Code
stringlengths
103
85.9k
Summary
sequencelengths
0
94
Please provide a description of the function:def from_pretrained( cls, pretrained_model_name_or_path, state_dict=None, cache_dir=None, from_tf=False, *inputs, **kwargs ): if pretrained_model_name_or_path in PRETRAINED_MODEL_ARCHIVE_MAP: archive_file = PRETRAINED_MODEL_ARCHIVE_MAP[pretrained_model_name_or_path] config_file = PRETRAINED_CONFIG_ARCHIVE_MAP[pretrained_model_name_or_path] else: archive_file = os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME) config_file = os.path.join(pretrained_model_name_or_path, CONFIG_NAME) # redirect to the cache, if necessary try: resolved_archive_file = cached_path(archive_file, cache_dir=cache_dir) resolved_config_file = cached_path(config_file, cache_dir=cache_dir) except EnvironmentError: logger.error( "Model name '{}' was not found in model name list ({}). " "We assumed '{}' was a path or url but couldn't find files {} and {} " "at this path or url.".format( pretrained_model_name_or_path, ", ".join(PRETRAINED_MODEL_ARCHIVE_MAP.keys()), pretrained_model_name_or_path, archive_file, config_file ) ) return None if resolved_archive_file == archive_file and resolved_config_file == config_file: logger.info("loading weights file {}".format(archive_file)) logger.info("loading configuration file {}".format(config_file)) else: logger.info("loading weights file {} from cache at {}".format( archive_file, resolved_archive_file)) logger.info("loading configuration file {} from cache at {}".format( config_file, resolved_config_file)) # Load config config = GPT2Config.from_json_file(resolved_config_file) logger.info("Model config {}".format(config)) # Instantiate model. model = cls(config, *inputs, **kwargs) if state_dict is None and not from_tf: state_dict = torch.load(resolved_archive_file, map_location='cpu') if from_tf: # Directly load from a TensorFlow checkpoint (stored as NumPy array) return load_tf_weights_in_gpt2(model, resolved_archive_file) old_keys = [] new_keys = [] for key in state_dict.keys(): new_key = None if key.endswith(".g"): new_key = key[:-2] + ".weight" elif key.endswith(".b"): new_key = key[:-2] + ".bias" elif key.endswith(".w"): new_key = key[:-2] + ".weight" if new_key: old_keys.append(key) new_keys.append(new_key) for old_key, new_key in zip(old_keys, new_keys): state_dict[new_key] = state_dict.pop(old_key) missing_keys = [] unexpected_keys = [] error_msgs = [] # copy state_dict so _load_from_state_dict can modify it metadata = getattr(state_dict, "_metadata", None) state_dict = state_dict.copy() if metadata is not None: state_dict._metadata = metadata def load(module, prefix=""): local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {}) module._load_from_state_dict( state_dict, prefix, local_metadata, True, missing_keys, unexpected_keys, error_msgs ) for name, child in module._modules.items(): if child is not None: load(child, prefix + name + ".") start_model = model if hasattr(model, "transformer") and all(not s.startswith('transformer.') for s in state_dict.keys()): start_model = model.transformer load(start_model, prefix="") if len(missing_keys) > 0: logger.info( "Weights of {} not initialized from pretrained model: {}".format(model.__class__.__name__, missing_keys) ) if len(unexpected_keys) > 0: logger.info( "Weights from pretrained model not used in {}: {}".format(model.__class__.__name__, unexpected_keys) ) if len(error_msgs) > 0: raise RuntimeError( "Error(s) in loading state_dict for {}:\n\t{}".format(model.__class__.__name__, "\n\t".join(error_msgs)) ) # Make sure we are still sharing the output and input embeddings after loading weights model.set_tied() return model
[ "\n Instantiate a GPT2PreTrainedModel from a pre-trained model file or a pytorch state dict.\n Download and cache the pre-trained model file if needed.\n\n Params:\n pretrained_model_name_or_path: either:\n - a str with the name of a pre-trained model to load selected in the list of:\n . `gpt2`\n - a path or url to a pretrained model archive containing:\n . `gpt2_config.json` a configuration file for the model\n . `pytorch_model.bin` a PyTorch dump of a GPT2Model instance\n - a path or url to a pretrained model archive containing:\n . `gpt2_config.json` a configuration file for the model\n . a TensorFlow checkpoint with trained weights\n from_tf: should we load the weights from a locally saved TensorFlow checkpoint\n cache_dir: an optional path to a folder in which the pre-trained models will be cached.\n state_dict: an optional state dictionary (collections.OrderedDict object) to use instead of pre-trained models\n *inputs, **kwargs: additional input for the specific GPT class\n " ]
Please provide a description of the function:def convert_examples_to_features(examples, seq_length, tokenizer): features = [] for (ex_index, example) in enumerate(examples): tokens_a = tokenizer.tokenize(example.text_a) tokens_b = None if example.text_b: tokens_b = tokenizer.tokenize(example.text_b) if tokens_b: # Modifies `tokens_a` and `tokens_b` in place so that the total # length is less than the specified length. # Account for [CLS], [SEP], [SEP] with "- 3" _truncate_seq_pair(tokens_a, tokens_b, seq_length - 3) else: # Account for [CLS] and [SEP] with "- 2" if len(tokens_a) > seq_length - 2: tokens_a = tokens_a[0:(seq_length - 2)] # The convention in BERT is: # (a) For sequence pairs: # tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] # type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 # (b) For single sequences: # tokens: [CLS] the dog is hairy . [SEP] # type_ids: 0 0 0 0 0 0 0 # # Where "type_ids" are used to indicate whether this is the first # sequence or the second sequence. The embedding vectors for `type=0` and # `type=1` were learned during pre-training and are added to the wordpiece # embedding vector (and position vector). This is not *strictly* necessary # since the [SEP] token unambigiously separates the sequences, but it makes # it easier for the model to learn the concept of sequences. # # For classification tasks, the first vector (corresponding to [CLS]) is # used as as the "sentence vector". Note that this only makes sense because # the entire model is fine-tuned. tokens = [] input_type_ids = [] tokens.append("[CLS]") input_type_ids.append(0) for token in tokens_a: tokens.append(token) input_type_ids.append(0) tokens.append("[SEP]") input_type_ids.append(0) if tokens_b: for token in tokens_b: tokens.append(token) input_type_ids.append(1) tokens.append("[SEP]") input_type_ids.append(1) input_ids = tokenizer.convert_tokens_to_ids(tokens) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. input_mask = [1] * len(input_ids) # Zero-pad up to the sequence length. while len(input_ids) < seq_length: input_ids.append(0) input_mask.append(0) input_type_ids.append(0) assert len(input_ids) == seq_length assert len(input_mask) == seq_length assert len(input_type_ids) == seq_length if ex_index < 5: logger.info("*** Example ***") logger.info("unique_id: %s" % (example.unique_id)) logger.info("tokens: %s" % " ".join([str(x) for x in tokens])) logger.info("input_ids: %s" % " ".join([str(x) for x in input_ids])) logger.info("input_mask: %s" % " ".join([str(x) for x in input_mask])) logger.info( "input_type_ids: %s" % " ".join([str(x) for x in input_type_ids])) features.append( InputFeatures( unique_id=example.unique_id, tokens=tokens, input_ids=input_ids, input_mask=input_mask, input_type_ids=input_type_ids)) return features
[ "Loads a data file into a list of `InputFeature`s." ]
Please provide a description of the function:def read_examples(input_file): examples = [] unique_id = 0 with open(input_file, "r", encoding='utf-8') as reader: while True: line = reader.readline() if not line: break line = line.strip() text_a = None text_b = None m = re.match(r"^(.*) \|\|\| (.*)$", line) if m is None: text_a = line else: text_a = m.group(1) text_b = m.group(2) examples.append( InputExample(unique_id=unique_id, text_a=text_a, text_b=text_b)) unique_id += 1 return examples
[ "Read a list of `InputExample`s from an input file." ]
Please provide a description of the function:def read_squad_examples(input_file, is_training, version_2_with_negative): with open(input_file, "r", encoding='utf-8') as reader: input_data = json.load(reader)["data"] def is_whitespace(c): if c == " " or c == "\t" or c == "\r" or c == "\n" or ord(c) == 0x202F: return True return False examples = [] for entry in input_data: for paragraph in entry["paragraphs"]: paragraph_text = paragraph["context"] doc_tokens = [] char_to_word_offset = [] prev_is_whitespace = True for c in paragraph_text: if is_whitespace(c): prev_is_whitespace = True else: if prev_is_whitespace: doc_tokens.append(c) else: doc_tokens[-1] += c prev_is_whitespace = False char_to_word_offset.append(len(doc_tokens) - 1) for qa in paragraph["qas"]: qas_id = qa["id"] question_text = qa["question"] start_position = None end_position = None orig_answer_text = None is_impossible = False if is_training: if version_2_with_negative: is_impossible = qa["is_impossible"] if (len(qa["answers"]) != 1) and (not is_impossible): raise ValueError( "For training, each question should have exactly 1 answer.") if not is_impossible: answer = qa["answers"][0] orig_answer_text = answer["text"] answer_offset = answer["answer_start"] answer_length = len(orig_answer_text) start_position = char_to_word_offset[answer_offset] end_position = char_to_word_offset[answer_offset + answer_length - 1] # Only add answers where the text can be exactly recovered from the # document. If this CAN'T happen it's likely due to weird Unicode # stuff so we will just skip the example. # # Note that this means for training mode, every example is NOT # guaranteed to be preserved. actual_text = " ".join(doc_tokens[start_position:(end_position + 1)]) cleaned_answer_text = " ".join( whitespace_tokenize(orig_answer_text)) if actual_text.find(cleaned_answer_text) == -1: logger.warning("Could not find answer: '%s' vs. '%s'", actual_text, cleaned_answer_text) continue else: start_position = -1 end_position = -1 orig_answer_text = "" example = SquadExample( qas_id=qas_id, question_text=question_text, doc_tokens=doc_tokens, orig_answer_text=orig_answer_text, start_position=start_position, end_position=end_position, is_impossible=is_impossible) examples.append(example) return examples
[ "Read a SQuAD json file into a list of SquadExample." ]
Please provide a description of the function:def convert_examples_to_features(examples, tokenizer, max_seq_length, doc_stride, max_query_length, is_training): unique_id = 1000000000 features = [] for (example_index, example) in enumerate(examples): query_tokens = tokenizer.tokenize(example.question_text) if len(query_tokens) > max_query_length: query_tokens = query_tokens[0:max_query_length] tok_to_orig_index = [] orig_to_tok_index = [] all_doc_tokens = [] for (i, token) in enumerate(example.doc_tokens): orig_to_tok_index.append(len(all_doc_tokens)) sub_tokens = tokenizer.tokenize(token) for sub_token in sub_tokens: tok_to_orig_index.append(i) all_doc_tokens.append(sub_token) tok_start_position = None tok_end_position = None if is_training and example.is_impossible: tok_start_position = -1 tok_end_position = -1 if is_training and not example.is_impossible: tok_start_position = orig_to_tok_index[example.start_position] if example.end_position < len(example.doc_tokens) - 1: tok_end_position = orig_to_tok_index[example.end_position + 1] - 1 else: tok_end_position = len(all_doc_tokens) - 1 (tok_start_position, tok_end_position) = _improve_answer_span( all_doc_tokens, tok_start_position, tok_end_position, tokenizer, example.orig_answer_text) # The -3 accounts for [CLS], [SEP] and [SEP] max_tokens_for_doc = max_seq_length - len(query_tokens) - 3 # We can have documents that are longer than the maximum sequence length. # To deal with this we do a sliding window approach, where we take chunks # of the up to our max length with a stride of `doc_stride`. _DocSpan = collections.namedtuple( # pylint: disable=invalid-name "DocSpan", ["start", "length"]) doc_spans = [] start_offset = 0 while start_offset < len(all_doc_tokens): length = len(all_doc_tokens) - start_offset if length > max_tokens_for_doc: length = max_tokens_for_doc doc_spans.append(_DocSpan(start=start_offset, length=length)) if start_offset + length == len(all_doc_tokens): break start_offset += min(length, doc_stride) for (doc_span_index, doc_span) in enumerate(doc_spans): tokens = [] token_to_orig_map = {} token_is_max_context = {} segment_ids = [] tokens.append("[CLS]") segment_ids.append(0) for token in query_tokens: tokens.append(token) segment_ids.append(0) tokens.append("[SEP]") segment_ids.append(0) for i in range(doc_span.length): split_token_index = doc_span.start + i token_to_orig_map[len(tokens)] = tok_to_orig_index[split_token_index] is_max_context = _check_is_max_context(doc_spans, doc_span_index, split_token_index) token_is_max_context[len(tokens)] = is_max_context tokens.append(all_doc_tokens[split_token_index]) segment_ids.append(1) tokens.append("[SEP]") segment_ids.append(1) input_ids = tokenizer.convert_tokens_to_ids(tokens) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. input_mask = [1] * len(input_ids) # Zero-pad up to the sequence length. while len(input_ids) < max_seq_length: input_ids.append(0) input_mask.append(0) segment_ids.append(0) assert len(input_ids) == max_seq_length assert len(input_mask) == max_seq_length assert len(segment_ids) == max_seq_length start_position = None end_position = None if is_training and not example.is_impossible: # For training, if our document chunk does not contain an annotation # we throw it out, since there is nothing to predict. doc_start = doc_span.start doc_end = doc_span.start + doc_span.length - 1 out_of_span = False if not (tok_start_position >= doc_start and tok_end_position <= doc_end): out_of_span = True if out_of_span: start_position = 0 end_position = 0 else: doc_offset = len(query_tokens) + 2 start_position = tok_start_position - doc_start + doc_offset end_position = tok_end_position - doc_start + doc_offset if is_training and example.is_impossible: start_position = 0 end_position = 0 if example_index < 20: logger.info("*** Example ***") logger.info("unique_id: %s" % (unique_id)) logger.info("example_index: %s" % (example_index)) logger.info("doc_span_index: %s" % (doc_span_index)) logger.info("tokens: %s" % " ".join(tokens)) logger.info("token_to_orig_map: %s" % " ".join([ "%d:%d" % (x, y) for (x, y) in token_to_orig_map.items()])) logger.info("token_is_max_context: %s" % " ".join([ "%d:%s" % (x, y) for (x, y) in token_is_max_context.items() ])) logger.info("input_ids: %s" % " ".join([str(x) for x in input_ids])) logger.info( "input_mask: %s" % " ".join([str(x) for x in input_mask])) logger.info( "segment_ids: %s" % " ".join([str(x) for x in segment_ids])) if is_training and example.is_impossible: logger.info("impossible example") if is_training and not example.is_impossible: answer_text = " ".join(tokens[start_position:(end_position + 1)]) logger.info("start_position: %d" % (start_position)) logger.info("end_position: %d" % (end_position)) logger.info( "answer: %s" % (answer_text)) features.append( InputFeatures( unique_id=unique_id, example_index=example_index, doc_span_index=doc_span_index, tokens=tokens, token_to_orig_map=token_to_orig_map, token_is_max_context=token_is_max_context, input_ids=input_ids, input_mask=input_mask, segment_ids=segment_ids, start_position=start_position, end_position=end_position, is_impossible=example.is_impossible)) unique_id += 1 return features
[ "Loads a data file into a list of `InputBatch`s." ]
Please provide a description of the function:def _improve_answer_span(doc_tokens, input_start, input_end, tokenizer, orig_answer_text): # The SQuAD annotations are character based. We first project them to # whitespace-tokenized words. But then after WordPiece tokenization, we can # often find a "better match". For example: # # Question: What year was John Smith born? # Context: The leader was John Smith (1895-1943). # Answer: 1895 # # The original whitespace-tokenized answer will be "(1895-1943).". However # after tokenization, our tokens will be "( 1895 - 1943 ) .". So we can match # the exact answer, 1895. # # However, this is not always possible. Consider the following: # # Question: What country is the top exporter of electornics? # Context: The Japanese electronics industry is the lagest in the world. # Answer: Japan # # In this case, the annotator chose "Japan" as a character sub-span of # the word "Japanese". Since our WordPiece tokenizer does not split # "Japanese", we just use "Japanese" as the annotation. This is fairly rare # in SQuAD, but does happen. tok_answer_text = " ".join(tokenizer.tokenize(orig_answer_text)) for new_start in range(input_start, input_end + 1): for new_end in range(input_end, new_start - 1, -1): text_span = " ".join(doc_tokens[new_start:(new_end + 1)]) if text_span == tok_answer_text: return (new_start, new_end) return (input_start, input_end)
[ "Returns tokenized answer spans that better match the annotated answer." ]
Please provide a description of the function:def _check_is_max_context(doc_spans, cur_span_index, position): # Because of the sliding window approach taken to scoring documents, a single # token can appear in multiple documents. E.g. # Doc: the man went to the store and bought a gallon of milk # Span A: the man went to the # Span B: to the store and bought # Span C: and bought a gallon of # ... # # Now the word 'bought' will have two scores from spans B and C. We only # want to consider the score with "maximum context", which we define as # the *minimum* of its left and right context (the *sum* of left and # right context will always be the same, of course). # # In the example the maximum context for 'bought' would be span C since # it has 1 left context and 3 right context, while span B has 4 left context # and 0 right context. best_score = None best_span_index = None for (span_index, doc_span) in enumerate(doc_spans): end = doc_span.start + doc_span.length - 1 if position < doc_span.start: continue if position > end: continue num_left_context = position - doc_span.start num_right_context = end - position score = min(num_left_context, num_right_context) + 0.01 * doc_span.length if best_score is None or score > best_score: best_score = score best_span_index = span_index return cur_span_index == best_span_index
[ "Check if this is the 'max context' doc span for the token." ]
Please provide a description of the function:def write_predictions(all_examples, all_features, all_results, n_best_size, max_answer_length, do_lower_case, output_prediction_file, output_nbest_file, output_null_log_odds_file, verbose_logging, version_2_with_negative, null_score_diff_threshold): logger.info("Writing predictions to: %s" % (output_prediction_file)) logger.info("Writing nbest to: %s" % (output_nbest_file)) example_index_to_features = collections.defaultdict(list) for feature in all_features: example_index_to_features[feature.example_index].append(feature) unique_id_to_result = {} for result in all_results: unique_id_to_result[result.unique_id] = result _PrelimPrediction = collections.namedtuple( # pylint: disable=invalid-name "PrelimPrediction", ["feature_index", "start_index", "end_index", "start_logit", "end_logit"]) all_predictions = collections.OrderedDict() all_nbest_json = collections.OrderedDict() scores_diff_json = collections.OrderedDict() for (example_index, example) in enumerate(all_examples): features = example_index_to_features[example_index] prelim_predictions = [] # keep track of the minimum score of null start+end of position 0 score_null = 1000000 # large and positive min_null_feature_index = 0 # the paragraph slice with min null score null_start_logit = 0 # the start logit at the slice with min null score null_end_logit = 0 # the end logit at the slice with min null score for (feature_index, feature) in enumerate(features): result = unique_id_to_result[feature.unique_id] start_indexes = _get_best_indexes(result.start_logits, n_best_size) end_indexes = _get_best_indexes(result.end_logits, n_best_size) # if we could have irrelevant answers, get the min score of irrelevant if version_2_with_negative: feature_null_score = result.start_logits[0] + result.end_logits[0] if feature_null_score < score_null: score_null = feature_null_score min_null_feature_index = feature_index null_start_logit = result.start_logits[0] null_end_logit = result.end_logits[0] for start_index in start_indexes: for end_index in end_indexes: # We could hypothetically create invalid predictions, e.g., predict # that the start of the span is in the question. We throw out all # invalid predictions. if start_index >= len(feature.tokens): continue if end_index >= len(feature.tokens): continue if start_index not in feature.token_to_orig_map: continue if end_index not in feature.token_to_orig_map: continue if not feature.token_is_max_context.get(start_index, False): continue if end_index < start_index: continue length = end_index - start_index + 1 if length > max_answer_length: continue prelim_predictions.append( _PrelimPrediction( feature_index=feature_index, start_index=start_index, end_index=end_index, start_logit=result.start_logits[start_index], end_logit=result.end_logits[end_index])) if version_2_with_negative: prelim_predictions.append( _PrelimPrediction( feature_index=min_null_feature_index, start_index=0, end_index=0, start_logit=null_start_logit, end_logit=null_end_logit)) prelim_predictions = sorted( prelim_predictions, key=lambda x: (x.start_logit + x.end_logit), reverse=True) _NbestPrediction = collections.namedtuple( # pylint: disable=invalid-name "NbestPrediction", ["text", "start_logit", "end_logit"]) seen_predictions = {} nbest = [] for pred in prelim_predictions: if len(nbest) >= n_best_size: break feature = features[pred.feature_index] if pred.start_index > 0: # this is a non-null prediction tok_tokens = feature.tokens[pred.start_index:(pred.end_index + 1)] orig_doc_start = feature.token_to_orig_map[pred.start_index] orig_doc_end = feature.token_to_orig_map[pred.end_index] orig_tokens = example.doc_tokens[orig_doc_start:(orig_doc_end + 1)] tok_text = " ".join(tok_tokens) # De-tokenize WordPieces that have been split off. tok_text = tok_text.replace(" ##", "") tok_text = tok_text.replace("##", "") # Clean whitespace tok_text = tok_text.strip() tok_text = " ".join(tok_text.split()) orig_text = " ".join(orig_tokens) final_text = get_final_text(tok_text, orig_text, do_lower_case, verbose_logging) if final_text in seen_predictions: continue seen_predictions[final_text] = True else: final_text = "" seen_predictions[final_text] = True nbest.append( _NbestPrediction( text=final_text, start_logit=pred.start_logit, end_logit=pred.end_logit)) # if we didn't include the empty option in the n-best, include it if version_2_with_negative: if "" not in seen_predictions: nbest.append( _NbestPrediction( text="", start_logit=null_start_logit, end_logit=null_end_logit)) # In very rare edge cases we could only have single null prediction. # So we just create a nonce prediction in this case to avoid failure. if len(nbest)==1: nbest.insert(0, _NbestPrediction(text="empty", start_logit=0.0, end_logit=0.0)) # In very rare edge cases we could have no valid predictions. So we # just create a nonce prediction in this case to avoid failure. if not nbest: nbest.append( _NbestPrediction(text="empty", start_logit=0.0, end_logit=0.0)) assert len(nbest) >= 1 total_scores = [] best_non_null_entry = None for entry in nbest: total_scores.append(entry.start_logit + entry.end_logit) if not best_non_null_entry: if entry.text: best_non_null_entry = entry probs = _compute_softmax(total_scores) nbest_json = [] for (i, entry) in enumerate(nbest): output = collections.OrderedDict() output["text"] = entry.text output["probability"] = probs[i] output["start_logit"] = entry.start_logit output["end_logit"] = entry.end_logit nbest_json.append(output) assert len(nbest_json) >= 1 if not version_2_with_negative: all_predictions[example.qas_id] = nbest_json[0]["text"] else: # predict "" iff the null score - the score of best non-null > threshold score_diff = score_null - best_non_null_entry.start_logit - ( best_non_null_entry.end_logit) scores_diff_json[example.qas_id] = score_diff if score_diff > null_score_diff_threshold: all_predictions[example.qas_id] = "" else: all_predictions[example.qas_id] = best_non_null_entry.text all_nbest_json[example.qas_id] = nbest_json with open(output_prediction_file, "w") as writer: writer.write(json.dumps(all_predictions, indent=4) + "\n") with open(output_nbest_file, "w") as writer: writer.write(json.dumps(all_nbest_json, indent=4) + "\n") if version_2_with_negative: with open(output_null_log_odds_file, "w") as writer: writer.write(json.dumps(scores_diff_json, indent=4) + "\n")
[ "Write final predictions to the json file and log-odds of null if needed." ]
Please provide a description of the function:def get_final_text(pred_text, orig_text, do_lower_case, verbose_logging=False): # When we created the data, we kept track of the alignment between original # (whitespace tokenized) tokens and our WordPiece tokenized tokens. So # now `orig_text` contains the span of our original text corresponding to the # span that we predicted. # # However, `orig_text` may contain extra characters that we don't want in # our prediction. # # For example, let's say: # pred_text = steve smith # orig_text = Steve Smith's # # We don't want to return `orig_text` because it contains the extra "'s". # # We don't want to return `pred_text` because it's already been normalized # (the SQuAD eval script also does punctuation stripping/lower casing but # our tokenizer does additional normalization like stripping accent # characters). # # What we really want to return is "Steve Smith". # # Therefore, we have to apply a semi-complicated alignment heuristic between # `pred_text` and `orig_text` to get a character-to-character alignment. This # can fail in certain cases in which case we just return `orig_text`. def _strip_spaces(text): ns_chars = [] ns_to_s_map = collections.OrderedDict() for (i, c) in enumerate(text): if c == " ": continue ns_to_s_map[len(ns_chars)] = i ns_chars.append(c) ns_text = "".join(ns_chars) return (ns_text, ns_to_s_map) # We first tokenize `orig_text`, strip whitespace from the result # and `pred_text`, and check if they are the same length. If they are # NOT the same length, the heuristic has failed. If they are the same # length, we assume the characters are one-to-one aligned. tokenizer = BasicTokenizer(do_lower_case=do_lower_case) tok_text = " ".join(tokenizer.tokenize(orig_text)) start_position = tok_text.find(pred_text) if start_position == -1: if verbose_logging: logger.info( "Unable to find text: '%s' in '%s'" % (pred_text, orig_text)) return orig_text end_position = start_position + len(pred_text) - 1 (orig_ns_text, orig_ns_to_s_map) = _strip_spaces(orig_text) (tok_ns_text, tok_ns_to_s_map) = _strip_spaces(tok_text) if len(orig_ns_text) != len(tok_ns_text): if verbose_logging: logger.info("Length not equal after stripping spaces: '%s' vs '%s'", orig_ns_text, tok_ns_text) return orig_text # We then project the characters in `pred_text` back to `orig_text` using # the character-to-character alignment. tok_s_to_ns_map = {} for (i, tok_index) in tok_ns_to_s_map.items(): tok_s_to_ns_map[tok_index] = i orig_start_position = None if start_position in tok_s_to_ns_map: ns_start_position = tok_s_to_ns_map[start_position] if ns_start_position in orig_ns_to_s_map: orig_start_position = orig_ns_to_s_map[ns_start_position] if orig_start_position is None: if verbose_logging: logger.info("Couldn't map start position") return orig_text orig_end_position = None if end_position in tok_s_to_ns_map: ns_end_position = tok_s_to_ns_map[end_position] if ns_end_position in orig_ns_to_s_map: orig_end_position = orig_ns_to_s_map[ns_end_position] if orig_end_position is None: if verbose_logging: logger.info("Couldn't map end position") return orig_text output_text = orig_text[orig_start_position:(orig_end_position + 1)] return output_text
[ "Project the tokenized prediction back to the original text." ]
Please provide a description of the function:def _get_best_indexes(logits, n_best_size): index_and_score = sorted(enumerate(logits), key=lambda x: x[1], reverse=True) best_indexes = [] for i in range(len(index_and_score)): if i >= n_best_size: break best_indexes.append(index_and_score[i][0]) return best_indexes
[ "Get the n-best logits from a list." ]
Please provide a description of the function:def _compute_softmax(scores): if not scores: return [] max_score = None for score in scores: if max_score is None or score > max_score: max_score = score exp_scores = [] total_sum = 0.0 for score in scores: x = math.exp(score - max_score) exp_scores.append(x) total_sum += x probs = [] for score in exp_scores: probs.append(score / total_sum) return probs
[ "Compute softmax probability over raw logits." ]
Please provide a description of the function:def convert_examples_to_features(examples, tokenizer, max_seq_length, is_training): # Swag is a multiple choice task. To perform this task using Bert, # we will use the formatting proposed in "Improving Language # Understanding by Generative Pre-Training" and suggested by # @jacobdevlin-google in this issue # https://github.com/google-research/bert/issues/38. # # Each choice will correspond to a sample on which we run the # inference. For a given Swag example, we will create the 4 # following inputs: # - [CLS] context [SEP] choice_1 [SEP] # - [CLS] context [SEP] choice_2 [SEP] # - [CLS] context [SEP] choice_3 [SEP] # - [CLS] context [SEP] choice_4 [SEP] # The model will output a single value for each input. To get the # final decision of the model, we will run a softmax over these 4 # outputs. features = [] for example_index, example in enumerate(examples): context_tokens = tokenizer.tokenize(example.context_sentence) start_ending_tokens = tokenizer.tokenize(example.start_ending) choices_features = [] for ending_index, ending in enumerate(example.endings): # We create a copy of the context tokens in order to be # able to shrink it according to ending_tokens context_tokens_choice = context_tokens[:] ending_tokens = start_ending_tokens + tokenizer.tokenize(ending) # Modifies `context_tokens_choice` and `ending_tokens` in # place so that the total length is less than the # specified length. Account for [CLS], [SEP], [SEP] with # "- 3" _truncate_seq_pair(context_tokens_choice, ending_tokens, max_seq_length - 3) tokens = ["[CLS]"] + context_tokens_choice + ["[SEP]"] + ending_tokens + ["[SEP]"] segment_ids = [0] * (len(context_tokens_choice) + 2) + [1] * (len(ending_tokens) + 1) input_ids = tokenizer.convert_tokens_to_ids(tokens) input_mask = [1] * len(input_ids) # Zero-pad up to the sequence length. padding = [0] * (max_seq_length - len(input_ids)) input_ids += padding input_mask += padding segment_ids += padding assert len(input_ids) == max_seq_length assert len(input_mask) == max_seq_length assert len(segment_ids) == max_seq_length choices_features.append((tokens, input_ids, input_mask, segment_ids)) label = example.label if example_index < 5: logger.info("*** Example ***") logger.info("swag_id: {}".format(example.swag_id)) for choice_idx, (tokens, input_ids, input_mask, segment_ids) in enumerate(choices_features): logger.info("choice: {}".format(choice_idx)) logger.info("tokens: {}".format(' '.join(tokens))) logger.info("input_ids: {}".format(' '.join(map(str, input_ids)))) logger.info("input_mask: {}".format(' '.join(map(str, input_mask)))) logger.info("segment_ids: {}".format(' '.join(map(str, segment_ids)))) if is_training: logger.info("label: {}".format(label)) features.append( InputFeatures( example_id = example.swag_id, choices_features = choices_features, label = label ) ) return features
[ "Loads a data file into a list of `InputBatch`s." ]
Please provide a description of the function:def convert_examples_to_features(examples, label_list, max_seq_length, tokenizer, output_mode): label_map = {label : i for i, label in enumerate(label_list)} features = [] for (ex_index, example) in enumerate(examples): if ex_index % 10000 == 0: logger.info("Writing example %d of %d" % (ex_index, len(examples))) tokens_a = tokenizer.tokenize(example.text_a) tokens_b = None if example.text_b: tokens_b = tokenizer.tokenize(example.text_b) # Modifies `tokens_a` and `tokens_b` in place so that the total # length is less than the specified length. # Account for [CLS], [SEP], [SEP] with "- 3" _truncate_seq_pair(tokens_a, tokens_b, max_seq_length - 3) else: # Account for [CLS] and [SEP] with "- 2" if len(tokens_a) > max_seq_length - 2: tokens_a = tokens_a[:(max_seq_length - 2)] # The convention in BERT is: # (a) For sequence pairs: # tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] # type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 # (b) For single sequences: # tokens: [CLS] the dog is hairy . [SEP] # type_ids: 0 0 0 0 0 0 0 # # Where "type_ids" are used to indicate whether this is the first # sequence or the second sequence. The embedding vectors for `type=0` and # `type=1` were learned during pre-training and are added to the wordpiece # embedding vector (and position vector). This is not *strictly* necessary # since the [SEP] token unambiguously separates the sequences, but it makes # it easier for the model to learn the concept of sequences. # # For classification tasks, the first vector (corresponding to [CLS]) is # used as as the "sentence vector". Note that this only makes sense because # the entire model is fine-tuned. tokens = ["[CLS]"] + tokens_a + ["[SEP]"] segment_ids = [0] * len(tokens) if tokens_b: tokens += tokens_b + ["[SEP]"] segment_ids += [1] * (len(tokens_b) + 1) input_ids = tokenizer.convert_tokens_to_ids(tokens) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. input_mask = [1] * len(input_ids) # Zero-pad up to the sequence length. padding = [0] * (max_seq_length - len(input_ids)) input_ids += padding input_mask += padding segment_ids += padding assert len(input_ids) == max_seq_length assert len(input_mask) == max_seq_length assert len(segment_ids) == max_seq_length if output_mode == "classification": label_id = label_map[example.label] elif output_mode == "regression": label_id = float(example.label) else: raise KeyError(output_mode) if ex_index < 5: logger.info("*** Example ***") logger.info("guid: %s" % (example.guid)) logger.info("tokens: %s" % " ".join( [str(x) for x in tokens])) logger.info("input_ids: %s" % " ".join([str(x) for x in input_ids])) logger.info("input_mask: %s" % " ".join([str(x) for x in input_mask])) logger.info( "segment_ids: %s" % " ".join([str(x) for x in segment_ids])) logger.info("label: %s (id = %d)" % (example.label, label_id)) features.append( InputFeatures(input_ids=input_ids, input_mask=input_mask, segment_ids=segment_ids, label_id=label_id)) return features
[ "Loads a data file into a list of `InputBatch`s." ]
Please provide a description of the function:def _read_tsv(cls, input_file, quotechar=None): with open(input_file, "r", encoding="utf-8") as f: reader = csv.reader(f, delimiter="\t", quotechar=quotechar) lines = [] for line in reader: if sys.version_info[0] == 2: line = list(unicode(cell, 'utf-8') for cell in line) lines.append(line) return lines
[ "Reads a tab separated value file." ]
Please provide a description of the function:def get_train_examples(self, data_dir): logger.info("LOOKING AT {}".format(os.path.join(data_dir, "train.tsv"))) return self._create_examples( self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")
[ "See base class." ]
Please provide a description of the function:def _create_examples(self, lines, set_type): examples = [] for (i, line) in enumerate(lines): if i == 0: continue guid = "%s-%s" % (set_type, i) text_a = line[3] text_b = line[4] label = line[0] examples.append( InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples
[ "Creates examples for the training and dev sets." ]
Please provide a description of the function:def get_train_examples(self, data_dir): return self._create_examples( self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")
[ "See base class." ]
Please provide a description of the function:def get_dev_examples(self, data_dir): return self._create_examples( self._read_tsv(os.path.join(data_dir, "dev_matched.tsv")), "dev_matched")
[ "See base class." ]
Please provide a description of the function:def top_k_logits(logits, k): if k == 0: return logits else: values = torch.topk(logits, k)[0] batch_mins = values[:, -1].view(-1, 1).expand_as(logits) return torch.where(logits < batch_mins, torch.ones_like(logits) * -1e10, logits)
[ "\n Masks everything but the k top entries as -infinity (1e10).\n Used to mask logits such that e^-infinity -> 0 won't contribute to the\n sum of the denominator.\n " ]
Please provide a description of the function:def load_tf_weights_in_bert(model, tf_checkpoint_path): try: import re import numpy as np import tensorflow as tf except ImportError: print("Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see " "https://www.tensorflow.org/install/ for installation instructions.") raise tf_path = os.path.abspath(tf_checkpoint_path) print("Converting TensorFlow checkpoint from {}".format(tf_path)) # Load weights from TF model init_vars = tf.train.list_variables(tf_path) names = [] arrays = [] for name, shape in init_vars: print("Loading TF weight {} with shape {}".format(name, shape)) array = tf.train.load_variable(tf_path, name) names.append(name) arrays.append(array) for name, array in zip(names, arrays): name = name.split('/') # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v # which are not required for using pretrained model if any(n in ["adam_v", "adam_m", "global_step"] for n in name): print("Skipping {}".format("/".join(name))) continue pointer = model for m_name in name: if re.fullmatch(r'[A-Za-z]+_\d+', m_name): l = re.split(r'_(\d+)', m_name) else: l = [m_name] if l[0] == 'kernel' or l[0] == 'gamma': pointer = getattr(pointer, 'weight') elif l[0] == 'output_bias' or l[0] == 'beta': pointer = getattr(pointer, 'bias') elif l[0] == 'output_weights': pointer = getattr(pointer, 'weight') elif l[0] == 'squad': pointer = getattr(pointer, 'classifier') else: try: pointer = getattr(pointer, l[0]) except AttributeError: print("Skipping {}".format("/".join(name))) continue if len(l) >= 2: num = int(l[1]) pointer = pointer[num] if m_name[-11:] == '_embeddings': pointer = getattr(pointer, 'weight') elif m_name == 'kernel': array = np.transpose(array) try: assert pointer.shape == array.shape except AssertionError as e: e.args += (pointer.shape, array.shape) raise print("Initialize PyTorch weight {}".format(name)) pointer.data = torch.from_numpy(array) return model
[ " Load tf checkpoints in a pytorch model\n " ]
Please provide a description of the function:def from_pretrained(cls, pretrained_model_name_or_path, *inputs, **kwargs): state_dict = kwargs.get('state_dict', None) kwargs.pop('state_dict', None) cache_dir = kwargs.get('cache_dir', None) kwargs.pop('cache_dir', None) from_tf = kwargs.get('from_tf', False) kwargs.pop('from_tf', None) if pretrained_model_name_or_path in PRETRAINED_MODEL_ARCHIVE_MAP: archive_file = PRETRAINED_MODEL_ARCHIVE_MAP[pretrained_model_name_or_path] else: archive_file = pretrained_model_name_or_path # redirect to the cache, if necessary try: resolved_archive_file = cached_path(archive_file, cache_dir=cache_dir) except EnvironmentError: logger.error( "Model name '{}' was not found in model name list ({}). " "We assumed '{}' was a path or url but couldn't find any file " "associated to this path or url.".format( pretrained_model_name_or_path, ', '.join(PRETRAINED_MODEL_ARCHIVE_MAP.keys()), archive_file)) return None if resolved_archive_file == archive_file: logger.info("loading archive file {}".format(archive_file)) else: logger.info("loading archive file {} from cache at {}".format( archive_file, resolved_archive_file)) tempdir = None if os.path.isdir(resolved_archive_file) or from_tf: serialization_dir = resolved_archive_file else: # Extract archive to temp dir tempdir = tempfile.mkdtemp() logger.info("extracting archive file {} to temp dir {}".format( resolved_archive_file, tempdir)) with tarfile.open(resolved_archive_file, 'r:gz') as archive: archive.extractall(tempdir) serialization_dir = tempdir # Load config config_file = os.path.join(serialization_dir, CONFIG_NAME) if not os.path.exists(config_file): # Backward compatibility with old naming format config_file = os.path.join(serialization_dir, BERT_CONFIG_NAME) config = BertConfig.from_json_file(config_file) logger.info("Model config {}".format(config)) # Instantiate model. model = cls(config, *inputs, **kwargs) if state_dict is None and not from_tf: weights_path = os.path.join(serialization_dir, WEIGHTS_NAME) state_dict = torch.load(weights_path, map_location='cpu') if tempdir: # Clean up temp dir shutil.rmtree(tempdir) if from_tf: # Directly load from a TensorFlow checkpoint weights_path = os.path.join(serialization_dir, TF_WEIGHTS_NAME) return load_tf_weights_in_bert(model, weights_path) # Load from a PyTorch state_dict old_keys = [] new_keys = [] for key in state_dict.keys(): new_key = None if 'gamma' in key: new_key = key.replace('gamma', 'weight') if 'beta' in key: new_key = key.replace('beta', 'bias') if new_key: old_keys.append(key) new_keys.append(new_key) for old_key, new_key in zip(old_keys, new_keys): state_dict[new_key] = state_dict.pop(old_key) missing_keys = [] unexpected_keys = [] error_msgs = [] # copy state_dict so _load_from_state_dict can modify it metadata = getattr(state_dict, '_metadata', None) state_dict = state_dict.copy() if metadata is not None: state_dict._metadata = metadata def load(module, prefix=''): local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {}) module._load_from_state_dict( state_dict, prefix, local_metadata, True, missing_keys, unexpected_keys, error_msgs) for name, child in module._modules.items(): if child is not None: load(child, prefix + name + '.') start_prefix = '' if not hasattr(model, 'bert') and any(s.startswith('bert.') for s in state_dict.keys()): start_prefix = 'bert.' load(model, prefix=start_prefix) if len(missing_keys) > 0: logger.info("Weights of {} not initialized from pretrained model: {}".format( model.__class__.__name__, missing_keys)) if len(unexpected_keys) > 0: logger.info("Weights from pretrained model not used in {}: {}".format( model.__class__.__name__, unexpected_keys)) if len(error_msgs) > 0: raise RuntimeError('Error(s) in loading state_dict for {}:\n\t{}'.format( model.__class__.__name__, "\n\t".join(error_msgs))) return model
[ "\n Instantiate a BertPreTrainedModel from a pre-trained model file or a pytorch state dict.\n Download and cache the pre-trained model file if needed.\n\n Params:\n pretrained_model_name_or_path: either:\n - a str with the name of a pre-trained model to load selected in the list of:\n . `bert-base-uncased`\n . `bert-large-uncased`\n . `bert-base-cased`\n . `bert-large-cased`\n . `bert-base-multilingual-uncased`\n . `bert-base-multilingual-cased`\n . `bert-base-chinese`\n - a path or url to a pretrained model archive containing:\n . `bert_config.json` a configuration file for the model\n . `pytorch_model.bin` a PyTorch dump of a BertForPreTraining instance\n - a path or url to a pretrained model archive containing:\n . `bert_config.json` a configuration file for the model\n . `model.chkpt` a TensorFlow checkpoint\n from_tf: should we load the weights from a locally saved TensorFlow checkpoint\n cache_dir: an optional path to a folder in which the pre-trained models will be cached.\n state_dict: an optional state dictionnary (collections.OrderedDict object) to use instead of Google pre-trained models\n *inputs, **kwargs: additional input for the specific Bert class\n (ex: num_labels for BertForSequenceClassification)\n " ]
Please provide a description of the function:def load_tf_weights_in_openai_gpt(model, openai_checkpoint_folder_path): import re import numpy as np print("Loading weights...") names = json.load(open(openai_checkpoint_folder_path + '/parameters_names.json', "r", encoding='utf-8')) shapes = json.load(open(openai_checkpoint_folder_path + '/params_shapes.json', "r", encoding='utf-8')) offsets = np.cumsum([np.prod(shape) for shape in shapes]) init_params = [np.load(openai_checkpoint_folder_path + '/params_{}.npy'.format(n)) for n in range(10)] init_params = np.split(np.concatenate(init_params, 0), offsets)[:-1] init_params = [param.reshape(shape) for param, shape in zip(init_params, shapes)] # This was used when we had a single embedding matrix for positions and tokens # init_params[0] = np.concatenate([init_params[1], init_params[0]], 0) # del init_params[1] init_params = [arr.squeeze() for arr in init_params] try: assert model.tokens_embed.weight.shape == init_params[1].shape assert model.positions_embed.weight.shape == init_params[0].shape except AssertionError as e: e.args += (model.tokens_embed.weight.shape, init_params[1].shape) e.args += (model.positions_embed.weight.shape, init_params[0].shape) raise model.tokens_embed.weight.data = torch.from_numpy(init_params[1]) model.positions_embed.weight.data = torch.from_numpy(init_params[0]) names.pop(0) # Pop position and token embedding arrays init_params.pop(0) init_params.pop(0) for name, array in zip(names, init_params): # names[1:n_transfer], init_params[1:n_transfer]): name = name[6:] # skip "model/" assert name[-2:] == ":0" name = name[:-2] name = name.split('/') pointer = model for m_name in name: if re.fullmatch(r'[A-Za-z]+\d+', m_name): l = re.split(r'(\d+)', m_name) else: l = [m_name] if l[0] == 'g': pointer = getattr(pointer, 'weight') elif l[0] == 'b': pointer = getattr(pointer, 'bias') elif l[0] == 'w': pointer = getattr(pointer, 'weight') else: pointer = getattr(pointer, l[0]) if len(l) >= 2: num = int(l[1]) pointer = pointer[num] try: assert pointer.shape == array.shape except AssertionError as e: e.args += (pointer.shape, array.shape) raise try: assert pointer.shape == array.shape except AssertionError as e: e.args += (pointer.shape, array.shape) raise print("Initialize PyTorch weight {}".format(name)) pointer.data = torch.from_numpy(array) return model
[ " Load tf pre-trained weights in a pytorch model (from NumPy arrays here)\n " ]
Please provide a description of the function:def from_dict(cls, json_object): config = OpenAIGPTConfig(vocab_size_or_config_json_file=-1) for key, value in json_object.items(): config.__dict__[key] = value return config
[ "Constructs a `OpenAIGPTConfig` from a Python dictionary of parameters." ]
Please provide a description of the function:def set_num_special_tokens(self, num_special_tokens): " Update input embeddings with new embedding matrice if needed " if self.config.n_special == num_special_tokens: return # Update config self.config.n_special = num_special_tokens # Build new embeddings and initialize all new embeddings (in particular the special tokens) old_embed = self.tokens_embed self.tokens_embed = nn.Embedding(self.config.total_tokens_embeddings, self.config.n_embd) self.tokens_embed.to(old_embed.weight.device) self.init_weights(self.tokens_embed) # Copy word embeddings from the previous weights self.tokens_embed.weight.data[:self.config.vocab_size, :] = old_embed.weight.data[:self.config.vocab_size, :]
[]
Please provide a description of the function:def set_num_special_tokens(self, num_special_tokens): self.transformer.set_num_special_tokens(num_special_tokens) self.lm_head.set_embeddings_weights(self.transformer.tokens_embed.weight)
[ " Update input and output embeddings with new embedding matrice\n Make sure we are sharing the embeddings\n " ]
Please provide a description of the function:def step(self, closure=None): loss = None if closure is not None: loss = closure() for group in self.param_groups: for p in group['params']: if p.grad is None: continue grad = p.grad.data if grad.is_sparse: raise RuntimeError('Adam does not support sparse gradients, please consider SparseAdam instead') state = self.state[p] # State initialization if len(state) == 0: state['step'] = 0 # Exponential moving average of gradient values state['exp_avg'] = torch.zeros_like(p.data) # Exponential moving average of squared gradient values state['exp_avg_sq'] = torch.zeros_like(p.data) exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq'] beta1, beta2 = group['b1'], group['b2'] state['step'] += 1 # Add grad clipping if group['max_grad_norm'] > 0: clip_grad_norm_(p, group['max_grad_norm']) # Decay the first and second moment running average coefficient exp_avg.mul_(beta1).add_(1 - beta1, grad) exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad) denom = exp_avg_sq.sqrt().add_(group['e']) bias_correction1 = 1 - beta1 ** state['step'] bias_correction2 = 1 - beta2 ** state['step'] lr_scheduled = group['lr'] lr_scheduled *= group['schedule'].get_lr(state['step']) step_size = lr_scheduled * math.sqrt(bias_correction2) / bias_correction1 p.data.addcdiv_(-step_size, exp_avg, denom) # Add weight decay at the end (fixed version) if (len(p.size()) > 1 or group['vector_l2']) and group['weight_decay'] > 0: p.data.add_(-lr_scheduled * group['weight_decay'], p.data) return loss
[ "Performs a single optimization step.\n\n Arguments:\n closure (callable, optional): A closure that reevaluates the model\n and returns the loss.\n " ]
Please provide a description of the function:def get_lr(self, step, nowarn=False): if self.t_total < 0: return 1. progress = float(step) / self.t_total ret = self.get_lr_(progress) # warning for exceeding t_total (only active with warmup_linear if not nowarn and self.warn_t_total and progress > 1. and progress > self.warned_for_t_total_at_progress: logger.warning( "Training beyond specified 't_total'. Learning rate multiplier set to {}. Please set 't_total' of {} correctly." .format(ret, self.__class__.__name__)) self.warned_for_t_total_at_progress = progress # end warning return ret
[ "\n :param step: which of t_total steps we're on\n :param nowarn: set to True to suppress warning regarding training beyond specified 't_total' steps\n :return: learning rate multiplier for current update\n " ]
Please provide a description of the function:def step(self, closure=None): loss = None if closure is not None: loss = closure() for group in self.param_groups: for p in group['params']: if p.grad is None: continue grad = p.grad.data if grad.is_sparse: raise RuntimeError('Adam does not support sparse gradients, please consider SparseAdam instead') state = self.state[p] # State initialization if len(state) == 0: state['step'] = 0 # Exponential moving average of gradient values state['next_m'] = torch.zeros_like(p.data) # Exponential moving average of squared gradient values state['next_v'] = torch.zeros_like(p.data) next_m, next_v = state['next_m'], state['next_v'] beta1, beta2 = group['b1'], group['b2'] # Add grad clipping if group['max_grad_norm'] > 0: clip_grad_norm_(p, group['max_grad_norm']) # Decay the first and second moment running average coefficient # In-place operations to update the averages at the same time next_m.mul_(beta1).add_(1 - beta1, grad) next_v.mul_(beta2).addcmul_(1 - beta2, grad, grad) update = next_m / (next_v.sqrt() + group['e']) # Just adding the square of the weights to the loss function is *not* # the correct way of using L2 regularization/weight decay with Adam, # since that will interact with the m and v parameters in strange ways. # # Instead we want to decay the weights in a manner that doesn't interact # with the m/v parameters. This is equivalent to adding the square # of the weights to the loss with plain (non-momentum) SGD. if group['weight_decay'] > 0.0: update += group['weight_decay'] * p.data lr_scheduled = group['lr'] lr_scheduled *= group['schedule'].get_lr(state['step']) update_with_lr = lr_scheduled * update p.data.add_(-update_with_lr) state['step'] += 1 # step_size = lr_scheduled * math.sqrt(bias_correction2) / bias_correction1 # No bias correction # bias_correction1 = 1 - beta1 ** state['step'] # bias_correction2 = 1 - beta2 ** state['step'] return loss
[ "Performs a single optimization step.\n\n Arguments:\n closure (callable, optional): A closure that reevaluates the model\n and returns the loss.\n " ]
Please provide a description of the function:def whitespace_tokenize(text): text = text.strip() if not text: return [] tokens = text.split() return tokens
[ "Runs basic whitespace cleaning and splitting on a piece of text." ]
Please provide a description of the function:def _is_punctuation(char): cp = ord(char) # We treat all non-letter/number ASCII as punctuation. # Characters such as "^", "$", and "`" are not in the Unicode # Punctuation class but we treat them as punctuation anyways, for # consistency. if ((cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126)): return True cat = unicodedata.category(char) if cat.startswith("P"): return True return False
[ "Checks whether `chars` is a punctuation character." ]
Please provide a description of the function:def convert_tokens_to_ids(self, tokens): ids = [] for token in tokens: ids.append(self.vocab[token]) if len(ids) > self.max_len: logger.warning( "Token indices sequence length is longer than the specified maximum " " sequence length for this BERT model ({} > {}). Running this" " sequence through BERT will result in indexing errors".format(len(ids), self.max_len) ) return ids
[ "Converts a sequence of tokens into ids using the vocab." ]
Please provide a description of the function:def convert_ids_to_tokens(self, ids): tokens = [] for i in ids: tokens.append(self.ids_to_tokens[i]) return tokens
[ "Converts a sequence of ids in wordpiece tokens using the vocab." ]
Please provide a description of the function:def save_vocabulary(self, vocab_path): index = 0 if os.path.isdir(vocab_path): vocab_file = os.path.join(vocab_path, VOCAB_NAME) with open(vocab_file, "w", encoding="utf-8") as writer: for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]): if index != token_index: logger.warning("Saving vocabulary to {}: vocabulary indices are not consecutive." " Please check that the vocabulary is not corrupted!".format(vocab_file)) index = token_index writer.write(token + u'\n') index += 1 return vocab_file
[ "Save the tokenizer vocabulary to a directory or file." ]
Please provide a description of the function:def from_pretrained(cls, pretrained_model_name_or_path, cache_dir=None, *inputs, **kwargs): if pretrained_model_name_or_path in PRETRAINED_VOCAB_ARCHIVE_MAP: vocab_file = PRETRAINED_VOCAB_ARCHIVE_MAP[pretrained_model_name_or_path] if '-cased' in pretrained_model_name_or_path and kwargs.get('do_lower_case', True): logger.warning("The pre-trained model you are loading is a cased model but you have not set " "`do_lower_case` to False. We are setting `do_lower_case=False` for you but " "you may want to check this behavior.") kwargs['do_lower_case'] = False elif '-cased' not in pretrained_model_name_or_path and not kwargs.get('do_lower_case', True): logger.warning("The pre-trained model you are loading is an uncased model but you have set " "`do_lower_case` to False. We are setting `do_lower_case=True` for you " "but you may want to check this behavior.") kwargs['do_lower_case'] = True else: vocab_file = pretrained_model_name_or_path if os.path.isdir(vocab_file): vocab_file = os.path.join(vocab_file, VOCAB_NAME) # redirect to the cache, if necessary try: resolved_vocab_file = cached_path(vocab_file, cache_dir=cache_dir) except EnvironmentError: logger.error( "Model name '{}' was not found in model name list ({}). " "We assumed '{}' was a path or url but couldn't find any file " "associated to this path or url.".format( pretrained_model_name_or_path, ', '.join(PRETRAINED_VOCAB_ARCHIVE_MAP.keys()), vocab_file)) return None if resolved_vocab_file == vocab_file: logger.info("loading vocabulary file {}".format(vocab_file)) else: logger.info("loading vocabulary file {} from cache at {}".format( vocab_file, resolved_vocab_file)) if pretrained_model_name_or_path in PRETRAINED_VOCAB_POSITIONAL_EMBEDDINGS_SIZE_MAP: # if we're using a pretrained model, ensure the tokenizer wont index sequences longer # than the number of positional embeddings max_len = PRETRAINED_VOCAB_POSITIONAL_EMBEDDINGS_SIZE_MAP[pretrained_model_name_or_path] kwargs['max_len'] = min(kwargs.get('max_len', int(1e12)), max_len) # Instantiate tokenizer. tokenizer = cls(resolved_vocab_file, *inputs, **kwargs) return tokenizer
[ "\n Instantiate a PreTrainedBertModel from a pre-trained model file.\n Download and cache the pre-trained model file if needed.\n " ]
Please provide a description of the function:def tokenize(self, text): text = self._clean_text(text) # This was added on November 1st, 2018 for the multilingual and Chinese # models. This is also applied to the English models now, but it doesn't # matter since the English models were not trained on any Chinese data # and generally don't have any Chinese data in them (there are Chinese # characters in the vocabulary because Wikipedia does have some Chinese # words in the English Wikipedia.). text = self._tokenize_chinese_chars(text) orig_tokens = whitespace_tokenize(text) split_tokens = [] for token in orig_tokens: if self.do_lower_case and token not in self.never_split: token = token.lower() token = self._run_strip_accents(token) split_tokens.extend(self._run_split_on_punc(token)) output_tokens = whitespace_tokenize(" ".join(split_tokens)) return output_tokens
[ "Tokenizes a piece of text." ]
Please provide a description of the function:def _run_strip_accents(self, text): text = unicodedata.normalize("NFD", text) output = [] for char in text: cat = unicodedata.category(char) if cat == "Mn": continue output.append(char) return "".join(output)
[ "Strips accents from a piece of text." ]
Please provide a description of the function:def _tokenize_chinese_chars(self, text): output = [] for char in text: cp = ord(char) if self._is_chinese_char(cp): output.append(" ") output.append(char) output.append(" ") else: output.append(char) return "".join(output)
[ "Adds whitespace around any CJK character." ]
Please provide a description of the function:def _is_chinese_char(self, cp): # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ((cp >= 0x4E00 and cp <= 0x9FFF) or # (cp >= 0x3400 and cp <= 0x4DBF) or # (cp >= 0x20000 and cp <= 0x2A6DF) or # (cp >= 0x2A700 and cp <= 0x2B73F) or # (cp >= 0x2B740 and cp <= 0x2B81F) or # (cp >= 0x2B820 and cp <= 0x2CEAF) or (cp >= 0xF900 and cp <= 0xFAFF) or # (cp >= 0x2F800 and cp <= 0x2FA1F)): # return True return False
[ "Checks whether CP is the codepoint of a CJK character." ]
Please provide a description of the function:def tokenize(self, text): output_tokens = [] for token in whitespace_tokenize(text): chars = list(token) if len(chars) > self.max_input_chars_per_word: output_tokens.append(self.unk_token) continue is_bad = False start = 0 sub_tokens = [] while start < len(chars): end = len(chars) cur_substr = None while start < end: substr = "".join(chars[start:end]) if start > 0: substr = "##" + substr if substr in self.vocab: cur_substr = substr break end -= 1 if cur_substr is None: is_bad = True break sub_tokens.append(cur_substr) start = end if is_bad: output_tokens.append(self.unk_token) else: output_tokens.extend(sub_tokens) return output_tokens
[ "Tokenizes a piece of text into its word pieces.\n\n This uses a greedy longest-match-first algorithm to perform tokenization\n using the given vocabulary.\n\n For example:\n input = \"unaffable\"\n output = [\"un\", \"##aff\", \"##able\"]\n\n Args:\n text: A single token or whitespace separated tokens. This should have\n already been passed through `BasicTokenizer`.\n\n Returns:\n A list of wordpiece tokens.\n " ]
Please provide a description of the function:def load_rocstories_dataset(dataset_path): with open(dataset_path, encoding='utf_8') as f: f = csv.reader(f) output = [] next(f) # skip the first line for line in tqdm(f): output.append((' '.join(line[1:5]), line[5], line[6], int(line[-1])-1)) return output
[ " Output a list of tuples(story, 1st continuation, 2nd continuation, label) " ]
Please provide a description of the function:def pre_process_datasets(encoded_datasets, input_len, cap_length, start_token, delimiter_token, clf_token): tensor_datasets = [] for dataset in encoded_datasets: n_batch = len(dataset) input_ids = np.zeros((n_batch, 2, input_len), dtype=np.int64) mc_token_ids = np.zeros((n_batch, 2), dtype=np.int64) lm_labels = np.full((n_batch, 2, input_len), fill_value=-1, dtype=np.int64) mc_labels = np.zeros((n_batch,), dtype=np.int64) for i, (story, cont1, cont2, mc_label), in enumerate(dataset): with_cont1 = [start_token] + story[:cap_length] + [delimiter_token] + cont1[:cap_length] + [clf_token] with_cont2 = [start_token] + story[:cap_length] + [delimiter_token] + cont2[:cap_length] + [clf_token] input_ids[i, 0, :len(with_cont1)] = with_cont1 input_ids[i, 1, :len(with_cont2)] = with_cont2 mc_token_ids[i, 0] = len(with_cont1) - 1 mc_token_ids[i, 1] = len(with_cont2) - 1 lm_labels[i, 0, :len(with_cont1)-1] = with_cont1[1:] lm_labels[i, 1, :len(with_cont2)-1] = with_cont2[1:] mc_labels[i] = mc_label all_inputs = (input_ids, mc_token_ids, lm_labels, mc_labels) tensor_datasets.append(tuple(torch.tensor(t) for t in all_inputs)) return tensor_datasets
[ " Pre-process datasets containing lists of tuples(story, 1st continuation, 2nd continuation, label)\n\n To Transformer inputs of shape (n_batch, n_alternative, length) comprising for each batch, continuation:\n input_ids[batch, alternative, :] = [start_token] + story[:cap_length] + [delimiter_token] + cont1[:cap_length] + [clf_token]\n " ]
Please provide a description of the function:def random_word(tokens, tokenizer): output_label = [] for i, token in enumerate(tokens): prob = random.random() # mask token with 15% probability if prob < 0.15: prob /= 0.15 # 80% randomly change token to mask token if prob < 0.8: tokens[i] = "[MASK]" # 10% randomly change token to random token elif prob < 0.9: tokens[i] = random.choice(list(tokenizer.vocab.items()))[0] # -> rest 10% randomly keep current token # append current token to output (we will predict these later) try: output_label.append(tokenizer.vocab[token]) except KeyError: # For unknown words (should not occur with BPE vocab) output_label.append(tokenizer.vocab["[UNK]"]) logger.warning("Cannot find token '{}' in vocab. Using [UNK] insetad".format(token)) else: # no masking token (will be ignored by loss function later) output_label.append(-1) return tokens, output_label
[ "\n Masking some random tokens for Language Model task with probabilities as in the original BERT paper.\n :param tokens: list of str, tokenized sentence.\n :param tokenizer: Tokenizer, object used for tokenization (we need it's vocab here)\n :return: (list of str, list of int), masked tokens and related labels for LM prediction\n " ]
Please provide a description of the function:def convert_example_to_features(example, max_seq_length, tokenizer): tokens_a = example.tokens_a tokens_b = example.tokens_b # Modifies `tokens_a` and `tokens_b` in place so that the total # length is less than the specified length. # Account for [CLS], [SEP], [SEP] with "- 3" _truncate_seq_pair(tokens_a, tokens_b, max_seq_length - 3) tokens_a, t1_label = random_word(tokens_a, tokenizer) tokens_b, t2_label = random_word(tokens_b, tokenizer) # concatenate lm labels and account for CLS, SEP, SEP lm_label_ids = ([-1] + t1_label + [-1] + t2_label + [-1]) # The convention in BERT is: # (a) For sequence pairs: # tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] # type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 # (b) For single sequences: # tokens: [CLS] the dog is hairy . [SEP] # type_ids: 0 0 0 0 0 0 0 # # Where "type_ids" are used to indicate whether this is the first # sequence or the second sequence. The embedding vectors for `type=0` and # `type=1` were learned during pre-training and are added to the wordpiece # embedding vector (and position vector). This is not *strictly* necessary # since the [SEP] token unambigiously separates the sequences, but it makes # it easier for the model to learn the concept of sequences. # # For classification tasks, the first vector (corresponding to [CLS]) is # used as as the "sentence vector". Note that this only makes sense because # the entire model is fine-tuned. tokens = [] segment_ids = [] tokens.append("[CLS]") segment_ids.append(0) for token in tokens_a: tokens.append(token) segment_ids.append(0) tokens.append("[SEP]") segment_ids.append(0) assert len(tokens_b) > 0 for token in tokens_b: tokens.append(token) segment_ids.append(1) tokens.append("[SEP]") segment_ids.append(1) input_ids = tokenizer.convert_tokens_to_ids(tokens) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. input_mask = [1] * len(input_ids) # Zero-pad up to the sequence length. while len(input_ids) < max_seq_length: input_ids.append(0) input_mask.append(0) segment_ids.append(0) lm_label_ids.append(-1) assert len(input_ids) == max_seq_length assert len(input_mask) == max_seq_length assert len(segment_ids) == max_seq_length assert len(lm_label_ids) == max_seq_length if example.guid < 5: logger.info("*** Example ***") logger.info("guid: %s" % (example.guid)) logger.info("tokens: %s" % " ".join( [str(x) for x in tokens])) logger.info("input_ids: %s" % " ".join([str(x) for x in input_ids])) logger.info("input_mask: %s" % " ".join([str(x) for x in input_mask])) logger.info( "segment_ids: %s" % " ".join([str(x) for x in segment_ids])) logger.info("LM label: %s " % (lm_label_ids)) logger.info("Is next sentence label: %s " % (example.is_next)) features = InputFeatures(input_ids=input_ids, input_mask=input_mask, segment_ids=segment_ids, lm_label_ids=lm_label_ids, is_next=example.is_next) return features
[ "\n Convert a raw sample (pair of sentences as tokenized strings) into a proper training sample with\n IDs, LM labels, input_mask, CLS and SEP tokens etc.\n :param example: InputExample, containing sentence input as strings and is_next label\n :param max_seq_length: int, maximum length of sequence.\n :param tokenizer: Tokenizer\n :return: InputFeatures, containing all inputs and labels of one sample as IDs (as used for model training)\n " ]
Please provide a description of the function:def random_sent(self, index): t1, t2 = self.get_corpus_line(index) if random.random() > 0.5: label = 0 else: t2 = self.get_random_line() label = 1 assert len(t1) > 0 assert len(t2) > 0 return t1, t2, label
[ "\n Get one sample from corpus consisting of two sentences. With prob. 50% these are two subsequent sentences\n from one doc. With 50% the second sentence will be a random one from another doc.\n :param index: int, index of sample.\n :return: (str, str, int), sentence 1, sentence 2, isNextSentence Label\n " ]
Please provide a description of the function:def get_corpus_line(self, item): t1 = "" t2 = "" assert item < self.corpus_lines if self.on_memory: sample = self.sample_to_doc[item] t1 = self.all_docs[sample["doc_id"]][sample["line"]] t2 = self.all_docs[sample["doc_id"]][sample["line"]+1] # used later to avoid random nextSentence from same doc self.current_doc = sample["doc_id"] return t1, t2 else: if self.line_buffer is None: # read first non-empty line of file while t1 == "" : t1 = next(self.file).strip() t2 = next(self.file).strip() else: # use t2 from previous iteration as new t1 t1 = self.line_buffer t2 = next(self.file).strip() # skip empty rows that are used for separating documents and keep track of current doc id while t2 == "" or t1 == "": t1 = next(self.file).strip() t2 = next(self.file).strip() self.current_doc = self.current_doc+1 self.line_buffer = t2 assert t1 != "" assert t2 != "" return t1, t2
[ "\n Get one sample from corpus consisting of a pair of two subsequent lines from the same doc.\n :param item: int, index of sample.\n :return: (str, str), two subsequent sentences from corpus\n " ]
Please provide a description of the function:def get_random_line(self): # Similar to original tf repo: This outer loop should rarely go for more than one iteration for large # corpora. However, just to be careful, we try to make sure that # the random document is not the same as the document we're processing. for _ in range(10): if self.on_memory: rand_doc_idx = random.randint(0, len(self.all_docs)-1) rand_doc = self.all_docs[rand_doc_idx] line = rand_doc[random.randrange(len(rand_doc))] else: rand_index = random.randint(1, self.corpus_lines if self.corpus_lines < 1000 else 1000) #pick random line for _ in range(rand_index): line = self.get_next_line() #check if our picked random line is really from another doc like we want it to be if self.current_random_doc != self.current_doc: break return line
[ "\n Get random line from another document for nextSentence task.\n :return: str, content of one line\n " ]
Please provide a description of the function:def get_next_line(self): try: line = next(self.random_file).strip() #keep track of which document we are currently looking at to later avoid having the same doc as t1 if line == "": self.current_random_doc = self.current_random_doc + 1 line = next(self.random_file).strip() except StopIteration: self.random_file.close() self.random_file = open(self.corpus_path, "r", encoding=self.encoding) line = next(self.random_file).strip() return line
[ " Gets next line of random_file and starts over when reaching end of file" ]
Please provide a description of the function:def create_masked_lm_predictions(tokens, masked_lm_prob, max_predictions_per_seq, vocab_list): cand_indices = [] for (i, token) in enumerate(tokens): if token == "[CLS]" or token == "[SEP]": continue cand_indices.append(i) num_to_mask = min(max_predictions_per_seq, max(1, int(round(len(tokens) * masked_lm_prob)))) shuffle(cand_indices) mask_indices = sorted(sample(cand_indices, num_to_mask)) masked_token_labels = [] for index in mask_indices: # 80% of the time, replace with [MASK] if random() < 0.8: masked_token = "[MASK]" else: # 10% of the time, keep original if random() < 0.5: masked_token = tokens[index] # 10% of the time, replace with random word else: masked_token = choice(vocab_list) masked_token_labels.append(tokens[index]) # Once we've saved the true label for that token, we can overwrite it with the masked version tokens[index] = masked_token return tokens, mask_indices, masked_token_labels
[ "Creates the predictions for the masked LM objective. This is mostly copied from the Google BERT repo, but\n with several refactors to clean it up and remove a lot of unnecessary variables." ]
Please provide a description of the function:def create_instances_from_document( doc_database, doc_idx, max_seq_length, short_seq_prob, masked_lm_prob, max_predictions_per_seq, vocab_list): document = doc_database[doc_idx] # Account for [CLS], [SEP], [SEP] max_num_tokens = max_seq_length - 3 # We *usually* want to fill up the entire sequence since we are padding # to `max_seq_length` anyways, so short sequences are generally wasted # computation. However, we *sometimes* # (i.e., short_seq_prob == 0.1 == 10% of the time) want to use shorter # sequences to minimize the mismatch between pre-training and fine-tuning. # The `target_seq_length` is just a rough target however, whereas # `max_seq_length` is a hard limit. target_seq_length = max_num_tokens if random() < short_seq_prob: target_seq_length = randint(2, max_num_tokens) # We DON'T just concatenate all of the tokens from a document into a long # sequence and choose an arbitrary split point because this would make the # next sentence prediction task too easy. Instead, we split the input into # segments "A" and "B" based on the actual "sentences" provided by the user # input. instances = [] current_chunk = [] current_length = 0 i = 0 while i < len(document): segment = document[i] current_chunk.append(segment) current_length += len(segment) if i == len(document) - 1 or current_length >= target_seq_length: if current_chunk: # `a_end` is how many segments from `current_chunk` go into the `A` # (first) sentence. a_end = 1 if len(current_chunk) >= 2: a_end = randrange(1, len(current_chunk)) tokens_a = [] for j in range(a_end): tokens_a.extend(current_chunk[j]) tokens_b = [] # Random next if len(current_chunk) == 1 or random() < 0.5: is_random_next = True target_b_length = target_seq_length - len(tokens_a) # Sample a random document, with longer docs being sampled more frequently random_document = doc_database.sample_doc(current_idx=doc_idx, sentence_weighted=True) random_start = randrange(0, len(random_document)) for j in range(random_start, len(random_document)): tokens_b.extend(random_document[j]) if len(tokens_b) >= target_b_length: break # We didn't actually use these segments so we "put them back" so # they don't go to waste. num_unused_segments = len(current_chunk) - a_end i -= num_unused_segments # Actual next else: is_random_next = False for j in range(a_end, len(current_chunk)): tokens_b.extend(current_chunk[j]) truncate_seq_pair(tokens_a, tokens_b, max_num_tokens) assert len(tokens_a) >= 1 assert len(tokens_b) >= 1 tokens = ["[CLS]"] + tokens_a + ["[SEP]"] + tokens_b + ["[SEP]"] # The segment IDs are 0 for the [CLS] token, the A tokens and the first [SEP] # They are 1 for the B tokens and the final [SEP] segment_ids = [0 for _ in range(len(tokens_a) + 2)] + [1 for _ in range(len(tokens_b) + 1)] tokens, masked_lm_positions, masked_lm_labels = create_masked_lm_predictions( tokens, masked_lm_prob, max_predictions_per_seq, vocab_list) instance = { "tokens": tokens, "segment_ids": segment_ids, "is_random_next": is_random_next, "masked_lm_positions": masked_lm_positions, "masked_lm_labels": masked_lm_labels} instances.append(instance) current_chunk = [] current_length = 0 i += 1 return instances
[ "This code is mostly a duplicate of the equivalent function from Google BERT's repo.\n However, we make some changes and improvements. Sampling is improved and no longer requires a loop in this function.\n Also, documents are sampled proportionally to the number of sentences they contain, which means each sentence\n (rather than each document) has an equal chance of being sampled as a false example for the NextSentence task." ]
Please provide a description of the function:def sample_logits(embedding, bias, labels, inputs, sampler): true_log_probs, samp_log_probs, neg_samples = sampler.sample(labels) n_sample = neg_samples.size(0) b1, b2 = labels.size(0), labels.size(1) all_ids = torch.cat([labels.view(-1), neg_samples]) all_w = embedding(all_ids) true_w = all_w[: -n_sample].view(b1, b2, -1) sample_w = all_w[- n_sample:].view(n_sample, -1) all_b = bias[all_ids] true_b = all_b[: -n_sample].view(b1, b2) sample_b = all_b[- n_sample:] hit = (labels[:, :, None] == neg_samples).detach() true_logits = torch.einsum('ijk,ijk->ij', [true_w, inputs]) + true_b - true_log_probs sample_logits = torch.einsum('lk,ijk->ijl', [sample_w, inputs]) + sample_b - samp_log_probs sample_logits.masked_fill_(hit, -1e30) logits = torch.cat([true_logits[:, :, None], sample_logits], -1) return logits
[ "\n embedding: an nn.Embedding layer\n bias: [n_vocab]\n labels: [b1, b2]\n inputs: [b1, b2, n_emb]\n sampler: you may use a LogUniformSampler\n Return\n logits: [b1, b2, 1 + n_sample]\n " ]
Please provide a description of the function:def forward(self, hidden, target=None, keep_order=False): ''' Params: hidden :: [len*bsz x d_proj] target :: [len*bsz] Return: if target is None: out :: [len*bsz] Negative log likelihood else: out :: [len*bsz x n_tokens] log probabilities of tokens over the vocabulary We could replace this implementation by the native PyTorch one if their's had an option to set bias on all clusters in the native one. here: https://github.com/pytorch/pytorch/blob/dbe6a7a9ff1a364a8706bf5df58a1ca96d2fd9da/torch/nn/modules/adaptive.py#L138 ''' if target is not None: target = target.view(-1) if hidden.size(0) != target.size(0): raise RuntimeError('Input and target should have the same size ' 'in the batch dimension.') if self.n_clusters == 0: logit = self._compute_logit(hidden, self.out_layers[0].weight, self.out_layers[0].bias, self.out_projs[0]) if target is not None: output = -F.log_softmax(logit, dim=-1) \ .gather(1, target.unsqueeze(1)).squeeze(1) else: output = F.log_softmax(logit, dim=-1) else: # construct weights and biases weights, biases = [], [] for i in range(len(self.cutoffs)): if self.div_val == 1: l_idx, r_idx = self.cutoff_ends[i], self.cutoff_ends[i + 1] weight_i = self.out_layers[0].weight[l_idx:r_idx] bias_i = self.out_layers[0].bias[l_idx:r_idx] else: weight_i = self.out_layers[i].weight bias_i = self.out_layers[i].bias if i == 0: weight_i = torch.cat( [weight_i, self.cluster_weight], dim=0) bias_i = torch.cat( [bias_i, self.cluster_bias], dim=0) weights.append(weight_i) biases.append(bias_i) head_weight, head_bias, head_proj = weights[0], biases[0], self.out_projs[0] head_logit = self._compute_logit(hidden, head_weight, head_bias, head_proj) head_logprob = F.log_softmax(head_logit, dim=1) if target is None: out = hidden.new_empty((head_logit.size(0), self.n_token)) else: out = torch.zeros_like(target, dtype=hidden.dtype, device=hidden.device) offset = 0 cutoff_values = [0] + self.cutoffs for i in range(len(cutoff_values) - 1): l_idx, r_idx = cutoff_values[i], cutoff_values[i + 1] if target is not None: mask_i = (target >= l_idx) & (target < r_idx) indices_i = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue target_i = target.index_select(0, indices_i) - l_idx head_logprob_i = head_logprob.index_select(0, indices_i) hidden_i = hidden.index_select(0, indices_i) else: hidden_i = hidden if i == 0: if target is not None: logprob_i = head_logprob_i.gather(1, target_i[:, None]).squeeze(1) else: out[:, :self.cutoffs[0]] = head_logprob[:, :self.cutoffs[0]] else: weight_i, bias_i, proj_i = weights[i], biases[i], self.out_projs[i] tail_logit_i = self._compute_logit(hidden_i, weight_i, bias_i, proj_i) tail_logprob_i = F.log_softmax(tail_logit_i, dim=1) cluster_prob_idx = self.cutoffs[0] + i - 1 # No probability for the head cluster if target is not None: logprob_i = head_logprob_i[:, cluster_prob_idx] \ + tail_logprob_i.gather(1, target_i[:, None]).squeeze(1) else: logprob_i = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i out[:, l_idx:r_idx] = logprob_i if target is not None: if (hasattr(self, 'keep_order') and self.keep_order) or keep_order: out.index_copy_(0, indices_i, -logprob_i) else: out[offset:offset+logprob_i.size(0)].copy_(-logprob_i) offset += logprob_i.size(0) return out
[]
Please provide a description of the function:def log_prob(self, hidden): r if self.n_clusters == 0: logit = self._compute_logit(hidden, self.out_layers[0].weight, self.out_layers[0].bias, self.out_projs[0]) return F.log_softmax(logit, dim=-1) else: # construct weights and biases weights, biases = [], [] for i in range(len(self.cutoffs)): if self.div_val == 1: l_idx, r_idx = self.cutoff_ends[i], self.cutoff_ends[i + 1] weight_i = self.out_layers[0].weight[l_idx:r_idx] bias_i = self.out_layers[0].bias[l_idx:r_idx] else: weight_i = self.out_layers[i].weight bias_i = self.out_layers[i].bias if i == 0: weight_i = torch.cat( [weight_i, self.cluster_weight], dim=0) bias_i = torch.cat( [bias_i, self.cluster_bias], dim=0) weights.append(weight_i) biases.append(bias_i) head_weight, head_bias, head_proj = weights[0], biases[0], self.out_projs[0] head_logit = self._compute_logit(hidden, head_weight, head_bias, head_proj) out = hidden.new_empty((head_logit.size(0), self.n_token)) head_logprob = F.log_softmax(head_logit, dim=1) cutoff_values = [0] + self.cutoffs for i in range(len(cutoff_values) - 1): start_idx, stop_idx = cutoff_values[i], cutoff_values[i + 1] if i == 0: out[:, :self.cutoffs[0]] = head_logprob[:, :self.cutoffs[0]] else: weight_i, bias_i, proj_i = weights[i], biases[i], self.out_projs[i] tail_logit_i = self._compute_logit(hidden, weight_i, bias_i, proj_i) tail_logprob_i = F.log_softmax(tail_logit_i, dim=1) logprob_i = head_logprob[:, -i] + tail_logprob_i out[:, start_idx, stop_idx] = logprob_i return out
[ " Computes log probabilities for all :math:`n\\_classes`\n From: https://github.com/pytorch/pytorch/blob/master/torch/nn/modules/adaptive.py\n Args:\n hidden (Tensor): a minibatch of examples\n Returns:\n log-probabilities of for each class :math:`c`\n in range :math:`0 <= c <= n\\_classes`, where :math:`n\\_classes` is a\n parameter passed to ``AdaptiveLogSoftmaxWithLoss`` constructor.\n Shape:\n - Input: :math:`(N, in\\_features)`\n - Output: :math:`(N, n\\_classes)`\n " ]
Please provide a description of the function:def sample(self, labels): # neg_samples = torch.empty(0).long() n_sample = self.n_sample n_tries = 2 * n_sample with torch.no_grad(): neg_samples = torch.multinomial(self.dist, n_tries, replacement=True).unique() device = labels.device neg_samples = neg_samples.to(device) true_log_probs = self.log_q[labels].to(device) samp_log_probs = self.log_q[neg_samples].to(device) return true_log_probs, samp_log_probs, neg_samples
[ "\n labels: [b1, b2]\n Return\n true_log_probs: [b1, b2]\n samp_log_probs: [n_sample]\n neg_samples: [n_sample]\n " ]
Please provide a description of the function:def build_tf_to_pytorch_map(model, config): tf_to_pt_map = {} if hasattr(model, 'transformer'): # We are loading in a TransfoXLLMHeadModel => we will load also the Adaptive Softmax tf_to_pt_map.update({ "transformer/adaptive_softmax/cutoff_0/cluster_W": model.crit.cluster_weight, "transformer/adaptive_softmax/cutoff_0/cluster_b": model.crit.cluster_bias}) for i, (out_l, proj_l, tie_proj) in enumerate(zip( model.crit.out_layers, model.crit.out_projs, config.tie_projs)): layer_str = "transformer/adaptive_softmax/cutoff_%d/" % i if config.tie_weight: tf_to_pt_map.update({ layer_str + 'b': out_l.bias}) else: raise NotImplementedError # I don't think this is implemented in the TF code tf_to_pt_map.update({ layer_str + 'lookup_table': out_l.weight, layer_str + 'b': out_l.bias}) if not tie_proj: tf_to_pt_map.update({ layer_str + 'proj': proj_l }) # Now load the rest of the transformer model = model.transformer # Embeddings for i, (embed_l, proj_l) in enumerate(zip(model.word_emb.emb_layers, model.word_emb.emb_projs)): layer_str = "transformer/adaptive_embed/cutoff_%d/" % i tf_to_pt_map.update({ layer_str + 'lookup_table': embed_l.weight, layer_str + 'proj_W': proj_l }) # Transformer blocks for i, b in enumerate(model.layers): layer_str = "transformer/layer_%d/" % i tf_to_pt_map.update({ layer_str + "rel_attn/LayerNorm/gamma": b.dec_attn.layer_norm.weight, layer_str + "rel_attn/LayerNorm/beta": b.dec_attn.layer_norm.bias, layer_str + "rel_attn/o/kernel": b.dec_attn.o_net.weight, layer_str + "rel_attn/qkv/kernel": b.dec_attn.qkv_net.weight, layer_str + "rel_attn/r/kernel": b.dec_attn.r_net.weight, layer_str + "ff/LayerNorm/gamma": b.pos_ff.layer_norm.weight, layer_str + "ff/LayerNorm/beta": b.pos_ff.layer_norm.bias, layer_str + "ff/layer_1/kernel": b.pos_ff.CoreNet[0].weight, layer_str + "ff/layer_1/bias": b.pos_ff.CoreNet[0].bias, layer_str + "ff/layer_2/kernel": b.pos_ff.CoreNet[3].weight, layer_str + "ff/layer_2/bias": b.pos_ff.CoreNet[3].bias, }) # Relative positioning biases if config.untie_r: r_r_list = [] r_w_list = [] for b in model.layers: r_r_list.append(b.dec_attn.r_r_bias) r_w_list.append(b.dec_attn.r_w_bias) else: r_r_list = [model.r_r_bias] r_w_list = [model.r_w_bias] tf_to_pt_map.update({ 'transformer/r_r_bias': r_r_list, 'transformer/r_w_bias': r_w_list}) return tf_to_pt_map
[ " A map of modules from TF to PyTorch.\n This time I use a map to keep the PyTorch model as identical to the original PyTorch model as possible.\n " ]
Please provide a description of the function:def load_tf_weights_in_transfo_xl(model, config, tf_path): try: import numpy as np import tensorflow as tf except ImportError: print("Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see " "https://www.tensorflow.org/install/ for installation instructions.") raise # Build TF to PyTorch weights loading map tf_to_pt_map = build_tf_to_pytorch_map(model, config) # Load weights from TF model init_vars = tf.train.list_variables(tf_path) tf_weights = {} for name, shape in init_vars: print("Loading TF weight {} with shape {}".format(name, shape)) array = tf.train.load_variable(tf_path, name) tf_weights[name] = array for name, pointer in tf_to_pt_map.items(): assert name in tf_weights array = tf_weights[name] # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v # which are not required for using pretrained model if 'kernel' in name or 'proj' in name: array = np.transpose(array) if ('r_r_bias' in name or 'r_w_bias' in name) and len(pointer) > 1: # Here we will split the TF weigths assert len(pointer) == array.shape[0] for i, p_i in enumerate(pointer): arr_i = array[i, ...] try: assert p_i.shape == arr_i.shape except AssertionError as e: e.args += (p_i.shape, arr_i.shape) raise print("Initialize PyTorch weight {} for layer {}".format(name, i)) p_i.data = torch.from_numpy(arr_i) else: try: assert pointer.shape == array.shape except AssertionError as e: e.args += (pointer.shape, array.shape) raise print("Initialize PyTorch weight {}".format(name)) pointer.data = torch.from_numpy(array) tf_weights.pop(name, None) tf_weights.pop(name + '/Adam', None) tf_weights.pop(name + '/Adam_1', None) print("Weights not copied to PyTorch model: {}".format(', '.join(tf_weights.keys()))) return model
[ " Load tf checkpoints in a pytorch model\n " ]
Please provide a description of the function:def init_weights(self, m): classname = m.__class__.__name__ if classname.find('Linear') != -1: if hasattr(m, 'weight') and m.weight is not None: self.init_weight(m.weight) if hasattr(m, 'bias') and m.bias is not None: self.init_bias(m.bias) elif classname.find('AdaptiveEmbedding') != -1: if hasattr(m, 'emb_projs'): for i in range(len(m.emb_projs)): if m.emb_projs[i] is not None: nn.init.normal_(m.emb_projs[i], 0.0, self.config.proj_init_std) elif classname.find('Embedding') != -1: if hasattr(m, 'weight'): self.init_weight(m.weight) elif classname.find('ProjectedAdaptiveLogSoftmax') != -1: if hasattr(m, 'cluster_weight') and m.cluster_weight is not None: self.init_weight(m.cluster_weight) if hasattr(m, 'cluster_bias') and m.cluster_bias is not None: self.init_bias(m.cluster_bias) if hasattr(m, 'out_projs'): for i in range(len(m.out_projs)): if m.out_projs[i] is not None: nn.init.normal_(m.out_projs[i], 0.0, self.config.proj_init_std) elif classname.find('LayerNorm') != -1: if hasattr(m, 'weight'): nn.init.normal_(m.weight, 1.0, self.config.init_std) if hasattr(m, 'bias') and m.bias is not None: self.init_bias(m.bias) elif classname.find('TransformerLM') != -1: if hasattr(m, 'r_emb'): self.init_weight(m.r_emb) if hasattr(m, 'r_w_bias'): self.init_weight(m.r_w_bias) if hasattr(m, 'r_r_bias'): self.init_weight(m.r_r_bias) if hasattr(m, 'r_bias'): self.init_bias(m.r_bias)
[ " Initialize the weights.\n " ]
Please provide a description of the function:def from_pretrained(cls, pretrained_model_name_or_path, state_dict=None, cache_dir=None, from_tf=False, *inputs, **kwargs): if pretrained_model_name_or_path in PRETRAINED_MODEL_ARCHIVE_MAP: archive_file = PRETRAINED_MODEL_ARCHIVE_MAP[pretrained_model_name_or_path] config_file = PRETRAINED_CONFIG_ARCHIVE_MAP[pretrained_model_name_or_path] else: archive_file = os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME) config_file = os.path.join(pretrained_model_name_or_path, CONFIG_NAME) # redirect to the cache, if necessary try: resolved_archive_file = cached_path(archive_file, cache_dir=cache_dir) resolved_config_file = cached_path(config_file, cache_dir=cache_dir) except EnvironmentError: logger.error( "Model name '{}' was not found in model name list ({}). " "We assumed '{}' was a path or url but couldn't find files {} and {} " "at this path or url.".format( pretrained_model_name_or_path, ', '.join(PRETRAINED_MODEL_ARCHIVE_MAP.keys()), pretrained_model_name_or_path, archive_file, config_file)) return None if resolved_archive_file == archive_file and resolved_config_file == config_file: logger.info("loading weights file {}".format(archive_file)) logger.info("loading configuration file {}".format(config_file)) else: logger.info("loading weights file {} from cache at {}".format( archive_file, resolved_archive_file)) logger.info("loading configuration file {} from cache at {}".format( config_file, resolved_config_file)) # Load config config = TransfoXLConfig.from_json_file(resolved_config_file) logger.info("Model config {}".format(config)) # Instantiate model. model = cls(config, *inputs, **kwargs) if state_dict is None and not from_tf: state_dict = torch.load(resolved_archive_file, map_location='cpu') if from_tf: # Directly load from a TensorFlow checkpoint return load_tf_weights_in_transfo_xl(model, config, pretrained_model_name_or_path) missing_keys = [] unexpected_keys = [] error_msgs = [] # copy state_dict so _load_from_state_dict can modify it metadata = getattr(state_dict, '_metadata', None) state_dict = state_dict.copy() if metadata is not None: state_dict._metadata = metadata def load(module, prefix=''): local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {}) module._load_from_state_dict( state_dict, prefix, local_metadata, True, missing_keys, unexpected_keys, error_msgs) for name, child in module._modules.items(): if child is not None: load(child, prefix + name + '.') start_prefix = '' if not hasattr(model, 'transformer') and any(s.startswith('transformer.') for s in state_dict.keys()): start_prefix = 'transformer.' load(model, prefix=start_prefix) if len(missing_keys) > 0: logger.info("Weights of {} not initialized from pretrained model: {}".format( model.__class__.__name__, missing_keys)) if len(unexpected_keys) > 0: logger.info("Weights from pretrained model not used in {}: {}".format( model.__class__.__name__, unexpected_keys)) if len(error_msgs) > 0: raise RuntimeError('Error(s) in loading state_dict for {}:\n\t{}'.format( model.__class__.__name__, "\n\t".join(error_msgs))) # Make sure we are still sharing the input and output embeddings if hasattr(model, 'tie_weights'): model.tie_weights() return model
[ "\n Instantiate a TransfoXLPreTrainedModel from a pre-trained model file or a pytorch state dict.\n Download and cache the pre-trained model file if needed.\n\n Params:\n pretrained_model_name_or_path: either:\n - a str with the name of a pre-trained model to load selected in the list of:\n . `transfo-xl`\n - a path or url to a pretrained model archive containing:\n . `transfo_xl_config.json` a configuration file for the model\n . `pytorch_model.bin` a PyTorch dump of a TransfoXLModel instance\n - a path or url to a pretrained model archive containing:\n . `bert_config.json` a configuration file for the model\n . `model.chkpt` a TensorFlow checkpoint\n from_tf: should we load the weights from a locally saved TensorFlow checkpoint\n cache_dir: an optional path to a folder in which the pre-trained models will be cached.\n state_dict: an optional state dictionnary (collections.OrderedDict object) to use instead of pre-trained models\n *inputs, **kwargs: additional input for the specific Bert class\n (ex: num_labels for BertForSequenceClassification)\n " ]
Please provide a description of the function:def forward(self, input_ids, mems=None): # the original code for Transformer-XL used shapes [len, bsz] but we want a unified interface in the library # so we transpose here from shape [bsz, len] to shape [len, bsz] input_ids = input_ids.transpose(0, 1).contiguous() if mems is None: mems = self.init_mems(input_ids) last_hidden, new_mems = self._forward(input_ids, mems=mems) # We transpose back here to shape [bsz, len, hidden_dim] last_hidden = last_hidden.transpose(0, 1).contiguous() return (last_hidden, new_mems)
[ " Params:\n input_ids :: [bsz, len]\n mems :: optional mems from previous forwar passes (or init_mems)\n list (num layers) of mem states at the entry of each layer\n shape :: [self.config.mem_len, bsz, self.config.d_model]\n Note that the first two dimensions are transposed in `mems` with regards to `input_ids` and `target`\n Returns:\n tuple (last_hidden, new_mems) where:\n new_mems: list (num layers) of mem states at the entry of each layer\n shape :: [self.config.mem_len, bsz, self.config.d_model]\n last_hidden: output of the last layer:\n shape :: [bsz, len, self.config.d_model]\n " ]
Please provide a description of the function:def tie_weights(self): # sampled softmax if self.sample_softmax > 0: if self.config.tie_weight: self.out_layer.weight = self.transformer.word_emb.weight # adaptive softmax (including standard softmax) else: if self.config.tie_weight: for i in range(len(self.crit.out_layers)): self.crit.out_layers[i].weight = self.transformer.word_emb.emb_layers[i].weight if self.config.tie_projs: for i, tie_proj in enumerate(self.config.tie_projs): if tie_proj and self.config.div_val == 1 and self.config.d_model != self.config.d_embed: self.crit.out_projs[i] = self.transformer.word_emb.emb_projs[0] elif tie_proj and self.config.div_val != 1: self.crit.out_projs[i] = self.transformer.word_emb.emb_projs[i]
[ " Run this to be sure output and input (adaptive) softmax weights are tied " ]
Please provide a description of the function:def forward(self, input_ids, target=None, mems=None): bsz = input_ids.size(0) tgt_len = input_ids.size(1) last_hidden, new_mems = self.transformer(input_ids, mems) pred_hid = last_hidden[:, -tgt_len:] if self.sample_softmax > 0 and self.training: assert self.config.tie_weight logit = sample_logits(self.transformer.word_emb, self.out_layer.bias, target, pred_hid, self.sampler) softmax_output = -F.log_softmax(logit, -1)[:, :, 0] else: softmax_output = self.crit(pred_hid.view(-1, pred_hid.size(-1)), target) if target is None: softmax_output = softmax_output.view(bsz, tgt_len, -1) else: softmax_output = softmax_output.view(bsz, tgt_len) # We transpose back return (softmax_output, new_mems)
[ " Params:\n input_ids :: [bsz, len]\n target :: [bsz, len]\n Returns:\n tuple(softmax_output, new_mems) where:\n new_mems: list (num layers) of hidden states at the entry of each layer\n shape :: [mem_len, bsz, self.config.d_model] :: Warning: shapes are transposed here w. regards to input_ids\n softmax_output: output of the (adaptive) softmax:\n if target is None:\n Negative log likelihood of shape :: [bsz, len] \n else:\n log probabilities of tokens, shape :: [bsz, len, n_tokens]\n " ]
Please provide a description of the function:def to_offset(freq): if freq is None: return None if isinstance(freq, DateOffset): return freq if isinstance(freq, tuple): name = freq[0] stride = freq[1] if isinstance(stride, str): name, stride = stride, name name, _ = libfreqs._base_and_stride(name) delta = get_offset(name) * stride elif isinstance(freq, timedelta): delta = None freq = Timedelta(freq) try: for name in freq.components._fields: offset = _name_to_offset_map[name] stride = getattr(freq.components, name) if stride != 0: offset = stride * offset if delta is None: delta = offset else: delta = delta + offset except Exception: raise ValueError(libfreqs.INVALID_FREQ_ERR_MSG.format(freq)) else: delta = None stride_sign = None try: splitted = re.split(libfreqs.opattern, freq) if splitted[-1] != '' and not splitted[-1].isspace(): # the last element must be blank raise ValueError('last element must be blank') for sep, stride, name in zip(splitted[0::4], splitted[1::4], splitted[2::4]): if sep != '' and not sep.isspace(): raise ValueError('separator must be spaces') prefix = libfreqs._lite_rule_alias.get(name) or name if stride_sign is None: stride_sign = -1 if stride.startswith('-') else 1 if not stride: stride = 1 if prefix in Resolution._reso_str_bump_map.keys(): stride, name = Resolution.get_stride_from_decimal( float(stride), prefix ) stride = int(stride) offset = get_offset(name) offset = offset * int(np.fabs(stride) * stride_sign) if delta is None: delta = offset else: delta = delta + offset except Exception: raise ValueError(libfreqs.INVALID_FREQ_ERR_MSG.format(freq)) if delta is None: raise ValueError(libfreqs.INVALID_FREQ_ERR_MSG.format(freq)) return delta
[ "\n Return DateOffset object from string or tuple representation\n or datetime.timedelta object\n\n Parameters\n ----------\n freq : str, tuple, datetime.timedelta, DateOffset or None\n\n Returns\n -------\n DateOffset\n None if freq is None.\n\n Raises\n ------\n ValueError\n If freq is an invalid frequency\n\n See Also\n --------\n DateOffset\n\n Examples\n --------\n >>> to_offset('5min')\n <5 * Minutes>\n\n >>> to_offset('1D1H')\n <25 * Hours>\n\n >>> to_offset(('W', 2))\n <2 * Weeks: weekday=6>\n\n >>> to_offset((2, 'B'))\n <2 * BusinessDays>\n\n >>> to_offset(datetime.timedelta(days=1))\n <Day>\n\n >>> to_offset(Hour())\n <Hour>\n " ]
Please provide a description of the function:def get_offset(name): if name not in libfreqs._dont_uppercase: name = name.upper() name = libfreqs._lite_rule_alias.get(name, name) name = libfreqs._lite_rule_alias.get(name.lower(), name) else: name = libfreqs._lite_rule_alias.get(name, name) if name not in _offset_map: try: split = name.split('-') klass = prefix_mapping[split[0]] # handles case where there's no suffix (and will TypeError if too # many '-') offset = klass._from_name(*split[1:]) except (ValueError, TypeError, KeyError): # bad prefix or suffix raise ValueError(libfreqs.INVALID_FREQ_ERR_MSG.format(name)) # cache _offset_map[name] = offset return _offset_map[name]
[ "\n Return DateOffset object associated with rule name\n\n Examples\n --------\n get_offset('EOM') --> BMonthEnd(1)\n " ]
Please provide a description of the function:def infer_freq(index, warn=True): import pandas as pd if isinstance(index, ABCSeries): values = index._values if not (is_datetime64_dtype(values) or is_timedelta64_dtype(values) or values.dtype == object): raise TypeError("cannot infer freq from a non-convertible dtype " "on a Series of {dtype}".format(dtype=index.dtype)) index = values if is_period_arraylike(index): raise TypeError("PeriodIndex given. Check the `freq` attribute " "instead of using infer_freq.") elif is_timedelta64_dtype(index): # Allow TimedeltaIndex and TimedeltaArray inferer = _TimedeltaFrequencyInferer(index, warn=warn) return inferer.get_freq() if isinstance(index, pd.Index) and not isinstance(index, pd.DatetimeIndex): if isinstance(index, (pd.Int64Index, pd.Float64Index)): raise TypeError("cannot infer freq from a non-convertible index " "type {type}".format(type=type(index))) index = index.values if not isinstance(index, pd.DatetimeIndex): try: index = pd.DatetimeIndex(index) except AmbiguousTimeError: index = pd.DatetimeIndex(index.asi8) inferer = _FrequencyInferer(index, warn=warn) return inferer.get_freq()
[ "\n Infer the most likely frequency given the input index. If the frequency is\n uncertain, a warning will be printed.\n\n Parameters\n ----------\n index : DatetimeIndex or TimedeltaIndex\n if passed a Series will use the values of the series (NOT THE INDEX)\n warn : boolean, default True\n\n Returns\n -------\n str or None\n None if no discernible frequency\n TypeError if the index is not datetime-like\n ValueError if there are less than three values.\n " ]
Please provide a description of the function:def get_freq(self): if not self.is_monotonic or not self.index._is_unique: return None delta = self.deltas[0] if _is_multiple(delta, _ONE_DAY): return self._infer_daily_rule() # Business hourly, maybe. 17: one day / 65: one weekend if self.hour_deltas in ([1, 17], [1, 65], [1, 17, 65]): return 'BH' # Possibly intraday frequency. Here we use the # original .asi8 values as the modified values # will not work around DST transitions. See #8772 elif not self.is_unique_asi8: return None delta = self.deltas_asi8[0] if _is_multiple(delta, _ONE_HOUR): # Hours return _maybe_add_count('H', delta / _ONE_HOUR) elif _is_multiple(delta, _ONE_MINUTE): # Minutes return _maybe_add_count('T', delta / _ONE_MINUTE) elif _is_multiple(delta, _ONE_SECOND): # Seconds return _maybe_add_count('S', delta / _ONE_SECOND) elif _is_multiple(delta, _ONE_MILLI): # Milliseconds return _maybe_add_count('L', delta / _ONE_MILLI) elif _is_multiple(delta, _ONE_MICRO): # Microseconds return _maybe_add_count('U', delta / _ONE_MICRO) else: # Nanoseconds return _maybe_add_count('N', delta)
[ "\n Find the appropriate frequency string to describe the inferred\n frequency of self.values\n\n Returns\n -------\n str or None\n " ]
Please provide a description of the function:def load(fh, encoding=None, is_verbose=False): try: fh.seek(0) if encoding is not None: up = Unpickler(fh, encoding=encoding) else: up = Unpickler(fh) up.is_verbose = is_verbose return up.load() except (ValueError, TypeError): raise
[ "load a pickle, with a provided encoding\n\n if compat is True:\n fake the old class hierarchy\n if it works, then return the new type objects\n\n Parameters\n ----------\n fh : a filelike object\n encoding : an optional encoding\n is_verbose : show exception output\n " ]
Please provide a description of the function:def _new_Index(cls, d): # required for backward compat, because PI can't be instantiated with # ordinals through __new__ GH #13277 if issubclass(cls, ABCPeriodIndex): from pandas.core.indexes.period import _new_PeriodIndex return _new_PeriodIndex(cls, **d) return cls.__new__(cls, **d)
[ "\n This is called upon unpickling, rather than the default which doesn't\n have arguments and breaks __new__.\n " ]
Please provide a description of the function:def ensure_index_from_sequences(sequences, names=None): from .multi import MultiIndex if len(sequences) == 1: if names is not None: names = names[0] return Index(sequences[0], name=names) else: return MultiIndex.from_arrays(sequences, names=names)
[ "\n Construct an index from sequences of data.\n\n A single sequence returns an Index. Many sequences returns a\n MultiIndex.\n\n Parameters\n ----------\n sequences : sequence of sequences\n names : sequence of str\n\n Returns\n -------\n index : Index or MultiIndex\n\n Examples\n --------\n >>> ensure_index_from_sequences([[1, 2, 3]], names=['name'])\n Int64Index([1, 2, 3], dtype='int64', name='name')\n\n >>> ensure_index_from_sequences([['a', 'a'], ['a', 'b']],\n names=['L1', 'L2'])\n MultiIndex(levels=[['a'], ['a', 'b']],\n codes=[[0, 0], [0, 1]],\n names=['L1', 'L2'])\n\n See Also\n --------\n ensure_index\n " ]
Please provide a description of the function:def ensure_index(index_like, copy=False): if isinstance(index_like, Index): if copy: index_like = index_like.copy() return index_like if hasattr(index_like, 'name'): return Index(index_like, name=index_like.name, copy=copy) if is_iterator(index_like): index_like = list(index_like) # must check for exactly list here because of strict type # check in clean_index_list if isinstance(index_like, list): if type(index_like) != list: index_like = list(index_like) converted, all_arrays = lib.clean_index_list(index_like) if len(converted) > 0 and all_arrays: from .multi import MultiIndex return MultiIndex.from_arrays(converted) else: index_like = converted else: # clean_index_list does the equivalent of copying # so only need to do this if not list instance if copy: from copy import copy index_like = copy(index_like) return Index(index_like)
[ "\n Ensure that we have an index from some index-like object.\n\n Parameters\n ----------\n index : sequence\n An Index or other sequence\n copy : bool\n\n Returns\n -------\n index : Index or MultiIndex\n\n Examples\n --------\n >>> ensure_index(['a', 'b'])\n Index(['a', 'b'], dtype='object')\n\n >>> ensure_index([('a', 'a'), ('b', 'c')])\n Index([('a', 'a'), ('b', 'c')], dtype='object')\n\n >>> ensure_index([['a', 'a'], ['b', 'c']])\n MultiIndex(levels=[['a'], ['b', 'c']],\n codes=[[0, 0], [0, 1]])\n\n See Also\n --------\n ensure_index_from_sequences\n " ]
Please provide a description of the function:def _trim_front(strings): trimmed = strings while len(strings) > 0 and all(x[0] == ' ' for x in trimmed): trimmed = [x[1:] for x in trimmed] return trimmed
[ "\n Trims zeros and decimal points.\n " ]
Please provide a description of the function:def _simple_new(cls, values, name=None, dtype=None, **kwargs): if not hasattr(values, 'dtype'): if (values is None or not len(values)) and dtype is not None: values = np.empty(0, dtype=dtype) else: values = np.array(values, copy=False) if is_object_dtype(values): values = cls(values, name=name, dtype=dtype, **kwargs)._ndarray_values if isinstance(values, (ABCSeries, ABCIndexClass)): # Index._data must always be an ndarray. # This is no-copy for when _values is an ndarray, # which should be always at this point. values = np.asarray(values._values) result = object.__new__(cls) result._data = values # _index_data is a (temporary?) fix to ensure that the direct data # manipulation we do in `_libs/reduction.pyx` continues to work. # We need access to the actual ndarray, since we're messing with # data buffers and strides. We don't re-use `_ndarray_values`, since # we actually set this value too. result._index_data = values result.name = name for k, v in kwargs.items(): setattr(result, k, v) return result._reset_identity()
[ "\n We require that we have a dtype compat for the values. If we are passed\n a non-dtype compat, then coerce using the constructor.\n\n Must be careful not to recurse.\n " ]
Please provide a description of the function:def _shallow_copy_with_infer(self, values, **kwargs): attributes = self._get_attributes_dict() attributes.update(kwargs) attributes['copy'] = False if not len(values) and 'dtype' not in kwargs: attributes['dtype'] = self.dtype if self._infer_as_myclass: try: return self._constructor(values, **attributes) except (TypeError, ValueError): pass return Index(values, **attributes)
[ "\n Create a new Index inferring the class with passed value, don't copy\n the data, use the same object attributes with passed in attributes\n taking precedence.\n\n *this is an internal non-public method*\n\n Parameters\n ----------\n values : the values to create the new Index, optional\n kwargs : updates the default attributes for this Index\n " ]
Please provide a description of the function:def is_(self, other): # use something other than None to be clearer return self._id is getattr( other, '_id', Ellipsis) and self._id is not None
[ "\n More flexible, faster check like ``is`` but that works through views.\n\n Note: this is *not* the same as ``Index.identical()``, which checks\n that metadata is also the same.\n\n Parameters\n ----------\n other : object\n other object to compare against.\n\n Returns\n -------\n True if both have same underlying data, False otherwise : bool\n " ]
Please provide a description of the function:def _assert_take_fillable(self, values, indices, allow_fill=True, fill_value=None, na_value=np.nan): indices = ensure_platform_int(indices) # only fill if we are passing a non-None fill_value if allow_fill and fill_value is not None: if (indices < -1).any(): msg = ('When allow_fill=True and fill_value is not None, ' 'all indices must be >= -1') raise ValueError(msg) taken = algos.take(values, indices, allow_fill=allow_fill, fill_value=na_value) else: taken = values.take(indices) return taken
[ "\n Internal method to handle NA filling of take.\n " ]
Please provide a description of the function:def _format_data(self, name=None): # do we want to justify (only do so for non-objects) is_justify = not (self.inferred_type in ('string', 'unicode') or (self.inferred_type == 'categorical' and is_object_dtype(self.categories))) return format_object_summary(self, self._formatter_func, is_justify=is_justify, name=name)
[ "\n Return the formatted data as a unicode string.\n " ]
Please provide a description of the function:def format(self, name=False, formatter=None, **kwargs): header = [] if name: header.append(pprint_thing(self.name, escape_chars=('\t', '\r', '\n')) if self.name is not None else '') if formatter is not None: return header + list(self.map(formatter)) return self._format_with_header(header, **kwargs)
[ "\n Render a string representation of the Index.\n " ]
Please provide a description of the function:def to_native_types(self, slicer=None, **kwargs): values = self if slicer is not None: values = values[slicer] return values._format_native_types(**kwargs)
[ "\n Format specified values of `self` and return them.\n\n Parameters\n ----------\n slicer : int, array-like\n An indexer into `self` that specifies which values\n are used in the formatting process.\n kwargs : dict\n Options for specifying how the values should be formatted.\n These options include the following:\n\n 1) na_rep : str\n The value that serves as a placeholder for NULL values\n 2) quoting : bool or None\n Whether or not there are quoted values in `self`\n 3) date_format : str\n The format used to represent date-like values\n " ]
Please provide a description of the function:def _format_native_types(self, na_rep='', quoting=None, **kwargs): mask = isna(self) if not self.is_object() and not quoting: values = np.asarray(self).astype(str) else: values = np.array(self, dtype=object, copy=True) values[mask] = na_rep return values
[ "\n Actually format specific types of the index.\n " ]
Please provide a description of the function:def _summary(self, name=None): if len(self) > 0: head = self[0] if hasattr(head, 'format') and not isinstance(head, str): head = head.format() tail = self[-1] if hasattr(tail, 'format') and not isinstance(tail, str): tail = tail.format() index_summary = ', %s to %s' % (pprint_thing(head), pprint_thing(tail)) else: index_summary = '' if name is None: name = type(self).__name__ return '%s: %s entries%s' % (name, len(self), index_summary)
[ "\n Return a summarized representation.\n\n Parameters\n ----------\n name : str\n name to use in the summary representation\n\n Returns\n -------\n String with a summarized representation of the index\n " ]
Please provide a description of the function:def summary(self, name=None): warnings.warn("'summary' is deprecated and will be removed in a " "future version.", FutureWarning, stacklevel=2) return self._summary(name)
[ "\n Return a summarized representation.\n\n .. deprecated:: 0.23.0\n " ]
Please provide a description of the function:def to_series(self, index=None, name=None): from pandas import Series if index is None: index = self._shallow_copy() if name is None: name = self.name return Series(self.values.copy(), index=index, name=name)
[ "\n Create a Series with both index and values equal to the index keys\n useful with map for returning an indexer based on an index.\n\n Parameters\n ----------\n index : Index, optional\n index of resulting Series. If None, defaults to original index\n name : string, optional\n name of resulting Series. If None, defaults to name of original\n index\n\n Returns\n -------\n Series : dtype will be based on the type of the Index values.\n " ]
Please provide a description of the function:def to_frame(self, index=True, name=None): from pandas import DataFrame if name is None: name = self.name or 0 result = DataFrame({name: self._values.copy()}) if index: result.index = self return result
[ "\n Create a DataFrame with a column containing the Index.\n\n .. versionadded:: 0.24.0\n\n Parameters\n ----------\n index : boolean, default True\n Set the index of the returned DataFrame as the original Index.\n\n name : object, default None\n The passed name should substitute for the index name (if it has\n one).\n\n Returns\n -------\n DataFrame\n DataFrame containing the original Index data.\n\n See Also\n --------\n Index.to_series : Convert an Index to a Series.\n Series.to_frame : Convert Series to DataFrame.\n\n Examples\n --------\n >>> idx = pd.Index(['Ant', 'Bear', 'Cow'], name='animal')\n >>> idx.to_frame()\n animal\n animal\n Ant Ant\n Bear Bear\n Cow Cow\n\n By default, the original Index is reused. To enforce a new Index:\n\n >>> idx.to_frame(index=False)\n animal\n 0 Ant\n 1 Bear\n 2 Cow\n\n To override the name of the resulting column, specify `name`:\n\n >>> idx.to_frame(index=False, name='zoo')\n zoo\n 0 Ant\n 1 Bear\n 2 Cow\n " ]
Please provide a description of the function:def _validate_names(self, name=None, names=None, deep=False): from copy import deepcopy if names is not None and name is not None: raise TypeError("Can only provide one of `names` and `name`") elif names is None and name is None: return deepcopy(self.names) if deep else self.names elif names is not None: if not is_list_like(names): raise TypeError("Must pass list-like as `names`.") return names else: if not is_list_like(name): return [name] return name
[ "\n Handles the quirks of having a singular 'name' parameter for general\n Index and plural 'names' parameter for MultiIndex.\n " ]
Please provide a description of the function:def _set_names(self, values, level=None): if not is_list_like(values): raise ValueError('Names must be a list-like') if len(values) != 1: raise ValueError('Length of new names must be 1, got %d' % len(values)) # GH 20527 # All items in 'name' need to be hashable: for name in values: if not is_hashable(name): raise TypeError('{}.name must be a hashable type' .format(self.__class__.__name__)) self.name = values[0]
[ "\n Set new names on index. Each name has to be a hashable type.\n\n Parameters\n ----------\n values : str or sequence\n name(s) to set\n level : int, level name, or sequence of int/level names (default None)\n If the index is a MultiIndex (hierarchical), level(s) to set (None\n for all levels). Otherwise level must be None\n\n Raises\n ------\n TypeError if each name is not hashable.\n " ]
Please provide a description of the function:def set_names(self, names, level=None, inplace=False): if level is not None and not isinstance(self, ABCMultiIndex): raise ValueError('Level must be None for non-MultiIndex') if level is not None and not is_list_like(level) and is_list_like( names): msg = "Names must be a string when a single level is provided." raise TypeError(msg) if not is_list_like(names) and level is None and self.nlevels > 1: raise TypeError("Must pass list-like as `names`.") if not is_list_like(names): names = [names] if level is not None and not is_list_like(level): level = [level] if inplace: idx = self else: idx = self._shallow_copy() idx._set_names(names, level=level) if not inplace: return idx
[ "\n Set Index or MultiIndex name.\n\n Able to set new names partially and by level.\n\n Parameters\n ----------\n names : label or list of label\n Name(s) to set.\n level : int, label or list of int or label, optional\n If the index is a MultiIndex, level(s) to set (None for all\n levels). Otherwise level must be None.\n inplace : bool, default False\n Modifies the object directly, instead of creating a new Index or\n MultiIndex.\n\n Returns\n -------\n Index\n The same type as the caller or None if inplace is True.\n\n See Also\n --------\n Index.rename : Able to set new names without level.\n\n Examples\n --------\n >>> idx = pd.Index([1, 2, 3, 4])\n >>> idx\n Int64Index([1, 2, 3, 4], dtype='int64')\n >>> idx.set_names('quarter')\n Int64Index([1, 2, 3, 4], dtype='int64', name='quarter')\n\n >>> idx = pd.MultiIndex.from_product([['python', 'cobra'],\n ... [2018, 2019]])\n >>> idx\n MultiIndex(levels=[['cobra', 'python'], [2018, 2019]],\n codes=[[1, 1, 0, 0], [0, 1, 0, 1]])\n >>> idx.set_names(['kind', 'year'], inplace=True)\n >>> idx\n MultiIndex(levels=[['cobra', 'python'], [2018, 2019]],\n codes=[[1, 1, 0, 0], [0, 1, 0, 1]],\n names=['kind', 'year'])\n >>> idx.set_names('species', level=0)\n MultiIndex(levels=[['cobra', 'python'], [2018, 2019]],\n codes=[[1, 1, 0, 0], [0, 1, 0, 1]],\n names=['species', 'year'])\n " ]
Please provide a description of the function:def rename(self, name, inplace=False): return self.set_names([name], inplace=inplace)
[ "\n Alter Index or MultiIndex name.\n\n Able to set new names without level. Defaults to returning new index.\n Length of names must match number of levels in MultiIndex.\n\n Parameters\n ----------\n name : label or list of labels\n Name(s) to set.\n inplace : boolean, default False\n Modifies the object directly, instead of creating a new Index or\n MultiIndex.\n\n Returns\n -------\n Index\n The same type as the caller or None if inplace is True.\n\n See Also\n --------\n Index.set_names : Able to set new names partially and by level.\n\n Examples\n --------\n >>> idx = pd.Index(['A', 'C', 'A', 'B'], name='score')\n >>> idx.rename('grade')\n Index(['A', 'C', 'A', 'B'], dtype='object', name='grade')\n\n >>> idx = pd.MultiIndex.from_product([['python', 'cobra'],\n ... [2018, 2019]],\n ... names=['kind', 'year'])\n >>> idx\n MultiIndex(levels=[['cobra', 'python'], [2018, 2019]],\n codes=[[1, 1, 0, 0], [0, 1, 0, 1]],\n names=['kind', 'year'])\n >>> idx.rename(['species', 'year'])\n MultiIndex(levels=[['cobra', 'python'], [2018, 2019]],\n codes=[[1, 1, 0, 0], [0, 1, 0, 1]],\n names=['species', 'year'])\n >>> idx.rename('species')\n Traceback (most recent call last):\n TypeError: Must pass list-like as `names`.\n " ]
Please provide a description of the function:def _validate_index_level(self, level): if isinstance(level, int): if level < 0 and level != -1: raise IndexError("Too many levels: Index has only 1 level," " %d is not a valid level number" % (level, )) elif level > 0: raise IndexError("Too many levels:" " Index has only 1 level, not %d" % (level + 1)) elif level != self.name: raise KeyError('Level %s must be same as name (%s)' % (level, self.name))
[ "\n Validate index level.\n\n For single-level Index getting level number is a no-op, but some\n verification must be done like in MultiIndex.\n\n " ]
Please provide a description of the function:def sortlevel(self, level=None, ascending=True, sort_remaining=None): return self.sort_values(return_indexer=True, ascending=ascending)
[ "\n For internal compatibility with with the Index API.\n\n Sort the Index. This is for compat with MultiIndex\n\n Parameters\n ----------\n ascending : boolean, default True\n False to sort in descending order\n\n level, sort_remaining are compat parameters\n\n Returns\n -------\n Index\n " ]
Please provide a description of the function:def droplevel(self, level=0): if not isinstance(level, (tuple, list)): level = [level] levnums = sorted(self._get_level_number(lev) for lev in level)[::-1] if len(level) == 0: return self if len(level) >= self.nlevels: raise ValueError("Cannot remove {} levels from an index with {} " "levels: at least one level must be " "left.".format(len(level), self.nlevels)) # The two checks above guarantee that here self is a MultiIndex new_levels = list(self.levels) new_codes = list(self.codes) new_names = list(self.names) for i in levnums: new_levels.pop(i) new_codes.pop(i) new_names.pop(i) if len(new_levels) == 1: # set nan if needed mask = new_codes[0] == -1 result = new_levels[0].take(new_codes[0]) if mask.any(): result = result.putmask(mask, np.nan) result.name = new_names[0] return result else: from .multi import MultiIndex return MultiIndex(levels=new_levels, codes=new_codes, names=new_names, verify_integrity=False)
[ "\n Return index with requested level(s) removed.\n\n If resulting index has only 1 level left, the result will be\n of Index type, not MultiIndex.\n\n .. versionadded:: 0.23.1 (support for non-MultiIndex)\n\n Parameters\n ----------\n level : int, str, or list-like, default 0\n If a string is given, must be the name of a level\n If list-like, elements must be names or indexes of levels.\n\n Returns\n -------\n Index or MultiIndex\n " ]
Please provide a description of the function:def _isnan(self): if self._can_hold_na: return isna(self) else: # shouldn't reach to this condition by checking hasnans beforehand values = np.empty(len(self), dtype=np.bool_) values.fill(False) return values
[ "\n Return if each value is NaN.\n " ]
Please provide a description of the function:def get_duplicates(self): warnings.warn("'get_duplicates' is deprecated and will be removed in " "a future release. You can use " "idx[idx.duplicated()].unique() instead", FutureWarning, stacklevel=2) return self[self.duplicated()].unique()
[ "\n Extract duplicated index elements.\n\n .. deprecated:: 0.23.0\n Use idx[idx.duplicated()].unique() instead\n\n Returns a sorted list of index elements which appear more than once in\n the index.\n\n Returns\n -------\n array-like\n List of duplicated indexes.\n\n See Also\n --------\n Index.duplicated : Return boolean array denoting duplicates.\n Index.drop_duplicates : Return Index with duplicates removed.\n\n Examples\n --------\n\n Works on different Index of types.\n\n >>> pd.Index([1, 2, 2, 3, 3, 3, 4]).get_duplicates() # doctest: +SKIP\n [2, 3]\n\n Note that for a DatetimeIndex, it does not return a list but a new\n DatetimeIndex:\n\n >>> dates = pd.to_datetime(['2018-01-01', '2018-01-02', '2018-01-03',\n ... '2018-01-03', '2018-01-04', '2018-01-04'],\n ... format='%Y-%m-%d')\n >>> pd.Index(dates).get_duplicates() # doctest: +SKIP\n DatetimeIndex(['2018-01-03', '2018-01-04'],\n dtype='datetime64[ns]', freq=None)\n\n Sorts duplicated elements even when indexes are unordered.\n\n >>> pd.Index([1, 2, 3, 2, 3, 4, 3]).get_duplicates() # doctest: +SKIP\n [2, 3]\n\n Return empty array-like structure when all elements are unique.\n\n >>> pd.Index([1, 2, 3, 4]).get_duplicates() # doctest: +SKIP\n []\n >>> dates = pd.to_datetime(['2018-01-01', '2018-01-02', '2018-01-03'],\n ... format='%Y-%m-%d')\n >>> pd.Index(dates).get_duplicates() # doctest: +SKIP\n DatetimeIndex([], dtype='datetime64[ns]', freq=None)\n " ]
Please provide a description of the function:def _get_unique_index(self, dropna=False): if self.is_unique and not dropna: return self values = self.values if not self.is_unique: values = self.unique() if dropna: try: if self.hasnans: values = values[~isna(values)] except NotImplementedError: pass return self._shallow_copy(values)
[ "\n Returns an index containing unique values.\n\n Parameters\n ----------\n dropna : bool\n If True, NaN values are dropped.\n\n Returns\n -------\n uniques : index\n " ]
Please provide a description of the function:def _get_reconciled_name_object(self, other): name = get_op_result_name(self, other) if self.name != name: return self._shallow_copy(name=name) return self
[ "\n If the result of a set operation will be self,\n return self, unless the name changes, in which\n case make a shallow copy of self.\n " ]
Please provide a description of the function:def union(self, other, sort=None): self._validate_sort_keyword(sort) self._assert_can_do_setop(other) other = ensure_index(other) if len(other) == 0 or self.equals(other): return self._get_reconciled_name_object(other) if len(self) == 0: return other._get_reconciled_name_object(self) # TODO: is_dtype_union_equal is a hack around # 1. buggy set ops with duplicates (GH #13432) # 2. CategoricalIndex lacking setops (GH #10186) # Once those are fixed, this workaround can be removed if not is_dtype_union_equal(self.dtype, other.dtype): this = self.astype('O') other = other.astype('O') return this.union(other, sort=sort) # TODO(EA): setops-refactor, clean all this up if is_period_dtype(self) or is_datetime64tz_dtype(self): lvals = self._ndarray_values else: lvals = self._values if is_period_dtype(other) or is_datetime64tz_dtype(other): rvals = other._ndarray_values else: rvals = other._values if sort is None and self.is_monotonic and other.is_monotonic: try: result = self._outer_indexer(lvals, rvals)[0] except TypeError: # incomparable objects result = list(lvals) # worth making this faster? a very unusual case value_set = set(lvals) result.extend([x for x in rvals if x not in value_set]) else: indexer = self.get_indexer(other) indexer, = (indexer == -1).nonzero() if len(indexer) > 0: other_diff = algos.take_nd(rvals, indexer, allow_fill=False) result = _concat._concat_compat((lvals, other_diff)) else: result = lvals if sort is None: try: result = sorting.safe_sort(result) except TypeError as e: warnings.warn("{}, sort order is undefined for " "incomparable objects".format(e), RuntimeWarning, stacklevel=3) # for subclasses return self._wrap_setop_result(other, result)
[ "\n Form the union of two Index objects.\n\n Parameters\n ----------\n other : Index or array-like\n sort : bool or None, default None\n Whether to sort the resulting Index.\n\n * None : Sort the result, except when\n\n 1. `self` and `other` are equal.\n 2. `self` or `other` has length 0.\n 3. Some values in `self` or `other` cannot be compared.\n A RuntimeWarning is issued in this case.\n\n * False : do not sort the result.\n\n .. versionadded:: 0.24.0\n\n .. versionchanged:: 0.24.1\n\n Changed the default value from ``True`` to ``None``\n (without change in behaviour).\n\n Returns\n -------\n union : Index\n\n Examples\n --------\n\n >>> idx1 = pd.Index([1, 2, 3, 4])\n >>> idx2 = pd.Index([3, 4, 5, 6])\n >>> idx1.union(idx2)\n Int64Index([1, 2, 3, 4, 5, 6], dtype='int64')\n " ]
Please provide a description of the function:def intersection(self, other, sort=False): self._validate_sort_keyword(sort) self._assert_can_do_setop(other) other = ensure_index(other) if self.equals(other): return self._get_reconciled_name_object(other) if not is_dtype_equal(self.dtype, other.dtype): this = self.astype('O') other = other.astype('O') return this.intersection(other, sort=sort) # TODO(EA): setops-refactor, clean all this up if is_period_dtype(self): lvals = self._ndarray_values else: lvals = self._values if is_period_dtype(other): rvals = other._ndarray_values else: rvals = other._values if self.is_monotonic and other.is_monotonic: try: result = self._inner_indexer(lvals, rvals)[0] return self._wrap_setop_result(other, result) except TypeError: pass try: indexer = Index(rvals).get_indexer(lvals) indexer = indexer.take((indexer != -1).nonzero()[0]) except Exception: # duplicates indexer = algos.unique1d( Index(rvals).get_indexer_non_unique(lvals)[0]) indexer = indexer[indexer != -1] taken = other.take(indexer) if sort is None: taken = sorting.safe_sort(taken.values) if self.name != other.name: name = None else: name = self.name return self._shallow_copy(taken, name=name) if self.name != other.name: taken.name = None return taken
[ "\n Form the intersection of two Index objects.\n\n This returns a new Index with elements common to the index and `other`.\n\n Parameters\n ----------\n other : Index or array-like\n sort : False or None, default False\n Whether to sort the resulting index.\n\n * False : do not sort the result.\n * None : sort the result, except when `self` and `other` are equal\n or when the values cannot be compared.\n\n .. versionadded:: 0.24.0\n\n .. versionchanged:: 0.24.1\n\n Changed the default from ``True`` to ``False``, to match\n the behaviour of 0.23.4 and earlier.\n\n Returns\n -------\n intersection : Index\n\n Examples\n --------\n\n >>> idx1 = pd.Index([1, 2, 3, 4])\n >>> idx2 = pd.Index([3, 4, 5, 6])\n >>> idx1.intersection(idx2)\n Int64Index([3, 4], dtype='int64')\n " ]
Please provide a description of the function:def difference(self, other, sort=None): self._validate_sort_keyword(sort) self._assert_can_do_setop(other) if self.equals(other): # pass an empty np.ndarray with the appropriate dtype return self._shallow_copy(self._data[:0]) other, result_name = self._convert_can_do_setop(other) this = self._get_unique_index() indexer = this.get_indexer(other) indexer = indexer.take((indexer != -1).nonzero()[0]) label_diff = np.setdiff1d(np.arange(this.size), indexer, assume_unique=True) the_diff = this.values.take(label_diff) if sort is None: try: the_diff = sorting.safe_sort(the_diff) except TypeError: pass return this._shallow_copy(the_diff, name=result_name, freq=None)
[ "\n Return a new Index with elements from the index that are not in\n `other`.\n\n This is the set difference of two Index objects.\n\n Parameters\n ----------\n other : Index or array-like\n sort : False or None, default None\n Whether to sort the resulting index. By default, the\n values are attempted to be sorted, but any TypeError from\n incomparable elements is caught by pandas.\n\n * None : Attempt to sort the result, but catch any TypeErrors\n from comparing incomparable elements.\n * False : Do not sort the result.\n\n .. versionadded:: 0.24.0\n\n .. versionchanged:: 0.24.1\n\n Changed the default value from ``True`` to ``None``\n (without change in behaviour).\n\n Returns\n -------\n difference : Index\n\n Examples\n --------\n\n >>> idx1 = pd.Index([2, 1, 3, 4])\n >>> idx2 = pd.Index([3, 4, 5, 6])\n >>> idx1.difference(idx2)\n Int64Index([1, 2], dtype='int64')\n >>> idx1.difference(idx2, sort=False)\n Int64Index([2, 1], dtype='int64')\n " ]
Please provide a description of the function:def symmetric_difference(self, other, result_name=None, sort=None): self._validate_sort_keyword(sort) self._assert_can_do_setop(other) other, result_name_update = self._convert_can_do_setop(other) if result_name is None: result_name = result_name_update this = self._get_unique_index() other = other._get_unique_index() indexer = this.get_indexer(other) # {this} minus {other} common_indexer = indexer.take((indexer != -1).nonzero()[0]) left_indexer = np.setdiff1d(np.arange(this.size), common_indexer, assume_unique=True) left_diff = this.values.take(left_indexer) # {other} minus {this} right_indexer = (indexer == -1).nonzero()[0] right_diff = other.values.take(right_indexer) the_diff = _concat._concat_compat([left_diff, right_diff]) if sort is None: try: the_diff = sorting.safe_sort(the_diff) except TypeError: pass attribs = self._get_attributes_dict() attribs['name'] = result_name if 'freq' in attribs: attribs['freq'] = None return self._shallow_copy_with_infer(the_diff, **attribs)
[ "\n Compute the symmetric difference of two Index objects.\n\n Parameters\n ----------\n other : Index or array-like\n result_name : str\n sort : False or None, default None\n Whether to sort the resulting index. By default, the\n values are attempted to be sorted, but any TypeError from\n incomparable elements is caught by pandas.\n\n * None : Attempt to sort the result, but catch any TypeErrors\n from comparing incomparable elements.\n * False : Do not sort the result.\n\n .. versionadded:: 0.24.0\n\n .. versionchanged:: 0.24.1\n\n Changed the default value from ``True`` to ``None``\n (without change in behaviour).\n\n Returns\n -------\n symmetric_difference : Index\n\n Notes\n -----\n ``symmetric_difference`` contains elements that appear in either\n ``idx1`` or ``idx2`` but not both. Equivalent to the Index created by\n ``idx1.difference(idx2) | idx2.difference(idx1)`` with duplicates\n dropped.\n\n Examples\n --------\n >>> idx1 = pd.Index([1, 2, 3, 4])\n >>> idx2 = pd.Index([2, 3, 4, 5])\n >>> idx1.symmetric_difference(idx2)\n Int64Index([1, 5], dtype='int64')\n\n You can also use the ``^`` operator:\n\n >>> idx1 ^ idx2\n Int64Index([1, 5], dtype='int64')\n " ]
Please provide a description of the function:def _get_fill_indexer_searchsorted(self, target, method, limit=None): if limit is not None: raise ValueError('limit argument for %r method only well-defined ' 'if index and target are monotonic' % method) side = 'left' if method == 'pad' else 'right' # find exact matches first (this simplifies the algorithm) indexer = self.get_indexer(target) nonexact = (indexer == -1) indexer[nonexact] = self._searchsorted_monotonic(target[nonexact], side) if side == 'left': # searchsorted returns "indices into a sorted array such that, # if the corresponding elements in v were inserted before the # indices, the order of a would be preserved". # Thus, we need to subtract 1 to find values to the left. indexer[nonexact] -= 1 # This also mapped not found values (values of 0 from # np.searchsorted) to -1, which conveniently is also our # sentinel for missing values else: # Mark indices to the right of the largest value as not found indexer[indexer == len(self)] = -1 return indexer
[ "\n Fallback pad/backfill get_indexer that works for monotonic decreasing\n indexes and non-monotonic targets.\n " ]
Please provide a description of the function:def _get_nearest_indexer(self, target, limit, tolerance): left_indexer = self.get_indexer(target, 'pad', limit=limit) right_indexer = self.get_indexer(target, 'backfill', limit=limit) target = np.asarray(target) left_distances = abs(self.values[left_indexer] - target) right_distances = abs(self.values[right_indexer] - target) op = operator.lt if self.is_monotonic_increasing else operator.le indexer = np.where(op(left_distances, right_distances) | (right_indexer == -1), left_indexer, right_indexer) if tolerance is not None: indexer = self._filter_indexer_tolerance(target, indexer, tolerance) return indexer
[ "\n Get the indexer for the nearest index labels; requires an index with\n values that can be subtracted from each other (e.g., not strings or\n tuples).\n " ]
Please provide a description of the function:def _convert_listlike_indexer(self, keyarr, kind=None): if isinstance(keyarr, Index): keyarr = self._convert_index_indexer(keyarr) else: keyarr = self._convert_arr_indexer(keyarr) indexer = self._convert_list_indexer(keyarr, kind=kind) return indexer, keyarr
[ "\n Parameters\n ----------\n keyarr : list-like\n Indexer to convert.\n\n Returns\n -------\n indexer : numpy.ndarray or None\n Return an ndarray or None if cannot convert.\n keyarr : numpy.ndarray\n Return tuple-safe keys.\n " ]
Please provide a description of the function:def _invalid_indexer(self, form, key): raise TypeError("cannot do {form} indexing on {klass} with these " "indexers [{key}] of {kind}".format( form=form, klass=type(self), key=key, kind=type(key)))
[ "\n Consistent invalid indexer message.\n " ]