text
stringlengths 0
5.54k
|
---|
Whether or not to return a StableDiffusionPipelineOutput instead of a
|
plain tuple. callback (Callable, optional) β
|
A function that calls every callback_steps steps during inference. The function is called with the
|
following arguments: callback(step: int, timestep: int, latents: torch.FloatTensor). callback_steps (int, optional, defaults to 1) β
|
The frequency at which the callback function is called. If not specified, the callback is called at
|
every step. cross_attention_kwargs (dict, optional) β
|
A kwargs dictionary that if specified is passed along to the AttentionProcessor as defined in
|
self.processor. clip_skip (int, optional) β
|
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
the output of the pre-final layer will be used for computing the prompt embeddings. Returns
|
StableDiffusionPipelineOutput or tuple
|
If return_dict is True, StableDiffusionPipelineOutput is returned,
|
otherwise a tuple is returned where the first element is a list with the generated images and the
|
second element is a list of bools indicating whether the corresponding generated image contains
|
βnot-safe-for-workβ (nsfw) content.
|
The call function to the pipeline for generation. Example: Copied import requests
|
import torch
|
from PIL import Image
|
from io import BytesIO
|
from diffusers import CycleDiffusionPipeline, DDIMScheduler
|
# load the pipeline
|
# make sure you're logged in with `huggingface-cli login`
|
model_id_or_path = "CompVis/stable-diffusion-v1-4"
|
scheduler = DDIMScheduler.from_pretrained(model_id_or_path, subfolder="scheduler")
|
pipe = CycleDiffusionPipeline.from_pretrained(model_id_or_path, scheduler=scheduler).to("cuda")
|
# let's download an initial image
|
url = "https://raw.githubusercontent.com/ChenWu98/cycle-diffusion/main/data/dalle2/An%20astronaut%20riding%20a%20horse.png"
|
response = requests.get(url)
|
init_image = Image.open(BytesIO(response.content)).convert("RGB")
|
init_image = init_image.resize((512, 512))
|
init_image.save("horse.png")
|
# let's specify a prompt
|
source_prompt = "An astronaut riding a horse"
|
prompt = "An astronaut riding an elephant"
|
# call the pipeline
|
image = pipe(
|
prompt=prompt,
|
source_prompt=source_prompt,
|
image=init_image,
|
num_inference_steps=100,
|
eta=0.1,
|
strength=0.8,
|
guidance_scale=2,
|
source_guidance_scale=1,
|
).images[0]
|
image.save("horse_to_elephant.png")
|
# let's try another example
|
# See more samples at the original repo: https://github.com/ChenWu98/cycle-diffusion
|
url = (
|
"https://raw.githubusercontent.com/ChenWu98/cycle-diffusion/main/data/dalle2/A%20black%20colored%20car.png"
|
)
|
response = requests.get(url)
|
init_image = Image.open(BytesIO(response.content)).convert("RGB")
|
init_image = init_image.resize((512, 512))
|
init_image.save("black.png")
|
source_prompt = "A black colored car"
|
prompt = "A blue colored car"
|
# call the pipeline
|
torch.manual_seed(0)
|
image = pipe(
|
prompt=prompt,
|
source_prompt=source_prompt,
|
image=init_image,
|
num_inference_steps=100,
|
eta=0.1,
|
strength=0.85,
|
guidance_scale=3,
|
source_guidance_scale=1,
|
).images[0]
|
image.save("black_to_blue.png") encode_prompt < source > ( prompt device num_images_per_prompt do_classifier_free_guidance negative_prompt = None prompt_embeds: typing.Optional[torch.FloatTensor] = None negative_prompt_embeds: typing.Optional[torch.FloatTensor] = None lora_scale: typing.Optional[float] = None clip_skip: typing.Optional[int] = None ) Parameters prompt (str or List[str], optional) β
|
prompt to be encoded
|
device β (torch.device):
|
torch device num_images_per_prompt (int) β
|
number of images that should be generated per prompt do_classifier_free_guidance (bool) β
|
whether to use classifier free guidance or not negative_prompt (str or List[str], optional) β
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
negative_prompt_embeds instead. Ignored when not using guidance (i.e., ignored if guidance_scale is
|
less than 1). prompt_embeds (torch.FloatTensor, optional) β
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not
|
provided, text embeddings will be generated from prompt input argument. negative_prompt_embeds (torch.FloatTensor, optional) β
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, e.g. prompt
|
weighting. If not provided, negative_prompt_embeds will be generated from negative_prompt input
|
argument. lora_scale (float, optional) β
|
A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. clip_skip (int, optional) β
|
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
the output of the pre-final layer will be used for computing the prompt embeddings. Encodes the prompt into text encoder hidden states. StableDiffusionPiplineOutput class diffusers.pipelines.stable_diffusion.StableDiffusionPipelineOutput < source > ( images: typing.Union[typing.List[PIL.Image.Image], numpy.ndarray] nsfw_content_detected: typing.Optional[typing.List[bool]] ) Parameters images (List[PIL.Image.Image] or np.ndarray) β
|
List of denoised PIL images of length batch_size or NumPy array of shape (batch_size, height, width, num_channels). nsfw_content_detected (List[bool]) β
|
List indicating whether the corresponding generated image contains βnot-safe-for-workβ (nsfw) content or
|
None if safety checking could not be performed. Output class for Stable Diffusion pipelines.
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.