Datasets:

ArXiv:
Tags:
art
License:
humans / util /merge_images.py
schirrmacher's picture
Upload folder using huggingface_hub
4810ae5 verified
import os
import cv2
import argparse
import random
import string
import albumentations as A
def augment_final_image(image):
transform = A.Compose(
[
A.MotionBlur(blur_limit=(3, 11), p=0.05),
A.GaussNoise(var_limit=(1, 10), p=0.2),
A.ColorJitter(
brightness=(0.6, 1.0),
contrast=(0.6, 1.0),
saturation=(0.3, 1),
hue=(0.0, 0.1),
p=0.5,
),
A.RandomFog(
fog_coef_lower=0.05,
fog_coef_upper=0.2,
alpha_coef=0.08,
always_apply=False,
p=0.2,
),
A.RandomShadow(
shadow_roi=(0, 0.5, 1, 1),
num_shadows_limit=(1, 2),
num_shadows_lower=None,
num_shadows_upper=None,
shadow_dimension=5,
always_apply=False,
p=0.2,
),
A.RandomToneCurve(scale=0.1, always_apply=False, p=0.5),
]
)
return transform(image=image)["image"]
def augment_background(image):
transform = A.Compose(
[
A.RandomBrightnessContrast(brightness_limit=(-0.4, 0.0), p=0.2),
A.RandomShadow(
shadow_roi=(0, 0.7, 1, 1),
num_shadows_limit=(1, 5),
num_shadows_lower=None,
num_shadows_upper=None,
shadow_dimension=5,
always_apply=False,
p=1.0,
),
]
)
return transform(image=image)["image"]
def remove_alpha_threshold(image, alpha_threshold=160):
# This function removes artifacts created by LayerDiffusion
mask = image[:, :, 3] < alpha_threshold
image[mask] = [0, 0, 0, 0]
return image
def create_ground_truth_mask(image):
return image[:, :, 3]
def create_random_filename_from_filepath(path):
letters = string.ascii_lowercase
random_string = "".join(random.choice(letters) for i in range(13))
return random_string + "_" + os.path.basename(path)
def scale_image(image, factor=1.5):
width = int(image.shape[1] * factor)
height = int(image.shape[0] * factor)
return cv2.resize(image, (width, height), interpolation=cv2.INTER_LINEAR)
def augment_and_match_size(image, target_width, target_height):
color = [0, 0, 0, 0]
image = cv2.copyMakeBorder(
image, 200, 200, 200, 200, cv2.BORDER_CONSTANT, value=color
)
transform = A.Compose(
[
A.LongestMaxSize(max_size=max(target_width, target_height), p=1.0),
A.RandomScale(scale_limit=(-0.7, 0.5)),
A.HorizontalFlip(p=0.5),
A.ShiftScaleRotate(
shift_limit_x=(-0.3, 0.3),
shift_limit_y=(0.0, 0.5),
scale_limit=(0, 0),
rotate_limit=(-5, 5),
border_mode=cv2.BORDER_CONSTANT,
p=0.5,
),
]
)
image = transform(image=image)["image"]
# Ensure the image matches the target dimensions
current_height, current_width = image.shape[:2]
# Crop if the image is larger than the target size
if current_height > target_height or current_width > target_width:
# Calculating the top-left point to crop the image
start_x = max(0, (current_width - target_width) // 2)
start_y = max(0, (current_height - target_height) // 2)
image = image[
start_y : start_y + target_height, start_x : start_x + target_width
]
# Pad if the image is smaller than the target size
if current_height < target_height or current_width < target_width:
delta_w = max(0, target_width - current_width)
delta_h = max(0, target_height - current_height)
top, bottom = delta_h // 2, delta_h - (delta_h // 2)
left, right = delta_w // 2, delta_w - (delta_w // 2)
image = cv2.copyMakeBorder(
image, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color
)
return image
def merge_images(background, foreground, position=(0, 0)):
x, y = position
fh, fw = foreground.shape[:2]
if x + fw > background.shape[1]:
fw = background.shape[1] - x
foreground = foreground[:, :fw]
if y + fh > background.shape[0]:
fh = background.shape[0] - y
foreground = foreground[:fh, :]
# Region of Interest (ROI) in the background where the foreground will be placed
roi = background[y : y + fh, x : x + fw]
# Split the foreground image into its color and alpha channels
foreground_color = foreground[:, :, :3]
alpha = foreground[:, :, 3] / 255.0
# Blend the images based on the alpha channel
for c in range(0, 3):
roi[:, :, c] = (1.0 - alpha) * roi[:, :, c] + alpha * foreground_color[:, :, c]
# Place the modified ROI back into the original image
background[y : y + fh, x : x + fw] = roi
return background
def create_training_data(
background_path, segmentation_path, image_path, ground_truth_path
):
background = cv2.imread(background_path, cv2.IMREAD_COLOR)
segmentation = cv2.imread(segmentation_path, cv2.IMREAD_UNCHANGED)
if segmentation.shape[2] < 4:
raise Exception(f"Image does not have an alpha channel: {segmentation_path}")
background = augment_background(background)
segmentation = remove_alpha_threshold(segmentation)
file_name = create_random_filename_from_filepath(segmentation_path)
image_path = os.path.join(image_path, file_name)
ground_truth_path = os.path.join(ground_truth_path, file_name)
bg_height, bg_width = background.shape[:2]
segmentation = augment_and_match_size(
segmentation, target_height=bg_height, target_width=bg_width
)
ground_truth = create_ground_truth_mask(segmentation)
result = merge_images(background, segmentation)
result = augment_final_image(result)
assert ground_truth.shape[0] == result.shape[0]
assert ground_truth.shape[1] == result.shape[1]
cv2.imwrite(ground_truth_path, ground_truth)
cv2.imwrite(image_path, result)
def main():
parser = argparse.ArgumentParser(
description="Merge two images with one image having transparency."
)
parser.add_argument(
"-b", "--background", required=True, help="Path to the background image"
)
parser.add_argument(
"-s", "--segmentation", required=True, help="Path to the segmentation image"
)
parser.add_argument(
"-im",
"--image-path",
type=str,
default="im",
help="Path where the merged image will be saved",
)
parser.add_argument(
"-gt",
"--groundtruth-path",
type=str,
default="gt",
help="Ground truth folder",
)
args = parser.parse_args()
if not os.path.exists(args.image_path):
os.makedirs(args.image_path)
if not os.path.exists(args.groundtruth_path):
os.makedirs(args.groundtruth_path)
create_training_data(
background_path=args.background,
segmentation_path=args.segmentation,
image_path=args.image_path,
ground_truth_path=args.groundtruth_path,
)
if __name__ == "__main__":
main()