|
# Summarization Fine-tuning Dataset |
|
|
|
A dataset of 2000 examples for fine-tuning small language models on summarization tasks. |
|
|
|
## Statistics |
|
|
|
- **Total examples**: 2000 |
|
- **Train examples**: 1600 (80.0%) |
|
- **Validation examples**: 200 (10.0%) |
|
- **Test examples**: 200 (10.0%) |
|
|
|
## Dataset Distribution |
|
|
|
| Dataset | Count | Percentage | |
|
|---------|-------|------------| |
|
| xsum | 2000 | 100.0% | |
|
|
|
## Format |
|
|
|
The dataset is provided in alpaca format. |
|
|
|
## Configuration |
|
|
|
- **Maximum tokens**: 2000 |
|
- **Tokenizer**: gpt2 |
|
- **Random seed**: 42 |
|
|
|
## Usage |
|
|
|
```python |
|
from datasets import load_dataset |
|
|
|
# Load the dataset |
|
dataset = load_dataset("YOUR_USERNAME/summarization-finetune-10k") |
|
|
|
# Access the splits |
|
train_data = dataset["train"] |
|
val_data = dataset["validation"] |
|
test_data = dataset["test"] |
|
``` |
|
|