|
import os |
|
import cv2 |
|
import argparse |
|
import random |
|
import string |
|
import albumentations as A |
|
|
|
|
|
def augment_final_image(image): |
|
transform = A.Compose( |
|
[ |
|
A.MotionBlur(blur_limit=(3, 11), p=0.05), |
|
A.GaussNoise(var_limit=(1, 10), p=0.2), |
|
A.ColorJitter( |
|
brightness=(0.6, 1.0), |
|
contrast=(0.6, 1.0), |
|
saturation=(0.3, 1), |
|
hue=(0.0, 0.1), |
|
p=0.5, |
|
), |
|
A.RandomFog( |
|
fog_coef_lower=0.05, |
|
fog_coef_upper=0.2, |
|
alpha_coef=0.08, |
|
always_apply=False, |
|
p=0.2, |
|
), |
|
A.RandomShadow( |
|
shadow_roi=(0, 0.5, 1, 1), |
|
num_shadows_limit=(1, 2), |
|
num_shadows_lower=None, |
|
num_shadows_upper=None, |
|
shadow_dimension=5, |
|
always_apply=False, |
|
p=0.2, |
|
), |
|
A.RandomToneCurve(scale=0.1, always_apply=False, p=0.5), |
|
] |
|
) |
|
return transform(image=image)["image"] |
|
|
|
|
|
def augment_background(image): |
|
transform = A.Compose( |
|
[ |
|
A.RandomBrightnessContrast(brightness_limit=(-0.4, 0.0), p=0.2), |
|
A.RandomShadow( |
|
shadow_roi=(0, 0.7, 1, 1), |
|
num_shadows_limit=(1, 5), |
|
num_shadows_lower=None, |
|
num_shadows_upper=None, |
|
shadow_dimension=5, |
|
always_apply=False, |
|
p=1.0, |
|
), |
|
] |
|
) |
|
return transform(image=image)["image"] |
|
|
|
|
|
def remove_alpha_threshold(image, alpha_threshold=160): |
|
|
|
mask = image[:, :, 3] < alpha_threshold |
|
image[mask] = [0, 0, 0, 0] |
|
return image |
|
|
|
|
|
def create_ground_truth_mask(image): |
|
return image[:, :, 3] |
|
|
|
|
|
def create_random_filename_from_filepath(path): |
|
letters = string.ascii_lowercase |
|
random_string = "".join(random.choice(letters) for i in range(13)) |
|
return random_string + "_" + os.path.basename(path) |
|
|
|
|
|
def scale_image(image, factor=1.5): |
|
width = int(image.shape[1] * factor) |
|
height = int(image.shape[0] * factor) |
|
return cv2.resize(image, (width, height), interpolation=cv2.INTER_LINEAR) |
|
|
|
|
|
def augment_and_match_size(image, target_width, target_height): |
|
|
|
color = [0, 0, 0, 0] |
|
image = cv2.copyMakeBorder( |
|
image, 200, 200, 200, 200, cv2.BORDER_CONSTANT, value=color |
|
) |
|
|
|
transform = A.Compose( |
|
[ |
|
A.LongestMaxSize(max_size=max(target_width, target_height), p=1.0), |
|
A.RandomScale(scale_limit=(-0.7, 0.5)), |
|
A.HorizontalFlip(p=0.5), |
|
A.ShiftScaleRotate( |
|
shift_limit_x=(-0.3, 0.3), |
|
shift_limit_y=(0.0, 0.5), |
|
scale_limit=(0, 0), |
|
rotate_limit=(-5, 5), |
|
border_mode=cv2.BORDER_CONSTANT, |
|
p=0.5, |
|
), |
|
] |
|
) |
|
image = transform(image=image)["image"] |
|
|
|
|
|
current_height, current_width = image.shape[:2] |
|
|
|
|
|
if current_height > target_height or current_width > target_width: |
|
|
|
start_x = max(0, (current_width - target_width) // 2) |
|
start_y = max(0, (current_height - target_height) // 2) |
|
image = image[ |
|
start_y : start_y + target_height, start_x : start_x + target_width |
|
] |
|
|
|
|
|
if current_height < target_height or current_width < target_width: |
|
delta_w = max(0, target_width - current_width) |
|
delta_h = max(0, target_height - current_height) |
|
top, bottom = delta_h // 2, delta_h - (delta_h // 2) |
|
left, right = delta_w // 2, delta_w - (delta_w // 2) |
|
image = cv2.copyMakeBorder( |
|
image, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color |
|
) |
|
|
|
return image |
|
|
|
|
|
def merge_images(background, foreground, position=(0, 0)): |
|
|
|
x, y = position |
|
|
|
fh, fw = foreground.shape[:2] |
|
|
|
if x + fw > background.shape[1]: |
|
fw = background.shape[1] - x |
|
foreground = foreground[:, :fw] |
|
if y + fh > background.shape[0]: |
|
fh = background.shape[0] - y |
|
foreground = foreground[:fh, :] |
|
|
|
|
|
roi = background[y : y + fh, x : x + fw] |
|
|
|
|
|
foreground_color = foreground[:, :, :3] |
|
alpha = foreground[:, :, 3] / 255.0 |
|
|
|
|
|
for c in range(0, 3): |
|
roi[:, :, c] = (1.0 - alpha) * roi[:, :, c] + alpha * foreground_color[:, :, c] |
|
|
|
|
|
background[y : y + fh, x : x + fw] = roi |
|
|
|
return background |
|
|
|
|
|
def create_training_data( |
|
background_path, segmentation_path, image_path, ground_truth_path |
|
): |
|
background = cv2.imread(background_path, cv2.IMREAD_COLOR) |
|
segmentation = cv2.imread(segmentation_path, cv2.IMREAD_UNCHANGED) |
|
|
|
if segmentation.shape[2] < 4: |
|
raise Exception(f"Image does not have an alpha channel: {segmentation_path}") |
|
|
|
background = augment_background(background) |
|
segmentation = remove_alpha_threshold(segmentation) |
|
|
|
file_name = create_random_filename_from_filepath(segmentation_path) |
|
image_path = os.path.join(image_path, file_name) |
|
ground_truth_path = os.path.join(ground_truth_path, file_name) |
|
|
|
bg_height, bg_width = background.shape[:2] |
|
segmentation = augment_and_match_size( |
|
segmentation, target_height=bg_height, target_width=bg_width |
|
) |
|
ground_truth = create_ground_truth_mask(segmentation) |
|
|
|
result = merge_images(background, segmentation) |
|
result = augment_final_image(result) |
|
|
|
assert ground_truth.shape[0] == result.shape[0] |
|
assert ground_truth.shape[1] == result.shape[1] |
|
|
|
cv2.imwrite(ground_truth_path, ground_truth) |
|
cv2.imwrite(image_path, result) |
|
|
|
|
|
def main(): |
|
parser = argparse.ArgumentParser( |
|
description="Merge two images with one image having transparency." |
|
) |
|
parser.add_argument( |
|
"-b", "--background", required=True, help="Path to the background image" |
|
) |
|
parser.add_argument( |
|
"-s", "--segmentation", required=True, help="Path to the segmentation image" |
|
) |
|
parser.add_argument( |
|
"-im", |
|
"--image-path", |
|
type=str, |
|
default="im", |
|
help="Path where the merged image will be saved", |
|
) |
|
parser.add_argument( |
|
"-gt", |
|
"--groundtruth-path", |
|
type=str, |
|
default="gt", |
|
help="Ground truth folder", |
|
) |
|
args = parser.parse_args() |
|
|
|
if not os.path.exists(args.image_path): |
|
os.makedirs(args.image_path) |
|
if not os.path.exists(args.groundtruth_path): |
|
os.makedirs(args.groundtruth_path) |
|
|
|
create_training_data( |
|
background_path=args.background, |
|
segmentation_path=args.segmentation, |
|
image_path=args.image_path, |
|
ground_truth_path=args.groundtruth_path, |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|