|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""(SC)^2QA: Self-Contained Summary-Centric QA Dataset.""" |
|
|
|
|
|
import csv |
|
|
|
import datasets |
|
|
|
|
|
logger = datasets.logging.get_logger(__name__) |
|
|
|
|
|
_CITATION = """\ |
|
@article{zhou2021generating, |
|
author = {Li Zhou, Kevin Small, Yong Zhang, Sandeep Atluri}, |
|
title = "{Generating Self-Contained and Summary-Centric Question Answer Pairs via Differentiable Reward Imitation Learning}", |
|
conference = {The 2021 Conference on Empirical Methods in Natural Language Processing (EMNLP 2021)}, |
|
year = 2021, |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
""" |
|
|
|
_URLS = { |
|
"train":"https://huggingface.co/datasets/sc2qa/sc2qa_commoncrawl/resolve/main/train.csv", |
|
"val":"https://huggingface.co/datasets/sc2qa/sc2qa_commoncrawl/resolve/main/val.csv", |
|
"test":"https://huggingface.co/datasets/sc2qa/sc2qa_commoncrawl/resolve/main/test.csv", |
|
} |
|
|
|
class SC2QAConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for (SC)^2QA.""" |
|
|
|
def __init__(self, **kwargs): |
|
"""BuilderConfig for (SC)^2QA. |
|
|
|
Args: |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(SC2QAConfig, self).__init__(**kwargs) |
|
|
|
|
|
class SC2QA(datasets.GeneratorBasedBuilder): |
|
BUILDER_CONFIGS = [ |
|
SC2QAConfig( |
|
name="plain_text", |
|
version=datasets.Version("1.0.0", ""), |
|
description="Plain text", |
|
), |
|
] |
|
|
|
def _info(self): |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"question": datasets.Value("string"), |
|
"article": datasets.Value("string"), |
|
"summary": datasets.Value("string"), |
|
"model source": datasets.Value("string"), |
|
"length bucket": datasets.Value("int8"), |
|
"url": datasets.Value("string"), |
|
"qa classifier score": datasets.Value("float"), |
|
} |
|
), |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
downloaded_files = dl_manager.download_and_extract(_URLS) |
|
|
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}), |
|
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["val"]}), |
|
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"], "split": "test"}), |
|
] |
|
|
|
def _generate_examples(self, filepath, split=None): |
|
"""This function returns the examples in the raw (text) form.""" |
|
logger.info("generating examples from = %s", filepath) |
|
key = 0 |
|
with open(filepath, encoding="ascii", errors='ignore') as f: |
|
csv_reader = csv.DictReader(f) |
|
for i, row in enumerate(csv_reader): |
|
if split == "test": |
|
row["length bucket"] = "1" |
|
row["qa classifier score"] = "0.0" |
|
yield i, row |
|
|