int b = max(n - Q, (signed long long)w); for (int(j) = (b); (j) <= (n); (j)++) { T.push_back(j); } T = kThPermutation(T, k); for (int(j) = (0); (j) < (T.size()); (j)++) if (isLucky(j + b) and isLucky(T[j])) result++; return result; } } int main() { findLuckies(); cout << result(); return 0; } ```
#include <bits/stdc++.h> using namespace std; long long fac[20], n, k; long long answer; void rec(long long x, long long lim) { if (x > lim) return; answer++; rec(10 * x + 4, lim); rec(10 * x + 7, lim); } long long calc(long long lim) { rec(4, lim); rec(7, lim); } long long ohMyLuck(long long x) { while (x > 0) { if (x % 10 == 7 or x % 10 == 4) { x /= 10; } else { return 0; } } return 1; } int main() { cin >> n >> k; fac[0] = 1; for (int i = 1; i <= 15; i++) fac[i] = (fac[i - 1] * i); if (n <= 13 and fac[n] < k) { cout << -1 << endl; return 0; } k--; int mis = -1; for (int i = 1; i <= 15; i++) if (k >= fac[i]) mis = i; calc(n - (mis + 1)); vector<int> vec, my; for (int i = n - mis; i <= n; i++) vec.push_back(i); for (int i = vec.size() - 1; i >= 0; i--) { int d = k / fac[i]; k = k % fac[i]; my.push_back(vec[d]); vec.erase(vec.begin() + d); } for (int i = 0; i < my.size(); i++) { if (ohMyLuck(my[i]) and ohMyLuck(n - mis + i)) { answer++; } } cout << answer << endl; }
### Prompt In cpp, your task is to solve the following problem: Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4. ### Response ```cpp #include <bits/stdc++.h> using namespace std; long long fac[20], n, k; long long answer; void rec(long long x, long long lim) { if (x > lim) return; answer++; rec(10 * x + 4, lim); rec(10 * x + 7, lim); } long long calc(long long lim) { rec(4, lim); rec(7, lim); } long long ohMyLuck(long long x) { while (x > 0) { if (x % 10 == 7 or x % 10 == 4) { x /= 10; } else { return 0; } } return 1; } int main() { cin >> n >> k; fac[0] = 1; for (int i = 1; i <= 15; i++) fac[i] = (fac[i - 1] * i); if (n <= 13 and fac[n] < k) { cout << -1 << endl; return 0; } k--; int mis = -1; for (int i = 1; i <= 15; i++) if (k >= fac[i]) mis = i; calc(n - (mis + 1)); vector<int> vec, my; for (int i = n - mis; i <= n; i++) vec.push_back(i); for (int i = vec.size() - 1; i >= 0; i--) { int d = k / fac[i]; k = k % fac[i]; my.push_back(vec[d]); vec.erase(vec.begin() + d); } for (int i = 0; i < my.size(); i++) { if (ohMyLuck(my[i]) and ohMyLuck(n - mis + i)) { answer++; } } cout << answer << endl; } ```
#include <bits/stdc++.h> using namespace std; const long long Fac[14] = {1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, 39916800, 479001600, 6227020800LL}; int Total, Data[5000]; bool Lucky(int T) { while (T) { if (T % 10 != 4 && T % 10 != 7) return false; T /= 10; } return true; } void Init() { Total = 0; for (int i = 1; i <= 9; i++) for (int j = 0; j < (1 << i); j++) { int S = 0; for (int k = 0; k < i; k++) S = S * 10 + ((j & (1 << k)) ? 4 : 7); Data[Total++] = S; } sort(Data, Data + Total); } int Count(int N) { if (Data[Total - 1] <= N) return Total; int P = 0; while (Data[P] <= N) P++; return P; } int Count1(int N, int K) { if (K >= Fac[N]) return -1; int Ans = 0, Kth[20], A[20]; for (int i = 1; i <= N; i++) Kth[i] = i; for (int i = 1; i <= N; i++) { A[i] = Kth[K / Fac[N - i] + 1]; K %= Fac[N - i]; if (Lucky(i) && Lucky(A[i])) Ans++; int P = 1; while (Kth[P] != A[i]) P++; for (int j = P; j <= N - i; j++) Kth[j] = Kth[j + 1]; } return Ans; } int Count2(int N, int K) { int Ans = Count(N), Kth[20], A[20]; for (int i = 1; i <= 13; i++) Kth[i] = N + i; for (int i = 1; i <= 13; i++) { A[i] = Kth[K / Fac[13 - i] + 1]; K %= Fac[13 - i]; if (Lucky(N + i) && Lucky(A[i])) Ans++; int P = 1; while (Kth[P] != A[i]) P++; for (int j = P; j <= 13 - i; j++) Kth[j] = Kth[j + 1]; } return Ans; } int main() { Init(); int N, K; cin >> N >> K; K--; cout << ((N <= 13) ? Count1(N, K) : Count2(N - 13, K)) << endl; return 0; }
### Prompt Please formulate a Cpp solution to the following problem: Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4. ### Response ```cpp #include <bits/stdc++.h> using namespace std; const long long Fac[14] = {1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, 39916800, 479001600, 6227020800LL}; int Total, Data[5000]; bool Lucky(int T) { while (T) { if (T % 10 != 4 && T % 10 != 7) return false; T /= 10; } return true; } void Init() { Total = 0; for (int i = 1; i <= 9; i++) for (int j = 0; j < (1 << i); j++) { int S = 0; for (int k = 0; k < i; k++) S = S * 10 + ((j & (1 << k)) ? 4 : 7); Data[Total++] = S; } sort(Data, Data + Total); } int Count(int N) { if (Data[Total - 1] <= N) return Total; int P = 0; while (Data[P] <= N) P++; return P; } int Count1(int N, int K) { if (K >= Fac[N]) return -1; int Ans = 0, Kth[20], A[20]; for (int i = 1; i <= N; i++) Kth[i] = i; for (int i = 1; i <= N; i++) { A[i] = Kth[K / Fac[N - i] + 1]; K %= Fac[N - i]; if (Lucky(i) && Lucky(A[i])) Ans++; int P = 1; while (Kth[P] != A[i]) P++; for (int j = P; j <= N - i; j++) Kth[j] = Kth[j + 1]; } return Ans; } int Count2(int N, int K) { int Ans = Count(N), Kth[20], A[20]; for (int i = 1; i <= 13; i++) Kth[i] = N + i; for (int i = 1; i <= 13; i++) { A[i] = Kth[K / Fac[13 - i] + 1]; K %= Fac[13 - i]; if (Lucky(N + i) && Lucky(A[i])) Ans++; int P = 1; while (Kth[P] != A[i]) P++; for (int j = P; j <= 13 - i; j++) Kth[j] = Kth[j + 1]; } return Ans; } int main() { Init(); int N, K; cin >> N >> K; K--; cout << ((N <= 13) ? Count1(N, K) : Count2(N - 13, K)) << endl; return 0; } ```
#include <bits/stdc++.h> using namespace std; int ans, n, k, m, x; long long fac[15]; int num[15]; bool mark[15]; void dfs(int i = 0, long long num = 0) { if (num && num <= m) ans++; if (i == 9) return; dfs(i + 1, num * 10 + 4); dfs(i + 1, num * 10 + 7); } void make(int i = 1) { if (i > x) return; int j = 1, t; while (mark[j]) j++; while (k >= fac[x - i]) { j++; while (mark[j]) j++; k -= fac[x - i]; } while (mark[j]) j++; num[i] = j + m; mark[j] = 1; make(i + 1); } int main() { fac[0] = 1LL; for (long long i = 1; i < 15; i++) fac[i] = fac[i - 1] * i; while (~scanf("%d%d", &n, &k)) { ans = 0; memset(mark, 0, sizeof(mark)); if (n < 15 && fac[n] < k) { puts("-1"); continue; } for (int i = 0; i < 15; i++) if (fac[i] >= k) { x = i; break; } m = n - x; dfs(); k--; make(); for (int i = m + 1; i <= n; i++) { bool flag = true; int temp = i; while (temp) { if (temp % 10 != 4 && temp % 10 != 7) flag = false; temp /= 10; } temp = num[i - m]; while (temp) { if (temp % 10 != 4 && temp % 10 != 7) flag = false; temp /= 10; } if (flag) ans++; } printf("%d\n", ans); } }
### Prompt In cpp, your task is to solve the following problem: Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4. ### Response ```cpp #include <bits/stdc++.h> using namespace std; int ans, n, k, m, x; long long fac[15]; int num[15]; bool mark[15]; void dfs(int i = 0, long long num = 0) { if (num && num <= m) ans++; if (i == 9) return; dfs(i + 1, num * 10 + 4); dfs(i + 1, num * 10 + 7); } void make(int i = 1) { if (i > x) return; int j = 1, t; while (mark[j]) j++; while (k >= fac[x - i]) { j++; while (mark[j]) j++; k -= fac[x - i]; } while (mark[j]) j++; num[i] = j + m; mark[j] = 1; make(i + 1); } int main() { fac[0] = 1LL; for (long long i = 1; i < 15; i++) fac[i] = fac[i - 1] * i; while (~scanf("%d%d", &n, &k)) { ans = 0; memset(mark, 0, sizeof(mark)); if (n < 15 && fac[n] < k) { puts("-1"); continue; } for (int i = 0; i < 15; i++) if (fac[i] >= k) { x = i; break; } m = n - x; dfs(); k--; make(); for (int i = m + 1; i <= n; i++) { bool flag = true; int temp = i; while (temp) { if (temp % 10 != 4 && temp % 10 != 7) flag = false; temp /= 10; } temp = num[i - m]; while (temp) { if (temp % 10 != 4 && temp % 10 != 7) flag = false; temp /= 10; } if (flag) ans++; } printf("%d\n", ans); } } ```
#include <bits/stdc++.h> using namespace std; int n, k; long long fact[14] = {1}; bool cmp(int p) { if (p > 13 || fact[p] >= k) return true; k -= fact[p]; return false; } bool check(int x) { while (x) { if (x % 10 != 4 && x % 10 != 7) return false; x /= 10; } return true; } bool used[16]; int s; int calc(int i) { if (i > n) return 0; for (int j = s; j <= n; ++j) if (!used[j - s] && cmp(n - i)) { used[j - s] = true; return (check(i) && check(j)) + calc(i + 1); } return -1; } long long all[2046] = {4, 7}; int allC = 2; int main() { for (int i = 1; i < 14; ++i) fact[i] = fact[i - 1] * i; scanf("%d%d", &n, &k); if (n < 14 && k > fact[n]) { printf("-1"); return 0; } s = 1; if (n <= 13) printf("%d", calc(1)); else { for (int i = 0; all[allC - 1] < 7777777777LL; ++i) { all[allC++] = all[i] * 10 + 4; all[allC++] = all[i] * 10 + 7; } s = n - 12; printf("%d", lower_bound(all, all + allC, s) - all + calc(s)); } return 0; }
### Prompt Develop a solution in CPP to the problem described below: Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4. ### Response ```cpp #include <bits/stdc++.h> using namespace std; int n, k; long long fact[14] = {1}; bool cmp(int p) { if (p > 13 || fact[p] >= k) return true; k -= fact[p]; return false; } bool check(int x) { while (x) { if (x % 10 != 4 && x % 10 != 7) return false; x /= 10; } return true; } bool used[16]; int s; int calc(int i) { if (i > n) return 0; for (int j = s; j <= n; ++j) if (!used[j - s] && cmp(n - i)) { used[j - s] = true; return (check(i) && check(j)) + calc(i + 1); } return -1; } long long all[2046] = {4, 7}; int allC = 2; int main() { for (int i = 1; i < 14; ++i) fact[i] = fact[i - 1] * i; scanf("%d%d", &n, &k); if (n < 14 && k > fact[n]) { printf("-1"); return 0; } s = 1; if (n <= 13) printf("%d", calc(1)); else { for (int i = 0; all[allC - 1] < 7777777777LL; ++i) { all[allC++] = all[i] * 10 + 4; all[allC++] = all[i] * 10 + 7; } s = n - 12; printf("%d", lower_bound(all, all + allC, s) - all + calc(s)); } return 0; } ```
#include <bits/stdc++.h> using namespace std; string lower(string s) { for (int i = 0; i < s.size(); i++) s[i] = tolower(s[i]); return s; } vector<string> sep(string s, char c) { string temp; vector<string> res; for (int i = 0; i < s.size(); i++) { if (s[i] == c) { if (temp != "") res.push_back(temp); temp = ""; continue; } temp = temp + s[i]; } if (temp != "") res.push_back(temp); return res; } template <class T> T toint(string s) { stringstream ss(s); T ret; ss >> ret; return ret; } template <class T> string tostr(T inp) { string ret; stringstream ss; ss << inp; ss >> ret; return ret; } template <class T> void D(T A[], int n) { for (int i = 0; i < n; i++) cout << A[i] << " "; cout << endl; } template <class T> void D(vector<T> A, int n = -1) { if (n == -1) n = A.size(); for (int i = 0; i < n; i++) cout << A[i] << " "; cout << endl; } long long fact[21]; set<long long> lnum; int main() { for (int(i) = (1); (i) <= (10); (i)++) { int mask = (1 << i); for (int(j) = (0); (j) < (mask); (j)++) { long long tnum = 0; for (int(k) = (0); (k) < (i); (k)++) { tnum *= 10LL; if ((j & (1 << k))) tnum += 4LL; else tnum += 7LL; } lnum.insert(tnum); } } fact[0] = fact[1] = 1; for (int(i) = (2); (i) < (21); (i)++) fact[i] = (long long)i * fact[i - 1]; int n, k; cin >> n >> k; int ans = 0; for (typeof(lnum.begin()) it = lnum.begin(); it != lnum.end(); it++) { if (*it > n) break; if (n - *it + 1 <= 15) break; ans++; } int sn = max(1, n - 15 + 1); if (fact[n - sn + 1] >= k) { int totaliter = n - sn + 1; set<int> poss; for (int(i) = (sn); (i) <= (n); (i)++) poss.insert(i); for (int(i) = (0); (i) < (totaliter); (i)++) { set<int>::iterator it = poss.begin(); while (k > fact[totaliter - i - 1]) { it++; k -= fact[totaliter - i - 1]; } if (lnum.find(*it) != lnum.end() && lnum.find(sn + i) != lnum.end()) ans++; poss.erase(it); } cout << ans << endl; } else { cout << -1 << endl; } return 0; }
### Prompt Develop a solution in Cpp to the problem described below: Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4. ### Response ```cpp #include <bits/stdc++.h> using namespace std; string lower(string s) { for (int i = 0; i < s.size(); i++) s[i] = tolower(s[i]); return s; } vector<string> sep(string s, char c) { string temp; vector<string> res; for (int i = 0; i < s.size(); i++) { if (s[i] == c) { if (temp != "") res.push_back(temp); temp = ""; continue; } temp = temp + s[i]; } if (temp != "") res.push_back(temp); return res; } template <class T> T toint(string s) { stringstream ss(s); T ret; ss >> ret; return ret; } template <class T> string tostr(T inp) { string ret; stringstream ss; ss << inp; ss >> ret; return ret; } template <class T> void D(T A[], int n) { for (int i = 0; i < n; i++) cout << A[i] << " "; cout << endl; } template <class T> void D(vector<T> A, int n = -1) { if (n == -1) n = A.size(); for (int i = 0; i < n; i++) cout << A[i] << " "; cout << endl; } long long fact[21]; set<long long> lnum; int main() { for (int(i) = (1); (i) <= (10); (i)++) { int mask = (1 << i); for (int(j) = (0); (j) < (mask); (j)++) { long long tnum = 0; for (int(k) = (0); (k) < (i); (k)++) { tnum *= 10LL; if ((j & (1 << k))) tnum += 4LL; else tnum += 7LL; } lnum.insert(tnum); } } fact[0] = fact[1] = 1; for (int(i) = (2); (i) < (21); (i)++) fact[i] = (long long)i * fact[i - 1]; int n, k; cin >> n >> k; int ans = 0; for (typeof(lnum.begin()) it = lnum.begin(); it != lnum.end(); it++) { if (*it > n) break; if (n - *it + 1 <= 15) break; ans++; } int sn = max(1, n - 15 + 1); if (fact[n - sn + 1] >= k) { int totaliter = n - sn + 1; set<int> poss; for (int(i) = (sn); (i) <= (n); (i)++) poss.insert(i); for (int(i) = (0); (i) < (totaliter); (i)++) { set<int>::iterator it = poss.begin(); while (k > fact[totaliter - i - 1]) { it++; k -= fact[totaliter - i - 1]; } if (lnum.find(*it) != lnum.end() && lnum.find(sn + i) != lnum.end()) ans++; poss.erase(it); } cout << ans << endl; } else { cout << -1 << endl; } return 0; } ```
#include <bits/stdc++.h> using namespace std; const int c[] = {1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, 39916800, 479001600}; int a[10010]; vector<int> b; void dfs(long long x) { if (x >= 1000000000) return; a[++a[0]] = int(x); dfs(x * 10 + 4); dfs(x * 10 + 7); } bool check(int x) { while (x) { int p = x % 10; x /= 10; if (p != 4 && p != 7) return (false); } return (true); } int main() { int n, K; scanf("%d%d", &n, &K); long long now = 1; int t = -1; for (int i = 1; i <= n; i++) { now *= i; if (now >= K) { t = i; break; } } if (t == -1) printf("-1\n"); else { dfs(4); dfs(7); sort(a + 1, a + a[0] + 1); for (int i = 1; i <= t; i++) b.push_back(n - i + 1); reverse(b.begin(), b.end()); int ans = 0; for (int i = 1; i <= a[0]; i++) ans += a[i] <= n - t; int now = n - t; K--; for (int i = t; i; i--) { now++; int p = 0; while (K >= c[i - 1]) { p++; K -= c[i - 1]; } ans += check(now) && check(b[p]); b.erase(b.begin() + p); } printf("%d\n", ans); } return (0); }
### Prompt Please provide a cpp coded solution to the problem described below: Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4. ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int c[] = {1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, 39916800, 479001600}; int a[10010]; vector<int> b; void dfs(long long x) { if (x >= 1000000000) return; a[++a[0]] = int(x); dfs(x * 10 + 4); dfs(x * 10 + 7); } bool check(int x) { while (x) { int p = x % 10; x /= 10; if (p != 4 && p != 7) return (false); } return (true); } int main() { int n, K; scanf("%d%d", &n, &K); long long now = 1; int t = -1; for (int i = 1; i <= n; i++) { now *= i; if (now >= K) { t = i; break; } } if (t == -1) printf("-1\n"); else { dfs(4); dfs(7); sort(a + 1, a + a[0] + 1); for (int i = 1; i <= t; i++) b.push_back(n - i + 1); reverse(b.begin(), b.end()); int ans = 0; for (int i = 1; i <= a[0]; i++) ans += a[i] <= n - t; int now = n - t; K--; for (int i = t; i; i--) { now++; int p = 0; while (K >= c[i - 1]) { p++; K -= c[i - 1]; } ans += check(now) && check(b[p]); b.erase(b.begin() + p); } printf("%d\n", ans); } return (0); } ```
#include <bits/stdc++.h> using namespace std; bool lucky(long long int a) { while (a) { if (a % 10 != 4 && a % 10 != 7) return false; a /= 10; } return true; } vector<long long int> gen() { vector<long long int> res; for (int k = 1; k < 11; k++) { for (int i = 0; i < (1 << k); i++) { long long int a = 0; for (int j = 0; j < k; j++) { a *= 10; if (i & (1 << j)) a += 4; else a += 7; } res.push_back(a); } } sort(res.begin(), res.end()); return res; } vector<int> gen(long long int n, long long int k) { long long int c = 1; k--; for (int i = 0; i < n; i++) c *= (i + 1); vector<int> res; if (c <= k) return res; res.resize(n); c /= n; for (int i = 0; i < n - 1; i++) { res[i] = k / c; k %= c; c /= (n - i - 1); } res[n - 1] = 0; vector<bool> d(n, false); for (int i = 0; i < n; i++) { int c = 0; while (1) { if (!d[c]) { if (res[i] == 0) { d[c] = true; res[i] = c; break; } else res[i]--; } c++; } } for (int i = 0; i < n; i++) res[i]++; return res; } int main() { long long int n, k; cin >> n >> k; vector<int> v = gen(min((int)n, 13), k); if (v.empty()) { cout << -1; return 0; } int res = 0; for (int i = 0; i < v.size(); i++) { v[i] += (n - v.size()); if (lucky(i + n - v.size() + 1) && lucky(v[i])) res++; } if (n > 13) { vector<long long int> v2(gen()); res -= v2.begin() - lower_bound(v2.begin(), v2.end(), n - 13 + 1); } cout << res; }
### Prompt In CPP, your task is to solve the following problem: Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4. ### Response ```cpp #include <bits/stdc++.h> using namespace std; bool lucky(long long int a) { while (a) { if (a % 10 != 4 && a % 10 != 7) return false; a /= 10; } return true; } vector<long long int> gen() { vector<long long int> res; for (int k = 1; k < 11; k++) { for (int i = 0; i < (1 << k); i++) { long long int a = 0; for (int j = 0; j < k; j++) { a *= 10; if (i & (1 << j)) a += 4; else a += 7; } res.push_back(a); } } sort(res.begin(), res.end()); return res; } vector<int> gen(long long int n, long long int k) { long long int c = 1; k--; for (int i = 0; i < n; i++) c *= (i + 1); vector<int> res; if (c <= k) return res; res.resize(n); c /= n; for (int i = 0; i < n - 1; i++) { res[i] = k / c; k %= c; c /= (n - i - 1); } res[n - 1] = 0; vector<bool> d(n, false); for (int i = 0; i < n; i++) { int c = 0; while (1) { if (!d[c]) { if (res[i] == 0) { d[c] = true; res[i] = c; break; } else res[i]--; } c++; } } for (int i = 0; i < n; i++) res[i]++; return res; } int main() { long long int n, k; cin >> n >> k; vector<int> v = gen(min((int)n, 13), k); if (v.empty()) { cout << -1; return 0; } int res = 0; for (int i = 0; i < v.size(); i++) { v[i] += (n - v.size()); if (lucky(i + n - v.size() + 1) && lucky(v[i])) res++; } if (n > 13) { vector<long long int> v2(gen()); res -= v2.begin() - lower_bound(v2.begin(), v2.end(), n - 13 + 1); } cout << res; } ```
#include <bits/stdc++.h> using namespace std; vector<long long> V; vector<long long> F; vector<long long> out; bool used[30]; long long per[20]; void dfs(int depth, string S) { if (depth > 11) return; if (S.length() != 0) { long long fuck; istringstream st(S); st >> fuck; V.push_back(fuck); } dfs(depth + 1, S + '4'); dfs(depth + 1, S + '7'); } void go(long long cur, int depth) { if (depth == 0) return; long long permu = per[depth - 1]; long long i, j, k; if (cur == 0) { for (i = 0; i < F.size(); i++) { if (used[i] == 0) { out.push_back(F[i]); return; } } } for (i = 1;; i++) { if (permu * i >= cur) { int count = i; for (j = 0; j < F.size(); j++) { if (used[j] == 0) { count--; if (count == 0) { used[j] = 1; out.push_back(F[j]); go(cur - permu * (i - 1), depth - 1); break; } } } break; } } } bool CANT(long long N, long long K) { if (N < 15 && per[N] < K) return 1; return 0; } bool ok(long long t) { while (t > 0) { if (!(t % 10 == 4 || t % 10 == 7)) return 0; t /= 10; } return 1; } int main() { int i, j, k; int M; long long N, K; long long ans = 0; per[1] = per[0] = 1; for (long long i = 2; i <= 18; i++) per[i] = per[i - 1] * i; dfs(0, string()); sort(V.begin(), V.end()); cin >> N >> K; if (CANT(N, K)) { cout << -1 << endl; return 0; } string S; long long p; for (p = 1;; p++) { if (per[p] >= K) { break; } } for (i = 0; i < V.size(); i++) { if (V[i] > N - p) break; ans++; } for (long long temp = N - p + 1; temp <= N; temp++) F.push_back(temp); go(K, p); for (long long i = 0; i < out.size(); i++) { if (ok(i + (N - p + 1)) && ok(out[i])) ans++; } cout << ans << endl; return 0; }
### Prompt Please create a solution in Cpp to the following problem: Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4. ### Response ```cpp #include <bits/stdc++.h> using namespace std; vector<long long> V; vector<long long> F; vector<long long> out; bool used[30]; long long per[20]; void dfs(int depth, string S) { if (depth > 11) return; if (S.length() != 0) { long long fuck; istringstream st(S); st >> fuck; V.push_back(fuck); } dfs(depth + 1, S + '4'); dfs(depth + 1, S + '7'); } void go(long long cur, int depth) { if (depth == 0) return; long long permu = per[depth - 1]; long long i, j, k; if (cur == 0) { for (i = 0; i < F.size(); i++) { if (used[i] == 0) { out.push_back(F[i]); return; } } } for (i = 1;; i++) { if (permu * i >= cur) { int count = i; for (j = 0; j < F.size(); j++) { if (used[j] == 0) { count--; if (count == 0) { used[j] = 1; out.push_back(F[j]); go(cur - permu * (i - 1), depth - 1); break; } } } break; } } } bool CANT(long long N, long long K) { if (N < 15 && per[N] < K) return 1; return 0; } bool ok(long long t) { while (t > 0) { if (!(t % 10 == 4 || t % 10 == 7)) return 0; t /= 10; } return 1; } int main() { int i, j, k; int M; long long N, K; long long ans = 0; per[1] = per[0] = 1; for (long long i = 2; i <= 18; i++) per[i] = per[i - 1] * i; dfs(0, string()); sort(V.begin(), V.end()); cin >> N >> K; if (CANT(N, K)) { cout << -1 << endl; return 0; } string S; long long p; for (p = 1;; p++) { if (per[p] >= K) { break; } } for (i = 0; i < V.size(); i++) { if (V[i] > N - p) break; ans++; } for (long long temp = N - p + 1; temp <= N; temp++) F.push_back(temp); go(K, p); for (long long i = 0; i < out.size(); i++) { if (ok(i + (N - p + 1)) && ok(out[i])) ans++; } cout << ans << endl; return 0; } ```
#include <bits/stdc++.h> using namespace std; const long long dx[] = {4LL, 7LL}; vector<int> lucky; vector<long long> P; int main() { P.push_back(1); for (long long i = 1; P.back() <= 1000000000; i++) P.push_back(P[i - 1] * i); int n, k; cin >> n >> k; if (n < 13 && P[n] < k) { cout << -1; return (0); } int tmp; list<int> L; for (int i = 1, x = n; i < P.size(); i++, x--) { L.push_front(x); if (P[i] >= k) { tmp = x; break; } } vector<int> perm; for (int i = L.size() - 1; i >= 0; i--) { list<int>::iterator it = L.begin(); while (k > P[i]) { k -= P[i]; it++; } perm.push_back(*it); L.erase(it); } { queue<int> Q; Q.push(0); while (!Q.empty()) { int x = Q.front(); for (int i = 0; i < 2; i++) { long long x1 = x * 10LL + dx[i]; if (x1 <= 1000000000) { lucky.push_back(x1); Q.push(x1); } } Q.pop(); } } int res = 0; for (int i = 0; i < lucky.size() && lucky[i] < tmp; i++) res++; for (int i = 0, p = tmp; i < perm.size(); i++, p++) { bool f1 = false; bool f2 = false; for (int j = 0; j < lucky.size(); j++) { if (perm[i] == lucky[j]) f1 = true; if (p == lucky[j]) f2 = true; } if (f1 && f2) res++; } cout << res; exit: return (0); }
### Prompt Please provide a Cpp coded solution to the problem described below: Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4. ### Response ```cpp #include <bits/stdc++.h> using namespace std; const long long dx[] = {4LL, 7LL}; vector<int> lucky; vector<long long> P; int main() { P.push_back(1); for (long long i = 1; P.back() <= 1000000000; i++) P.push_back(P[i - 1] * i); int n, k; cin >> n >> k; if (n < 13 && P[n] < k) { cout << -1; return (0); } int tmp; list<int> L; for (int i = 1, x = n; i < P.size(); i++, x--) { L.push_front(x); if (P[i] >= k) { tmp = x; break; } } vector<int> perm; for (int i = L.size() - 1; i >= 0; i--) { list<int>::iterator it = L.begin(); while (k > P[i]) { k -= P[i]; it++; } perm.push_back(*it); L.erase(it); } { queue<int> Q; Q.push(0); while (!Q.empty()) { int x = Q.front(); for (int i = 0; i < 2; i++) { long long x1 = x * 10LL + dx[i]; if (x1 <= 1000000000) { lucky.push_back(x1); Q.push(x1); } } Q.pop(); } } int res = 0; for (int i = 0; i < lucky.size() && lucky[i] < tmp; i++) res++; for (int i = 0, p = tmp; i < perm.size(); i++, p++) { bool f1 = false; bool f2 = false; for (int j = 0; j < lucky.size(); j++) { if (perm[i] == lucky[j]) f1 = true; if (p == lucky[j]) f2 = true; } if (f1 && f2) res++; } cout << res; exit: return (0); } ```
#include <bits/stdc++.h> using namespace std; int n, k, l, a[2000], mk[15], s[15]; long long f[15]; map<int, bool> lc; void F(long long x) { if (x > 1e9) return; if (x > 0) { a[++l] = x; lc[x] = 1; } F(x * 10LL + 4LL); F(x * 10LL + 7LL); } int main() { f[0] = 1LL; for (int i = 1; i <= 13; i++) f[i] = f[i - 1] * 1LL * i; scanf("%d%d", &n, &k); if (n <= 12 && k > f[n]) { printf("-1\n"); return 0; } int t = 1; while (f[t] < k) t++; F(0); sort(a + 1, a + l + 1); int sol = 0; for (int i = 1; i <= l; i++) { if (a[i] > n - t) break; sol++; } for (int i = 1; i <= t; i++) { for (int j = 1; j <= t; j++) { if (mk[j]) continue; if (k > f[t - i]) { k -= f[t - i]; continue; } s[i] = j + n - t; mk[j] = 1; break; } } for (int i = 1; i <= t; i++) if (lc.count(i + n - t) && lc.count(s[i])) sol++; printf("%d\n", sol); return 0; }
### Prompt Your task is to create a Cpp solution to the following problem: Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4. ### Response ```cpp #include <bits/stdc++.h> using namespace std; int n, k, l, a[2000], mk[15], s[15]; long long f[15]; map<int, bool> lc; void F(long long x) { if (x > 1e9) return; if (x > 0) { a[++l] = x; lc[x] = 1; } F(x * 10LL + 4LL); F(x * 10LL + 7LL); } int main() { f[0] = 1LL; for (int i = 1; i <= 13; i++) f[i] = f[i - 1] * 1LL * i; scanf("%d%d", &n, &k); if (n <= 12 && k > f[n]) { printf("-1\n"); return 0; } int t = 1; while (f[t] < k) t++; F(0); sort(a + 1, a + l + 1); int sol = 0; for (int i = 1; i <= l; i++) { if (a[i] > n - t) break; sol++; } for (int i = 1; i <= t; i++) { for (int j = 1; j <= t; j++) { if (mk[j]) continue; if (k > f[t - i]) { k -= f[t - i]; continue; } s[i] = j + n - t; mk[j] = 1; break; } } for (int i = 1; i <= t; i++) if (lc.count(i + n - t) && lc.count(s[i])) sol++; printf("%d\n", sol); return 0; } ```
#include <bits/stdc++.h> using namespace std; const int M = 10 + 10; long long int lucky[10000]; long long int fac(long long int n) { long long int ans = 1; for (long long int i = 1; i <= n; i++) { ans = ans * i; } return ans; } bool islucky(long long int x) { bool ok = true; while (x) { if (x % 10 != 4 && x % 10 != 7) { ok = false; break; } x /= 10; } return ok; } int main() { long long int n, k; cin >> n >> k; long long int num = 1; long long int id = 1; while (n - id + 1 >= 1) { num = num * id; if (num >= k) { break; } id++; } if (num < k) { cout << "-1" << endl; } else { long long int idl = n - id + 1; long long int idr = n; int len = idr - idl + 1; int a[M]; set<int> ilist; for (int i = 0; i < len; i++) { a[i] = idl + i; ilist.insert(i); } int idx[M]; int res = len - 1; long long int kk = k - 1; for (int i = 0; i < len; i++) { long long int f = fac(res); set<int>::iterator it = ilist.begin(); for (long long int j = 1; j <= kk / f; j++) { it++; } idx[i] = (*it); ilist.erase(idx[i]); kk = kk - kk / f * f; res--; } int ans = 0; for (int i = 0; i < len; i++) { if (islucky(idx[i] + idl) && islucky(a[i])) { ans++; } } int num = 0; for (int d = 1; d <= 9; d++) { for (int i = 0; i < (1 << d); i++) { int val = 0; for (int k = 0; k < d; k++) { if ((i >> k) & 1) { val = val * 10 + 4; } else { val = val * 10 + 7; } } lucky[num++] = val; } } for (int i = 0; i < num; i++) { if (lucky[i] < idl) { ans++; } } cout << ans << endl; } return 0; }
### Prompt In cpp, your task is to solve the following problem: Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4. ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int M = 10 + 10; long long int lucky[10000]; long long int fac(long long int n) { long long int ans = 1; for (long long int i = 1; i <= n; i++) { ans = ans * i; } return ans; } bool islucky(long long int x) { bool ok = true; while (x) { if (x % 10 != 4 && x % 10 != 7) { ok = false; break; } x /= 10; } return ok; } int main() { long long int n, k; cin >> n >> k; long long int num = 1; long long int id = 1; while (n - id + 1 >= 1) { num = num * id; if (num >= k) { break; } id++; } if (num < k) { cout << "-1" << endl; } else { long long int idl = n - id + 1; long long int idr = n; int len = idr - idl + 1; int a[M]; set<int> ilist; for (int i = 0; i < len; i++) { a[i] = idl + i; ilist.insert(i); } int idx[M]; int res = len - 1; long long int kk = k - 1; for (int i = 0; i < len; i++) { long long int f = fac(res); set<int>::iterator it = ilist.begin(); for (long long int j = 1; j <= kk / f; j++) { it++; } idx[i] = (*it); ilist.erase(idx[i]); kk = kk - kk / f * f; res--; } int ans = 0; for (int i = 0; i < len; i++) { if (islucky(idx[i] + idl) && islucky(a[i])) { ans++; } } int num = 0; for (int d = 1; d <= 9; d++) { for (int i = 0; i < (1 << d); i++) { int val = 0; for (int k = 0; k < d; k++) { if ((i >> k) & 1) { val = val * 10 + 4; } else { val = val * 10 + 7; } } lucky[num++] = val; } } for (int i = 0; i < num; i++) { if (lucky[i] < idl) { ans++; } } cout << ans << endl; } return 0; } ```
#include <bits/stdc++.h> using namespace std; long long numlucky(long long i, long long bound) { if (i > bound) return 0; else return 1 + numlucky(i * 10 + 4, bound) + numlucky(i * 10 + 7, bound); } bool check(long long i) { if (i <= 0) return false; while (i > 0) { int a = i % 10; if (a != 4 && a != 7) return false; i = i / 10; } return true; } int main() { std::ios_base::sync_with_stdio(false); long long n, k; cin >> n >> k; long long fact[14]; fact[1] = 1; for (long long i = 2; i <= 13; i++) fact[i] = i * fact[i - 1]; if (n < 14 && fact[n] < k) { cout << -1 << endl; return 0; } long long num = numlucky(0, max((long long)0, n - 13)) - 1; int t = 1; k -= 1; vector<int> perm; for (int i = n - 12; i <= n; i++) perm.push_back(i); for (int i = 13; i >= 2; i--) { int index = k / fact[i - 1]; if (check(perm[index]) && check(n - i + 1)) num++; perm.erase(perm.begin() + index); k = k % fact[i - 1]; } if (check(perm[0]) && check(n)) num++; cout << num << endl; return 0; }
### Prompt Your task is to create a Cpp solution to the following problem: Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4. ### Response ```cpp #include <bits/stdc++.h> using namespace std; long long numlucky(long long i, long long bound) { if (i > bound) return 0; else return 1 + numlucky(i * 10 + 4, bound) + numlucky(i * 10 + 7, bound); } bool check(long long i) { if (i <= 0) return false; while (i > 0) { int a = i % 10; if (a != 4 && a != 7) return false; i = i / 10; } return true; } int main() { std::ios_base::sync_with_stdio(false); long long n, k; cin >> n >> k; long long fact[14]; fact[1] = 1; for (long long i = 2; i <= 13; i++) fact[i] = i * fact[i - 1]; if (n < 14 && fact[n] < k) { cout << -1 << endl; return 0; } long long num = numlucky(0, max((long long)0, n - 13)) - 1; int t = 1; k -= 1; vector<int> perm; for (int i = n - 12; i <= n; i++) perm.push_back(i); for (int i = 13; i >= 2; i--) { int index = k / fact[i - 1]; if (check(perm[index]) && check(n - i + 1)) num++; perm.erase(perm.begin() + index); k = k % fact[i - 1]; } if (check(perm[0]) && check(n)) num++; cout << num << endl; return 0; } ```
#include <bits/stdc++.h> using namespace std; vector<long long> luckies; long long x; void gen_luck(int k, int pos, long long cur) { if (k == pos) { x = cur; if (cur <= 1e10) luckies.push_back(cur); } else { gen_luck(k, pos + 1, cur * 10 + 4); gen_luck(k, pos + 1, cur * 10 + 7); } } void Init() { for (int i = 1;; ++i) { gen_luck(i, 0, 0); if (x > 1e10) break; } } vector<int> perm; vector<bool> u; long long fact(long long n) { long long res = 1; for (long long i = 2; i <= n; ++i) res *= i; return res; } void gen(long long l, long long pos, long long num) { if (pos == l) return; long long sz = l - pos; int cur = 1; while ((cur - 1) * fact(sz - 1) < num) ++cur; --cur; int cnt = 0, j = 0; while (cnt < cur) { if (!u[j]) ++cnt; ++j; } --j; u[j] = true; perm[pos] = j; gen(l, pos + 1, num - (cur - 1) * fact(sz - 1)); } bool lucky(long long n) { while (n) { if (n % 10 != 4 && n % 10 != 7) return false; n /= 10; } return true; } int low(long long n) { int l = 0, r = luckies.size(); while (l < r - 1) { int m = (l + r) / 2; if (luckies[m] < n) l = m; else r = m; } if (n < 4) return 0; else return (luckies[r] <= n ? r + 1 : l + 1); } int main() { Init(); long long n, k; cin >> n >> k; if (n <= 13 && fact(n) < k) { cout << -1; return 0; } int len = 1; while (fact(len) < k && len < 13) ++len; u.assign(len, false); perm.resize(len); gen(len, 0, k); vector<long long> res(len); long long start = n - len + 1; long long ans = low(n - len); for (int i = 0; i < len; ++i) res[i] = perm[i] + start; for (int i = 0; i < len; ++i) { if (lucky(n - len + i + 1) && lucky(res[i])) ++ans; } cout << ans << endl; cin >> n; return 0; }
### Prompt Construct a Cpp code solution to the problem outlined: Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4. ### Response ```cpp #include <bits/stdc++.h> using namespace std; vector<long long> luckies; long long x; void gen_luck(int k, int pos, long long cur) { if (k == pos) { x = cur; if (cur <= 1e10) luckies.push_back(cur); } else { gen_luck(k, pos + 1, cur * 10 + 4); gen_luck(k, pos + 1, cur * 10 + 7); } } void Init() { for (int i = 1;; ++i) { gen_luck(i, 0, 0); if (x > 1e10) break; } } vector<int> perm; vector<bool> u; long long fact(long long n) { long long res = 1; for (long long i = 2; i <= n; ++i) res *= i; return res; } void gen(long long l, long long pos, long long num) { if (pos == l) return; long long sz = l - pos; int cur = 1; while ((cur - 1) * fact(sz - 1) < num) ++cur; --cur; int cnt = 0, j = 0; while (cnt < cur) { if (!u[j]) ++cnt; ++j; } --j; u[j] = true; perm[pos] = j; gen(l, pos + 1, num - (cur - 1) * fact(sz - 1)); } bool lucky(long long n) { while (n) { if (n % 10 != 4 && n % 10 != 7) return false; n /= 10; } return true; } int low(long long n) { int l = 0, r = luckies.size(); while (l < r - 1) { int m = (l + r) / 2; if (luckies[m] < n) l = m; else r = m; } if (n < 4) return 0; else return (luckies[r] <= n ? r + 1 : l + 1); } int main() { Init(); long long n, k; cin >> n >> k; if (n <= 13 && fact(n) < k) { cout << -1; return 0; } int len = 1; while (fact(len) < k && len < 13) ++len; u.assign(len, false); perm.resize(len); gen(len, 0, k); vector<long long> res(len); long long start = n - len + 1; long long ans = low(n - len); for (int i = 0; i < len; ++i) res[i] = perm[i] + start; for (int i = 0; i < len; ++i) { if (lucky(n - len + i + 1) && lucky(res[i])) ++ans; } cout << ans << endl; cin >> n; return 0; } ```
#include <bits/stdc++.h> using namespace std; int table[20]; long long tot = 0; int nns[20]; bool isluck(int k) { while (k) { if (k % 10 != 4 && k % 10 != 7) return false; k /= 10; } return true; } int luckns[2000]; int tol = 0; void maketable(int i, int np) { if (i == 9) return; int np1 = np * 10 + 4, np2 = np * 10 + 7; luckns[tol++] = np1; luckns[tol++] = np2; maketable(i + 1, np1); maketable(i + 1, np2); } int main() { maketable(0, 0); table[1] = 1; for (tot = 2; table[tot - 1] * tot < 1000000000; ++tot) table[tot] = table[tot - 1] * tot; tot--; int n, k; scanf("%d%d", &n, &k); if (n <= tot && table[n] < k) puts("-1"); else { int pi; for (pi = tot; table[pi] >= k; --pi) ; int summ = 0; for (int i = 0; i < tol; ++i) if (luckns[i] >= 1 && luckns[i] < n - pi) summ++; for (int i = n - pi; i <= n; ++i) nns[i - n + pi + 1] = i; int top = pi; int tns = n - pi; k--; while (top) { int p1 = k / table[top] + 1; for (int i = 1; i <= pi + 1; ++i) if (nns[i] != -1) { p1--; if (p1 == 0) { if (isluck(nns[i]) && isluck(tns)) summ++; nns[i] = -1; break; } } k %= table[top]; tns++; top--; } for (int i = 1; i <= pi + 1; ++i) if (nns[i] != -1) { if (isluck(nns[i]) && isluck(n)) summ++; break; } printf("%d\n", summ); } return 0; }
### Prompt Your task is to create a CPP solution to the following problem: Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4. ### Response ```cpp #include <bits/stdc++.h> using namespace std; int table[20]; long long tot = 0; int nns[20]; bool isluck(int k) { while (k) { if (k % 10 != 4 && k % 10 != 7) return false; k /= 10; } return true; } int luckns[2000]; int tol = 0; void maketable(int i, int np) { if (i == 9) return; int np1 = np * 10 + 4, np2 = np * 10 + 7; luckns[tol++] = np1; luckns[tol++] = np2; maketable(i + 1, np1); maketable(i + 1, np2); } int main() { maketable(0, 0); table[1] = 1; for (tot = 2; table[tot - 1] * tot < 1000000000; ++tot) table[tot] = table[tot - 1] * tot; tot--; int n, k; scanf("%d%d", &n, &k); if (n <= tot && table[n] < k) puts("-1"); else { int pi; for (pi = tot; table[pi] >= k; --pi) ; int summ = 0; for (int i = 0; i < tol; ++i) if (luckns[i] >= 1 && luckns[i] < n - pi) summ++; for (int i = n - pi; i <= n; ++i) nns[i - n + pi + 1] = i; int top = pi; int tns = n - pi; k--; while (top) { int p1 = k / table[top] + 1; for (int i = 1; i <= pi + 1; ++i) if (nns[i] != -1) { p1--; if (p1 == 0) { if (isluck(nns[i]) && isluck(tns)) summ++; nns[i] = -1; break; } } k %= table[top]; tns++; top--; } for (int i = 1; i <= pi + 1; ++i) if (nns[i] != -1) { if (isluck(nns[i]) && isluck(n)) summ++; break; } printf("%d\n", summ); } return 0; } ```
#include <bits/stdc++.h> using namespace std; long long jc[15]; int da[15]; void sjr(int a, long long b, long long c) { sort(da + a, da + a + c); if (c == 1) return; if (b <= jc[c - 1]) sjr(a + 1, b, c - 1); for (long long i = 1; i <= c; i++) { if (b <= i * jc[c - 1]) { swap(da[a], da[a + i - 1]); b -= (i - 1) * jc[c - 1]; sjr(a + 1, b, c - 1); break; } } } bool ju(int a) { char cc[100]; sprintf(cc, "%d", a); for (int i = 0; i < strlen(cc); i++) if (cc[i] != '4' && cc[i] != '7') return false; return true; } int main() { vector<unsigned long long> vd; for (int i = 1; i <= 10; i++) { for (int j = 0; j < (1 << i); j++) { unsigned long long ta = 0; for (int k = 0; k < i; k++) { if (j & (1 << k)) ta += pow(10LL, k * 1LL) * 7LL; else ta += pow(10LL, k * 1LL) * 4LL; } vd.push_back(ta); } } jc[0] = 1; jc[1] = 1; for (long long i = 2; i <= 14; i++) jc[i] = jc[i - 1] * i; long long n, k; cin >> n >> k; if (n <= 14 && k > jc[n]) { printf("-1\n"); return 0; } int j = 13; int bh = n; int fz = 0; for (int i = 0; i < 13 && n - i > 0; i++) { da[--j] = n - i; fz++; bh--; } sjr(j, k, fz); int jx = 0; for (int i = 0; i < vd.size(); i++) { if (vd[i] <= bh) jx++; } for (bh++; bh <= n; bh++) { if (ju(da[j]) && ju(bh)) jx++; j++; } cout << jx << endl; return 0; }
### Prompt Create a solution in Cpp for the following problem: Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4. ### Response ```cpp #include <bits/stdc++.h> using namespace std; long long jc[15]; int da[15]; void sjr(int a, long long b, long long c) { sort(da + a, da + a + c); if (c == 1) return; if (b <= jc[c - 1]) sjr(a + 1, b, c - 1); for (long long i = 1; i <= c; i++) { if (b <= i * jc[c - 1]) { swap(da[a], da[a + i - 1]); b -= (i - 1) * jc[c - 1]; sjr(a + 1, b, c - 1); break; } } } bool ju(int a) { char cc[100]; sprintf(cc, "%d", a); for (int i = 0; i < strlen(cc); i++) if (cc[i] != '4' && cc[i] != '7') return false; return true; } int main() { vector<unsigned long long> vd; for (int i = 1; i <= 10; i++) { for (int j = 0; j < (1 << i); j++) { unsigned long long ta = 0; for (int k = 0; k < i; k++) { if (j & (1 << k)) ta += pow(10LL, k * 1LL) * 7LL; else ta += pow(10LL, k * 1LL) * 4LL; } vd.push_back(ta); } } jc[0] = 1; jc[1] = 1; for (long long i = 2; i <= 14; i++) jc[i] = jc[i - 1] * i; long long n, k; cin >> n >> k; if (n <= 14 && k > jc[n]) { printf("-1\n"); return 0; } int j = 13; int bh = n; int fz = 0; for (int i = 0; i < 13 && n - i > 0; i++) { da[--j] = n - i; fz++; bh--; } sjr(j, k, fz); int jx = 0; for (int i = 0; i < vd.size(); i++) { if (vd[i] <= bh) jx++; } for (bh++; bh <= n; bh++) { if (ju(da[j]) && ju(bh)) jx++; j++; } cout << jx << endl; return 0; } ```
#include <bits/stdc++.h> using namespace std; int luck[5000], top; int a[20], fa[20] = {1}; bool used[20]; void make(long long x) { if (x > 1e9) return; luck[top++] = x; make(x * 10 + 4); make(x * 10 + 7); } bool is(int x) { return x == 0 || (x % 10 == 4 || x % 10 == 7) && is(x / 10); } void inttoarray(int k, int n) { int i, j, tmp; for (i = 1; i <= n; i++) { tmp = k / fa[n - i]; for (j = 1; j <= n; j++) if (!used[j]) { if (tmp == 0) break; tmp--; } a[i] = j; used[j] = 1; k %= fa[n - i]; } } int main() { int n, k, i, j, as = 0; for (i = 1; i < 20; i++) fa[i] = fa[i - 1] * i; scanf("%d%d", &n, &k); k--; if (n <= 13) { if (k >= fa[n]) return puts("-1"); inttoarray(k, n); if (a[4] == 4 || a[4] == 7) as++; if (a[7] == 4 || a[7] == 7) as++; printf("%d\n", as); return 0; } make(0); sort(luck + 1, luck + top); inttoarray(k, 13); for (i = 1; i <= 13; i++) if (is(i + n - 13) && is(a[i] + n - 13)) as++; for (i = 1; i < top; i++) if (luck[i] > n - 13) break; as += i - 1; printf("%d\n", as); return 0; }
### Prompt Create a solution in cpp for the following problem: Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4. ### Response ```cpp #include <bits/stdc++.h> using namespace std; int luck[5000], top; int a[20], fa[20] = {1}; bool used[20]; void make(long long x) { if (x > 1e9) return; luck[top++] = x; make(x * 10 + 4); make(x * 10 + 7); } bool is(int x) { return x == 0 || (x % 10 == 4 || x % 10 == 7) && is(x / 10); } void inttoarray(int k, int n) { int i, j, tmp; for (i = 1; i <= n; i++) { tmp = k / fa[n - i]; for (j = 1; j <= n; j++) if (!used[j]) { if (tmp == 0) break; tmp--; } a[i] = j; used[j] = 1; k %= fa[n - i]; } } int main() { int n, k, i, j, as = 0; for (i = 1; i < 20; i++) fa[i] = fa[i - 1] * i; scanf("%d%d", &n, &k); k--; if (n <= 13) { if (k >= fa[n]) return puts("-1"); inttoarray(k, n); if (a[4] == 4 || a[4] == 7) as++; if (a[7] == 4 || a[7] == 7) as++; printf("%d\n", as); return 0; } make(0); sort(luck + 1, luck + top); inttoarray(k, 13); for (i = 1; i <= 13; i++) if (is(i + n - 13) && is(a[i] + n - 13)) as++; for (i = 1; i < top; i++) if (luck[i] > n - 13) break; as += i - 1; printf("%d\n", as); return 0; } ```
#include <bits/stdc++.h> long long b[32] = {0}; bool f(int x) { if (x <= 0) { return false; } while (x) { if (x % 10 != 4 && x % 10 != 7) { return false; } x /= 10; } return true; } int get(int x) { int w = 0, s = 0, t = 0, i = 0, xx = 0, ans = 0; long long now = 0; xx = x; while (xx) { t++; xx /= 10; } for (w = 1; w <= t; w++) { for (s = 0; s < (1 << w); s++) { now = 0; for (i = 0; i < w; i++) { if (s & (1 << i)) { now = now * 10 + 4; } else { now = now * 10 + 7; } } if (now <= x) { ans++; } } } return ans; } void tt(int m, int k, int a[]) { int i = 0, j = 0; bool u[32] = {0}; for (i = 0; i < m; i++) { for (j = 0; j < m; j++) { if (!u[j]) { if (k > b[m - i - 1]) { k -= b[m - i - 1]; } else { a[i] = j; u[j] = true; break; } } } } } void init() { b[0] = 1; int i = 0; for (i = 1; i <= 20; i++) { b[i] = b[i - 1] * i; } } int main() { int n = 0, k = 0, m = 0, i = 0, ans = 0, a[32]; init(); while (scanf("%d%d", &n, &k) == 2) { for (m = 1;; m++) { if (b[m] >= k) { break; } } if (n < m) { printf("-1\n"); continue; } ans = get(n - m); tt(m, k, a); for (i = 0; i < m; i++) { if (f(a[i] + n - m + 1) && f(i + n - m + 1)) { ans++; } } printf("%d\n", ans); } return 0; }
### Prompt Please create a solution in cpp to the following problem: Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4. ### Response ```cpp #include <bits/stdc++.h> long long b[32] = {0}; bool f(int x) { if (x <= 0) { return false; } while (x) { if (x % 10 != 4 && x % 10 != 7) { return false; } x /= 10; } return true; } int get(int x) { int w = 0, s = 0, t = 0, i = 0, xx = 0, ans = 0; long long now = 0; xx = x; while (xx) { t++; xx /= 10; } for (w = 1; w <= t; w++) { for (s = 0; s < (1 << w); s++) { now = 0; for (i = 0; i < w; i++) { if (s & (1 << i)) { now = now * 10 + 4; } else { now = now * 10 + 7; } } if (now <= x) { ans++; } } } return ans; } void tt(int m, int k, int a[]) { int i = 0, j = 0; bool u[32] = {0}; for (i = 0; i < m; i++) { for (j = 0; j < m; j++) { if (!u[j]) { if (k > b[m - i - 1]) { k -= b[m - i - 1]; } else { a[i] = j; u[j] = true; break; } } } } } void init() { b[0] = 1; int i = 0; for (i = 1; i <= 20; i++) { b[i] = b[i - 1] * i; } } int main() { int n = 0, k = 0, m = 0, i = 0, ans = 0, a[32]; init(); while (scanf("%d%d", &n, &k) == 2) { for (m = 1;; m++) { if (b[m] >= k) { break; } } if (n < m) { printf("-1\n"); continue; } ans = get(n - m); tt(m, k, a); for (i = 0; i < m; i++) { if (f(a[i] + n - m + 1) && f(i + n - m + 1)) { ans++; } } printf("%d\n", ans); } return 0; } ```
#include <bits/stdc++.h> using namespace std; long long fac[51]; map<long long, bool> lc; int32_t main() { vector<long long> all; for (long long i = 1; i <= 10; ++i) { for (long long j = 0; j <= i; ++j) { vector<long long> v; for (long long k = 0; k < j; ++k) v.push_back(4); for (long long k = 0; k < i - j; ++k) v.push_back(7); do { long long t = 0, c = 1; for (long long k : v) t += c * k, c *= 10; all.push_back(t); } while (next_permutation(v.begin(), v.end())); } } sort(all.begin(), all.end()); fac[0] = 1; for (long long i = 1; i <= 50; ++i) fac[i] = fac[i - 1] * i; vector<long long> v; long long n, k; cin >> n >> k; if (n <= 20 && fac[n] < k) return cout << "-1" << endl, 0; --k; for (long long i : all) if (i <= n) v.push_back(i); long long z = -1; for (long long i = n; i >= 1; --i) { long long c = n - i; if (c * fac[c] >= k) { z = i; break; } } if (z == -1) z = 1; long long ans = 0; for (long long i : v) if (i < z) ++ans; for (long long i : v) lc[i] = true; long long cur = 0; vector<long long> ch; for (long long i = z; i <= n; ++i) ch.push_back(i); for (long long i = z; i <= n; ++i) { long long d = 31, p = 0; while (d--) { if (p + (1 << d) < ch.size()) { long long u = ch[p + (1 << d)]; long long c = p + (1 << d); if (cur + c * fac[n - i] <= k) p += (1 << d); } } cur += p * fac[n - i]; if (lc[i] && lc[ch[p]]) ++ans; vector<long long> nch; for (long long j : ch) if (j != ch[p]) nch.push_back(j); ch = nch; } cout << ans << endl; }
### Prompt Create a solution in CPP for the following problem: Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4. ### Response ```cpp #include <bits/stdc++.h> using namespace std; long long fac[51]; map<long long, bool> lc; int32_t main() { vector<long long> all; for (long long i = 1; i <= 10; ++i) { for (long long j = 0; j <= i; ++j) { vector<long long> v; for (long long k = 0; k < j; ++k) v.push_back(4); for (long long k = 0; k < i - j; ++k) v.push_back(7); do { long long t = 0, c = 1; for (long long k : v) t += c * k, c *= 10; all.push_back(t); } while (next_permutation(v.begin(), v.end())); } } sort(all.begin(), all.end()); fac[0] = 1; for (long long i = 1; i <= 50; ++i) fac[i] = fac[i - 1] * i; vector<long long> v; long long n, k; cin >> n >> k; if (n <= 20 && fac[n] < k) return cout << "-1" << endl, 0; --k; for (long long i : all) if (i <= n) v.push_back(i); long long z = -1; for (long long i = n; i >= 1; --i) { long long c = n - i; if (c * fac[c] >= k) { z = i; break; } } if (z == -1) z = 1; long long ans = 0; for (long long i : v) if (i < z) ++ans; for (long long i : v) lc[i] = true; long long cur = 0; vector<long long> ch; for (long long i = z; i <= n; ++i) ch.push_back(i); for (long long i = z; i <= n; ++i) { long long d = 31, p = 0; while (d--) { if (p + (1 << d) < ch.size()) { long long u = ch[p + (1 << d)]; long long c = p + (1 << d); if (cur + c * fac[n - i] <= k) p += (1 << d); } } cur += p * fac[n - i]; if (lc[i] && lc[ch[p]]) ++ans; vector<long long> nch; for (long long j : ch) if (j != ch[p]) nch.push_back(j); ch = nch; } cout << ans << endl; } ```
#include <bits/stdc++.h> using namespace std; vector<long long> v, ext; long long f[20]; bool vis[20]; bool chck(long long j) { while (j) { if (j % 10 != 4 && j % 10 != 7) break; j /= 10; } return j == 0; } int main() { long long i, n, k, st, sum, j, pre, sz, ans; f[0] = 1; for (i = 1; i <= 13; i++) f[i] = f[i - 1] * i; cin >> n >> k; if (n <= 13 && k > f[n]) { cout << -1 << endl; return 0; } for (i = 1; f[i] < k; i++) ; st = n - i + 1; sum = k; for (j = 1; j <= i; j++) { for (k = st; k <= n; k++) { if (!vis[k - st]) { if (sum - f[i - j] > 0) { sum -= f[i - j]; } else { ext.push_back(k); vis[k - st] = 1; break; } } } } queue<long long> q; q.push(4); q.push(7); v.push_back(4); v.push_back(7); while (!q.empty()) { pre = q.front(); q.pop(); if (pre * 10 + 4 <= 5000000000LL) { q.push(pre * 10 + 4); q.push(pre * 10 + 7); v.push_back(pre * 10 + 4); v.push_back(pre * 10 + 7); } } sz = v.size(); ans = 0; for (i = 0; i < sz && v[i] < st; i++) ans++; for (i = st; i <= n; i++) { if (chck(i)) { if (chck(ext[i - st])) ans++; } } cout << ans << endl; return 0; }
### Prompt In Cpp, your task is to solve the following problem: Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4. ### Response ```cpp #include <bits/stdc++.h> using namespace std; vector<long long> v, ext; long long f[20]; bool vis[20]; bool chck(long long j) { while (j) { if (j % 10 != 4 && j % 10 != 7) break; j /= 10; } return j == 0; } int main() { long long i, n, k, st, sum, j, pre, sz, ans; f[0] = 1; for (i = 1; i <= 13; i++) f[i] = f[i - 1] * i; cin >> n >> k; if (n <= 13 && k > f[n]) { cout << -1 << endl; return 0; } for (i = 1; f[i] < k; i++) ; st = n - i + 1; sum = k; for (j = 1; j <= i; j++) { for (k = st; k <= n; k++) { if (!vis[k - st]) { if (sum - f[i - j] > 0) { sum -= f[i - j]; } else { ext.push_back(k); vis[k - st] = 1; break; } } } } queue<long long> q; q.push(4); q.push(7); v.push_back(4); v.push_back(7); while (!q.empty()) { pre = q.front(); q.pop(); if (pre * 10 + 4 <= 5000000000LL) { q.push(pre * 10 + 4); q.push(pre * 10 + 7); v.push_back(pre * 10 + 4); v.push_back(pre * 10 + 7); } } sz = v.size(); ans = 0; for (i = 0; i < sz && v[i] < st; i++) ans++; for (i = st; i <= n; i++) { if (chck(i)) { if (chck(ext[i - st])) ans++; } } cout << ans << endl; return 0; } ```
#include <bits/stdc++.h> using namespace std; long long l[5010]; int tot; long long ans, n, k; void prepare() { tot = 2; l[0] = 4, l[1] = 7; for (int i = 0; i < tot; i++) if (l[i] > 2e9) break; else l[tot++] = l[i] * 10 + 4, l[tot++] = l[i] * 10 + 7; } bool inside(long long t) { for (int i = 0; i < tot; i++) if (l[i] == t) return 1; return 0; } long long deal(int b, int n) { long long ret = 0, temp = 1; for (int i = 1; i <= n; i++) temp *= i; bool v[20]; memset(v, 0, sizeof v); if (temp < k) return -0x7ffffff; k--; for (int i = n; i >= 1; i--) { temp /= i; int t = k / temp + 1, j; k -= (t - 1) * temp; for (j = 1; j <= n; j++) { if (!v[j]) t--; if (!t) break; } v[j] = 1; if (inside(b + j) && inside(b + n - i + 1)) ret++; } return ret; } int main() { prepare(); cin >> n >> k; if (n <= 15) ans = deal(0, n); else { for (int i = 0; l[i] <= n - 15; i++) ans++; ans += deal(n - 15, 15); } if (ans < 0) puts("-1"); else cout << ans << endl; return 0; }
### Prompt In cpp, your task is to solve the following problem: Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4. ### Response ```cpp #include <bits/stdc++.h> using namespace std; long long l[5010]; int tot; long long ans, n, k; void prepare() { tot = 2; l[0] = 4, l[1] = 7; for (int i = 0; i < tot; i++) if (l[i] > 2e9) break; else l[tot++] = l[i] * 10 + 4, l[tot++] = l[i] * 10 + 7; } bool inside(long long t) { for (int i = 0; i < tot; i++) if (l[i] == t) return 1; return 0; } long long deal(int b, int n) { long long ret = 0, temp = 1; for (int i = 1; i <= n; i++) temp *= i; bool v[20]; memset(v, 0, sizeof v); if (temp < k) return -0x7ffffff; k--; for (int i = n; i >= 1; i--) { temp /= i; int t = k / temp + 1, j; k -= (t - 1) * temp; for (j = 1; j <= n; j++) { if (!v[j]) t--; if (!t) break; } v[j] = 1; if (inside(b + j) && inside(b + n - i + 1)) ret++; } return ret; } int main() { prepare(); cin >> n >> k; if (n <= 15) ans = deal(0, n); else { for (int i = 0; l[i] <= n - 15; i++) ans++; ans += deal(n - 15, 15); } if (ans < 0) puts("-1"); else cout << ans << endl; return 0; } ```
#include <bits/stdc++.h> using namespace std; void run(); int main() { ios::sync_with_stdio(0); run(); } long long fac[20] = {1}; bool lucky(long long i) { return i == 0 or ((i % 10 == 4) or (i % 10 == 7)) and lucky(i / 10); } void run() { long long n, m; cin >> n >> m; --m; for (long long i = 1; i < 20; i++) fac[i] = fac[i - 1] * i; if (n <= 16 and fac[n] <= m) { cout << "-1" << endl; return; } long long red = max(0ll, n - 14ll); long long offset = red + 1; long long res = 0; vector<long long> luck[20]; luck[0].push_back(0); --res; for (long long len = 1, p = 1; not luck[len - 1].empty(); ++len, p *= 10ll) { for (auto j : luck[len - 1]) { if (j + 4 * p <= red) luck[len].push_back(j + 4 * p); if (j + 7 * p <= red) luck[len].push_back(j + 7 * p); ++res; } } vector<long long> consider; for (long long i = offset; i <= n; i++) consider.push_back(i); while (not consider.empty()) { long long f = fac[consider.size() - 1]; long long i = m / f; m -= i * f; if (lucky(n - consider.size() + 1) and lucky(consider[i])) ++res; consider.erase(consider.begin() + i); } cout << res << endl; }
### Prompt Your task is to create a Cpp solution to the following problem: Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4. ### Response ```cpp #include <bits/stdc++.h> using namespace std; void run(); int main() { ios::sync_with_stdio(0); run(); } long long fac[20] = {1}; bool lucky(long long i) { return i == 0 or ((i % 10 == 4) or (i % 10 == 7)) and lucky(i / 10); } void run() { long long n, m; cin >> n >> m; --m; for (long long i = 1; i < 20; i++) fac[i] = fac[i - 1] * i; if (n <= 16 and fac[n] <= m) { cout << "-1" << endl; return; } long long red = max(0ll, n - 14ll); long long offset = red + 1; long long res = 0; vector<long long> luck[20]; luck[0].push_back(0); --res; for (long long len = 1, p = 1; not luck[len - 1].empty(); ++len, p *= 10ll) { for (auto j : luck[len - 1]) { if (j + 4 * p <= red) luck[len].push_back(j + 4 * p); if (j + 7 * p <= red) luck[len].push_back(j + 7 * p); ++res; } } vector<long long> consider; for (long long i = offset; i <= n; i++) consider.push_back(i); while (not consider.empty()) { long long f = fac[consider.size() - 1]; long long i = m / f; m -= i * f; if (lucky(n - consider.size() + 1) and lucky(consider[i])) ++res; consider.erase(consider.begin() + i); } cout << res << endl; } ```
#include <bits/stdc++.h> using namespace std; long long int fact[14]; int n, k; int cs, s; vector<int> v; vector<long long int> lnum; void Set() { fact[0] = 1; for (long long int i = 1; i < 14; i++) fact[i] = i * fact[i - 1]; } void create_lucky(int i) { for (int i = cs; i < s; i++) lnum.push_back(lnum[i] * 10 + 4), lnum.push_back(lnum[i] * 10 + 7); } bool lucky(int num) { while (num) { if (num % 10 != 4 && num % 10 != 7) return false; num /= 10; } return true; } int main() { lnum.push_back(4); lnum.push_back(7); cs = 0; s = 2; for (int i = 2; i <= 9; i++) { create_lucky(i); cs = s; s = lnum.size(); } lnum.push_back(4444444444); Set(); cin >> n >> k; if (n <= 13 && fact[n] < k) { cout << -1 << endl; return 0; } int dig = 1; for (int i = 1; fact[i] < k; i++) dig++; for (int i = n - dig + 1; i <= n; i++) { v.push_back(i); } int cp = n - dig, cs = v.size(), pi = 1, cnt = 0; while (1) { int cn = 0; while (k > cn * fact[cs - 1]) cn++; k = k - (cn - 1) * fact[cs - 1]; int cnum = v[cn - 1]; int pos = cp + pi; pi++; v.erase(v.begin() + cn - 1); if (lucky(pos) && lucky(cnum)) cnt++; if (k == 1) { for (int i = 0; i < cs; i++) if (lucky(pos + i + 1) && lucky(v[i])) cnt++; break; } cs--; } for (int i = 0; lnum[i] <= cp; i++) cnt++; cout << cnt << endl; return 0; }
### Prompt Your challenge is to write a Cpp solution to the following problem: Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4. ### Response ```cpp #include <bits/stdc++.h> using namespace std; long long int fact[14]; int n, k; int cs, s; vector<int> v; vector<long long int> lnum; void Set() { fact[0] = 1; for (long long int i = 1; i < 14; i++) fact[i] = i * fact[i - 1]; } void create_lucky(int i) { for (int i = cs; i < s; i++) lnum.push_back(lnum[i] * 10 + 4), lnum.push_back(lnum[i] * 10 + 7); } bool lucky(int num) { while (num) { if (num % 10 != 4 && num % 10 != 7) return false; num /= 10; } return true; } int main() { lnum.push_back(4); lnum.push_back(7); cs = 0; s = 2; for (int i = 2; i <= 9; i++) { create_lucky(i); cs = s; s = lnum.size(); } lnum.push_back(4444444444); Set(); cin >> n >> k; if (n <= 13 && fact[n] < k) { cout << -1 << endl; return 0; } int dig = 1; for (int i = 1; fact[i] < k; i++) dig++; for (int i = n - dig + 1; i <= n; i++) { v.push_back(i); } int cp = n - dig, cs = v.size(), pi = 1, cnt = 0; while (1) { int cn = 0; while (k > cn * fact[cs - 1]) cn++; k = k - (cn - 1) * fact[cs - 1]; int cnum = v[cn - 1]; int pos = cp + pi; pi++; v.erase(v.begin() + cn - 1); if (lucky(pos) && lucky(cnum)) cnt++; if (k == 1) { for (int i = 0; i < cs; i++) if (lucky(pos + i + 1) && lucky(v[i])) cnt++; break; } cs--; } for (int i = 0; lnum[i] <= cp; i++) cnt++; cout << cnt << endl; return 0; } ```
#include <bits/stdc++.h> using namespace std; const long long Fac[14] = {1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, 39916800, 479001600, 6227020800LL}; int Total, Data[5000]; bool Lucky(int T) { while (T) { if (T % 10 != 4 && T % 10 != 7) return false; T /= 10; } return true; } void Init() { Total = 0; for (int i = 1; i <= 9; i++) for (int j = 0; j < (1 << i); j++) { int S = 0; for (int k = 0; k < i; k++) S = S * 10 + ((j & (1 << k)) ? 4 : 7); Data[Total++] = S; } sort(Data, Data + Total); } int Count(int N) { if (Data[Total - 1] <= N) return Total; int P = 0; while (Data[P] <= N) P++; return P; } int Count1(int N, int K) { if (K >= Fac[N]) return -1; int Ans = 0, Kth[20], A[20]; for (int i = 1; i <= N; i++) Kth[i] = i; for (int i = 1; i <= N; i++) { A[i] = Kth[K / Fac[N - i] + 1]; K %= Fac[N - i]; if (Lucky(i) && Lucky(A[i])) Ans++; int P = 1; while (Kth[P] != A[i]) P++; for (int j = P; j <= N - i; j++) Kth[j] = Kth[j + 1]; } return Ans; } int Count2(int N, int K) { int Ans = Count(N), Kth[20], A[20]; for (int i = 1; i <= 13; i++) Kth[i] = N + i; for (int i = 1; i <= 13; i++) { A[i] = Kth[K / Fac[13 - i] + 1]; K %= Fac[13 - i]; if (Lucky(N + i) && Lucky(A[i])) Ans++; int P = 1; while (Kth[P] != A[i]) P++; for (int j = P; j <= 13 - i; j++) Kth[j] = Kth[j + 1]; } return Ans; } int main() { Init(); int N, K; cin >> N >> K; K--; cout << ((N <= 13) ? Count1(N, K) : Count2(N - 13, K)) << endl; return 0; }
### Prompt Develop a solution in CPP to the problem described below: Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4. ### Response ```cpp #include <bits/stdc++.h> using namespace std; const long long Fac[14] = {1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, 39916800, 479001600, 6227020800LL}; int Total, Data[5000]; bool Lucky(int T) { while (T) { if (T % 10 != 4 && T % 10 != 7) return false; T /= 10; } return true; } void Init() { Total = 0; for (int i = 1; i <= 9; i++) for (int j = 0; j < (1 << i); j++) { int S = 0; for (int k = 0; k < i; k++) S = S * 10 + ((j & (1 << k)) ? 4 : 7); Data[Total++] = S; } sort(Data, Data + Total); } int Count(int N) { if (Data[Total - 1] <= N) return Total; int P = 0; while (Data[P] <= N) P++; return P; } int Count1(int N, int K) { if (K >= Fac[N]) return -1; int Ans = 0, Kth[20], A[20]; for (int i = 1; i <= N; i++) Kth[i] = i; for (int i = 1; i <= N; i++) { A[i] = Kth[K / Fac[N - i] + 1]; K %= Fac[N - i]; if (Lucky(i) && Lucky(A[i])) Ans++; int P = 1; while (Kth[P] != A[i]) P++; for (int j = P; j <= N - i; j++) Kth[j] = Kth[j + 1]; } return Ans; } int Count2(int N, int K) { int Ans = Count(N), Kth[20], A[20]; for (int i = 1; i <= 13; i++) Kth[i] = N + i; for (int i = 1; i <= 13; i++) { A[i] = Kth[K / Fac[13 - i] + 1]; K %= Fac[13 - i]; if (Lucky(N + i) && Lucky(A[i])) Ans++; int P = 1; while (Kth[P] != A[i]) P++; for (int j = P; j <= 13 - i; j++) Kth[j] = Kth[j + 1]; } return Ans; } int main() { Init(); int N, K; cin >> N >> K; K--; cout << ((N <= 13) ? Count1(N, K) : Count2(N - 13, K)) << endl; return 0; } ```
#include <bits/stdc++.h> using namespace std; int n, k, len; long long base[20]; int num[20]; bool mark[20]; int solve(int x) { int ret = 0; for (int L = 1; L <= 9; L++) for (int i = 0; i < (1 << L); i++) { int k = 0; for (int j = 0; j < L; j++) k = k * 10 + ((i & (1 << j)) ? 4 : 7); if (k <= x) ret++; } return ret; } bool lucky(int x) { while (x) { if (x % 10 != 4 && x % 10 != 7) return false; x /= 10; } return true; } int main() { scanf("%d%d", &n, &k); int ans; if (k == 1) ans = solve(n); else { k--; len = 2; base[1] = base[2] = 1; while (base[len] <= k) base[++len] = base[len - 1] * (len - 1); len--; if (n < len) { printf("-1\n"); return 0; } ans = solve(n - len); for (int i = 0; i < len; i++) { int t = (k / base[len - i]) + 1; k %= base[len - i]; int j = 0; while (t--) { while (mark[j]) j++; if (t) j++; } mark[j] = true; num[i] = j; if (lucky(i + n - len + 1) && lucky(num[i] + n - len + 1)) ans++; } } printf("%d\n", ans); return 0; }
### Prompt Please create a solution in cpp to the following problem: Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4. ### Response ```cpp #include <bits/stdc++.h> using namespace std; int n, k, len; long long base[20]; int num[20]; bool mark[20]; int solve(int x) { int ret = 0; for (int L = 1; L <= 9; L++) for (int i = 0; i < (1 << L); i++) { int k = 0; for (int j = 0; j < L; j++) k = k * 10 + ((i & (1 << j)) ? 4 : 7); if (k <= x) ret++; } return ret; } bool lucky(int x) { while (x) { if (x % 10 != 4 && x % 10 != 7) return false; x /= 10; } return true; } int main() { scanf("%d%d", &n, &k); int ans; if (k == 1) ans = solve(n); else { k--; len = 2; base[1] = base[2] = 1; while (base[len] <= k) base[++len] = base[len - 1] * (len - 1); len--; if (n < len) { printf("-1\n"); return 0; } ans = solve(n - len); for (int i = 0; i < len; i++) { int t = (k / base[len - i]) + 1; k %= base[len - i]; int j = 0; while (t--) { while (mark[j]) j++; if (t) j++; } mark[j] = true; num[i] = j; if (lucky(i + n - len + 1) && lucky(num[i] + n - len + 1)) ans++; } } printf("%d\n", ans); return 0; } ```
#include <bits/stdc++.h> using namespace std; int getall(long long x, int n) { if (x > n) return 0; return 1 + getall(x * 10 + 4, n) + getall(x * 10 + 7, n); } bool is_good(int x) { if (!x) return 0; while (x) { if (x % 10 != 4 && x % 10 != 7) return 0; x /= 10; } return 1; } vector<int> kth(int n, int k) { vector<long long> f(n); f[0] = 1; for (auto i = 1; i < n; i++) f[i] = i * f[i - 1]; vector<int> perm(n), u(n, 0); for (auto i = 0; i < n; i++) { for (auto j = 0; j < n; j++) { if (u[j]) continue; long long add = f[n - 1 - i]; if (add < k) { k -= add; continue; } perm[i] = j; break; } u[perm[i]] = 1; } return perm; } signed main() { ios_base::sync_with_stdio(0); cin.tie(0); int n, k; cin >> n >> k; long long fac = 1; int cnt; for (auto i = 1; i < n + 1; i++) { fac *= i; cnt = i; if (fac >= k) break; } if (fac < k) { cout << -1; return 0; } int tot = getall(0, n) - 1; vector<int> perm = kth(cnt, k); for (auto i = 0; i < cnt; i++) { int pos = n - cnt + 1 + i, val = perm[i] + n - cnt + 1; if (is_good(val) && !is_good(pos)) --tot; } cout << tot; }
### Prompt Develop a solution in CPP to the problem described below: Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4. ### Response ```cpp #include <bits/stdc++.h> using namespace std; int getall(long long x, int n) { if (x > n) return 0; return 1 + getall(x * 10 + 4, n) + getall(x * 10 + 7, n); } bool is_good(int x) { if (!x) return 0; while (x) { if (x % 10 != 4 && x % 10 != 7) return 0; x /= 10; } return 1; } vector<int> kth(int n, int k) { vector<long long> f(n); f[0] = 1; for (auto i = 1; i < n; i++) f[i] = i * f[i - 1]; vector<int> perm(n), u(n, 0); for (auto i = 0; i < n; i++) { for (auto j = 0; j < n; j++) { if (u[j]) continue; long long add = f[n - 1 - i]; if (add < k) { k -= add; continue; } perm[i] = j; break; } u[perm[i]] = 1; } return perm; } signed main() { ios_base::sync_with_stdio(0); cin.tie(0); int n, k; cin >> n >> k; long long fac = 1; int cnt; for (auto i = 1; i < n + 1; i++) { fac *= i; cnt = i; if (fac >= k) break; } if (fac < k) { cout << -1; return 0; } int tot = getall(0, n) - 1; vector<int> perm = kth(cnt, k); for (auto i = 0; i < cnt; i++) { int pos = n - cnt + 1 + i, val = perm[i] + n - cnt + 1; if (is_good(val) && !is_good(pos)) --tot; } cout << tot; } ```
#include <bits/stdc++.h> using namespace std; int Lucky[1024], size; void dfs(int r, int val) { if (val) Lucky[size++] = val; if (r == 9) { return; } dfs(r + 1, val * 10 + 4); dfs(r + 1, val * 10 + 7); } bool isLucky(int x) { while (x) { if (x % 10 != 4 && x % 10 != 7) return false; x /= 10; } return true; } int sum[13]; int res(int x, int p) { if (x == 0) return p + 1; int t = x / sum[p]; if (t * sum[p] == x) return t; return t + 1; } void init() { size = 0; dfs(0, 0); sort(Lucky, Lucky + size); sum[0] = 1; sum[1] = 1; for (int i = 2; i <= 12; i++) sum[i] = sum[i - 1] * i; } vector<int>::iterator it; int main() { init(); int n, k, len, po, ans; while (scanf("%d%d", &n, &k) != EOF) { ans = 0; bool flag = true; for (len = 1; len <= 12; len++) { if (sum[len] >= k) break; } po = n - len; if (po < 0) { flag = false; printf("-1\n"); continue; } ans = upper_bound(Lucky, Lucky + size, po) - Lucky; vector<int> ind; for (int i = po + 1; i <= n; i++) { ind.push_back(i); } len--; for (int i = po + 1; i <= n; i++, len--) { int tmp = k / sum[len]; it = ind.begin() + res(k, len) - 1; k -= tmp * sum[len]; tmp = *it; if (isLucky(tmp) && isLucky(i)) ans++; ind.erase(it); } printf("%d\n", ans); } return 0; }
### Prompt Please create a solution in cpp to the following problem: Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4. ### Response ```cpp #include <bits/stdc++.h> using namespace std; int Lucky[1024], size; void dfs(int r, int val) { if (val) Lucky[size++] = val; if (r == 9) { return; } dfs(r + 1, val * 10 + 4); dfs(r + 1, val * 10 + 7); } bool isLucky(int x) { while (x) { if (x % 10 != 4 && x % 10 != 7) return false; x /= 10; } return true; } int sum[13]; int res(int x, int p) { if (x == 0) return p + 1; int t = x / sum[p]; if (t * sum[p] == x) return t; return t + 1; } void init() { size = 0; dfs(0, 0); sort(Lucky, Lucky + size); sum[0] = 1; sum[1] = 1; for (int i = 2; i <= 12; i++) sum[i] = sum[i - 1] * i; } vector<int>::iterator it; int main() { init(); int n, k, len, po, ans; while (scanf("%d%d", &n, &k) != EOF) { ans = 0; bool flag = true; for (len = 1; len <= 12; len++) { if (sum[len] >= k) break; } po = n - len; if (po < 0) { flag = false; printf("-1\n"); continue; } ans = upper_bound(Lucky, Lucky + size, po) - Lucky; vector<int> ind; for (int i = po + 1; i <= n; i++) { ind.push_back(i); } len--; for (int i = po + 1; i <= n; i++, len--) { int tmp = k / sum[len]; it = ind.begin() + res(k, len) - 1; k -= tmp * sum[len]; tmp = *it; if (isLucky(tmp) && isLucky(i)) ans++; ind.erase(it); } printf("%d\n", ans); } return 0; } ```
#include <bits/stdc++.h> using namespace std; const int INF = 1000000007; const int N = 100100; int a[N], cnt, n, k; long long F[111], sum; const int IDX[] = {4, 7}; void DP(int id) { if (sum > n) return; if (sum) a[++cnt] = sum; for (int i = 0; i < 2; i++) { sum = sum * 10 + IDX[i]; DP(i + 1); sum /= 10; } } int MAX, ans; bool OK[N]; int main() { cin >> n >> k; DP(1); sort(a + 1, a + cnt + 1); F[0] = 1; for (int i = 1; i <= 20; i++) F[i] = F[i - 1] * i; if (n <= 20 && k > F[n]) { cout << "-1"; return 0; } for (int i = 1; i <= 20; i++) if (F[i] >= k) { MAX = i; break; } memset(OK, true, sizeof(OK)); for (int i = 1; i <= MAX; i++) { int j = 1; for (j = 1; j <= MAX; j++) if (OK[j]) if (k > F[MAX - i]) k -= F[MAX - i]; else break; OK[j] = false; if (binary_search(a + 1, a + cnt + 1, n - MAX + i) && binary_search(a + 1, a + cnt + 1, n - MAX + j)) ans++; } for (int i = 1; i <= cnt; i++) if (a[i] <= n - MAX) ans++; else break; cout << ans; }
### Prompt Please provide a cpp coded solution to the problem described below: Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4. ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int INF = 1000000007; const int N = 100100; int a[N], cnt, n, k; long long F[111], sum; const int IDX[] = {4, 7}; void DP(int id) { if (sum > n) return; if (sum) a[++cnt] = sum; for (int i = 0; i < 2; i++) { sum = sum * 10 + IDX[i]; DP(i + 1); sum /= 10; } } int MAX, ans; bool OK[N]; int main() { cin >> n >> k; DP(1); sort(a + 1, a + cnt + 1); F[0] = 1; for (int i = 1; i <= 20; i++) F[i] = F[i - 1] * i; if (n <= 20 && k > F[n]) { cout << "-1"; return 0; } for (int i = 1; i <= 20; i++) if (F[i] >= k) { MAX = i; break; } memset(OK, true, sizeof(OK)); for (int i = 1; i <= MAX; i++) { int j = 1; for (j = 1; j <= MAX; j++) if (OK[j]) if (k > F[MAX - i]) k -= F[MAX - i]; else break; OK[j] = false; if (binary_search(a + 1, a + cnt + 1, n - MAX + i) && binary_search(a + 1, a + cnt + 1, n - MAX + j)) ans++; } for (int i = 1; i <= cnt; i++) if (a[i] <= n - MAX) ans++; else break; cout << ans; } ```
#include <bits/stdc++.h> using namespace std; long long int mul[1000]; int i, j, n, m, t, tt, k; void prepare() { mul[0] = 1; i = 0; while (mul[i] < 2000000000) { mul[i + 1] = (i + 1) * mul[i]; i++; } tt = i; } void kper(int p[1000], int n, long long int k) { bool checked[1000]; memset(checked, 0, sizeof(checked)); int i, j; for (i = 1; i <= n; i++) { j = 1; while (1) { while (checked[j]) j++; if (mul[n - i] >= k) { break; } k -= mul[n - i]; j++; } checked[j] = 1; p[i] = j; } } long long int p[20000]; void prepare2() { p[1] = 4; p[2] = 7; ; t = 2; j = 1; int r; for (i = 1; i <= 10; i++) { r = t; while (j <= r) { p[++t] = p[j] * 10 + 4; p[++t] = p[j] * 10 + 7; j++; } } sort(&p[1], &p[1 + t]); } bool lucky(long long int a) { while (a) { if (a % 10 != 4 && a % 10 != 7) return 0; a /= 10; } return 1; } int q[1000], qq[1000], qqq[1000]; int main() { prepare(); prepare2(); scanf("%d %d", &n, &k); if (n <= tt && mul[n] < k) { printf("-1\n"); return 0; } i = 1; while (mul[i] < k) i++; j = n - i; if (j < 1) j = 1; int a, b, c, ans = 0; a = 1; while (p[a] <= j) { ans++; a++; } kper(q, i, k); for (j = n; j > n - i; j--) { qq[j - (n - i)] = j; } for (j = 1; j <= i; j++) { qqq[j] = qq[q[j]]; } for (j = 1; j <= i; j++) { if (lucky(qqq[j]) && lucky(j + (n - i))) { ans++; } } printf("%d\n", ans); return 0; }
### Prompt Your task is to create a Cpp solution to the following problem: Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4. ### Response ```cpp #include <bits/stdc++.h> using namespace std; long long int mul[1000]; int i, j, n, m, t, tt, k; void prepare() { mul[0] = 1; i = 0; while (mul[i] < 2000000000) { mul[i + 1] = (i + 1) * mul[i]; i++; } tt = i; } void kper(int p[1000], int n, long long int k) { bool checked[1000]; memset(checked, 0, sizeof(checked)); int i, j; for (i = 1; i <= n; i++) { j = 1; while (1) { while (checked[j]) j++; if (mul[n - i] >= k) { break; } k -= mul[n - i]; j++; } checked[j] = 1; p[i] = j; } } long long int p[20000]; void prepare2() { p[1] = 4; p[2] = 7; ; t = 2; j = 1; int r; for (i = 1; i <= 10; i++) { r = t; while (j <= r) { p[++t] = p[j] * 10 + 4; p[++t] = p[j] * 10 + 7; j++; } } sort(&p[1], &p[1 + t]); } bool lucky(long long int a) { while (a) { if (a % 10 != 4 && a % 10 != 7) return 0; a /= 10; } return 1; } int q[1000], qq[1000], qqq[1000]; int main() { prepare(); prepare2(); scanf("%d %d", &n, &k); if (n <= tt && mul[n] < k) { printf("-1\n"); return 0; } i = 1; while (mul[i] < k) i++; j = n - i; if (j < 1) j = 1; int a, b, c, ans = 0; a = 1; while (p[a] <= j) { ans++; a++; } kper(q, i, k); for (j = n; j > n - i; j--) { qq[j - (n - i)] = j; } for (j = 1; j <= i; j++) { qqq[j] = qq[q[j]]; } for (j = 1; j <= i; j++) { if (lucky(qqq[j]) && lucky(j + (n - i))) { ans++; } } printf("%d\n", ans); return 0; } ```
#include <bits/stdc++.h> using namespace std; const long long nmax = 100; vector<long long> lucky; long long s_3(long long i) { string s = ""; long long x = i; while (x) { s += char(x % 3); x /= 3; } x = 0; long long k = 1; for (int j = 0; j < s.size(); j++) x += k * (long long)s[j], k *= 10; return x; } void zap(int n) { for (int i = 0; i <= n; i++) lucky.push_back(s_3(i)); } bool islucky(long long x) { for (; x; x /= 10) if (x % 10 != 4 && x % 10 != 7) return false; return true; } void prepare() { for (int i = 1; i <= 9; ++i) { for (int j = 0; j < (1 << i); ++j) { int x = 0; for (int t = i - 1; t >= 0; --t) { x = x * 10 + ((j >> t) & 1 ? 7 : 4); } lucky.push_back(x); } } } int main() { prepare(); long long n, m; cin >> n >> m; long long l = 0, s = 1; while (s < m) s *= ++l; if (n < l) { cout << -1 << '\n'; return 0; } vector<long long> a; long long ans = upper_bound(lucky.begin(), lucky.end(), n - l) - lucky.begin(); for (int i = 1; i <= l; i++) a.push_back(n - l + i); for (int i = 1; i <= l; i++) { s /= l + 1 - i; long long x = (m - 1) / s; if (islucky(n - l + i) && islucky(a[x])) ans++; a.erase(a.begin() + x); m -= x * s; } cout << ans << endl; }
### Prompt Construct a Cpp code solution to the problem outlined: Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4. ### Response ```cpp #include <bits/stdc++.h> using namespace std; const long long nmax = 100; vector<long long> lucky; long long s_3(long long i) { string s = ""; long long x = i; while (x) { s += char(x % 3); x /= 3; } x = 0; long long k = 1; for (int j = 0; j < s.size(); j++) x += k * (long long)s[j], k *= 10; return x; } void zap(int n) { for (int i = 0; i <= n; i++) lucky.push_back(s_3(i)); } bool islucky(long long x) { for (; x; x /= 10) if (x % 10 != 4 && x % 10 != 7) return false; return true; } void prepare() { for (int i = 1; i <= 9; ++i) { for (int j = 0; j < (1 << i); ++j) { int x = 0; for (int t = i - 1; t >= 0; --t) { x = x * 10 + ((j >> t) & 1 ? 7 : 4); } lucky.push_back(x); } } } int main() { prepare(); long long n, m; cin >> n >> m; long long l = 0, s = 1; while (s < m) s *= ++l; if (n < l) { cout << -1 << '\n'; return 0; } vector<long long> a; long long ans = upper_bound(lucky.begin(), lucky.end(), n - l) - lucky.begin(); for (int i = 1; i <= l; i++) a.push_back(n - l + i); for (int i = 1; i <= l; i++) { s /= l + 1 - i; long long x = (m - 1) / s; if (islucky(n - l + i) && islucky(a[x])) ans++; a.erase(a.begin() + x); m -= x * s; } cout << ans << endl; } ```
#include <bits/stdc++.h> using namespace std; int per[20]; int fac[] = {1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, 39916800, 479001600}; bool used[20]; int KT(int *s, int n) { int sum = 0; for (int i = 0; i < n; ++i) { int cnt = 0; for (int j = i + 1; j < n; ++j) if (s[j] < s[i]) ++cnt; sum += cnt * fac[n - i - 1]; } return sum; } void invKT(int *s, int k, int n) { k--; for (int i = 0; i < n; ++i) { int cnt = k / fac[n - i - 1]; for (int j = 0; j <= cnt; ++j) { if (used[j]) ++cnt; } per[i] = cnt + 1; used[cnt] = true; k %= fac[n - i - 1]; } } vector<long long> lucky; void dfs(string u) { if (u.size() > 9) return; if (u.size()) lucky.push_back(atoi(u.c_str())); dfs(u + "4"); dfs(u + "7"); } void init() { dfs(""); lucky.push_back(4444444444LL); sort(lucky.begin(), lucky.end()); } int n, k; int main() { init(); while (cin >> n >> k) { if (n < 13 && k > fac[n]) { cout << "-1\n"; continue; } int change = 13; for (int i = 1; i < 13; ++i) if (k < fac[i]) { change = i; break; } invKT(per, k, change); int lef = n - change; int ans = 0; for (int i = 0; i < lucky.size(); ++i) { if (lucky[i] > n) { break; } if (lucky[i] <= lef) ans++; else { int num = per[lucky[i] - lef - 1] + lef; for (int j = 0; j < lucky.size() && lucky[j] <= n; j++) { if (num == lucky[j]) ans++; } } } cout << ans << '\n'; } return 0; }
### Prompt Construct a CPP code solution to the problem outlined: Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4. ### Response ```cpp #include <bits/stdc++.h> using namespace std; int per[20]; int fac[] = {1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, 39916800, 479001600}; bool used[20]; int KT(int *s, int n) { int sum = 0; for (int i = 0; i < n; ++i) { int cnt = 0; for (int j = i + 1; j < n; ++j) if (s[j] < s[i]) ++cnt; sum += cnt * fac[n - i - 1]; } return sum; } void invKT(int *s, int k, int n) { k--; for (int i = 0; i < n; ++i) { int cnt = k / fac[n - i - 1]; for (int j = 0; j <= cnt; ++j) { if (used[j]) ++cnt; } per[i] = cnt + 1; used[cnt] = true; k %= fac[n - i - 1]; } } vector<long long> lucky; void dfs(string u) { if (u.size() > 9) return; if (u.size()) lucky.push_back(atoi(u.c_str())); dfs(u + "4"); dfs(u + "7"); } void init() { dfs(""); lucky.push_back(4444444444LL); sort(lucky.begin(), lucky.end()); } int n, k; int main() { init(); while (cin >> n >> k) { if (n < 13 && k > fac[n]) { cout << "-1\n"; continue; } int change = 13; for (int i = 1; i < 13; ++i) if (k < fac[i]) { change = i; break; } invKT(per, k, change); int lef = n - change; int ans = 0; for (int i = 0; i < lucky.size(); ++i) { if (lucky[i] > n) { break; } if (lucky[i] <= lef) ans++; else { int num = per[lucky[i] - lef - 1] + lef; for (int j = 0; j < lucky.size() && lucky[j] <= n; j++) { if (num == lucky[j]) ans++; } } } cout << ans << '\n'; } return 0; } ```
#include <bits/stdc++.h> using namespace std; const int N = 20; const int K = 16; long long f[N]; vector<long long> get_per(long long n, long long k) { f[0] = 1; for (int i = 1; N > i; i++) { f[i] = f[i - 1] * i; } vector<long long> ret; ret.resize(n); set<int> st; for (int i = 1; n >= i; i++) { st.insert(i); } for (int i = 0; n > i; i++) { int times = 0; auto now = st.begin(); while (f[n - i - 1] < k) { k -= f[n - i - 1]; now++; } ret[i] = (*now); st.erase(now); } return ret; } int main() { vector<long long> v; for (int sz = 1; 9 >= sz; sz++) { for (int i = 0; (1 << sz) > i; i++) { long long now = 0; for (int j = 0; sz > j; j++) { if (((1 << j) & i) != 0) { now *= 10; now += 4; } else { now *= 10; now += 7; } } v.push_back(now); } } v.push_back(4444444444LL); sort(v.begin(), v.end()); int n, k; cin >> n >> k; f[0] = 1; for (int i = 1; N > i; i++) f[i] = f[i - 1] * i; if (n <= K && f[n] < k) { puts("-1"); return 0; } if (n <= K) { vector<long long> ret = get_per(n, k); long long ans = 0; for (int i = 0; n > i; i++) { if (i + 1 == 4 || i + 1 == 7) { if (ret[i] == 4 || ret[i] == 7) { ans++; } } } cout << ans << endl; return 0; } long long tmp = n - K; long long now = n - K; auto iter = lower_bound(v.begin(), v.end(), tmp); if ((*iter) != now) --iter; long long ans = iter - v.begin() + 1; set<long long> lucky; for (long long i : v) lucky.insert(i); vector<long long> ret = get_per(K, k); for (int i = 0; K > i; i++) { int pos = i + now + 1; if (lucky.find(pos) != lucky.end()) { long long val = ret[i] + now; if (lucky.find(val) != lucky.end()) ans++; } } cout << ans << endl; }
### Prompt Please create a solution in CPP to the following problem: Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4. ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int N = 20; const int K = 16; long long f[N]; vector<long long> get_per(long long n, long long k) { f[0] = 1; for (int i = 1; N > i; i++) { f[i] = f[i - 1] * i; } vector<long long> ret; ret.resize(n); set<int> st; for (int i = 1; n >= i; i++) { st.insert(i); } for (int i = 0; n > i; i++) { int times = 0; auto now = st.begin(); while (f[n - i - 1] < k) { k -= f[n - i - 1]; now++; } ret[i] = (*now); st.erase(now); } return ret; } int main() { vector<long long> v; for (int sz = 1; 9 >= sz; sz++) { for (int i = 0; (1 << sz) > i; i++) { long long now = 0; for (int j = 0; sz > j; j++) { if (((1 << j) & i) != 0) { now *= 10; now += 4; } else { now *= 10; now += 7; } } v.push_back(now); } } v.push_back(4444444444LL); sort(v.begin(), v.end()); int n, k; cin >> n >> k; f[0] = 1; for (int i = 1; N > i; i++) f[i] = f[i - 1] * i; if (n <= K && f[n] < k) { puts("-1"); return 0; } if (n <= K) { vector<long long> ret = get_per(n, k); long long ans = 0; for (int i = 0; n > i; i++) { if (i + 1 == 4 || i + 1 == 7) { if (ret[i] == 4 || ret[i] == 7) { ans++; } } } cout << ans << endl; return 0; } long long tmp = n - K; long long now = n - K; auto iter = lower_bound(v.begin(), v.end(), tmp); if ((*iter) != now) --iter; long long ans = iter - v.begin() + 1; set<long long> lucky; for (long long i : v) lucky.insert(i); vector<long long> ret = get_per(K, k); for (int i = 0; K > i; i++) { int pos = i + now + 1; if (lucky.find(pos) != lucky.end()) { long long val = ret[i] + now; if (lucky.find(val) != lucky.end()) ans++; } } cout << ans << endl; } ```
#include <bits/stdc++.h> using namespace std; long long f[20]; vector<long long> lu; void go(int x, int y, long long p) { if (x == y) return; lu.push_back(p * 10 + 4); lu.push_back(p * 10 + 7); go(x, y + 1, p * 10 + 4); go(x, y + 1, p * 10 + 7); } bool ok(long long x) { if (!x) return 0; while (x) { if (!(x % 10 == 4 || x % 10 == 7)) return 0; x /= 10; } return 1; } void radix(long long k, vector<long long> &num) { k--; int len = num.size(); int aw, get; for (get = 1, aw = len - 1; get < len; get++, aw--) if (f[get] > k) break; get--; while (k) { long long a = k / f[get]; k = k % f[get]; swap(num[aw], num[aw + a]); sort(num.begin() + aw + 1, num.end()); aw++; get--; } } int main() { go(13, 0, 0); sort(lu.begin(), lu.end()); int p = lu.size(); f[0] = 1; for (long long i = 1; i < 15; i++) f[i] = f[i - 1] * i; long long n, k; vector<long long> num; while (cin >> n >> k) { long long ans = 0; if (n > 13) { for (long long i = 12; i >= 0; i--) num.push_back(n - i); for (int i = 0; i < p; i++) { if (lu[i] <= n - 13) ans++; } radix(k, num); for (long long i = 12, j = 0; i >= 0; i--, j++) { if (ok(num[j]) && ok(n - i)) ans++; } } else if (f[n] >= k) { for (int i = 0; i < n; i++) num.push_back(i + 1); radix(k, num); for (int i = 0; i < n; i++) { if (ok(num[i]) && (ok(i + 1))) ans++; } } if (n <= 13) if (f[n] < k) ans = -1; cout << ans << endl; } return 0; }
### Prompt Your challenge is to write a cpp solution to the following problem: Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4. ### Response ```cpp #include <bits/stdc++.h> using namespace std; long long f[20]; vector<long long> lu; void go(int x, int y, long long p) { if (x == y) return; lu.push_back(p * 10 + 4); lu.push_back(p * 10 + 7); go(x, y + 1, p * 10 + 4); go(x, y + 1, p * 10 + 7); } bool ok(long long x) { if (!x) return 0; while (x) { if (!(x % 10 == 4 || x % 10 == 7)) return 0; x /= 10; } return 1; } void radix(long long k, vector<long long> &num) { k--; int len = num.size(); int aw, get; for (get = 1, aw = len - 1; get < len; get++, aw--) if (f[get] > k) break; get--; while (k) { long long a = k / f[get]; k = k % f[get]; swap(num[aw], num[aw + a]); sort(num.begin() + aw + 1, num.end()); aw++; get--; } } int main() { go(13, 0, 0); sort(lu.begin(), lu.end()); int p = lu.size(); f[0] = 1; for (long long i = 1; i < 15; i++) f[i] = f[i - 1] * i; long long n, k; vector<long long> num; while (cin >> n >> k) { long long ans = 0; if (n > 13) { for (long long i = 12; i >= 0; i--) num.push_back(n - i); for (int i = 0; i < p; i++) { if (lu[i] <= n - 13) ans++; } radix(k, num); for (long long i = 12, j = 0; i >= 0; i--, j++) { if (ok(num[j]) && ok(n - i)) ans++; } } else if (f[n] >= k) { for (int i = 0; i < n; i++) num.push_back(i + 1); radix(k, num); for (int i = 0; i < n; i++) { if (ok(num[i]) && (ok(i + 1))) ans++; } } if (n <= 13) if (f[n] < k) ans = -1; cout << ans << endl; } return 0; } ```
#include <bits/stdc++.h> using namespace std; int permutation[100]; long long fact[100]; void writeFact(int n) { fact[0] = 1; for (int i = 1; i <= n; i++) fact[i] = fact[i - 1] * i; } void kthPermutation(int n, int i) { i--; int j, k = 0; for (k = 0; k < n; ++k) { permutation[k] = i / fact[n - 1 - k]; i = i % fact[n - 1 - k]; } for (k = n - 1; k > 0; k--) for (j = k - 1; j >= 0; j--) if (permutation[j] <= permutation[k]) permutation[k]++; for (i = 0; i < n; i++) permutation[i]++; } long long lucky[100000]; void findLucky(int n) { lucky[0] = 4; lucky[1] = 7; int i = 0, now = 2; while (lucky[i] < n) { lucky[now] = lucky[i] * 10 + 4; now++; lucky[now] = lucky[i] * 10 + 7; now++; i++; } } int aksFact(int k) { int i = 0; while (k > fact[i]) i++; return i; } int sumLucky(int n) { int i = 0; while (lucky[i] <= n) i++; return i; } bool isLucky(int n, int m) { while (n > 0) { if (n % 10 != 4 && n % 10 != 7) return false; n /= 10; } while (m > 0) { if (m % 10 != 4 && m % 10 != 7) return false; m /= 10; } return true; } int main() { writeFact(15); int n, k; cin >> n >> k; if (n < 14 && k > fact[n]) { cout << -1 << endl; return 0; } findLucky(n + 100); int a = aksFact(k); int ans = sumLucky(n - a); kthPermutation(a, k); for (int i = 0; i < a; i++) { permutation[i] += n - a; ans += isLucky(permutation[i], n - a + i + 1); } cout << ans << endl; return 0; }
### Prompt Your task is to create a Cpp solution to the following problem: Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4. ### Response ```cpp #include <bits/stdc++.h> using namespace std; int permutation[100]; long long fact[100]; void writeFact(int n) { fact[0] = 1; for (int i = 1; i <= n; i++) fact[i] = fact[i - 1] * i; } void kthPermutation(int n, int i) { i--; int j, k = 0; for (k = 0; k < n; ++k) { permutation[k] = i / fact[n - 1 - k]; i = i % fact[n - 1 - k]; } for (k = n - 1; k > 0; k--) for (j = k - 1; j >= 0; j--) if (permutation[j] <= permutation[k]) permutation[k]++; for (i = 0; i < n; i++) permutation[i]++; } long long lucky[100000]; void findLucky(int n) { lucky[0] = 4; lucky[1] = 7; int i = 0, now = 2; while (lucky[i] < n) { lucky[now] = lucky[i] * 10 + 4; now++; lucky[now] = lucky[i] * 10 + 7; now++; i++; } } int aksFact(int k) { int i = 0; while (k > fact[i]) i++; return i; } int sumLucky(int n) { int i = 0; while (lucky[i] <= n) i++; return i; } bool isLucky(int n, int m) { while (n > 0) { if (n % 10 != 4 && n % 10 != 7) return false; n /= 10; } while (m > 0) { if (m % 10 != 4 && m % 10 != 7) return false; m /= 10; } return true; } int main() { writeFact(15); int n, k; cin >> n >> k; if (n < 14 && k > fact[n]) { cout << -1 << endl; return 0; } findLucky(n + 100); int a = aksFact(k); int ans = sumLucky(n - a); kthPermutation(a, k); for (int i = 0; i < a; i++) { permutation[i] += n - a; ans += isLucky(permutation[i], n - a + i + 1); } cout << ans << endl; return 0; } ```
#include <bits/stdc++.h> const int N = 100010; const int inf = 0x3f3f3f3f; using namespace std; long long dp[N]; int used[21]; bool vis[21]; void dfs(int n, long long k, int cnt) { if (n == 0) return; int id = 1; for (int i = 1; i < n; i++) if (k > dp[n - 1]) k -= dp[n - 1], id = i + 1; else break; for (int i = 1, j = 0; i < 20; i++) { if (vis[i]) continue; j++; if (j == id) vis[i] = 1, used[cnt] = i; if (j == id) break; } dfs(n - 1, k, cnt + 1); } int main() { long long n, k; cin >> n >> k; vector<long long> vt; set<long long> st; for (int k = 1; k < 11; k++) { for (long long i = 0; i < 1ll << k; i++) { long long cnt = 0; for (int j = 0; j < k; j++) if (i & (1ll << j)) cnt = cnt * 10 + 7; else cnt = cnt * 10 + 4; vt.push_back(cnt); st.insert(cnt); } } sort(vt.begin(), vt.end()); dp[0] = 1; for (int i = 1; i < 20; i++) dp[i] = i * dp[i - 1]; if (n <= 19 && dp[n] < k) { puts("-1"); return 0; } dfs(min(n, 19ll), k, 1); long long ret = 0; if (n <= 19) { ret = 0; if (used[4] == 4 || used[4] == 7) ret++; if (used[7] == 7 || used[7] == 4) ret++; } else { ret = vt.size() - (vt.end() - upper_bound(vt.begin(), vt.end(), n - 19)); for (int i = 1; i <= 19; i++) if (st.count(used[i] + n - 19) && st.count(n - 19 + i)) ret++; } cout << ret << endl; return 0; }
### Prompt Your task is to create a CPP solution to the following problem: Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4. ### Response ```cpp #include <bits/stdc++.h> const int N = 100010; const int inf = 0x3f3f3f3f; using namespace std; long long dp[N]; int used[21]; bool vis[21]; void dfs(int n, long long k, int cnt) { if (n == 0) return; int id = 1; for (int i = 1; i < n; i++) if (k > dp[n - 1]) k -= dp[n - 1], id = i + 1; else break; for (int i = 1, j = 0; i < 20; i++) { if (vis[i]) continue; j++; if (j == id) vis[i] = 1, used[cnt] = i; if (j == id) break; } dfs(n - 1, k, cnt + 1); } int main() { long long n, k; cin >> n >> k; vector<long long> vt; set<long long> st; for (int k = 1; k < 11; k++) { for (long long i = 0; i < 1ll << k; i++) { long long cnt = 0; for (int j = 0; j < k; j++) if (i & (1ll << j)) cnt = cnt * 10 + 7; else cnt = cnt * 10 + 4; vt.push_back(cnt); st.insert(cnt); } } sort(vt.begin(), vt.end()); dp[0] = 1; for (int i = 1; i < 20; i++) dp[i] = i * dp[i - 1]; if (n <= 19 && dp[n] < k) { puts("-1"); return 0; } dfs(min(n, 19ll), k, 1); long long ret = 0; if (n <= 19) { ret = 0; if (used[4] == 4 || used[4] == 7) ret++; if (used[7] == 7 || used[7] == 4) ret++; } else { ret = vt.size() - (vt.end() - upper_bound(vt.begin(), vt.end(), n - 19)); for (int i = 1; i <= 19; i++) if (st.count(used[i] + n - 19) && st.count(n - 19 + i)) ret++; } cout << ret << endl; return 0; } ```
#include <bits/stdc++.h> using namespace std; int islucky(long long int a) { long long int temp = a; if (temp == 0) return 0; while (temp != 0) { if (temp % 10 != 4 && temp % 10 != 7) return 0; temp /= 10; } return 1; } int main() { long long int v[10010]; memset(v, 0, sizeof(v)); v[0] = 4; v[1] = 7; for (int end = 2, cnt = 0; end <= 1500; cnt++) { v[end++] = v[cnt] * 10 + 4; v[end++] = v[cnt] * 10 + 7; } long long int facto[15]; long long int n, k; facto[0] = 1; for (int i = 1; i < 15; i++) facto[i] = facto[i - 1] * i; cin >> n >> k; k -= 1; long long int to_be_changed = 0; if (n <= 15) if (k >= facto[n]) { cout << -1 << endl; return 0; } for (to_be_changed = 1; to_be_changed <= 15; to_be_changed++) if (facto[to_be_changed] > k) break; long long int a[100]; for (int l = 0; l < to_be_changed; l++) { a[l] = n - to_be_changed + l + 1; } long long int sum = 0; for (int i = 0; i <= 1500; i++) { if (v[i] >= (n - to_be_changed + 1)) break; sum += 1; } long long int size = to_be_changed; long long int perm_no = k; long long int r = perm_no; long long int m = 0; long long int position = 0; sort(a, a + size); while (position <= size - 1) { m = r / facto[size - 1 - position]; r = r % facto[size - 1 - position]; long long int t = *(a + position + m); *(a + position + m) = *(a + position); *(a + position) = t; sort(a + position + 1, a + size); position++; if (r == 0) break; } for (int i = 0; i < to_be_changed; i++) { sum += (islucky(a[i]) && islucky(n - size + i + 1)); } cout << sum << endl; return 0; }
### Prompt Please provide a Cpp coded solution to the problem described below: Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4. ### Response ```cpp #include <bits/stdc++.h> using namespace std; int islucky(long long int a) { long long int temp = a; if (temp == 0) return 0; while (temp != 0) { if (temp % 10 != 4 && temp % 10 != 7) return 0; temp /= 10; } return 1; } int main() { long long int v[10010]; memset(v, 0, sizeof(v)); v[0] = 4; v[1] = 7; for (int end = 2, cnt = 0; end <= 1500; cnt++) { v[end++] = v[cnt] * 10 + 4; v[end++] = v[cnt] * 10 + 7; } long long int facto[15]; long long int n, k; facto[0] = 1; for (int i = 1; i < 15; i++) facto[i] = facto[i - 1] * i; cin >> n >> k; k -= 1; long long int to_be_changed = 0; if (n <= 15) if (k >= facto[n]) { cout << -1 << endl; return 0; } for (to_be_changed = 1; to_be_changed <= 15; to_be_changed++) if (facto[to_be_changed] > k) break; long long int a[100]; for (int l = 0; l < to_be_changed; l++) { a[l] = n - to_be_changed + l + 1; } long long int sum = 0; for (int i = 0; i <= 1500; i++) { if (v[i] >= (n - to_be_changed + 1)) break; sum += 1; } long long int size = to_be_changed; long long int perm_no = k; long long int r = perm_no; long long int m = 0; long long int position = 0; sort(a, a + size); while (position <= size - 1) { m = r / facto[size - 1 - position]; r = r % facto[size - 1 - position]; long long int t = *(a + position + m); *(a + position + m) = *(a + position); *(a + position) = t; sort(a + position + 1, a + size); position++; if (r == 0) break; } for (int i = 0; i < to_be_changed; i++) { sum += (islucky(a[i]) && islucky(n - size + i + 1)); } cout << sum << endl; return 0; } ```
#include <bits/stdc++.h> using namespace std; static const int INF = 500000000; template <class T> void debug(T a, T b) { for (; a != b; ++a) cerr << *a << ' '; cerr << endl; } long long int luck[100005]; int cnt = 0; long long int n, k; long long int fact[20]; int used[20]; bool isLucky(long long int a) { int res = 1; while (a > 0) { if (a % 10 != 4 && a % 10 != 7) res = 0; a /= 10; } return res; } int main() { fact[0] = 1; for (int i = 0; i < 19; ++i) fact[i + 1] = fact[i] * (i + 1); for (int i = 1; i <= 10; ++i) { for (int j = 0; j < 1 << i; ++j) { long long int num = 0; for (int k = 0; k < i; ++k) num = num * 10 + (j >> k & 1 ? 7 : 4); --num; luck[cnt++] = num; } } sort(luck, luck + cnt); cin >> n >> k; --k; int res = 0; int end = n - 1 - 13; vector<int> srch; for (int i = 0; i < cnt; ++i) { if (luck[i] <= end) { ++res; } else if (luck[i] >= n) break; else { srch.push_back(luck[i]); } } vector<long long int> perm; int size = min(13ll, n); for (int i = 0; i < size; ++i) { int seek = 0; while (seek < size && used[seek]) ++seek; while (k >= fact[size - 1 - i]) { k -= fact[size - 1 - i]; ++seek; while (seek < size && used[seek]) ++seek; if (seek == size) { puts("-1"); return 0; } } used[seek] = 1; perm.push_back(seek); } if (end < 0) { for (int i = 0; i < srch.size(); ++i) if (isLucky(perm[srch[i]] + 1)) ++res; } else { for (int i = 0; i < srch.size(); ++i) { if (isLucky(perm[srch[i] - end - 1] + 1 + end + 1)) ++res; } } cout << res << endl; return 0; }
### Prompt Construct a CPP code solution to the problem outlined: Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4. ### Response ```cpp #include <bits/stdc++.h> using namespace std; static const int INF = 500000000; template <class T> void debug(T a, T b) { for (; a != b; ++a) cerr << *a << ' '; cerr << endl; } long long int luck[100005]; int cnt = 0; long long int n, k; long long int fact[20]; int used[20]; bool isLucky(long long int a) { int res = 1; while (a > 0) { if (a % 10 != 4 && a % 10 != 7) res = 0; a /= 10; } return res; } int main() { fact[0] = 1; for (int i = 0; i < 19; ++i) fact[i + 1] = fact[i] * (i + 1); for (int i = 1; i <= 10; ++i) { for (int j = 0; j < 1 << i; ++j) { long long int num = 0; for (int k = 0; k < i; ++k) num = num * 10 + (j >> k & 1 ? 7 : 4); --num; luck[cnt++] = num; } } sort(luck, luck + cnt); cin >> n >> k; --k; int res = 0; int end = n - 1 - 13; vector<int> srch; for (int i = 0; i < cnt; ++i) { if (luck[i] <= end) { ++res; } else if (luck[i] >= n) break; else { srch.push_back(luck[i]); } } vector<long long int> perm; int size = min(13ll, n); for (int i = 0; i < size; ++i) { int seek = 0; while (seek < size && used[seek]) ++seek; while (k >= fact[size - 1 - i]) { k -= fact[size - 1 - i]; ++seek; while (seek < size && used[seek]) ++seek; if (seek == size) { puts("-1"); return 0; } } used[seek] = 1; perm.push_back(seek); } if (end < 0) { for (int i = 0; i < srch.size(); ++i) if (isLucky(perm[srch[i]] + 1)) ++res; } else { for (int i = 0; i < srch.size(); ++i) { if (isLucky(perm[srch[i] - end - 1] + 1 + end + 1)) ++res; } } cout << res << endl; return 0; } ```
#include <bits/stdc++.h> using namespace std; vector<int> v; int main() { for (int i = 0; i < (1 << 9); i++) { int k = i, n = 0, j = 0; while (k > 0) { if (k % 2 == 1) n = (n * 10) + 7; else n = (n * 10) + 4; k /= 2; j++; } if (n != 0) v.push_back(n); for (; j < 9; j++) { n = (n * 10) + 4; v.push_back(n); } } sort(v.begin(), v.end()); long long p = 1LL; int n, i, j; long long k; scanf("%d %lld", &n, &k); for (i = 1; i <= n; i++) { p = p * (long long)i; if (p >= k) break; } if (i == n + 1) { cout << "-1"; return 0; } p = p / i; vector<int> second; j = i; for (i = n - i + 1; i <= n; i++) second.push_back(i); int ans = 0; int y = j; for (i = n - j + 1; i <= n; i++) { int m = k / p; if (k % p != 0) m++; m--; int first = 0, t; for (t = 0; t < v.size(); t++) if (v[t] == i) first++; for (t = 0; t < v.size(); t++) if (v[t] == second[m]) first++; if (first == 2) ans++; second.erase(second.begin() + m); if (k % p == 0) k = p; else k = k % p; j--; if (i != n) p = p / j; } ans = ans + upper_bound(v.begin(), v.end(), n - y) - v.begin(); cout << ans; return 0; }
### Prompt Please create a solution in cpp to the following problem: Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4. ### Response ```cpp #include <bits/stdc++.h> using namespace std; vector<int> v; int main() { for (int i = 0; i < (1 << 9); i++) { int k = i, n = 0, j = 0; while (k > 0) { if (k % 2 == 1) n = (n * 10) + 7; else n = (n * 10) + 4; k /= 2; j++; } if (n != 0) v.push_back(n); for (; j < 9; j++) { n = (n * 10) + 4; v.push_back(n); } } sort(v.begin(), v.end()); long long p = 1LL; int n, i, j; long long k; scanf("%d %lld", &n, &k); for (i = 1; i <= n; i++) { p = p * (long long)i; if (p >= k) break; } if (i == n + 1) { cout << "-1"; return 0; } p = p / i; vector<int> second; j = i; for (i = n - i + 1; i <= n; i++) second.push_back(i); int ans = 0; int y = j; for (i = n - j + 1; i <= n; i++) { int m = k / p; if (k % p != 0) m++; m--; int first = 0, t; for (t = 0; t < v.size(); t++) if (v[t] == i) first++; for (t = 0; t < v.size(); t++) if (v[t] == second[m]) first++; if (first == 2) ans++; second.erase(second.begin() + m); if (k % p == 0) k = p; else k = k % p; j--; if (i != n) p = p / j; } ans = ans + upper_bound(v.begin(), v.end(), n - y) - v.begin(); cout << ans; return 0; } ```