text
stringlengths 0
5.54k
|
---|
<
|
source
|
>
|
(
|
)
|
Enable tiled VAE decoding.
|
When this option is enabled, the VAE will split the input tensor into tiles to compute decoding and encoding in
|
several steps. This is useful to save a large amount of memory and to allow the processing of larger images.
|
AltDiffusionImg2ImgPipeline
|
class diffusers.AltDiffusionImg2ImgPipeline
|
<
|
source
|
>
|
(
|
vae: AutoencoderKL
|
text_encoder: RobertaSeriesModelWithTransformation
|
tokenizer: XLMRobertaTokenizer
|
unet: UNet2DConditionModel
|
scheduler: KarrasDiffusionSchedulers
|
safety_checker: StableDiffusionSafetyChecker
|
feature_extractor: CLIPFeatureExtractor
|
requires_safety_checker: bool = True
|
)
|
Parameters
|
vae (AutoencoderKL) β
|
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
text_encoder (RobertaSeriesModelWithTransformation) β
|
Frozen text-encoder. Alt Diffusion uses the text portion of
|
CLIP,
|
specifically the clip-vit-large-patch14 variant.
|
tokenizer (XLMRobertaTokenizer) β
|
Tokenizer of class
|
XLMRobertaTokenizer.
|
unet (UNet2DConditionModel) β Conditional U-Net architecture to denoise the encoded image latents.
|
scheduler (SchedulerMixin) β
|
A scheduler to be used in combination with unet to denoise the encoded image latents. Can be one of
|
DDIMScheduler, LMSDiscreteScheduler, or PNDMScheduler.
|
safety_checker (StableDiffusionSafetyChecker) β
|
Classification module that estimates whether generated images could be considered offensive or harmful.
|
Please, refer to the model card for details.
|
feature_extractor (CLIPFeatureExtractor) β
|
Model that extracts features from generated images to be used as inputs for the safety_checker.
|
Pipeline for text-guided image to image generation using Alt Diffusion.
|
This model inherits from DiffusionPipeline. Check the superclass documentation for the generic methods the
|
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
__call__
|
<
|
source
|
>
|
(
|
prompt: typing.Union[str, typing.List[str]] = None
|
image: typing.Union[torch.FloatTensor, PIL.Image.Image] = None
|
strength: float = 0.8
|
num_inference_steps: typing.Optional[int] = 50
|
guidance_scale: typing.Optional[float] = 7.5
|
negative_prompt: typing.Union[str, typing.List[str], NoneType] = None
|
num_images_per_prompt: typing.Optional[int] = 1
|
eta: typing.Optional[float] = 0.0
|
generator: typing.Union[torch._C.Generator, typing.List[torch._C.Generator], NoneType] = None
|
prompt_embeds: typing.Optional[torch.FloatTensor] = None
|
negative_prompt_embeds: typing.Optional[torch.FloatTensor] = None
|
output_type: typing.Optional[str] = 'pil'
|
return_dict: bool = True
|
callback: typing.Union[typing.Callable[[int, int, torch.FloatTensor], NoneType], NoneType] = None
|
callback_steps: int = 1
|
)
|
β
|
~pipelines.stable_diffusion.AltDiffusionPipelineOutput or tuple
|
Parameters
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.