Code
stringlengths 103
85.9k
| Summary
sequencelengths 0
94
|
---|---|
Please provide a description of the function:def ae_transformer_internal(inputs, targets, target_space, hparams, cache=None):
# Encoder.
inputs = common_layers.flatten4d3d(inputs)
inputs, ed = encode(inputs, target_space, hparams, "input_enc")
# Autoencoding.
losses = {"extra": tf.constant(0.0), "latent_pred": tf.constant(0.0)}
max_targets_len_from_inputs = tf.concat([inputs, inputs], axis=1)
targets, _ = common_layers.pad_to_same_length(
targets,
max_targets_len_from_inputs,
final_length_divisible_by=2**hparams.num_compress_steps)
targets_c = compress(targets, hparams, "compress")
if hparams.mode != tf.estimator.ModeKeys.PREDICT:
# Compress and bottleneck.
latents_discrete_hot, extra_loss = vq_discrete_bottleneck(
x=targets_c, hparams=hparams)
latents_dense = vq_discrete_unbottleneck(
latents_discrete_hot, hparams=hparams)
latents_dense = targets_c + tf.stop_gradient(latents_dense - targets_c)
latents_discrete = tf.argmax(latents_discrete_hot, axis=-1)
tf.summary.histogram("codes", tf.reshape(latents_discrete[:, 0, :], [-1]))
losses["extra"] = extra_loss
# Extra loss predicting latent code from input.
latents_pred = decode_transformer(inputs, ed, latents_dense, hparams,
"extra")
latent_pred_loss = get_latent_pred_loss(latents_pred, latents_discrete_hot,
hparams)
losses["latent_pred"] = tf.reduce_mean(latent_pred_loss)
else:
latent_len = common_layers.shape_list(targets_c)[1]
embed = functools.partial(vq_discrete_unbottleneck, hparams=hparams)
latents_dense = tf.zeros_like(targets_c[:, :latent_len, :, :])
if cache is None:
cache = ae_latent_sample_beam(latents_dense, inputs, ed, embed,
hparams)
cache_hot = tf.one_hot(cache, depth=2**hparams.bottleneck_bits)
latents_dense = embed(cache_hot)
# Postprocess.
d = latents_dense
pos = tf.get_variable("pos", [1, 1000, 1, hparams.hidden_size])
pos = pos[:, :common_layers.shape_list(latents_dense)[1] + 1, :, :]
latents_dense = tf.pad(latents_dense, [[0, 0], [1, 0], [0, 0], [0, 0]]) + pos
# Decompressing the dense latents
for i in range(hparams.num_compress_steps):
j = hparams.num_compress_steps - i - 1
d = residual_conv(d, 1, (3, 1), hparams, "decompress_rc_%d" % j)
d = decompress_step(d, hparams, i > 0, "decompress_%d" % j)
masking = common_layers.inverse_lin_decay(hparams.mask_startup_steps)
masking *= common_layers.inverse_exp_decay(
hparams.mask_startup_steps // 4) # Not much at start.
masking = tf.minimum(tf.maximum(masking, 0.0), 1.0)
if hparams.mode == tf.estimator.ModeKeys.PREDICT:
masking = 1.0
mask = tf.less(masking,
tf.random_uniform(common_layers.shape_list(targets)[:-1]))
mask = tf.expand_dims(tf.to_float(mask), 3)
# targets is always [batch, length, 1, depth]
targets = mask * targets + (1.0 - mask) * d
res = decode_transformer(inputs, ed, targets, hparams, "decoder")
latent_time = tf.less(hparams.mask_startup_steps,
tf.to_int32(tf.train.get_global_step()))
losses["latent_pred"] *= tf.to_float(latent_time)
return res, losses, cache | [
"Main step used for training."
] |
Please provide a description of the function:def transformer_nat_small():
hparams = transformer.transformer_small()
hparams.batch_size = 2048
hparams.learning_rate = 0.2
hparams.learning_rate_warmup_steps = 4000
hparams.num_hidden_layers = 3
hparams.hidden_size = 384
hparams.filter_size = 2048
hparams.label_smoothing = 0.0
hparams.force_full_predict = True
hparams.optimizer = "adam"
hparams.optimizer_adam_epsilon = 1e-9
hparams.optimizer_adam_beta1 = 0.9
hparams.optimizer_adam_beta2 = 0.997
hparams.add_hparam("bottleneck_kind", "vq")
hparams.add_hparam("bottleneck_bits", 12)
hparams.add_hparam("num_compress_steps", 3)
hparams.add_hparam("beta", 0.25)
hparams.add_hparam("epsilon", 1e-5)
hparams.add_hparam("decay", 0.999)
hparams.add_hparam("num_samples", 10)
hparams.add_hparam("mask_startup_steps", 50000)
return hparams | [
"Set of hyperparameters."
] |
Please provide a description of the function:def transformer_nat_base():
hparams = transformer_nat_small()
hparams.batch_size = 2048
hparams.hidden_size = 512
hparams.filter_size = 4096
hparams.num_hidden_layers = 6
return hparams | [
"Set of hyperparameters."
] |
Please provide a description of the function:def transformer_nat_big():
hparams = transformer_nat_small()
hparams.batch_size = 2048
hparams.hidden_size = 1024
hparams.filter_size = 4096
hparams.num_hidden_layers = 6
hparams.num_heads = 16
hparams.layer_prepostprocess_dropout = 0.3
return hparams | [
"Set of hyperparameters."
] |
Please provide a description of the function:def policy_net(rng_key,
batch_observations_shape,
num_actions,
bottom_layers=None):
# Use the bottom_layers as the bottom part of the network and just add the
# required layers on top of it.
if bottom_layers is None:
bottom_layers = []
# NOTE: The LogSoftmax instead of the Softmax.
bottom_layers.extend([layers.Dense(num_actions), layers.LogSoftmax()])
net = layers.Serial(*bottom_layers)
return net.initialize(batch_observations_shape, rng_key), net | [
"A policy net function."
] |
Please provide a description of the function:def value_net(rng_key,
batch_observations_shape,
num_actions,
bottom_layers=None):
del num_actions
if bottom_layers is None:
bottom_layers = []
bottom_layers.extend([
layers.Dense(1),
])
net = layers.Serial(*bottom_layers)
return net.initialize(batch_observations_shape, rng_key), net | [
"A value net function."
] |
Please provide a description of the function:def policy_and_value_net(rng_key,
batch_observations_shape,
num_actions,
bottom_layers=None):
# Layers.
cur_layers = []
if bottom_layers is not None:
cur_layers.extend(bottom_layers)
# Now, with the current logits, one head computes action probabilities and the
# other computes the value function.
# NOTE: The LogSoftmax instead of the Softmax because of numerical stability.
cur_layers.extend([layers.Branch(), layers.Parallel(
layers.Serial(layers.Dense(num_actions), layers.LogSoftmax()),
layers.Dense(1)
)])
net = layers.Serial(*cur_layers)
return net.initialize(batch_observations_shape, rng_key), net | [
"A policy and value net function."
] |
Please provide a description of the function:def log_params(params, name="params"):
for i, param in enumerate(params):
if not param:
# Empty tuple.
continue
if not isinstance(param, (list, tuple)):
logging.error(
"%s[%d] : (%s) = [%s]", name, i, param.shape, onp.array(param))
else:
for j, p in enumerate(param):
logging.error(
"\t%s[%d, %d] = [%s]", name, i, j, onp.array(p)) | [
"Dumps the params with `logging.error`."
] |
Please provide a description of the function:def collect_trajectories(env,
policy_fun,
num_trajectories=1,
policy="greedy",
max_timestep=None,
epsilon=0.1):
trajectories = []
for t in range(num_trajectories):
t_start = time.time()
rewards = []
actions = []
done = False
observation = env.reset()
# This is currently shaped (1, 1) + OBS, but new observations will keep
# getting added to it, making it eventually (1, T+1) + OBS
observation_history = observation[np.newaxis, np.newaxis, :]
# Run either till we're done OR if max_timestep is defined only till that
# timestep.
ts = 0
while ((not done) and
(not max_timestep or observation_history.shape[1] < max_timestep)):
ts_start = time.time()
# Run the policy, to pick an action, shape is (1, t, A) because
# observation_history is shaped (1, t) + OBS
predictions = policy_fun(observation_history)
# We need the predictions for the last time-step, so squeeze the batch
# dimension and take the last time-step.
predictions = np.squeeze(predictions, axis=0)[-1]
# Policy can be run in one of the following ways:
# - Greedy
# - Epsilon-Greedy
# - Categorical-Sampling
action = None
if policy == "greedy":
action = np.argmax(predictions)
elif policy == "epsilon-greedy":
# A schedule for epsilon is 1/k where k is the episode number sampled.
if onp.random.random() < epsilon:
# Choose an action at random.
action = onp.random.randint(0, high=len(predictions))
else:
# Return the best action.
action = np.argmax(predictions)
elif policy == "categorical-sampling":
# NOTE: The predictions aren't probabilities but log-probabilities
# instead, since they were computed with LogSoftmax.
# So just np.exp them to make them probabilities.
predictions = np.exp(predictions)
action = onp.argwhere(onp.random.multinomial(1, predictions) == 1)
else:
raise ValueError("Unknown policy: %s" % policy)
# NOTE: Assumption, single batch.
try:
action = int(action)
except TypeError as err:
# Let's dump some information before we die off.
logging.error("Cannot convert action into an integer: [%s]", err)
logging.error("action.shape: [%s]", action.shape)
logging.error("action: [%s]", action)
logging.error("predictions.shape: [%s]", predictions.shape)
logging.error("predictions: [%s]", predictions)
logging.error("observation_history: [%s]", observation_history)
raise err
observation, reward, done, _ = env.step(action)
# observation is of shape OBS, so add extra dims and concatenate on the
# time dimension.
observation_history = np.concatenate(
[observation_history, observation[np.newaxis, np.newaxis, :]], axis=1)
rewards.append(reward)
actions.append(action)
ts += 1
logging.vlog(
2, " Collected time-step[ %5d] of trajectory[ %5d] in [%0.2f] msec.",
ts, t, get_time(ts_start))
logging.vlog(
2, " Collected trajectory[ %5d] in [%0.2f] msec.", t, get_time(t_start))
# This means we are done we're been terminated early.
assert done or (
max_timestep and max_timestep >= observation_history.shape[1])
# observation_history is (1, T+1) + OBS, lets squeeze out the batch dim.
observation_history = np.squeeze(observation_history, axis=0)
trajectories.append(
(observation_history, np.stack(actions), np.stack(rewards)))
return trajectories | [
"Collect trajectories with the given policy net and behaviour.\n\n Args:\n env: A gym env interface, for now this is not-batched.\n policy_fun: observations(B,T+1) -> log-probabs(B,T+1, A) callable.\n num_trajectories: int, number of trajectories.\n policy: string, \"greedy\", \"epsilon-greedy\", or \"categorical-sampling\" i.e.\n how to use the policy_fun to return an action.\n max_timestep: int or None, the index of the maximum time-step at which we\n return the trajectory, None for ending a trajectory only when env\n returns done.\n epsilon: float, the epsilon for `epsilon-greedy` policy.\n\n Returns:\n trajectory: list of (observation, action, reward) tuples, where each element\n `i` is a tuple of numpy arrays with shapes as follows:\n observation[i] = (B, T_i + 1)\n action[i] = (B, T_i)\n reward[i] = (B, T_i)\n "
] |
Please provide a description of the function:def get_padding_value(dtype):
padding_value = None
if dtype == np.uint8:
padding_value = np.uint8(0)
elif dtype == np.uint16:
padding_value = np.uint16(0)
elif dtype == np.float32:
padding_value = 0.0
else:
padding_value = 0
assert padding_value is not None
return padding_value | [
"Returns the padding value given a dtype."
] |
Please provide a description of the function:def pad_trajectories(trajectories, boundary=20):
# Let's compute max(t) over all trajectories.
t_max = max(r.shape[0] for (_, _, r) in trajectories)
# t_max is rounded to the next multiple of `boundary`
boundary = int(boundary)
bucket_length = boundary * int(np.ceil(float(t_max) / boundary))
# So all obs will be padded to t_max + 1 and actions and rewards to t_max.
padded_observations = []
padded_actions = []
padded_rewards = []
padded_lengths = []
reward_masks = []
for (o, a, r) in trajectories:
# Determine the amount to pad, this holds true for obs, actions and rewards.
num_to_pad = bucket_length + 1 - o.shape[0]
padded_lengths.append(num_to_pad)
if num_to_pad == 0:
padded_observations.append(o)
padded_actions.append(a)
padded_rewards.append(r)
reward_masks.append(onp.ones_like(r, dtype=np.int32))
continue
# First pad observations.
padding_config = [(0, num_to_pad, 0)]
for _ in range(o.ndim - 1):
padding_config.append((0, 0, 0))
padding_config = tuple(padding_config)
padding_value = get_padding_value(o.dtype)
action_padding_value = get_padding_value(a.dtype)
reward_padding_value = get_padding_value(r.dtype)
padded_obs = lax.pad(o, padding_value, padding_config)
padded_observations.append(padded_obs)
# Now pad actions and rewards.
assert a.ndim == 1 and r.ndim == 1
padding_config = ((0, num_to_pad, 0),)
padded_action = lax.pad(a, action_padding_value, padding_config)
padded_actions.append(padded_action)
padded_reward = lax.pad(r, reward_padding_value, padding_config)
padded_rewards.append(padded_reward)
# Also create the mask to use later.
reward_mask = onp.ones_like(r, dtype=np.int32)
reward_masks.append(lax.pad(reward_mask, 0, padding_config))
return padded_lengths, np.stack(reward_masks), np.stack(
padded_observations), np.stack(padded_actions), np.stack(padded_rewards) | [
"Pad trajectories to a bucket length that is a multiple of boundary.\n\n Args:\n trajectories: list[(observation, actions, rewards)], where each observation\n is shaped (t+1,) + OBS and actions & rewards are shaped (t,), with the\n length of the list being B (batch size).\n boundary: int, bucket length, the actions and rewards are padded to integer\n multiples of boundary.\n\n Returns:\n tuple: (padding lengths, reward_mask, padded_observations, padded_actions,\n padded_rewards) where padded_observations is shaped (B, T+1) + OBS and\n padded_actions, padded_rewards & reward_mask are shaped (B, T).\n Where T is max(t) rounded up to an integer multiple of boundary.\n padded_length is how much padding we've added and\n reward_mask is 1s for actual rewards and 0s for the padding.\n "
] |
Please provide a description of the function:def rewards_to_go(rewards, mask, gamma=0.99):
r
B, T = rewards.shape # pylint: disable=invalid-name,unused-variable
masked_rewards = rewards * mask # (B, T)
# We use the following recurrence relation, derived from the equation above:
#
# r2g[t+1] = (r2g[t] - r[t]) / gamma
#
# This means we'll need to calculate r2g[0] first and then r2g[1] and so on ..
#
# **However** this leads to overflows for long sequences: r2g[t] - r[t] > 0
# and gamma < 1.0, so the division keeps increasing.
#
# So we just run the recurrence in reverse, i.e.
#
# r2g[t] = r[t] + (gamma*r2g[t+1])
#
# This is much better, but might have lost updates since the (small) rewards
# at earlier time-steps may get added to a (very?) large sum.
# Compute r2g_{T-1} at the start and then compute backwards in time.
r2gs = [masked_rewards[:, -1]]
# Go from T-2 down to 0.
for t in reversed(range(T - 1)):
r2gs.append(masked_rewards[:, t] + (gamma * r2gs[-1]))
# The list should have length T.
assert T == len(r2gs)
# First we stack them in the correct way to make it (B, T), but these are
# still from newest (T-1) to oldest (0), so then we flip it on time axis.
return np.flip(np.stack(r2gs, axis=1), axis=1) | [
"Computes rewards to go.\n\n Reward to go is defined as follows, the discounted reward that we have to\n yet collect, going forward from this point, i.e.:\n\n r2g_t = \\sum_{l=0}^{\\infty} (\\gamma^{l} * reward_{t+l})\n\n Args:\n rewards: np.ndarray of shape (B, T) of rewards.\n mask: np.ndarray of shape (B, T) of mask for the rewards.\n gamma: float, discount factor.\n\n Returns:\n rewards to go, np.ndarray of shape (B, T).\n "
] |
Please provide a description of the function:def value_loss(value_net_apply,
value_net_params,
observations,
rewards,
reward_mask,
gamma=0.99):
B, T = rewards.shape # pylint: disable=invalid-name
assert (B, T + 1) == observations.shape[:2]
# NOTE: observations is (B, T+1) + OBS, value_prediction is (B, T+1, 1)
value_prediction = value_net_apply(observations, value_net_params)
assert (B, T + 1, 1) == value_prediction.shape
return value_loss_given_predictions(value_prediction, rewards, reward_mask,
gamma) | [
"Computes the value loss.\n\n Args:\n value_net_apply: value net apply function with signature (params, ndarray of\n shape (B, T+1) + OBS) -> ndarray(B, T+1, 1)\n value_net_params: params of value_net_apply.\n observations: np.ndarray of shape (B, T+1) + OBS\n rewards: np.ndarray of shape (B, T) of rewards.\n reward_mask: np.ndarray of shape (B, T), the mask over rewards.\n gamma: float, discount factor.\n\n Returns:\n The average L2 value loss, averaged over instances where reward_mask is 1.\n "
] |
Please provide a description of the function:def value_loss_given_predictions(value_prediction,
rewards,
reward_mask,
gamma=0.99):
B, T = rewards.shape # pylint: disable=invalid-name
assert (B, T) == reward_mask.shape
assert (B, T + 1, 1) == value_prediction.shape
value_prediction = np.squeeze(value_prediction, axis=2) # (B, T+1)
value_prediction = value_prediction[:, :-1] * reward_mask # (B, T)
r2g = rewards_to_go(rewards, reward_mask, gamma=gamma) # (B, T)
loss = (value_prediction - r2g)**2
# Take an average on only the points where mask != 0.
return np.sum(loss) / np.sum(reward_mask) | [
"Computes the value loss given the prediction of the value function.\n\n Args:\n value_prediction: np.ndarray of shape (B, T+1, 1)\n rewards: np.ndarray of shape (B, T) of rewards.\n reward_mask: np.ndarray of shape (B, T), the mask over rewards.\n gamma: float, discount factor.\n\n Returns:\n The average L2 value loss, averaged over instances where reward_mask is 1.\n "
] |
Please provide a description of the function:def deltas(predicted_values, rewards, mask, gamma=0.99):
r
# `d`s are basically one-step TD residuals.
d = []
_, T = rewards.shape # pylint: disable=invalid-name
for t in range(T):
d.append(rewards[:, t] + (gamma * predicted_values[:, t + 1]) -
predicted_values[:, t])
return np.array(d).T * mask | [
"Computes TD-residuals from V(s) and rewards.\n\n Where a `delta`, i.e. a td-residual is defined as:\n\n delta_{b,t} = r_{b,t} + \\gamma * v_{b,t+1} - v_{b,t}.\n\n Args:\n predicted_values: ndarray of shape (B, T+1). NOTE: Expects axis 2 was\n squeezed. These represent V(s_bt) for b < B and t < T+1\n rewards: ndarray of shape (B, T) of rewards.\n mask: ndarray of shape (B, T) of mask for rewards.\n gamma: float, discount factor.\n\n Returns:\n ndarray of shape (B, T) of one-step TD-residuals.\n "
] |
Please provide a description of the function:def gae_advantages(td_deltas, mask, lambda_=0.95, gamma=0.99):
r
return rewards_to_go(td_deltas, mask, lambda_ * gamma) | [
"Computes the GAE advantages given the one step TD-residuals.\n\n The formula for a GAE advantage estimator is as follows:\n\n A_{bt} = \\sum_{l=0}^{\\infty}(\\gamma * \\lambda)^{l}(\\delta_{b,t+l}).\n\n Internally we just call rewards_to_go, since it is the same computation.\n\n Args:\n td_deltas: np.ndarray of shape (B, T) of one step TD-residuals.\n mask: np.ndarray of shape (B, T) of mask for the residuals. It maybe the\n case that the `td_deltas` are already masked correctly since they are\n produced by `deltas(...)`\n lambda_: float, lambda parameter for GAE estimators.\n gamma: float, lambda parameter for GAE estimators.\n\n Returns:\n GAE advantage estimates.\n "
] |
Please provide a description of the function:def chosen_probabs(probab_observations, actions):
B, T = actions.shape # pylint: disable=invalid-name
assert (B, T + 1) == probab_observations.shape[:2]
return probab_observations[np.arange(B)[:, None], np.arange(T), actions] | [
"Picks out the probabilities of the actions along batch and time-steps.\n\n Args:\n probab_observations: ndarray of shape `[B, T+1, A]`, where\n probab_observations[b, t, i] contains the log-probability of action = i at\n the t^th time-step in the b^th trajectory.\n actions: ndarray of shape `[B, T]`, with each entry in [0, A) denoting which\n action was chosen in the b^th trajectory's t^th time-step.\n\n Returns:\n `[B, T]` ndarray with the log-probabilities of the chosen actions.\n "
] |
Please provide a description of the function:def compute_probab_ratios(p_new, p_old, actions, reward_mask):
B, T = actions.shape # pylint: disable=invalid-name
assert (B, T + 1) == p_old.shape[:2]
assert (B, T + 1) == p_new.shape[:2]
logp_old = chosen_probabs(p_old, actions)
logp_new = chosen_probabs(p_new, actions)
assert (B, T) == logp_old.shape
assert (B, T) == logp_new.shape
# Since these are log-probabilities, we just subtract them.
probab_ratios = np.exp(logp_new - logp_old) * reward_mask
assert (B, T) == probab_ratios.shape
return probab_ratios | [
"Computes the probability ratios for each time-step in a trajectory.\n\n Args:\n p_new: ndarray of shape [B, T+1, A] of the log-probabilities that the policy\n network assigns to all the actions at each time-step in each batch using\n the old parameters.\n p_old: ndarray of shape [B, T+1, A], same as above, but using old policy\n network parameters.\n actions: ndarray of shape [B, T] where each element is from [0, A).\n reward_mask: ndarray of shape [B, T] masking over probabilities.\n\n Returns:\n probab_ratios: ndarray of shape [B, T], where\n probab_ratios_{b,t} = p_new_{b,t,action_{b,t}} / p_old_{b,t,action_{b,t}}\n "
] |
Please provide a description of the function:def ppo_loss(policy_net_apply,
new_policy_params,
old_policy_params,
value_net_apply,
value_net_params,
padded_observations,
padded_actions,
padded_rewards,
reward_mask,
gamma=0.99,
lambda_=0.95,
epsilon=0.2):
B, T = padded_rewards.shape # pylint: disable=invalid-name
assert (B, T + 1) == padded_observations.shape[:2]
assert (B, T) == padded_actions.shape
assert (B, T) == padded_rewards.shape
assert (B, T) == reward_mask.shape
# Compute predicted values and predicted log-probs and hand it over to
# `ppo_loss_given_predictions`.
# (B, T+1, 1)
predicted_values = value_net_apply(padded_observations, value_net_params)
assert (B, T + 1, 1) == predicted_values.shape
# log_probab_actions_{old,new} are both (B, T+1, A)
log_probab_actions_old = policy_net_apply(padded_observations,
old_policy_params)
log_probab_actions_new = policy_net_apply(padded_observations,
new_policy_params)
assert (B, T + 1) == log_probab_actions_old.shape[:2]
assert (B, T + 1) == log_probab_actions_new.shape[:2]
assert log_probab_actions_old.shape[-1] == log_probab_actions_new.shape[-1]
return ppo_loss_given_predictions(log_probab_actions_new,
log_probab_actions_old,
predicted_values,
padded_actions,
padded_rewards,
reward_mask,
gamma=gamma,
lambda_=lambda_,
epsilon=epsilon) | [
"PPO objective, with an eventual minus sign, given observations."
] |
Please provide a description of the function:def ppo_loss_given_predictions(log_probab_actions_new,
log_probab_actions_old,
predicted_values,
padded_actions,
padded_rewards,
reward_mask,
gamma=0.99,
lambda_=0.95,
epsilon=0.2):
B, T = padded_rewards.shape # pylint: disable=invalid-name
assert (B, T) == padded_actions.shape
assert (B, T) == reward_mask.shape
_, _, A = log_probab_actions_old.shape # pylint: disable=invalid-name
assert (B, T + 1, 1) == predicted_values.shape
assert (B, T + 1, A) == log_probab_actions_old.shape
assert (B, T + 1, A) == log_probab_actions_new.shape
# (B, T)
td_deltas = deltas(
np.squeeze(predicted_values, axis=2), # (B, T+1)
padded_rewards,
reward_mask,
gamma=gamma)
# (B, T)
advantages = gae_advantages(
td_deltas, reward_mask, lambda_=lambda_, gamma=gamma)
# (B, T)
ratios = compute_probab_ratios(log_probab_actions_new,
log_probab_actions_old,
padded_actions,
reward_mask)
assert (B, T) == ratios.shape
# (B, T)
objective = clipped_objective(
ratios, advantages, reward_mask, epsilon=epsilon)
assert (B, T) == objective.shape
# ()
average_objective = np.sum(objective) / np.sum(reward_mask)
# Loss is negative objective.
return -average_objective | [
"PPO objective, with an eventual minus sign, given predictions."
] |
Please provide a description of the function:def combined_loss_given_predictions(log_probab_actions_new,
log_probab_actions_old,
value_prediction,
padded_actions,
padded_rewards,
reward_mask,
gamma=0.99,
lambda_=0.95,
epsilon=0.2,
c1=1.0,
c2=0.01):
loss_value = value_loss_given_predictions(
value_prediction, padded_rewards, reward_mask, gamma=gamma)
loss_ppo = ppo_loss_given_predictions(log_probab_actions_new,
log_probab_actions_old,
value_prediction,
padded_actions,
padded_rewards,
reward_mask,
gamma=gamma,
lambda_=lambda_,
epsilon=epsilon)
# TODO(afrozm): Add the entropy bonus, but since we don't do that in T2T
# we'll skip if for now.
entropy_bonus = 0.0
return (loss_ppo + (c1 * loss_value) - (c2 * entropy_bonus), loss_ppo,
loss_value, entropy_bonus) | [
"Computes the combined (clipped loss + value loss) given predictions."
] |
Please provide a description of the function:def combined_loss(new_params,
old_params,
policy_and_value_net_apply,
padded_observations,
padded_actions,
padded_rewards,
reward_mask,
gamma=0.99,
lambda_=0.95,
epsilon=0.2,
c1=1.0,
c2=0.01):
log_probab_actions_new, value_predictions = policy_and_value_net_apply(
padded_observations, new_params)
log_probab_actions_old, _ = policy_and_value_net_apply(
padded_observations, old_params)
# (combined_loss, ppo_loss, value_loss, entropy_bonus)
return combined_loss_given_predictions(log_probab_actions_new,
log_probab_actions_old,
value_predictions,
padded_actions,
padded_rewards,
reward_mask,
c1=c1,
c2=c2,
gamma=gamma,
lambda_=lambda_,
epsilon=epsilon) | [
"Computes the combined (clipped loss + value loss) given observations."
] |
Please provide a description of the function:def ppo_opt_step(i,
opt_state,
ppo_opt_update,
policy_net_apply,
old_policy_params,
value_net_apply,
value_net_params,
padded_observations,
padded_actions,
padded_rewards,
reward_mask,
gamma=0.99,
lambda_=0.95,
epsilon=0.1):
new_policy_params = trax_opt.get_params(opt_state)
g = grad(
ppo_loss, argnums=1)(
policy_net_apply,
new_policy_params,
old_policy_params,
value_net_apply,
value_net_params,
padded_observations,
padded_actions,
padded_rewards,
reward_mask,
gamma=gamma,
lambda_=lambda_,
epsilon=epsilon)
return ppo_opt_update(i, g, opt_state) | [
"PPO optimizer step."
] |
Please provide a description of the function:def value_opt_step(i,
opt_state,
opt_update,
value_net_apply,
padded_observations,
padded_rewards,
reward_mask,
gamma=0.99):
value_params = trax_opt.get_params(opt_state)
# Note this partial application here and argnums above in ppo_opt_step.
g = grad(functools.partial(value_loss, value_net_apply))(
value_params,
padded_observations,
padded_rewards,
reward_mask,
gamma=gamma)
return opt_update(i, g, opt_state) | [
"Value optimizer step."
] |
Please provide a description of the function:def policy_and_value_opt_step(i,
opt_state,
opt_update,
policy_and_value_net_apply,
old_params,
padded_observations,
padded_actions,
padded_rewards,
reward_mask,
c1=1.0,
c2=0.01,
gamma=0.99,
lambda_=0.95,
epsilon=0.1):
# Combined loss function given the new params.
def policy_and_value_loss(params):
(loss, _, _, _) = combined_loss(
params,
old_params,
policy_and_value_net_apply,
padded_observations,
padded_actions,
padded_rewards,
reward_mask,
c1=c1,
c2=c2,
gamma=gamma,
lambda_=lambda_,
epsilon=epsilon)
return loss
new_params = trax_opt.get_params(opt_state)
g = grad(policy_and_value_loss)(new_params)
return opt_update(i, g, opt_state) | [
"Policy and Value optimizer step.",
"Returns the combined loss given just parameters."
] |
Please provide a description of the function:def training_loop(env=None,
env_name="CartPole-v0",
epochs=EPOCHS,
policy_net_fun=None,
value_net_fun=None,
policy_and_value_net_fun=None,
policy_optimizer_fun=None,
value_optimizer_fun=None,
policy_and_value_optimizer_fun=None,
batch_size=BATCH_TRAJECTORIES,
num_optimizer_steps=NUM_OPTIMIZER_STEPS,
print_every_optimizer_steps=PRINT_EVERY_OPTIMIZER_STEP,
boundary=20,
max_timestep=None,
random_seed=None,
gamma=GAMMA,
lambda_=LAMBDA,
epsilon=EPSILON,
c1=1.0,
c2=0.01):
jax_rng_key = trax.get_random_number_generator_and_set_seed(random_seed)
value_losses = []
ppo_objective = []
combined_losses = []
average_rewards = []
env = env if env is not None else gym.make(env_name)
# Batch Observations Shape = [-1, -1] + OBS, because we will eventually call
# policy and value networks on shape [B, T] +_OBS
batch_observations_shape = (-1, -1) + env.observation_space.shape
assert isinstance(env.action_space, gym.spaces.Discrete)
num_actions = env.action_space.n
policy_and_value_net_params, policy_and_value_net_apply = None, None
policy_and_value_opt_state, policy_and_value_opt_update = None, None
policy_net_params, policy_net_apply = None, None
value_net_params, value_net_apply = None, None
if policy_and_value_net_fun is not None:
jax_rng_key, subkey = jax_random.split(jax_rng_key)
# Initialize the policy and value network.
policy_and_value_net_params, policy_and_value_net_apply = (
policy_and_value_net_fun(subkey, batch_observations_shape, num_actions))
# Initialize the optimizers.
policy_and_value_opt_state, policy_and_value_opt_update = (
policy_and_value_optimizer_fun(policy_and_value_net_params))
else:
# Initialize the policy and value functions.
assert policy_net_fun and value_net_fun
jax_rng_key, key1, key2 = jax_random.split(jax_rng_key, num=3)
policy_net_params, policy_net_apply = policy_net_fun(
key1, batch_observations_shape, num_actions)
value_net_params, value_net_apply = value_net_fun(key2,
batch_observations_shape,
num_actions)
# Initialize the optimizers.
ppo_opt_state, ppo_opt_update = policy_optimizer_fun(policy_net_params)
value_opt_state, value_opt_update = value_optimizer_fun(value_net_params)
# A function that will call the appropriate policy function with parameters.
def get_policy_output(observations):
if policy_net_apply is not None:
assert policy_net_params
return policy_net_apply(observations, policy_net_params)
assert policy_and_value_net_apply and policy_and_value_net_params
policy_predictions, unused_value_predictions = policy_and_value_net_apply(
observations, policy_and_value_net_params)
return policy_predictions
for i in range(epochs):
t = time.time()
t0 = t
logging.vlog(1, "Epoch [% 6d] collecting trajectories.", i)
trajs = collect_trajectories(
env,
policy_fun=get_policy_output,
num_trajectories=batch_size,
policy=POLICY,
max_timestep=max_timestep,
epsilon=(10.0 / (i + 10.0))) # this is a different epsilon.
avg_reward = float(sum(np.sum(traj[2]) for traj in trajs)) / len(trajs)
max_reward = max(np.sum(traj[2]) for traj in trajs)
min_reward = min(np.sum(traj[2]) for traj in trajs)
average_rewards.append(avg_reward)
logging.vlog(1, "Rewards average=[%0.2f], max=[%0.2f], min=[%0.2f]",
avg_reward, max_reward, min_reward)
logging.vlog(1, "Collecting trajectories took %0.2f msec.", get_time(t))
logging.vlog(1,
"Trajectory Length average=[%0.2f], max=[%0.2f], min=[%0.2f]",
float(sum(len(traj[0]) for traj in trajs)) / len(trajs),
max(len(traj[0]) for traj in trajs),
min(len(traj[0]) for traj in trajs))
t = time.time()
(_, reward_mask, padded_observations, padded_actions,
padded_rewards) = pad_trajectories(trajs, boundary=boundary)
logging.vlog(1, "Padding trajectories took %0.2f msec.", get_time(t))
logging.vlog(1, "Padded Observations' shape [%s]",
str(padded_observations.shape))
logging.vlog(1, "Padded Actions' shape [%s]", str(padded_actions.shape))
logging.vlog(1, "Padded Rewards' shape [%s]", str(padded_rewards.shape))
# Some assertions.
B, T = padded_actions.shape # pylint: disable=invalid-name
assert (B, T) == padded_rewards.shape
assert (B, T) == reward_mask.shape
assert (B, T + 1) == padded_observations.shape[:2]
assert (B, T + 1) + env.observation_space.shape == padded_observations.shape
# Linear annealing from 0.1 to 0.0
epsilon_schedule = epsilon if epochs == 1 else epsilon * (1.0 -
(i /
(epochs - 1)))
# Compute value and ppo losses.
cur_value_loss, cur_ppo_loss, cur_combined_loss = None, None, None
if policy_and_value_net_apply is not None:
t = time.time()
cur_combined_loss, cur_ppo_loss, cur_value_loss, _ = (
combined_loss(
policy_and_value_net_params,
policy_and_value_net_params,
policy_and_value_net_apply,
padded_observations,
padded_actions,
padded_rewards,
reward_mask,
gamma=gamma,
lambda_=lambda_,
epsilon=epsilon_schedule,
c1=c1,
c2=c2))
logging.vlog(
1, "Calculating P&V loss [%10.2f(%10.2f, %10.2f)] took %0.2f msec.",
cur_combined_loss, cur_value_loss, cur_ppo_loss, get_time(t))
else:
t = time.time()
cur_value_loss = value_loss(
value_net_apply,
value_net_params,
padded_observations,
padded_rewards,
reward_mask,
gamma=gamma)
logging.vlog(1, "Calculating value loss took %0.2f msec.", get_time(t))
t = time.time()
cur_ppo_loss = ppo_loss(
policy_net_apply,
policy_net_params,
policy_net_params,
value_net_apply,
value_net_params,
padded_observations,
padded_actions,
padded_rewards,
reward_mask,
gamma=gamma,
lambda_=lambda_,
epsilon=epsilon_schedule)
logging.vlog(1, "Calculating PPO loss took %0.2f msec.", get_time(t))
value_losses.append(cur_value_loss)
ppo_objective.append(-1.0 * cur_ppo_loss)
combined_losses.append(cur_combined_loss)
if policy_and_value_net_apply:
logging.vlog(1, "Policy and Value Optimization")
t1 = time.time()
for j in range(num_optimizer_steps):
t = time.time()
# Update the optimizer state.
policy_and_value_opt_state = policy_and_value_opt_step(
j,
policy_and_value_opt_state,
policy_and_value_opt_update,
policy_and_value_net_apply,
policy_and_value_net_params,
padded_observations,
padded_actions,
padded_rewards,
reward_mask,
c1=c1,
c2=c2,
gamma=gamma,
lambda_=lambda_,
epsilon=epsilon_schedule)
t2 = time.time()
# Get the new params.
new_policy_and_value_net_params = trax_opt.get_params(
policy_and_value_opt_state)
if ((j + 1) %
print_every_optimizer_steps == 0) or (j == num_optimizer_steps - 1):
# Compute and log the loss.
(loss_combined, loss_ppo, loss_value, unused_entropy_bonus) = (
combined_loss(
new_policy_and_value_net_params,
policy_and_value_net_params, # old params
policy_and_value_net_apply,
padded_observations,
padded_actions,
padded_rewards,
reward_mask,
gamma=gamma,
lambda_=lambda_,
epsilon=epsilon_schedule,
c1=c1,
c2=c2))
logging.vlog(1, "One Policy and Value grad desc took: %0.2f msec",
get_time(t, t2))
logging.vlog(
1,
"Combined Loss(value, ppo) [%10.2f] -> [%10.2f(%10.2f,%10.2f)]",
cur_combined_loss, loss_combined, loss_value, loss_ppo)
# Update the params.
policy_and_value_net_params = new_policy_and_value_net_params
logging.vlog(
1, "Total PPO loss reduction [%0.2f]%%",
(100 *
(cur_combined_loss - loss_combined) / np.abs(cur_combined_loss)))
logging.info(
"Epoch [% 6d], Reward[min, max, avg] [%10.2f,%10.2f,%10.2f], Combined"
" Loss(value, ppo) [%10.2f(%10.2f,%10.2f)], took [%10.2f msec]",
i, min_reward, max_reward, avg_reward, loss_combined, loss_value,
loss_ppo, get_time(t1))
else:
# Run optimizers.
logging.vlog(1, "PPO Optimization")
t1 = time.time()
for j in range(num_optimizer_steps):
t = time.time()
# Update the optimizer state.
ppo_opt_state = ppo_opt_step(
j,
ppo_opt_state,
ppo_opt_update,
policy_net_apply,
policy_net_params,
value_net_apply,
value_net_params,
padded_observations,
padded_actions,
padded_rewards,
reward_mask,
gamma=gamma,
lambda_=lambda_,
epsilon=epsilon_schedule,
)
t2 = time.time()
# Get the new params.
new_policy_net_params = trax_opt.get_params(ppo_opt_state)
if ((j + 1) %
print_every_optimizer_steps == 0) or (j == num_optimizer_steps - 1):
new_ppo_loss = ppo_loss(
policy_net_apply,
new_policy_net_params,
policy_net_params,
value_net_apply,
value_net_params,
padded_observations,
padded_actions,
padded_rewards,
reward_mask,
gamma=gamma,
lambda_=lambda_,
epsilon=epsilon_schedule,
)
logging.vlog(1, "One PPO grad desc took: %0.2f msec", get_time(t, t2))
logging.vlog(1, "PPO loss [%10.2f] -> [%10.2f]", cur_ppo_loss,
new_ppo_loss)
# Update the params.
policy_net_params = new_policy_net_params
logging.vlog(1, "Total PPO loss reduction [%0.2f]%%",
(100 * (cur_ppo_loss - new_ppo_loss) / np.abs(cur_ppo_loss)))
logging.vlog(1, "Value Optimization")
for j in range(num_optimizer_steps):
t = time.time()
value_opt_state = value_opt_step(
j,
value_opt_state,
value_opt_update,
value_net_apply,
padded_observations,
padded_rewards,
reward_mask,
gamma=gamma)
t2 = time.time()
value_net_params = trax_opt.get_params(value_opt_state)
if ((j + 1) %
print_every_optimizer_steps == 0) or (j == num_optimizer_steps - 1):
new_value_loss = value_loss(
value_net_apply,
value_net_params,
padded_observations,
padded_rewards,
reward_mask,
gamma=gamma)
logging.vlog(1, "One value grad desc took: %0.2f msec",
get_time(t, t2))
logging.vlog(1, "Value loss [%10.2f] -> [%10.2f]", cur_value_loss,
new_value_loss)
logging.vlog(1, "Total value loss reduction [%0.2f]%%",
(100 *
(cur_value_loss - new_value_loss) / np.abs(cur_value_loss)))
logging.vlog(1, "Grad desc took %0.2f msec", get_time(t1))
# Set the optimized params to new params.
policy_net_params = trax_opt.get_params(ppo_opt_state)
value_net_params = trax_opt.get_params(value_opt_state)
logging.info(
"Epoch [% 6d], Reward[min, max, avg] [%10.2f,%10.2f,%10.2f], "
"ppo loss [%10.2f], value loss [%10.2f], took [%10.2f msec]", i,
min_reward, max_reward, avg_reward, new_ppo_loss, new_value_loss,
get_time(t0))
# Log the parameters, just for the sake of it.
if policy_net_params:
log_params(policy_net_params, "policy_net_params")
if value_net_params:
log_params(value_net_params, "value_net_params")
if policy_and_value_net_params:
log_params(policy_and_value_net_params, "policy_and_value_net_params")
if value_losses:
logging.vlog(1, "value_losses: %s", np.stack(value_losses))
if ppo_objective:
logging.vlog(1, "ppo_objective: %s", np.stack(ppo_objective))
if average_rewards:
logging.vlog(1, "average_rewards: %s", average_rewards)
return ((policy_net_params, value_net_params), average_rewards,
np.stack(value_losses), np.stack(ppo_objective)) | [
"Runs the training loop for PPO, with fixed policy and value nets."
] |
Please provide a description of the function:def _maybe_download_corpora(tmp_dir):
mnli_filename = "MNLI.zip"
mnli_finalpath = os.path.join(tmp_dir, "MNLI")
if not tf.gfile.Exists(mnli_finalpath):
zip_filepath = generator_utils.maybe_download(
tmp_dir, mnli_filename, _MNLI_URL)
zip_ref = zipfile.ZipFile(zip_filepath, "r")
zip_ref.extractall(tmp_dir)
zip_ref.close()
return mnli_finalpath | [
"Download corpora for multinli.\n\n Args:\n tmp_dir: a string\n Returns:\n a string\n "
] |
Please provide a description of the function:def _example_generator(filename):
for idx, line in enumerate(tf.gfile.Open(filename, "rb")):
if idx == 0: continue # skip header
line = text_encoder.to_unicode_utf8(line.strip())
split_line = line.split("\t")
# Works for both splits even though dev has some extra human labels.
yield {
"premise": split_line[8],
"hypothesis": split_line[9],
"label": split_line[-1]
} | [
"Generate mnli examples.\n\n Args:\n filename: a string\n Yields:\n dictionaries containing \"premise\", \"hypothesis\" and \"label\" strings\n "
] |
Please provide a description of the function:def shake_shake_skip_connection(x, output_filters, stride, is_training):
curr_filters = common_layers.shape_list(x)[-1]
if curr_filters == output_filters:
return x
stride_spec = [1, stride, stride, 1]
# Skip path 1.
path1 = tf.nn.avg_pool(x, [1, 1, 1, 1], stride_spec, "VALID")
path1 = tf.layers.conv2d(
path1, int(output_filters / 2), (1, 1), padding="SAME", name="path1_conv")
# Skip path 2.
pad_arr = [[0, 0], [0, 1], [0, 1], [0, 0]] # First pad with 0's then crop.
path2 = tf.pad(x, pad_arr)[:, 1:, 1:, :]
path2 = tf.nn.avg_pool(path2, [1, 1, 1, 1], stride_spec, "VALID")
path2 = tf.layers.conv2d(
path2, int(output_filters / 2), (1, 1), padding="SAME", name="path2_conv")
# Concat and apply BN.
final_path = tf.concat(values=[path1, path2], axis=-1)
final_path = tf.layers.batch_normalization(
final_path, training=is_training, name="final_path_bn")
return final_path | [
"Adds a residual connection to the filter x for the shake-shake model."
] |
Please provide a description of the function:def shake_shake_branch(x, output_filters, stride, rand_forward, rand_backward,
hparams):
is_training = hparams.mode == tf.estimator.ModeKeys.TRAIN
x = tf.nn.relu(x)
x = tf.layers.conv2d(
x,
output_filters, (3, 3),
strides=(stride, stride),
padding="SAME",
name="conv1")
x = tf.layers.batch_normalization(x, training=is_training, name="bn1")
x = tf.nn.relu(x)
x = tf.layers.conv2d(x, output_filters, (3, 3), padding="SAME", name="conv2")
x = tf.layers.batch_normalization(x, training=is_training, name="bn2")
if is_training:
x = x * rand_backward + tf.stop_gradient(x * rand_forward -
x * rand_backward)
else:
x *= 1.0 / hparams.shake_shake_num_branches
return x | [
"Building a 2 branching convnet."
] |
Please provide a description of the function:def shake_shake_block(x, output_filters, stride, hparams):
is_training = hparams.mode == tf.estimator.ModeKeys.TRAIN
batch_size = common_layers.shape_list(x)[0]
# Generate random numbers for scaling the branches.
rand_forward = [
tf.random_uniform(
[batch_size, 1, 1, 1], minval=0, maxval=1, dtype=tf.float32)
for _ in range(hparams.shake_shake_num_branches)
]
rand_backward = [
tf.random_uniform(
[batch_size, 1, 1, 1], minval=0, maxval=1, dtype=tf.float32)
for _ in range(hparams.shake_shake_num_branches)
]
# Normalize so that all sum to 1.
total_forward = tf.add_n(rand_forward)
total_backward = tf.add_n(rand_backward)
rand_forward = [samp / total_forward for samp in rand_forward]
rand_backward = [samp / total_backward for samp in rand_backward]
zipped_rand = zip(rand_forward, rand_backward)
branches = []
for branch, (r_forward, r_backward) in enumerate(zipped_rand):
with tf.variable_scope("branch_{}".format(branch)):
b = shake_shake_branch(x, output_filters, stride, r_forward, r_backward,
hparams)
b = tf.nn.dropout(b, 1.0 - hparams.layer_prepostprocess_dropout)
branches.append(b)
res = shake_shake_skip_connection(x, output_filters, stride, is_training)
if hparams.shake_shake_concat:
concat_values = [res] + branches
concat_output = tf.concat(values=concat_values, axis=-1)
concat_output = tf.nn.relu(concat_output)
concat_output = tf.layers.conv2d(
concat_output, output_filters, (1, 1), name="concat_1x1")
concat_output = tf.layers.batch_normalization(
concat_output, training=is_training, name="concat_bn")
return concat_output
else:
return res + tf.add_n(branches) | [
"Builds a full shake-shake sub layer."
] |
Please provide a description of the function:def shake_shake_layer(x, output_filters, num_blocks, stride, hparams):
for block_num in range(num_blocks):
curr_stride = stride if (block_num == 0) else 1
with tf.variable_scope("layer_{}".format(block_num)):
x = shake_shake_block(x, output_filters, curr_stride, hparams)
return x | [
"Builds many sub layers into one full layer."
] |
Please provide a description of the function:def shakeshake_small():
hparams = common_hparams.basic_params1()
hparams.batch_size = 128
hparams.hidden_size = 32
hparams.layer_prepostprocess_dropout = 0.0
hparams.dropout = 0
hparams.label_smoothing = 0.0
hparams.clip_grad_norm = 0.0 # No clipping for now, one can also try 2.0.
hparams.num_hidden_layers = 26
hparams.learning_rate_decay_scheme = "cosine"
# Model should be run for 700000 steps with batch size 128 (~1800 epochs)
hparams.learning_rate_cosine_cycle_steps = 700000
hparams.learning_rate = 0.2
hparams.learning_rate_warmup_steps = 100 # That's basically unused.
hparams.initializer = "uniform_unit_scaling"
hparams.initializer_gain = 1.0
hparams.weight_decay = 1e-4
hparams.optimizer = "Momentum"
hparams.optimizer_momentum_momentum = 0.9
hparams.add_hparam("shake_shake_num_branches", 2)
hparams.add_hparam("shake_shake_concat", int(False))
return hparams | [
"Parameters for CIFAR-10. Gets to about 96% accuracy@700K steps, 1 GPU."
] |
Please provide a description of the function:def has_metric_plateaued(steps, values, num_steps=100, delta=0.1,
decrease=True):
assert num_steps > 0
if len(steps) < 2:
return False
steps_at_least_num_steps_ago = [
s for s in steps if s <= (steps[-1] - num_steps)
]
if not steps_at_least_num_steps_ago:
# Not enough steps yet
return False
delta_step_idx = len(steps_at_least_num_steps_ago) - 1
start_val = values[delta_step_idx]
values_to_check = values[delta_step_idx:]
observed_deltas = []
for val in values_to_check:
if decrease:
observed_delta = start_val - val
else:
observed_delta = val - start_val
observed_deltas.append(observed_delta)
within_range = [obs < delta for obs in observed_deltas]
return all(within_range) | [
"Check if metric has plateaued.\n\n A metric has plateaued if the value has not increased/decreased (depending on\n `decrease`) by `delta` for at least `num_steps`.\n\n Args:\n steps: list<int> list of global steps for values.\n values: list<float> list of metric values.\n num_steps: int, number of steps the metric has to have been plateaued for.\n delta: float, how much the metric should have changed by over num_steps.\n decrease: bool, whether to check if the metric has decreased by delta or\n increased by delta.\n\n Returns:\n bool, whether the metric has plateaued.\n "
] |
Please provide a description of the function:def next_frame_savp():
hparams = sv2p_params.next_frame_sv2p()
hparams.add_hparam("z_dim", 8)
hparams.add_hparam("num_discriminator_filters", 32)
hparams.add_hparam("use_vae", True)
hparams.add_hparam("use_gan", False)
hparams.add_hparam("use_spectral_norm", True)
hparams.add_hparam("gan_loss", "cross_entropy")
hparams.add_hparam("gan_loss_multiplier", 0.01)
hparams.add_hparam("gan_vae_loss_multiplier", 0.01)
hparams.add_hparam("gan_optimization", "joint")
hparams.bottom = {
"inputs": modalities.video_raw_bottom,
"targets": modalities.video_raw_targets_bottom,
}
hparams.loss = {
"targets": modalities.video_l1_raw_loss,
}
hparams.top = {
"targets": modalities.video_raw_top,
}
hparams.latent_loss_multiplier_schedule = "linear"
hparams.upsample_method = "bilinear_upsample_conv"
hparams.internal_loss = False
hparams.reward_prediction = False
hparams.anneal_end = 100000
hparams.num_iterations_1st_stage = 0
hparams.num_iterations_2nd_stage = 50000
return hparams | [
"SAVP model hparams."
] |
Please provide a description of the function:def next_frame_savp_vae():
hparams = next_frame_savp()
hparams.use_vae = True
hparams.use_gan = False
hparams.latent_loss_multiplier = 1e-3
hparams.latent_loss_multiplier_schedule = "linear_anneal"
return hparams | [
"SAVP - VAE only model."
] |
Please provide a description of the function:def next_frame_savp_gan():
hparams = next_frame_savp()
hparams.use_gan = True
hparams.use_vae = False
hparams.gan_loss_multiplier = 0.001
hparams.optimizer_adam_beta1 = 0.5
hparams.learning_rate_constant = 2e-4
hparams.gan_loss = "cross_entropy"
hparams.learning_rate_decay_steps = 100000
hparams.learning_rate_schedule = "constant*linear_decay"
return hparams | [
"SAVP - GAN only model."
] |
Please provide a description of the function:def diet_adam_optimizer_params():
return hparam.HParams(
quantize=True, # use 16-bit fixed-point
quantization_scale=10.0 / tf.int16.max,
optimizer="DietAdam",
learning_rate=1.0,
learning_rate_warmup_steps=2000,
learning_rate_decay_scheme="noam", # "noam" or "none"
epsilon=1e-10,
beta1=0.0, # we can save memory if beta1=0
beta2=0.98,
factored_second_moment_accumulator=True, # this saves memory
) | [
"Default hyperparameters for a DietAdamOptimizer.\n\n Returns:\n a hyperparameters object.\n "
] |
Please provide a description of the function:def diet_expert(x, hidden_size, params):
@fn_with_diet_vars(params)
def diet_expert_internal(x):
dim = x.get_shape().as_list()[-1]
h = tf.layers.dense(x, hidden_size, activation=tf.nn.relu, use_bias=False)
y = tf.layers.dense(h, dim, use_bias=False)
y *= tf.rsqrt(tf.to_float(dim * hidden_size))
return y
return diet_expert_internal(x) | [
"A two-layer feed-forward network with relu activation on hidden layer.\n\n Uses diet variables.\n Recomputes hidden layer on backprop to save activation memory.\n\n Args:\n x: a Tensor with shape [batch, io_size]\n hidden_size: an integer\n params: a diet variable HParams object.\n\n Returns:\n a Tensor with shape [batch, io_size]\n "
] |
Please provide a description of the function:def _quantize(x, params, randomize=True):
if not params.quantize:
return x
if not randomize:
return tf.bitcast(
tf.cast(x / params.quantization_scale, tf.int16), tf.float16)
abs_x = tf.abs(x)
sign_x = tf.sign(x)
y = abs_x / params.quantization_scale
y = tf.floor(y + tf.random_uniform(common_layers.shape_list(x)))
y = tf.minimum(y, tf.int16.max) * sign_x
q = tf.bitcast(tf.cast(y, tf.int16), tf.float16)
return q | [
"Quantize x according to params, optionally randomizing the rounding."
] |
Please provide a description of the function:def _dequantize(q, params):
if not params.quantize:
return q
return tf.to_float(tf.bitcast(q, tf.int16)) * params.quantization_scale | [
"Dequantize q according to params."
] |
Please provide a description of the function:def make_diet_var_getter(params):
def diet_var_initializer(shape, dtype, partition_info=None):
del dtype
del partition_info
with common_layers.fn_device_dependency("diet_init") as out_deps:
float_range = math.sqrt(3)
ret = tf.random_uniform(shape, -float_range, float_range)
if params.quantize:
ret = _quantize(ret, params, randomize=False)
out_deps.append(ret)
return ret
def diet_var_getter(getter, **kwargs):
if params.quantize:
kwargs["dtype"] = tf.float16
kwargs["initializer"] = diet_var_initializer
kwargs["trainable"] = False
base_var = getter(**kwargs)
dequantized = _dequantize(base_var, params)
if not hasattr(params, "dequantized"):
params.dequantized = defaultdict(list)
params.dequantized[base_var.name].append(dequantized)
return dequantized
return diet_var_getter | [
"Create a custom variable getter for diet variables according to params.",
"Initializer for a diet variable.",
"Get diet variable and return it dequantized."
] |
Please provide a description of the function:def _fn_with_diet_vars(fn, args, params):
vs_ctr = []
def grad_fn(inputs, variables, outputs, output_grads):
del outputs # recomputing below
with common_layers.fn_device_dependency("diet_grad",
output_grads[0].device) as out_dep:
with tf.variable_scope(vs_ctr[0], reuse=True):
outputs = fn(*inputs)
variables = [common_layers.underlying_variable_ref(v) for v in variables]
dequantized_variables = [
params.dequantized[v.name][-1] for v in variables
]
grads = tf.gradients(outputs, inputs + dequantized_variables,
output_grads)
grad_inputs = grads[:len(inputs)]
grad_variables = grads[len(inputs):]
opt = _create_diet_optimizer(params)
# Apply grad_variables here
var_updates = []
for v, dv in zip(variables, grad_variables):
with tf.variable_scope(vs_ctr[0].name):
opt.create_slots(v)
update_op = opt.update_variable(v, dv)
var_updates.append(update_op)
with tf.control_dependencies(var_updates):
grad_inputs = [tf.identity(dx) for dx in grad_inputs]
out_dep.append(grad_inputs)
return grad_inputs, [None] * len(variables)
@common_layers.fn_with_custom_grad(grad_fn, use_global_vars=True)
def forward(*inputs):
with tf.variable_scope(
None, default_name="diet",
custom_getter=make_diet_var_getter(params)) as vs:
vs_ctr.append(vs)
outputs = fn(*inputs)
return outputs
with common_layers.fn_device_dependency("diet_forward",
args[0].device) as out_dep:
outputs = forward(*args)
out_dep.append(outputs)
return outputs | [
"Call function with args; use diet variables according to params.",
"Custom gradient function."
] |
Please provide a description of the function:def fn_with_diet_vars(params):
params = copy.copy(params)
def dec(fn):
def wrapped(*args):
return _fn_with_diet_vars(fn, args, params)
return wrapped
return dec | [
"Decorator for graph-building function to use diet variables."
] |
Please provide a description of the function:def create_slots(self, var):
params = self.params
shape = var.get_shape().as_list()
if not hasattr(params, "slots"):
params.slots = defaultdict(dict)
name = var.op.name
slots = params.slots[name]
if params.factored_second_moment_accumulator and len(shape) == 2:
slots["adam_vr"] = tf.get_variable(
name + "_adam_vr", [shape[0], 1],
trainable=False,
initializer=tf.zeros_initializer())
slots["adam_vc"] = tf.get_variable(
name + "_adam_vc", [1, shape[1]],
trainable=False,
initializer=tf.zeros_initializer())
else:
slots["adam_v"] = tf.get_variable(
name + "_adam_v",
shape,
trainable=False,
initializer=tf.zeros_initializer())
if params.beta1 != 0.0:
slots["adam_m"] = tf.get_variable(
name + "_adam_m",
shape,
trainable=False,
initializer=tf.zeros_initializer()) | [
"Create the factorized Adam accumulators for diet variables."
] |
Please provide a description of the function:def update_variable(self, var, grad_var):
params = self.params
global_step = tf.to_float(self.global_step) + 1
# compute learning rate
lrate = params.learning_rate
if params.learning_rate_decay_scheme == "noam":
lrate *= tf.minimum(global_step * params.learning_rate_warmup_steps**-1.5,
global_step**-0.5)
else:
assert params.learning_rate_decay_scheme == "none"
lrate *= tf.minimum(global_step / params.learning_rate_warmup_steps, 1.0)
# compute adjustment due to second moment
slots = params.slots[var.op.name]
grad_squared = tf.square(grad_var)
beta2_pow = tf.pow(params.beta2, global_step)
if params.factored_second_moment_accumulator and len(var.shape) == 2:
vr_update = tf.assign(slots["adam_vr"], slots["adam_vr"] * params.beta2 +
tf.reduce_mean(grad_squared, 1, keepdims=True) *
(1.0 - params.beta2))
vc_update = tf.assign(slots["adam_vc"], slots["adam_vc"] * params.beta2 +
tf.reduce_mean(grad_squared, 0, keepdims=True) *
(1.0 - params.beta2))
with tf.control_dependencies([vr_update, vc_update]):
vr = tf.sqrt(slots["adam_vr"] / (1.0 - beta2_pow)) + params.epsilon
vc = tf.sqrt(slots["adam_vc"] / (1.0 - beta2_pow)) + params.epsilon
vc /= tf.reduce_mean(vc)
denom = vr * vc
else:
v_update = tf.assign(slots["adam_v"],
slots["adam_v"] * params.beta2 + grad_squared *
(1.0 - params.beta2))
with tf.control_dependencies([v_update]):
denom = tf.sqrt(slots["adam_v"] / (1.0 - beta2_pow)) + params.epsilon
# compute momentum if applicable
if params.beta1 != 0.0:
m_update = tf.assign(slots["adam_m"],
slots["adam_m"] * params.beta1 + grad_var *
(1.0 - params.beta1))
with tf.control_dependencies([m_update]):
grad_var = slots["adam_m"]
# update var
subtrahend = lrate * grad_var / denom
new_val = _quantize(_dequantize(var, params) - subtrahend, params)
return tf.assign(var, new_val) | [
"Update the variable and its slots."
] |
Please provide a description of the function:def estimator_spec_eval(
self, features, logits, labels, loss, restore_hook, use_tpu):
hparams = self.hparams
problem = hparams.problem
if logits.get_shape().ndims == 3:
logits = tf.expand_dims(tf.expand_dims(logits, 2), 3)
# Support for multiproblem
task_list = [problem]
if hasattr(problem, "task_list"):
task_list = problem.task_list
eval_metrics_fns = metrics.create_evaluation_metrics(task_list, hparams)
if use_tpu:
def metric_fn(tf_logits, labels):
with tf.device("cpu:0"), mtf.utils.outside_all_rewrites():
eval_metrics = {}
for metric_name, metric_fn in six.iteritems(eval_metrics_fns):
if metric_name.split("/")[-1] not in t2t_model.TPU_METRIC_BLACKLIST:
eval_metrics[metric_name] = metric_fn(
tf_logits, None, tf.identity(labels))
return eval_metrics
return tpu_estimator.TPUEstimatorSpec(
tf.estimator.ModeKeys.EVAL,
evaluation_hooks=[restore_hook],
loss=loss,
eval_metrics=(metric_fn, [logits, labels]))
else:
eval_metrics = {}
predictions = {"predictions": logits}
for metric_name, metric_fn in six.iteritems(eval_metrics_fns):
eval_metrics[metric_name] = metric_fn(logits, features,
features["targets"])
return tf.estimator.EstimatorSpec(
tf.estimator.ModeKeys.EVAL,
predictions=predictions,
eval_metric_ops=eval_metrics,
evaluation_hooks=[restore_hook],
loss=loss) | [
"Construct EstimatorSpec for EVAL mode."
] |
Please provide a description of the function:def generator_samples(tmp_dir, pb_cst):
# Step1: Download dataset (eventually)
data_zip_path = generator_utils.maybe_download_from_drive(
directory=tmp_dir,
filename=_DATASET_FILENAME,
url=_DATASET_URL,
)
tf.logging.info("Data downloaded in: {}".format(data_zip_path))
# Step2: Extract dataset
# We could deduce _DATASET_PB_PATH from the zip file (instead of
# hardcoded path)
data_rootdir = os.path.join(tmp_dir, _DATASET_PB_PATH)
if not tf.gfile.Exists(data_rootdir):
with zipfile.ZipFile(data_zip_path, "r") as corpus_zip:
corpus_zip.extractall(tmp_dir)
# We could remove the extracted __MACOSX folder
tf.logging.info("Data extracted in: {}".format(tmp_dir))
else:
tf.logging.info("Data already extracted in: {}".format(tmp_dir))
# Step3: Extract the problems list on the extracted folder
def contains_samples(subdir, dirs, files): # pylint: disable=unused-argument
return (
_DESC_DIR_NAME in dirs and
pb_cst.code_dir_name in dirs
)
def next_sample(subdir, dirs, files): # pylint: disable=unused-argument
# More could be extracted (like the expected inputs/outputs
# pairs, the problem difficulty, the names of the algorithmic techniques
# needed)
desc_file = os.path.join(subdir, _DESC_DIR_NAME, "description.txt")
code_files = []
# As the dataset is noisy, the program deduce the language from the file
# content.
code_pattern = os.path.join(subdir, pb_cst.code_dir_name, "*.txt")
for f in tf.gfile.Glob(code_pattern):
with tf.gfile.GFile(f, mode="r") as target_file:
# Hack to filter C++/Java files. In theory some python comments could
# make the file be considered as C++ but in practice the chance of
# getting a false negative is low.
content = target_file.read()
if not any(p in content for p in pb_cst.filter_patterns):
code_files.append(f)
return CodingPbInfo(
desc_file=desc_file,
code_files=code_files
)
# The dataset contains problem from two different sources (CodeChef
# and CodeForces). Due to the limited number of samples, all problems from
# both sources are merged
for w in tf.gfile.Walk(data_rootdir):
if contains_samples(*w):
yield next_sample(*w) | [
"Generator for the dataset samples.\n\n If not present, download and extract the dataset.\n\n Args:\n tmp_dir: path to the directory where to download the dataset.\n pb_cst: CodingPbConstants object defining paths\n\n Yields:\n A CodingPbInfo object containing the next challenge informations.\n ",
"Check that the folder contains a problem.",
"Return the filenames of the problem."
] |
Please provide a description of the function:def lstm(inputs, sequence_length, hparams, train, name, initial_state=None):
layers = [_dropout_lstm_cell(hparams, train)
for _ in range(hparams.num_hidden_layers)]
with tf.variable_scope(name):
return tf.nn.dynamic_rnn(
tf.nn.rnn_cell.MultiRNNCell(layers),
inputs,
sequence_length,
initial_state=initial_state,
dtype=tf.float32,
time_major=False) | [
"Adds a stack of LSTM layers on top of input.\n\n Args:\n inputs: The input `Tensor`, shaped `[batch_size, time_steps, hidden_size]`.\n sequence_length: Lengths of the actual input sequence, excluding padding; a\n `Tensor` shaped `[batch_size]`.\n hparams: HParams; hyperparameters.\n train: bool; `True` when constructing training graph to enable dropout.\n name: string; Create variable names under this scope.\n initial_state: tuple of `LSTMStateTuple`s; the initial state of each layer.\n\n Returns:\n A tuple (outputs, states), where:\n outputs: The output `Tensor`, shaped `[batch_size, time_steps,\n hidden_size]`.\n states: A tuple of `LSTMStateTuple`s; the final state of each layer.\n Bidirectional LSTM returns a concatenation of last forward and backward\n state, reduced to the original dimensionality.\n "
] |
Please provide a description of the function:def lstm_attention_decoder(inputs, hparams, train, name, initial_state,
encoder_outputs, encoder_output_length,
decoder_input_length):
layers = [_dropout_lstm_cell(hparams, train)
for _ in range(hparams.num_hidden_layers)]
if hparams.attention_mechanism == "luong":
attention_mechanism_class = tf.contrib.seq2seq.LuongAttention
elif hparams.attention_mechanism == "bahdanau":
attention_mechanism_class = tf.contrib.seq2seq.BahdanauAttention
else:
raise ValueError("Unknown hparams.attention_mechanism = %s, must be "
"luong or bahdanau." % hparams.attention_mechanism)
if hparams.get("max_area_width", 1) > 1:
def _area_key_value_fn(keys, values):
tf.logging.info("max_area_width=%d, area_key_mode=%s, area_value_mode=%s",
hparams.get("max_area_width", 1),
hparams.get("area_key_mode", "none"),
hparams.get("area_value_mode", "none"))
keys = area_attention.compute_area_key(
keys, max_area_width=hparams.get("max_area_width", 1),
mode=hparams.get("area_key_mode", "none"), name="decoder_encoder",
training=(hparams.mode == tf.estimator.ModeKeys.TRAIN))
if hparams.get("area_value_mode", "none") == "sum":
_, _, values, _, _ = area_attention.compute_area_features(
values, max_area_width=hparams.get("max_area_width", 1))
elif hparams.get("area_value_mode", "none") == "mean":
values, _, _, _, _ = area_attention.compute_area_features(
values, max_area_width=hparams.get("max_area_width", 1))
else:
raise ValueError(
"Unsupported area_value_mode: %s" % hparams.get(
"area_value_mode", "none"))
return keys, values
area_mask = area_attention.lengths_to_area_mask(
feature_length=encoder_output_length,
length=common_layers.shape_list(encoder_outputs)[1],
max_area_size=hparams.get("max_area_width", "1"))
def _area_prob_fn(score):
alignments = tf.nn.softmax(score)
alignments = tf.where(area_mask, alignments, tf.zeros_like(alignments))
alignments = tf.div(alignments, tf.reduce_sum(
alignments, axis=-1, keepdims=True))
return alignments
attention_mechanism = attention_mechanism_class(
hparams.hidden_size, encoder_outputs,
memory_sequence_length=None,
probability_fn=_area_prob_fn,
custom_key_value_fn=_area_key_value_fn)
else:
attention_mechanism = attention_mechanism_class(hparams.hidden_size,
encoder_outputs)
cell = tf.contrib.seq2seq.AttentionWrapper(
tf.nn.rnn_cell.MultiRNNCell(layers),
[attention_mechanism]*hparams.num_heads,
attention_layer_size=[hparams.attention_layer_size]*hparams.num_heads,
output_attention=(hparams.output_attention == 1))
batch_size = common_layers.shape_list(inputs)[0]
initial_state = cell.zero_state(batch_size, tf.float32).clone(
cell_state=initial_state)
with tf.variable_scope(name):
output, _ = tf.nn.dynamic_rnn(
cell,
inputs,
decoder_input_length,
initial_state=initial_state,
dtype=tf.float32,
time_major=False)
# output is [batch_size, decoder_steps, attention_size], where
# attention_size is either hparams.hidden_size (when
# hparams.output_attention is 0) or hparams.attention_layer_size (when
# hparams.output_attention is 1) times the number of attention heads.
#
# For multi-head attention project output back to hidden size.
if hparams.output_attention == 1 and hparams.num_heads > 1:
output = tf.layers.dense(output, hparams.hidden_size)
return output | [
"Run LSTM cell with attention on inputs of shape [batch x time x size].\n\n Args:\n inputs: The decoder input `Tensor`, shaped `[batch_size, decoder_steps,\n hidden_size]`.\n hparams: HParams; hyperparameters.\n train: bool; `True` when constructing training graph to enable dropout.\n name: string; Create variable names under this scope.\n initial_state: Tuple of `LSTMStateTuple`s; the initial state of each layer.\n encoder_outputs: Encoder outputs; a `Tensor` shaped `[batch_size,\n encoder_steps, hidden_size]`.\n encoder_output_length: Lengths of the actual encoder outputs, excluding\n padding; a `Tensor` shaped `[batch_size]`.\n decoder_input_length: Lengths of the actual decoder inputs, excluding\n padding; a `Tensor` shaped `[batch_size]`.\n\n Raises:\n ValueError: If the hparams.attention_mechanism is anything other than\n luong or bahdanau.\n\n Returns:\n The decoder output `Tensor`, shaped `[batch_size, decoder_steps,\n hidden_size]`.\n ",
"Custom fn for computing area keys and values."
] |
Please provide a description of the function:def lstm_seq2seq_internal(inputs, targets, hparams, train):
with tf.variable_scope("lstm_seq2seq"):
if inputs is not None:
inputs_length = common_layers.length_from_embedding(inputs)
# Flatten inputs.
inputs = common_layers.flatten4d3d(inputs)
# LSTM encoder.
inputs = tf.reverse_sequence(inputs, inputs_length, seq_axis=1)
_, final_encoder_state = lstm(inputs, inputs_length, hparams, train,
"encoder")
else:
final_encoder_state = None
# LSTM decoder.
shifted_targets = common_layers.shift_right(targets)
# Add 1 to account for the padding added to the left from shift_right
targets_length = common_layers.length_from_embedding(shifted_targets) + 1
decoder_outputs, _ = lstm(
common_layers.flatten4d3d(shifted_targets),
targets_length,
hparams,
train,
"decoder",
initial_state=final_encoder_state)
return tf.expand_dims(decoder_outputs, axis=2) | [
"The basic LSTM seq2seq model, main step used for training."
] |
Please provide a description of the function:def lstm_seq2seq_internal_attention(inputs, targets, hparams, train,
inputs_length, targets_length):
with tf.variable_scope("lstm_seq2seq_attention"):
# Flatten inputs.
inputs = common_layers.flatten4d3d(inputs)
# LSTM encoder.
inputs = tf.reverse_sequence(inputs, inputs_length, seq_axis=1)
encoder_outputs, final_encoder_state = lstm(
inputs, inputs_length, hparams, train, "encoder")
# LSTM decoder with attention.
shifted_targets = common_layers.shift_right(targets)
# Add 1 to account for the padding added to the left from shift_right
targets_length = targets_length + 1
decoder_outputs = lstm_attention_decoder(
common_layers.flatten4d3d(shifted_targets), hparams, train, "decoder",
final_encoder_state, encoder_outputs, inputs_length, targets_length)
return tf.expand_dims(decoder_outputs, axis=2) | [
"LSTM seq2seq model with attention, main step used for training."
] |
Please provide a description of the function:def lstm_bid_encoder(inputs, sequence_length, hparams, train, name):
with tf.variable_scope(name):
cell_fw = tf.nn.rnn_cell.MultiRNNCell(
[_dropout_lstm_cell(hparams, train)
for _ in range(hparams.num_hidden_layers)])
cell_bw = tf.nn.rnn_cell.MultiRNNCell(
[_dropout_lstm_cell(hparams, train)
for _ in range(hparams.num_hidden_layers)])
((encoder_fw_outputs, encoder_bw_outputs),
(encoder_fw_state, encoder_bw_state)) = tf.nn.bidirectional_dynamic_rnn(
cell_fw,
cell_bw,
inputs,
sequence_length,
dtype=tf.float32,
time_major=False)
encoder_outputs = tf.concat((encoder_fw_outputs, encoder_bw_outputs), 2)
encoder_states = []
for i in range(hparams.num_hidden_layers):
if isinstance(encoder_fw_state[i], tf.nn.rnn_cell.LSTMStateTuple):
encoder_state_c = tf.concat(
values=(encoder_fw_state[i].c, encoder_bw_state[i].c),
axis=1,
name="encoder_fw_state_c")
encoder_state_h = tf.concat(
values=(encoder_fw_state[i].h, encoder_bw_state[i].h),
axis=1,
name="encoder_fw_state_h")
encoder_state = tf.nn.rnn_cell.LSTMStateTuple(
c=encoder_state_c, h=encoder_state_h)
elif isinstance(encoder_fw_state[i], tf.Tensor):
encoder_state = tf.concat(
values=(encoder_fw_state[i], encoder_bw_state[i]),
axis=1,
name="bidirectional_concat")
encoder_states.append(encoder_state)
encoder_states = tuple(encoder_states)
return encoder_outputs, encoder_states | [
"Bidirectional LSTM for encoding inputs that are [batch x time x size]."
] |
Please provide a description of the function:def lstm_seq2seq_internal_bid_encoder(inputs, targets, hparams, train):
with tf.variable_scope("lstm_seq2seq_bid_encoder"):
if inputs is not None:
inputs_length = common_layers.length_from_embedding(inputs)
# Flatten inputs.
inputs = common_layers.flatten4d3d(inputs)
# LSTM encoder.
_, final_encoder_state = lstm_bid_encoder(
inputs, inputs_length, hparams, train, "encoder")
else:
inputs_length = None
final_encoder_state = None
# LSTM decoder.
shifted_targets = common_layers.shift_right(targets)
# Add 1 to account for the padding added to the left from shift_right
targets_length = common_layers.length_from_embedding(shifted_targets) + 1
hparams_decoder = copy.copy(hparams)
hparams_decoder.hidden_size = 2 * hparams.hidden_size
decoder_outputs, _ = lstm(
common_layers.flatten4d3d(shifted_targets),
targets_length,
hparams_decoder,
train,
"decoder",
initial_state=final_encoder_state)
return tf.expand_dims(decoder_outputs, axis=2) | [
"The basic LSTM seq2seq model with bidirectional encoder."
] |
Please provide a description of the function:def lstm_seq2seq_internal_attention_bid_encoder(inputs, targets, hparams,
train):
with tf.variable_scope("lstm_seq2seq_attention_bid_encoder"):
inputs_length = common_layers.length_from_embedding(inputs)
# Flatten inputs.
inputs = common_layers.flatten4d3d(inputs)
# LSTM encoder.
encoder_outputs, final_encoder_state = lstm_bid_encoder(
inputs, inputs_length, hparams, train, "encoder")
# LSTM decoder with attention
shifted_targets = common_layers.shift_right(targets)
# Add 1 to account for the padding added to the left from shift_right
targets_length = common_layers.length_from_embedding(shifted_targets) + 1
hparams_decoder = copy.copy(hparams)
hparams_decoder.hidden_size = 2 * hparams.hidden_size
decoder_outputs = lstm_attention_decoder(
common_layers.flatten4d3d(shifted_targets), hparams_decoder, train,
"decoder", final_encoder_state, encoder_outputs,
inputs_length, targets_length)
return tf.expand_dims(decoder_outputs, axis=2) | [
"LSTM seq2seq model with attention, main step used for training."
] |
Please provide a description of the function:def lstm_seq2seq():
hparams = common_hparams.basic_params1()
hparams.daisy_chain_variables = False
hparams.batch_size = 1024
hparams.hidden_size = 128
hparams.num_hidden_layers = 2
hparams.initializer = "uniform_unit_scaling"
hparams.initializer_gain = 1.0
hparams.weight_decay = 0.0
return hparams | [
"hparams for LSTM."
] |
Please provide a description of the function:def lstm_attention_base():
hparams = lstm_seq2seq()
hparams.add_hparam("attention_layer_size", hparams.hidden_size)
hparams.add_hparam("output_attention", True)
hparams.add_hparam("num_heads", 1)
return hparams | [
"Base attention params."
] |
Please provide a description of the function:def lstm_asr_v1():
hparams = lstm_bahdanau_attention()
hparams.num_hidden_layers = 2
hparams.hidden_size = 256
hparams.batch_size = 36
hparams.max_input_seq_length = 600000
hparams.max_target_seq_length = 350
hparams.max_length = hparams.max_input_seq_length
hparams.min_length_bucket = hparams.max_input_seq_length // 2
hparams.learning_rate = 0.05
return hparams | [
"Basic LSTM Params."
] |
Please provide a description of the function:def lstm_area_attention_base():
hparams = lstm_luong_attention()
hparams.batch_size = 16384
hparams.num_hidden_layers = 2
hparams.hidden_size = 1024
hparams.num_heads = 4
hparams.dropout = 0.2
hparams.learning_rate = 0.1
hparams.max_area_width = 2
hparams.area_key_mode = "mean"
hparams.area_value_mode = "sum"
return hparams | [
"Hparams for LSTM with area attention."
] |
Please provide a description of the function:def create_surrogate_run_config(hp):
save_ckpt_steps = max(FLAGS.iterations_per_loop, FLAGS.local_eval_frequency)
save_ckpt_secs = FLAGS.save_checkpoints_secs or None
if save_ckpt_secs:
save_ckpt_steps = None
assert FLAGS.surrogate_output_dir
# the various custom getters we have written do not play well together yet.
# TODO(noam): ask rsepassi for help here.
daisy_chain_variables = (
hp.daisy_chain_variables and hp.activation_dtype == "float32" and
hp.weight_dtype == "float32")
return trainer_lib.create_run_config(
model_name=FLAGS.model,
model_dir=os.path.expanduser(FLAGS.surrogate_output_dir),
master=FLAGS.master,
iterations_per_loop=FLAGS.iterations_per_loop,
num_shards=FLAGS.tpu_num_shards,
log_device_placement=FLAGS.log_device_placement,
save_checkpoints_steps=save_ckpt_steps,
save_checkpoints_secs=save_ckpt_secs,
keep_checkpoint_max=FLAGS.keep_checkpoint_max,
keep_checkpoint_every_n_hours=FLAGS.keep_checkpoint_every_n_hours,
num_gpus=FLAGS.worker_gpu,
gpu_order=FLAGS.gpu_order,
num_async_replicas=FLAGS.worker_replicas,
gpu_mem_fraction=FLAGS.worker_gpu_memory_fraction,
enable_graph_rewriter=FLAGS.enable_graph_rewriter,
use_tpu=FLAGS.use_tpu,
schedule=FLAGS.schedule,
no_data_parallelism=hp.no_data_parallelism,
daisy_chain_variables=daisy_chain_variables,
ps_replicas=FLAGS.ps_replicas,
ps_job=FLAGS.ps_job,
ps_gpu=FLAGS.ps_gpu,
sync=FLAGS.sync,
worker_id=FLAGS.worker_id,
worker_job=FLAGS.worker_job,
random_seed=FLAGS.random_seed,
tpu_infeed_sleep_secs=FLAGS.tpu_infeed_sleep_secs,
inter_op_parallelism_threads=FLAGS.inter_op_parallelism_threads,
log_step_count_steps=FLAGS.log_step_count_steps,
intra_op_parallelism_threads=FLAGS.intra_op_parallelism_threads) | [
"Create a run config.\n\n Args:\n hp: model hyperparameters\n Returns:\n a run config\n "
] |
Please provide a description of the function:def prepare_data(problem, hparams, params, config):
input_fn = problem.make_estimator_input_fn(
tf.estimator.ModeKeys.EVAL, hparams, force_repeat=True)
dataset = input_fn(params, config)
features, _ = dataset.make_one_shot_iterator().get_next()
inputs, labels = features["targets"], features["inputs"]
inputs = tf.to_float(inputs)
input_shape = inputs.shape.as_list()
inputs = tf.reshape(inputs, [hparams.batch_size] + input_shape[1:])
labels = tf.reshape(labels, [hparams.batch_size])
return inputs, labels, features | [
"Construct input pipeline."
] |
Please provide a description of the function:def encode(self, s):
# Make sure that the data is a single channel, 16bit, 16kHz wave.
# TODO(chorowski): the directory may not be writable, this should fallback
# to a temp path, and provide instructions for installing sox.
if s.endswith(".mp3"):
# TODO(dliebling) On Linux, check if libsox-fmt-mp3 is installed.
out_filepath = s[:-4] + ".wav"
call([
"sox", "--guard", s, "-r", "16k", "-b", "16", "-c", "1", out_filepath
])
s = out_filepath
elif not s.endswith(".wav"):
out_filepath = s + ".wav"
if not os.path.exists(out_filepath):
call(["sox", "-r", "16k", "-b", "16", "-c", "1", s, out_filepath])
s = out_filepath
rate, data = wavfile.read(s)
assert rate == self._sample_rate
assert len(data.shape) == 1
if data.dtype not in [np.float32, np.float64]:
data = data.astype(np.float32) / np.iinfo(data.dtype).max
return data.tolist() | [
"Transform a string with a filename into a list of float32.\n\n Args:\n s: path to the file with a waveform.\n\n Returns:\n samples: list of int16s\n "
] |
Please provide a description of the function:def decode(self, ids):
_, tmp_file_path = tempfile.mkstemp()
wavfile.write(tmp_file_path, self._sample_rate, np.asarray(ids))
return tmp_file_path | [
"Transform a sequence of float32 into a waveform.\n\n Args:\n ids: list of integers to be converted.\n\n Returns:\n Path to the temporary file where the waveform was saved.\n\n Raises:\n ValueError: if the ids are not of the appropriate size.\n "
] |
Please provide a description of the function:def new_vertex(self):
vertex = Vertex(len(self.vertices))
self.vertices.append(vertex)
return vertex | [
"Creates and returns a new vertex.\n\n Returns:\n A new Vertex instance with a unique index.\n "
] |
Please provide a description of the function:def get_vertex(self, key):
if key in self.vertex_map:
return self.vertex_map[key]
vertex = self.new_vertex()
self.vertex_map[key] = vertex
return vertex | [
"Returns or Creates a Vertex mapped by key.\n\n Args:\n key: A string reference for a vertex. May refer to a new Vertex in which\n case it will be created.\n\n Returns:\n A the Vertex mapped to by key.\n "
] |
Please provide a description of the function:def add_edge(self, source, target):
edge = Edge(len(self.edges))
self.edges.append(edge)
source.out_edges.append(edge.idx)
target.in_edges.append(edge.idx)
edge.source = source.idx
edge.target = target.idx
return edge | [
"Returns a new edge connecting source and target vertices.\n\n Args:\n source: The source Vertex.\n target: The target Vertex.\n\n Returns:\n A new Edge linking source to target.\n "
] |
Please provide a description of the function:def to_dict(self):
return {
"node": [v.to_dict() for v in self.vertices],
"edge": [e.to_dict() for e in self.edges]
} | [
"Returns a simplified dictionary representing the Graph.\n\n Returns:\n A dictionary that can easily be serialized to JSON.\n "
] |
Please provide a description of the function:def attend(x, source, hparams, name):
with tf.variable_scope(name):
x = tf.squeeze(x, axis=2)
if len(source.get_shape()) > 3:
source = tf.squeeze(source, axis=2)
source = common_attention.add_timing_signal_1d(source)
y = common_attention.multihead_attention(
common_layers.layer_preprocess(x, hparams), source, None,
hparams.attention_key_channels or hparams.hidden_size,
hparams.attention_value_channels or hparams.hidden_size,
hparams.hidden_size, hparams.num_heads,
hparams.attention_dropout)
res = common_layers.layer_postprocess(x, y, hparams)
return tf.expand_dims(res, axis=2) | [
"Self-attention layer with source as memory antecedent."
] |
Please provide a description of the function:def top_k_softmax(x, k):
x = tf.nn.softmax(x)
top_x, _ = tf.nn.top_k(x, k=k+1)
min_top = tf.reduce_min(top_x, axis=-1, keepdims=True)
x = tf.nn.relu((x - min_top) + 1e-12)
x /= tf.reduce_sum(x, axis=-1, keepdims=True)
return x, tf.reduce_max(top_x, axis=-1) | [
"Calculate softmax(x), select top-k and rescale to sum to 1."
] |
Please provide a description of the function:def compress(x, c, is_2d, hparams, name):
with tf.variable_scope(name):
# Run compression by strided convs.
cur = x
k1 = (3, 3) if is_2d else (3, 1)
k2 = (2, 2) if is_2d else (2, 1)
cur = residual_conv(cur, hparams.num_compress_steps, k1, hparams, "rc")
if c is not None and hparams.do_attend_compress:
cur = attend(cur, c, hparams, "compress_attend")
for i in range(hparams.num_compress_steps):
if hparams.do_residual_compress:
cur = residual_conv(cur, hparams.num_compress_steps, k1, hparams,
"rc_%d" % i)
cur = common_layers.conv_block(
cur, hparams.hidden_size, [((1, 1), k2)],
strides=k2, name="compress_%d" % i)
return cur | [
"Compress."
] |
Please provide a description of the function:def decode_transformer(encoder_output,
encoder_decoder_attention_bias,
targets,
hparams,
name,
task=None,
causal=True):
orig_hparams = hparams
with tf.variable_scope(name):
if task is None:
task = hparams.task
if task == "translate":
targets = common_layers.flatten4d3d(targets)
decoder_input, decoder_self_bias = (
transformer.transformer_prepare_decoder(targets, hparams))
decoder_input = tf.nn.dropout(decoder_input,
1.0 - hparams.layer_prepostprocess_dropout)
if not causal:
decoder_self_bias *= 0.
decoder_output = transformer.transformer_decoder(
decoder_input,
encoder_output,
decoder_self_bias,
encoder_decoder_attention_bias,
hparams)
decoder_output = tf.expand_dims(decoder_output, axis=2)
else:
assert task == "image"
inputs = None
# have to reshape targets as b, 32, 32, 3 * hidden size] beacuse otherwise
# prepare_image will choke
targets = tf.reshape(targets, [tf.shape(targets)[0], hparams.img_len,
hparams.img_len,
hparams.num_channels*hparams.hidden_size])
# Prepare decoder inputs and bias.
# TODO(nikip): Make prepare_decoder return bias
decoder_input, _, _ = cia.prepare_decoder(targets, hparams)
bias = None
# Add class label to decoder input.
if not hparams.drop_inputs:
decoder_input += tf.reshape(
inputs,
[common_layers.shape_list(targets)[0], 1, 1, hparams.hidden_size])
decoder_output = cia.transformer_decoder_layers(
decoder_input,
encoder_output=None,
num_layers=hparams.num_decoder_layers or hparams.num_hidden_layers,
hparams=hparams,
self_attention_bias=bias,
attention_type=hparams.dec_attention_type,
name="decoder")
decoder_output_shape = common_layers.shape_list(decoder_output)
decoder_output = tf.reshape(decoder_output, [decoder_output_shape[0], -1, 1,
hparams.hidden_size])
# Expand since t2t expects 4d tensors.
hparams = orig_hparams
return decoder_output | [
"Original Transformer decoder."
] |
Please provide a description of the function:def ae_latent_softmax(latents_pred, latents_discrete, hparams):
vocab_size = 2 ** hparams.z_size
if hparams.num_decode_blocks < 2:
latents_logits = tf.layers.dense(latents_pred, vocab_size,
name="extra_logits")
if hparams.logit_normalization:
latents_logits *= tf.rsqrt(1e-8 +
tf.reduce_mean(tf.square(latents_logits)))
loss = None
if latents_discrete is not None:
if hparams.soft_em:
# latents_discrete is actually one-hot of multinomial samples
assert hparams.num_decode_blocks == 1
loss = tf.nn.softmax_cross_entropy_with_logits_v2(
labels=latents_discrete, logits=latents_logits)
else:
loss = tf.nn.sparse_softmax_cross_entropy_with_logits(
labels=latents_discrete, logits=latents_logits)
sample = multinomial_sample(
latents_logits, vocab_size, hparams.sampling_temp)
return sample, loss
# Multi-block case.
vocab_bits = int(math.log(vocab_size, 2))
assert vocab_size == 2**vocab_bits
assert vocab_bits % hparams.num_decode_blocks == 0
block_vocab_size = 2**(vocab_bits // hparams.num_decode_blocks)
latents_logits = [
tf.layers.dense(
latents_pred, block_vocab_size, name="extra_logits_%d" % i)
for i in range(hparams.num_decode_blocks)
]
loss = None
if latents_discrete is not None:
losses = []
for i in range(hparams.num_decode_blocks):
d = tf.floormod(tf.floordiv(latents_discrete,
block_vocab_size**i), block_vocab_size)
losses.append(tf.nn.sparse_softmax_cross_entropy_with_logits(
labels=d, logits=latents_logits[i]))
loss = sum(losses)
samples = [multinomial_sample(l, block_vocab_size, hparams.sampling_temp)
for l in latents_logits]
sample = sum([s * block_vocab_size**i for i, s in enumerate(samples)])
return sample, loss | [
"Latent prediction and loss."
] |
Please provide a description of the function:def ae_latent_sample(latents_dense, inputs, ed, embed, iters, hparams):
if hparams.num_decode_blocks < 2 and hparams.sampling_temp == 0.0:
# TODO(lukaszkaiser): beam-search only works in non-blocked mode for now.
tf.logging.info("Running beam-search for latents with beam size 1.")
return ae_latent_sample_beam(latents_dense, inputs, ed, embed, hparams)
latents_pred = decode_transformer(inputs, ed, latents_dense, hparams, "extra")
latents_discrete, _ = ae_latent_softmax(latents_pred, None, hparams)
def next_bit(latents_discrete, i):
latents_discrete_prev = latents_discrete
with tf.variable_scope(tf.get_variable_scope(), reuse=True):
latents_dense = embed(latents_discrete)
latents_pred = decode_transformer(
inputs, ed, latents_dense, hparams, "extra")
latents_discrete, _ = ae_latent_softmax(latents_pred, None, hparams)
return tf.concat([latents_discrete_prev[:, :(i+1), :],
latents_discrete[:, (i+1):, :]], axis=1)
for i in range(iters):
latents_discrete = next_bit(latents_discrete, i)
return latents_discrete | [
"Sample from the latent space in the autoencoder."
] |
Please provide a description of the function:def ae_transformer_internal(inputs,
targets,
target_space,
hparams,
cache=None,
predict_mask=1.0):
# Summaries break with the do_refine cond, turn them off in that case.
global _DO_SUMMARIES
if hparams.do_refine:
_DO_SUMMARIES = False
# Prepare.
if inputs is not None:
batch_size = common_layers.shape_list(inputs)[0]
else:
batch_size = common_layers.shape_list(targets)[0]
targets = tf.reshape(targets, [batch_size, -1, 1, hparams.hidden_size])
# Encoder.
if inputs is not None:
inputs = common_layers.flatten4d3d(inputs)
inputs, ed = encode(inputs, target_space, hparams, "input_enc")
inputs_ex, ed_ex = inputs, ed
else:
ed, inputs_ex, ed_ex = None, None, None
# Autoencoding.
losses = {"extra": tf.constant(0.0), "latent_pred": tf.constant(0.0),
"neg_q_entropy": tf.constant(0.0)}
if hparams.do_ae:
# flatten here
original_targets = targets
original_targets_shape = tf.shape(original_targets)
if hparams.task == "image":
cia.maybe_reshape_4d_to_3d(targets)
if hparams.task == "translate":
if inputs is not None:
max_targets_len_from_inputs = tf.concat([inputs, inputs], axis=1)
else:
max_targets_len_from_inputs = targets
else:
assert hparams.task == "image"
max_targets_len_from_inputs = targets
if hparams.word_shuffle:
tf.logging.info("Using word shuffle with rate = {}".format(
hparams.word_shuffle))
targets_idx = tf.range(start=0,
limit=common_layers.shape_list(targets)[1],
delta=1)
targets_idx = tf.to_float(targets_idx)
noise = tf.random_uniform(shape=common_layers.shape_list(targets_idx),
minval=0,
maxval=1 + hparams.word_shuffle)
targets_idx += noise
permutation = tf.contrib.framework.argsort(targets_idx)
targets_permuted = tf.gather(targets, indices=permutation, axis=1)
targets = targets_permuted
targets, _ = common_layers.pad_to_same_length(
targets, max_targets_len_from_inputs,
final_length_divisible_by=2**hparams.num_compress_steps)
# Add positional information
targets_shape = common_layers.shape_list(targets)
targets = tf.reshape(targets, [targets_shape[0], targets_shape[1],
targets_shape[3]])
targets = common_attention.add_positional_embedding(
targets, hparams.max_length, name="targets_position")
targets = tf.reshape(targets, shape=targets_shape)
if hparams.word_dropout:
mask = tf.random_uniform(shape=common_layers.shape_list(targets),
minval=0.0, maxval=1.0)
targets_noisy = tf.where(mask > hparams.word_dropout, targets,
tf.zeros_like(targets))
else:
targets_noisy = targets
targets_c = compress(targets_noisy, inputs, False, hparams, "compress")
if hparams.mode != tf.estimator.ModeKeys.PREDICT:
# Compress and bottleneck.
latents_dense, latents_discrete, extra_loss, embed, neg_q_entropy = (
hparams.bottleneck(inputs=targets_c,
filter_size=hparams.compress_filter_size,
mode=hparams.mode,
name="vc"))
if _DO_SUMMARIES:
tf.summary.histogram("b0", tf.reshape(latents_discrete[:, 0, :], [-1]))
pc = common_layers.inverse_exp_decay(hparams.startup_steps)
pc = pc if hparams.mode == tf.estimator.ModeKeys.TRAIN else 1.0
cond = tf.less(tf.random_uniform([batch_size]), pc)
latents_dense = tf.where(cond, latents_dense, targets_c)
# TODO(lukaszkaiser): return extra losses batchwise, multiply before mean.
losses["extra"] = extra_loss * tf.reduce_mean(tf.to_float(cond))
# Extra loss predicting latent code from input. Discrete only.
if hparams.bottleneck_kind not in ["dense", "vae"]:
latents_pred = decode_transformer(
inputs_ex, ed_ex,
embed(latents_discrete), hparams, "extra",
task="translate")
_, latent_pred_loss = ae_latent_softmax(
latents_pred, tf.stop_gradient(latents_discrete), hparams)
# Scale by latent dimension for summary so we can compare across
# batches.
if _DO_SUMMARIES:
tf.summary.scalar("latent_pred_loss_mean",
tf.reduce_mean(latent_pred_loss))
if hparams.sum_over_latents:
latent_pred_loss = tf.reduce_sum(latent_pred_loss, [1, 2])
losses["latent_pred"] = tf.reduce_mean(
latent_pred_loss * tf.to_float(cond)) * hparams.prior_scale
losses["neg_q_entropy"] = neg_q_entropy * hparams.entropy_scale
else:
inputs_c = decode_transformer(inputs, ed, targets_c, hparams, "dec_c")
losses["latent_pred"] = tf.reduce_mean(
tf.squared_difference(inputs_c, targets_c)) * 20
def bn_inputs():
with tf.variable_scope(tf.get_variable_scope(), reuse=True):
bn, _, _, _, _ = hparams.bottleneck(
inputs=inputs_c,
filter_size=hparams.compress_filter_size,
mode=hparams.mode,
name="vc")
return bn
inputs_c = bn_inputs()
ptc = 1.0 - common_layers.inverse_lin_decay(200000) * 0.5
ptc = ptc if hparams.mode == tf.estimator.ModeKeys.TRAIN else 1.0
latents_dense = tf.where(tf.less(tf.random_uniform([batch_size]), ptc),
latents_dense, inputs_c)
else:
if hparams.bottleneck_kind in ["dense", "vae"]:
inputs_c = decode_transformer(inputs, ed, targets_c, hparams, "dec_c")
latents_dense, _, _, _, _ = hparams.bottleneck(
inputs=inputs_c,
filter_size=hparams.compress_filter_size,
mode=hparams.mode,
name="vc")
else:
latent_len = common_layers.shape_list(targets_c)[1]
_, _, _, embed, _ = hparams.bottleneck(
inputs=targets_c,
filter_size=hparams.compress_filter_size,
name="vc")
latents_dense = tf.zeros_like(targets_c[:, :latent_len, :, :])
if cache is None:
cache = ae_latent_sample(
latents_dense, inputs_ex, ed_ex, embed, 16, hparams)
latents_dense = embed(cache)
# Postprocess.
d = latents_dense
d_shape = common_layers.shape_list(d)
d = tf.reshape(d, [d_shape[0], d_shape[1], d_shape[3]])
d = common_attention.add_positional_embedding(
d, hparams.max_length, name="latents_position")
d = tf.reshape(d, shape=d_shape)
# decompressing the dense latents
for i in range(hparams.num_compress_steps):
j = hparams.num_compress_steps - i - 1
d = residual_conv(d, 1, (3, 1), hparams, "decompress_rc_%d" % j)
if inputs is not None and hparams.do_attend_decompress:
d = attend(d, inputs, hparams, "decompress_attend_%d" % j)
d = decompress_step(d, hparams, i > 0, False, "decompress_%d" % j)
# Masking.
if hparams.do_mask:
masking = common_layers.inverse_lin_decay(hparams.mask_startup_steps)
masking *= common_layers.inverse_exp_decay(
hparams.mask_startup_steps // 4) # Not much at start.
if not hparams.do_refine:
masking -= tf.random_uniform([]) * hparams.unmasked_percentage
masking = tf.minimum(tf.maximum(masking, 0.0), 1.0)
if hparams.use_predict_mask:
masking = predict_mask
if hparams.mode == tf.estimator.ModeKeys.PREDICT:
masking = predict_mask
mask = tf.less(masking, tf.random_uniform(
common_layers.shape_list(targets)[:-1]))
mask = tf.expand_dims(tf.to_float(mask), 3)
# targets is always [batch, length, 1, depth]
targets = mask * targets + (1.0 - mask) * d
# reshape back to 4d here
if hparams.task == "image":
targets = tf.reshape(targets, original_targets_shape)
res = decode_transformer(inputs, ed, targets, hparams, "decoder",
causal=hparams.causal)
if hparams.do_ae:
if hparams.do_mask and hparams.do_refine:
def refine_res():
# return residual_conv(res, 1, (5, 1), hparams, "refine")
r, _ = encode(tf.squeeze(res, axis=[2]),
target_space, hparams, "refine_enc")
return tf.expand_dims(r, axis=2)
masked_batches = tf.reduce_sum(mask, axis=[1, 2, 3])
all_masked = tf.less(masked_batches, 0.1)
res = tf.where(all_masked, refine_res(), res)
# We'll start training the extra model of latents after mask_startup_steps.
nonlatent_steps = hparams.mask_startup_steps
latent_time = tf.less(nonlatent_steps,
tf.to_int32(tf.train.get_global_step()))
losses["latent_pred"] *= tf.to_float(latent_time)
# res was generated from padded targets, which means it has some extra
# elements. These can cause shape problems when computing loss with respect to
# the original (unpadded) targets. So we remove their extra elements here.
res = res[:, :original_targets_shape[1], :, :]
data_dim = common_layers.shape_list(res)[1]
latent_dim = common_layers.shape_list(targets_c)[1]
return res, losses, cache, data_dim, latent_dim | [
"AE Transformer, main step used for training."
] |
Please provide a description of the function:def transformer_ae_small():
hparams = transformer.transformer_small()
hparams.batch_size = 2048
hparams.learning_rate = 0.2
hparams.learning_rate_warmup_steps = 4000
hparams.num_hidden_layers = 3
hparams.hidden_size = 384
hparams.filter_size = 2048
hparams.add_hparam("compress_filter_size", 2048 * 2)
hparams.label_smoothing = 0.0
hparams.optimizer = "adam" # Can be unstable, maybe try Adam.
hparams.optimizer_adam_epsilon = 1e-9
hparams.optimizer_adam_beta1 = 0.9
hparams.optimizer_adam_beta2 = 0.997 # Needs tuning, try 0.98 to 0.999.
hparams.add_hparam("z_size", 14)
hparams.add_hparam("noise_dev", 0.5)
hparams.add_hparam("d_mix", 0.5)
hparams.add_hparam("logit_normalization", True)
hparams.add_hparam("word_dropout", 0.)
# Bottleneck kinds supported: dense, vae, semhash, gumbel-softmax, dvq.
hparams.add_hparam("bottleneck_kind", "semhash")
hparams.add_hparam("num_blocks", 1)
hparams.add_hparam("num_decode_blocks", 1)
# Add an hparam for number of reiduals
hparams.add_hparam("num_residuals", 1)
# Reshape method for DVQ: slice, project
hparams.add_hparam("word_shuffle", 0.5)
hparams.add_hparam("causal", True)
hparams.add_hparam("reshape_method", "slice")
hparams.add_hparam("trainable_projections", False)
hparams.add_hparam("unmasked_percentage", 0.1)
hparams.add_hparam("do_ae", True)
hparams.add_hparam("do_mask", True)
hparams.add_hparam("use_predict_mask", True)
hparams.add_hparam("do_refine", False)
hparams.add_hparam("do_attend_compress", False)
hparams.add_hparam("do_attend_decompress", True)
hparams.add_hparam("do_residual_compress", False)
hparams.add_hparam("drop_inputs", False)
hparams.add_hparam("v_size", 1024*64)
hparams.add_hparam("max_context_length", 64)
hparams.add_hparam("num_compress_steps", 3)
hparams.add_hparam("startup_steps", 10000)
hparams.add_hparam("mask_startup_steps", 50000)
hparams.add_hparam("z_dropout", 0.1)
hparams.add_hparam("is_2d", 0)
hparams.add_hparam("softmax_k", 0)
hparams.add_hparam("decode_autoregressive", True)
hparams.add_hparam("do_vae", True)
hparams.add_hparam("bit_vae", True)
hparams.add_hparam("beta", 0.25)
hparams.add_hparam("epsilon", 1e-5)
hparams.add_hparam("decay", 0.999)
hparams.add_hparam("ema", True)
hparams.add_hparam("random_top_k", 1)
hparams.add_hparam("soft_em", False)
hparams.add_hparam("num_samples", 10)
hparams.add_hparam("inv_temp", 1.0)
hparams.add_hparam("entropy_scale", 0.0)
hparams.add_hparam("prior_scale", 1.0)
hparams.add_hparam("do_hard_gumbel_softmax", False)
hparams.add_hparam("num_flows", 0)
hparams.add_hparam("approximate_gs_entropy", False)
hparams.add_hparam("temperature_warmup_steps", 150000)
hparams.add_hparam("sum_over_latents", False)
hparams.force_full_predict = True
# task params
hparams.add_hparam("task", "translate") # translate or image tasks supported
return hparams | [
"Set of hyperparameters."
] |
Please provide a description of the function:def imagetransformer_ae_cifar():
hparams = transformer_ae_small()
hparams.filter_size = 512
hparams.num_compress_steps = 3
hparams.startup_steps = 10000
hparams.is_2d = 0
hparams.learning_rate_warmup_steps = 8000
hparams.learning_rate = 0.2
hparams.hidden_size = 512
hparams.batch_size = 1
hparams.max_length = 256
hparams.dropout = 0.0
hparams.clip_grad_norm = 0. # i.e. no gradient clipping
hparams.optimizer_adam_epsilon = 1e-9
hparams.learning_rate_decay_scheme = "noam"
hparams.learning_rate = 0.1
hparams.initializer_gain = 0.2
hparams.num_hidden_layers = 6
hparams.initializer = "uniform_unit_scaling"
hparams.weight_decay = 0.0
hparams.optimizer_adam_beta1 = 0.9
hparams.optimizer_adam_beta2 = 0.98
hparams.label_smoothing = 0.0
hparams.norm_type = "layer"
hparams.layer_prepostprocess_dropout = 0.0
hparams.num_heads = 8
hparams.task = "image"
hparams.ffn_layer = "conv_hidden_relu"
# All hyperparameters ending in "dropout" are automatically set to 0.0
# when not in training mode.
hparams.attention_dropout = 0.0
hparams.relu_dropout = 0.
hparams.pos = "timing" # timing, none
hparams.nbr_decoder_problems = 1
hparams.num_output_layers = 3
# TODO(trandustin): semhash doesn't work if filter_size != hidden_size. For
# now, set default to dvq.
hparams.bottleneck_kind = "dvq"
hparams.add_hparam("block_size", 1)
# dilated attention based flags
hparams.add_hparam("gap_sizes", [2, 4, 8, 16, 32, 64, 2, 4, 8, 16, 32, 64])
hparams.add_hparam("dilated_attention", False)
# image size related flags
# assuming that the image has same height and width
hparams.add_hparam("img_len", 32)
hparams.add_hparam("num_channels", 3)
# Local attention params
hparams.add_hparam("local_and_global_att", False)
hparams.add_hparam("block_length", 256)
hparams.add_hparam("block_width", 128)
hparams.num_encoder_layers = 4
hparams.num_decoder_layers = 12
hparams.add_hparam("dec_attention_type", cia.AttentionType.LOCAL_1D)
hparams.add_hparam("block_raster_scan", False)
hparams.add_hparam("shared_rel", False)
# multipos attention params
hparams.add_hparam("q_filter_width", 1)
hparams.add_hparam("kv_filter_width", 1)
hparams.add_hparam("unconditional", False) # unconditional generation
hparams.bottom["targets"] = modalities.image_channel_embeddings_bottom
hparams.top["targets"] = modalities.image_channel_embeddings_top
hparams.drop_inputs = True
hparams.do_attend_compress = False
hparams.do_attend_decompress = False
return hparams | [
"Hyperparameters for CIFAR-10 experiments."
] |
Please provide a description of the function:def imagetransformer_ae_imagenet():
hparams = imagetransformer_ae_cifar()
hparams.max_length = int(64 * 64 * 3)
hparams.img_len = 64
hparams.num_heads = 4 # Heads are expensive on TPUs.
# Reduce architecture from 32x32 CIFAR-10 in order to fit in memory.
hparams.num_decoder_layers = 8
hparams.num_compress_steps = 2
return hparams | [
"For 64x64 ImageNet. ~56M trainable variables."
] |
Please provide a description of the function:def transformer_ae_base():
hparams = transformer_ae_small()
hparams.batch_size = 2048
hparams.hidden_size = 512
hparams.filter_size = 4096
hparams.num_hidden_layers = 6
return hparams | [
"Set of hyperparameters."
] |
Please provide a description of the function:def transformer_ae_a3():
hparams = transformer_ae_base()
hparams.batch_size = 4096
hparams.layer_prepostprocess_dropout = 0.3
hparams.optimizer = "Adafactor"
hparams.learning_rate = 0.25
hparams.learning_rate_warmup_steps = 10000
return hparams | [
"Set of hyperparameters."
] |
Please provide a description of the function:def transformer_ae_base_noatt():
hparams = transformer_ae_base()
hparams.reshape_method = "slice"
hparams.bottleneck_kind = "dvq"
hparams.hidden_size = 512
hparams.num_blocks = 1
hparams.num_decode_blocks = 1
hparams.z_size = 12
hparams.do_attend_decompress = False
return hparams | [
"Set of hyperparameters."
] |
Please provide a description of the function:def transformer_ae_small_noatt():
hparams = transformer_ae_small()
hparams.reshape_method = "slice"
hparams.bottleneck_kind = "dvq"
hparams.hidden_size = 512
hparams.num_blocks = 1
hparams.num_decode_blocks = 1
hparams.z_size = 12
hparams.do_attend_decompress = False
return hparams | [
"Set of hyperparameters."
] |
Please provide a description of the function:def transformer_sketch():
hparams = transformer.transformer_small()
hparams.num_compress_steps = 4
hparams.batch_size = 32
hparams.clip_grad_norm = 2.
hparams.sampling_method = "random"
return hparams | [
"Basic transformer_sketch hparams."
] |
Please provide a description of the function:def layers():
global _cached_layers
if _cached_layers is not None:
return _cached_layers
layers_module = tf.layers
try:
from tensorflow.python import tf2 # pylint: disable=g-direct-tensorflow-import,g-import-not-at-top
if tf2.enabled():
tf.logging.info("Running in V2 mode, using Keras layers.")
layers_module = tf.keras.layers
except ImportError:
pass
_cached_layers = layers_module
return layers_module | [
"Get the layers module good for TF 1 and TF 2 work for now."
] |
Please provide a description of the function:def dropout_with_broadcast_dims(x, keep_prob, broadcast_dims=None, **kwargs):
assert "noise_shape" not in kwargs
if broadcast_dims:
shape = tf.shape(x)
ndims = len(x.get_shape())
# Allow dimensions like "-1" as well.
broadcast_dims = [dim + ndims if dim < 0 else dim for dim in broadcast_dims]
kwargs["noise_shape"] = [
1 if i in broadcast_dims else shape[i] for i in range(ndims)
]
return tf.nn.dropout(x, keep_prob, **kwargs) | [
"Like tf.nn.dropout but takes broadcast_dims instead of noise_shape.\n\n Instead of specifying noise_shape, this function takes broadcast_dims -\n a list of dimension numbers in which noise_shape should be 1. The random\n keep/drop tensor has dimensionality 1 along these dimensions.\n\n Args:\n x: a floating point tensor.\n keep_prob: A scalar Tensor with the same type as x.\n The probability that each element is kept.\n broadcast_dims: an optional list of integers\n the dimensions along which to broadcast the keep/drop flags.\n **kwargs: keyword arguments to tf.nn.dropout other than \"noise_shape\".\n\n Returns:\n Tensor of the same shape as x.\n "
] |
Please provide a description of the function:def saturating_sigmoid(x):
with tf.name_scope("saturating_sigmoid", values=[x]):
y = tf.sigmoid(x)
return tf.minimum(1.0, tf.maximum(0.0, 1.2 * y - 0.1)) | [
"Saturating sigmoid: 1.2 * sigmoid(x) - 0.1 cut to [0, 1]."
] |
Please provide a description of the function:def inverse_exp_decay(max_step, min_value=0.01, step=None):
inv_base = tf.exp(tf.log(min_value) / float(max_step))
if step is None:
step = tf.train.get_global_step()
if step is None:
return 1.0
step = to_float(step)
return inv_base**tf.maximum(float(max_step) - step, 0.0) | [
"Inverse-decay exponentially from 0.01 to 1.0 reached at max_step."
] |
Please provide a description of the function:def inverse_lin_decay(max_step, min_value=0.01, step=None):
if step is None:
step = tf.train.get_global_step()
if step is None:
return 1.0
step = to_float(step)
progress = tf.minimum(step / float(max_step), 1.0)
return progress * (1.0 - min_value) + min_value | [
"Inverse-decay linearly from 0.01 to 1.0 reached at max_step."
] |
Please provide a description of the function:def shakeshake2_py(x, y, equal=False, individual=False):
if equal:
alpha = 0.5
elif individual:
alpha = tf.random_uniform(tf.get_shape(x)[:1])
else:
alpha = tf.random_uniform([])
return alpha * x + (1.0 - alpha) * y | [
"The shake-shake sum of 2 tensors, python version."
] |
Please provide a description of the function:def shakeshake2_grad(x1, x2, dy):
y = shakeshake2_py(x1, x2)
dx = tf.gradients(ys=[y], xs=[x1, x2], grad_ys=[dy])
return dx | [
"Overriding gradient for shake-shake of 2 tensors."
] |
Please provide a description of the function:def shakeshake2_indiv_grad(x1, x2, dy):
y = shakeshake2_py(x1, x2, individual=True)
dx = tf.gradients(ys=[y], xs=[x1, x2], grad_ys=[dy])
return dx | [
"Overriding gradient for shake-shake of 2 tensors."
] |
Please provide a description of the function:def shakeshake2_equal_grad(x1, x2, dy):
y = shakeshake2_py(x1, x2, equal=True)
dx = tf.gradients(ys=[y], xs=[x1, x2], grad_ys=[dy])
return dx | [
"Overriding gradient for shake-shake of 2 tensors."
] |
Please provide a description of the function:def shakeshake(xs, equal_grad=False):
if len(xs) == 1:
return xs[0]
div = (len(xs) + 1) // 2
arg1 = shakeshake(xs[:div], equal_grad=equal_grad)
arg2 = shakeshake(xs[div:], equal_grad=equal_grad)
if equal_grad:
return shakeshake2_eqgrad(arg1, arg2)
return shakeshake2(arg1, arg2) | [
"Multi-argument shake-shake, currently approximated by sums of 2."
] |
Please provide a description of the function:def convert_rgb_to_real(x):
with tf.name_scope("rgb_to_real", values=[x]):
x = to_float(x)
x /= 255.0
return x | [
"Conversion of pixel values to real numbers."
] |
Please provide a description of the function:def convert_rgb_to_symmetric_real(x):
with tf.name_scope("rgb_to_real", values=[x]):
x = to_float(x)
# Convert each pixel intensity in [0, 1, 2, ..., 255] into a real number in
# the range [-1, 1].
x = (x / 127.5) - 1
return x | [
"Conversion of pixel values to real numbers."
] |
Please provide a description of the function:def expand_squeeze_to_nd(x, n, squeeze_dim=2, expand_dim=-1):
if len(x.shape) > n:
while len(x.shape) != n:
x = tf.squeeze(x, [squeeze_dim])
else:
while len(x.shape) != n:
x = tf.expand_dims(x, expand_dim)
return x | [
"Make x n-d with squeeze and expand_dims."
] |
Please provide a description of the function:def standardize_images(x):
with tf.name_scope("standardize_images", values=[x]):
x_shape = shape_list(x)
x = to_float(tf.reshape(x, [-1] + x_shape[-3:]))
x_mean = tf.reduce_mean(x, axis=[1, 2], keepdims=True)
x_variance = tf.reduce_mean(
tf.squared_difference(x, x_mean), axis=[1, 2], keepdims=True)
num_pixels = to_float(x_shape[-2] * x_shape[-3])
x = (x - x_mean) / tf.maximum(tf.sqrt(x_variance), tf.rsqrt(num_pixels))
return tf.reshape(x, x_shape) | [
"Image standardization on batches and videos."
] |
Please provide a description of the function:def flatten4d3d(x):
xshape = shape_list(x)
result = tf.reshape(x, [xshape[0], xshape[1] * xshape[2], xshape[3]])
return result | [
"Flatten a 4d-tensor into a 3d-tensor by joining width and height."
] |
Please provide a description of the function:def gather(params, indices, dtype=tf.float32):
if not is_xla_compiled():
return tf.gather(params, indices)
vocab_size = params.get_shape().as_list()[0]
indices_flat = tf.reshape(indices, [-1])
out = tf.matmul(tf.one_hot(indices_flat, vocab_size, dtype=dtype), params)
out = reshape_like(out, tf.expand_dims(indices, -1))
return out | [
"Version of tf.gather that works faster on tpu."
] |
Please provide a description of the function:def cumsum(x, axis=0, exclusive=False):
if not is_xla_compiled():
return tf.cumsum(x, axis=axis, exclusive=exclusive)
x_shape = shape_list(x)
rank = len(x_shape)
length = x_shape[axis]
my_range = tf.range(length)
comparator = tf.less if exclusive else tf.less_equal
mask = tf.cast(
comparator(tf.expand_dims(my_range, 1), tf.expand_dims(my_range, 0)),
x.dtype)
ret = tf.tensordot(x, mask, axes=[[axis], [0]])
if axis != rank - 1:
ret = tf.transpose(
ret,
list(range(axis)) + [rank - 1] + list(range(axis, rank - 1)))
return ret | [
"TPU hack for tf.cumsum.\n\n This is equivalent to tf.cumsum and is faster on TPU as of 04/2018 unless\n the axis dimension is very large.\n\n Args:\n x: a Tensor\n axis: an integer\n exclusive: a boolean\n\n Returns:\n Tensor of the same shape as x.\n "
] |
Please provide a description of the function:def dropout_no_scaling(x, keep_prob):
if keep_prob == 1.0:
return x
mask = tf.less(tf.random_uniform(tf.shape(x)), keep_prob)
return x * cast_like(mask, x) | [
"Like tf.nn.dropout, but does not scale up. Works on integers also.\n\n Args:\n x: a Tensor\n keep_prob: a floating point number\n\n Returns:\n Tensor of the same shape as x.\n "
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.