Code
stringlengths
103
85.9k
Summary
sequencelengths
0
94
Please provide a description of the function:def init_optimizer(self, kvstore='local', optimizer='sgd', optimizer_params=(('learning_rate', 0.01),), force_init=False): assert self.binded and self.params_initialized if self.optimizer_initialized and not force_init: self.logger.warning('optimizer already initialized, ignoring.') return for module in self._modules: module.init_optimizer(kvstore=kvstore, optimizer=optimizer, optimizer_params=optimizer_params, force_init=force_init) self.optimizer_initialized = True
[ "Installs and initializes optimizers.\n\n Parameters\n ----------\n kvstore : str or KVStore\n Default `'local'`.\n optimizer : str or Optimizer\n Default `'sgd'`\n optimizer_params : dict\n Default ``(('learning_rate', 0.01),)``. The default value is not a dictionary,\n just to avoid pylint warning of dangerous default values.\n force_init : bool\n Default ``False``, indicating whether we should force re-initializing the\n optimizer in the case an optimizer is already installed.\n " ]
Please provide a description of the function:def forward(self, data_batch, is_train=None): assert self.binded and self.params_initialized # make a shallow copy, just to maintain necessary properties (if any) like # bucket_key, pad, etc. data_batch = copy.copy(data_batch) for i_layer, module in enumerate(self._modules): module.forward(data_batch, is_train=is_train) if i_layer+1 == len(self._modules): # the last layer, do not need to do the followings break data_batch.data = module.get_outputs() if hasattr(data_batch, 'provide_data'): # need to update this, in case the internal module is using bucketing # or whatever data_names = [x[0] for x in module.output_shapes] assert len(data_names) == len(data_batch.data) data_batch.provide_data = [(name, x.shape) for name, x in zip(data_names, data_batch.data)]
[ "Forward computation.\n\n Parameters\n ----------\n data_batch : DataBatch\n is_train : bool\n Default is ``None``, in which case `is_train` is take as ``self.for_training``.\n " ]
Please provide a description of the function:def backward(self, out_grads=None): assert self.binded and self.params_initialized for i_layer, module in reversed(list(zip(range(len(self._modules)), self._modules))): module.backward(out_grads=out_grads) if i_layer == 0: break out_grads = module.get_input_grads()
[ "Backward computation." ]
Please provide a description of the function:def update(self): assert self.binded and self.params_initialized and self.optimizer_initialized for module in self._modules: module.update()
[ "Updates parameters according to installed optimizer and the gradient computed\n in the previous forward-backward cycle.\n " ]
Please provide a description of the function:def get_outputs(self, merge_multi_context=True): assert self.binded and self.params_initialized return self._modules[-1].get_outputs(merge_multi_context=merge_multi_context)
[ "Gets outputs from a previous forward computation.\n\n Parameters\n ----------\n merge_multi_context : bool\n Default is ``True``. In the case when data-parallelism is used, the outputs\n will be collected from multiple devices. A ``True`` value indicate that we\n should merge the collected results so that they look like from a single\n executor.\n\n Returns\n -------\n list of NDArray or list of list of NDArray\n If `merge_multi_context` is ``True``, it is like ``[out1,\n out2]``. Otherwise, it is like ``[[out1_dev1, out1_dev2], [out2_dev1,\n out2_dev2]]``. All the output elements are numpy arrays.\n " ]
Please provide a description of the function:def get_input_grads(self, merge_multi_context=True): assert self.binded and self.params_initialized and self.inputs_need_grad return self._modules[0].get_input_grads(merge_multi_context=merge_multi_context)
[ "Gets the gradients with respect to the inputs of the module.\n\n Parameters\n ----------\n merge_multi_context : bool\n Default is ``True``. In the case when data-parallelism is used, the outputs\n will be collected from multiple devices. A ``True`` value indicate that we\n should merge the collected results so that they look like from a single\n executor.\n\n Returns\n -------\n list of NDArrays or list of list of NDArrays\n If `merge_multi_context` is ``True``, it is like ``[grad1, grad2]``. Otherwise, it\n is like ``[[grad1_dev1, grad1_dev2], [grad2_dev1, grad2_dev2]]``. All the output\n elements are `NDArray`.\n " ]
Please provide a description of the function:def update_metric(self, eval_metric, labels, pre_sliced=False): assert self.binded and self.params_initialized for meta, module in zip(self._metas, self._modules): if SequentialModule.META_TAKE_LABELS in meta and \ meta[SequentialModule.META_TAKE_LABELS]: module.update_metric(eval_metric, labels, pre_sliced)
[ "Evaluates and accumulates evaluation metric on outputs of the last forward computation.\n\n Parameters\n ----------\n eval_metric : EvalMetric\n labels : list of NDArray\n Typically ``data_batch.label``.\n " ]
Please provide a description of the function:def install_monitor(self, mon): assert self.binded for module in self._modules: module.install_monitor(mon)
[ "Installs monitor on all executors." ]
Please provide a description of the function:def get_iterator(data_shape, use_caffe_data): def get_iterator_impl_mnist(args, kv): # download data get_mnist_ubyte() flat = False if len(data_shape) != 1 else True train = mx.io.MNISTIter( image="data/train-images-idx3-ubyte", label="data/train-labels-idx1-ubyte", input_shape=data_shape, batch_size=args.batch_size, shuffle=True, flat=flat, num_parts=kv.num_workers, part_index=kv.rank) val = mx.io.MNISTIter( image="data/t10k-images-idx3-ubyte", label="data/t10k-labels-idx1-ubyte", input_shape=data_shape, batch_size=args.batch_size, flat=flat, num_parts=kv.num_workers, part_index=kv.rank) return (train, val) def get_iterator_impl_caffe(args, kv): flat = False if len(data_shape) != 1 else True train = mx.io.CaffeDataIter( prototxt= 'layer { \ name: "mnist" \ type: "Data" \ top: "data" \ top: "label" \ include { \ phase: TRAIN \ } \ transform_param { \ scale: 0.00390625 \ } \ data_param { \ source: "mnist_train_lmdb" \ batch_size: 64 \ backend: LMDB \ } \ }', flat=flat, num_examples=60000 # float32 is the default, so left out here in order to illustrate ) val = mx.io.CaffeDataIter( prototxt= 'layer { \ name: "mnist" \ type: "Data" \ top: "data" \ top: "label" \ include { \ phase: TEST \ } \ transform_param { \ scale: 0.00390625 \ } \ data_param { \ source: "mnist_test_lmdb" \ batch_size: 100 \ backend: LMDB \ } \ }', flat=flat, num_examples=10000, dtype="float32" # float32 is the default ) return train, val if use_caffe_data: return get_iterator_impl_caffe else: return get_iterator_impl_mnist
[ "Generate the iterator of mnist dataset", "return train and val iterators for mnist" ]
Please provide a description of the function:def predict(prediction_dir='./Test'): if not os.path.exists(prediction_dir): warnings.warn("The directory on which predictions are to be made is not found!") return if len(os.listdir(prediction_dir)) == 0: warnings.warn("The directory on which predictions are to be made is empty! Exiting...") return # Loading synsets if not os.path.exists('./synset.txt'): warnings.warn("The synset or labels for the dataset do not exist. Please run the training script first.") return with open("./synset.txt", "r") as f: synset = [l.rstrip() for l in f] net = get_net(len(synset)) print("Trying to load the model with the saved parameters...") if not os.path.exists("./net.params"): warnings.warn("The model does not have any saved parameters... Cannot proceed! Train the model first") return net.load_parameters("./net.params") file_names = os.listdir(prediction_dir) full_file_names = [os.path.join(prediction_dir, item) for item in file_names] from transforms import MFCC mfcc = MFCC() print("\nStarting predictions for audio files in ", prediction_dir, " ....\n") for filename in full_file_names: # Argument kaiser_fast to res_type is faster than 'kaiser_best'. To reduce the load time, passing kaiser_fast. X1, _ = librosa.load(filename, res_type='kaiser_fast') transformed_test_data = mfcc(mx.nd.array(X1)) output = net(transformed_test_data.reshape((1, -1))) prediction = nd.argmax(output, axis=1) print(filename, " -> ", synset[(int)(prediction.asscalar())])
[ "The function is used to run predictions on the audio files in the directory `pred_directory`.\n\n Parameters\n ----------\n net:\n The model that has been trained.\n prediction_dir: string, default ./Test\n The directory that contains the audio files on which predictions are to be made\n\n " ]
Please provide a description of the function:def _proc_loop(proc_id, alive, queue, fn): print("proc {} started".format(proc_id)) try: while alive.value: data = fn() put_success = False while alive.value and not put_success: try: queue.put(data, timeout=0.5) put_success = True except QFullExcept: # print("Queue Full") pass except KeyboardInterrupt: print("W: interrupt received, stopping process {} ...".format(proc_id)) print("Closing process {}".format(proc_id)) queue.close()
[ "Thread loop for generating data\n\n Parameters\n ----------\n proc_id: int\n Process id\n alive: multiprocessing.Value\n variable for signaling whether process should continue or not\n queue: multiprocessing.Queue\n queue for passing data back\n fn: function\n function object that returns a sample to be pushed into the queue\n " ]
Please provide a description of the function:def _init_proc(self): if not self.proc: self.proc = [ mp.Process(target=self._proc_loop, args=(i, self.alive, self.queue, self.fn)) for i in range(self.num_proc) ] self.alive.value = True for p in self.proc: p.start()
[ "Start processes if not already started" ]
Please provide a description of the function:def reset(self): self.alive.value = False qsize = 0 try: while True: self.queue.get(timeout=0.1) qsize += 1 except QEmptyExcept: pass print("Queue size on reset: {}".format(qsize)) for i, p in enumerate(self.proc): p.join() self.proc.clear()
[ "Resets the generator by stopping all processes" ]
Please provide a description of the function:def with_metaclass(meta, *bases): # This requires a bit of explanation: the basic idea is to make a dummy # metaclass for one level of class instantiation that replaces itself with # the actual metaclass. class metaclass(type): def __new__(cls, name, this_bases, d): return meta(name, bases, d) @classmethod def __prepare__(cls, name, this_bases): return meta.__prepare__(name, bases) return type.__new__(metaclass, 'temporary_class', (), {})
[ "Create a base class with a metaclass." ]
Please provide a description of the function:def _load_lib(): lib_path = libinfo.find_lib_path() lib = ctypes.CDLL(lib_path[0], ctypes.RTLD_LOCAL) # DMatrix functions lib.MXGetLastError.restype = ctypes.c_char_p return lib
[ "Load library by searching possible path." ]
Please provide a description of the function:def c_array(ctype, values): out = (ctype * len(values))() out[:] = values return out
[ "Create ctypes array from a Python array.\n\n Parameters\n ----------\n ctype : ctypes data type\n Data type of the array we want to convert to, such as mx_float.\n\n values : tuple or list\n Data content.\n\n Returns\n -------\n out : ctypes array\n Created ctypes array.\n\n Examples\n --------\n >>> x = mx.base.c_array(mx.base.mx_float, [1, 2, 3])\n >>> print len(x)\n 3\n >>> x[1]\n 2.0\n " ]
Please provide a description of the function:def c_handle_array(objs): arr = (ctypes.c_void_p * len(objs))() arr[:] = [o.handle for o in objs] return arr
[ "Create ctypes const void ** from a list of MXNet objects with handles.\n\n Parameters\n ----------\n objs : list of NDArray/Symbol.\n MXNet objects.\n\n Returns\n -------\n (ctypes.c_void_p * len(objs))\n A void ** pointer that can be passed to C API.\n " ]
Please provide a description of the function:def ctypes2numpy_shared(cptr, shape): if not isinstance(cptr, ctypes.POINTER(mx_float)): raise RuntimeError('expected float pointer') size = 1 for s in shape: size *= s dbuffer = (mx_float * size).from_address(ctypes.addressof(cptr.contents)) return _np.frombuffer(dbuffer, dtype=_np.float32).reshape(shape)
[ "Convert a ctypes pointer to a numpy array.\n\n The resulting NumPy array shares the memory with the pointer.\n\n Parameters\n ----------\n cptr : ctypes.POINTER(mx_float)\n pointer to the memory region\n\n shape : tuple\n Shape of target `NDArray`.\n\n Returns\n -------\n out : numpy_array\n A numpy array : numpy array.\n " ]
Please provide a description of the function:def build_param_doc(arg_names, arg_types, arg_descs, remove_dup=True): param_keys = set() param_str = [] for key, type_info, desc in zip(arg_names, arg_types, arg_descs): if key in param_keys and remove_dup: continue if key == 'num_args': continue param_keys.add(key) ret = '%s : %s' % (key, type_info) if len(desc) != 0: ret += '\n ' + desc param_str.append(ret) doc_str = ('Parameters\n' + '----------\n' + '%s\n') doc_str = doc_str % ('\n'.join(param_str)) return doc_str
[ "Build argument docs in python style.\n\n arg_names : list of str\n Argument names.\n\n arg_types : list of str\n Argument type information.\n\n arg_descs : list of str\n Argument description information.\n\n remove_dup : boolean, optional\n Whether remove duplication or not.\n\n Returns\n -------\n docstr : str\n Python docstring of parameter sections.\n " ]
Please provide a description of the function:def add_fileline_to_docstring(module, incursive=True): def _add_fileline(obj): if obj.__doc__ is None or 'From:' in obj.__doc__: return fname = inspect.getsourcefile(obj) if fname is None: return try: line = inspect.getsourcelines(obj)[-1] except IOError: return obj.__doc__ += '\n\nFrom:%s:%d' % (fname, line) if isinstance(module, str): module = sys.modules[module] for _, obj in inspect.getmembers(module): if inspect.isbuiltin(obj): continue if inspect.isfunction(obj): _add_fileline(obj) if inspect.ismethod(obj): _add_fileline(obj.__func__) if inspect.isclass(obj) and incursive: add_fileline_to_docstring(obj, False)
[ "Append the definition position to each function contained in module.\n\n Examples\n --------\n # Put the following codes at the end of a file\n add_fileline_to_docstring(__name__)\n ", "Add fileinto to a object.\n " ]
Please provide a description of the function:def _init_op_module(root_namespace, module_name, make_op_func): plist = ctypes.POINTER(ctypes.c_char_p)() size = ctypes.c_uint() check_call(_LIB.MXListAllOpNames(ctypes.byref(size), ctypes.byref(plist))) op_names = [] for i in range(size.value): op_names.append(py_str(plist[i])) module_op = sys.modules["%s.%s.op" % (root_namespace, module_name)] module_internal = sys.modules["%s.%s._internal" % (root_namespace, module_name)] # contrib module in the old format (deprecated) # kept here for backward compatibility # use mx.nd.contrib or mx.sym.contrib from now on contrib_module_name_old = "%s.contrib.%s" % (root_namespace, module_name) contrib_module_old = sys.modules[contrib_module_name_old] submodule_dict = {} for op_name_prefix in _OP_NAME_PREFIX_LIST: submodule_dict[op_name_prefix] =\ sys.modules["%s.%s.%s" % (root_namespace, module_name, op_name_prefix[1:-1])] for name in op_names: hdl = OpHandle() check_call(_LIB.NNGetOpHandle(c_str(name), ctypes.byref(hdl))) op_name_prefix = _get_op_name_prefix(name) module_name_local = module_name if len(op_name_prefix) > 0: if op_name_prefix != '_random_' or name.endswith('_like'): func_name = name[len(op_name_prefix):] cur_module = submodule_dict[op_name_prefix] module_name_local = "%s.%s.%s" % (root_namespace, module_name, op_name_prefix[1:-1]) else: func_name = name cur_module = module_internal elif name.startswith('_'): func_name = name cur_module = module_internal else: func_name = name cur_module = module_op function = make_op_func(hdl, name, func_name) function.__module__ = module_name_local setattr(cur_module, function.__name__, function) cur_module.__all__.append(function.__name__) if op_name_prefix == '_contrib_': hdl = OpHandle() check_call(_LIB.NNGetOpHandle(c_str(name), ctypes.byref(hdl))) func_name = name[len(op_name_prefix):] function = make_op_func(hdl, name, func_name) function.__module__ = contrib_module_name_old setattr(contrib_module_old, function.__name__, function) contrib_module_old.__all__.append(function.__name__)
[ "\n Registers op functions created by `make_op_func` under\n `root_namespace.module_name.[submodule_name]`,\n where `submodule_name` is one of `_OP_SUBMODULE_NAME_LIST`.\n\n Parameters\n ----------\n root_namespace : str\n Top level module name, `mxnet` in the current cases.\n module_name : str\n Second level module name, `ndarray` and `symbol` in the current cases.\n make_op_func : function\n Function for creating op functions for `ndarray` and `symbol` modules.\n " ]
Please provide a description of the function:def _generate_op_module_signature(root_namespace, module_name, op_code_gen_func): def get_module_file(module_name): path = os.path.dirname(__file__) module_path = module_name.split('.') module_path[-1] = 'gen_' + module_path[-1] file_name = os.path.join(path, '..', *module_path) + '.py' module_file = open(file_name, 'w') dependencies = {'symbol': ['from ._internal import SymbolBase', 'from ..base import _Null'], 'ndarray': ['from ._internal import NDArrayBase', 'from ..base import _Null']} module_file.write('# File content is auto-generated. Do not modify.' + os.linesep) module_file.write('# pylint: skip-file' + os.linesep) module_file.write(os.linesep.join(dependencies[module_name.split('.')[1]])) return module_file def write_all_str(module_file, module_all_list): module_file.write(os.linesep) module_file.write(os.linesep) all_str = '__all__ = [' + ', '.join(["'%s'"%s for s in module_all_list]) + ']' module_file.write(all_str) plist = ctypes.POINTER(ctypes.c_char_p)() size = ctypes.c_uint() check_call(_LIB.MXListAllOpNames(ctypes.byref(size), ctypes.byref(plist))) op_names = [] for i in range(size.value): op_names.append(py_str(plist[i])) module_op_file = get_module_file("%s.%s.op" % (root_namespace, module_name)) module_op_all = [] module_internal_file = get_module_file("%s.%s._internal"%(root_namespace, module_name)) module_internal_all = [] submodule_dict = {} for op_name_prefix in _OP_NAME_PREFIX_LIST: submodule_dict[op_name_prefix] =\ (get_module_file("%s.%s.%s" % (root_namespace, module_name, op_name_prefix[1:-1])), []) for name in op_names: hdl = OpHandle() check_call(_LIB.NNGetOpHandle(c_str(name), ctypes.byref(hdl))) op_name_prefix = _get_op_name_prefix(name) if len(op_name_prefix) > 0: func_name = name[len(op_name_prefix):] cur_module_file, cur_module_all = submodule_dict[op_name_prefix] elif name.startswith('_'): func_name = name cur_module_file = module_internal_file cur_module_all = module_internal_all else: func_name = name cur_module_file = module_op_file cur_module_all = module_op_all code, _ = op_code_gen_func(hdl, name, func_name, True) cur_module_file.write(os.linesep) cur_module_file.write(code) cur_module_all.append(func_name) for (submodule_f, submodule_all) in submodule_dict.values(): write_all_str(submodule_f, submodule_all) submodule_f.close() write_all_str(module_op_file, module_op_all) module_op_file.close() write_all_str(module_internal_file, module_internal_all) module_internal_file.close()
[ "\n Generate op functions created by `op_code_gen_func` and write to the source file\n of `root_namespace.module_name.[submodule_name]`,\n where `submodule_name` is one of `_OP_SUBMODULE_NAME_LIST`.\n\n Parameters\n ----------\n root_namespace : str\n Top level module name, `mxnet` in the current cases.\n module_name : str\n Second level module name, `ndarray` and `symbol` in the current cases.\n op_code_gen_func : function\n Function for creating op functions for `ndarray` and `symbol` modules.\n ", "Return the generated module file based on module name.", "Write the proper __all__ based on available operators." ]
Please provide a description of the function:def set_np_compat(active): prev = ctypes.c_int() check_call(_LIB.MXSetIsNumpyCompatible(ctypes.c_int(active), ctypes.byref(prev))) return bool(prev.value)
[ "\n Turns on/off NumPy compatibility. NumPy-compatibility is turned off by default in backend.\n\n Parameters\n ----------\n active : bool\n Indicates whether to turn on/off NumPy compatibility.\n\n Returns\n -------\n A bool value indicating the previous state of NumPy compatibility.\n " ]
Please provide a description of the function:def is_np_compat(): curr = ctypes.c_bool() check_call(_LIB.MXIsNumpyCompatible(ctypes.byref(curr))) return curr.value
[ "\n Checks whether the NumPy compatibility is currently turned on.\n NumPy-compatibility is turned off by default in backend.\n\n Returns\n -------\n A bool value indicating whether the NumPy compatibility is currently on.\n " ]
Please provide a description of the function:def use_np_compat(func): @wraps(func) def _with_np_compat(*args, **kwargs): with np_compat(active=True): return func(*args, **kwargs) return _with_np_compat
[ "Wraps a function with an activated NumPy-compatibility scope. This ensures\n that the execution of the function is guaranteed with NumPy compatible semantics,\n such as zero-dim and zero size tensors.\n\n Example::\n import mxnet as mx\n @mx.use_np_compat\n def scalar_one():\n return mx.nd.ones(())\n print(scalar_one())\n\n Parameters\n ----------\n func : a user-provided callable function to be scoped by the NumPy compatibility state.\n\n Returns\n -------\n Function\n A function for wrapping the user functions in the NumPy compatibility scope.\n " ]
Please provide a description of the function:def rse(label, pred): numerator = np.sqrt(np.mean(np.square(label - pred), axis = None)) denominator = np.std(label, axis = None) return numerator / denominator
[ "computes the root relative squared error (condensed using standard deviation formula)" ]
Please provide a description of the function:def rae(label, pred): numerator = np.mean(np.abs(label - pred), axis=None) denominator = np.mean(np.abs(label - np.mean(label, axis=None)), axis=None) return numerator / denominator
[ "computes the relative absolute error (condensed using standard deviation formula)" ]
Please provide a description of the function:def corr(label, pred): numerator1 = label - np.mean(label, axis=0) numerator2 = pred - np.mean(pred, axis = 0) numerator = np.mean(numerator1 * numerator2, axis=0) denominator = np.std(label, axis=0) * np.std(pred, axis=0) return np.mean(numerator / denominator)
[ "computes the empirical correlation coefficient" ]
Please provide a description of the function:def get_custom_metrics(): _rse = mx.metric.create(rse) _rae = mx.metric.create(rae) _corr = mx.metric.create(corr) return mx.metric.create([_rae, _rse, _corr])
[ "\n :return: mxnet metric object\n " ]
Please provide a description of the function:def _get_input(proto): layer = caffe_parser.get_layers(proto) if len(proto.input_dim) > 0: input_dim = proto.input_dim elif len(proto.input_shape) > 0: input_dim = proto.input_shape[0].dim elif layer[0].type == "Input": input_dim = layer[0].input_param.shape[0].dim layer.pop(0) else: raise ValueError('Cannot find input size') assert layer[0].type != "Input", 'only support single input' # We assume the first bottom blob of first layer is the output from data layer input_name = layer[0].bottom[0] return input_name, input_dim, layer
[ "Get input size\n " ]
Please provide a description of the function:def _convert_conv_param(param): param_string = "num_filter=%d" % param.num_output pad_w = 0 pad_h = 0 if isinstance(param.pad, int): pad = param.pad param_string += ", pad=(%d, %d)" % (pad, pad) else: if len(param.pad) > 0: pad = param.pad[0] param_string += ", pad=(%d, %d)" % (pad, pad) else: if isinstance(param.pad_w, int): pad_w = param.pad_w if isinstance(param.pad_h, int): pad_h = param.pad_h param_string += ", pad=(%d, %d)" % (pad_h, pad_w) if isinstance(param.kernel_size, int): kernel_size = param.kernel_size param_string += ", kernel=(%d,%d)" % (kernel_size, kernel_size) else: if len(param.kernel_size) > 0: kernel_size = param.kernel_size[0] param_string += ", kernel=(%d,%d)" % (kernel_size, kernel_size) else: assert isinstance(param.kernel_w, int) kernel_w = param.kernel_w assert isinstance(param.kernel_h, int) kernel_h = param.kernel_h param_string += ", kernel=(%d,%d)" % (kernel_h, kernel_w) stride = 1 if isinstance(param.stride, int): stride = param.stride else: stride = 1 if len(param.stride) == 0 else param.stride[0] param_string += ", stride=(%d,%d)" % (stride, stride) dilate = 1 if hasattr(param, 'dilation'): if isinstance(param.dilation, int): dilate = param.dilation else: dilate = 1 if len(param.dilation) == 0 else param.dilation[0] param_string += ", no_bias=%s" % (not param.bias_term) # deal with dilation. Won't be in deconvolution if dilate > 1: param_string += ", dilate=(%d, %d)" % (dilate, dilate) if isinstance(param.group, int): if param.group != 1: param_string += ", num_group=%d" % param.group return param_string
[ "\n Convert convolution layer parameter from Caffe to MXNet\n " ]
Please provide a description of the function:def _convert_pooling_param(param): param_string = "pooling_convention='full', " if param.global_pooling: param_string += "global_pool=True, kernel=(1,1)" else: param_string += "pad=(%d,%d), kernel=(%d,%d), stride=(%d,%d)" % ( param.pad, param.pad, param.kernel_size, param.kernel_size, param.stride, param.stride) if param.pool == 0: param_string += ", pool_type='max'" elif param.pool == 1: param_string += ", pool_type='avg'" else: raise ValueError("Unknown Pooling Method!") return param_string
[ "Convert the pooling layer parameter\n " ]
Please provide a description of the function:def _parse_proto(prototxt_fname): proto = caffe_parser.read_prototxt(prototxt_fname) # process data layer input_name, input_dim, layers = _get_input(proto) # only support single input, so always use `data` as the input data mapping = {input_name: 'data'} need_flatten = {input_name: False} symbol_string = "import mxnet as mx\ndata = mx.symbol.Variable(name='data')\n" flatten_count = 0 output_name = "" prev_name = None # convert reset layers one by one for i, layer in enumerate(layers): type_string = '' param_string = '' skip_layer = False bottom_order = [] name = re.sub('[-/]', '_', layer.name) if layer.type == 'Convolution' or layer.type == 4: type_string = 'mx.symbol.Convolution' param_string = _convert_conv_param(layer.convolution_param) need_flatten[name] = True if layer.type == 'Deconvolution' or layer.type == 39: type_string = 'mx.symbol.Deconvolution' param_string = _convert_conv_param(layer.convolution_param) need_flatten[name] = True if layer.type == 'Pooling' or layer.type == 17: type_string = 'mx.symbol.Pooling' param_string = _convert_pooling_param(layer.pooling_param) need_flatten[name] = True if layer.type == 'ReLU' or layer.type == 18: type_string = 'mx.symbol.Activation' param_string = "act_type='relu'" need_flatten[name] = need_flatten[mapping[layer.bottom[0]]] if layer.type == 'TanH' or layer.type == 23: type_string = 'mx.symbol.Activation' param_string = "act_type='tanh'" need_flatten[name] = need_flatten[mapping[layer.bottom[0]]] if layer.type == 'Sigmoid' or layer.type == 19: type_string = 'mx.symbol.Activation' param_string = "act_type='sigmoid'" need_flatten[name] = need_flatten[mapping[layer.bottom[0]]] if layer.type == 'LRN' or layer.type == 15: type_string = 'mx.symbol.LRN' param = layer.lrn_param param_string = "alpha=%f, beta=%f, knorm=%f, nsize=%d" % ( param.alpha, param.beta, param.k, param.local_size) need_flatten[name] = True if layer.type == 'InnerProduct' or layer.type == 14: type_string = 'mx.symbol.FullyConnected' param = layer.inner_product_param param_string = "num_hidden=%d, no_bias=%s" % ( param.num_output, not param.bias_term) need_flatten[name] = False if layer.type == 'Dropout' or layer.type == 6: type_string = 'mx.symbol.Dropout' param = layer.dropout_param param_string = "p=%f" % param.dropout_ratio need_flatten[name] = need_flatten[mapping[layer.bottom[0]]] if layer.type == 'Softmax' or layer.type == 20: if layer.softmax_param.axis == 2: symbol_string += "%s = mx.symbol.transpose(%s, axes=(0,2,1))\n" %\ (mapping[layer.bottom[0]], mapping[layer.bottom[0]]) type_string = 'mx.symbol.SoftmaxActivation' param_string = "mode='channel'" need_flatten[name] = False else: type_string = 'mx.symbol.SoftmaxOutput' if layer.type == 'Flatten' or layer.type == 8: if 'softmax' in layer.bottom[0]: prev_name = re.sub('[-/]', '_', layers[i-1].name) skip_layer = True else: type_string = 'mx.symbol.Flatten' need_flatten[name] = False if layer.type == 'Split' or layer.type == 22: type_string = 'split' # will process later if layer.type == 'Concat' or layer.type == 3: type_string = 'mx.symbol.Concat' need_flatten[name] = True if layer.type == 'Crop': type_string = 'mx.symbol.Crop' need_flatten[name] = True param_string = 'center_crop=True' if layer.type == 'BatchNorm': type_string = 'mx.symbol.BatchNorm' param = layer.batch_norm_param # CuDNN requires eps to be greater than 1e-05 # We compensate for this change in convert_model epsilon = param.eps if (epsilon <= 1e-05): epsilon = 1e-04 # if next layer is scale, don't fix gamma fix_gamma = layers[i+1].type != 'Scale' param_string = 'use_global_stats=%s, fix_gamma=%s, eps=%f' % ( param.use_global_stats, fix_gamma, epsilon) need_flatten[name] = need_flatten[mapping[layer.bottom[0]]] if layer.type == 'Scale': assert layers[i-1].type == 'BatchNorm' need_flatten[name] = need_flatten[mapping[layer.bottom[0]]] skip_layer = True prev_name = re.sub('[-/]', '_', layers[i-1].name) if layer.type == 'PReLU': type_string = 'mx.symbol.LeakyReLU' param = layer.prelu_param param_string = "act_type='prelu', slope=%f" % param.filler.value need_flatten[name] = need_flatten[mapping[layer.bottom[0]]] if layer.type == 'Eltwise': type_string = 'mx.symbol.broadcast_add' param_string = "" need_flatten[name] = False if layer.type == 'Reshape': type_string = 'mx.symbol.Reshape' param = layer.reshape_param param_string = 'shape=(' + ','.join([str(x) for x in list(param.shape.dim)]) + ')' need_flatten[name] = True if layer.type == 'AbsVal': type_string = 'mx.symbol.abs' need_flatten[name] = need_flatten[mapping[layer.bottom[0]]] if layer.type == 'Normalize': bottom = re.sub('[-/]', '_', layer.bottom[0]) conv_layer = _find_layer(layers, bottom) assert conv_layer is not None param = layer.norm_param assert not param.across_spatial and not param.channel_shared assert param.scale_filler.type == 'constant' if conv_layer.type == 'Convolution': scale_name = "%s_scale" % name symbol_string += "%s=mx.sym.Variable(name='%s', shape=(1, %d, 1, 1), init=mx.init.Constant(%f))\n" % \ (scale_name, scale_name, conv_layer.convolution_param.num_output, param.scale_filler.value) symbol_string += "%s=mx.symbol.L2Normalization(name='%s', data=%s, mode='channel')\n" %\ (name, name, mapping[layer.bottom[0]]) symbol_string += "%s=mx.symbol.broadcast_mul(lhs=%s, rhs=%s)\n" %\ (name, scale_name, name) type_string = 'split' need_flatten[name] = True else: raise ValueError('Unknown/Invalid normalize layer!') if layer.type == 'Permute': type_string = 'mx.symbol.transpose' param_string = "axes=(%s)" % (','.join([str(x) for x in layer.permute_param.order])) need_flatten[name] = True from_name = '' if layer.type == 'PriorBox': param = layer.prior_box_param if layer.bottom[0] == 'data': bottom_order = [1] else: bottom_order = [0] try: import math min_size = param.min_size[0] / input_dim[2] max_size = math.sqrt(param.min_size[0] * param.max_size[0]) / input_dim[2] sizes = '(%f, %f)' %(min_size, max_size) except AttributeError: min_size = param.min_size[0] / input_dim[2] sizes = '(%f)' %(min_size) ars = list(param.aspect_ratio) ratios = [1.] for ar in ars: ratios.append(ar) if param.flip: ratios.append(1. / ar) ratios_string = '(' + ','.join(str(x) for x in ratios) + ')' clip = param.clip if (param.step_h > 0 or param.step_w > 0): step_h = param.step_h step_w = param.step_w elif param.step > 0: step_h = param.step step_w = param.step else: step_h = -1 step_w = -1 finput_dimh = float(input_dim[2]) finput_dimw = float(input_dim[3]) step = '(%f, %f)' % (step_h / finput_dimh, step_w / finput_dimw) assert param.offset == 0.5, "currently only support offset = 0.5" symbol_string += '%s = mx.contrib.symbol.MultiBoxPrior(%s, sizes=%s, ratios=%s, clip=%s, steps=%s, name="%s")\n' % \ (name, mapping[layer.bottom[0]], sizes, ratios_string, clip, step, name) symbol_string += '%s = mx.symbol.Flatten(data=%s)\n' % (name, name) type_string = 'split' need_flatten[name] = False if layer.type == 'DetectionOutput': bottom_order = [1, 0, 2] param = layer.detection_output_param assert param.share_location == True assert param.background_label_id == 0 nms_param = param.nms_param type_string = 'mx.contrib.symbol.MultiBoxDetection' param_string = "nms_threshold=%f, nms_topk=%d, clip=False" % \ (nms_param.nms_threshold, nms_param.top_k) if skip_layer: assert len(layer.bottom) == 1 symbol_string += "%s = %s\n" % (name, prev_name) elif type_string == '': raise ValueError('Unknown layer %s!' % layer.type) elif type_string != 'split': bottom = layer.bottom if param_string != "": param_string = ", " + param_string if len(bottom) == 1: # print(need_flatten) if need_flatten[mapping[bottom[0]]] and type_string == 'mx.symbol.FullyConnected': flatten_name = "flatten_%d" % flatten_count symbol_string += "%s=mx.symbol.Flatten(name='%s', data=%s)\n" % ( flatten_name, flatten_name, mapping[bottom[0]]) flatten_count += 1 need_flatten[flatten_name] = False bottom[0] = flatten_name mapping[bottom[0]] = bottom[0] symbol_string += "%s = %s(name='%s', data=%s %s)\n" % ( name, type_string, name, mapping[bottom[0]], param_string) else: if not bottom_order: bottom_order = range(len(bottom)) symbol_string += "%s = %s(name='%s', *[%s] %s)\n" % \ (name, type_string, name, ','.join([mapping[bottom[x]] for x in bottom_order]), param_string) if layer.type == 'Concat' and layer.concat_param.axis == 2: symbol_string += "%s = mx.symbol.Reshape(data=%s, shape=(0, -1, 4), name='%s')\n" %\ (name, name, name) for j in range(len(layer.top)): mapping[layer.top[j]] = name output_name = name return symbol_string, output_name, input_dim
[ "Parse Caffe prototxt into symbol string\n " ]
Please provide a description of the function:def convert_symbol(prototxt_fname): sym, output_name, input_dim = _parse_proto(prototxt_fname) exec(sym) # pylint: disable=exec-used _locals = locals() exec("ret = " + output_name, globals(), _locals) # pylint: disable=exec-used ret = _locals['ret'] return ret, input_dim
[ "Convert caffe model definition into Symbol\n\n Parameters\n ----------\n prototxt_fname : str\n Filename of the prototxt file\n\n Returns\n -------\n Symbol\n Converted Symbol\n tuple\n Input shape\n " ]
Please provide a description of the function:def train_episode(agent, envs, preprocessors, t_max, render): num_envs = len(envs) # Buffers to hold trajectories, e.g. `env_xs[i]` will hold the observations # for environment `i`. env_xs, env_as = _2d_list(num_envs), _2d_list(num_envs) env_rs, env_vs = _2d_list(num_envs), _2d_list(num_envs) episode_rs = np.zeros(num_envs, dtype=np.float) for p in preprocessors: p.reset() observations = [p.preprocess(e.reset()) for p, e in zip(preprocessors, envs)] done = np.array([False for _ in range(num_envs)]) all_done = False t = 1 while not all_done: if render: envs[0].render() # NOTE(reed): Reshape to set the data shape. agent.model.reshape([('data', (num_envs, preprocessors[0].obs_size))]) step_xs = np.vstack([o.ravel() for o in observations]) # Get actions and values for all environments in a single forward pass. step_xs_nd = mx.nd.array(step_xs, ctx=agent.ctx) data_batch = mx.io.DataBatch(data=[step_xs_nd], label=None) agent.model.forward(data_batch, is_train=False) _, step_vs, _, step_ps = agent.model.get_outputs() step_ps = step_ps.asnumpy() step_vs = step_vs.asnumpy() step_as = agent.act(step_ps) # Step each environment whose episode has not completed. for i, env in enumerate(envs): if not done[i]: obs, r, done[i], _ = env.step(step_as[i]) # Record the observation, action, value, and reward in the # buffers. env_xs[i].append(step_xs[i].ravel()) env_as[i].append(step_as[i]) env_vs[i].append(step_vs[i][0]) env_rs[i].append(r) episode_rs[i] += r # Add 0 as the state value when done. if done[i]: env_vs[i].append(0.0) else: observations[i] = preprocessors[i].preprocess(obs) # Perform an update every `t_max` steps. if t == t_max: # If the episode has not finished, add current state's value. This # will be used to 'bootstrap' the final return (see Algorithm S3 # in A3C paper). step_xs = np.vstack([o.ravel() for o in observations]) step_xs_nd = mx.nd.array(step_xs, ctx=agent.ctx) data_batch = mx.io.DataBatch(data=[step_xs_nd], label=None) agent.model.forward(data_batch, is_train=False) _, extra_vs, _, _ = agent.model.get_outputs() extra_vs = extra_vs.asnumpy() for i in range(num_envs): if not done[i]: env_vs[i].append(extra_vs[i][0]) # Perform update and clear buffers. env_xs = np.vstack(list(chain.from_iterable(env_xs))) agent.train_step(env_xs, env_as, env_rs, env_vs) env_xs, env_as = _2d_list(num_envs), _2d_list(num_envs) env_rs, env_vs = _2d_list(num_envs), _2d_list(num_envs) t = 0 all_done = np.all(done) t += 1 return episode_rs
[ "Complete an episode's worth of training for each environment." ]
Please provide a description of the function:def parse_caffemodel(file_path): f = open(file_path, 'rb') contents = f.read() net_param = caffe_pb2.NetParameter() net_param.ParseFromString(contents) layers = find_layers(net_param) return layers
[ "\n parses the trained .caffemodel file\n\n filepath: /path/to/trained-model.caffemodel\n\n returns: layers\n " ]
Please provide a description of the function:def featurize(self, audio_clip, overwrite=False, save_feature_as_csvfile=False): return spectrogram_from_file( audio_clip, step=self.step, window=self.window, max_freq=self.max_freq, overwrite=overwrite, save_feature_as_csvfile=save_feature_as_csvfile)
[ " For a given audio clip, calculate the log of its Fourier Transform\n Params:\n audio_clip(str): Path to the audio clip\n " ]
Please provide a description of the function:def load_metadata_from_desc_file(self, desc_file, partition='train', max_duration=16.0,): logger = logUtil.getlogger() logger.info('Reading description file: {} for partition: {}' .format(desc_file, partition)) audio_paths, durations, texts = [], [], [] with open(desc_file) as json_line_file: for line_num, json_line in enumerate(json_line_file): try: spec = json.loads(json_line) if float(spec['duration']) > max_duration: continue audio_paths.append(spec['key']) durations.append(float(spec['duration'])) texts.append(spec['text']) except Exception as e: # Change to (KeyError, ValueError) or # (KeyError,json.decoder.JSONDecodeError), depending on # json module version logger.warn('Error reading line #{}: {}' .format(line_num, json_line)) logger.warn(str(e)) if partition == 'train': self.count = len(audio_paths) self.train_audio_paths = audio_paths self.train_durations = durations self.train_texts = texts elif partition == 'validation': self.val_audio_paths = audio_paths self.val_durations = durations self.val_texts = texts self.val_count = len(audio_paths) elif partition == 'test': self.test_audio_paths = audio_paths self.test_durations = durations self.test_texts = texts else: raise Exception("Invalid partition to load metadata. " "Must be train/validation/test")
[ " Read metadata from the description file\n (possibly takes long, depending on the filesize)\n Params:\n desc_file (str): Path to a JSON-line file that contains labels and\n paths to the audio files\n partition (str): One of 'train', 'validation' or 'test'\n max_duration (float): In seconds, the maximum duration of\n utterances to train or test on\n " ]
Please provide a description of the function:def prepare_minibatch(self, audio_paths, texts, overwrite=False, is_bi_graphemes=False, seq_length=-1, save_feature_as_csvfile=False): assert len(audio_paths) == len(texts),\ "Inputs and outputs to the network must be of the same number" # Features is a list of (timesteps, feature_dim) arrays # Calculate the features for each audio clip, as the log of the # Fourier Transform of the audio features = [self.featurize(a, overwrite=overwrite, save_feature_as_csvfile=save_feature_as_csvfile) for a in audio_paths] input_lengths = [f.shape[0] for f in features] feature_dim = features[0].shape[1] mb_size = len(features) # Pad all the inputs so that they are all the same length if seq_length == -1: x = np.zeros((mb_size, self.max_seq_length, feature_dim)) else: x = np.zeros((mb_size, seq_length, feature_dim)) y = np.zeros((mb_size, self.max_label_length)) labelUtil = LabelUtil.getInstance() label_lengths = [] for i in range(mb_size): feat = features[i] feat = self.normalize(feat) # Center using means and std x[i, :feat.shape[0], :] = feat if is_bi_graphemes: label = generate_bi_graphemes_label(texts[i]) label = labelUtil.convert_bi_graphemes_to_num(label) y[i, :len(label)] = label else: label = labelUtil.convert_word_to_num(texts[i]) y[i, :len(texts[i])] = label label_lengths.append(len(label)) return { 'x': x, # (0-padded features of shape(mb_size,timesteps,feat_dim) 'y': y, # list(int) Flattened labels (integer sequences) 'texts': texts, # list(str) Original texts 'input_lengths': input_lengths, # list(int) Length of each input 'label_lengths': label_lengths, # list(int) Length of each label }
[ " Featurize a minibatch of audio, zero pad them and return a dictionary\n Params:\n audio_paths (list(str)): List of paths to audio files\n texts (list(str)): List of texts corresponding to the audio files\n Returns:\n dict: See below for contents\n " ]
Please provide a description of the function:def sample_normalize(self, k_samples=1000, overwrite=False): log = logUtil.getlogger() log.info("Calculating mean and std from samples") # if k_samples is negative then it goes through total dataset if k_samples < 0: audio_paths = self.audio_paths # using sample else: k_samples = min(k_samples, len(self.train_audio_paths)) samples = self.rng.sample(self.train_audio_paths, k_samples) audio_paths = samples manager = Manager() return_dict = manager.dict() jobs = [] for threadIndex in range(cpu_count()): proc = Process(target=self.preprocess_sample_normalize, args=(threadIndex, audio_paths, overwrite, return_dict)) jobs.append(proc) proc.start() for proc in jobs: proc.join() feat = np.sum(np.vstack([item['feat'] for item in return_dict.values()]), axis=0) count = sum([item['count'] for item in return_dict.values()]) feat_squared = np.sum(np.vstack([item['feat_squared'] for item in return_dict.values()]), axis=0) self.feats_mean = feat / float(count) self.feats_std = np.sqrt(feat_squared / float(count) - np.square(self.feats_mean)) np.savetxt( generate_file_path(self.save_dir, self.model_name, 'feats_mean'), self.feats_mean) np.savetxt( generate_file_path(self.save_dir, self.model_name, 'feats_std'), self.feats_std) log.info("End calculating mean and std from samples")
[ " Estimate the mean and std of the features from the training set\n Params:\n k_samples (int): Use this number of samples for estimation\n " ]
Please provide a description of the function:def gru(num_hidden, indata, prev_state, param, seqidx, layeridx, dropout=0., is_batchnorm=False, gamma=None, beta=None, name=None): if dropout > 0.: indata = mx.sym.Dropout(data=indata, p=dropout) i2h = mx.sym.FullyConnected(data=indata, weight=param.gates_i2h_weight, bias=param.gates_i2h_bias, num_hidden=num_hidden * 2, name="t%d_l%d_gates_i2h" % (seqidx, layeridx)) if is_batchnorm: if name is not None: i2h = batchnorm(net=i2h, gamma=gamma, beta=beta, name="%s_batchnorm" % name) else: i2h = batchnorm(net=i2h, gamma=gamma, beta=beta) h2h = mx.sym.FullyConnected(data=prev_state.h, weight=param.gates_h2h_weight, bias=param.gates_h2h_bias, num_hidden=num_hidden * 2, name="t%d_l%d_gates_h2h" % (seqidx, layeridx)) gates = i2h + h2h slice_gates = mx.sym.SliceChannel(gates, num_outputs=2, name="t%d_l%d_slice" % (seqidx, layeridx)) update_gate = mx.sym.Activation(slice_gates[0], act_type="sigmoid") reset_gate = mx.sym.Activation(slice_gates[1], act_type="sigmoid") # The transform part of GRU is a little magic htrans_i2h = mx.sym.FullyConnected(data=indata, weight=param.trans_i2h_weight, bias=param.trans_i2h_bias, num_hidden=num_hidden, name="t%d_l%d_trans_i2h" % (seqidx, layeridx)) h_after_reset = prev_state.h * reset_gate htrans_h2h = mx.sym.FullyConnected(data=h_after_reset, weight=param.trans_h2h_weight, bias=param.trans_h2h_bias, num_hidden=num_hidden, name="t%d_l%d_trans_h2h" % (seqidx, layeridx)) h_trans = htrans_i2h + htrans_h2h h_trans_active = mx.sym.Activation(h_trans, act_type="tanh") next_h = prev_state.h + update_gate * (h_trans_active - prev_state.h) return GRUState(h=next_h)
[ "\n GRU Cell symbol\n Reference:\n * Chung, Junyoung, et al. \"Empirical evaluation of gated recurrent neural\n networks on sequence modeling.\" arXiv preprint arXiv:1412.3555 (2014).\n " ]
Please provide a description of the function:def save_image(data, epoch, image_size, batch_size, output_dir, padding=2): data = data.asnumpy().transpose((0, 2, 3, 1)) datanp = np.clip( (data - np.min(data))*(255.0/(np.max(data) - np.min(data))), 0, 255).astype(np.uint8) x_dim = min(8, batch_size) y_dim = int(math.ceil(float(batch_size) / x_dim)) height, width = int(image_size + padding), int(image_size + padding) grid = np.zeros((height * y_dim + 1 + padding // 2, width * x_dim + 1 + padding // 2, 3), dtype=np.uint8) k = 0 for y in range(y_dim): for x in range(x_dim): if k >= batch_size: break start_y = y * height + 1 + padding // 2 end_y = start_y + height - padding start_x = x * width + 1 + padding // 2 end_x = start_x + width - padding np.copyto(grid[start_y:end_y, start_x:end_x, :], datanp[k]) k += 1 imageio.imwrite( '{}/fake_samples_epoch_{}.png'.format(output_dir, epoch), grid)
[ " save image " ]
Please provide a description of the function:def list_image(root, recursive, exts): i = 0 if recursive: cat = {} for path, dirs, files in os.walk(root, followlinks=True): dirs.sort() files.sort() for fname in files: fpath = os.path.join(path, fname) suffix = os.path.splitext(fname)[1].lower() if os.path.isfile(fpath) and (suffix in exts): if path not in cat: cat[path] = len(cat) yield (i, os.path.relpath(fpath, root), cat[path]) i += 1 for k, v in sorted(cat.items(), key=lambda x: x[1]): print(os.path.relpath(k, root), v) else: for fname in sorted(os.listdir(root)): fpath = os.path.join(root, fname) suffix = os.path.splitext(fname)[1].lower() if os.path.isfile(fpath) and (suffix in exts): yield (i, os.path.relpath(fpath, root), 0) i += 1
[ "Traverses the root of directory that contains images and\n generates image list iterator.\n Parameters\n ----------\n root: string\n recursive: bool\n exts: string\n Returns\n -------\n image iterator that contains all the image under the specified path\n " ]
Please provide a description of the function:def write_list(path_out, image_list): with open(path_out, 'w') as fout: for i, item in enumerate(image_list): line = '%d\t' % item[0] for j in item[2:]: line += '%f\t' % j line += '%s\n' % item[1] fout.write(line)
[ "Hepler function to write image list into the file.\n The format is as below,\n integer_image_index \\t float_label_index \\t path_to_image\n Note that the blank between number and tab is only used for readability.\n Parameters\n ----------\n path_out: string\n image_list: list\n " ]
Please provide a description of the function:def make_list(args): image_list = list_image(args.root, args.recursive, args.exts) image_list = list(image_list) if args.shuffle is True: random.seed(100) random.shuffle(image_list) N = len(image_list) chunk_size = (N + args.chunks - 1) // args.chunks for i in range(args.chunks): chunk = image_list[i * chunk_size:(i + 1) * chunk_size] if args.chunks > 1: str_chunk = '_%d' % i else: str_chunk = '' sep = int(chunk_size * args.train_ratio) sep_test = int(chunk_size * args.test_ratio) if args.train_ratio == 1.0: write_list(args.prefix + str_chunk + '.lst', chunk) else: if args.test_ratio: write_list(args.prefix + str_chunk + '_test.lst', chunk[:sep_test]) if args.train_ratio + args.test_ratio < 1.0: write_list(args.prefix + str_chunk + '_val.lst', chunk[sep_test + sep:]) write_list(args.prefix + str_chunk + '_train.lst', chunk[sep_test:sep_test + sep])
[ "Generates .lst file.\n Parameters\n ----------\n args: object that contains all the arguments\n " ]
Please provide a description of the function:def read_list(path_in): with open(path_in) as fin: while True: line = fin.readline() if not line: break line = [i.strip() for i in line.strip().split('\t')] line_len = len(line) # check the data format of .lst file if line_len < 3: print('lst should have at least has three parts, but only has %s parts for %s' % (line_len, line)) continue try: item = [int(line[0])] + [line[-1]] + [float(i) for i in line[1:-1]] except Exception as e: print('Parsing lst met error for %s, detail: %s' % (line, e)) continue yield item
[ "Reads the .lst file and generates corresponding iterator.\n Parameters\n ----------\n path_in: string\n Returns\n -------\n item iterator that contains information in .lst file\n " ]
Please provide a description of the function:def image_encode(args, i, item, q_out): fullpath = os.path.join(args.root, item[1]) if len(item) > 3 and args.pack_label: header = mx.recordio.IRHeader(0, item[2:], item[0], 0) else: header = mx.recordio.IRHeader(0, item[2], item[0], 0) if args.pass_through: try: with open(fullpath, 'rb') as fin: img = fin.read() s = mx.recordio.pack(header, img) q_out.put((i, s, item)) except Exception as e: traceback.print_exc() print('pack_img error:', item[1], e) q_out.put((i, None, item)) return try: img = cv2.imread(fullpath, args.color) except: traceback.print_exc() print('imread error trying to load file: %s ' % fullpath) q_out.put((i, None, item)) return if img is None: print('imread read blank (None) image for file: %s' % fullpath) q_out.put((i, None, item)) return if args.center_crop: if img.shape[0] > img.shape[1]: margin = (img.shape[0] - img.shape[1]) // 2 img = img[margin:margin + img.shape[1], :] else: margin = (img.shape[1] - img.shape[0]) // 2 img = img[:, margin:margin + img.shape[0]] if args.resize: if img.shape[0] > img.shape[1]: newsize = (args.resize, img.shape[0] * args.resize // img.shape[1]) else: newsize = (img.shape[1] * args.resize // img.shape[0], args.resize) img = cv2.resize(img, newsize) try: s = mx.recordio.pack_img(header, img, quality=args.quality, img_fmt=args.encoding) q_out.put((i, s, item)) except Exception as e: traceback.print_exc() print('pack_img error on file: %s' % fullpath, e) q_out.put((i, None, item)) return
[ "Reads, preprocesses, packs the image and put it back in output queue.\n Parameters\n ----------\n args: object\n i: int\n item: list\n q_out: queue\n " ]
Please provide a description of the function:def read_worker(args, q_in, q_out): while True: deq = q_in.get() if deq is None: break i, item = deq image_encode(args, i, item, q_out)
[ "Function that will be spawned to fetch the image\n from the input queue and put it back to output queue.\n Parameters\n ----------\n args: object\n q_in: queue\n q_out: queue\n " ]
Please provide a description of the function:def write_worker(q_out, fname, working_dir): pre_time = time.time() count = 0 fname = os.path.basename(fname) fname_rec = os.path.splitext(fname)[0] + '.rec' fname_idx = os.path.splitext(fname)[0] + '.idx' record = mx.recordio.MXIndexedRecordIO(os.path.join(working_dir, fname_idx), os.path.join(working_dir, fname_rec), 'w') buf = {} more = True while more: deq = q_out.get() if deq is not None: i, s, item = deq buf[i] = (s, item) else: more = False while count in buf: s, item = buf[count] del buf[count] if s is not None: record.write_idx(item[0], s) if count % 1000 == 0: cur_time = time.time() print('time:', cur_time - pre_time, ' count:', count) pre_time = cur_time count += 1
[ "Function that will be spawned to fetch processed image\n from the output queue and write to the .rec file.\n Parameters\n ----------\n q_out: queue\n fname: string\n working_dir: string\n " ]
Please provide a description of the function:def parse_args(): parser = argparse.ArgumentParser( formatter_class=argparse.ArgumentDefaultsHelpFormatter, description='Create an image list or \ make a record database by reading from an image list') parser.add_argument('prefix', help='prefix of input/output lst and rec files.') parser.add_argument('root', help='path to folder containing images.') cgroup = parser.add_argument_group('Options for creating image lists') cgroup.add_argument('--list', action='store_true', help='If this is set im2rec will create image list(s) by traversing root folder\ and output to <prefix>.lst.\ Otherwise im2rec will read <prefix>.lst and create a database at <prefix>.rec') cgroup.add_argument('--exts', nargs='+', default=['.jpeg', '.jpg', '.png'], help='list of acceptable image extensions.') cgroup.add_argument('--chunks', type=int, default=1, help='number of chunks.') cgroup.add_argument('--train-ratio', type=float, default=1.0, help='Ratio of images to use for training.') cgroup.add_argument('--test-ratio', type=float, default=0, help='Ratio of images to use for testing.') cgroup.add_argument('--recursive', action='store_true', help='If true recursively walk through subdirs and assign an unique label\ to images in each folder. Otherwise only include images in the root folder\ and give them label 0.') cgroup.add_argument('--no-shuffle', dest='shuffle', action='store_false', help='If this is passed, \ im2rec will not randomize the image order in <prefix>.lst') rgroup = parser.add_argument_group('Options for creating database') rgroup.add_argument('--pass-through', action='store_true', help='whether to skip transformation and save image as is') rgroup.add_argument('--resize', type=int, default=0, help='resize the shorter edge of image to the newsize, original images will\ be packed by default.') rgroup.add_argument('--center-crop', action='store_true', help='specify whether to crop the center image to make it rectangular.') rgroup.add_argument('--quality', type=int, default=95, help='JPEG quality for encoding, 1-100; or PNG compression for encoding, 1-9') rgroup.add_argument('--num-thread', type=int, default=1, help='number of thread to use for encoding. order of images will be different\ from the input list if >1. the input list will be modified to match the\ resulting order.') rgroup.add_argument('--color', type=int, default=1, choices=[-1, 0, 1], help='specify the color mode of the loaded image.\ 1: Loads a color image. Any transparency of image will be neglected. It is the default flag.\ 0: Loads image in grayscale mode.\ -1:Loads image as such including alpha channel.') rgroup.add_argument('--encoding', type=str, default='.jpg', choices=['.jpg', '.png'], help='specify the encoding of the images.') rgroup.add_argument('--pack-label', action='store_true', help='Whether to also pack multi dimensional label in the record file') args = parser.parse_args() args.prefix = os.path.abspath(args.prefix) args.root = os.path.abspath(args.root) return args
[ "Defines all arguments.\n Returns\n -------\n args object that contains all the params\n " ]
Please provide a description of the function:def transform(data, target_wd, target_ht, is_train, box): if box is not None: x, y, w, h = box data = data[y:min(y+h, data.shape[0]), x:min(x+w, data.shape[1])] # Resize to target_wd * target_ht. data = mx.image.imresize(data, target_wd, target_ht) # Normalize in the same way as the pre-trained model. data = data.astype(np.float32) / 255.0 data = (data - mx.nd.array([0.485, 0.456, 0.406])) / mx.nd.array([0.229, 0.224, 0.225]) if is_train: if random.random() < 0.5: data = nd.flip(data, axis=1) data, _ = mx.image.random_crop(data, (224, 224)) else: data, _ = mx.image.center_crop(data, (224, 224)) # Transpose from (target_wd, target_ht, 3) # to (3, target_wd, target_ht). data = nd.transpose(data, (2, 0, 1)) # If image is greyscale, repeat 3 times to get RGB image. if data.shape[0] == 1: data = nd.tile(data, (3, 1, 1)) return data.reshape((1,) + data.shape)
[ "Crop and normnalize an image nd array." ]
Please provide a description of the function:def cub200_iterator(data_path, batch_k, batch_size, data_shape): return (CUB200Iter(data_path, batch_k, batch_size, data_shape, is_train=True), CUB200Iter(data_path, batch_k, batch_size, data_shape, is_train=False))
[ "Return training and testing iterator for the CUB200-2011 dataset." ]
Please provide a description of the function:def get_image(self, img, is_train): img_arr = mx.image.imread(img) img_arr = transform(img_arr, 256, 256, is_train, self.boxes[img]) return img_arr
[ "Load and transform an image." ]
Please provide a description of the function:def sample_train_batch(self): batch = [] labels = [] num_groups = self.batch_size // self.batch_k # For CUB200, we use the first 100 classes for training. sampled_classes = np.random.choice(100, num_groups, replace=False) for i in range(num_groups): img_fnames = np.random.choice(self.train_image_files[sampled_classes[i]], self.batch_k, replace=False) batch += [self.get_image(img_fname, is_train=True) for img_fname in img_fnames] labels += [sampled_classes[i] for _ in range(self.batch_k)] return nd.concatenate(batch, axis=0), labels
[ "Sample a training batch (data and label)." ]
Please provide a description of the function:def next(self): if self.is_train: data, labels = self.sample_train_batch() else: if self.test_count * self.batch_size < len(self.test_image_files): data, labels = self.get_test_batch() self.test_count += 1 else: self.test_count = 0 raise StopIteration return mx.io.DataBatch(data=[data], label=[labels])
[ "Return a batch." ]
Please provide a description of the function:def load_mnist(training_num=50000): data_path = os.path.join(os.path.dirname(os.path.realpath('__file__')), 'mnist.npz') if not os.path.isfile(data_path): from six.moves import urllib origin = ( 'https://github.com/sxjscience/mxnet/raw/master/example/bayesian-methods/mnist.npz' ) print('Downloading data from %s to %s' % (origin, data_path)) ctx = ssl._create_unverified_context() with urllib.request.urlopen(origin, context=ctx) as u, open(data_path, 'wb') as f: f.write(u.read()) print('Done!') dat = numpy.load(data_path) X = (dat['X'][:training_num] / 126.0).astype('float32') Y = dat['Y'][:training_num] X_test = (dat['X_test'] / 126.0).astype('float32') Y_test = dat['Y_test'] Y = Y.reshape((Y.shape[0],)) Y_test = Y_test.reshape((Y_test.shape[0],)) return X, Y, X_test, Y_test
[ "Load mnist dataset" ]
Please provide a description of the function:def feature_list(): lib_features_c_array = ctypes.POINTER(Feature)() lib_features_size = ctypes.c_size_t() check_call(_LIB.MXLibInfoFeatures(ctypes.byref(lib_features_c_array), ctypes.byref(lib_features_size))) features = [lib_features_c_array[i] for i in range(lib_features_size.value)] return features
[ "\n Check the library for compile-time features. The list of features are maintained in libinfo.h and libinfo.cc\n\n Returns\n -------\n list\n List of :class:`.Feature` objects\n " ]
Please provide a description of the function:def is_enabled(self, feature_name): feature_name = feature_name.upper() if feature_name not in self: raise RuntimeError("Feature '{}' is unknown, known features are: {}".format( feature_name, list(self.keys()))) return self[feature_name].enabled
[ "\n Check for a particular feature by name\n\n Parameters\n ----------\n feature_name: str\n The name of a valid feature as string for example 'CUDA'\n\n Returns\n -------\n Boolean\n True if it's enabled, False if it's disabled, RuntimeError if the feature is not known\n " ]
Please provide a description of the function:def cache_path(self): cache_path = os.path.join(os.path.dirname(__file__), '..', 'cache') if not os.path.exists(cache_path): os.mkdir(cache_path) return cache_path
[ "\n make a directory to store all caches\n\n Returns:\n ---------\n cache path\n " ]
Please provide a description of the function:def _load_image_set_index(self, shuffle): image_set_index_file = os.path.join(self.data_path, 'ImageSets', 'Main', self.image_set + '.txt') assert os.path.exists(image_set_index_file), 'Path does not exist: {}'.format(image_set_index_file) with open(image_set_index_file) as f: image_set_index = [x.strip() for x in f.readlines()] if shuffle: np.random.shuffle(image_set_index) return image_set_index
[ "\n find out which indexes correspond to given image set (train or val)\n\n Parameters:\n ----------\n shuffle : boolean\n whether to shuffle the image list\n Returns:\n ----------\n entire list of images specified in the setting\n " ]
Please provide a description of the function:def image_path_from_index(self, index): assert self.image_set_index is not None, "Dataset not initialized" name = self.image_set_index[index] image_file = os.path.join(self.data_path, 'JPEGImages', name + self.extension) assert os.path.exists(image_file), 'Path does not exist: {}'.format(image_file) return image_file
[ "\n given image index, find out full path\n\n Parameters:\n ----------\n index: int\n index of a specific image\n Returns:\n ----------\n full path of this image\n " ]
Please provide a description of the function:def _label_path_from_index(self, index): label_file = os.path.join(self.data_path, 'Annotations', index + '.xml') assert os.path.exists(label_file), 'Path does not exist: {}'.format(label_file) return label_file
[ "\n given image index, find out annotation path\n\n Parameters:\n ----------\n index: int\n index of a specific image\n\n Returns:\n ----------\n full path of annotation file\n " ]
Please provide a description of the function:def _load_image_labels(self): temp = [] # load ground-truth from xml annotations for idx in self.image_set_index: label_file = self._label_path_from_index(idx) tree = ET.parse(label_file) root = tree.getroot() size = root.find('size') width = float(size.find('width').text) height = float(size.find('height').text) label = [] for obj in root.iter('object'): difficult = int(obj.find('difficult').text) # if not self.config['use_difficult'] and difficult == 1: # continue cls_name = obj.find('name').text if cls_name not in self.classes: continue cls_id = self.classes.index(cls_name) xml_box = obj.find('bndbox') xmin = float(xml_box.find('xmin').text) / width ymin = float(xml_box.find('ymin').text) / height xmax = float(xml_box.find('xmax').text) / width ymax = float(xml_box.find('ymax').text) / height label.append([cls_id, xmin, ymin, xmax, ymax, difficult]) temp.append(np.array(label)) return temp
[ "\n preprocess all ground-truths\n\n Returns:\n ----------\n labels packed in [num_images x max_num_objects x 5] tensor\n " ]
Please provide a description of the function:def evaluate_detections(self, detections): # make all these folders for results result_dir = os.path.join(self.devkit_path, 'results') if not os.path.exists(result_dir): os.mkdir(result_dir) year_folder = os.path.join(self.devkit_path, 'results', 'VOC' + self.year) if not os.path.exists(year_folder): os.mkdir(year_folder) res_file_folder = os.path.join(self.devkit_path, 'results', 'VOC' + self.year, 'Main') if not os.path.exists(res_file_folder): os.mkdir(res_file_folder) self.write_pascal_results(detections) self.do_python_eval()
[ "\n top level evaluations\n Parameters:\n ----------\n detections: list\n result list, each entry is a matrix of detections\n Returns:\n ----------\n None\n " ]
Please provide a description of the function:def get_result_file_template(self): res_file_folder = os.path.join(self.devkit_path, 'results', 'VOC' + self.year, 'Main') comp_id = self.config['comp_id'] filename = comp_id + '_det_' + self.image_set + '_{:s}.txt' path = os.path.join(res_file_folder, filename) return path
[ "\n this is a template\n VOCdevkit/results/VOC2007/Main/<comp_id>_det_test_aeroplane.txt\n\n Returns:\n ----------\n a string template\n " ]
Please provide a description of the function:def write_pascal_results(self, all_boxes): for cls_ind, cls in enumerate(self.classes): print('Writing {} VOC results file'.format(cls)) filename = self.get_result_file_template().format(cls) with open(filename, 'wt') as f: for im_ind, index in enumerate(self.image_set_index): dets = all_boxes[im_ind] if dets.shape[0] < 1: continue h, w = self._get_imsize(self.image_path_from_index(im_ind)) # the VOCdevkit expects 1-based indices for k in range(dets.shape[0]): if (int(dets[k, 0]) == cls_ind): f.write('{:s} {:.3f} {:.1f} {:.1f} {:.1f} {:.1f}\n'. format(index, dets[k, 1], int(dets[k, 2] * w) + 1, int(dets[k, 3] * h) + 1, int(dets[k, 4] * w) + 1, int(dets[k, 5] * h) + 1))
[ "\n write results files in pascal devkit path\n Parameters:\n ----------\n all_boxes: list\n boxes to be processed [bbox, confidence]\n Returns:\n ----------\n None\n " ]
Please provide a description of the function:def do_python_eval(self): annopath = os.path.join(self.data_path, 'Annotations', '{:s}.xml') imageset_file = os.path.join(self.data_path, 'ImageSets', 'Main', self.image_set + '.txt') cache_dir = os.path.join(self.cache_path, self.name) aps = [] # The PASCAL VOC metric changed in 2010 use_07_metric = True if int(self.year) < 2010 else False print('VOC07 metric? ' + ('Y' if use_07_metric else 'No')) for cls_ind, cls in enumerate(self.classes): filename = self.get_result_file_template().format(cls) rec, prec, ap = voc_eval(filename, annopath, imageset_file, cls, cache_dir, ovthresh=0.5, use_07_metric=use_07_metric) aps += [ap] print('AP for {} = {:.4f}'.format(cls, ap)) print('Mean AP = {:.4f}'.format(np.mean(aps)))
[ "\n python evaluation wrapper\n\n Returns:\n ----------\n None\n " ]
Please provide a description of the function:def _get_imsize(self, im_name): img = cv2.imread(im_name) return (img.shape[0], img.shape[1])
[ "\n get image size info\n Returns:\n ----------\n tuple of (height, width)\n " ]
Please provide a description of the function:def add_fit_args(parser): train = parser.add_argument_group('Training', 'model training') train.add_argument('--network', type=str, help='the neural network to use') train.add_argument('--num-layers', type=int, help='number of layers in the neural network, \ required by some networks such as resnet') train.add_argument('--gpus', type=str, help='list of gpus to run, e.g. 0 or 0,2,5. empty means using cpu') train.add_argument('--kv-store', type=str, default='device', help='key-value store type') train.add_argument('--num-epochs', type=int, default=100, help='max num of epochs') train.add_argument('--lr', type=float, default=0.1, help='initial learning rate') train.add_argument('--lr-factor', type=float, default=0.1, help='the ratio to reduce lr on each step') train.add_argument('--lr-step-epochs', type=str, help='the epochs to reduce the lr, e.g. 30,60') train.add_argument('--initializer', type=str, default='default', help='the initializer type') train.add_argument('--optimizer', type=str, default='sgd', help='the optimizer type') train.add_argument('--mom', type=float, default=0.9, help='momentum for sgd') train.add_argument('--wd', type=float, default=0.0001, help='weight decay for sgd') train.add_argument('--batch-size', type=int, default=128, help='the batch size') train.add_argument('--disp-batches', type=int, default=20, help='show progress for every n batches') train.add_argument('--model-prefix', type=str, help='model prefix') train.add_argument('--save-period', type=int, default=1, help='params saving period') parser.add_argument('--monitor', dest='monitor', type=int, default=0, help='log network parameters every N iters if larger than 0') train.add_argument('--load-epoch', type=int, help='load the model on an epoch using the model-load-prefix') train.add_argument('--top-k', type=int, default=0, help='report the top-k accuracy. 0 means no report.') train.add_argument('--loss', type=str, default='', help='show the cross-entropy or nll loss. ce strands for cross-entropy, nll-loss stands for likelihood loss') train.add_argument('--test-io', type=int, default=0, help='1 means test reading speed without training') train.add_argument('--dtype', type=str, default='float32', help='precision: float32 or float16') train.add_argument('--gc-type', type=str, default='none', help='type of gradient compression to use, \ takes `2bit` or `none` for now') train.add_argument('--gc-threshold', type=float, default=0.5, help='threshold for 2bit gradient compression') # additional parameters for large batch sgd train.add_argument('--macrobatch-size', type=int, default=0, help='distributed effective batch size') train.add_argument('--warmup-epochs', type=int, default=5, help='the epochs to ramp-up lr to scaled large-batch value') train.add_argument('--warmup-strategy', type=str, default='linear', help='the ramping-up strategy for large batch sgd') train.add_argument('--profile-worker-suffix', type=str, default='', help='profile workers actions into this file. During distributed training\ filename saved will be rank1_ followed by this suffix') train.add_argument('--profile-server-suffix', type=str, default='', help='profile server actions into a file with name like rank1_ followed by this suffix \ during distributed training') return train
[ "\n parser : argparse.ArgumentParser\n return a parser added with args required by fit\n " ]
Please provide a description of the function:def fit(args, network, data_loader, **kwargs): # kvstore kv = mx.kvstore.create(args.kv_store) if args.gc_type != 'none': kv.set_gradient_compression({'type': args.gc_type, 'threshold': args.gc_threshold}) if args.profile_server_suffix: mx.profiler.set_config(filename=args.profile_server_suffix, profile_all=True, profile_process='server') mx.profiler.set_state(state='run', profile_process='server') if args.profile_worker_suffix: if kv.num_workers > 1: filename = 'rank' + str(kv.rank) + '_' + args.profile_worker_suffix else: filename = args.profile_worker_suffix mx.profiler.set_config(filename=filename, profile_all=True, profile_process='worker') mx.profiler.set_state(state='run', profile_process='worker') # logging head = '%(asctime)-15s Node[' + str(kv.rank) + '] %(message)s' logging.basicConfig(level=logging.DEBUG, format=head) logging.info('start with arguments %s', args) epoch_size = get_epoch_size(args, kv) # data iterators (train, val) = data_loader(args, kv) if 'dist' in args.kv_store and not 'async' in args.kv_store: logging.info('Resizing training data to %d batches per machine', epoch_size) # resize train iter to ensure each machine has same number of batches per epoch # if not, dist_sync can hang at the end with one machine waiting for other machines train = mx.io.ResizeIter(train, epoch_size) if args.test_io: tic = time.time() for i, batch in enumerate(train): if isinstance(batch, list): for b in batch: for j in b.data: j.wait_to_read() else: for j in batch.data: j.wait_to_read() if (i + 1) % args.disp_batches == 0: logging.info('Batch [%d]\tSpeed: %.2f samples/sec', i, args.disp_batches * args.batch_size / (time.time() - tic)) tic = time.time() return # load model if 'arg_params' in kwargs and 'aux_params' in kwargs: arg_params = kwargs['arg_params'] aux_params = kwargs['aux_params'] else: sym, arg_params, aux_params = _load_model(args, kv.rank) if sym is not None: assert sym.tojson() == network.tojson() # save model checkpoint = _save_model(args, kv.rank) # devices for training devs = mx.cpu() if args.gpus is None or args.gpus == "" else [ mx.gpu(int(i)) for i in args.gpus.split(',')] # learning rate lr, lr_scheduler = _get_lr_scheduler(args, kv) # create model model = mx.mod.Module( context=devs, symbol=network ) lr_scheduler = lr_scheduler optimizer_params = { 'learning_rate': lr, 'wd': args.wd, 'lr_scheduler': lr_scheduler, 'multi_precision': True} # Only a limited number of optimizers have 'momentum' property has_momentum = {'sgd', 'dcasgd', 'nag', 'signum', 'lbsgd'} if args.optimizer in has_momentum: optimizer_params['momentum'] = args.mom monitor = mx.mon.Monitor( args.monitor, pattern=".*") if args.monitor > 0 else None # A limited number of optimizers have a warmup period has_warmup = {'lbsgd', 'lbnag'} if args.optimizer in has_warmup: nworkers = kv.num_workers if epoch_size < 1: epoch_size = 1 macrobatch_size = args.macrobatch_size if macrobatch_size < args.batch_size * nworkers: macrobatch_size = args.batch_size * nworkers #batch_scale = round(float(macrobatch_size) / args.batch_size / nworkers +0.4999) batch_scale = math.ceil( float(macrobatch_size) / args.batch_size / nworkers) optimizer_params['updates_per_epoch'] = epoch_size optimizer_params['begin_epoch'] = args.load_epoch if args.load_epoch else 0 optimizer_params['batch_scale'] = batch_scale optimizer_params['warmup_strategy'] = args.warmup_strategy optimizer_params['warmup_epochs'] = args.warmup_epochs optimizer_params['num_epochs'] = args.num_epochs if args.initializer == 'default': if args.network == 'alexnet': # AlexNet will not converge using Xavier initializer = mx.init.Normal() # VGG will not trend to converge using Xavier-Gaussian elif args.network and 'vgg' in args.network: initializer = mx.init.Xavier() else: initializer = mx.init.Xavier( rnd_type='gaussian', factor_type="in", magnitude=2) # initializer = mx.init.Xavier(factor_type="in", magnitude=2.34), elif args.initializer == 'xavier': initializer = mx.init.Xavier() elif args.initializer == 'msra': initializer = mx.init.MSRAPrelu() elif args.initializer == 'orthogonal': initializer = mx.init.Orthogonal() elif args.initializer == 'normal': initializer = mx.init.Normal() elif args.initializer == 'uniform': initializer = mx.init.Uniform() elif args.initializer == 'one': initializer = mx.init.One() elif args.initializer == 'zero': initializer = mx.init.Zero() # evaluation metrices eval_metrics = ['accuracy'] if args.top_k > 0: eval_metrics.append(mx.metric.create( 'top_k_accuracy', top_k=args.top_k)) supported_loss = ['ce', 'nll_loss'] if len(args.loss) > 0: # ce or nll loss is only applicable to softmax output loss_type_list = args.loss.split(',') if 'softmax_output' in network.list_outputs(): for loss_type in loss_type_list: loss_type = loss_type.strip() if loss_type == 'nll': loss_type = 'nll_loss' if loss_type not in supported_loss: logging.warning(loss_type + ' is not an valid loss type, only cross-entropy or ' \ 'negative likelihood loss is supported!') else: eval_metrics.append(mx.metric.create(loss_type)) else: logging.warning("The output is not softmax_output, loss argument will be skipped!") # callbacks that run after each batch batch_end_callbacks = [mx.callback.Speedometer( args.batch_size, args.disp_batches)] if 'batch_end_callback' in kwargs: cbs = kwargs['batch_end_callback'] batch_end_callbacks += cbs if isinstance(cbs, list) else [cbs] # run model.fit(train, begin_epoch=args.load_epoch if args.load_epoch else 0, num_epoch=args.num_epochs, eval_data=val, eval_metric=eval_metrics, kvstore=kv, optimizer=args.optimizer, optimizer_params=optimizer_params, initializer=initializer, arg_params=arg_params, aux_params=aux_params, batch_end_callback=batch_end_callbacks, epoch_end_callback=checkpoint, allow_missing=True, monitor=monitor) if args.profile_server_suffix: mx.profiler.set_state(state='run', profile_process='server') if args.profile_worker_suffix: mx.profiler.set_state(state='run', profile_process='worker')
[ "\n train a model\n args : argparse returns\n network : the symbol definition of the nerual network\n data_loader : function that returns the train and val data iterators\n " ]
Please provide a description of the function:def CreateMultiRandCropAugmenter(min_object_covered=0.1, aspect_ratio_range=(0.75, 1.33), area_range=(0.05, 1.0), min_eject_coverage=0.3, max_attempts=50, skip_prob=0): def align_parameters(params): out_params = [] num = 1 for p in params: if not isinstance(p, list): p = [p] out_params.append(p) num = max(num, len(p)) # align for each param for k, p in enumerate(out_params): if len(p) != num: assert len(p) == 1 out_params[k] = p * num return out_params aligned_params = align_parameters([min_object_covered, aspect_ratio_range, area_range, min_eject_coverage, max_attempts]) augs = [] for moc, arr, ar, mec, ma in zip(*aligned_params): augs.append(DetRandomCropAug(min_object_covered=moc, aspect_ratio_range=arr, area_range=ar, min_eject_coverage=mec, max_attempts=ma)) return DetRandomSelectAug(augs, skip_prob=skip_prob)
[ "Helper function to create multiple random crop augmenters.\n\n Parameters\n ----------\n min_object_covered : float or list of float, default=0.1\n The cropped area of the image must contain at least this fraction of\n any bounding box supplied. The value of this parameter should be non-negative.\n In the case of 0, the cropped area does not need to overlap any of the\n bounding boxes supplied.\n min_eject_coverage : float or list of float, default=0.3\n The minimum coverage of cropped sample w.r.t its original size. With this\n constraint, objects that have marginal area after crop will be discarded.\n aspect_ratio_range : tuple of floats or list of tuple of floats, default=(0.75, 1.33)\n The cropped area of the image must have an aspect ratio = width / height\n within this range.\n area_range : tuple of floats or list of tuple of floats, default=(0.05, 1.0)\n The cropped area of the image must contain a fraction of the supplied\n image within in this range.\n max_attempts : int or list of int, default=50\n Number of attempts at generating a cropped/padded region of the image of the\n specified constraints. After max_attempts failures, return the original image.\n\n Examples\n --------\n >>> # An example of creating multiple random crop augmenters\n >>> min_object_covered = [0.1, 0.3, 0.5, 0.7, 0.9] # use 5 augmenters\n >>> aspect_ratio_range = (0.75, 1.33) # use same range for all augmenters\n >>> area_range = [(0.1, 1.0), (0.2, 1.0), (0.2, 1.0), (0.3, 0.9), (0.5, 1.0)]\n >>> min_eject_coverage = 0.3\n >>> max_attempts = 50\n >>> aug = mx.image.det.CreateMultiRandCropAugmenter(min_object_covered=min_object_covered,\n aspect_ratio_range=aspect_ratio_range, area_range=area_range,\n min_eject_coverage=min_eject_coverage, max_attempts=max_attempts,\n skip_prob=0)\n >>> aug.dumps() # show some details\n\n ", "Align parameters as pairs" ]
Please provide a description of the function:def CreateDetAugmenter(data_shape, resize=0, rand_crop=0, rand_pad=0, rand_gray=0, rand_mirror=False, mean=None, std=None, brightness=0, contrast=0, saturation=0, pca_noise=0, hue=0, inter_method=2, min_object_covered=0.1, aspect_ratio_range=(0.75, 1.33), area_range=(0.05, 3.0), min_eject_coverage=0.3, max_attempts=50, pad_val=(127, 127, 127)): auglist = [] if resize > 0: auglist.append(DetBorrowAug(ResizeAug(resize, inter_method))) if rand_crop > 0: crop_augs = CreateMultiRandCropAugmenter(min_object_covered, aspect_ratio_range, area_range, min_eject_coverage, max_attempts, skip_prob=(1 - rand_crop)) auglist.append(crop_augs) if rand_mirror > 0: auglist.append(DetHorizontalFlipAug(0.5)) # apply random padding as late as possible to save computation if rand_pad > 0: pad_aug = DetRandomPadAug(aspect_ratio_range, (1.0, area_range[1]), max_attempts, pad_val) auglist.append(DetRandomSelectAug([pad_aug], 1 - rand_pad)) # force resize auglist.append(DetBorrowAug(ForceResizeAug((data_shape[2], data_shape[1]), inter_method))) auglist.append(DetBorrowAug(CastAug())) if brightness or contrast or saturation: auglist.append(DetBorrowAug(ColorJitterAug(brightness, contrast, saturation))) if hue: auglist.append(DetBorrowAug(HueJitterAug(hue))) if pca_noise > 0: eigval = np.array([55.46, 4.794, 1.148]) eigvec = np.array([[-0.5675, 0.7192, 0.4009], [-0.5808, -0.0045, -0.8140], [-0.5836, -0.6948, 0.4203]]) auglist.append(DetBorrowAug(LightingAug(pca_noise, eigval, eigvec))) if rand_gray > 0: auglist.append(DetBorrowAug(RandomGrayAug(rand_gray))) if mean is True: mean = np.array([123.68, 116.28, 103.53]) elif mean is not None: assert isinstance(mean, np.ndarray) and mean.shape[0] in [1, 3] if std is True: std = np.array([58.395, 57.12, 57.375]) elif std is not None: assert isinstance(std, np.ndarray) and std.shape[0] in [1, 3] if mean is not None or std is not None: auglist.append(DetBorrowAug(ColorNormalizeAug(mean, std))) return auglist
[ "Create augmenters for detection.\n\n Parameters\n ----------\n data_shape : tuple of int\n Shape for output data\n resize : int\n Resize shorter edge if larger than 0 at the begining\n rand_crop : float\n [0, 1], probability to apply random cropping\n rand_pad : float\n [0, 1], probability to apply random padding\n rand_gray : float\n [0, 1], probability to convert to grayscale for all channels\n rand_mirror : bool\n Whether to apply horizontal flip to image with probability 0.5\n mean : np.ndarray or None\n Mean pixel values for [r, g, b]\n std : np.ndarray or None\n Standard deviations for [r, g, b]\n brightness : float\n Brightness jittering range (percent)\n contrast : float\n Contrast jittering range (percent)\n saturation : float\n Saturation jittering range (percent)\n hue : float\n Hue jittering range (percent)\n pca_noise : float\n Pca noise level (percent)\n inter_method : int, default=2(Area-based)\n Interpolation method for all resizing operations\n\n Possible values:\n 0: Nearest Neighbors Interpolation.\n 1: Bilinear interpolation.\n 2: Area-based (resampling using pixel area relation). It may be a\n preferred method for image decimation, as it gives moire-free\n results. But when the image is zoomed, it is similar to the Nearest\n Neighbors method. (used by default).\n 3: Bicubic interpolation over 4x4 pixel neighborhood.\n 4: Lanczos interpolation over 8x8 pixel neighborhood.\n 9: Cubic for enlarge, area for shrink, bilinear for others\n 10: Random select from interpolation method metioned above.\n Note:\n When shrinking an image, it will generally look best with AREA-based\n interpolation, whereas, when enlarging an image, it will generally look best\n with Bicubic (slow) or Bilinear (faster but still looks OK).\n min_object_covered : float\n The cropped area of the image must contain at least this fraction of\n any bounding box supplied. The value of this parameter should be non-negative.\n In the case of 0, the cropped area does not need to overlap any of the\n bounding boxes supplied.\n min_eject_coverage : float\n The minimum coverage of cropped sample w.r.t its original size. With this\n constraint, objects that have marginal area after crop will be discarded.\n aspect_ratio_range : tuple of floats\n The cropped area of the image must have an aspect ratio = width / height\n within this range.\n area_range : tuple of floats\n The cropped area of the image must contain a fraction of the supplied\n image within in this range.\n max_attempts : int\n Number of attempts at generating a cropped/padded region of the image of the\n specified constraints. After max_attempts failures, return the original image.\n pad_val: float\n Pixel value to be filled when padding is enabled. pad_val will automatically\n be subtracted by mean and divided by std if applicable.\n\n Examples\n --------\n >>> # An example of creating multiple augmenters\n >>> augs = mx.image.CreateDetAugmenter(data_shape=(3, 300, 300), rand_crop=0.5,\n ... rand_pad=0.5, rand_mirror=True, mean=True, brightness=0.125, contrast=0.125,\n ... saturation=0.125, pca_noise=0.05, inter_method=10, min_object_covered=[0.3, 0.5, 0.9],\n ... area_range=(0.3, 3.0))\n >>> # dump the details\n >>> for aug in augs:\n ... aug.dumps()\n " ]
Please provide a description of the function:def dumps(self): return [self.__class__.__name__.lower(), [x.dumps() for x in self.aug_list]]
[ "Override default." ]
Please provide a description of the function:def _calculate_areas(self, label): heights = np.maximum(0, label[:, 3] - label[:, 1]) widths = np.maximum(0, label[:, 2] - label[:, 0]) return heights * widths
[ "Calculate areas for multiple labels" ]
Please provide a description of the function:def _intersect(self, label, xmin, ymin, xmax, ymax): left = np.maximum(label[:, 0], xmin) right = np.minimum(label[:, 2], xmax) top = np.maximum(label[:, 1], ymin) bot = np.minimum(label[:, 3], ymax) invalid = np.where(np.logical_or(left >= right, top >= bot))[0] out = label.copy() out[:, 0] = left out[:, 1] = top out[:, 2] = right out[:, 3] = bot out[invalid, :] = 0 return out
[ "Calculate intersect areas, normalized." ]
Please provide a description of the function:def _check_satisfy_constraints(self, label, xmin, ymin, xmax, ymax, width, height): if (xmax - xmin) * (ymax - ymin) < 2: return False # only 1 pixel x1 = float(xmin) / width y1 = float(ymin) / height x2 = float(xmax) / width y2 = float(ymax) / height object_areas = self._calculate_areas(label[:, 1:]) valid_objects = np.where(object_areas * width * height > 2)[0] if valid_objects.size < 1: return False intersects = self._intersect(label[valid_objects, 1:], x1, y1, x2, y2) coverages = self._calculate_areas(intersects) / object_areas[valid_objects] coverages = coverages[np.where(coverages > 0)[0]] return coverages.size > 0 and np.amin(coverages) > self.min_object_covered
[ "Check if constrains are satisfied" ]
Please provide a description of the function:def _update_labels(self, label, crop_box, height, width): xmin = float(crop_box[0]) / width ymin = float(crop_box[1]) / height w = float(crop_box[2]) / width h = float(crop_box[3]) / height out = label.copy() out[:, (1, 3)] -= xmin out[:, (2, 4)] -= ymin out[:, (1, 3)] /= w out[:, (2, 4)] /= h out[:, 1:5] = np.maximum(0, out[:, 1:5]) out[:, 1:5] = np.minimum(1, out[:, 1:5]) coverage = self._calculate_areas(out[:, 1:]) * w * h / self._calculate_areas(label[:, 1:]) valid = np.logical_and(out[:, 3] > out[:, 1], out[:, 4] > out[:, 2]) valid = np.logical_and(valid, coverage > self.min_eject_coverage) valid = np.where(valid)[0] if valid.size < 1: return None out = out[valid, :] return out
[ "Convert labels according to crop box" ]
Please provide a description of the function:def _random_crop_proposal(self, label, height, width): from math import sqrt if not self.enabled or height <= 0 or width <= 0: return () min_area = self.area_range[0] * height * width max_area = self.area_range[1] * height * width for _ in range(self.max_attempts): ratio = random.uniform(*self.aspect_ratio_range) if ratio <= 0: continue h = int(round(sqrt(min_area / ratio))) max_h = int(round(sqrt(max_area / ratio))) if round(max_h * ratio) > width: # find smallest max_h satifying round(max_h * ratio) <= width max_h = int((width + 0.4999999) / ratio) if max_h > height: max_h = height if h > max_h: h = max_h if h < max_h: # generate random h in range [h, max_h] h = random.randint(h, max_h) w = int(round(h * ratio)) assert w <= width # trying to fix rounding problems area = w * h if area < min_area: h += 1 w = int(round(h * ratio)) area = w * h if area > max_area: h -= 1 w = int(round(h * ratio)) area = w * h if not (min_area <= area <= max_area and 0 <= w <= width and 0 <= h <= height): continue y = random.randint(0, max(0, height - h)) x = random.randint(0, max(0, width - w)) if self._check_satisfy_constraints(label, x, y, x + w, y + h, width, height): new_label = self._update_labels(label, (x, y, w, h), height, width) if new_label is not None: return (x, y, w, h, new_label) return ()
[ "Propose cropping areas" ]
Please provide a description of the function:def _update_labels(self, label, pad_box, height, width): out = label.copy() out[:, (1, 3)] = (out[:, (1, 3)] * width + pad_box[0]) / pad_box[2] out[:, (2, 4)] = (out[:, (2, 4)] * height + pad_box[1]) / pad_box[3] return out
[ "Update label according to padding region" ]
Please provide a description of the function:def _random_pad_proposal(self, label, height, width): from math import sqrt if not self.enabled or height <= 0 or width <= 0: return () min_area = self.area_range[0] * height * width max_area = self.area_range[1] * height * width for _ in range(self.max_attempts): ratio = random.uniform(*self.aspect_ratio_range) if ratio <= 0: continue h = int(round(sqrt(min_area / ratio))) max_h = int(round(sqrt(max_area / ratio))) if round(h * ratio) < width: h = int((width + 0.499999) / ratio) if h < height: h = height if h > max_h: h = max_h if h < max_h: h = random.randint(h, max_h) w = int(round(h * ratio)) if (h - height) < 2 or (w - width) < 2: continue # marginal padding is not helpful y = random.randint(0, max(0, h - height)) x = random.randint(0, max(0, w - width)) new_label = self._update_labels(label, (x, y, w, h), height, width) return (x, y, w, h, new_label) return ()
[ "Generate random padding region" ]
Please provide a description of the function:def _check_valid_label(self, label): if len(label.shape) != 2 or label.shape[1] < 5: msg = "Label with shape (1+, 5+) required, %s received." % str(label) raise RuntimeError(msg) valid_label = np.where(np.logical_and(label[:, 0] >= 0, label[:, 3] > label[:, 1], label[:, 4] > label[:, 2]))[0] if valid_label.size < 1: raise RuntimeError('Invalid label occurs.')
[ "Validate label and its shape." ]
Please provide a description of the function:def _estimate_label_shape(self): max_count = 0 self.reset() try: while True: label, _ = self.next_sample() label = self._parse_label(label) max_count = max(max_count, label.shape[0]) except StopIteration: pass self.reset() return (max_count, label.shape[1])
[ "Helper function to estimate label shape" ]
Please provide a description of the function:def _parse_label(self, label): if isinstance(label, nd.NDArray): label = label.asnumpy() raw = label.ravel() if raw.size < 7: raise RuntimeError("Label shape is invalid: " + str(raw.shape)) header_width = int(raw[0]) obj_width = int(raw[1]) if (raw.size - header_width) % obj_width != 0: msg = "Label shape %s inconsistent with annotation width %d." \ %(str(raw.shape), obj_width) raise RuntimeError(msg) out = np.reshape(raw[header_width:], (-1, obj_width)) # remove bad ground-truths valid = np.where(np.logical_and(out[:, 3] > out[:, 1], out[:, 4] > out[:, 2]))[0] if valid.size < 1: raise RuntimeError('Encounter sample with no valid label.') return out[valid, :]
[ "Helper function to parse object detection label.\n\n Format for raw label:\n n \\t k \\t ... \\t [id \\t xmin\\t ymin \\t xmax \\t ymax \\t ...] \\t [repeat]\n where n is the width of header, 2 or larger\n k is the width of each object annotation, can be arbitrary, at least 5\n " ]
Please provide a description of the function:def reshape(self, data_shape=None, label_shape=None): if data_shape is not None: self.check_data_shape(data_shape) self.provide_data = [(self.provide_data[0][0], (self.batch_size,) + data_shape)] self.data_shape = data_shape if label_shape is not None: self.check_label_shape(label_shape) self.provide_label = [(self.provide_label[0][0], (self.batch_size,) + label_shape)] self.label_shape = label_shape
[ "Reshape iterator for data_shape or label_shape.\n\n Parameters\n ----------\n data_shape : tuple or None\n Reshape the data_shape to the new shape if not None\n label_shape : tuple or None\n Reshape label shape to new shape if not None\n " ]
Please provide a description of the function:def _batchify(self, batch_data, batch_label, start=0): i = start batch_size = self.batch_size try: while i < batch_size: label, s = self.next_sample() data = self.imdecode(s) try: self.check_valid_image([data]) label = self._parse_label(label) data, label = self.augmentation_transform(data, label) self._check_valid_label(label) except RuntimeError as e: logging.debug('Invalid image, skipping: %s', str(e)) continue for datum in [data]: assert i < batch_size, 'Batch size must be multiples of augmenter output length' batch_data[i] = self.postprocess_data(datum) num_object = label.shape[0] batch_label[i][0:num_object] = nd.array(label) if num_object < batch_label[i].shape[0]: batch_label[i][num_object:] = -1 i += 1 except StopIteration: if not i: raise StopIteration return i
[ "Override the helper function for batchifying data" ]
Please provide a description of the function:def next(self): batch_size = self.batch_size c, h, w = self.data_shape # if last batch data is rolled over if self._cache_data is not None: # check both the data and label have values assert self._cache_label is not None, "_cache_label didn't have values" assert self._cache_idx is not None, "_cache_idx didn't have values" batch_data = self._cache_data batch_label = self._cache_label i = self._cache_idx else: batch_data = nd.zeros((batch_size, c, h, w)) batch_label = nd.empty(self.provide_label[0][1]) batch_label[:] = -1 i = self._batchify(batch_data, batch_label) # calculate the padding pad = batch_size - i # handle padding for the last batch if pad != 0: if self.last_batch_handle == 'discard': raise StopIteration # if the option is 'roll_over', throw StopIteration and cache the data elif self.last_batch_handle == 'roll_over' and \ self._cache_data is None: self._cache_data = batch_data self._cache_label = batch_label self._cache_idx = i raise StopIteration else: _ = self._batchify(batch_data, batch_label, i) if self.last_batch_handle == 'pad': self._allow_read = False else: self._cache_data = None self._cache_label = None self._cache_idx = None return io.DataBatch([batch_data], [batch_label], pad=pad)
[ "Override the function for returning next batch." ]
Please provide a description of the function:def augmentation_transform(self, data, label): # pylint: disable=arguments-differ for aug in self.auglist: data, label = aug(data, label) return (data, label)
[ "Override Transforms input data with specified augmentations." ]
Please provide a description of the function:def check_label_shape(self, label_shape): if not len(label_shape) == 2: raise ValueError('label_shape should have length 2') if label_shape[0] < self.label_shape[0]: msg = 'Attempts to reduce label count from %d to %d, not allowed.' \ % (self.label_shape[0], label_shape[0]) raise ValueError(msg) if label_shape[1] != self.provide_label[0][1][2]: msg = 'label_shape object width inconsistent: %d vs %d.' \ % (self.provide_label[0][1][2], label_shape[1]) raise ValueError(msg)
[ "Checks if the new label shape is valid" ]
Please provide a description of the function:def draw_next(self, color=None, thickness=2, mean=None, std=None, clip=True, waitKey=None, window_name='draw_next', id2labels=None): try: import cv2 except ImportError as e: warnings.warn('Unable to import cv2, skip drawing: %s', str(e)) return count = 0 try: while True: label, s = self.next_sample() data = self.imdecode(s) try: self.check_valid_image([data]) label = self._parse_label(label) except RuntimeError as e: logging.debug('Invalid image, skipping: %s', str(e)) continue count += 1 data, label = self.augmentation_transform(data, label) image = data.asnumpy() # revert color_normalize if std is True: std = np.array([58.395, 57.12, 57.375]) elif std is not None: assert isinstance(std, np.ndarray) and std.shape[0] in [1, 3] if std is not None: image *= std if mean is True: mean = np.array([123.68, 116.28, 103.53]) elif mean is not None: assert isinstance(mean, np.ndarray) and mean.shape[0] in [1, 3] if mean is not None: image += mean # swap RGB image[:, :, (0, 1, 2)] = image[:, :, (2, 1, 0)] if clip: image = np.maximum(0, np.minimum(255, image)) if color: color = color[::-1] image = image.astype(np.uint8) height, width, _ = image.shape for i in range(label.shape[0]): x1 = int(label[i, 1] * width) if x1 < 0: continue y1 = int(label[i, 2] * height) x2 = int(label[i, 3] * width) y2 = int(label[i, 4] * height) bc = np.random.rand(3) * 255 if not color else color cv2.rectangle(image, (x1, y1), (x2, y2), bc, thickness) if id2labels is not None: cls_id = int(label[i, 0]) if cls_id in id2labels: cls_name = id2labels[cls_id] text = "{:s}".format(cls_name) font = cv2.FONT_HERSHEY_SIMPLEX font_scale = 0.5 text_height = cv2.getTextSize(text, font, font_scale, 2)[0][1] tc = (255, 255, 255) tpos = (x1 + 5, y1 + text_height + 5) cv2.putText(image, text, tpos, font, font_scale, tc, 2) if waitKey is not None: cv2.imshow(window_name, image) cv2.waitKey(waitKey) yield image except StopIteration: if not count: return
[ "Display next image with bounding boxes drawn.\n\n Parameters\n ----------\n color : tuple\n Bounding box color in RGB, use None for random color\n thickness : int\n Bounding box border thickness\n mean : True or numpy.ndarray\n Compensate for the mean to have better visual effect\n std : True or numpy.ndarray\n Revert standard deviations\n clip : bool\n If true, clip to [0, 255] for better visual effect\n waitKey : None or int\n Hold the window for waitKey milliseconds if set, skip ploting if None\n window_name : str\n Plot window name if waitKey is set.\n id2labels : dict\n Mapping of labels id to labels name.\n\n Returns\n -------\n numpy.ndarray\n\n Examples\n --------\n >>> # use draw_next to get images with bounding boxes drawn\n >>> iterator = mx.image.ImageDetIter(1, (3, 600, 600), path_imgrec='train.rec')\n >>> for image in iterator.draw_next(waitKey=None):\n ... # display image\n >>> # or let draw_next display using cv2 module\n >>> for image in iterator.draw_next(waitKey=0, window_name='disp'):\n ... pass\n " ]
Please provide a description of the function:def sync_label_shape(self, it, verbose=False): assert isinstance(it, ImageDetIter), 'Synchronize with invalid iterator.' train_label_shape = self.label_shape val_label_shape = it.label_shape assert train_label_shape[1] == val_label_shape[1], "object width mismatch." max_count = max(train_label_shape[0], val_label_shape[0]) if max_count > train_label_shape[0]: self.reshape(None, (max_count, train_label_shape[1])) if max_count > val_label_shape[0]: it.reshape(None, (max_count, val_label_shape[1])) if verbose and max_count > min(train_label_shape[0], val_label_shape[0]): logging.info('Resized label_shape to (%d, %d).', max_count, train_label_shape[1]) return it
[ "Synchronize label shape with the input iterator. This is useful when\n train/validation iterators have different label padding.\n\n Parameters\n ----------\n it : ImageDetIter\n The other iterator to synchronize\n verbose : bool\n Print verbose log if true\n\n Returns\n -------\n ImageDetIter\n The synchronized other iterator, the internal label shape is updated as well.\n\n Examples\n --------\n >>> train_iter = mx.image.ImageDetIter(32, (3, 300, 300), path_imgrec='train.rec')\n >>> val_iter = mx.image.ImageDetIter(32, (3, 300, 300), path.imgrec='val.rec')\n >>> train_iter.label_shape\n (30, 6)\n >>> val_iter.label_shape\n (25, 6)\n >>> val_iter = train_iter.sync_label_shape(val_iter, verbose=False)\n >>> train_iter.label_shape\n (30, 6)\n >>> val_iter.label_shape\n (30, 6)\n " ]
Please provide a description of the function:def _generate_base_anchors(base_size, scales, ratios): base_anchor = np.array([1, 1, base_size, base_size]) - 1 ratio_anchors = AnchorGenerator._ratio_enum(base_anchor, ratios) anchors = np.vstack([AnchorGenerator._scale_enum(ratio_anchors[i, :], scales) for i in range(ratio_anchors.shape[0])]) return anchors
[ "\n Generate anchor (reference) windows by enumerating aspect ratios X\n scales wrt a reference (0, 0, 15, 15) window.\n " ]
Please provide a description of the function:def _whctrs(anchor): w = anchor[2] - anchor[0] + 1 h = anchor[3] - anchor[1] + 1 x_ctr = anchor[0] + 0.5 * (w - 1) y_ctr = anchor[1] + 0.5 * (h - 1) return w, h, x_ctr, y_ctr
[ "\n Return width, height, x center, and y center for an anchor (window).\n " ]
Please provide a description of the function:def _mkanchors(ws, hs, x_ctr, y_ctr): ws = ws[:, np.newaxis] hs = hs[:, np.newaxis] anchors = np.hstack((x_ctr - 0.5 * (ws - 1), y_ctr - 0.5 * (hs - 1), x_ctr + 0.5 * (ws - 1), y_ctr + 0.5 * (hs - 1))) return anchors
[ "\n Given a vector of widths (ws) and heights (hs) around a center\n (x_ctr, y_ctr), output a set of anchors (windows).\n " ]
Please provide a description of the function:def _ratio_enum(anchor, ratios): w, h, x_ctr, y_ctr = AnchorGenerator._whctrs(anchor) size = w * h size_ratios = size / ratios ws = np.round(np.sqrt(size_ratios)) hs = np.round(ws * ratios) anchors = AnchorGenerator._mkanchors(ws, hs, x_ctr, y_ctr) return anchors
[ "\n Enumerate a set of anchors for each aspect ratio wrt an anchor.\n " ]
Please provide a description of the function:def _scale_enum(anchor, scales): w, h, x_ctr, y_ctr = AnchorGenerator._whctrs(anchor) ws = w * scales hs = h * scales anchors = AnchorGenerator._mkanchors(ws, hs, x_ctr, y_ctr) return anchors
[ "\n Enumerate a set of anchors for each scale wrt an anchor.\n " ]
Please provide a description of the function:def prepare_data(args): rnn_type = args.config.get("arch", "rnn_type") num_rnn_layer = args.config.getint("arch", "num_rnn_layer") num_hidden_rnn_list = json.loads(args.config.get("arch", "num_hidden_rnn_list")) batch_size = args.config.getint("common", "batch_size") if rnn_type == 'lstm': init_c = [('l%d_init_c' % l, (batch_size, num_hidden_rnn_list[l])) for l in range(num_rnn_layer)] init_h = [('l%d_init_h' % l, (batch_size, num_hidden_rnn_list[l])) for l in range(num_rnn_layer)] elif rnn_type == 'bilstm': forward_init_c = [('forward_l%d_init_c' % l, (batch_size, num_hidden_rnn_list[l])) for l in range(num_rnn_layer)] backward_init_c = [('backward_l%d_init_c' % l, (batch_size, num_hidden_rnn_list[l])) for l in range(num_rnn_layer)] init_c = forward_init_c + backward_init_c forward_init_h = [('forward_l%d_init_h' % l, (batch_size, num_hidden_rnn_list[l])) for l in range(num_rnn_layer)] backward_init_h = [('backward_l%d_init_h' % l, (batch_size, num_hidden_rnn_list[l])) for l in range(num_rnn_layer)] init_h = forward_init_h + backward_init_h elif rnn_type == 'gru': init_h = [('l%d_init_h' % l, (batch_size, num_hidden_rnn_list[l])) for l in range(num_rnn_layer)] elif rnn_type == 'bigru': forward_init_h = [('forward_l%d_init_h' % l, (batch_size, num_hidden_rnn_list[l])) for l in range(num_rnn_layer)] backward_init_h = [('backward_l%d_init_h' % l, (batch_size, num_hidden_rnn_list[l])) for l in range(num_rnn_layer)] init_h = forward_init_h + backward_init_h else: raise Exception('network type should be one of the lstm,bilstm,gru,bigru') if rnn_type == 'lstm' or rnn_type == 'bilstm': init_states = init_c + init_h elif rnn_type == 'gru' or rnn_type == 'bigru': init_states = init_h return init_states
[ "\n set atual shape of data\n " ]
Please provide a description of the function:def arch(args, seq_len=None): if isinstance(args, argparse.Namespace): mode = args.config.get("common", "mode") is_bucketing = args.config.getboolean("arch", "is_bucketing") if mode == "train" or is_bucketing: channel_num = args.config.getint("arch", "channel_num") conv_layer1_filter_dim = \ tuple(json.loads(args.config.get("arch", "conv_layer1_filter_dim"))) conv_layer1_stride = tuple(json.loads(args.config.get("arch", "conv_layer1_stride"))) conv_layer2_filter_dim = \ tuple(json.loads(args.config.get("arch", "conv_layer2_filter_dim"))) conv_layer2_stride = tuple(json.loads(args.config.get("arch", "conv_layer2_stride"))) rnn_type = args.config.get("arch", "rnn_type") num_rnn_layer = args.config.getint("arch", "num_rnn_layer") num_hidden_rnn_list = json.loads(args.config.get("arch", "num_hidden_rnn_list")) is_batchnorm = args.config.getboolean("arch", "is_batchnorm") if seq_len is None: seq_len = args.config.getint('arch', 'max_t_count') num_label = args.config.getint('arch', 'max_label_length') num_rear_fc_layers = args.config.getint("arch", "num_rear_fc_layers") num_hidden_rear_fc_list = json.loads(args.config.get("arch", "num_hidden_rear_fc_list")) act_type_rear_fc_list = json.loads(args.config.get("arch", "act_type_rear_fc_list")) # model symbol generation # input preparation data = mx.sym.Variable('data') label = mx.sym.Variable('label') net = mx.sym.Reshape(data=data, shape=(-4, -1, 1, 0, 0)) net = conv(net=net, channels=channel_num, filter_dimension=conv_layer1_filter_dim, stride=conv_layer1_stride, no_bias=is_batchnorm, name='conv1') if is_batchnorm: # batch norm normalizes axis 1 net = batchnorm(net, name="conv1_batchnorm") net = conv(net=net, channels=channel_num, filter_dimension=conv_layer2_filter_dim, stride=conv_layer2_stride, no_bias=is_batchnorm, name='conv2') if is_batchnorm: # batch norm normalizes axis 1 net = batchnorm(net, name="conv2_batchnorm") net = mx.sym.transpose(data=net, axes=(0, 2, 1, 3)) net = mx.sym.Reshape(data=net, shape=(0, 0, -3)) seq_len_after_conv_layer1 = int( math.floor((seq_len - conv_layer1_filter_dim[0]) / conv_layer1_stride[0])) + 1 seq_len_after_conv_layer2 = int( math.floor((seq_len_after_conv_layer1 - conv_layer2_filter_dim[0]) / conv_layer2_stride[0])) + 1 net = slice_symbol_to_seq_symobls(net=net, seq_len=seq_len_after_conv_layer2, axis=1) if rnn_type == "bilstm": net = bi_lstm_unroll(net=net, seq_len=seq_len_after_conv_layer2, num_hidden_lstm_list=num_hidden_rnn_list, num_lstm_layer=num_rnn_layer, dropout=0., is_batchnorm=is_batchnorm, is_bucketing=is_bucketing) elif rnn_type == "gru": net = gru_unroll(net=net, seq_len=seq_len_after_conv_layer2, num_hidden_gru_list=num_hidden_rnn_list, num_gru_layer=num_rnn_layer, dropout=0., is_batchnorm=is_batchnorm, is_bucketing=is_bucketing) elif rnn_type == "bigru": net = bi_gru_unroll(net=net, seq_len=seq_len_after_conv_layer2, num_hidden_gru_list=num_hidden_rnn_list, num_gru_layer=num_rnn_layer, dropout=0., is_batchnorm=is_batchnorm, is_bucketing=is_bucketing) else: raise Exception('rnn_type should be one of the followings, bilstm,gru,bigru') # rear fc layers net = sequence_fc(net=net, seq_len=seq_len_after_conv_layer2, num_layer=num_rear_fc_layers, prefix="rear", num_hidden_list=num_hidden_rear_fc_list, act_type_list=act_type_rear_fc_list, is_batchnorm=is_batchnorm) # warpctc layer net = warpctc_layer(net=net, seq_len=seq_len_after_conv_layer2, label=label, num_label=num_label, character_classes_count= (args.config.getint('arch', 'n_classes') + 1)) args.config.set('arch', 'max_t_count', str(seq_len_after_conv_layer2)) return net elif mode == 'load' or mode == 'predict': conv_layer1_filter_dim = \ tuple(json.loads(args.config.get("arch", "conv_layer1_filter_dim"))) conv_layer1_stride = tuple(json.loads(args.config.get("arch", "conv_layer1_stride"))) conv_layer2_filter_dim = \ tuple(json.loads(args.config.get("arch", "conv_layer2_filter_dim"))) conv_layer2_stride = tuple(json.loads(args.config.get("arch", "conv_layer2_stride"))) if seq_len is None: seq_len = args.config.getint('arch', 'max_t_count') seq_len_after_conv_layer1 = int( math.floor((seq_len - conv_layer1_filter_dim[0]) / conv_layer1_stride[0])) + 1 seq_len_after_conv_layer2 = int( math.floor((seq_len_after_conv_layer1 - conv_layer2_filter_dim[0]) / conv_layer2_stride[0])) + 1 args.config.set('arch', 'max_t_count', str(seq_len_after_conv_layer2)) else: raise Exception('mode must be the one of the followings - train,predict,load')
[ "\n define deep speech 2 network\n " ]
Please provide a description of the function:def main(): parser = argparse.ArgumentParser() parser.add_argument('--batch_size', type=int, default=64) parser.add_argument('--epochs', type=int, default=100) parser.add_argument('--image_path', type=str, default='./data/datasets/') parser.add_argument('--align_path', type=str, default='./data/align/') parser.add_argument('--dr_rate', type=float, default=0.5) parser.add_argument('--num_gpus', type=int, default=1) parser.add_argument('--num_workers', type=int, default=0) parser.add_argument('--model_path', type=str, default=None) config = parser.parse_args() trainer = Train(config) trainer.build_model(dr_rate=config.dr_rate, path=config.model_path) trainer.load_dataloader() trainer.run(epochs=config.epochs)
[ "\n Description : run lipnet training code using argument info\n " ]
Please provide a description of the function:def vis_detection(im_orig, detections, class_names, thresh=0.7): import matplotlib.pyplot as plt import random plt.imshow(im_orig) colors = [(random.random(), random.random(), random.random()) for _ in class_names] for [cls, conf, x1, y1, x2, y2] in detections: cls = int(cls) if cls > 0 and conf > thresh: rect = plt.Rectangle((x1, y1), x2 - x1, y2 - y1, fill=False, edgecolor=colors[cls], linewidth=3.5) plt.gca().add_patch(rect) plt.gca().text(x1, y1 - 2, '{:s} {:.3f}'.format(class_names[cls], conf), bbox=dict(facecolor=colors[cls], alpha=0.5), fontsize=12, color='white') plt.show()
[ "visualize [cls, conf, x1, y1, x2, y2]" ]
Please provide a description of the function:def check_error(model, path, shapes, output = 'softmax_output', verbose = True): coreml_model = _coremltools.models.MLModel(path) input_data = {} input_data_copy = {} for ip in shapes: input_data[ip] = _np.random.rand(*shapes[ip]).astype('f') input_data_copy[ip] = _np.copy(input_data[ip]) dataIter = _mxnet.io.NDArrayIter(input_data_copy) mx_out = model.predict(dataIter).flatten() e_out_dict = coreml_model.predict(_mxnet_remove_batch(input_data)) e_out = e_out_dict[output].flatten() error = _np.linalg.norm(e_out - mx_out) if verbose: print("First few predictions from CoreML : %s" % e_out[0:10]) print("First few predictions from MXNet : %s" % e_out[0:10]) print("L2 Error on random data %s" % error) return error
[ "\n Check the difference between predictions from MXNet and CoreML.\n " ]